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Editorial
AT long last EurREKA has reappeared, having hibernated since
March, 1942. Thereasonsfor this regrettable delay are many and
varied, but the decisive factor seems to have been the paucityof
contributions. .However, the present editor has inherited sufficient
material for an issue this term, and—well, here itis. Werealise that
the promise givenin the last issue that EUREKA would appear twice
a year has not been kept with any great exactitude, but this may
simply be a temporary variation, insignificant statistically. In any
case, we apologise profusely, and hope that the present issue keeps
to the high standard set in the past.

It will be noticed that, in complete contrast to the last issue,
there is here not a single article by a senior memberof this, or any
other, university. This phenomenon was not caused deliberately,
but it shows, at any rate, that undergraduates can and do express
themselves, mathematically and otherwise, and thatit is not always
necessary to call in the help of more learned beings in filling our
pages. There was, moreover, to have been an article by one who
has just gone down, on the subject ofthe application of algebra,
especially continued fractions, to the studyof plant leaves, but
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unfortunately the pressure of his vitally important research has
prevented the author from writing out his paper, which some of us
heard as a lecture last term.

Complaints, contributions, requests for copies of this and other
issues etc., should be addressed to P. Brodetsky, Queens’ College,
Cambridge, as the Editor has been completely unable to find
any trace of the whereaboutsof his official address.

_ Archimedeans’ Activities

THE MUSIC GROUP

The Music Group met frequently last year, for the most part to
listen to gramophone records, but there were four concerts by
members of the Group. The records were chosen with a marked
bias in favour of orchestral music, and the concerts were hampered
by an excess of pianists and a scarcity of competent instrumentalists.
Despite this the Music Group was probably the most successful of
the three, largely owing to the efforts of Mr. Davis, who is to be
congratulated on the way in which he overcame all difficulties
(which included dealing with reluctant radiograms and obtaining
buns for tea).

Aa, TN:
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THE PLAY-READING GROUP

The Play-reading Group met weekly since its inception in
January, and was run by Mr. Lighthill. A great variety of plays
was read, the authors ranging from Shaw to Shakespeare; most of
the reading took place in Mr. Glauert’s rooms, which were kindly
lent for the purpose..

Ai Oda iA.
2 o >

THE ARCHIMEDEANS’ BRIDGE GROUP

Meetings of this Group were held regularly during the Michaelmas
and Lent terms on alternate Fridays in Newnham, attendance
varying from 4 to 16 members. Some excitement was caused about
the middle of the Lent term by the introduction of duplicate bridge
at one of the meetings, but apart from a few enthusiasts not many
supported this form of the game. Miss Coad Pryor has agreed to
run the Group this year, and it is hoped that there will be some new
members, as most of the old members have gone down.
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N.USS. Congress, 1943
The Annual Congress of the National Union of Students was heldin April of last year in London. Sir Archibald Sinclair opened theproceedings at a plenary session in Kingsway Hall, and the Congressthen split up into its various Commissions. In addition to the sixl‘aculty Commissions of Science, Medicine, Social Science, Education,Arts and Engineering, there were Works Commissions, whichdiscussed such aspects of studentlife as military training, faculty |reform, war-work, etc. Representatives reported on these Com-missionsat thefinal plenary session in Holborn Hall.
Mathematicians were mainly interested in the Science Commis-sion, which was addressed at King’s College by a woman research-worker, and then at Birkbeck by Dr. Martin Ruhemann. The firstmeeting served the practical purpose of answering undergraduates’questions on scientific research, and the second developed into alively discussion on the social functions of science.
A local “follow-up” meeting was held in Cambridge last term atNewnham, when Dr. Ruhemann again addressed a Science Com-mission. This meeting was organised by the Undergraduate :Council, to which mostof the credit for its success must go.
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A Proof that Every Equation has a Root
By F. J. Dyson

THERE are so many proofs of the theorem that every equation hasa root, that it seems almost criminal to produce another. I canhowever say two things in my defence: first, the proof I shall giveis probably not a new one: second, if my proofis new it has a certainadvantage over other proofs in using only the most elementaryarguments. |
Let F(z) = 2% + azrt4... + @ =O be any equation ofdegree n. Weprovethat it has at least one root z = % + vy in the

complex plane.

Writing z = x + iy, we have

F(z) = P(x, y) + iQ(x,y)
where P and Q are polynomials in x and y with real coefficients.The terms of highest degree in P(x, y) are

yn (2)"292 ts (lees Bee ay s

and vanish on x straight lines through the origin making angles
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—1)" vith the x-axis. Thus the graph of the
an 20 2n |

equation P(x, y) = O has 7 real asymptotes making the same angles

ney

(27

—1)™ vith the x-axis. Similarly the graph of
ed

2n an»

CE) Sy i I MNOS! real asymptotes making angles

; By ee piers Vegua with the x-axis. Thus if we ‘take a

MIA tbe N n ,

sufficiently large circle C in the x-y-plane, centre the origin, C will

cut the graph of P = O at just 2n points, Pjy Pays.) wt Bang eee

the graph of Q =O at2m points Qy, + - . Qen: and these 4n

points will lie alternately round the circle. Further, if the circle

C is large, the value of P on thecircle will actually change sign at ©

the points P,, and the value of Q at the points Q;.

Wesay that two points R and 5S are’ “connected” if it is possible

to join them by a path lying entirely inside C and not cutting the

eraphofP =O. Let every pair of points Q,Q, which are connected

be joined by a path of this kind. Among all these point-pairs let

QQ, be chosen as having the smallest possible angular separation

on the circle. The sign of P is the same at Q, and Q,, and so Q,

and Q, are separated on the circleby an even numberof points P;;

thus there exists a point Q, lying between Q, and Q, on C, such

that P has opposite signs at Q, and Q,. If Q, were connected to

any other point Q,, the path joining Q, to Q, could notintersect the

path joining Q, to Q,, because P takes opposite signs on the two

paths. Thus Qq would also lie between Q, and Q,on C, and the

angular separation between Q, and Q,g would be less than that

between Q, and Q,, contrary to hypothesis. Therefore the point

Q, is not connected to any other Og.

Let R be the region formed byall points which are connected to

Q,. The boundary of R will consist of (i) arcs of the type P;P;, 1 on

C, and (ii) arcs of the graph ofP = O. Since no point Q, can lie

in R, there can be only one arc P,P; .:, of Cin the boundary of R,

namely the arc containing Q,. Thus the boundary of R will

consist of
(i) the arc P;P;,1 0n C; de

(ii) a connected arc A of the graph of P, joining P; to P; , 1 inside

C, and perhaps

(iii) isolated pieces of the graph of P.

Q is a continuous function, and has opposite signs at the ends

P, and P;,,o0f the arc A. Hence Q vanishes at some point (x, ¥)

on A, and P also vanishesat this point. Thus z = x + ty is a root

of F(z) =P +71Q0=0.
Q.E. D.

 



Pyramid Patience

By B. D. PRICE

Form of the Puzzle-—There are three upright pegs; on one is a
pile of square blocks forming a pyramid, the smallest block being
at the top. There are eight blocks, grading in size.
The problem is to move the pyramid completely to another peg,

moving only the top block off one peg on to the top of the pile on
another. A block may not be immediately on top of a smaller
block.

Notation.—The blocks will be numbered (1) (smallest) to (8)
(largest), (p) being the general block. Pegs are numberedI, 2, 3,
starting on I and ending on3.

‘THEOREM I.

A puzzle of x blocks requires 2” — I moves.
For suppose this holds for a particular value m.
Then if one be added (say, a larger one than m) the puzzle may

be solved :—
Moves

Move the top m blocks from 1 to2 .. id iy ee
Move (m + 1) from I to 3 re a a I
Move the m blocks from 2 to 3 i ar 2m — J

Total moves... = gmt — 7

Thus if the theorem holds for m it holds for m + 1.
But it holds for m = 1.
Thus it holds for any positive integral number of blocks.
For an eight-block puzzle, the number of moves is 28— I = 255.

THEOREM 2.

(I) moves every 2 moves.

2) v9 >) o >>

y
In general, (p) __,, a eeu ree

Choose a particular move in which (1) is moved from ato}. Then
the next move does not involve b, as the smallest piece (I) is on top
of the peg 0, and moving (1) again would be redundant. |

Thus the next move is a to c or c to a.
If the next moveis a to c, the next move again cannot be a to D

or c to bas (1) is on top of b. Also c to a would be redundant. Thus
the next move must involve (1) moving from } toa orc. Thus(1) is
moved every other move, or every 2 moves.
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Similarly for c to a.

Now remove(I) from the Siyoblen: (2) now moves every 2 moves.

Replacing (1) we get that (I) moves every 2 moves. 7

(2) ” » 2? ”

And in general by a similar argument
(p) moves every 2” moves.

,

THEOREM 3.

If the block (p) be followed itagtthe solution of the problem :—

If p is odd, the moves follow the rotation

I>-2>3-1>2>3>;3

if p is even, I> 37>2717>372>->.

[Which is quite arbitrary— e¢.g., this is so for a puzzle of 2p pieces,

in moving from I to 3. Proof anyone}

From theorems 2 and 3 it follows that the general solution may

be written out thus :—

 

Block Number of move in complete solution

moved 123456789 10 II I2 13 14 15 1617 18 I9 20 21 22 23 24

i; 2) Sk eg I - 3 I ge I

a 3 2 I 3 2 I

3 2 3 I

4 3 2

5
2

Andso on,the figures in the diagram referring to the peg moved to

in the particular move.

THEm* Move. [All these eostiis are inferred from Th. 1-3 with

the help of the above diagram.]|

Let m= 2?—a (a odd),

ip a+ r

2

The m** moveis the b* moveof the block (9).

b+r1=3¢+d(d <3).
The move m is given by:— d

||

podd

|

p even

 

 

O 3 tol 3 to 2
 

I 1, to.2 2tol

 

2 2to3 I to 3

Let m — 201 = (e —1)2%°+f (F< 2%:

Then the last move of the (q) piece, after the m” move has been

completed, was its e” move.

    



Analysing é as we did 8,

rt = Be ae (4 < 3),
and the following table gives where (gq) is after the m* move :—

a | g odd Weaeeven
 (Numbers in columns 2, 3 refer
O I 2 to the pegs.)
I 2 i

2 5 >
Thus the m* move is completely resolved.

Points of Interest.
After 2” — 1 moves,all the pieces moved are on the same peg—

see Theorem I and thesolution diagram.
Each additional piece more than doubles the necessary number of

moves.
Solution of the problem of ” pieces with more than 2” — I moves

involves retracing moves.
Can anyone evolve a rule for the next move, merely by looking

at the puzzle?
° ° °

A Remark on the Schroder-Bernstein

Theorem
By G. KREISEL

In Littlewood’s Theory of Real Functions (pp. 6-8) a proof of this
theorem is given which at first sight makes any application to
particular cases seem very remote. The proof below deals with the
question from slightly different angle. For simplicity I use
Littlewood’s notation.

Also I define ‘‘é” to be the correlating function (A — A’) andif
C is a sub-set of A d(C) =pe E(n = $(y) = yeC). Thus J(A) = A’.

oO

I consider the set x"(D) =P. This is evidently K,. (Every K

contains D. Since K)K! K)d¢(D) and .:. generally if K)¢"(D)
K)¢"*1(D). Further, Pisa K. .°. It is the smallest K.) .

i ee a the ae similarity eae Q.

oe)aeso) Q(S)) = &; O&)elP(A) —(K.)] > Q6&)) = (6).
BOA q.e.4

te proof incidentally shows exactly what need be known of
“fp” and “D” for the method of proof to be applicable. In a
context like Littlewood’s book the following observation is
appropriate: the concepts of the theory of integers which I have
used in the proof can be developed quite easily without Schréder-
Bernstein (by induction 4 Ja Hilbert-Bernays, Vol. I).

o7
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On a Geometric Trifle

By G. KREISEL

A FAMILIARalgebraic theorem states that in general two quadratic
forms of order 1 have ” singular members (two quadratic forms
x'Ax = 0, x'Bx = 0, being “general” if the roots of | A — AB| = 0
are distinct). The translation into geometric language is immediate

(and interesting).

It is natural to ask for a proof of the geometric theorem inthe
language proper to it; here it is: the theorem I propose to prove
states that ,

_ A system of quadricsin [7] defined by two nondegenerate quadrics
which do not touch contains 2 + 1 cones whose vertices are linearly
independent, and define a self-conjugate simplex ; further, no vertex

lies on either of the two quadrics.

(The second half of the theorem is of infinitesimal interest, but
helps in the induction argument.)

I observe first that an algebraic (1,1) correspondence in any
number of dimensions has at least one self-corresponding point; if
v +1 points of a subspace [v] of [m] are self-corresponding every
point of [v] remains fixed in the transformation. (At this stage it
is needless to stress that I deal with an algebraically closed field.)

Next, I consider the collineation defined by the fcllowing rule:
Given P, I take the polar prime 7 of P w.r.t. one quadric & and call
the pole of 7 w.r.t. the other quadric S P’. Then P — P’is(1, I)

and algebraic. |

Lemma I. A self-corresponding point cannotlie on either of the

quadrics.

Suppose it does: then the tangent primesof the point on the two
quadrics are identical so that the quadrics touch. But I excluded

this case from thestart.

Lemma II.. The vertex V of a cone through the intersection of
the two quadricsis a self-corresponding point of the correspondence.

If a generating line of the cone meets the quadrics in R,T, the
harmonic conjugate of V w.r.t. R,T lies on the polar of V w.r.t. &
and S. There are 7 linearly independent generators, which fix

the polar space.

Lemma III. A self-corresponding point V of the collineation is
the vertex of a cone of the family depending on & and S.

Take P on the intersection of X and S. Let PV intersect ¥ in Q,,
S in Q,. Since the harmonic conjugate of V w.r.t. P,Q, separates
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POs harmonically w.r.t. V, QO, = Q, or else P,V coincide, which is
impossible by lemma I.

Lemma IV. I nowmake use of theinduction hypothesis. The
polar prime of V intersects the two qua in 2V2_,’s which

do not touch.
Otherwise there would be a point on the two quadrics in [m — 1}

whose polar prime would go through V (by the pole-polar property)
and also through the common tangent space of the V?_.’s at P, so
that the quadrics &,S would touch.
The theorem followsif one observes that the self-corresponding

points of the analogouscollineation for the two V2_.,’s are alsoself-
corresponding for the one defined above, and that the theorem is
true for [2].

REMARKS:

(x) Another statement of the geometric theorem would be: if the
base locus of a pencil of quadrics has no double point, etc.

(2) The cones of lemma III are actually quadratic cones. For
this it is sufficient to prove that a line not passing through the
vertex meets the cone in two points; the plane defined by a line
and V intersects the quadrics in 2 conics whose points of intersection
lie on two lines through V.

(3) It is seen from lemmaIII and thefinal step that the argument
works for any self-corresponding point not on the quadrics. This
settles the hackneyed case of the cones through two intersecting
conics in space, 7.e. the intersections of two planes and a quadric.
Let the conics intersect on A,B. Consider the polar line # of

AB w.r.t. the quadric. meets the quadric in P,,P,, the planes
in Q,,0,. Then if O,,0, are the harmonic pair common to P,P,,
Q,Q, they are self-corresponding points of my collineation.
Since the other vertices of cones would lie on AB, O,,0, determine
the only proper cones.

If AB touchesthe quadric the only vertex lies on the polarline of

AB wa.r.t. the quadric. It is the pole of the plane, defined by AB
andits polar line, w.r.t. the original plane pair.

(4) The theorem incidentally furnishes the following corollary:

The necessary and sufficient condition for the base locus of two
quadrics to be simple is that the appropriate characteristic roots are
distinct. .

If, and only if, the base locus is simple do there exist exactly m + 1
cones. ” + I cones exist if, and only if, the a.c. roots are distinct.
The deductionis left to the reader.

9  



Some Guesses in the Theory of Partitions

By F. J. Dyson

PROFESSOR LITTLEWOOD, when he makes use of an algebraic
identity, always saves himself the trouble of proving it; he maintains.
that an identity, if true, can be verified in a few lines by anybody
obtuse enough to feel the need of verification. My object in the
following pages is to confute this assertion.

In order to save space, I must refer my readersto thefirst three
pages of chapter XIX of Hardy and Wright’s Introduction to the
Theory of Numbers for a detailed account of the idea of a partition,
and for a description of the way in which thepropertiesof partitions.
are represented in the form of algebraic identities. I will always
refer to this chapter by the symbol (A). The plan of my argument
is as follows. After a few preliminaries I state certain properties of
partitions which I am unable to prove: these guesses are then
transformed into algebraic identities which are also unproved,
although there is conclusive numerical evidence in their support;
finally, I indulge in some even vaguer guesses concerning the
existence of identities which I am not only unable to prove but also
unable to state. I think this should be enoughto disillusion anyone
who takes Professor Littlewood’s innocent view of the difficulties
of algebra. Needless to say, I strongly recommend my readers to
supply the missing proofs, or, even better, the missing identities.

* * * *k

The total number of partitions of an integer ” into a sum of
positive integral parts is denoted by #(m). The “‘generating function”
of p(n) is the infinite series

oc

@) P=> p(aja,

which is a function of the variable x regular in |x| <1. The form
of P is given by twoidentities of Euler

(2) P= (1 — x)(r — #)(1 — (I — A). ..,,
oO

(ap. three?! =e: > (— Tex tn(8+1) — 7 — y —x2 SLi aie geeks oat age

n=— ®D

which are proved in (A).
There are three beautiful arithmetical properties of p(~), which

were discovered, and later proved, by Ramanujan, namely :—

(4) (5% + 4) = 0 (mod 5),
(5) p(7m + 5) = 0 (mod 7),
(6) (11m + 6) = 0 (mod 11).

They appear as theorems 359-361 in (A), and can be proved
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analytically without much difficulty, using identities like (3) ; in fact,
there are at least four different proofs of (4) and (5).

It would be satisfying to have a direct proof of (4). By this I
mean, that although we can prove (in four ways) that the partitions
of 5x + 4 can be divided into five equally numerous subclasses, it
is unsatisfactory to receive from the proofs no concrete idea of how
the division is to be made. We require a proof which will not appeal
to generating functions, but will demonstrate by cross-examination
of the partitions themselves the existence of five exclusive, exhaus-
tive and equally numerous subclasses. In what follows I shall not
give such a proof, but I shall take the first step towardsit, as will

_ appear.
The result of subtracting the numberof parts in a partition from

the largest part we call the “‘vank’’ of the partition. It is easy to
see that the ranks of partitions of ” will take the values

nN—I, N—3, N—4,..., 2,1, 0, —I, —2,...,4—n, 3—n, I—n,
and no others. The number of partitions of 1 with rank m we
denote by N(m,u). The number of partitions of ~ whose rank is
congruent to m modulo g we denote by N(m, q,). Thus

oO

(7) Nom, q,n) => Nom +1q,").
7= — @

The conjecture which I am making is

(8) N(0, 5, 5%-+4) = N(1, 5, 5” + 4) = N(2, 5, 5” + 4)
= N(3, 5, 5% + 4) = N(4, 5, 5% + 4);

or, in words, the partitions of 5” + 4 are divided into five equally
numerous classes according to the five possible values of the least
positive residue of their ranks modulo 5. In the same way we have

(9) N(o, 7,7 + 5) = N(1, 7,70 +5) =..-=N(6, 7, 7m + 5).
The truth of (4) and (5) would follow at once, if (8) and (9) could be
proved. But the corresponding conjecture with modulus 11 is
definitely false.
There is in the theory of partitions a “principle of conjugacy,’

explained in (A), p. 272. This principle includes a duality relation
between the number of parts and the largest part in a partition, and
thus partitions of rank m are in a relation of duality with partitions
of rank —m. It can thus easily be proved that

(10) N(m,n) = N(— m,n),

(1x1) N(m,q9,n) =N(q —™, q, n).

Hence (8) reduces to only two independentidentities, and (g) to
three. |

Fortunately, this reduction of our capital is more than offset by
other considerations. In fact, (8) and (9) are only the leading and
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most interesting members in a whole series of similar identities, as
listed below :—

(12) N(zr, 5,5” + 1) = N(2,5,5 +1),
(13) N(o, 5,5” + 2) = N(2, 5, 5” + 2),
(8) N(o, 5,5” + 4) = N(1, 5,5” + 4) = N(2, 5, 5+ 4),

7(14) N(2, 7, 7m) = N(3, 7, 70),
(15) N (1,7, 7% + 1) = N(2,7, 7m + 1) = N(3,7, 7" + 1),
(16)' N(o,7 7m, + 2)=N(3 7 7n +2), -°
(17) N(0,7,7n+3)=N(2, 7,7n+3), N(x, 7, 7%+3)=N(3, 7, 72+3),
(18) N(o, 7,7” + 4) = N(x, 7, 7m + 4) = N(3, 7, 7” + 4),
(9) N(o, 7>/” +5)=N(z, 7> 7n+5)=N(2, 7? 7n+5)=N(3, 7? 7N-+5);

(19) N(0,7,7#+6) +N(1, 7,7+6)=N(2, 7, 7"+6)-+N(3, 7, 70-£6).
Of these relations, only (8) and (g) give any arithmetical properties —
of p(m). The rest of the series is interesting only because it may
throw somelight on (8) and (9); as yet, however, I have been unable
to find any plan behind the apparently haphazard distribution of
these identities. |

*K *k * *

I now proceed to put the equations into algebraic form by means
_ of generating functions. The algebraic form is useful for numerical
computations, and also seemsto offer the best prospect of arriving
at proofs. [shall omit the calculations, sat on the basis of formulae

to be found in (A) the generating function G(m+>N(m, n)x

takes the form n=0
fo@)

(20) G(m) — Pp » (— nFie 1 (87137 — Lp ey irr + 1)an,

fod

where P is given by (1). This form is valid when m = 0 and, with >
certain reservations, when m <0 also; but when m < it is simpler
to use the relation

(2x) G(m) = G(— m),
deducible from (10). (20) and (21) can thus be combined in the
formula |

(22) — Pp Mi —1 (4708 — 1)__ y3r(87 + 1))yf | m| ;a
valid for all values of m. Theseries on the right of (22) is simple in
form, and is of the type called ‘‘false theta-functions” by Professor
Rogers, if that is any consolation.

The generating function of N(m, ay)n) 1s

(23) G(m, @) == S Nim, a0)axG(m + sq),

nw=0

12



by (7). We supposethatg is a positive integer, and that o < m < q.
Then we substitute from (22) into (23), and the summationwith
respect to s can bemenOnee in finite terms, giving thefinalresult

(xt7(3r —1) _ y4r(8r+ 1)\ (mr (q—m)rGn ¢=P(1 (x: x \(x"” + x ).

aan)
The coefficients in P have en tabulated as far as x®°° and the
coefficients in the series on the right of (24) are all very small;
(24) therefore affords much the quickest way of calculating the
values of N(m, q,) numerically. The equations (12) — (Ig) can
be expressed in analytical form by meansof (24); as an example we
take the equation N(1, 7, ) = N(3, 7, 2), whichleads to the follow-
ing statement.

(25) In the power-series

 (24)

 

sS aera (abr — 2) hve + 1) (47 — Br yer 4. 67)

oon (x Chi ei

the coefficients of x7™+1, x7+8, y7n+4, x7N+5 yanish identically.
x x * ok

It is interesting for several reasons to examine the numerical
evidence in some detail. First comes a table of the values of the
two differences

N(o, 5; 2 oe N(2, 5: m), 0 = N(I, 5; n) cali N(2, 5,2)

for inesof 2 up to 50.
 

 

n a b n a b n'a b n a b n a b

Base 72 Ne a2 I 3 oO —I/'4 oO Oo 5 ON va
Oi oO Ti). 3) oO 8 —I —I 9° ..O O)."I0 Oe
Lie On E20 I 13 Oo —2] 14 oOo Oo |15 —I I
T6.) 0 O41 eEFs OO I 18 —I —2]I19 oO Oo 20 O74 &
Arh ie Oot 22.20 I 23 —I —2]24 o O°} 25° +L '2
26K Tt Oeeea to o 28 —1I1 —3]|29 oO Oo 30 O22
Sie OM 825 o 2 33 —I —3 |.34' 0 O°) 35 Sr he
362 Oi 37a VO I 38 —2 —4] 39 oO 0.7/4 ee Bere

4i°. 3 Oss 4270 Se Ae te eh aba O paid ier shee ore Ne
AO SE OC AR ON RC ae RR TAG oy EO Let ae     
What is remarkable about this table, apart from the columns of
zeros, is the regularity of behaviour of a and 6 within each arith-
metic progression of common difference 5, and also the smallness

of the values. If the partitions of 48 were distributed ‘‘at random”’
into five classes, we should expect statistically that the numbersof
partitions in eachpair of classes would differ by anything from 100
to 250. Clearly, then, the values of a and b, namely —2 and —5,

require some explanation. It seemscertain that there remain to be
discovered alternative forms for the generating functions of a and b,
which will make it intuitive when these coefficients vanish, when
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they are positive, when negative, and why in general they are so
small. And exactly the same remarks apply to the coefficients
relating to the modulus7.

In the case of modulus 7, we obtain from equations (12)—(9)
someae congruence properties of p(n). We write

INKG; 7,0) Seoo 7,0), a Th= N(I, 7 n) a N(3, d> n),

TT= N(2, 7, n) a. N(3, 7> n).

Then, by (11), ha=c + 2d + 2e (mod 7).

),Nowusing (12)—"9 wefind
when ” = I, £(
when 1 = 2,ey

426) when ” = p(n
when 1 =ip(n

n) == c (mod 7),
n) == 2d + 2e (mod 7),

) = 3c (mod 7),
) = — 5¢ (mod 7).

Below is a table of the actual least positive residues of (2)
(mod 7) for various valuesof .
 

 

 

 

I 8 I5 ae 29 36 43 50 57 04
lpy Ee ye I I I I 2 I 2 2

n 2 OREO’ SA BO ET Adee! BE S88 ee
lpy 2 2 oO 2 4 oO 2 4 2 2

n 3 10 LP Be SE 35 5 52 69°) 286
lpr 3 oO 3 O 3 . 3 Oo 3 3

WE 4 II 18 25 32 39 46 53 60 67
lpr 5 oO oO 5 5 O 5 oO 5 5 
 

It will be seen that these residues exhibit a strong regularity, which

is sufficiently explained by the congruence relations (26) together
with the fact that the values of c, d and e are initially very small.

For comparison I append a similar table of the least positive
residues of #(”) (mod 11) for various values of n.
 

 

 

 

  

nN I 52 23 34 45 56 607 78 89 100
lpr I oO I I I oO I oO I I

n 2 13 24 35 46 57 68 79 90 IOI
lpy - 2 2 2 Oo 2 2 2 2 2 2

n 3 14 25 36 47 58 69 80 oft 102
lpr 3 3 o 3 3 O 3 3 3 3

4 15 201i) 37 SAO eae note Fe 92 103
lpr 5 oO 5 oO 5 O 5 oO 5 5

n 5 16 27 38 49 60 71 82 93 104

lpr a oO 7 O oO TH, 7 oO 7 oO  
The regularity of this table is of precisely the same characteras the

_ regularity of the previous one. Oneis thus led irresistibly to the
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conclusion that there must be some analogue modulo 11 to the
relations (26).

I hold in fact:
That there exists an arithmetical coefficient similar to, but more

recondite than, the rank of a partition; I shall call this hypothetical
coefficient the ‘‘crank’’ of the partition, and denote by M(m, q, 2)
the number of partitions of whose crank is congruent to m
modulo gq;

that M(m, q, n) = M(q — m, q, n);
that

M(o, 11, 11m + 6) = M(r, 11, 11m + 6) = M(2, I1, 11” + 6)
= M(3, 11, 11m + 6) = M(4, 11, 11 + 6);

that numerous otherrelations exist analogous to (12)-(19), and
in particular

M(1I, 11, 11#+1) =M(2,11, IIm-+1) = M(3, 11, 1Im+1)
= M(4, 11, 11m + 1);

that M(m, 11, m) has a generating function not completely
different in form from (24);

that the values of the differences such as M(o, 11, )—M(4, 11, 2)
are always extremely small compared with p(n).
Whether these guesses are warranted by the evidence, I leave to

the reader to decide. Whatever thefinal verdict of posterity may
be, I believe the ‘“‘crank’’ is unique among arithmetical functions in
having been named before it was discovered. May it be preserved
from the ignominious fate of the planet Vulcan!

o > >

Short Vision
By A. C. FALCONER

Thought is the only way which leadstolife
All else is hollow spheres
Reflecting back
In heavy imitation
And blurred degeneration

A senseless image of our world of thought.

Man thinks he is the thought which gives him life!
He binds a sheaf and claims it as himself!
He ts a ring through which pass swinging ropes
Which merely movea little as heslips.

The Ropes are Thought
The Space is Time
Could he but see, then he might climb.
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Book Review
Generalised Foreign Politics. ByLEwts F. RICHARDSON, F.R.S. (C.U.P., 8s/6dip

This is a book to which neither Professor Hardy norProfessor Hogben

could take exception. The title is sufficient indication of its wide practical

interest, but the mathematics is complete in itself; some of the theoremsrelate

to unobservable worlds, ¢.g., ‘‘If each pair of three nations be separately stable,

the triplet may nevertheless be unstable.” The author suggests substitution

of the word ‘‘dog” for ‘‘nation,”’ in which case the theorem is verifiable.

The whole work is intended to represent what would happenif “instinct and

tradition were allowed to act uncontrolled,”’ 7.e., if nobody read Generalised

Foreign Politics. Each nation is represented by a single variable, which

indicates in some way its warlike preparations and ageressiveness. The

precise meaningis interpreted at leisure by the authorin thestatistical sections

of the book, which show a very close agreement with the theory (particularly |

for the 1910-1914 armsrace).

He considers first the case of two nations only. Nations increase their

armaments more rapidly if their neighbours are heavily armed, but the cost

of upkeep hasa restraining effect; he assumes then that :—

dx dy
—_—- = ates tS —e sous
ait ky an + 8, : i lx By +h,

where k and J are positive ‘‘defence coefficients,’ « and f are positive ‘‘fatigue

coefficients,’ g and h being constants to represent ‘“‘fixed grievances.”

Negative x and y are interpreted as co-operation and trade. War occurs when

x and y tend to positive infinity with ¢. The equations can be solved by the

usual methods and it is easily seen that if aB > kl, x—> x and y—> Yo as

{>| @ , where :— kyo — to + £ =O

and Ivo — Byo + h=o.

Tf ap < kl, the system is in equilibrium at (%o, Vo), called “the point of balance

of power,’’ but from any other starting point the system will tend either to

war or to extreme co-operation. The author neglects the case a8 = kl; here

there is no point of balance of power, and the system is unstable for all starting-

points unless also <= —=. It is interesting to note that neither unilateral

disarmament nor mutual disarmament without satisfaction are permanent.

There is an additional difficulty when we come to n nations, as the war-like

preparations of any one is really a vector, with components directed against

the other nations severally. However, if we take the total war-like prepara-

tions x; of the it! nation andits total grievance gi, the equations :—

 

7=N

EK = 2-5 > bon (2 a 1 to 7)

dt
oon Dh

follow from the more accurate equations which allow for ‘‘directed inten-

tions.” ki is negative, being a fatigue coefficient, while k; is positive for

i #j. It can be shown that a sufficient condition for stability of peace 1s

that the matrix [4(ki + Ry)| has no positive latent root. The world in 1935

was unstable. The only problem for which directed intentions are needed is

that of pacifism. It is found that if there are two pugnacious nations and

one pacifist nation (that is, a nation whose defence coefficients are zero and

whose grievances are < 0), the preparations of the pugnacious nations against

the pacifist nation tend to a constant, which depends only upon old grievances

against the pacifist nation.
:

The good agreement between this theory and fact shows thatforeign

politics.in peace-time Tun in grooves which can only be changed by an effort;

it also shows that if the defence coefficients were negative, as many statesmen

ar to think, arms races could not occur. Onehopes that in time foreign

politics will become a branch of Pure Mathematics and that Part III of the

Tripos will contain questions such as:—''Prove that given any just-stable

world another can in general be formed from it by making one pair of nations

more equal and another pair less equal, and indicate the cases of are‘ag

| A: 0. Lj
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