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Abstract. Upper tropospheric observations outside and in-
side of cirrus clouds indicate water vapour mixing ratios
sometimes exceeding water saturation. Relative humidities
over ice (RHice) of up to and more than 200% have been
reported from aircraft and balloon measurements in recent
years.

From these observations a lively discussion continues on
whether there is a lack of understanding of ice cloud micro-
physics or whether the water measurements are tainted with
large uncertainties or flaws.

Here,RHice in clear air and in ice clouds is investigated.
Strict quality-checked aircraft in situ observations ofRHice
were performed during 28 flights in tropical, mid-latitude and
Arctic field experiments in the temperature range 183–240 K.
In our field measurements, no supersaturations above water
saturation are found. Nevertheless, super- or subsaturations
inside of cirrus are frequently observed at low temperatures
(<205 K) in our field data set. To explain persistentRHice
deviating from saturation, we analysed the number densities
of ice crystals recorded during 20 flights. From the combined
analysis – using conventional microphysics – of supersatura-
tions and ice crystal numbers, we show that the high, persis-
tent supersaturations observed inside of cirrus can possibly
be explained by unexpected, frequent very low ice crystal
numbers that could scarcely be caused by homogeneous ice
nucleation. Heterogeneous ice formation or the suppression
of freezing might better explain the observed ice crystal num-
bers.

Correspondence to:M. Krämer
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Thus, our lack of understanding of the high supersatura-
tions, with implications for the microphysical and radiative
properties of cirrus, the vertical redistribution of water and
climate, is traced back to the understanding of the freezing
process at low temperatures.

1 Introduction

The relative humidity over ice (RHice) controls the forma-
tion of cirrus clouds in the upper troposphere. Prior to ice
formation, when an air parcel cools while rising,RHice in-
creases up to the freezing threshold necessary to nucleate ice
in the ambient aerosol particles. Alfred Wegener was proba-
bly the first to recognize that atmospheric air can be supersat-
urated with respect to ice without forming ice crystals. Dur-
ing his second expedition to Greenland in 1911/1912 he rec-
ognized that the moist breath of his horses produced small
ice crystals (Wall, 1942) growing in the ice supersaturated
air. Gierens et al.(2000) and Spichtinger et al.(2003) re-
called the work ofGlückauf(1945) andWeickmann(1945),
mentioning that cirrus clouds do not form “as soon as ice sat-
uration is reached” and that “ice-forming regions in the up-
per troposphere are regions of high ice supersaturation” that
should occur frequently.

Today’s state of knowledge is that the freezing thresh-
olds depend on the compounds of the available ice-forming
aerosol particles. If these particles are pure liquid solutions
(of arbitrary composition), the – homogeneous – freezing
thresholds range for 140...180% forT =240...180 K and are
well described by the theory derived byKoop et al.(2000).
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In the presence of aerosol particles containing an insolu-
ble impurity (so called ice nuclei, IN, such as soot, mineral
dust or biological particles), the – heterogeneous – freezing
thresholds are determined by the composition of the parti-
cles. Therefore, up to now no simple parametrisation scheme
exists for the heterogeneous freezing thresholds. In most
cases they are lower than the homogeneous freezing thresh-
olds and can be significantly different. Thus, injection of
aerosol particles with a lower freezing threshold would di-
rectly impact the cirrus cloud cover and thus the radiation
balance of the atmosphere (Gettelman and Kinnison, 2007).

Once the ice cloud has formed, the gas phase water and
thusRHice is depleted by the growing ice crystals as a func-
tion of their number and size. The ice cloud microphysics
interact with in-cloudRHice (see e.g.Gensch et al., 2008,
Comstock and Ackerman, 2008) because it affects the wa-
ter vapour condensation rate and fall speed of the ice crystals
(Khvorostyanov et al., 2006), which in turn influences the
vertical redistribution of water in the upper troposphere.

Due to the recent insight that both the clear sky and in-
cloudRHice are important for the Earth’s climate, many air-
borne and remote sensing experiments as well as model stud-
ies have recently been performed to investigate the distribu-
tions of RHice in the upper troposphere (Kelly et al., 1993;
Heymsfield and Milosevitch, 1995; Heymsfield et al., 1998;
Gierens et al., 1999, 2000; Jensen et al., 2001, 2005a,b; Ovar-
lez et al., 2002; Haag et al., 2003; Spichtinger et al., 2003,
2004; Gayet et al., 2004, 2006; Comstock and Ackerman,
2004; Lee et al., 2004; Gao et al., 2004; Gettelman et al.,
2006; Korolev and Isaac, 2006; MacKenzie et al., 2006; Popp
et al., 2007; H. Vömel, personal communication, 2008;Imm-
ler et al., 2008).

The major results of these studies are sorted into two tem-
perature ranges (T <200 K andT =200–240 K) and are listed
in Table 1. The warmer temperature range corresponds to
cirrus at altitudes between about 6 and 15 km in Arctic, mid-
latitude and tropical regions, while cirrus in the colder tem-
perature range is found in the tropics between about 15 and
20 km. Since most aircraft can reach only the lower altitudes,
the warmer cirrus clouds and their environment have been
more extensively investigated and thus a quite consistent pic-
ture already exists.

At higher temperatures (T >200 K), supersaturations up to
the homogeneous freezing threshold frequently occur under
clear sky conditions as well as inside of cirrus clouds. Oc-
casionally higher supersaturations were observed. At lower
temperatures (T <200 K), where theH2O concentrations are
much lower so that the measurements become challenging
for the water instruments, the observations become less fre-
quent. In many of the aircraft and balloon studies,RHice up
to or even more than water saturation were reported outside
and inside of the cold cirrus clouds.

As outlined earlier, we can understand supersaturations up
to the freezing thresholds in both clear air as well as inside
cirrus. However, supersaturations up to water saturation or

even above raise the question of whether these are caused
by instrument artifacts or wether “the basic principles un-
derpinning the current understanding of ice cloud formation
and alter the assessment of water distribution in the upper
troposphere are called into question”, asPeter et al.(2006)
summarized the situation.

Another crucial point in this context is the existence of
persistently high supersaturations inside of cirrus clouds. It
is believed that the in-cloud initially high supersaturation is
reduced to saturation very quickly – in the timescale of min-
utes – through the consumption of gas phase water by the nu-
merous growing ice crystals formed by homogeneous freez-
ing, which is believed to be the major process forming ice
in the upper troposphere (Hoyle et al., 2005). However,Ko-
rolev and Mazin(2003) showed that one important parame-
ter controlling the water vapour relaxation time andRHice is
the product of the mean number and size of the ice crystals,
Nice·Rice, the so-called integral ice crystal radius, which is
inversely linked toRHice. Thus, in the case of lowNice·Rice,
RHice could also become persistent.

Here, we present an extensive data set of strongly quality
checked in situ clear sky and in-cloud aircraft observations of
RHice andNice, Rice in the temperature range 183–240 K. The
measurements were performed during 28 flights in the frame-
work of ten field campaigns in the Arctic, at mid-latitudes
and in the tropics. Based on the comprehensive field data set,
we examine the possible atmospheric range of supersatura-
tions and relaxation times resulting from the observed cirrus
microphysical parameters for the complete ice cloud temper-
ature range. We further derive frequencies of occurrence of
RHice in 1K temperature bins and discuss the pattern ofRHice
found in clear air and inside of cirrus as well as those ofNice,
Rice. Finally, we investigate the freezing mechanism consis-
tent with the observed ice crystal numbers for warmer and
colder cirrus. We show that there is a strong indication that
cold ice clouds (<205 K) contain a lower ice crystal number
than expected.

2 Aircraft measurements

Water vapour and ice crystal measurements from several in-
struments operated on three different research aircraft, i.e.
the high-altitude Russian M55 Geophysika and the Ger-
man research aircraftenviscope-Learjet and DLR Falcon, are
analysed in the present study. Only a brief description of
each instrument is given here as greater detail is available in
the referenced literature. The instruments and the parame-
ters derived from their measurements are listed in Table2,
the campaigns and flights are listed in Table3.

2.1 Water vapour

During field experiments with the M55 Geophysika, wa-
ter vapour was determined simultaneously with FISH and
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Table 1. Observations of supersaturations in clear air and inside of cirrus clouds.

Temperature Study High ice-supersaturation
(K) in clear air in cloud

T >200

Heymsfield and 220–240 aircraft in situ: frequent, up to hom. frequent and substantial
Milosevitch (1995) Wave90 freezing threshold

Heymsfield et al.(1998) 205–240 aircraft and balloon frequent occurrence,
in situ: FIRE-II, SUCCESS up to hom. freezing threshold

occasionally above

Jensen et al.(2001) 205–235 aircraft in situ: frequent occurrence,
SUCCESS, SONEX, up to hom. freezing threshold
POLINAT-2,CAMEX occasionally water saturation

Gierens et al.(1999), >200 aircraft in situ: MOZAIC frequent occurrence,
Gierens et al.(2000) and satellite: SAGE II up to∼140%

Ovarlez et al.(2002), 210–240 aircraft in situ: up to near hom. up to hom. freezing
Haag et al.(2003) INCA freezing threshold threshold, max.∼150%
Gayet et al.(2004, 2006) max.∼140% occasionally above

Spichtinger et al.(2003) >200 satellite: globally frequent
UARS MLS occurrence, up to∼140%

Spichtinger et al.(2004) 219–239 aircraft in situ: up to∼140%, mean
MOZAIC increases with decreasingT

Lee et al.(2004) 205–210 aircraft in situ: in-cloud persistent 160%
CRYSTAL-FACE

Comstock and >200 ground-based: occurrence, frequent occurrence, up to hom.
Ackerman (2004) Raman lidar up to∼160%, freezing thresh., max.∼160%,

increases with decreasingT

Korolev and Isaac(2006) >230 aircraft in situ: frequent occurrence, between
FIRE-ACE, Alliance ice and water saturation,
Icing Research Study increases with decreasingT

Gettelman et al.(2006) >210 satellite: globally frequent
AIRS occurrence, max.∼250%,

Immler et al.(2008) 200–240 ground-based: frequent occurrence
Raman lidar similar toOvarlez et al.(2002)

T <200

Kelly et al. (1993) <195 aircraft in situ: up to hom. freezing threshold,
STEP occasionally above

Gao et al.(2004) <205 aircraft in situ: up to 160%
CRYSTAL-FACE

Jensen et al.(2005a) 198–204 aircraft in situ: up to 180%
CRYSTAL-FACE

Jensen et al.(2005b) 187 aircraft in situ: up to 230%
Pre-AVE

MacKenzie et al.(2006) 185–195 aircraft in situ: up to 140% up to 170%
APE-THESEO

Popp et al.(2007) 185–190 aircraft in situ: persistent 230-250%
CR-AVE

H. Vömel, 185–235 in situ balloon frequent occurrence,
personal communication, up to hom. freezing threshold
2008 occasionally water saturation
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Table 2. Instruments and parameters used during aircraft experiments (FISH: Fast in situ Stratospheric Hygrometer; OJSTER: Open path
Jülich Stratospheric Tdl ExpeRiment, FLASH: FLuorescent Airborne Stratospheric Hygrometer, FSSP: Forward Scattering Spectrometer
Probe; TDC: Thermo Dynamic Complex; all instruments except FSSP are operated at 1 Hz, FSSP at 2 Hz).

Quantity Description Instrument Remarks Uncertainty

H2Oenh (ppmv) Gas phase H2O + enhanced ice FISH? ? Lyman-α-hygrometer 6%±0.2 ppmv

H2Ogas,orig (ppmv) Original gas phase H2O FLASH?/OJSTER† † Open path TDL 8%±0.3 ppmv
H2Ogas,adj (ppmv) Adjusted gas phase H2O FISH, FLASH/OJSTER see text 10–15%
H2Ogas (ppmv) Processed gas phase H2O FISH, FLASH/OJSTER see text 10–15%

IWC (ppmv) Ice water content FISH, FLASH/OJSTER
H2Oenh−H2Ogas

Enhancement 10–15%

RHice (%) Relative humidity wrt ice FISH, FLASH/OJSTER H2Ogas/H2Osat,ice 12–17%
RHice,enh (%) Enhanced RHice FISH H2Oenh/H2Osat,ice 9–14%

H2Osat,ice (Pa) H2O vapour saturation wrt ice Marti and Mauersberger (1993) 10(−2663.5/T +12.537) 7%

T (K) Temperature Avionik, TDC 0.5 K
p (hPa) Pressure Avionik 1 hPa

Nice (cm−3) Number of ice crystals FSSP Optical particle 10–100%
spectrometer

Rice (µm) Size of ice crystals FSSP, FISH [IWC/Nice· 3/(4π · ρice)]1/3 10–100%

on board of DLR Falcon (12 km) FISH, OJSTER, Avionik
enviscope-Learjet (14 km) FISH, OJSTER, FSSP, Avionik
M55 Geophysica (20 km) FISH, FLASH, FSSP, Avionik or TDC

FLASH, both closed cell Lyman-α fluorescence hygrometers
sampling at 1 Hz (Zöger et al., 1999andSchiller et al., 2008,
Sitnikov et al., 2007). FISH is equipped with a forward
facing inlet samplingH2Oenh, i.e. gas phase + enhanced ice
water. Ice particles are over-sampled with an enhancement
ranging from 3 to 10 depending on the inlet geometry and
altitude and cruising speed of the aircraft. FLASH uses a
downward facing inlet that excludes ice particles and sam-
ples only gas phase water,H2Ogas. In experiments with the
Germanenviscope-Learjet or DLR Falcon, FISH is used for
theH2Oenh measurements, whileH2Ogaswas measured with
the open path TDL OJSTER (MayComm Instruments,May
and Webster, 1993). The relative humidity with respect to
ice,RHice, is calculated fromH2Ogasand the measurement of
the ambient temperature, as listed in Table2. The term “su-
persaturation” refers to relative humidities with respect to ice
that exceed 100%.

When in a cirrus cloud,H2Oenh greatly exceedsH2Ogas

due to the additional water from the evaporated ice particles
which are in addition sampled with an enhanced efficiency
(see above). TheH2Oenh measurements with FISH are im-
portant for two reasons: (i) we compare FISH to the other
H2Ogasinstrument in regions outside of clouds to evaluate the
agreement between the two water measurements and (ii) we
use the difference betweenH2Oenh andH2Ogas to determine
whether a data point is inside or outside of a cirrus cloud.

2.1.1 H2O data quality

Figure1 shows examples of a comparison between the water
instruments during some representative flights (a list of all
flights is given in Table3). The upper panel shows a flight
with good agreement, at water vapour values between 20 and
200 ppmv during mid-latitude CIRRUS 2004. The dark blue
curve representsH2Oenh, green is the originalH2Ogas mea-
surementH2Ogas,orig and blackH2Osat,ice. The cyan line is
H2Ogas,adj, which is determined by adjusting theH2Ogas,orig
measurement toH2Oenh in clear air. We chose as the ref-
erence theH2Oenh observations because FISH is the only in-
strument that was calibrated in the laboratory before and after
each field campaign and in the field before every flight. For
the flight shown here the cyan and green data points nearly
match each other and this data set is classified as a “good
flight”. In such casesH2Ogas,orig is used as the finalH2Ogas.

The middle panel shows data from a flight during SCOUT-
O3 2005 at water vapour values lower than about 5 ppmv.
The adjusted data points (cyan) are somewhat higher than
the measured (orange), but the differences are nearly con-
stant and the course of the two measurements correspond to
each other. Thus, this flight is classified as “acceptable” and
H2Ogas,adj is used asH2Ogas for further analysis.

Atmos. Chem. Phys., 9, 3505–3522, 2009 www.atmos-chem-phys.net/9/3505/2009/
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Table 3. List of 43 flights from 10 field campaigns using three aircraft (M55 Geophysika,enviscope-Learjet; DLR Falcon). For 37 flights
both H2Oenh(FISH) and H2Ogas(FLASH [Geophysika] or OJSTER [Learjet/Falcon]) were available; 1/0 denotes the agreement of the H2O
measurements as described in Sect. 2 (1: agreed or adjusted, 0: no agreement, data are rejected from the database), and 20 flights with ice
crystal measurements (FSSP) were performed. POLSTAR: Polar Stratospheric Aerosol Experiment, EUPLEX: European Polar Stratospheric
Cloud and Lee Wave Experiment, ENVISAT: Envisat validation experiment , CIRRUS: Cirrus characterization experiment, APE-THESEO:
Third European Stratospheric Experiment on Ozone, TROCCINOX: Tropical Convection, Cirrus and Nitrogen Oxides Experiment, SCOUT-
O3: StratosphericClimate Links with Emphasis on the Upper Troposphere and Lower Stratosphere. The following flights are influenced by
convective events: TROCCINOX: 0204-1, SCOUT-O3: 1123-1, 1129-1, 1130-1 (Geophysika), 1129-1 (Falcon).

Campaign Aircraft Date FISH + FSSP Location
FLASH/OJSTER

ARCTIC
POLSTAR 1998 Learjet 0126-1 1 Kiruna, Sweden (68◦ N)
EUPLEX 2003 Geophysika 0115-1 1 Kiruna, Sweden (68◦ N)

Geophysika 0126-1 1
Geophysika 0208-1 0
Geophysika 0209-1 1
Geophysika 0211-1 1

ENVISAT 2003 Geophysika 0302-1 1 1 Kiruna, Sweden (68◦ N)
Geophysika 0316-1 1 1

Mid-Latitude
CIRRUS 2003 Learjet 1212-1 1 Hohn, Germany (54◦ N)

Learjet 1213-1 1
CIRRUS 2004 Learjet 1124-1 1 1 Hohn, Germany (54◦ N)

Learjet 1127-1 1 1
CIRRUS 2006 Learjet 1124-1 0 1 Hohn, Germany (54◦ N)

Learjet 1127-1 0
Learjet 1128-1 1
Learjet 1128-2 1
Learjet 1129-1 1 1

ENVISAT 2002 Geophysika 1008-1 1 Forli, Italy (44◦ N)
Geophysika 1014-1 0
Geophysika 1017-1 0

Tropics
APE-THESEO 1999 Geophysika 0219-1 1 Indian Ocean (5◦ S)

Geophysika 0309-1 0
SCOUT-O3 2005 Geophysika 1107-1 1 Darwin, Australia (12◦ S)

Geophysika 1109-1 1
Geophysika 1111-1 1
Geophysika 1112-1 1
Geophysika 1119-1 1 1
Geophysika 1123-1 1
Geophysika 1125-1 1
Geophysika 1129-1 0 1
Geophysika 1130-1 1 1
Geophysika 1130-2 1 1

Falcon 1128-1 1
Falcon 1129-1 1
Falcon 1130-2 1

TROCCINOX 2005 Geophysika 0127-1 1 Araçatuba, Brazil (21◦ S)
Geophysika 0201-1 1
Geophysika 0204-1 0 1
Geophysika 0205-1 1
Geophysika 0208-1 0 1
Geophysika 0217-1 1
Geophysika 0218-1 1 1
Geophysika 0224-1 1 1
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Fig. 1. Examples for H2O data quality (upper panel: good flight
[FISH/OJSTER]; middle panel: acceptable flight[FISH/FLASH]; bottom
panel: poor flight[FISH/FLASH]).

The lowest panel shows a flight also at low water vapour,
during TROCCINOX 2005. This is an example of a flight
classified as “poor” and rejected from the database as a re-
sult of the large scatter between the adjusted and measured
values. This means that the characteristics of the two in-
struments do not match, which is a criterion for discarding
a flight.

This data quality check procedure was applied to 37 flights
(listed in Table3) where bothH2Oenh andH2Ogas,orig mea-
surements are available. Nine flights (5 at high and 4 at
low water vapour mixing ratios) were eliminated so that the
database for further analysis ofRHice contains 28 flights (see
Sect.3.1).

Cirrus 2006, 29 November

Fig. 2. RHice (OJSTER) and RHice,enh (FISH) in the course of
the flight Cirrus 2006, 29 November, colour-coded for “cirrus-
parameter” RHice,enh/RHice to define in/out cirrus (inside cirrus:
confident, less confident, uncertain, outside cirrus).

2.1.2 Cloud detection

After the data quality check had been applied, the water
vapour measurements were evaluated to determine whether
the aircraft was in or out of a cloud. For this purpose,
ice crystal measurements from the optical particle probes
were often used; however, given that these instruments were
not always available, a complementary technique was ap-
plied that incorporated only the measurements from the water
vapour instruments. From the processedH2Ogaswe calculate
RHice and fromH2Oenh we determineRHice,enh. The latter
represents gas phase water plus the over-sampled ice crys-
tals expressed as relative humidity (see Table2). The ratio
RHice,enh/RHice is used as the “cirrus parameter” from which
two regimes of cirrus are defined:

Cirrus regime (a) where RHice,enh/RHice>1 and
RHice,enh>100%. This regime represents a supersatu-
rated cirrus. In Fig.2, a part of the “good flight” of Fig.1
(Cirrus 2006, 29 November) is shown. In Fig.1 it is seen
that both measurements,H2Oenh andH2Ogas show a scatter
that makes it difficult to explicitly state whether a data point
is inside cirrus, especially whenRHice,enh/RHice only slightly
exceeds 1. Therefore, we discriminate three cirrus classes,
differing in the uncertainty of the data points inside the
cirrus. In Fig.2, RHice is colour coded for the three classes:
1) if RHice,enh/RHice>1.3 (cyan), a data point is confidently
inside cirrus, 2) ifRHice,enh/RHice = 1.07−1.3 (yellow) it is
less confident and 3) whenRHice,enh/RHice = 1.0−1.07 (red)
it is uncertain whether those measurements were inside the
cloud.RHice,enh is plotted in blue andRHice outside of cirrus
in green. As already discussed bySchiller et al.(2008) the
data points of the third class (RHice,enh/RHice = 1.0−1.07)
are not inside of cirrus in most cases, whereas most of the
measurements in the second class are inside of cirrus.

Cirrus regime (b) wherebyRHice,enh/RHice>1 and
RHice,enh<100%. This situation may be caused by a
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subsaturated cirrus, but might also be the result of the scatter
of the water vapour. Here, we define this as cirrus only when
RHice,enh/RHice>1.3.

All data points not matching the criterions (a) or (b) are
defined as outside of cirrus. However, most of the observed
data points used in this analysis are “confident” and, more-
over, the “less confident” and “uncertain” data points do not
influence the general picture of supersaturations.

2.1.3 Measurement uncertainties

The uncertainties are estimated by Gaussian error propaga-
tion and are listed in Table2.

The root mean square uncertainty ofRHice is in the range
12–17%. However, as discussed above, although state-of-
the-art, high precision water instruments are used here, the
differentH2O measurements are not always in agreement, es-
pecially for aircraft observations, and we adjustH2Ogas,orig
measurements toH2Oenh from FISH. The differences in
RHice before the adjustment can be much higher than the es-
timated uncertainties, particularly at low temperatures.

We would like to emphasize here the need for further im-
provement of water vapour instrumentation, e.g. higher pre-
cision, sensitivity and time resolution, especially for aircraft
measurements at low temperatures. Otherwise, a number of
scientific questions related to water vapour in the atmosphere
will remain unanswered.

2.2 Ice crystals

For our data analysis, we also use measurements of total
ice crystals number concentrations made with instruments
mounted on the M55 Geophysika and theenviscope-Learjet
using either an FSSP 100 or 300 (de Reus et al., 2008and ref-
erences herein; sampling rate is 2 Hz). The flights are listed
in Table3.

FSSP 100/300 sample particles in the size range 1.5–
15/0.3–20µm radius, and ice crystals larger than this size
range were not recorded. For a number of flights dur-
ing the SCOUT-O3 field campaign a cloud imaging probe
(CIP) was also operated on the Geophysika aircraft to
complement FSSP with measurements in the range from
12.5<Rice<775µm (de Reus et al., 2008). From these
flights we determined at least 80%, but typically more than
90%, of the total number concentration within the FSSP size
range in cirrus at temperatures less than 240 K. Thus, the er-
ror in Nice is small, but the error in the mean ice crystal size
Rice detected by FSSP could be significant. Therefore, we
estimateRice from the IWC detected by FISH (FISH sam-
ples all ice crystals larger than 2µm radius,Krämer and Af-
chine, 2004) together withNice from FSSP by assuming that
all crystals are spheres of the same size (see Table2).

Shattering of ice crystals on the inlet FSSP can lead to
an overestimate of the ice crystal concentration and IWC
(Gardiner and Hallett, 1985; Field et al., 2006a,b; McFar-

quhar et al., 2007; Jensen et al., 2009). This is valid for
clouds where the ice crystal population contains a signifi-
cant number of particles larger than approximately 50µm
(D. Baumgardner, personal communication, 2007) and espe-
cially when a flow-straightening shroud is present in front of
the inlet (Davis et al., 2009). Here, the FSSP does not use a
shroud and the largest fraction of our measurements ofRice
lie between 3–30µm at temperatures<200 K and mostly up
to around 50µm at higher temperatures, whileNice ranges
from 0.005 to 60 cm−3 (see Sect.3.4).

In agreement withde Reus et al.(2008) andLawson et al.
(2008), we do not expect a significant effect of shattering at
low temperatures:Lawson et al.(2008) used a CPI (cloud
particle imager), a 2D-S (2-dimensional stereo probe) and a
CAPS (cloud and aerosol particle spectrometer) for ice crys-
tal detection up to about 800µm radius during 2.4 h of ob-
servation time below 200 K.Jensen et al.(2009) stated that
the 2D-S is less susceptible to shattering artifacts, andLaw-
son et al.(2008) reported that from the images of 2D-S and
CPI there was no visual evidence of shattered particles and
that the size distributions of all three instruments were con-
sistent.

We cannot, however, completely exclude ice crystal shat-
tering in the warmer ice clouds where the occurrence of
larger ice crystals increases. This is discussed in greater de-
tail in Sect.3.5.3.

3 Results and discussion

3.1 Cirrus field observations

Altogether, 20.8 h (about 14 150 km) and 15.4 h (about
10 470 km) of flight time was spent in clear sky and inside
of cirrus, respectively. Inside of cirrus, a wide range of con-
ditions at different latitudes (20◦ south to 75◦ north), alti-
tudes (6–20 km) and temperatures (183–240 K) is spanned.
The observations include frontal and lee wave cirrus in the
Arctic and at mid-latitudes, while in the tropics ice crystals
stemming from convection and convective outflow as well as
subvisible cirrus layers are probed equally. It should be noted
here that we assume that the cirrus observations are not bi-
ased by the flight pattern. In most of the flights, the aircraft
probed the cirrus clouds from top to bottom.

The original field measurements ofRHice derived from
H2Ogas,orig in- and outside of cirrus for all 37 flights with
completeH2O measurements (listed in Table3) are plotted
versus temperature in the top panels of Fig.3. The data
are sorted for in- and outside of cirrus and theH2O qual-
ity check procedure is applied to all flights as described
in Sect.2.1. The processed data are presented in the bot-
tom panels of Fig.3. Comparison of the processed with
the originalRHice shows that for temperatures above about
200 K all supersaturations above the homogeneous freez-
ing threshold disappear for both in- and outside of cirrus
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Fig. 3. Field observations of RHice vs. temperature in- and outside of cirrus. Top panels: original RHice(H2Ogas,orig) measurements of all
flights with H2Oenhand H2Ogas,orig measurements; data points represent 15.4/20.8 h in/out-side of cirrus during 37 flights (1 h cruising time
represents about 680 km); blueish data points represent Arctic, greenish mid-latitude and reddish tropical field campaigns. Bottom panels:
processed RHice(H2Ogas) data; data points represent 9.7/15.9 h in-/outside of cirrus during 28 flights. The black dotted line represents
water saturation (water saturation over ice:Marti and Mauersberger, 1993; over water:Tabazadeh et al., 1997), the black solid line the
homogeneous freezing threshold for liquid solution droplets with 0.5µm radius (Koop et al., 2000).

observations. Below 200 K, a few supersaturations slightly
above the homogeneous freezing threshold are found, which
will be discussed in Sects.3.2and 3.3.

Comparison of our processedRHice data set with former
field measurements during INCA 2000 (10 flights,Ovarlez
et al., 2002) and CRYSTAL FACE 2002 (10 flights,Gao

et al., 2004) shows that the temperature range of the cirrus
observations during CRYSTAL FACE (∼195–215 K) com-
plements the range of INCA (∼215–240 K).
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Clear sky

Fig. 4. Same as Fig.3 (bottom right panel), but as frequencies of occurrence (data are sorted in 1K temperature bins; solid line: homogeneous
freezing threshold, dotted line: water saturation line).

In the overall temperature range the general picture from
all measurements is thatRHice is distributed between subsat-
urated and supersaturated values close to the homogeneous
freezing threshold.

Closer comparison of our clear skyRHice field observa-
tions with those from the INCA campaign indicates that the
INCA RHice observations are slightly below our measure-
ment range (Fig. 2 inOvarlez et al., 2002). We explain this
feature by a higher time resolution of the in/outside of cloud
criterion, which is 1 s here and 7 s for INCA. That means
the INCA data points are more distant from the cirrus and
thus, assuming that the highestRHice are reached immedi-
ately before the point of cirrus formation, lower supersatura-
tion seems to be the result.

Gao et al.(2004, their Fig. 1) averaged in-cloud supersat-
urations from CRYSTAL FACE and proposed an average of
110% for temperatures above around 205 K, rising to around
130% for lower temperatures. The enhanced supersaturation
at low temperatures is explained by diminishedH2O uptake
of the ice crystals caused byHNO3 deposits on the ice sur-
face. From our measurements, showing a higher data density
and extending the temperature range of CRYSTAL FACE
down to 182 K, we cannot confirm a constant supersaturation
in the two temperature ranges.

Further discussion of the structure of theRHice clear sky
and in-cloud observations is provided in Sects.3.2(Clear sky
RHice), 3.3(RHice inside of cirrus).

3.2 Clear sky RHice

Under clear sky conditions, supersaturations up to the freez-
ing thresholds of the available aerosol particles may occur in
the upper troposphere (see Introduction). From our clear sky
observations in the vicinity of cirrus clouds (Fig.3, bottom
right panel and, as frequencies of occurrence, in Fig.4), rep-
resenting 15.9 h of aircraft flight time, it can be seen that for
temperatures>200 K RHice is randomly distributed between
nearly zero up to the homogeneous freezing thresholds. This
finding is in agreement withOvarlez et al.(2002), deriving
a frequency distribution for mid-latitude cirrus clouds cov-
ering the temperature range 215–235 K from the INCA field
experiment.

For lower temperatures, the upper limit ofRHice is in
general also the homogeneous freezing line, but a few data
points are found slightly above it (see Sect.3.2). The lower
RHice limit is enclosed by the dashed line in Fig.3 (bottom
right panel), representing a constantH2O value of 1.5 ppmv,
the minimum water vapour mixing ratio observed in the up-
per tropical troposphere. The highest frequencies of occur-
rence ofRHice are enclosed by the dashed lines in Fig.4,
representing constant water vapour mixing ratios of 1.5 and
3 ppmv, which correspond to typical values near the tropical
tropopause.

No supersaturations close to or above water saturation are
observed in our field measurements. Thus, from our data
set we could not confirm the hypothesis of severe suppres-
sion of ice cloud formation as given byJensen et al.(2005b),
showing clear skyRHice up to 230% at tropical tropopause
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temperatures as low as 187 K. Nevertheless, below 200 K
a few cases of supersaturations slightly above the homoge-
neous freezing threshold are observed, raising the question
of whether at these low temperatures the freezing of liquid
aerosol particles may occur at higher supersaturations as de-
scribed by Koop’s theory.

Murphy et al. (2007) reported that around 50% of the
aerosol particles in the cold uppermost troposphere contain
organic material. Ice nucleation experiments at the AIDA
chamber with soot and mineral dust particles containing or-
ganic material show that the heterogeneous freezing process
of these particles is hindered (Möhler et al., 2005b, 2008). In
a model study,Kärcher and Koop(2005) show that homoge-
neous freezing of solution droplets is hindered in the pres-
ence of organics. Laboratory experiments for homogeneous
freezing (Beaver et al., 2006) of sulphuric acid aerosols con-
taining differing organic substances show both increasing
and decreasing ice nucleation temperatures in dependence on
the organic compound. Recent studies byMurray(2008) and
Zobrist et al.(2008) investigate the suppression of homoge-
neous ice crystallization at low temperatures in highly vis-
cous aqueous organic acid droplets or glass-forming aerosol
particles. Considering these studies together with our clear
sky field observations yields a consistent picture. A further
discussion of the freezing suppression is given in Sect.3.5.

3.3 In-cloud RHice

Immediately after ice formation, but already inside of an ice
cloud, supersaturation is close to the freezing threshold. In
the further cirrus lifetime,RHice will, depending on the ice
clouds’ microphysical and thermodynamical development,
adjust to equilibrium in accordance with the water exchange
with the ice crystals.

The RHice field data inside of cirrus are shown in Fig.3
(bottom left panel). Values ofRHice are found between
around 50% and the homogeneous thresholds. The lower
RHice limit seems to decrease with decreasing temperature,
except for two strokes at around 220 and 230 K dropping
down to near zero. These observations stem from flights in
tropical thick cirrus at around 14/11 km (SCOUT-O3 2005,
Darwin). Both observations were at the very close edge
of the cirrus, maybe in the transition zone between the in-
/outside of cirrus. The decrease with temperature of the low-
est RHice may be explained by longer evaporation times at
lower temperatures, causing the ice crystals to survive longer
during the evaporation stage of the cloud.

Below 200 K, no supersaturations close to or above wa-
ter saturation are observed in our field measurements, but
a few RHice data above the homogeneous freezing line are
found as in the clear sky data set. They may either por-
tray the higher freezing thresholds discussed in Sect.3.2, or
represent the so-called “peakRHice” in very young, thin cir-
rus. This peakRHice is described byKärcher and Lohmann
(2002) and is seen in heterogeneous ice nucleation experi-

ments at the aerosol chamber AIDA for soot particles coated
with sulphuric acid (Möhler et al., 2005a), soot containing
organic carbon (Möhler et al., 2005b) and mineral dust par-
ticles (Möhler et al., 2006): after ice crystal formation and
continuous cooling,RHice still rises up to the peakRHice.
This further increase inRHice results since the ice crystals
are so small or so few at the beginning that the water deple-
tion of the gas phase is not large enough to compensate the
increase ofRHice caused by the further cooling. The duration
and the degree of the post-ice nucleatingRHice increase in-
versely depends on the number of ice crystals, because fewer
ice crystals consume the water vapour more slowly and there-
foreRHice can rise higher. In colder ice clouds, this behaviour
becomes more pronounced.

3.4 Cirrus in dynamical equilibrium

To further explain the pattern ofRHice inside of cirrus we
elaborate simple, observation-based theoretical considera-
tions of supersaturations in the dynamical equilibrium of cir-
rus.

Dynamical equilibrium (“quasi steady state”) in ice clouds
is described byKorolev and Mazin(2003) as the state where
changes in the mean size of the ice particles (Ri) can be ne-
glected and the ice particle number (Ni) and vertical velocity
(uz) are nearly constant. changes in supersaturation are then
zero dRHice

dt =0 because the gas phase depletion of water by
transport to the ice crystals compensates the decrease of the
saturation water vapour pressure caused by the cooling.Ko-
rolev and Mazin(2003) describe the dynamical equilibrium
supersaturation RHqsi as

RHqsi =
uz

NiRi
·

a0

bi
−

b?
i

bi
(1)

a0, bi, b?
i are parameters depending on temperature, pressure,

etc., and NiRi is the integral ice particle radius.
The time the initial in-cloud supersaturation, which is

close to the freezing threshold, needs to reach dynamical
equilibrium is the relaxation timeτ :

τ =
1

a0 · uz + (bi + b?
i )(NiRi)

(2)

The main parameters influencing RHqsi andτ are NiRi , uz,
T (and p, but in the upper tropospheric pressure range this
influence is negligible).

From our data set of cirrus ice crystal number densities
Nice and sizesRice observed during 20 flights (Fig.5; mea-
surement techniques are described in Sect.2.2), we can de-
rive atmospheric values of NiRi . Firstly, NiRi are identified
by encompassing the observed ranges by lines for the min-
imum (Nice: yellow, Rice: green), the middle (both red) and
the maximum (Nice: green,Rice: yellow). Secondly, because
the number of ice crystals is roughly inversely linked to their
size, theNice andRice lines of the same colour are multiplied:
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Fig. 5. Ice crystal number Nice (bottom) and size Rice(top) vs. tem-
perature. Dots: observations from 20 flights (8.5 h inside of cirrus,
for colour coding see Fig.3), lines: minimum, middle and maxi-
mum Nice and Rice.

– NiRi min = Nice,min· Rice,max,

– NiRi middle = Nice,middle· Rice,middle,

– NiRi max = Nice,max· Rice,min.

Knowing the minimum, middle and maximum of NiRi as
a function of temperature, we calculated the correspond-
ing RHqsi andτ for two vertical velocities uz, respectively
(Fig. 6). A higher and a low uz are chosen for the differ-
ent NiRi (thick, medium and thin cirrus) to represent, on the
one hand, a young cirrus directly after formation and, on the
other hand, an older cirrus at the end of its lifetime. We used
different uz for each of the three cloud types, because for

Fig. 6. Quasi steady state relative humidity RHqsi (bottom), re-
laxation timesτ (middle) and integral ice crystal size NiRi (top)
vs. temperature for minimum (yellow), middle (red) and maximum
(green) NiRi and high (dashed)/low (dashed-dotted) vertical veloc-
ity uz, respectively (NiRi = Nice·Rice, calculated from the lines in
Fig. 5 with p = pmean(T ) taken fromSchiller et al.(2008), elec-
tronic supplement; the black dotted line represents water saturation,
the black solid line the homogeneous freezing threshold afterKoop
et al. (2000); note that the calculations are not for evaporating cir-
rus, where uz is negative and RHice is below saturation); for more
information see text.

the frequently occurring homogeneous ice formation process
the ice crystal number increases with increasing updraft, i.e.
thick clouds are formed at high uz and thin cirrus at low uz
(see also Sect.3.5). Hence, uz of 300 and 3 cm/s (dashed
and dashed-dotted green lines) are chosen for the maximum
NiRi , 30/1 cm/s for middle NiRi (red lines) and 3/0.1 cm/s
for the minimum NiRi (yellow lines).

In young cirrus with higher uz, the dynamical equilibrium
RHqsi tends to supersaturation over the complete temperature
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Inside of cirrus

Fig. 7. Frequencies of occurrence of relative humidities over ice RHice vs. temperature (same data set as in Fig.3, bottom left, solid line:
homogeneous freezing threshold, dotted line: water saturation line; data are sorted in 1 K temperature bins).

range for thick, medium and thin cirrus (dashed green, red
and yellow lines in Fig.6, left; note that natural cirrus cannot
reach dynamical equilibrium when the time scale of changes
in uz are shorter thanτ , which is the case very often). How-
ever, supersaturation strongly increases with decreasing tem-
peratures. This increase is caused mainly by the decrease of
NiRi with decreasing temperature, combined with the effect
that the water vapour transport slows down with decreasing
temperature. Together, the gas phase depletion of water by
transport to the ice crystals cannot completely compensate
the fast decrease of the saturation water vapour pressure.

Enhanced time is needed to transport the water vapour if
fewer ice crystals are present. Thus, the relaxation times
before reaching dynamical equilibrium differ greatly with
the ice crystal number: for thick ice clouds (green dashed
line in Fig. 6, top), dynamical equilibrium is reached very
quickly in the time scale of 0.3–2 s with decreasing temper-
ature, for medium clouds the relaxation time rises to 4 s–
20 min and thin ice clouds needs 1–3 h to relax to equilib-
rium. That means supersaturation can live longer the thinner
the ice cloud is. This is also seen from observations byStröm
and K̈archer(2003) during the INCA experiment (tempera-
ture range 215–235 K, their Fig. 4), showing that the fraction
of in-cloud data points between 80 and 140%RHice increases
significantly with decreasing number of ice crystals.

For low temperatures with high equilibrium supersatura-
tions and relaxation times, it follows that for the complete
atmospheric range of ice crystal concentrations saturation in-
side of ice clouds can hardly be reached as long as the cloud
is further cooled. Intensifying the cooling rate would force

RHqsi towards higher RHqsi (not shown here), while reduced
cooling forces RHqsi towards saturation. However, a dynam-
ical equilibrium RHqsi of around 100% is only reached when
uz slows down to very low values in older thick, medium and
thin ice clouds (Fig.6, bottom, dashed-dotted lines). The
time scales are nearly identical at higher temperatures and
are a little longer at lower temperatures.

When comparing the calculated range of RHqsi with the
supersaturations observed inside of cirrus (Fig.3, bottom left
panel) it must be taken into account that before reaching dy-
namical equilibrium the supersaturations in cirrus are higher,
because they start at the freezing threshold at the formation
of the cloud. Then, the comparison shows that for the range
of NiRi considered here the observed supersaturations can be
explained by conventional microphysics.

3.5 Frequencies of supersaturations and
ice crystal numbers

As for the clear sky data set, frequencies of occurrence of
in-cloud RHice binned in 1 K temperature intervals are de-
rived from the field observations shown in Fig.3 (bottom left
panel) and plotted in Fig.7. In Fig. 8, the frequency dis-
tributions ofRHice are binned into two temperature ranges,
namely above and below 205 K.

At temperatures above about 205 K, most of theRHice ob-
servations group around 100%. This finding is in agree-
ment with the observations during the mid-latitude exper-
iment INCA (Ovarlez et al., 2002, their Fig. 4 andGayet
et al., 2004, their Fig. 5). Higher supersaturations are less fre-
quent and probably observed in young cirrus directly after ice
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formation, while subsaturations are aged cirrus in the evapo-
ration stage. The narrowness of the distribution is consistent
with short water vapour relaxation times in this temperature
range, causing these parts of the cloud life cycle to be short
compared to the time the clouds live around saturation.

At temperatures lower than about 205 K, the grouping of
theRHice frequencies of occurrence around saturation broad-
ens. A small part of this broadening (∼10%) can be caused
by the precision of the water vapour measurement, which
becomes more apparent at the low mixing ratios in this tem-
perature range. However, this effect is significantly smaller
than the braodening of the distribution of relative humidity at
T <205 K compared to the distribution atT >205 K. We at-
tribute this difference to longer water vapour relaxation times
in cold cirrus. There is no clear supersaturation cycle during
the cirrus lifetime in this temperature range.

To further investigate theRHice frequency distribution, fre-
quencies of occurrence ofNice (from Fig.5) are derived sim-
ilarly to the RHice frequencies and are shown in Fig.9 (top
panel). The minimum/middle/maximumNice from Fig.5 are
overlaid as thin solid lines.

The number of ice crystals that would form homoge-
neously for different constant vertical velocitiesuz (1, 10,
100, 1000 cm/s) are shown as thick solid lines. They are cal-
culated using a simple box model together with the ice mi-
crophysics as described inSpichtinger and Gierens(2009).
Here, we assume only homogeneous nucleation with nucle-
ation rates parameterized according toKoop et al. (2000)
and a background concentration of sulphuric acid aerosol of
Na = 300 cm−3, which is typical of upper tropospheric con-
ditions (see e.g.Minikin et al., 2003). The calculated ice
crystal number concentrations can be interpreted as an upper
limit for the amount of ice crystals formed in updrafts of this
magnitude under atmospheric conditions.

The most obvious feature of Fig.9 (top panel) is that
the simulated ice crystal numbers formed by homogeneous
freezing increase with decreasing temperature for eachuz,
while the most frequently observedNice decreases, confirm-
ing and extending the observations ofGayet et al.(2006) in
the temperature range 210–260 K during the INCA experi-
ment.

In the following, we individually discuss the correlations
between the numbers of ice crystals, supersaturations, verti-
cal velocitiesuz and relaxation timesτ for the two supersatu-
ration regimes separated at∼205 K, where each temperature
regime represents around 5 h of observations. The possible
effect of shattering of large ice crystals on our findings will
also be discussed.

3.5.1 Warm cirrus (>205 K)

The observed grouping ofRHice around 100% (Fig.7) indi-
cates short water vapour relaxation times, which occurs in
the case of high ice crystal numbersNice (Sect.3.4).

Fig. 8. Frequency distribution of RHice inside of cirrus for two
temperature ranges (top: linear, bottom: logarithmic ordinate; red:
T >205 K, 5.6 h airborne in situ observations, blue:T <205 K, 4.1 h;
same dataset as Fig.7, bottom; data are sorted in 10% RHice bins.

Indeed, highNice observations (0.5–10 cm−3) are most
frequent at 225–240 K (Fig.9, top panel). If homoge-
neous freezing is assumed to be the pathway of cloud for-
mation, this corresponds touz between 10 and 100 cm/s or
higher, as can be seen from the thick solid lines in Fig.9
(top panel). This is in good agreement with the studies by
Gayet et al.(2006) as well asKärcher and Str̈om (2003), the
latter reporting 1–10 cm−3 ice crystals and an updraft speed
of 10–100 cm/s in young cirrus observed in the temperature
range 215–235 K during the INCA experiment. For such
conditions, the relaxation timesτ are in the range of min-
utes. Theuz andτ ranges are estimated from the data set of
NiceRice andRHice using Eqs.1 and2 (see also Fig.6).

At about 205–225 K, middleNice (0.05–1 cm−3) obser-
vations are most frequent, corresponding touz around
5–10 cm/s. Here,τ is a little longer and ranges up to several
ten minutes, but is still short enough to efficiently reduce the
initial in-cloud supersaturations.
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Fig. 9. Frequencies of occurrence of ice crystal numbers Nice (top panel) and sizes Rice (bottom panel) vs. temperature (same dataset
as Fig.5; thin solid lines: minimum, middle and maximum Nice and Rice; thick solid lines in top panel: ice crystal numbers arising for
homogeneous freezing at different updraft velocities afterKoop et al.(2000) for an aerosol particle number of 300 cm−3 and mean pressure;
data are sorted in 1 K temperature bins).

3.5.2 Cold cirrus (<205 K)

As mentioned above, in the cold temperature regime no clear
supersaturation pattern can be seen in Fig.7, implying that
the water vapour relaxation times are longer here. Such long
relaxation times can be caused by the slower water vapour
diffusion in this temperature range, or, more importantly,
low ice crystal numbers and/or high vertical velocities (see
Sect.3.4).

Very low Nice observations (0.005–0.2 cm−3) are most
frequent at temperatures below 205 K (Fig.9, top panel).
Higher ice crystal numbers are found only occasionally in
the upper part of convective systems (note here that the time
of observation in subvisible and convective cirrus is the same,

i.e. theNice pattern is not biased by differing sampling time;
note also that FSSP samples around 90% or more of the ice
crystals, see Sect.2.2, i.e. the low ice particle numbers are
not caused by missing ice crystals larger than the FSSP up-
per detection limit).

The very lowNice would correspond touz around or lower
than 1 cm/s – if they are formed by homogeneous freezing
– and relaxation timesτ from hours to a day. Theuz range
is visible in Fig.9, top panel: the most frequent ice crystal
numbers group around and below theNice line for uz = 1 cm/s.
As a consequence, the time the water vapour needs to mi-
grate to the few ice crystals after ice formation is so long
that the high initial supersaturations, which correspond to the
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freezing thresholds, can be maintained over a longer period.
Likewise, evaporation of ice crystals in a subsaturated en-
vironment occurs on a longer time scale. These considera-
tions corroborate the fact that the observations of persistent
high in-cloud supersaturations in cold cirrus can be explained
by conventional ice microphysics, with unexpectedly low ice
crystal numbers.

Our observations are consistent with others, for exam-
ple Lawson et al.(2008) report anNice range of 0.002–
0.19 cm−3 at 188 to 198 K from 2.4 h of observation time
in subvisible cirrus during the CR-AVE field campaign.
Lawson et al.(2008) attributed the simultaneous observa-
tions of highRHice to the colder temperatures and aerosol
chemistry in the upper TTL compared to mid-latitude cirrus.

Two model case studies simulating cirrus observations
during CRYSTAL-FACE (Khvorostyanov et al., 2006), and
CR-AVE (Gensch et al., 2008) also show few ice crystals
and state that high supersaturations at low temperature may
be explained by assuming of heterogeneous freezing. In
addition, Jensen et al.(2008) report in another CR-AVE
model case study that the observation of few large crystals
would not have been possible in the presence of homoge-
neous freezing.

Several scenarios are possible to explain the low ice crystal
numbers: (i) the ice clouds have formed homogeneously at
very lowuz (around or lower than 1 cm/sec), (ii) they formed
via heterogeneous ice nucleation, (iii) ice nucleation is sup-
pressed at low temperatures (see Sect.3.2).

Scenario (i), homogeneous freezing at very lowuz, seems
unlikely, because higheruz do occur in the uppermost tropo-
sphere (Lawson et al., 2008; Jensen et al., 2008). Scenario
(ii), heterogeneous freezing as sole ice nucleating mecha-
nism, is possible (seeKhvorostyanov et al., 2006andGensch
et al., 2008), but the question arises of whether this mecha-
nism is the most frequent in the UT. In this case, the ho-
mogeneous freezing threshold would rarely be reached after
heterogeneous freezing once has occurred. Another possi-
ble candidate is (iii), the supression of ice nucleation as dis-
cussed above. If half of the particles contain organic mate-
rial (Murphy et al., 2007), this could be a common mecha-
nism. Perhaps all three ice-forming processes occur in the
uppermost troposphere with probabilities increasing from (i)
to (iii).

3.5.3 Ice crystal shattering

Shattering of larger ice crystals may have enhanced the num-
ber of particles detected in the FSSP size range, especially
for the temperature range>205 K (see Sect.2.2). The good
agreement of ourNice observations with those reported from
INCA in this temperature range (see Sect.3.5.1) may be due
to the same shattering problems as speculated byJensen et al.
(2009). Assuming that the most frequentNice concentrations
are lower and lie between the middle and minimumNice in
Fig. 9 (top panel), this implies either that the vertical ve-

locities inducing homogeneous freezing are not higher than
about 20 cm/s, or that heterogeneous freezing is a major pro-
cess in this temperature range. Neither of these assumptions
are in agreement with current knowledge on cirrus produc-
tion processes. In addition, the cloud relaxation times would
then extend to approx. 5 to 60 min (Fig.6), causing a longer
lifetime at high supersaturation. We question whether this
scenario is consistent with the narrowRHice frequency distri-
bution shown in Fig.8.

At T <205 K our observations are consistent with those
reported byLawson et al.(2008) (see Sect.3.5.2), and, as
discussed in Sect.2.2, we do not expect an effect of ice crys-
tal shattering at low temperatures. Considering nevertheless
that shattered large ice crystals enhanceNice at low temper-
atures in our data set and the real ice crystal concentrations
are smaller, implies – as for the higher temperatures – that the
relaxation times are longer and the steady-state supersatura-
tions becomes higher and exist over a longer period. Thus,
our conclusion that the frequent observation of high super-
saturations at low temperatures can be explained by conven-
tional microphysics receives even stronger support.

In conclusion, we believe that shattering may occasion-
ally influence the observedNice, especially at higher temper-
atures. However, these cases do not significantly impact the
pattern of theNice frequencies presented here or the results
and conclusions derived from these measurements.

4 Conclusions

We studied the upper tropospheric humidity in- and outside
of cirrus clouds, motivated by the current discussion of per-
sistent supersaturations up to or even above water saturation
reported in recent years especially at low temperatures (Peter
et al., 2006, 2008). A variety of hypotheses are discussed in
an attempt to understand the observations, but a key question
raised in these studies is the quality of the water measure-
ments. Here, we presented an extensive in situ data set of
thoroughly quality checked clear sky and in-cloud aircraft
observations of relative humidity as well as ice crystal num-
bers in the temperature range 183–240 K (see Sect.2).

In clear sky and inside of cirrus clouds we observed ex-
plainable supersaturations up to the homogeneous freezing
threshold over the complete temperature range. AtT <200 K,
a small fraction of supersaturations slightly above the homo-
geneous freezing threshold but well below water saturation
are found. The observations allow the following conclusions.

Clear sky supersaturations:From our robust data set cases
of slight freezing suppression in cold ice clouds could be de-
rived (see Sect.3.2), but a severe suppression of ice forma-
tion that raises the clear sky supersaturation to values above
water saturation is not seen. We support the idea that this
freezing suppression is caused by the composition of the
aerosol particles. We do not rule out here an impact of other
hypotheses to explain high supersaturations (seePeter et al.,
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2006, 2008), such as a low mass accommodation ofH2O on
aerosol particles or an underestimation of the vapour pres-
sure of supercooled water, but altogether we do not observe
a large effect on the ice formation in the upper troposphere.

In-cloud supersaturations: Likewise, no processes
severely hindering the growth of ice crystals while holding
up the supersaturation are necessary to explain our obser-
vations inside of clouds (see Sects.3.3 and3.4). However,
as for clear sky, we do not rule out the possibility that sev-
eral mechanisms summarized and discussed by (Peter et al.,
2006, 2008, and references therein) might influence the de-
pletion of water vapour by growing ice crystals: a low mass
accommodation ofH2O on ice, nitric acid deposition on ice
forming NAT or cubic ice formation. However, from our data
set we cannot deduce a large effect on ice growth.

Supersaturations and ice crystal numbers:Persistent high
– but below the homogeneous freezing threshold – supersat-
urations at low temperatures are found in our measurements.
The key parameter explaining these observations is the num-
ber of ice crystals, which is unexpectedly low in most cases
(see Sect.3.5). Several scenarios are proposed to explain
these low ice crystal numbers: (i) the ice clouds have formed
homogeneously at very lowuz (around or lower 1 cm/sec),
(ii) they formed via heterogeneous ice nucleation, (iii) ice
nucleation is suppressed at low temperatures. We speculate
that all three ice-forming processes occur in the uppermost
troposphere with differing probabilities.

Considering this hypothesis together with our clear sky
and in-cloud supersaturation as well as ice crystal number
field observations yields a consistent picture for low temper-
atures: a combination of the different ice-forming processes
would produce clear sky and in-cloud supersaturations up to
values above the homogeneous freezing threshold as well
as low ice crystal numbers, which in turn causes persistent
super- and subsaturations.

In summary, we confirm the existence of supersaturations
up to the homogeneous freezing threshold and sometimes
slightly above in- and outside of cirrus clouds. We explain
the observations by conventional knowledge of cloud micro-
physics. Especially, high persisent supersaturations at low
temperatures are traced back to low ice crystal numbers,
which however are not yet fully understood.
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Kärcher, B. and Lohmann, U.: A parameterization of cirrus cloud
formation: Homogeneous freezing of supercooled aerosols, J.
Geophys. Res., 107, D24010, doi:10.1029/2002JD003220, 2002.
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