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Antibiotic resistance is now a linked global problem. Dispersion of successful clones of multidrug
resistant (MDR) bacteria is common, often via the movement of people. Local evolution of MDR bac-
teria is also important under the pressure of excessive antibiotic use, with horizontal gene transfer
providing the means by which genes such as blaCTX-M spread amongst different bacterial species and
strains. b-Lactamase production is a common resistance mechanism in Gram-negative bacteria, and
the rapid dissemination of novel genes reflects their evolution under the selective pressure of anti-
biotic usage. Many Enterobacteriaceae now carry broad-spectrum b-lactamases such as CTX-M, with
particular genotypes associated with different geographical regions. The spread of these enzymes has
compromised the clinical utility of a number of b-lactam classes and with the spread of genes such as
blaKPC, carbapenems may be increasingly compromised in the future. High-level fluoroquinolone
resistance (mainly caused by gyrA mutations) has also been shown to be associated with CTX-M and
CMY-type enzymes, commonly due to co-carriage on conjugative plasmids of the gene for the amino-
glycoside-inactivating enzyme AAC-61-Ib-cr and qnr genes (which confer low-level resistance), allowing
the easy selection of gyrA mutants in the host strain. Resistance in Gram-positive bacteria is also
widely distributed and increasing, with the emergence of community-associated methicillin-resistant
Staphylococcus aureus (MRSA) blurring the distinction between hospital and community strains.
Antibiotic use and environmental factors all have a role in the emergence and spread of resistance.
This article reviews some of the new mechanisms and recent trends in the global spread of MDR
bacteria.
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Introduction

Antimicrobial resistance increases the morbidity, mortality and
costs of treating infectious diseases. The threat from resistance
(particularly multiple resistance in bacterial strains that have dis-
seminated widely) has never been so great. The key factors
driving this threat are increased antibiotic usage (in both human
and animal medicine), greater movement of people and
increased industrialization. The emergence and global spread of
the international clone 1 of penicillin-resistant Streptococcus
pneumoniae (PRSP) is a good example of how multiresistant
bacteria spread by the movement of people.1 Furthermore, if
total outpatient antibiotic consumption in different countries is
correlated with the rate of PRSP, then a direct correlation is seen
(Spearman coefficient r¼0.75; P,0.001).2 Horizontal gene
transfer provides the single most important mechanism to accel-
erate the dispersal of antibiotic resistance genes. Although in the
case of PRSP this occurs via transformation of DNA from

penicillin-resistant commensal streptococci, in most bacteria
(particularly Gram-negative species) plasmids are the major
vector. The importance of plasmids carrying multiple drug
resistance (MDR) markers in Shigella spp. and Escherichia coli
was first described in the seminal work of Watanabe in Japan
over 40 years ago.3 Plasmids are capable of self transfer (conju-
gation) between strains and species and have a mosaic structure
that has arisen by recombination and transposition, which is
responsible for the capture of different resistance genes, giving
rise to the MDR phenotype.4 This mosaic structure poses pro-
blems when classifying and studying the evolutionary relation-
ships of plasmids.5 The application of multilocus sequence
typing (MLST) to Inc HI1 plasmids of Salmonella enterica
serovar Typhi has circumvented these problems, as evolution by
acquisition of single nucleotide polymorphisms in core genes is
not subject to the exogenously driven variation seen in restric-
tion fragment length polymorphism (RFLP) studies of plasmids.6

The study found that resistance plasmids distributed throughout
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the world after 1993 were very different from those occurring
before that time. This suggests that although antibiotic selection
maintains the resistance genes, there is competition between
plasmids of the same incompatibility group encoding the same
phenotype. The interaction of plasmids with the host bacterium
is poorly studied but it is crucial to understanding the rapid
emergence and spread of MDR bacteria. MDR bacteria are
usually thought of as being disadvantaged by carriage of anti-
biotic resistance genes. However, recent work using a pig gut
model shows that no disadvantage (indeed sometimes even an
advantage) is seen in MDR strains in the absence of antibiotic
selection.7

Resistance in Gram-negative bacteria

Extended-spectrum b-lactamases

The most important mechanism of resistance to b-lactam anti-
biotics among Gram-negative bacilli involves the production of
b-lactamases. Extended-spectrum b-lactamases (ESBLs) are
generally acquired by horizontal gene transfer and confer resist-
ance to oxyimino-cephalosporins, some being mutant derivatives
of established plasmid-mediated b-lactamases (e.g. TEM/SHV)
or mobilized from environmental bacteria (e.g. CTX-M). The
frequency with which novel enzymes have been described in the
literature reflects not only the pace of discovery and the ability
to differentiate these enzymes2 but also their rapid emergence
and evolution under the selective pressure of antibiotic usage.
During the 1990s most reports of ESBLs concerned TEM/SHV
types with the exception of the specific genotype CTX-M-2
from South America (five major families of CTX-M genotypes
are recognized representing acquisition of b-lactamases genes
from different species of Kluyvera).

Surveillance data reported high levels of ESBL-producing
strains of Klebsiella pneumoniae and E. coli in Australasia,
ranging from ,10% in Australia and Japan to .30% in
Singapore and China for K. pneumoniae and from �11% in
Singapore to 25% in China for E. coli.8 Subsequent analysis of
strains from China identified CTX-M-14 as the dominant geno-
type, which has been found particularly in the Far East but has
also spread worldwide (Figure 1).9,10 Particular CTX-M geno-
types are associated with geographical regions (see above and
Figure 1). CTX-M-15 is the only genotype reported from India11

and is also very widely distributed across the world possibly
because it is frequently carried by E. coli of sequence type (ST)
131, a very successful uropathogenic clone.12 Very recently an
outbreak of Klebsiella and E. coli producing CTX-M-15 has
been reported from Southern China, where this genotype was
extremely rare before, signifying potential extensive spread and
displacement of the dominant CTX-M-14 and CTX-M-3
ESBLs.13

Since the turn of the century there have been dramatic shifts
reported in both the prevalence and types of ESBLs reported in
Europe, with strains producing CTX-M becoming dominant,
particularly CTX-M-15 (Figure 1).14 In some countries, reports
of isolates producing CTX-M remain sporadic, while in Asia,
much of Europe and South America, endemic prevalence has
been reached.15 In the USA, thought to have been spared a
visitation from CTX-M, a survey undertaken in 2007 shows
the globally dominant genotypes CTX-M-15 and -14 to be

appearing.16 More recent data from the global Study for
Monitoring Antimicrobial Resistance Trends (SMART) showed
that in the Asia-Pacific region and in Latin America, 40% and
30% of E. coli and Klebsiella spp. respectively, from patients
with intra-abdominal infections, were ESBL positive.17

AmpC enzymes

AmpC cephalosporinases are species-specific chromosomally
encoded b-lactams, common but not ubiquitous in
Enterobacteriaceae and Pseudomonaceae, which have also
become mobilized onto transmissible plasmids.18 Consequently
they can now appear in bacteria lacking or poorly expressing a
chromosomal blaAmpC gene, such as E. coli, K. pneumoniae and
Proteus mirabilis. Between 2005 and 2006, plasmid-mediated
AmpC b-lactamases were identified in 10% of Klebsiella spp.
and 2% of E. coli from five children’s hospitals in China, with
DHA-1-type AmpC enzymes having the highest prevalence
rate.19 This finding reflects the relentless spread of these
b-lactamases, the most frequently reported type worldwide
being CMY-2.18

Metallo-b-lactamases

The emergence of metallo-b-lactamases (MBLs) with activity
against carbapenems (e.g. the VIM and IMP families of
enzymes) has compromised the clinical utility of this class of
antibiotics.20,21 Resistance to carbapenems may also be induced
as a result of increased production of either AmpC or ESBL,
coupled with a decrease in porin production or increased
efflux.21,22 Among 33 European countries participating in the
European Antimicrobial Resistance Surveillance System
(EARSS) in 2007, six countries reported carbapenem resistance
rates of .25% among Pseudomonas aeruginosa isolates, the
highest rate being reported from Greece (51%).23 Greece also
had the highest resistance rates among K. pneumoniae (46% to
carbapenems, 58% to fluoroquinolones and 63% to third-
generation cephalosporins). A recent review of the literature con-
firmed that VIM-2 is the most dominant MBL in P. aeruginosa
and confers the greatest clinical threat.21 VIM-2 has been
reported from 37 countries across five continents (Figure 2).
MBLs can hydrolyse all clinical b-lactam substrates, with the
exception of aztreonam. The other major phylogenetic arm of
the VIM MBLs, represented by VIM-1 and related genotypes, is
now commonly found in Enterobacteriaceae (usually VIM-1),
particularly from countries around the Mediterranean.21 The
gene for another mobile carbapenemase, blaSPM-1, has been
found in 70% of isolates of P. aeruginosa from Brazil,21 but to
date has not been reported from other countries. Other currently
rare carbapenemases include GIM-1, which has only been
reported from a few P. aeruginosa isolates in Germany, SIM-1,
which appears confined to Acinetobacter baumannii isolates in
Korea, and NDM-1 in K. pneumoniae described in New Delhi.24

Some countries with high rates of ESBL producers, such as
India, have recently increased their usage of carbapenem anti-
biotics, which may provide a selective pressure for the spread of
strains producing carbapenemases.

IMP carbapenemases were first reported in 1991 from
Japan.21 Other countries in which early molecular variants
appeared were China, Taiwan, Italy, Portugal, Australia and
Canada (Table 1). To date 24 blaIMP genes have been identified
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Figure 1. Global distribution of CTX-M genotypes.11,13,16,62 – 84
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(http://www.lahey.org/Studies/other.asptable1). In a recent out-
break of infection at an Australian hospital, which was part of a
wider interstate outbreak, MBL-producing Gram-negative bacilli
belonging to eight different genera carrying blaIMP-4 were
reported.25 Although the spread of MBL-producing organisms is
often attributed to the use of broad-spectrum cephalosporins and
carbapenems, in that report only 30% of the patients had inten-
sive care unit (ICU)-related acquisition and only 10% of patients
with non-ICU related acquisition had received carbapenems
within the 2 weeks prior to the first positive sample. These
authors postulated that an undetected environmental reservoir or
significant number of colonized patients contributed to the
outbreak.

Molecular class A carbapenem-hydrolysing enzymes

The appearance and rapid spread in the USA and Israel of
KPC-type b-lactamases is the most recent development in the
epidemiology of carbapenem resistance. In 2001, a carbapenem-
resistant strain of K. pneumoniae was reported in North
Carolina,26 while in 2004, 19 isolates of carbapenem-resistant
Klebsiella spp. possessing the carbapenem-hydrolysing class A
b-lactamase KPC-2, were recovered from seven hospitals in
New York City,27 with another genotype, KPC-3, also being
reported.28 Since then, there have been increasing numbers of
reports of KPC-containing organisms from different states in the
USA (mainly confined to the Eastern seaboard but recently more
widely),29,30 KPC is endemic in Israel31 and sporadic isolates
have been reported in China32 and Europe.

The rapid dissemination of different b-lactamases has
severely complicated and limited antibiotic choices. Local
knowledge of the epidemiology and characterization of resist-
ance has become even more important when considering empiri-
cal therapy. Table 2 summarizes the susceptibilities of bacteria
producing different b-lactamases.

Fluoroquinolone resistance

Fluoroquinolones interact with DNA gyrase and topoisomerase
IV, the enzymes that regulate conformational changes in bac-
terial DNA during replication and transcription. Resistance to
fluoroquinolones arises through stepwise mutations in the coding
regions of the gyrase subunits (gyrA and gyrB) and DNA topoi-
somerase IV (parC). Accumulation of mutations in several of
these genes increases the MIC in a stepwise manner.33 In recent
years, the plasmid-mediated QNR mechanism, which protects
DNA from quinolone binding, has become a concern because of

Table 1. First observation and location of the earliest disseminated

blaIMP carbapenemases

Reported

IMP

type Species Country Reference

�1991 1 .12 species Japan 52

2000 2 Acinetobacter Italy 53

2000 3 Shigella flexneri Japan 54

2000 4 Citrobacter youngae Guangzhou, PRC 55

2001 5 A. baumannii Portugal 56

2000 6 Serratia marcescens Japan 57

2001 7 P. aeruginosa Canada 58

2001 8 K. pneumoniae Taiwan 59

2001 9 P. aeruginosa Guangzhou, PRC 60

2002 10 P. aeruginosa Japan 61

Reported in 2009

Reported before 2009

Figure 2. Global distribution of VIM-2.
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its frequent association with CTX-M and CMY-type enzymes
that inactivate third-generation cephalosporins.34 In addition, the
widely distributed plasmid-encoded aminoglycoside-modifying
enzyme AAC-61-Ib-cr has been found to degrade fluoroquino-
lones with a piperazinyl moiety (e.g. ciprofloxacin, norfloxa-
cin).35 There is also a plasmid-encoded target protection
mechanism enabled by the qnr genes,35 with both genes being
found on plasmids carrying blaCTX-M. It is possible that the low-
level plasmid-encoded fluoroquinolone resistance has provided a
selective advantage for bacteria exposed to fluoroquinolones to
allow the easier selection of high-level resistance mutations in
gyrA, thus explaining the association of high-level chromosomal
quinolone resistance with plasmid-encoded ESBL genes. Recent
EARSS data show that fluoroquinolone resistance has increased
significantly across the whole of Europe since 2001, with levels
ranging from 7% (Estonia and Norway) to 53% (Turkey) in
2007.36 Overall, only 47% of E. coli were susceptible to four
classes of antibiotics in Europe in 2007, with the loss of suscep-
tibility occurring more rapidly to fluoroquinolones than to any
other antibiotic class included in the EARSS surveillance
database.36

Resistance in Gram-positive bacteria

Methicillin-resistant Staphylococcus aureus (MRSA) was first
identified in the early 1960s coincident with the introduction of
methicillin. Following a fall in incidence in the 1970s, a steady
rise was noted in many countries. Analysis of clones from
various parts of the world using MLST reveals a limited number
of clones, many of which are also represented by identical
clonal methicillin-susceptible S. aureus (MSSA) isolates,
suggesting that successful MSSA lineages have acquired the
mobile resistance determinant SCCmec.37 A recent study using
single nucleotide polymorphism analysis of sequence type 5
MRSA suggests that contrary to dogma, SCCmec acquisition is

at least 10-fold more common than thought and geographical
dispersal is very restricted.38

In the late 1990s, levels of MRSA reached �30% in many
countries, and the first reports of community-associated MRSA
(CA-MRSA) began to be appear in the literature.39 – 41 Cases of
CA-MRSA usually present in younger patients without under-
lying risk factors, typically cause skin and soft tissue infections
(SSTIs), are usually susceptible to ciprofloxacin, clindamycin,
gentamicin and trimethoprim/sulfamethoxazole, with exotoxin
genes (e.g. Panton–Valentine leukocidin genes), significantly
more likely to be found than in hospital-acquired isolates.42

These strains are genetically unrelated to hospital-acquired
strains of MRSA and in some centres have emerged as the pre-
dominant cause of SSTIs, with the USA300 clone being the
most frequently isolated in North America.43

CA-MRSA has diverse lineages due to new acquisitions of
SCCmec IV. Epidemic strains have emerged in the South-West
Pacific, North America, Europe and elsewhere.44,45 Initially
thought to be distinct from hospital-acquired strains, recent
reports have indicated that these strains may now be causing
hospital cross-infection and also may have reduced susceptibility
to vancomycin.46

Antibiotic resistance in the environment and animals

It is being increasingly recognized that MDR commensal bac-
teria in the gut of animals and humans are an important source
of bacteria causing opportunistic infections or act as resistance
gene reservoirs forming a source of spread to bacteria infecting
humans. CTX-M-2 ESBL genes in E. coli in chicken meat
imported into the UK were found in 50% of chicken breasts
from Brazil this genotype is the most frequent in that country in
humans.47 Whilst an environmental origin for many antibiotic
resistance genes seems likely (e.g. CTX-M from Kluyvera),
release of antibiotics and other antibacterials into the

Table 2. Susceptibility patterns usually observed in bacteria producing different b-lactamases

Examples AMP TZP RAD CXM CTX FEP ATM IPM

Class A

TEM1/SHV1 R S R S S S S S

TEM3/CTX-M R S R R R R R S

KPC R S R R R R R R

Class B

VIM/IMP R R R R R R S R

Class C

chromosomala R R R R R S R S

CMY/FOX R R R R R S R S

Class D

OXA R R R R S S S S

OXA carbapenemaseb R R R R S S S R

aDerepressed mutant.
be.g. OXA-23, OXA-51.
AMP, ampicillin; TZP, piperacillin/tazobactam; RAD, cefradine; CXM, cefuroxime; CTX, cefotaxime; FEP, cefepime; ATM, aztreonam; IPM, imipenem;
R, resistant; S, susceptible.
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environment is going to enrich both MDR and the vectors
(plasmids and integrons) in that milieu. Release of fabric-
conditioning chemicals (largely quaternary ammonium com-
pounds) into a reed bed system has recently been shown to
strongly select for Class I integron carriage, which is a key mol-
ecular mechanism for the spread of antibiotic resistance genes
by horizontal gene transfer.48 A model for the complex inter-
locking relationships of the sources and routes for MDR strain
spread and horizontal gene transfer is shown in Figure 3. The
MRSA clone ST398 and methicillin-susceptible ST9, which
have their main reservoir in pigs, are increasingly causing infec-
tions in humans,49 and ESBL genes of animal origin are being
described in E. coli and Salmonella spp.50

Conclusions

Although some antibiotic resistances have remained rare (for
example intermediate vancomycin resistance and linezolid resist-
ance in MRSA and also some resistance genes, e.g. VIM and
IMP in the UK), the limited surveillance currently undertaken
indicates a generalized rise in antibiotic resistance with some
specific genes (for example those encoding CTX-M ESBLs)
reaching pandemic proportions. Pressures, both clinical and
commercial, to use antibiotics in both humans and animals, the
global mobility of populations and food products, ensure that the
spread of MDR bacterial clones and resistance genes will be a
continuing phenomenon. Increased use of older agents offers
little hope as has been seen with the emergence of colistin resist-
ance in Klebsiella spp. in Greece.51 A number of initiatives have
been established to encourage the prudent use of antimicrobials.
Even with the development of these programmes and the heigh-
tened awareness of the interplay between resistance, geography,
treatment and transmission, it is likely that antibiotic resistance
will continue to develop more rapidly than new agents to treat
infections become available, and that at best we can only hope
to slow the spread of these infections.
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