
intel
®

iRMX™86
INTRODUCTION AND OPERATOR'S

REFERENCE MANUAL
For Release 6

Copyright ® 1984, Intel Corporation

Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051
Order Number: 1 461 94-001





ASSEMBLY INSTRUCTIONS

Volume: iRMXw 86 INTRODUCTION AND OPERATORS REFERENCE MANUAL
Order No: 146194

INTRODUCTION

This sheet describes how to assemble this iRMX 86 literature packet. The
assembly is simple and takes less than 5 minutes.

This literature packet contains:

• The literature in the volume, including this instruction sheet
and these manuals:

- INTRODUCTION TO THE iRMX 86 OPERATING SYSTEM
- iRMX 86 OPERATOR'S MANUAL
- iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL

• The first of two cardboard separators.

• Three divider tabs, one for each manual.

• The bottom cardboard separator.

If your literature packet is missing one or more of these items, contact
Intel immediately.

ASSEMBLY

Assembling the volume involves inserting the literature packet into a
three-ring binder and placing an appropriately labeled divider tab at the
front of each manual in the volume.

At this point you have torn open the shrink wrapping, removed the entire
literature packet, and extracted this sheet from the packet. Set this
sheet aside. You will be referring to it as you go.

To put the volume together, follow these steps:

1. Separate the divider tabs from the rest of the literature packet.
Tear off the shrink wrapping. Discard the cardboard. The divider
tabs have these labels and match these manuals:

Label Manual

Introduction INTRODUCTION TO THE iRMX 86 OPERATING SYSTEM
Operator iRMX 86 OPERATOR'S MANUAL
Disk Verify iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL

(over)



ASSEMBLY INSTRUCTIONS (continued)

2. Find Page ix, which is at the end of the Volume Contents. Open the

binder rings and insert the Front Cover up to and including Page ix

into the left side of the open rings. The top page of the literature

packet is now the "Introduction" title page, which looks like this:

INTRODUCTION TO THE
IRMX'"86

OPERATING SYSiTEM

3. Insert the divider tab labeled "Introduction" into the left side of

the open rings.

4. Insert the text of the Introduction manual into the left side of the

binder rings. The last page of the Introduction manual is

"Introduction Index-4." The top page of the literature packet should

now be the title page of the Operator's manual.

5.
N

Repeat the process for the remaining manuals, matching divider tabs

with manuals.

6. Close the binder rings. Discard the shrink wrapping and this

instruction sheet.

***



iRMX™ 86
INTRODUCTION AND OPERATOR'S

REFERENCE MANUAL
For Release 6

Order Number: 146194-001

Copyright ® 1 984, Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051



Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation

3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limit-

ed to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation

assumes no responsibility for any errors that may appear in this document. Intel Corporation makes

no commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied

in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,

duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in

ASPR7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without prior writ-

ten consent of Intel Corporation.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any

errors which may appear in this document nor does it make a commitment to update the information

contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify

Intel products:

BITBUS
COMMputer
CREDIT
Data Pipeline

GENIUS
A

I
2ICE
ICE
iCS

iDBP
iDIS

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered

trademark ofMohawk Data Sciences Corporation.

MULTIBUS is a patented Intel bus.

Copyright® 1983, Intel Corporation

iLBX iPDS Plug-A-Bubble

im iRMX PROMPT
iMMX iSBC Promware

Insite iSBX QUEX
Intel iSDM QUEST
intel iSXM Ripplemode

intelBOS Library Manager RMX/80
Intelevision MCS RUPI

inteligent Identifier Megachassis Seamless

inteligent Programming MICROMAINFRAME SOLO
Intellec MULTIBUS SYSTEM 2000

Intellink MULTICHANNEL UPI

iOSP MULTIMODULE



REV. REVISION HISTORY DATE
-001 Original Issue. Supplies and updates information

formerly contained in the Introduction to the

iRMX 86 Operating System, the iRMX 86 Opera-
tor's Manual, and the iRMX 86 Disk Verification

Reference Manual.

3/84

iii/iv





VOLUME PREFACE

This volume, the iRMX 86 INTRODUCTION AND OPERATOR'S REFERENCE MANUAL,

contains introductory and operating information about the iRMX 86
Operating System.

MANUALS IN THIS VOLUME

This section briefly describes each iRMX 86 manual in the order they
appear in this volume.

INTRODUCTION TO THE iRMX™ 86 OPERATING SYSTEM

Tab Label: Introduction

This manual is designed to introduce engineers and managers to the

iRMX 86 Operating System. This manual describes in general terms the
most important characteristics of the iRMX 86 Operating System.

iRMX™ 86 OPERATOR'S MANUAL

Tab Label: Operator

This manual describes the iRMX 86 Operating System commands.
Introductory material discusses command line editing, iRMX 86 pathnames,
wild cards, and other material necessary to use commands from a keyboard
terminal. Also, the manual describes how to use the Files Utility.

iRMX™ DISK VERIFICATION UTILITY REFERENCE MANUAL

Tab Label: Disk Verify

This manual documents the iRMX 86 Disk Verification Utility, which can be

used to check the file structure of an iRMX 86 volume. The manual also

contains a detailed description of the iRMX 86 file structure.

iRMX™ 86 PUBLICATIONS

Because the iRMX 86 documentation set is packaged in bound volumes, you
can no longer order manuals individually. Instead, you must order a
complete volume of text to get a manual contained in that volume.

(Individual manuals no longer have order numbers.)



VOLUME PREFACE
(continued)

When ordering individual volumes, you can order the binder, spine card,

and literature packet together as a unit or separately. If you wish to

order a volume as a unit, use the "order" number that appears on the

spine of the binder. This number is also provided in the following
list. If you wish to order separate pieces of the volume (e.g., the

literature packet only), use the "part" number as labeled on the piece.
If you don't know the part number, consult the Intel Literature Guide.

The following list shows volume titles, order numbers, and individual
manuals in each of the volumes. Manuals are listed in the order they

appear in the volumes. This volume is indicated by boldface type.

1. iRMXw 86 INTRODUCTION AND OPERATOR'S REFERENCE MANUAL
Order Number: 146545

• Introduction to the iRMX™ 86 Operating System
• iRMX* 86 Operator's Manual
• iRMX1" 86 Disk Verification Utility Reference Manual

2. iRMX™ 86 PROGRAMMER'S REFERENCE MVNUAL, PART I

Order Number: 146546

• iRMX™ 86 Nucleus Reference Manual
• iRMX™ 86 Basic I/O System Reference .Manual

• iRMX™ 86 Extended I/O System Reference Manual

3. iRMX™ 86 PROGRAMMER'S REFERENCE MANUAL, PART II

Order Number: 146547

iRMX™ 86 Application Loader Reference Manual
iRMX™ 86 Human Interface Reference Manual
iRMX™ 86 Universal Development Interface Reference Manual
Guide to Writing Device Drivers for the iRMX 1" 86 and

IRMX 1" 88 I/O Systems
iRMX™ 86 Programming Techniques
iRMX™ 86 Terminal Handler Reference Manual
iRMX 1" 86 Debugger Reference Manual
iRMX™ 86 Crash Analyzer Reference Manual
iRMX™ 86 System Debugger Reference Manual
iRMX™ 86 Bootstrap Loader Reference Manual

4. iRMX™ 86 INSTALLATION AND CONFIGURATION GUIDE
Order Number: 146548

• iRMX™ 86 Installation Guide
• iRMX™ 86 Configuration Guide
• Master Index for Release 6 of the iRMX™ 86 Operating System

vi



VOLUME PREFACE
(continued)

RELATED PUBLICATIONS

• iAPX 86,88 Family Utilities User's Guide, Order Number: 121616

• iMMX™ 800 MULTIBUS® Message Exchange Reference Manual, Order
Number: 144912

vii



viii



VOLUME CONTENTS

INTRODUCTION: INTRODUCTION TO THE iRMX™ 86 OPERATING SYSTEM

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

Overview of the iRMX"
1

86 Operating System

Considerations Relating to Real-Time Software
Benefits of the iRMX

IH
86 Operating System

Features of the iRMX™ 86 Operating System
A Hypothetical System
iRMX™ 86 Literature

OPERATOR: iRMX™ 86 OPERATOR'S REFERENCE MANUAL

CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER

Line Editing and Control Characters

Using the Human Interface
Human Interface Commands
Human Interface Examples
Patching Utility
Files Utility System

APPENDIX A: Condition Codes Summary

DISK VERIFY: IRMX™ 86 DISK VERIFICATION UTILITY REFERENCE MANUAL

CHAPTER 1: Invoking the Disk Verification Utility

CHAPTER 2: DISKVERIFY Commands
APPENDIX A: Structure of iRMX™ 86 Named Volumes

ix





INTRODUCTION TO THE
iRMX™ 86

OPERATING SYSTEM





PREFACE

If you are looking for a high-level introduction to the iRMX 86 Operating
System, this manual will satisfy you. By reading this manual, you will
acquire sufficient knowledge of the iRMX 86 Operating System to:

• See how the iRMX 86 Operating System can help you develop your
application system in less time and at less expense.

• Begin reading the more detailed iRMX 86 manuals.

This manual, which is written for engineers and managers, is designed to

be read completely in one or two sittings. It presents information
starting with the most general and familiar terms, then uses these terms
to define specific and new terms.

Throughout this manual, the expression "iAPX 86,88, 186, 188, 286-based
microcomputer" is used to refer to any microcomputer that uses the Intel
iAPX 86, 88, 186, 188, or 286 microprocessor as its central processing
unit.

ORGANIZATION OF THIS MANUAL

This manual is divided into six chapters. Some of the chapters are

designed for managers, some for engineers, and others for both. The

following paragraphs identify the audience and purpose of each chapter,

Chapter 1 - Overview of the iRMX 86 Operating System

Chapter 1 provides managers and engineers with a very brief

introduction to the iRMX 86 Operating System, and defines terms

used in later chapters.

Chapter 2 - Considerations Relating to Real-Time Software

Chapter 2 introduces engineers to some of the obstacles that the
iRMX 86 Operating System can eliminate. Managers who have had
programming experience may want to read this short chapter.

Chapter 3 - Benefits of the iRMX 86 Operating System

Chapter 3 provides managers with a discussion of the economic
benefits of using the iRMX 86 Operating System. Interested
engineers may also want to read this short chapter.

Introduction iii



PREFACE
(continued)

Chapter 4 - Features of the iRMX 86 Operating System

Chapter 4 is a tutorial for engineers. It discusses the features
of the iRMX 86 Operating System and, at the same time, it defines
the vocabulary used in the other IRMX 86 manuals. Engineers who
are already proficient at real-time, multitasking programming
need only skim this chapter to ascertain the features of the
iRMX 86 Operating System.

Chapter 5 - A Hypothetical System

Chapter 5 is designed primarily for engineers. It describes a
relatively simple application system. The purpose of this
chapter is to illustrate the use of the features discussed in
Chapter 4.

Chapter 6 - iRMX 86 Literature

Chapter 6 contains a description of the other manuals associated
with the iRMX 86 Operating System,.

Introduction iv



CONTENTS

PAGE

CHAPTER 1

OVERVIEW OF THE iRMX™ 86 OPERATING SYSTEM
Major Characteristics of the iRMX™ 86 System 1-1

Customers of the iRMX™ 86 Operating System 1-1

Commonly Used iRMX™ 86 Terminology 1-2

Purpose of the iRMX™ 86 Operating System 1-3

CHAPTER 2

CONSIDERATIONS RELATING TO REAL-TIME SOFTWARE
Event Detection 2-1

Scheduling of Processing .,
2-1

Error Processing ,

2-1

Device Sensitivity 2-2

Mass Storage File Allocation Tradeoffs 2-2
Unneeded Features 2-2

Multiple Applications .

2-2

Memory Requirements 2-2

Files and Multiple Users. 2-3

Human Engineering 2-3

Application Development.

.

2-3

Debugging 2-3

Chapter Perspective ,

2-4

CHAPTER 3

BENEFITS OF THE iRMX™ 86 OPERATING SYSTEM
Development Time 3-1

Cost of Implementation ,
3-2

Costs After Development. ...» 3-2

Chapter Perspective 3-2

CHAPTER 4

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM
Architectural Features ,

4-2
Object-Oriented Architecture 4-3

Multitasking 4-4
Interrupt Processing 4-4

Preemptive Priority-Based Scheduling » 4-5

Multiprogramming ,
4-6

Intertask Coordination. 4-7

Exchanging Information.

,

4-8
Mu tual Exclus ion 4-9

Synchronization 4-10
Extendibility ,

4-11

Introduction v



CONTENTS
(continued)

PAGE

CHAPTER 4 (continued)

Debugging Support 4-11

Processor Selectivity 4-12

Input/Output Features. 4-12

Choice of I/O Systems 4-13

Basic I/O System 4-13

Extended I/O System 4-14

Device-Independent Input and Output 4-15

Hierarchical Naming of Mass Storage Files 4-16

File Access Control 4-19

Control Over File Fragmentation 4-19

Selection of Device Drivers 4-20

Terminal Support Code 4-21

Editing and Controlling Input to a Terminal 4-21

Type-Ahead 4-21

Controlling Output to a Terminal 4-22

Translation 4-22

Customizing Features 4-23

Custom Interactive Commands 4-23

Custom Commands = Programs 4-23

Command Line Parsing. 4-24

Application Loading. 4-24

Load-Time Location 4-25

Overlay Loading 4-25

Simultaneous Multiple Terminal Support 4-25

Multi-Access Human Interface 4-26

Multiple Terminal Support with I/O Programs 4-26

Run-Time Binding 4-27

Binding Objects to Tasks 4-28

Binding of Files and Devices to Tasks 4-28

Binding of Application Software to Operating System 4-29

Error Handling 4-29

Dynamic Memory Allocation 4-30

Software Interface 4-31

Bootstrap Loading 4-31

Tools 4-32

Object-Oriented Dynamic Debugger 4-32

Sys tem Debugger <
4-33

Crash Analyzer 4-34

Installation Systems. 4-35

On-Target Program Development 4-35

Interactive Configurability 4-36

Configuration is Making Choices 4-37

Configuration is Interactive «,
4-37

Parts of the iRMX
IH

86 Operating System 4-37

File Maintenance Programs 4-40

Chapter Perspective «

.

4-41

Introduction vi



CONTENTS
(continued)

PAGE

CHAPTER 5

A HYPOTHETICAL SYSTEM
Interrupt Processing 5-3

Human Interface • 5-4

Multitasking 5-4

Intertask Coordination 5-4

Multiprogramming . 5-4

Run-Time Binding 5-5

Mass Storage Files . 5-5

Device Independence 5-6

Chapter Perspective. .

.

5-6

CHAPTER 6

iRMX 86 LITERATURE

Reading Tips . 6-3

iRMX™ 86 Introduction and Operator's Reference Manual For Release 6 6-3

Introduction to the iRMX™ 86 Operating System 6-3

iRMX™ 86 Operator' s Manual 6-3

iRMX™ 86 Disk Verification Utility Reference Manual 6-4

iRMX™ 86 Programmer's Reference Manual For Release 6, Part 1 6-4

iRMX™ 86 Nucleus Reference Manual 6-4

iRMX™ 86 Basic I/O System Reference Manua] 6-5

iRMX™ 86 Extended I/O System Reference Manual 6-5

iRMX™ 86 Programmer's Reference Manual For Release 6, Part II 6-5

iRMX™ 86 Application Loader Reference Manual 6-6

iRMX™ 86 Human Interface Reference Manual .,
6-6

iRMX™ 86 Universal Development Interface Reference Manual 6-7

Guide to Writing Device Drivers for the iRMX™ 86 and iRMX™ 88

I/O Sys terns 6-7

iRMX™ 86 Programming Techniques 6-7

iRMX™ 86 Terminal Handler Reference Manual 6-7

iRMX™ 86 Debugger Reference Manual .
6-7

iRMX™ 86 System Debugger Reference Manual., 6-7

iRMX™ 86 Crash Analyzer Reference Manual. 6-8

iRMX™ 86 Bootstrap Loader Reference Manual 6-8

iRMX™ 86 Installation and Configuration Guide For Release 6 6-8

iRMX™ 86 Installation Guide. 6-8

iRMX™ 86 Configuration Guide. .,
6-9

Master Index For Release 6 of the iRMX™ 86 Operating System 6-9

TABLE

6-1. Correlation of Manuals and Features, 6-10

Introduction vii



FIGURES

PAGE

FIGURES

1-1. The iRMX
1
" 86 Foundation For Application Systems 1-2

3-1. The iRMX
TH

86 System Provides Economic Benefits 3-1

4-1. Features of the iRMX™ 86 Operating System 4-1

4-2. An Engineering Directory 4-17
4-3

.

A Marke ting Direc tory 4-1

7

4-4. Hierarchical Naming of Files 4-18
4-5. Configuration of an iRMX™ 86 System 4-38
5-1. The Hardware of the Dialysis Application System 5-2

Introduction viii



CHAPTER 1

OVERVIEW OF THE iRMX™ 86
OPERATING SYSTEM

The iRMX 86 Operating System is a software package designed for use with
Intel's iSBC 86,88,186,188,286 Single Board Computers and with other
iAPX 86,88, 186, 188, 286-based microcomputers. The Operating System is
different from many other operating systems in that it is specifically
designed to be incorporated in the products that you build.

The iRMX 86 Operating System consists of a collection of subsystems, each
of which provides one or more features that can be used in your product.
Based on the features that you need to build your product, you decide
which subsystems you want. You then combine these subsystems to form a
tailored operating system that precisely meets your needs.

MAJOR CHARACTERISTICS OF THE iRMX"1 86 SYSTEM

The iRMX 86 Operating System exhibits the following characteristics:

• It can simultaneously monitor and control unrelated events
occurring outside the single board computer.

• It can communicate with a wide variety of input, output, and mass
storage devices.

• It can execute on all members of the iAPX 86,88,186,188,286
microprocessor family.

• It provides a powerful and flexible means for an operator to
observe and modify the behavior of the system.

• It provides a base upon which to run a number of languages and
other software tools.

These characteristics (especially when combined with features discussed
in Chapter 4) make the iRMX 86 Operating System an excellent foundation
for your software-based products (Figure 1-1).

CUSTOMERS OF THE iRMX™ 86 OPERATING SYSTEM

The iRMX 86 Operating System is designed for two types of customers:
Original Equipment Manufacturers (OEMs) and Volume End Users (VEUs).
OEMs are companies that build products for resale. VEUs are companies
that build products for use within their organization. Both types of
customers can produce products more quickly and at less expense by using
the iRMX 86 Operating System.

Introduction 1-1



OVERVIEW OF THE iRMXw 86 OPERATING SYSTEM

Application System

Figure 1-1. The iRMX™ 86 Foundation for Application Systems

COMMONLY USED iRMX™ 86 TERMINOLOGY

The following terms are used frequently in this book:

Application

Application System

Application Software

User

^ application is the problem that you solve
with your product.

^n application system is the product that
satisfies the requirements of the
application (Figure 1-1).

^ne application software is all the software
you must add to the iRMX 86 Operating System
in order to complete your application system
(Figure 1-1).

The user is the individual or organization
who uses your application system.

Introduction 1-2



OVERVIEW OF THE iRMX™ 86 OPERATING SYSTEM

PURPOSE OF THE iRMX™ 86 OPERATING SYSTEM

The iRMX 86 Operating System is your shortcut to the marketplace. By

supplying you with features that can be used in a large number of

application systems, the iRMX 86 Operating System allows you to focus

your attention on the specialized application software. Since you spend
less time and effort developing sophisticated system software, you can

bring your application system to market faster and at a lower price.

***

Introduction 1-3





CHAPTER 2
CONSIDERATIONS RELATING TO

REAL-TIME SOFTWARE

The difficulties encountered in real-time programming differ from those
found in other types of programming. This chapter briefly introduces
some of the problems that face designers of real-time systems.

This chapter only poses questions — it provides no answers. You can
find the answers in the discussion of iRMX 86 features in Chapter 4 of
this manual.

EVENT DETECTION

Real-time application systems monitor events in the real world. These
events occur asynchronously, that is, at seemingly random intervals.
When an event occurs, the system could be in the midst of processing
information associated with a previous event. Even so, the system must
be able to detect and record the occurrence of the second event without
affecting the previous event.

SCHEDULING OF PROCESSING

Assuming that the system can detect and record the occurrence of an
event, it still must decide in what order to process recorded events.
For that matter, when the system is processing a relatively unimportant
event and a critical event occurs, the system must be able to respond
correctly. It must be able to postpone processing of the less
significant event until the more important one has been processed. Then,
after the higher-priority processing, the system must resume where it

left off.

ERROR PROCESSING

Suppose that during the processing of real-time events, an error is

detected. How can the error be corrected, or how can its impact be
limited, without adversely affecting the system? The whole system, for

instance, should not be shut down merely because an error is detected;
it should be able to recover from these errors and continue processing.

Introduction 2-1



CONSIDERATIONS RELATING TO REAL-TIME SOFTWARE

DEVICE SENSITIVITY

Many real-time applications use one or more input or output devices. And

sometimes the devices associated with an application system must be

changed. By allowing devices to be changed without requiring
recompilation, the operating system can save much time and effort.

MASS STORAGE FILE ALLOCATION TRADEOFFS

In any real-time system, file allocation performance is an important

consideration. One factor that relates directly to mass storage file
allocation performance is the size of each contiguous chunk of data

written to and read from a file (the file's "granularity"). In some

applications, large granularity results in much faster retrieval. In

other applications, large granularity does, not improve performance, but

does waste space on the device. The operating system must contend with

the trade-off between performance and optimal use of space on the device

UNNEEDED FEATURES

Some OEM and VEU applications require features that other applications do

not. An operating system should provide a means of selecting required

features and eliminating unneeded features. Because operating systems

are complex, the method used to select features should be "human
engineered," so that the process is efficient and relatively easy to

understand.

MULTIPLE APPLICATIONS

Sometimes there is a need to run more than one application on the same

computer. Several applications might need to share some resources, such
as hardware and perhaps some files, while reserving other resources for

themselves

.

MEMORY REQUIREMENTS

The memory requirements of some applications change according to the

events that occur in the real world. If a system can share memory
between applications, then the total amount of memory required for the

system might be less than the sum of the maximum amounts required by each
application.

Introduction 2-2



CONSIDERATIONS RELATING TO REAL-TIME SOFTWARE

FILES AND MULTIPLE USERS

Some applications, such as data-entry and database-management systems,
support more than one user at a time. In such systems, three major
problems must be dealt with.

The first problem pertains to file naming. Users must be able to name
files without concern for duplicate names. If they cannot, each user may
be forced to guess at names that have not yet been coined by other users.

The second problem deals with selective sharing of files. Multi-user
systems often must be able to share and protect files. For instance, in

a data-entry system, one operator may be entering data while another
simultaneously verifies the entered data. This illustrates the need for
file sharing. Now suppose that the file contains confidential
information. Once verified, the file must be protected against
unauthorized reading and writing. This illustrates the need for
restricting access. The system must provide for both sharing and
restricted access.

The third problem is that the Operating System must be able to respond
simultaneously to more than one terminal. The system must respond
quickly to each terminal, and must be able to keep track of tasks and

other resources associated with a particular terminal.

HUMAN ENGINEERING

Applications must be controlled by people. Systems often contain
critical processes that operators must control with a minimum chance of

error. An application system should provide an easily-understood set of

interactive commands and messages by which operators may use the system.

APPLICATION DEVELOPMENT

Frequently the hardware on which an application system will be installed
includes mass storage devices and file structures. If possible, the
operating system should allow application system development using

existing hardware. This means that you should be able to use language
processors (such as assemblers, compilers, and run-time support systems),
linking utilities, editors, and file maintenance utilities. Programmers
should be able to install such development tools on the operating system
quickly and easily.

DEBUGGING

Real-time application systems require real-time debugging support.
Often, logic errors or "bugs" in real-time systems are dependent upon
events in the real world (outside of the computer). In order to detect
some real-time logic errors, the system should continue to run while you
debug it. This type of debugging is called "dynamic" debugging.

Introduction 2-3



CONSIDERATIONS RELATING TO REAL-TIME SOFTWARE

If the system crashes, programmers must be able to gather enough
information to analyze the cause of the crash. In addition, sometimes it

is useful for programmers to "freeze" the system and examine its state.
This type of debugging is called "static" debugging.

CHAPTER PERSPECTIVE

If the foregoing considerations pertain to your application, then the

iRMX 86 Operating System can save you an enormous amount of effort. To

see how the iRMX 86 System resolves these and other similar problems,
read Chapter 4.

***

Introduction 2-4



CHAPTER 3
BENEFITS OF THE iRMX™ 86

OPERATING SYSTEM

You are reading this manual because you are planning to develop a
real-time application system. As an OEM manager, you are interested in
developing your application system quickly using the latest Very Large
Scale Integration (VLSI) technology, while still holding down the cost of
development. Furthermore, you want to minimize your costs after
development. By serving as a foundation for your application software
(Figure 3-1), the iRMX 86 Operating System can help you meet your
objectives

.

REDUCED DEVELOPMENT
COSTS

SHORTER DEVELOPMENT
CYCLE

Figure 3-1. The iRMX™ 86 System Provides Economic Benefits

DEVELOPMENT TIME

The iRMX 86 Operating System helps you develop real-time application
systems quickly. Acting as the foundation for your specialized
application software, the iRMX 86 Operating System provides services that
are required by many real-time applications. Since these services are
supplied by the iRMX 86 Operating System, your application engineers
spend no time writing software to manage multitasking, dynamic memory
allocation, and other functions vital to many real-time applications.
Rather, your engineers concentrate their efforts on the software that
relates specifically to the application being solved. This greatly
reduces the time needed to develop your application system.

Introduction 3-1



BENEFITS OF THE iRMX™ 86 OPERATING SYSTEM

COST OF IMPLEMENTATION

The iRMX 86 Operating System helps reduce the cost of implementation in

the following ways:

• By supplying the general services required by many real-time

applications, the iRMX 86 System reduces your manpower
requirements.

• Industry-standard languages are available for use with the

iRMX 86 Operating System. These languages are the same ones used

on your Intellec Microcomputer Development System.

• The features of the Operating System simplify the process of

development. These features, such as object-oriented

architecture and device independence, are discussed in Chapter 4.

• Support for VLSI devices is available now , which results in

immediate improvements in speed and performance.

COSTS AFTER DEVELOPMENT

After your application system is developed, your major expense is

maintenance — the process of correcting logic errors, making changes,

and adding features . The iRMX 86 Operating System helps minimize these

costs in the following ways:

• A number of features of the iRMX 86 Operating System smooth the

process of system design, reducing the probability of major

design errors. These features, which include multitasking and

multiprogramming, are described in Chapter 4.

• When errors do reveal the presence of bugs in your application

software, the iRMX 86 System provides tools to help find the

errors. These tools include error handlers, an on-line dynamic

debugger, a static system debugger, and a crash analyzer. These

tools are described in Chapter 4.

• The modularity provided by multiple jobs and tasks lets you make

changes and additions without severely affecting the system's

overall design.

CHAPTER PERSPECTIVE

The iRMX 86 Operating System is your economic ally. It helps you put

your real-time application system in the hands of your users in less time

and at less expense. It also allows you to use the latest improvements

in VLSI technology while reducing your maintenance costs after your

system is developed.

***

Introduction 3-2



CHAPTER 4
FEATURES OF THE iRMX™ 86

OPERATING SYSTEM

This chapter provides you with moderately detailed descriptions of the
features of the iRMX 86 Operating System (see Figure 4-1).

Figure 4-1. Features of the iRMX™ 86 Operating System

The features described in this chapter are:

ARCHITECTURAL FEATURES

Object-Oriented Architecture
Multitasking
Interrupt Processing
Preemptive Priority-Based Scheduling
Multiprogramming
Intertask Coordination
Extendibility
Debugging Support
Processor Selectivity

Introduction 4-1



FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

INPUT/OUTPUT FEATURES

Choice of I/O Systems
Device-Independent Input and Output
Hierarchical Naming of Mass Storage Files
File Access Control
Control over File Fragmentation
Selection of Device Drivers
Terminal Support Code

CUSTOMIZING FEATURES

Custom Interactive Commands
Application Loading
Run-Time Binding
Simultaneous Multiple Terminal Support
Error Handling
Dynamic Memory Allocation
Software Interface
Bootstrap Loading

TOOLS

Object-Oriented Dynamic Debugger
System Debugger
Crash Analyzer
Installation Systems
On-Target Development
Interactive Configuration Utility (ICU)

File Maintenance Programs

Because you may be familiar with some features, each section is organized
for easy skimming as follows:

1. A brief introduction to the feature (in this typeface).

2. A detailed and more technical explanation of the feature.

3. The advantages of the feature (in this typeface).

ARCHITECTURAL FEATURES

When Intel software engineers designed the iRMX 86 Operating System, they
specified the basic processes and data structures of the system,
including such characteristics as the partitioning of programs into

"tasks," task scheduling, and task communication. These characteristics
are referred to as the "architecture" of the system. The important
architectural features of the Operating System are described here.

Introduction 4-2



FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

OBJECT-ORIENTED ARCHITECTURE

The iRMX 86 Operating System uses an object-oriented architecture
because it makes the Operating System easy to understand and use.

An operating system is a collection of software that is meant to be used
by software engineers. Man)r non-object-oriented operating systems are
overly complex and difficult to understand. In contrast, systems
exhibiting object-oriented architectures are easier to understand. Their
mechanisms are well defined, and they demonstrate a consistency that
makes the operating system less intimidating.

In other words, an object-oriented architecture is a means of humanizing
an operating system. It uses a collection of building blocks that are
manipulated by operators. Let's look at a "typed" architecture that you
might be familiar with FORTRAN.

FORTRAN exhibits a typed architecture. Its building blocks are variables
of several types. For instance, it has integers, real numbers,
double-precision real numbers, etc. It also has operators (+, -, *, /,

**, and others) that act on variables to produce understandable results.

The building blocks of the iRMX 86 Operating System are called objects

and, as with FORTRAN variables, objects are of several types. There are
tasks, jobs, mailboxes, semaphores, segments, and connections. There are
also other types of objects, but we already have enough for an
introduction.

Just as the variables in a FORTRAN program are acted upon by operators,

the objects in an iRMX 86-based application system are acted upon by
system calls. In other words, your application software uses system

calls to manipulate the objects in your application system. For
instance, the CREATE MAILBOX and DELETE MAILBOX system calls do precisely
what their names suggest.

How does an object-oriented architecture make a system easier to learn
and use? By taking advantage of useful classification. To illustrate
this, let's return to FORTRAN. The variables of FORTRAN are classified
into types because each type exhibits certain characteristics. For
instance, all integer variables are somewhat similar, even though they

can take on different values. Once you learn the characteristics of an
integer variable, you feel comfortable with every integer variable. This

similarity makes FORTRAN easy to master.

For the same reasons, the objects of the iRMX 86 Operating System are

classified into types. Each object type (such as a semaphore) has a

specific set of attributes. Once you become familiar with the attributes

of a semaphore, you are familiar with all. semaphores. There are no
special cases. Also, each type of iRMX 86 object has an associated set

of system calls. These calls cannot be used to manipulate objects of
another type without causing an error.

Introduction 4-3



FEATURES OF THE iRMXw 86 OPERATING SYSTEM

The advantages of an object-oriented architecture depend upon your point
of view. If you are an engineer, the advantage is that you can master
the Operating System in a very short time. You can also focus your
learning on the objects you plan to use. If you only need a few object
types, you can ignore the others.

If you are a manager, you reap economic benefits. Because engineers can
quickly become familiar with the iRMX 86 Operating System, you can trim
large amounts of time out of your system's; development cycle. Your
system reaches your users far sooner and at far less cost than it could
without object-oriented architecture.

MULTITASKING

The iRMX 86 Operating System uses multitasking to simplify the
development of applications that process real-time events.

The essence of real-time application systems is the ability to process
numerous events occurring at seemingly random times. These events are
asynchronous because they can occur at any time, and they are potentially
concurrent because one event might occur while another is being processed.

Any single program that attempts to process multiple, concurrent,
asynchronous events is bound to be complex. The program must perform
several functions. It must process the events. It must remember which
events have occurred and the order in which they occurred. It must
remember which events have occurred but have not been processed. The
complexity obviously grows greater as the system monitors more events.

Multitasking is a technique that unwinds this confusion. Rather than
writing a single program to process N events, you can write N programs,
each of which processes a single event. This technique eliminates the
need to monitor the order in which events occur.

Each of these N programs forms an iRMX 86 task , one of the types of

objects mentioned in "Object-Oriented Architecture." Tasks are the only
active objects in the iRMX 86 Operating System, as only tasks can issue
system calls.

Multitasking simplifies the process of building an application system.
This allows you to build your system faster and at less expense.
Furthermore, because of the one-to-one relationship between events and
tasks, your system's code is less complex and easier to maintain.

INTERRUPT PROCESSING

The iRMX 86 Operating System is an interrupt processor. When an
interrupt occurs, the iRMX 86 Operating System schedules a task to
process the interrupt. This method of event detection improves the
performance of your application system.

Introduction 4-4



FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

There are two ways that computer systems can schedule processing
associated with detecting and controlling events in the real world —
polling and interrupt processing. Polling is implemented by having the
software periodically check to see if certain events have occurred. An
example of polling from a human perspective can be created using a class
of students and a teacher. If, rather than spotting raised hands, the
instructor specifically asks each student: in the class if the student has
any questions, then the instructor is polling the students.

Polling has a major shortcoming. A significant amount of the processor's
time is spent testing to see if events have occurred. If events have not
occurred, the processor's time has been wasted.

The second method of controlling processing is interrupt processing.
When an event occurs the processor is literally interrupted. Rather than
executing the next sequential instruction, the processor begins to

execute a task associated specifically with the detected event.

The classroom example used earlier to portray a polling situation can
also be used to illustrate interrupt processing. If a student has a

question, he raises his hand and speaks the instructor's name. The
instructor, interpreting this as an interrupt, finishes his sentence and
deals immediately with the student's question. Once the instructor has
answered the student's question, he returns to what he was doing before
he was interrupted.

Interrupt processing of external events provides your application system
with three benefits.

• Better Performance . Interrupt processing allows your system to

spend all of its time running the tasks that process events,
rather than executing a polling loop to see if events have
occurred.

• More Flexibility . Because of the direct correlation between
interrupts and tasks, your system can easily be modified to
process different events. All you need to do is write the tasks
to process the new interrupts.

• Economic Benefits . Because interrupt processing allows your
system to respond to events by means of modularly coded tasks,
your system's code is more structured and easier to understand
than monolithic code. Modular code is less costly to develop and
maintain, and it can be developed more quickly than monolithic
code.

PREEMPTIVE PRIORITY-BASED SCHEDULING

The iRMX 86 Operating System uses preemptive, priority-based scheduling
to decide which task runs at any instant. This technique ensures that if

a more important task becomes ready while a less important task is
running, the more important task begins execution immediately.

Introduction 4-5



FEATURES OF THE iRMXw 86 OPERATING SYSTEM

In multitasking systems, there are two common techniques for deciding
which task is to be run at any given moment. Time slicing, where tasks
are run in rotation, is the technique used in time-sharing systems. The
second technique, priority-based scheduling, uses assigned priorities to
decide which task is to be run.

Within priority-based scheduling, there are two approaches.
Non-preemptive scheduling allows a task to run until it relinquishes the
processor. Even if a higher-priority task becomes ready for execution,
the original task continues to run until it explicitly surrenders the
processor.

The second approach to priority-based scheduling is preemptive. In
systems using preemptive scheduling, the system always executes the
highest priority task that is ready to run. In other words, if the
running task or an interrupt causes a higher-priority task to become
ready, the operating system switches the processor to the higher-priority
task.

Preemptive, priority-based scheduling goes hand-in-hand with the
interrupt processing discussed earlier. The priorities of tasks can be
tied to the relative importance of the events that they process. This
enables the processing of more-important events to preempt the processing
of less-important events without abandoning the less-important events.

MULTIPROGRAMMING

Multiprogramming provides your system with the ability to run more than
one application on a single iAPX 86,88, 186, 188, 286-based microcomputer.
This helps reduce hardware costs.

Multiprogramming is a technique used to run several applications on a

single application system. By using this technique, the hardware is used
more fully. More processing is squeezed out of each hardware dollar.

In order to take full advantage of multiprogramming, you must provide
each application with a separate environment; that is, separate memory,
files and objects. The reason for the isolation is to prevent
independently developed applications from causing problems for each other.

For instance, suppose that two unrelated applications share a temporary
file on a disk. If Application 1 writes information to the file and
Application 2 writes over the file, Application 1 has problems. The only
way to avoid this kind of problem with shared files is to create some
form of mutual exclusion. But if the two applications must interact even
to the point of excluding each other, they cannot be developed
independently. The two engineers creating the applications must
coordinate with each other and spend valuable time that could be used
within, rather than between, applications. The only alternative is to
avoid sharing the file.

Introduction 4-6



FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

The iRMX 86 Operating System provides a type of object that can be used
to obtain this kind of isolation. The object is called a job, and it has
the following characteristics:

• Unlike tasks, jobs are passive. They cannot invoke system calls.

• Each job includes a collection of tasks and resources needed by
those tasks.

• Jobs serve as useful boundaries for dynamically allocating
memory. When two tasks of one job request memory, they share the
memory associated with their job. Two tasks in different jobs do
not directly compete for memory.

• An application consists of one or more jobs.

• Each job serves as an error boundary. When the application
detects an error, or when the operator decides to abort an
application, a job is a convenient object to delete.

Multiprogramming provides your application system with two benefits:

• Multiprogramming increases the amount of work your system can
do. By utilizing your hardware more fully, your system can run
several applications rather than one. This reduces the hardware
cost of implementation.

• Because of the correspondence between jobs and applications, new
jobs can be added to your system (or old jobs removed) without
affecting other jobs. This makes your system much easier and
faster to modify.

INTERTASK COORDINATION

The iRMX 86 Operating System provides simple techniques for tasks to

coordinate with one another. These techniques allow tasks in a
multitasking system to mutually exclude, synchronize, and communicate
with each other.

As we have already seen, multitasking is a technique used to simplify the
designing of real-time application systems that monitor multiple,
concurrent, asynchronous events. Multitasking allows engineers to focus
their attention on the processing of a single event rather than having to
contend with numerous other events occurring in an unpredictable order.

However, the processing of several events may be related. For instance,
the task processing Event A may need to know how many times Event B has
occurred since Event A last occurred. This kind of processing requires
that tasks be able to coordinate with each other. The iRMX 86 Operating
System provides for this coordination.

Introduction 4-7



FEATURES OF THE iRMX1" 86 OPERATING SYSTEM

Tasks can interact with each other in three ways. They can exchange
information, mutually exclude each other, and synchronize each other
We'll now examine each of these.

Exchanging Information

Tasks exchange information for two purposes. One purpose is to pass data
from one task to another. For instance, suppose that one task
accumulates keystrokes from a terminal until a carriage return is
encountered. It then passes the entire line of text to another task,
which is responsible for decoding commands

.

The second reason for passing data is to draw attention to a specific
object in the application system. In effect, one task says to another,
"I am talking about that object."

The iRMX 86 System facilitates intertask communication by supplying
objects called "mailboxes" along with system calls to manipulate
mailboxes. The system calls associated with mailboxes are CREATE
MAILBOX, DELETE MAILBOX, SEND MESSAGE, and RECEIVE MESSAGE. Tasks use
the first two system calls to build and eradicate a particular mailbox.
They use the second two calls to communicate with each other.

Let's see how tasks can use a mailbox for drawing attention and for
sending information. If Task A wants Task B to become aware of a
particular object, Task A uses the SEND MESSAGE system call to mail the
object to the mailbox. Task B uses the RECEIVE MESSAGE system call to
get the object from the mailbox.

NOTE

The foregoing example, along with all
of the examples in this section, is
somewhat simplified in order to serve
as an introduction. If you want
detailed information, refer to the
iRMX 86 NUCLEUS REFERENCE MANUAL.

As mentioned previously, tasks can use mailboxes to send information to
each other. This is accomplished by putting the information into a
segment (an iRMX 86 object consisting of a contiguous block of memory)
and using the SEND MESSAGE system call to mail the reference to the
segment. The other task invokes the RECEIVE MESSAGE system call to get
access to the segment containing the message.

Why don't tasks just send messages directly between each other, rather
than through mailboxes? Tasks are asynchronous — they run in
unpredictable order.

Introduction 4-8



FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

If two tasks want to communicate with each other, they need a place to
store messages and to wait for messages. If the receiver uses the
RECEIVE MESSAGE system call before the message has been sent, the
receiver waits at the mailbox until a message arrives. Similarly, if the
sender uses the SEND MESSAGE system call before the receiver is ready to
receive, the message is held at the mailbox until a task requests a
message from the mailbox. In other words, mailboxes allow tasks to
communicate with each other even though tasks are asynchronous.

Mutual Exclusion

Occasionally, when tasks are running concurrently, the following kind of
situation arises:

1. Task A is in the process of reading information from a segment.

2. An interrupt occurs and Task B, which has higher priority than
Task A, preempts Task A.

3. Task B modifies the contents of the segment that Task A was in
the midst of reading.

4. Task B finishes processing its event and surrenders the processor

5. Task A resumes reading the segment.

The problem is that Task A might have information that is completely
invalid. For instance, suppose the application is air traffic control.
Task A is responsible for detecting potential collisions, and Task B is
responsible for updating the Plane Location Table with the new X- and
Y-coordinates of each plane's location. Unless Task A can obtain
exclusive use of the Plane Location Table, Task B can make Task A fail to
spot a collision.

Here's how it could happen. Task A reads the X-coordinate of the plane's
location and is preempted by Task B. Task B updates the entry that Task
A was reading, changing both the X- and Y-coordinates of the plane's
location. Task B finishes its function and surrenders the processor.
Task A resumes execution and reads the new Y-coordinate of the plane's
location. As a direct result of Task B changing the Plane Location Table
while Task A was reading it, Task A thinks the plane is at old X and new
Y. This misinformation could easily lead to disaster. This problem can
be avoided by mutual exclusion. If Task A can prevent Task B from
modifying the table until after A has finished using it, Task A can be
assured of valid information. Somehow, Task A must obtain exclusive use
of the table.

The iRMX 86 Operating System provides two types of objects that can be
used to provide mutual exclusion — the semaphore and the region. A
semaphore is an integer counter that tasks can manipulate using four
system calls: CREATE SEMAPHORE, DELETE SEMAPHORE, SEND UNITS and RECEIVE
UNITS. The creation and deletion system, calls are used to build and
eradicate semaphores. The send and receive system calls can be used to
achieve mutual exclusion.

Introduction 4-9



FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

Regions allow tasks to share data. Mutual exclusion is achieved because
only one task may access a region at a time. The use of regions should
be restricted to programmers who have a firm understanding of the iRMX 86
Operating System. For more information on regions, see the iRMX 86
NUCLEUS REFERENCE MANUAL.

Before discussing how semaphores can provide exclusion, we must examine
their properties. As mentioned above, a semaphore is a counter. It can
take on only nonnegative integer values. Tasks can modify a semaphore's
value by using the SEND UNITS or RECEIVE UNITS system calls. When a task
sends N units (must be zero or greater) to a semaphore, the value of the
counter is increased by N. When a task uses the RECEIVE UNITS system
call to request M units (must be zero or greater) from a semaphore, one
of two things happens:

• If the semaphore's counter is greater than or equal to M, the
Operating System reduces the counter by M and continues to
execute the task.

• Otherwise, the Operating System begins running the task having
the next highest priority, and the requesting task waits at the
semaphore until the counter reaches M or greater.

How can tasks use a semaphore to achieve mutual exclusion? Easy! Create
a semaphore with an initial value of 1. Before any task uses the shared
resource, it must receive one unit from the semaphore. Also, as soon as
a task finishes using the resource, it must send one unit to the
semaphore. This technique ensures the following behavior. At any given
moment, no more than one task can use the resource, and any other tasks
that want to use it await their turn at the semaphore.

Semaphores allow mutual exclusion; they don't enforce it. All tasks
(there can be more than two) sharing the resource must receive one unit
from the semaphore before using the resource. If one task fails to do
this, mutual exclusion is not achieved. Also, each task must send a unit
to the semaphore when the resource is no longer needed. Failure to do
this can permanently lock all tasks out of the resource.

Synchronization

As mentioned earlier, tasks are asynchronous. Nonetheless, occasionally
a task must know that a certain event has occurred before the task starts
running. For instance, suppose that a particular application system
requires that Task A cannot run until after Task B has run. This kind of
requirement calls for synchronizing Task A with Task B.

Your application system can achieve synchronization by using semaphores.
Before executing either Task A or Task B, create a semaphore with an
initial value of zero. Then have Task A issue RECEIVE UNITS requesting
one unit from the semaphore. Task A is forced to wait at the semaphore
until Task B sends a unit. This achieves the desired synchronization.

Introduction 4-10



FEATURES OF THE iRMX1" 86 OPERATING SYSTEM

Every real-time multitasking system must provide for intertask
coordination, so this coordination cannot be billed as an advantage. The
true advantage arises from the flexible means that the iRMX 86 System
provides for accomplishing coordination.

The intertask coordination supplied by the iRMX 86 Operating System is
flexible and simple to use« Semaphores and mailboxes can accommodate a
wide variety of situations • And your application system is not limited
to some arbitrary number of mailboxes or semaphores. It can create as
many as it needs.

EXTENDIBILITY

The iRMX 86 Operating System is extendible. It allows you to create
your own object types and to add system calls to the Operating System.

Something is extendible if you can add to it, and the iRMX 86 Operating
System is extendible. Your system programming engineers can build their
own types of objects and the system calls to manipulate those objects.
These custom features become a part of the Operating System. From the
point of view of the application programming engineer, there is no way to

distinguish your custom objects from those supplied by Intel.

The advantage of extendibility is that you can add your features to the
iRMX 86 Operating System and obtain the same benefits as supplied by its
object-oriented architecture. These benefits include the ability to send

your custom-made objects to mailboxes and the ability to put them in
object directories. Additionally, your application engineers can more
quickly become familiar with your custom features. This shrinks your
development time and costs, and it allows you to bring your application
system to your users sooner.

DEBUGGING SUPPORT

The iRMX 86 Operating System provides object-oriented debugging

facilities.

Intel provides three object-oriented debugging aids for use with the

iRMX 86 Operating System: the on-line Dynamic Debugger (or simply the

"Debugger"), the System Debugger (SDB), and the Crash Analyzer. You can

include these tools during development of your application system, then
remove them from your application when it has stabilized, thus reducing

the size of the application system.

All three tools are attuned to IRMX 86 objects (tasks, mailboxes, etc.).

This eases the debugging of iRMX 86 applications. These tools are
discussed in greater detail later in this chapter.

Introduction 4-11



FEATURES OF THE IRMX
1
" 86 OPERATING SYSTEM

Because the Dynamic Debugger, System Debugger, and Crash Analyzer are

"sensitive" to iRMX 86 objects, you can fully debug your application
system, including the interaction between tasks. The Dynamic Debugger
allows you to debug individual tasks while the remainder of the job

continues to execute. The System Debugger and Crash Analyzer allow you
to "freeze" the entire system and examine the contents of memory and CPU

registers, and the state of each object :Ln use at the time.

Using the iRMX 86 debugging tools, you can reduce development time, time

to market, and the cost of implementing and maintaining your application
systems.

PROCESSOR SELECTIVITY

The iRMX 86 Operating System supports a number of Intel microprocessor
boards. During configuration you select the processor to match your
system.

In addition to supporting the iAPX 86,88 microprocessors, the

IRMX 86 Operating System can be configured to execute on other iAPX
family members, including the iAPX 186, L88, and 286 processors. These

processors have a higher level of integration and faster execution times
than the iAPX 86, 88 processors.

On the iAPX 186,188 processors, the iRMX 86 Operating System executes in

iRMX compatibility mode. On the iAPX 286 processor, the Operating System
executes in real address mode. Applications written for iAPX 86,88-based
microcomputers will run in real address mode or in IRMX compatibility
mode without modification or relinking.

The ability to tailor the Operating System to match your processor means
you can upgrade your system to a higher level of integration without the

need to modify or relink your application systems to run on the new
processor. This provides flexibility in the development of your
application systems as well as faster execution times for applications
running on the more highly integrated processors.

INPUT/OUTPUT FEATURES

The iRMX 86 Operating System offers the power and flexibility of a

general-purpose operating system. Input and output operations will be a
large part of most applications, so the Operating System offers a

collection of I/O features to speed development of application systems,
and to make the I/O of those systems efficient.

Introduction 4-12



FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

CHOICE OF I/O SYSTEMS

To meet the I/O needs of a wide variety of applications, the iRMX 86

Operating System provides two I/O systems: the Basic I/O System and the
Extended I/O System. You can use the Basic I/O System only, or you can
combine the two I/O systems.

Many features of the iRMX 86 Operating System are useful in most
applications, but not all applications. This is especially true of
features relating to input and output. The iRMX 86 Operating System
provides two I/O systems: the Basic I/O System and the Extended I/O
System.

Basic I/O System

For some applications the performance or flexibility of the system is

more critical than the time necessary to produce the system. For these
applications, the iRMX 86 Operating System provides the Basic I/O System.

The Basic I/O System is the more flexible of the two I/O systems. It

provides very powerful capabilities, and it makes few assumptions about

the. requirements of your application. The following features illustrate
the flexibility of the Basic I/O System:

ALLOWS YOU TO DESIGN YOUR OWN BUFFERING ALGORITHM . Rather than

automatically providing a buffering algorithm, the Basic I/O System
allows you to design and implement your own buffering technique. Using
the Basic I/O System, you control the synchronization between I/O and
processing.

APPROPRIATE FOR RANDOM I/O OPERATIONS . Perhaps the I/O in your
application is random access. This means that rather than reading or

writing data in sequential blocks, the application accesses data in

blocks that are not adjacent to each other. The Basic I/O System is more
appropriate for these operations because of the explicit control the

programmer has over I/O operations.

GIVES YOUR TASK CONTROL OF DETAILS . The system calls of the Basic I/O
System often have many parameters. Using these parameters, your tasks
can closely tailor the behavior of each system call to match the
performance requirements of your application system.

Introduction 4-13



FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

The Basic I/O System emphasizes flexibility rather than ease of use. The
Basic I/O System provides I/O features that are useful in time-critical
or memory-critical applications, and allows the performance of a system
to be optimized.

Extended I/O System

The Extended I/O System is designed to be easy to use, and to be
efficient for sequential I/O. The important features of the Extended I/O
System are described below.

AUTOMATIC BUFFERING OF I/O OPERATIONS . If you want to use
multiple-buffered I/O, but do not want to be burdened with writing
complex code to check and switch buffers, you can use iRMX 86 Extended
I/O System calls. When the application program issues a system call to
perform an I/O operation, the iRMX 86 Operating System performs the input
or output and returns control to the user program after the data transfer
is completed. But before returning control to the user program, the
iRMX 86 Operating System starts reading or writing the next block.

For example, if the application is reading a file from disk, the
following sequence will occur:

1. When the application program opens a file using an Extended I/O
System call, the Operating System starts reading the first block
of the file ("initiates" the input).

2. The Operating System returns control to the application program.

3. Later the program requests an Extended I/O System Read. The
Operating System has already started reading this data. When the
input is complete, the Operating System initiates a read of the
next block of the file (called "reading ahead"), and returns
control to the calling program.

In this way, whenever the user requests an Extended I/O System Read, the
data is either immediately available, or is in the process of being read.

The equivalent output process is performed by "writing behind." When an
application program requests an Extended I/O System Write, the iRMX 86
Operating System copies the data to a buffer maintained by the Extended
I/O System, and returns to the calling program. Whenever this buffer is
filled, the system initiates an output operation.

Introduction 4-14



FEATURES OF THE iRMX 1" 86 OPERATING SYSTEM

EFFICIENT SEQUENTIAL I/O OPERATIONS . Another characteristic of the
Extended I/O System is that when it does a "read ahead" operation, the
Operating System assumes that a series of sequential reads are to be
performed. For example, the Operating System will read data from disk
address 23, then from disk address 24, and so on. So when your I/O is

mostly sequential, (for example, when examining consecutive records of a

file) Extended I/O System calls are particularly efficient. Though less
efficient, it is still possible to perform random access of a file with
the Extended I/O System by preceding operations with a Seek call
specifying the offset into the file.

FREE OF TEDIOUS DETAILS . The system calls of the Extended I/O System
have relatively few parameters and are easy to code. In many cases a

single Extended I/O call will serve the purpose of several Basic I/O
System calls. This simplifies your application system, which reduces
development time and reduces costs.

The iRMX 86 Operating System allows you to select the features you
want. The Basic I/O System gives maximum control of I/O operations for
applications requiring finely tuned performance, especially while doing
random-access I/O. The Extended I/O System is easy to use. It saves
development costs and development time, especially in applications that
use sequential I/O.

Finally, remember that you can use both I/O systems when your application
system uses I/O for several purposes, some of which are best accomplished
by the Basic I/O System, and some of which are best accomplished by the
Extended I/O System.

DEVICE-INDEPENDENT INPUT AND OUTPUT

The input and output capabilities of the iRMX 86 Operating System are
device independent. This adds flexibility to your system by allowing you
to easily reroute input or output to different devices.

A system provides device-independent I/O if it has one set of system
calls for communicating with all I/O devices. The alternative to device
independence is to provide different calls for each type of device.
Let's first examine the alternative and then move on to device
independence. Consider an operating system that does not provide device
independence. The system calls controlling input and output operations
are explicitly related to the I/O devices being used. For instance, the

system call for writing to the line printer might be PRINT, while the
system call for writing to the terminal might be TYPE. Once you have
written a procedure in such a system, the procedure is locked into a
particular combination of devices. The only way you can reroute input or
output is to edit the source code and recompile.

Introduction 4-15



FEATURES OF THE iRMX'" 86 OPERATING SYSTEM

Now consider an operating system that is device independent: the iRMX 86
Operating System. Because the iRMX 86 System supports device-independent
I/O, the system calls are not device dependent. The READ system call is
always used for input, and the WRITE system call is always used for
output. The device is specified by a parameter of the system call.
Consequently, by using a variable as the parameter that selects the

device, you can create I/O procedures that are completely independent of
the devices they use.

Device independence makes your application system very flexible. If you
write a procedure to log events on a line printer, you can use the same
procedure to log events on a terminal or, for that matter, on a disk.
You need not recompile or otherwise modify your system.

HIERARCHICAL NAMING OF MASS STORAGE FILES

The iRMX 86 Operating System supports hierarchical naming of files on
mass storage devices. This naming technique provides your application
systems with additional flexibility by simplifying the process of
organizing and naming files.

Hierarchical naming is one of three common techniques used to name files
on mass storage devices such as disks, bubble memories, or drums. The
other two techniques are called simple naming and directory naming. The
advantages of hierarchical naming become clear when that technique is
compared to the other two. First we'll look at simple naming.

Simple naming allows you to provide files with a descriptive name. For
instance, you might decide to name files ACCOUNTS PAYABLE, ACCOUNTS
RECEIVABLE, TRANSACTIONS, and INVENTORY. These names are certainly
descriptive, but what happens when a different application running in the
same system also decides to use one of these names? This question is
avoided by using a more powerful naming technique: directory naming.

Directory naming allows different applications (or different application
engineers, for that matter) to use the same file name. Each application
(or engineer) is given one special-purpose file, called a directory.
This directory contains only file names; it does not contain data.
Figures 4-2 and 4-3 provide examples of directories. When application
software refers to a specific file, It first names the directory and then
names the file. For instance, in Figure 4-2, the TRANSACTIONS file
associated with Engineering would be designated
ENGINEERING/TRANSACTIONS. The comparable file for Marketing, in Figure
4-3, would be designated MARKETING/TRANSACTIONS.

The advantage of directory naming over simple naming is that directory
naming allows the file names to reflect the relationships between files.
In Figure 4-2, all the files pertaining to Engineering are in the
directory called ENGINEERING. This grouping of related files is not
supported by simple naming.

Introduction 4-16



FEATURES OF THE iRMXw 86 OPERATING SYSTEM

ENGINEERING
ACCOUNTS
PAYABLE

ACCOUNTS
RECEIVABLE

TRANSACTIONS

INVENTORY

DIRECTORY
FILE

Figure 4-2. An Engineering Directory

MARKETING
ACCOUNTS
PAYABLE

ACCOUNTS
RECEIVABLE

TRANSACTIONS

INVENTORY

DIRECTORY
FILE

Figure 4-3. A Marketing Directory

What about situations in which more than one level of directory is

required? This situation is illustrated in Figure 4-4. This figure
differs from 4-3 only in that a second level of grouping has been
included.

Introduction 4-17



FEATURES OF THE iRMX 1" 86 OPERATING SYSTEM

MARKETING
ACCOUNTS
PAYABLE

ACCOUNTS
RECEIVABLE

TRANSACTIONS
INVENTORY

CAPITAL
EQUIPMENT

NONCAPITAL
EQUIPMENT

m 552

SShS

H><0

BOOKINGS

BILLINGS

TRILOBITE
MEMORIES

PLEISTOCENE
ELECTRONICS

ACE
STATIONARY

SMITH
ADVERTISING

SMUDGE
PENCILS

m =5ooI>

5 r § i NAMES
50

DATA
FILES

DIRECTORY
FILES

Figure 4-4. Hierarchical Naming of Files

Just as Figure 4-4 shows that single-level directory naming is not
sufficient for all collections of files, another figure could be
constructed to show that two-level directory naming is not always
sufficient. Consequently, the iRMX 86 Operating System supports any
number of levels of directories. This n-level directory naming is called
hierarchical naming of files.

Hierarchical naming of files simplifies the process of adding new
applications to your system* One concern about expanding your system is
the naming of mass storage files associated with a new application.
Names of new files must differ from names of existing files. If your
system uses only a few mass storage files, you can expect little
difficulty in assigning unique file names. But if your system uses a
large number of files, the problem of ensuring uniqueness becomes more
significant.

This uniqueness problem becomes particularly difficult if file names are
assigned by an operator in a system having more than one operator.
Hierarchical file naming eliminates the problem. Whenever you add a new
application to your system, you can assign it a directory. The new
application can then use this directory to provide unique names to any
number of files. Also, each operator can be assigned a unique directory
which can then be used to provide unique names.

Introduction 4-18



FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

FILE ACCESS CONTROL

The iRMX 86 Operating System allows your application system to control
access to hierarchically named files. This facilitates file sharing
while still preventing valuable data from being copied, modified, or
destroyed by unauthorized users.

In the multiprogramming environment provided by the iRMX 86 Operating
System, the sharing of files can be useful. But the job that owns a file
may wish to share it with only certain other jobs rather than all other
jobs. Furthermore, the job owning a file may wish to restrict the nature
of the shared access. For example, the owning job may wish to allow a
particular file to be read but not written. The ability to specify how
and with whom a file is shared is called file access control.

The iRMX 86 Operating System provides powerful file access control by
allowing the owner of a file to specify who can use the file and how they
can use it. In fact, a file's owner can even grant different
combinations of access (reading only, writing only, reading and writing,
etc.) to each user of a file.

By controlling who can access a file and how they can access it, your
system becomes more reliable and secure. There is less chance for an
unauthorized task to accidentally modify a valuable file, and there is
less opportunity for an unauthorized task to read a confidential file.

Your application software can, in fact, expand file access protection
into a file security system. For instance, suppose that your application
involves several operators accessing files on disk. By providing each
operator with a password, so an individual's identity can be verified,
your application software can strictly control which operators have
access to which files.

CONTROL OVER FILE FRAGMENTATION

The iRMX 86 Operating System allows you to specify the granularity of
each mass storage file. This lets you trade faster I/O for more
efficient use of space on the mass storage device.

When information is stored on a mass storage device, space is allocated
in chunks rather than one byte at a time. These chunks, called granules ,

can be large or small, but all granules within one file must be the same
size. This size is called the file granularity , and it is specified by
the engineer who creates the file.

A file's granularity affects the use of a storage device in three ways.

• Data Transfer Rate . The granularity directly affects the speed
at which the Operating System can transfer information to or from
the storage device. The larger the granularity, the faster the
Operating System transfers data.

Introduction 4-19



FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

• Access Time . The smaller the granules, the more time is required

to access a series of random locations in the file. Larger
granules reduce access time.

• Wasted Device Space . The file granularity directly affects the
amount of wasted space on the device. More device space is
wasted with larger granularity.

Here's an example. (For the sake of simplicity, we will ignore

any information stored on the device on behalf of the Operating
System.) Consider a file containing 20010 bytes. If the

granularity is 10000 bytes, the file occupies three granules,

each of which is 10000 bytes long. The first two granules are

full and the third contains only 10 useful bytes. This file

wastes almost 10000 bytes of storage space.

If we change the file granularity to 200 bytes, the file occupies

101 granules. Each of the first 100 granules is full and the

last granule contains only 10 useful bytes. The file now wastes

only 190 bytes of storage space.

By allowing you to control granularity, the iRMX 86 Operating System

lets you trade device space for performance. If your application has

many mass storage units and space is readily available, you can specify a

large file granularity. This provides you with faster average transfer

rates and shorter access times, but it wastes some of your device space.

If, on the other hand, you have only one small mass storage unit, you

might want to sacrifice some performance for better use of space. This

trade would be particularly desirable if you do not use the device often

enough to be concerned with the rate of data transfer.

SELECTION OF DEVICE DRIVERS

The iRMX 86 Operating System offers you your choice of Intel-supplied

device drivers. It also allows you to write your own drivers.

A device driver is a software module that serves as the interface between

a device's controller (which is hardware) and the iRMX 86 Basic 1/0

System. The purpose of the driver is to make all devices look alike to

the Basic 1/0 System. In effect, the driver hides the idiosyncrasies of

a device from the Basic 1/0 System.

By selecting and creating device drivers, you can attach any device to

your application system. This means that you are not limited to a few

specific devices. You can select devices on any basis at all

performance, cost, reliability, availability, whatever. The choice is

yours .

Introduction 4-20



FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

TERMINAL SUPPORT CODE

Many brands and types of keyboard terminals are available in the
marketplace. The iRMX 86 Terminal Support Code allows you to use nearly
any terminal regardless of its individual characteristics. Terminal
Support Code also allows programmers or terminal operators to specify a
variety of special terminal modes and operations.

Every terminal connected to an iRMX 86 application system communicates
with the system via one of two software packages: the iRMX 86 Terminal
Handler or the iRMX 86 Terminal Support Code. (The Terminal Handler is
described in a later section, "Interactive Configurability.") Terminal
Support Code is software that acts as a programmable interface between a
terminal driver and the Basic I/O System.

This section describes these major capabilities of the Terminal Support
Code:

• Editing and controlling terminal input.

• Type-ahead.

• Controlling terminal output.

• Terminal characterization.

Editing and Controlling Input to a Terminal

A terminal operator has available a set of characters that control and
edit terminal input. For example, an operator can:

• Use the RUBOUT key to delete the previous character in an input
line. The Terminal Support Code can be set to handle the RUBOUT
character differently for a video terminal than it does for a
hard-copy terminal.

• Reprint the line to show editing already performed.

• Discard the current: input line and start typing a new line.

The Terminal Support Code allows you to replace default control
characters with different characters. You can also switch a terminal to
"transparent mode," so that editing and control characters have no effect
and are not removed from the line of text.

Type-Ahead

If an operator types faster than the Operating System can read,
interpret, and respond to input, the Terminal Support Code sends the
first line to the I/O System for processing, and saves additional data in
a type-ahead buffer.

Introduction 4-21



FEATURES OF THE iRMX"
1

86 OPERATING SYSTEM

After the Operating System finishes with the first line, the Terminal
Support Code sends additional input data.

Controlling Output to a Terminal

When sending output to a terminal, the Terminal Support Code always
operates in one of four modes. An operator can dynamically switch from

one output mode to another by entering output control characters. The

output modes and their characteristics are as follows:

Normal The Terminal Support Code accepts output from the

application system and immediately passes output to the

terminal for display.

Stopped The Terminal Support Code accepts output from the

application system, but it queues the output rather than

passing it immediately to the terminal.

Scrolling The Terminal Support Code accepts output from the

application system, and it queues the output as in the

stopped mode. However, rather than completely preventing

output from reaching the terminal, it sends a

predetermined number of lines to the terminal whenever

the operator enters a certain character at the terminal.

Discarding Data sent to the terminal is effectively lost; it is

neither displayed nor queued.

Translation

The Terminal Support Code accepts escape sequences (characters preceded

by an ESC character) to define characteristics of a terminal. This

powerful feature allows you to "characterize" terminals so that the I/O

system can use standard control codes and sequences of codes for all

terminals. This process is called translation .

Here is how translation works. The Basic I/O System sends standard codes

to the Terminal Support Code to, for example, move the video cursor. The

Terminal Support Code converts the standard codes into codes recognized

by a particular terminal, and sends out these terminal-specific codes.

Besides translation, escape sequences are used to set terminal variables,

such as how many lines are displayed when in Scrolling mode. Escape

sequences can be sent either from the terminal, or from a program. That

is, you can change terminal behavior by keying in escape sequences or by

running a program.

Some of the advantages to including the Terminal Support Code in your
application are:

Introduction 4-22



FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

You can use virtually any ASCII keyboard terminal that can be
connected to your hardware.

Your application can include convenient line-editing and

output-control functions.

You can define unique characteristics for each terminal in a
multiple- terminal system.

You can define new characteristics either from programs or from
terminals.

CUSTOMIZING FEATURES

The iRMX 86 Operating System is designed specifically for OEM and VEU

applications. For this reason the application system as a whole can
appear unique to the user. Certain features of the Operating System
allow an application to be customized in its capabilities and in how it
appears to the end user. Let's look at these features.

CUSTOM INTERACTIVE COMMANDS

People interact with your applications by entering commands and
receiving information at terminals. The iRMX 86 Operating System allows
you to define commands that are appropriate to the application and are
meaningful to the operator.. This command facility is called the Human
Interface.

By designing commands which are appropriate to the type of people who use

a system, you can control the human-to-application interface. This can
make a system appear "friendly," it can give the application a unique
character, and it can reduce operator errors.

Custom Commands = Programs

Because the first word in a command is the name of an executable program
file on a mass storage device such as a disk, you are given great
flexibility in defining commands. When someone types a command at the

terminal, the program having the command name is loaded from the

secondary storage and is run by the Operating System. This means:

• You may add or modify commands simply by writing new programs.

• The number of custom commands for a system is not limited by the

amount of dynamic memory.

• You do not have to "rebuild" the system to change commands.

• Programs that are used infrequently do not take up memory space

when they aren' t being run.

Introduction 4-23



FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

Command Line Parsing

System calls are available for retrieving and interpreting parameters of
a command. This process is called "parsing a command line."

Consider an application that monitors toxins in the blood of hospital
patients. An operator (perhaps a nurse or doctor) can run a task that
displays the toxin level of an individual patient, or of all patients
being monitored.

One approach would be to have the operator run the task with a command:

RUN TOXIN. V3

The program might prompt with:

Display of which units? —
A more "friendly" approach allows a person to use commands that are
oriented to the application and to his or her skills, rather than to use
computer-oriented commands. In the example, a better command is:

TOXIN of John Doe

The program TOXIN issues a system call to receive the parameter "John
Doe". Because file names frequently are parameters for commands,
specialized system calls are also available to interpret file name
parameters.

The iRMX 86 Operating System makes it easy to design commands for
operators who are not particularly familiar with computers. The ability
to define commands enables you to create an application that is easy to
use, easy to understand, and resistant to operator errors. New commands
may be added by simply writing new programs, rather than making expensive
changes to the system.

APPLICATION LOADING

The iRMX 86 Operating System allows your application to read programs
from disk into memory and to run them. (This capability is briefly
described under Custom Interactive Commands in this section.) Also, the
Operating System allows a program to be broken into segments called
overlays, so that the entire program does not have to be in memory at one
time.

Introduction 4-24



FEATURES OF THE iRMX
m

86 OPERATING SYSTEM

Load-Time Location

The explanation of Custom Interactive Commands mentioned that programs
can be loaded from a mass storage device like a disk or bubble memory.
The iRMX 86 Application Loader is designed so that programs may be loaded
anywhere in available memory. The loader will modify the appropriate
addresses in the program at the time the program is loaded . This
capability, Load-Time Location , offers great flexibility in the design of
application systems. As new programs are added, existing programs do not
have to be rebuilt ("linked") in order to run together. Or if more
memory is added to the system, the memory can be readily used.

Overlay Loading

Occasionally a program is large enough that it is necessary to break it

into pieces called overlays . Each overlay runs at a different time, and
occupies the same area of memory. A program containing overlays consists

of a "root" that is always present while the program is running, and of

two or more overlays. The overlays are loaded by system calls issued

from the root.

An overlay facility allows programs to be run even if the programs are

too large to fit in memory* Naturally, some care must be exercised to

ensure that functions performed by separate overlays do not have to run

simultaneously. Also, a program with overlays will execute somewhat
slower than one that does not contain overlays.

The iRMX 86 Application Loader gives a programmer great flexibility in

the way programs use memory. The system can load programs anywhere in

available memory, and programs can execute even though they are actually

larger than the memory available.

SIMULTANEOUS MULTIPLE TERMINAL SUPPORT

Operating systems are characterized as either single-terminal or
multi- terminal systems. The iRMX 86 Operating System, being a

multi- terminal system, can be accessed by more than one terminal at the

same time .

The iRMX 86 Operating System offers two ways that you can implement
multi-terminal support:

• Multi-access Human Interface (both standard multi-access and
modified multi-access).

• Simultaneous Multiple Terminal Support with I/O Programs.

This section explains both approaches.

Introduction 4-25



FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

Multi-Access Human Interface

The iRMX 86 Operating System can communicate with multiple terminals
simultaneously. The Human Interface part of the Operating System
provides multi-access , which is high-level support for this
communication. From a terminal in a multi-access system an operator can
execute commands, run development programs (like editors, compilers, and
so on), and run other application programs. Here is how multi-access
works.

The Operating System detects when a terminal is turned on and assigns an
operating environment for the terminal. This environment consists of an
identifier (ID), an area of memory in which programs can run, and a
priority at which the programs run. The Operating System then starts a
program called the initial program . (This is true even if you have only
one terminal.)

If the initial program is the one that comes with the Human Interface, we
call this standard multi-access . But you can replace the Intel-supplied
initial program with one of your own; we call this modified multi-access .

STANDARD MULTI-ACCESS . With standard multi-access, the initial program
is an Intel-supplied Command Line Interpreter, (CLI, for short). A CLI
is a program that parses commands an operator enters. As each command is
entered the CLI divides it into a program name and parameters, runs the
program indicated by the command, and passes the parameters to the
program.

MODIFIED MULTI-ACCESS . You have the option of providing your own initial
program. This initial program might be a CLI of your own design, or it
might be a completely different kind of program. For example, you can
write a Command Line Interpreter that checks a password before allowing
the user to access the system. Or if you want a particular terminal to
be used only for BASIC-language programs, a BASIC interpreter might be
the initial program.

Multi-access is particularly versatile because you can select, on a
terminal-by- terminal basis, what initial program runs. For example, one
terminal might run the Intel CLI, another run a special CLI, and a third
terminal might always run a word-processing program.

Multiple Terminal Support with I/O Programs

You can implement multiple terminal support with your own programs. That
is, you can replace the iRMX 86 multi-access mechanism just described
with programs that you write.

Introduction 4-26



FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

In this case, your programs communicate with terminals through I/O system
calls. You might do this if you need to implement functions not
available with multi-access, or if you want to leave out the Human
Interface layer. (A later section, "Interactive Configurability,"
describes how you can include and exclude parts of the iRMX 86 Operating
System.

)

The obvious advantage of this feature is that the your system can be
accessed by more than one person at a time, which enables you to build
systems that are more cost-effective and more powerful than
single-terminal systems.

Because of the variety of ways that the Operating System supports
multiple terminals, you can build specialized systems, you can make your
application system easy to use, and you can protect data from accidental
changes .

RUN-TIME BINDING

The iRMX 86 Operating System uses "run-time binding," the process of

linking objects, files and devices with the tasks that use them. This
provides your system with three kinds of flexibility. It allows tasks in
different jobs to share objects; it lets your procedures use logical
names for files and devices; and it simplifies the process of attaching
your application software to the iRMX 86 Operating System.

Before we look into run-time binding, let's consider binding as it

relates to a program.. Binding is the process of letting each program
know the locations of the variables and procedures that it uses.

Binding can be performed several times during the development and
execution of a program. Some binding takes place during the process of

compilation. As a program is being compiled, its references to variables
and procedures are resolved (that is, converted into machine language)
whenever the compiler has sufficient information. Sometimes, however, a

program refers to variables or procedures that are part of a separate
program. When this happens, the compiler cannot resolve the reference,
and binding must be delayed.

Some binding also takes place during linking. Linking is the process of
combining several programs that are compiled separately. The purpose of
linking is to allow a program to refer to variables and procedures
defined in a different program. (Such references are called external
references because they refer to information outside of the program under
consideration.) When the linking process resolves an external reference,
it performs binding that cannot be completed during compilation.

Introduction 4-27



FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

Run-time binding means binding while the system is actually running. The
iRMX 86 Operating System provides three kinds of run-time binding:

• Binding objects to tasks.

• Binding files and devices to tasks.

• Binding your application software to the Operating System.

The first two kinds of run-time binding are based on the use of object
directories. An object directory is an attribute of a job that allows
tasks to provide ASCII names for objects. Tasks use the CATALOG OBJECT,
LOOKUP OBJECT, and UNCATALOG OBJECT system calls to define, lookup, or
delete the name of an object. In each case, the task using the system
call must specify the job whose object directory is to be accessed.

Let's look more closely at each type of run-time binding.

Binding Objects to Tasks

When two tasks use a mailbox to pass information, they obviously must
both access the same mailbox. But if the programs for the two tasks are
compiled and linked independently of one another (as they probably would
be if they are in separate jobs), the tasks must use run-time binding to
access the same mailbox.

The run-time binding of objects to tasks is accomplished as follows.

When a task creates an object that it wishes to share with other tasks,
the creator task catalogs the object in an object directory. Other tasks
can then access the cataloged object if they know its ASCII name and its
object directory.

Engineers can control the sharing of objects by selectively broadcasting
object names. If two engineers wish to share an object, they must agree
on both the name and the object directory that is to contain the name.
One task then creates the object and the other accesses it through the
object directory.

Binding of Files and Devices to Tasks

Suppose you wish to code an application utility program that takes input
from any supported input device or from a disk file. Run-time binding
can help accomplish this. The utility program can be coded to lookup an
input connection under a particular name. Then any program that needs

the utility program can create the input connection, catalog it under the

agreed-upon name, and invoke the utility program. In effect, the ASCII
name in the object directory is the logical name of the input file.

Introduction 4-28



FEATURES OF THE iRMXw 86 OPERATING SYSTEM

Binding of Application Software to Operating System

The iRMX 86 Operating System uses a third type of run-time binding to
allow your application software to communicate with the Operating
System. Whenever your application software invokes a system call, an
Intel-supplied interface routine converts the call into a

software-generated interrupt. This interrupt causes control to be
transferred to a procedure within the iRMX 86 Operating System that

performs the desired function. In other words, the software interrupts
bind the system calls of your application software to the iRMX 86

procedures.

Run-time binding provides your application system with flexibility. By
allowing your system to name objects, the iRMX 86 Operating System
provides a means of sharing dynamically created objects between jobs* By
supporting logical names for files and devices, the iRMX 86 System allows
tasks to work with any combination of files and devices rather than with
a single, fixed combination. By using software interrupts to bind your
application software to the Operating System, you can reconfigure the

Operating System without having to recompile or relink your application
software.

ERROR HANDLING

The iRMX 86 Operating System allows your application system to specify
an error handling procedure for each task.

Error handling is the process of detecting and reacting to unexpected
conditions. The iRMX. 86 Operating System supports error handling by
doing a substantial amount of validity testing and condition checking
within system calls, but it cannot detect every error.

Nonetheless, the iRMX 86 Operating System does protect your system from
most types of errors. The concepts involved in the iRMX 86 error
handling scheme are condition or exception codes, and exception
handlers. We'll look, at these one at a time.

• Condition Codes . Whenever a task invokes a system call, the
iRMX 86 Operating System attempts to perform the requested
function. Whether or not the attempt is successful the Operating
System generates a condition code . This code indicates two
things. First, it shows whether the system call succeeded or

failed. Second, in the case of failure, it is called an
exception code and shows which unexpected condition prevented
successful completion.

• Exception Handlers . An exception handler is a procedure that the
Operating System can invoke when a task receives a condition code
indicating failure of the function requested. As each task is

created, it is assigned an exception handler; either one written
by the programmer, or a default exception handler provided by the
Operating System.

Introduction 4-29



FEATURES OF THE iRMX
T
" 86 OPERATING SYSTEM

The alternative to using exception handlers is to process

exception codes in the procedure that issued the system call.

Because you can write the exception handler, you can control the

behavior of an application when it receives an exception code.
The handler can recover from the error, delete the task
containing the error, warn the operator of the error, or ignore
the error altogether. The choice is yours.

In summary, exception handling works as follows. The Operating System

generates a condition code for each system call. If the code indicates
successful completion, the Operating System detected no problems. If the

code indicates an exceptional condition, the exceptional code can be
processed either of two ways: within the procedure that used the system
call, or by an exception handler invoked by the Operating System. The
technique used is a characteristic of a task, and is established when the

task is incorporated into the system.

Error handling provides your application system with several methods for
reacting to unusual conditions. One of these methods, having the
Operating System automatically invoke your task's error handling
procedure, greatly simplifies error processing. The other method,
dealing with some or all unusual conditions within your application task,

allows you to provide special processing for unusual circumstances. The
iRMX 86 Operating System allows your application system to use both
methods.

DYNAMIC MEMORY ALLOCATION

The iRMX 86 Operating System supports dynamic allocation of memory.

This allows you to reduce your implementation costs by building systems
in which applications share memory. It also allows your applications to

change the amount of memory they use as their needs change.

Although there are numerous techniques for assigning memory to jobs, each

technique falls into one of two classes: static allocation or dynamic
allocation. Let's look briefly at static allocation first.

Static memory allocation entails assigning memory to jobs when the system
is starting up. Once the memory is allocated, it cannot be freed to be
used by other jobs. Consequently, the total memory requirements of the

system is always the sum of the memory requirements of each job.

Dynamic memory allocation, on the other hand, allows jobs to share
memory. Memory is allocated to jobs only when tasks request it. And
when a job no longer needs the memory, one of its tasks can free the
memory for use by other jobs.

Dynamic allocation also is useful within a job. Some tasks can use

additional memory to improve efficiency. An example of this is a task
that allocates large buffers to speed up input and output operations.

Introduction 4-30



FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

The dynamic allocation of memory provides your application system with
reduced implementation costs. If your application system runs more than
one application, chances are fair that memory demands for various jobs
will be out of phase. That is, one job will be freeing memory while
another needs more. Dynamic memory allocation allows jobs to take
advantage of this. Consequently, your application system requires less
memory than it would using static allocation.

SOFTWARE INTERFACE

The iRMX 86 Operating System may be used to run various language
translators (PASCAL, FORTRAN, PL/M-86, ASM86 Macro Assembler, etc.). A
standard, flexible protocol, the Universal Development Interface (UDI),
allows language translators, language run-time packages, and other
software development tools to run on the iRMX 86 Operating System.

The UDI protocol consists of a set of system calls by which language
software uses the Operating System. (Language processors might be
compilers, interpreters, assemblers, or run-time systems.) Any language
may be run on the iRMX 86 Operating System if the language processor uses
the UDI standard system calls. In addition, the same language processor
can, without modification, be run on any other operating system which
includes the UDI system calls. (Intel markets a variety of operating
systems which use UDI for language support.)

There are at least two major advantages to the UDI software interface:

• A language processor can use well-defined, appropriate, standard
calls to communicate with the iRMX 86 Operating System. Existing
languages can be adapted easily to run on the Operating System.

• Any language processor or software tool using UDI system calls
can run on several Intel operating systems. This feature is
commonly termed "portability," and is becoming a major
consideration in software design because of obvious economic
benefits.

BOOTSTRAP LOADING

The iRMX 86 Operating System contains a bootstrap loader that allows
your application system to reside on disk and be loaded into RAM
(random-access memory).

A bootstrap loader is a program that resides in ROM on your application
hardware. When your system's microprocessor is reset, the bootstrap
loader receives control and loads the rest of the software, including the
iRMX 86 Operating System and the application software, into RAM.

Introduction 4-31



FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

The iRMX 86 Bootstrap Loader provides your application system with two
major advantages:

• By placing the iRMX 86 Bootstrap Loader in ROM, you can shift the
rest of your application system to RAM. Since the rest of your
system is probably one or two orders of magnitude larger than the
Bootstrap Loader, this displacement substantially decreases the
amount of ROM required to implement your application.

This decrease in the amount of ROM required for your application
leads directly to reduced manufacturing costs. ROM, unlike RAM,
requires that information be "burned" or masked into memory. By
decreasing the amount of ROM in your system, the Bootstrap Loader
reduces your masking or "burning"' expenses.

• The iRMX 86 Bootstrap Loader simplifies the process of providing
updated software to your customers. Rather than shipping ROMs
containing the modified software, you can ship diskettes. This
greatly reduces the cost of updating your software.

TOOLS

Along with the iRMX 86 Operating System, Intel provides software tools to

help you develop an application system. Sometimes you use the features
listed in this section as part of your system, and sometimes you use them
only while developing the system. But each feature simplifies the
process of developing a complex system.

OBJECT-ORIENTED DYNAMIC DEBUGGER

The iRMX 86 Operating System provides a special dynamic debugger that is
attuned to iRMX 86 objects. This debugger simplifies the process of
removing the bugs in the Interaction between tasks of the application
system. It also facilitates debugging in a real-time environment.

We have already discussed the object-oriented architecture of the iRMX 86
Operating System. Reviewing briefly, each iRMX 86 job is a community of
tasks, and each task can manipulate objects. A special set of objects
(mailboxes and semaphores) provides a means for tasks to coordinate with
one another.

The iRMX 86 Dynamic Debugger (or simply the "Debugger") has two
capabilities that greatly simplify the process of debugging in a
multitasking environment. First, the Debugger allows you to debug
several tasks while the balance of the application system continues to

run in real time. Second, the debugger lets you see which tasks or
objects are queued at mailboxes and semaphores.

These two capabilities help you debug your application system at two
levels. You can look into the behavior of an individual task, and you
can examine the interaction between tasks. Both levels must be
thoroughly debugged before your system is fully implemented.

Introduction 4-32



FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

The object-oriented Debugger gives your application system flexibility

while simultaneously providing economic benefits.

By allowing you to debug several tasks while the system continues to run
in real time, the Debugger lets you check out new tasks in a running
system. This simplifies the process of adding new tasks to an existing
application system.

By simplifying the process of debugging interaction between tasks, the

Debugger lessens the amount of time needed to debug your application
system. This directly reduces the time to market, the cost of

implementation, and the cost of maintenance.

SYSTEM DEBUGGER

The iRMX 86 Operating System includes a System Debugger (SDB), which

extends the capabilities of your system monitor. The System Debugger

provides "static" debugging facilities for those times when the system

hangs or crashes, when the Nucleus is inadvertently overwritten or

destroyed, when you wish to "freeze" the system and examine it, or when
synchronization requirements preclude the debugging of selected tasks.

As we saw earlier, the Dynamic Debugger lets you debug one or more tasks

while the rest of the application system continues to run.

In contrast, the System Debugger stops the system (if it's not already

stopped) and allows you to examine the state of the system at that very

instant in time. If possible, after examining the state of the system

you can continue execution from where it stopped.

The SDB extends the capabilities of the iSDM 86,286 System Debug Monitor

(which you must purchase separately) or the iSBC 957B Monitor (which you

may already have) by allowing you to:

• Identify and interpret iRMX 86 system calls.

• Display information about iRMX 86 objects.

• Examine a task's stack to determine system call history.

The System Debugger provides the facilities necessary for diagnosing

system crashes. By stopping the system, the SDB provides a global view
of the system, which can help you find errors not easily found with the

Dynamic Debugger. Development time and costs are reduced because you can

track down and fix errors in a more timely manner.

Introduction 4-33



FEATURES OF THE iRMX
1
" 86 OPERATING SYSTEM

CRASH ANALYZER

The iRMX 86 Operating System includes a Crash Analyzer that dumps the
contents of memory to a file, and then formats the information for
display or printing.

When your system crashes -- as any system might during development — the
Crash Analyzer provides a "snapshot" of the contents of memory. After a
system crash (or whenever you want to "freeze" the system) the Dumper
portion of the iRMX 86 Crash Analyzer writes the contents of selected
memory to a file on an Intellec Microcomputer Development System. The
Analyzer portion then reads the file and produces a formatted print file
that includes:

• Every iRMX 86 object.

• The state of each object; for example, how many units are in a
semaphore, whether a task is ready or suspended or asleep, the
objects queued at a mailbox, the size of memory segments.

• The state of the hardware, including the contents of registers.

In short, the Crash Analyzer is oriented to the characteristics of the
iRMX 86 Operating System. Therefore an iRMX 86 memory dump doesn't show
just the usual raw data; it formats the data according to iRMX 86 data
types.

Having a memory dump facility helps to solve difficult and sometimes
obscure problems in your application system. There are four major
advantages to using the Crash Analyzer:

• It is a "smart" analysis utility that knows about the IRMX 86
system and environment, so it can save programmers laborious
searches through raw memory data. The result is an application
system that can be debugged and refined quickly, and a system
that you know is working according to design.

• A system failure does not have to be debugged at the time it
occurs. The problem can be handled later, perhaps by another
person, and perhaps at a different site.

• The Analyzer finds and identifies probable errors, such as
linked-lists that are broken, and stack overflow.

• Crash Analyzer software is divided between a relatively small
Dumper program that is part of the application system, and an
Analyzer program that runs on the host development system.
Therefore you can use the Crash Analyzer with little loss of
application system memory.

Introduction 4-34



FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

INSTALLATION SYSTEMS

The iRMX 86 release package contains two systems that are ready to be
used. These ready- to-run systems are referred to as installation
systems.

The iRMX 86 Operating System is a "building block" operating system, with
pieces you can put together to create your system. The release diskettes
contain two installation systems, built and ready to run. Intel provides
one installation system for iAPX 86-based computers and one for
iAPX 286-based computers. Also on the release diskettes are the
definition files that were used to create these installation systems as
well as definition files that you can use to create systems for the iAPX
186/03, 186/51, and 188/48 processor boards, with little or no
modification.

The installation-system concept provides these specific advantages:

• The installation systems may be used as-is on Intel's Integrated
Systems such as the iSYS 86/310, iSYS 86/330A, iSYS 86/380,
iSYS 286/310 and iSYS 286/380 systems. No hardware or software
changes are required to install iRMX 86 on these systems.

• You can become familiar with the Operating System immediately,
and perhaps even run your application software without rebuilding
the Operating System.

• The installation systems have commands to perform common file
operations. (See "File Maintenance Programs" later in this
chapter.) These commands can be used in developing your
application, and may themselves be Included in your application.

• The actual files used to create the installation systems provide
an example of how to put together an iRMX 86 system, and may be
be used as a starting point for creating your own system.

ON-TARGET PROGRAM DEVELOPMENT

You may develop an iRMX 86 application system on a "host" computer
system, and then transfer the system to a "target" computer. An
alternative is to develop programs on the target computer. With certain
hardware and software options, the iRMX 86 Operating System can provide
an ideal program development environment. Although program development
on a target system is not practical for all applications, for some
applications it is very worthwhile.

The emphasis of most of this chapter has been on building a specialized
software product using the iRMX 86 Operating System as a basis for the
application.

Introduction 4-35



FEATURES OF THE iRMX
T" 86 OPERATING SYSTEM

Typically the programs you write are developed on an Intellec
Microcomputer Development System, and the application system is then
,,migrated ,,

onto an iSBC 86,88,186,188,286 board (the target computer).

In contrast, you can develop programs directly on the target computer by
using certain capabilities of the iRMX 86 Operating System. Each of

these features has already been described, and here is how they combine
to provide a program development system.

• File support . The iRMX 86 file system supports creation of
source, object, and loadable files. Many programmers can use the

same disk because of the hierarchical structure and protection
mechanisms of the iRMX 86 file system.

• Languages and software tools . The Universal Development
Interface makes it easy to support language processors and
run-time support systems. You can perform all phases of program
development using editors, linkers, and other tools of the

programming trade; these software tools are available from Intel
and run on the iRMX 86 Operating System.

• Convenience . The Application Loader makes it easy to load and
execute software. Also, the Human Interface provides a powerful
facility for parsing the names of files that are used by language
processors, editors, and linkers.

• Debugging . Programs developed on an iRMX 86 Operating System can
be debugged using the iRMX 86 object-oriented Dynamic Debugger
and the static System Debugger.

On-target program development using the iRMX 86 Operating System is

useful for these reasons:

• If your application system has spare resources (processing time,
memory, mass-storage space) you can use the system more
efficiently.

• Programmers can make changes on-site, which has economic and
scheduling advantages.

INTERACTIVE CONFIGURABILITY

The iRMX 86 Operating System is configurable. By selecting only the
parts of the Operating System that you need, you can reduce the amount of
memory required for your application system. The configuration process
is straightforward and certain because Intel provides the Interactive
Configuration Utility (ICU), a utility that guides you through the
process.

Introduction 4-36



FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

A system is configurable if you can select the pieces of it that you want
and discard the pieces that you don't want. During the process of
configuration, you select the desired parts and combine them to form the
system.

Configuration is Making Choices

To configure an application system based on the iRMX 86 Operating System,

you first select the parts of the Operating System that your application
system requires, as shown in Figure 4-5. (You also specify important
characteristics of each module, such as memory requirements.) Then you
combine Operating System modules with your application software, with
Intel-supplied software and with software from vendors. This forms the
complete application system. Finally you install the application system
on the target hardware.

Configuration is Interactive

The iRMX 86 Operating System includes the Interactive Configuration
Utility (ICU), which guides you through the configuration process by
displaying a series of "menus." Each menu describes a number of
features, and then allows you to accept or change an existing (or
default) value for each feature. Also, the ICU allows you to save the
results of a previous configuration, so that you can make a small change
quickly without re-answering all of the questions.

Parts of the iRMX
TH

86 Operating System

The iRMX 86 Operating System consists of a number of major subsystems,

also called layers . During the process of configuration you specify
which of these subsystems, shown in Figure 4-5, to include in your
application system. The functions of these layers are:

• The Nucleus . The Nucleus is the heart of the iRMX 86 Operating
System. All other pieces of the Operating System use the
Nucleus, so it must be included in every application system built
upon the iRMX 86 Operating System.

With Intel's iOSP 86 Support Package, supplied on release

diskette, you can replace approximately two-thirds of the Nucleus
with the code contained in the 80130 Operating System Firmware
component. This device decreases the number of hardware
components required for your system.

Introduction 4-37



FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

PARTS OF iRMX ,M86
OPERATING SYSTEM

NEXT
COMBINE APPLICATION
SOFTWARE WITH iRMX 86
OPERATING SYSTEM TO FORM
APPLICATION SYSTEM

FIRST TM
SELECT PARTS OF iRMX™86
OPERATING SYSTEM
REQUIRED BY
APPLICATION SOFTWARE

Figure 4-5. Configuration of an iRMX™ 86 System

Introduction 4-38



FEATURES OF THE iRMX
1
" 86 OPERATING SYSTEM

The I/O Systems . The I/O Systems (Basic and Extended) provide
file management and the device-independent interface to input and
output devices. The I/O Systems are optional components of the
iRMX 86 Operating System, so they can be excluded from the
Operating System if they are not needed. The user may include
the Basic I/O System without including the Extended I/O System.
The Extended I/O System requires the Basic I/O System.

Device Drivers . Device drivers are the interface between an
application and the I/O devices connected to the application.
Any device drivers selected during configuration (including
terminal drivers and Terminal Support Code) become part of the
Basic I/O System.

The Human Interface . The Human Interface may control the
application system with commands entered at a terminal. The
Human Interface includes a set of commands for commonly used
operations. You can also create your own commands. Like the I/O
Systems, the Human Interface is an optional component and can be
left out of the Operating System if it is not required. If the
Human Interface is included, it requires all other system layers.

The Application Loader . The Application Loader allows your
application to load programs and overlays from disk into main
memory. The Application Loader is an optional part of a system,
but if included requires the I/O Systems.

The Dynamic Debugger . The Dynamic Debugger is also an optional
component of the iRMX 86 Operating System. While the application
system is being developed, the Debugger is a very useful tool.
By including it in your system during the development period, you
can take advantage of its powerful capabilities. Then, once
development is completed, you can remove the Debugger and reduce
the size of your finished application system.

The System Debugger . The System Debugger (SDB), also optional,
extends the capabilities of the iSDM 86, 286 System Debug
Monitors by supplying "static" debugging information about the

system after a crash or at any time you need to freeze and
examine the system. As with the Dynamic Debugger, you can
include the SDB in your system during development, then remove it
to reduce the size of your finished application system.

Terminal Handler . The Terminal Handler, another optional piece
of software, allows you to use a terminal without using the I/O

System or Human interface. It is possible to configure the
terminal so that it is only an output device.

The Crash Analyzer . The Crash Analyzer, an optional component,
produces a post-mortem dump of memory. It allows a user to dump
memory to a file, and later format and print the file, showing
each iRMX 86 object. The program to dump memory to a file
becomes part of the application system; formatting and printing
is done with your development system.

Introduction 4-39



FEATURES OF THE iRMX
1
" 86 OPERATING SYSTEM

The Universal Development Interface (UDI) . The Universal
Development Interface is a software interface that allows
language translators and other software development tools to

access the facilities of the iRMX 86 Operating System. The UDI
is the outermost layer of any application system but may be

excluded if not needed. However, if it is included it requires
the Human Interface and all other system layers.

Figure 4-5 illustrates the advantage of a configurable Operating
System. An iRMX 86 Operating System — consisting of the Nucleus, Basic
I/O System, and Application Loader — is being combined with application
software. By excluding unnecessary subsystems of the Operating System,
you reduce the amount of memory needed by your system.

Two advantages to using Intel's interactive utility for configuration
are:

Configuration of application systems, even complex systems, is

relatively easy.

Choices you make during the configuration process are saved in a

file, and you can make changes to this file and re-use it. This
means that having once configured your application system, it is

easy to make changes to the configuration.

FILE MAINTENANCE PROGRAMS

The iRMX 86 Operating System is delivered with programs which allow you
to manipulate iRMX 86 files.

As you develop an application, you need to work with files. You can
write programs to perform these operations. But the Operating System
already has programs to perform operations that are usually necessary in
developing an application system. (These programs operate as commands to
the system, as explained in the earlier section "Custom Interactive
Commands.")

Here is a sample of some of the programs supplied with the Operating
System:

• COPY, which copies or creates files.

• FORMAT, which formats an iRMX 86 secondary storage device such as
a disk or diskette.

• DIR, which displays a directory of the files on an iRMX 86 device,

• DOWNCOPY and UPCOPY, which are used to move files between
Intellec development system devices and iRMX 86 devices.

Introduction 4-40



FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

• RENAME, which allows you to rename files.

• CREATEDIR, which allows you to create a new file directory.

• SUBMIT, which automatically executes commands contained in an
iRMX 86 file.

• BACKUP and RESTORE for saving all of the files on a device.

The most important advantage of these programs is that you will save

time and money in developing your application system, because you already
have the software tools necessary to manipulate files during the
development process. In addition, the file maintenance programs may be
included as part of your application system if this is appropriate.

CHAPTER PERSPECTIVE

In this chapter we discussed some features of the iRMX 86 Operating
System. We also saw some of the advantages that each feature lends your
application system. Next we'll see how some of these features work
together.

ftic-k

Introduction 4-41





CHAPTER 5
A HYPOTHETICAL SYSTEM

In the previous chapter, you were shown some of the features of the
iRMX 86 Operating System. The features were discussed individually.
This chapter revisits some of these features using a hypothetical system
to show you how features combine to form a powerful environment for your
application software.

During the following discussion, a hypothetical application system is

used to illustrate the relationship between your application software and
the iRMX 86 Operating System. The system monitors and controls kidney
machines in a hospital. These machines remove toxins from the blood of
patients whose kidneys are not functioning correctly.

The system, which is portrayed in Figure 5-1, consists of three main
hardware components

.

Intel iSBC 86 Single Board Computer

The single board computer provides the intelligence for the

entire system. It contains the software to monitor and control
the machines in the system.

Bedside Units

One of these units is located at the side of each patient's bed.

Connected by cable to the iSBC 86 Single Board Computer, each of
these units performs four functions:

Measuring the level of toxins in the blood as the blood
enters the unit.

- Displaying information so medical personnel at the bedside
can monitor the dialysis process.

- Accepting commands from the bedside personnel.

- Removing toxins from the blood.

Each bedside unit performs these functions under the control of

the single board computer. That is, commands and measurements
are sent to the single board computer which then adjusts the rate
of dialysis and generates the bedside display.

Introduction 5-1



A HYPOTHETICAL SYSTEM

Master Control Unit

The system's Master Control Unit (MCU) consists of a terminal
with a screen and a keyboard. This terminal, which operates
under control of the single board computer, allows one individual
to monitor and control the entire system.

BEDSIDE
wy UNIT

BEDSIDE
y^UNIT

iSBC™ 86

SINGLE BOARD
COMPUTER IS

IN HERE.

BEDSIDE
UNIT

Figure 5-1. The Hardware Of The Dialysis Application System

In summary, the system consists of one Master Control Unit and a variable
number of bedside units, all operating under control of the software
within an Intel iSBC 86 Single Board Computer. Now let's look at the
software.

The application software controls the dialysis process. In order to do
this, the software must:

• Obtain commands from the Master Control Unit.

• Obtain commands (if there are any) from each of the active
bedside units.

• Reconcile the commands from the MCU and the commands of the
active bedside units.

• Obtain a toxicity level from each of the active bedside units.

Introduction 5-2



A HYPOTHETICAL SYSTEM

• Create a display at each active bedside unit.

• Create a display at the MCU.

• Control the rate of dialysis at each of the active bedside units.

Now that we have roughly examined the nature of the system, let's

investigate how the iRMX 86 Operating System fits in. Let's start with
interrupt processing.

INTERRUPT PROCESSING

Two kinds of information flow from the bedside units to the single board

computer — commands and toxicity levels.. Before we delve into the

technique used to process this information, we must know more about the

form of the information.

The toxicity levels, measured as the blood enters the bedside unit, are

not subject to violent change. The machine slowly removes toxins from
the blood while the patient's body, even more slowly, puts toxins back

in. The result is a steadily declining toxicity level.

This means that toxicity levels must be monitored regularly, but not too

frequently. Let's suppose that each bedside unit computes the toxicity
levels once every ten seconds and sends a signal when the computation is

complete. When the signal line goes high, the levels are available until

the signal line goes low and then high again for the next computation.

The command information changes less predictably than the toxicity

levels. Persons at the patient's bedside can enter commands through the

bedside unit. Let's suppose that after encoding the information they

press a button labeled ENTER, and that this button sets a line high.

When the line goes high, the command information is available until the

ENTER button is pressed for the next command.

Now let's see how the interrupt processing of the iRMX 86 Operating

System fields the commands. (The toxicity levels can be fielded in

precisely the same manner, so, for the sake of brevity, they are not

discussed.) By attaching all the signal lines to a MULTIBUS interrupt

line, we convert the signal into an interrupt level. Each interrupt
level has an interrupt task that is executed when the level goes high.

So, when the ENTER line from any bedside unit goes high, the interrupt

task for bedside commands begins running.

You must write the interrupt tasks for your system's custom devices, so

the bedside-command task may serve as an example for you. In brief, the

task performs the following steps.

• It determines which bedside unit received the command.

• It puts the command information, along with the number of the

bedside unit that received the command, into a message.

Introduction 5-3



A HYPOTHETICAL SYSTEM

• It sends the message to a predetermined mailbox. The only task
that waits at this mailbox is the task that reconciles bedside
commands with the commands from the Master Control Unit.

• It surrenders the processor to the iRMX 86 Operating System.

One advantage of interrupt processing now becomes clear. Instead of
wasting time polling the bedside units to see if a command has been
issued, the application system can do other things until interrupted by
one of the units. When an interrupt (an event) does occur, it is quickly
converted into a message and is placed into a mailbox for processing by a
task. The system then returns to its normal priority-based, preemptive
scheduling. This technique enables your system to deliver more
throughput.

Interrupt processing also provides the application system with
flexibility. For instance, you can add more bedside units without
modifying the system's software at all.

HUMAN INTERFACE

Interaction between medical personnel and the system can be "human
engineered." Information can be requested and displayed in a form that
is meaningful to the operators of the system. Also, new capabilities may
be added to the system by simply adding new programs.

MULTITASKING

The entire application system is based on the multitasking capability of
the iRMX 86 Operating System. Tasks are run using the preemptive,
priority-based, scheduling that was discussed in Chapter 4. This allows
the more important tasks (such as those controlling the bedside units) to
preempt lower priority tasks (such as those of the Terminal Handler).

INTERTASK COORDINATION

The only form of intertask coordination used in our hypothetical dialysis
system is intertask communication. The system uses a number of mailboxes
to send information from one task to another. The simplicity of
mailboxes allows engineers to divide the system into tasks on the basis
of modularity, rather than on the basis of minimizing intertask
communication.

MULTIPROGRAMMING

Although multiprogramming has not yet been of use in our hypothetical
example, its potential is high.

Introduction 5-4



A HYPOTHETICAL SYSTEM

Suppose that we extend the example to include cardiac monitoring in
addition to dialysis. The two functions could advantageously be
performed in different jobs. Why? Because they need share very few
resources.

If the cardiac application has very little to do with the kidney
application, there is no need for them to share mailboxes, tasks, or any
other objects. By splitting them into two different jobs, there is less

chance that one application can affect the environment of the other.

But what happens if the two applications need to share only a little
information? How can the shared data be passed from one job to another
without losing the benefits of isolation? The iRMX 86 Operating System
provides for this contingency in its implementation of run-time binding.

RUN-TIME BINDING

As mentioned earlier in this manual, run-time binding provides a means

for tasks of different jobs to share objects. As tasks create objects to

be shared, the tasks catalog the objects in an object directory. Then
the tasks that need the objects can look them up by using their cataloged
names

.

Run-time binding also allows you to change the configuration of the
iRMX 86 Operating System without recompiling or relinking your
application software. For instance, suppose you have been including the
iRMX 86 Debugger in systems delivered to your customers. The advantage
in doing this is that it allows some debugging on systems as they are
being used. But now, a year or so after you started delivering systems,
your product has stabilized. Virtually no new bugs are being found. If

you delete the Debugger from your system, you can reduce the amount of

memory required in any new systems you sell. The run-time binding of the
system to your application software allows you to remove the Debugger
from your system without making any changes to your application software.

MASS STORAGE FILES

As specified, the hypothetical system does not require mass storage
files. However, a very reasonable extension of the current specification
could include recording information about: patients.

The iRMX 86 I/O System allows you to record information in files on
flexible and hard disks. The system provides device handlers, disk
formatting and allocating, and provides a way to move information between
main memory and the disk. Your application software need not include
code to perform these functions.

If mass storage devices were added to the system, it would be possible to
do program development on the system, so that new programs could be
written and tested at the site. This is a powerful addition to a system,
although it is not appropriate for every application.

Introduction 5-5



A HYPOTHETICAL SYSTEM

DEVICE INDEPENDENCE

Even if the application system uses mass storage devices, device
independence is not necessarily required. But, if the application is
extended to allow the operator at the MCU to send recorded data to any of
several devices (say teletypewriter, line printer, magnetic tape or
disk), device independence becomes more important. The
device-independent I/O System lets you implement recording without adding
code specific to each possible device.

CHAPTER PERSPECTIVE

In this and the previous chapters, you were introduced to some of the
features and benefits associated with the iRMX 86 Operating System. If
you want more detailed information, you will find the next chapter very

useful. It contains descriptions of the iRMX 86 technical manuals.

***

Introduction 5-6



CHAPTER 6
iRMX™ 86 LITERATURE

This chapter describes the iRMX 86 Operating System documentation set.

This chapter lists the four volumes and the manuals contained therein,

describes the technical content and audience level of each manual, and
correlates individual manuals with the features described in previous
chapters.

The iRMX 86 documentation set consists of four bound volumes organized

into these functional categories: introductory and operational
information, programming information (two volumes), and installation and

configuration instructions. Each volume contains two or more iRMX 86

manuals that conform to the volume's functional theme.

Because the iRMX 86 documentation set is packaged in bound volumes, you

can no longer order manuals individually. Instead, you must order a

complete volume of text to get a manual contained in that volume.

(Individual manuals no longer have order numbers.)

When ordering individual volumes, you can order the binder, spine card,

and literature packet together as a unit or separately. If you wish to

order a volume as a unit, use the "order" number that appears on the

spine of the binder. This number is also provided in the following

list. If you wish to order separate pieces of the volume (e.g., the

literature packet only), use the "part" number as labeled on the piece.

If you don't know the part number, consult the Intel Literature Guide.

The following list shows volume titles, order numbers, and individual

manuals in each of the volumes. Manuals are listed in the order they

appear in the volumes.

1. iRMX1- 86 INTRODUCTION AND OPERATOR'S REFERENCE MANUAL

Order Number: 146545

• Introduction to the iRMX™ 86 Operating System

• iRMX™ 86 Operator's Manual
• iRMX™ 86 Disk Verification Utility Reference Manual

2. iRMX1" 86 PROGRAMMER'S REFERENCE MANUAL, PART I

Order Number: 146546

•

iRMX™ 86 Nucleus Reference Manual
iRMX™ 86 Basic I/O System Reference Manual

• iRMX™ 86 Extended I/O System Reference Manual

Introduction 6-1



iRMX™ 86 LITERATURE

3. iRMX™ 86 PROGRAMMER'S REFERENCE MANUAL, PART II

Order Number: 146547

iRMX™ 86 Application Loader Reference Manual
iRMX™ 86 Human Interface Reference Manual
iRMX™ 86 Universal Development Interface Reference Manual
Guide to Writing Device Drivers for the iRMX™ 86 and

iRMX™ 88 I/O Systems
iRMX™ 86 Programming Techniques
iRMX™ 86 Terminal Handler Reference Manual
iRMX™ 86 Debugger Reference; Manual
iRMX™ 86 Crash Analyzer Reference Manual
iRMX™ 86 System Debugger Reference Manual
iRMX™ 86 Bootstrap Loader Reference Manual

4. iRMX™ 86 INSTALLATION AND CONFIGURATION GUIDE
Order Number: 146548

• iRMX™ 86 Installation Guide
• iRMX™ 86 Configuration Guide
• Master Index for Release 6 of the iRMX™ 86 Operating

System

Each of these volumes (and the manuals contained in each) serves a

well-defined set of readers. For each volume, this chapter describes the
general content of the volume and the content, purpose and intended
readership of each manual in that volume. (Table 6-1 correlates features
with manuals.) Also, the chapter provides some time-saving tips to bear
in mind as you read the documentation.

The following descriptions deal with engineers in two classes — system
programmers, and application programmers. System programmers are
responsible for configuring the system, extending the Operating System,
writing interrupt handlers, and performing other functions that affect
the entire application system. Application programmers, on the other
hand, are responsible for writing application software. This distinction
is drawn because the actions of the system programmer have a more global
effect.

Specifically, some system calls can, if used improperly, cause problems
for all the tasks in your system; other system calls can affect only the
task invoking the call. As a matter of policy, the more powerful system
calls should be used only by system programmers and, even then, only
within Operating System extensions. To emphasize this distinction, the
more powerful system calls are identified, in whatever manual they are
described, by a caution regarding their effect.

Introduction 6-2



iRMX
,H

86 LITERATURE

READING TIPS

The following pointers can save you a substantial amount of time:

• No one individual need become intimately familiar with all of the

documents associated with the iRMX 86 Operating System. Read
only the documents that relate to your responsibilities.

• Before reading one of the documents, read its preface and scan

its table of contents to see if the manual contains the kind of
information you seek.

• Read the Introductory Manual (this manual) before reading any of
the others.

By following these tips, you can quickly focus your attention on the

information that is of most value to you.

iRMX™ 86 INTRODUCTION AND OPERATOR'S REFERENCE MANUAL

This volume contains introductory and operations-specific information
about the iRMX 86 Operating System. The information in this volume is

designed for first- time users of the system.

INTRODUCTION TO THE iRMX™ 86 OPERATING SYSTEM

This manual, the one you are presently reading, is aimed at a wider
variety of readers than any of the other iRMX 86 manuals. Being an
introduction, it can be understood by anyone who has some experience
programming or managing programming projects. It is designed to
introduce managers and engineers to the iRMX 86 Operating System.

iRMX™ 86 OPERATOR'S MANUAL

This manual describes the Human Interface commands. For example, the
Human Interface provides commands:

• To copy, delete, and otherwise manage files.

• To display directories.

• To format and verify mass storage volumes.

The manual also describes:

• File pathnames and other file information necessary to use
command s

.

• Standard logical names.

Introduction 6-3



iRMX™ 86 LITERATURE

• The Multi-Access Human Interface.

• The iRMX 86 Files Utility.

If you intend to include the iRMX 86 Human Interface in your system, you

will be interested in this manual.

iRMX™ 86 DISK VERIFICATION UTILITY REFERENCE MANUAL

This manual documents the Disk Verification Utility, a software tool that

runs as a Human Interface command, verifying and modifying the data

structures of iRMX 86 disk structures (files, directories, and physical
volumes). The manual describes how to invoke the utility and contains

detailed descriptions of all utility commands. Because users of the Disk
Verification Utility must be familiar with the structure of iRMX 86

volumes in order to use the utility intelligently, the manual describes
in detail the structure of iRMX 86 file and directory structures.

You will use this manual to maintain disk file volumes, and perhaps to

recover files that are "lost" or corrupted.

iRMX™ 86 PROGRAMMER'S REFERENCE MANUAL, PART I

This volume contains detailed information about the iRMX 86 Nucleus and

Basic and Extended I/O systems. The information in this volume is

intended for system and application programmers.

iRMX™ 86 NUCLEUS REFERENCE MANUAL

This reference manual is written for engineers planning to use the

iRMX 86 Operating System. It is the information warehouse for the

Nucleus. It contains concise but detailed discussions of these topics:

The nature of objects in general and of tasks, jobs, semaphores,

mailboxes, and segments in particular.

Error processing.

Interrupt processing.

The creation and deletion of extensions to the Operating System.

Region exchanges.

Enabling and disabling the delation of objects.

Adding new types of objects to the Operating System.

Introduction 6-4



iRMX
TH

86 LITERATURE

The heart of the iRMX 86 NUCLEUS REFERENCE MANUAL is a chapter describing
all the information necessary to use each system call relating to the
Nucleus, including:

• the calling sequence,

• a description of parameters,

• an explanation of exception codes that may be returned by each
call, and

• a sample program showing its usage.

iRMX
IH

86 BASIC I/O SYSTEM REFERENCE MANUAL

This manual describes the iRMX 86 Basic I/O System. The manual contains
descriptions ofs

File directories, and the types of files supported ( named ,

stream , and physical )

.

User objects, and access rights associated with user objects.

I/O operations a programmer may use with the iRMX 86 Operating
System.

Attaching and detaching devices.

System calls a programmer may use in accessing the facilities of
the Basic I/O System.

Terminal Support Code.

iRMX
IH

86 EXTENDED I/O SYSTEM REFERENCE MANUAL

This manual describes the iRMX 86 Extended I/O System, the easier-to-use
I/O system. It includes descriptions of the types of iRMX 86 files, and
a general description of the Extended I/O System. The most useful part
of the manual is a chapter describing all the information necessary to

use each Extended I/O System call.

The Extended I/O System unburdens programmers from details of I/O

operations. In particular, Extended I/O data transfers are synchronous ,

meaning that the operating system performs multiple-buffering operations,

automatically synchronizing I/O operations with processing.

Introduction 6-5



iRMX™ 36 LITERATURE

iRMX™ 86 PROGRAMMER'S REFERENCE MANUAL, PART II

This volume contains detailed information about the iRMX 86 programming

utilities and advanced programming techniques for writing application and

system programs. The information in this volume is intended for system
and application programmers.

iRMX™ 86 APPLICATION LOADER REFERENCE MANUAL

This manual describes the Application Loader. The Application Loader is

used for two purposes:

• To load and run programs that reside on secondary storage. These

programs are invoked by Human Interface commands.

• To load overlays by invoking system calls.

The manual describes the types of code that can be loaded by the

Application Loader (absolute, position-independent, and load-time

loca table). The manual also provides detailed descriptions of the

Application Loader system calls.

If your application uses the Application Loader (chances are that it

will), then you will want to use this manual.

iRMX"
1

86 HUMAN INTERFACE REFERENCE MANUAL

The iRMX 86 Human Interface is an optional layer of the iRMX 86 Operating
System. The Human Interface allows operators to load and run programs

from a console terminal, and provides facilities for custom commands. In

addition, the Human Interface has a number of commands (COPY, FORMAT,

RENAME, etc.) that are documented in the iRMX 86 OPERATOR'S MANUAL.

If you want to use the powerful facilities provided by the Human
Interface, the manual provides information you need, such as:

• Descriptions of Human Interface system calls. These system calls

are used to parse custom commands, to control programs run by the
Human Interface, to send and receive messages, and generally to

control command functions.

• An explanation of the Multi-Access Human Interface, which allows

the Operating System to communicate with many terminals
simultaneously.

• Instructions for building command programs.

Introduction 6-6



iRMX™ 86 LITERATURE

iRMX™ 86 UNIVERSAL DEVELOPMENT INTERFACE REFERENCE MANUAL

Designed for system and application programmers, this manual outlines
general programming considerations for using the Universal Development
Interface (UDI). The UDI is a software interface that allows language
translators and other software development tools to access the facilities
of the iRMX 86 Operating System. The manual describes in detail the UDI
system calls that provide this access.

You will be interested in this manual if you need a general introduction
to the application development process and to the use of the UDI.

GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX™ 86 AND iRMX
1
" 88 I/O SYSTEMS

This manual gives detailed instructions for writing a device driver that
is compatible with both the iRMX 86 I/O System and the iRMX 88 I/O
System. System programmers can use this manual to add new devices to

application systems. Readers of this manual must be very familiar with
the I/O System and the Nucleus.

iRMX
m

86 PROGRAMMING TECHNIQUES

This manual provides system and application programmers with techniques
that can save time and avoid mistakes during system development.

IRMX™ 86 TERMINAL HANDLER REFERENCE MANUAL

If you wish to use the iRMX 86 Operating System without using the iRMX 86
I/O System, you might need software to communicate with a terminal. This
is the function of the Terminal Handler. The iRMX 86 Terminal Handler
provides basic character echoing and line editing functions. The manual
also describes an optional form of the software called the Output-Only
Terminal Handler.

If your application is not using the I/O System or Human Interface to

communicate with terminals, you will be interested in the information in
this manual.

iRMX
IH

86 DEBUGGER REFERENCE MANUAL

This manual describes the Dynamic Debugger (or simply the "Debugger"), an
interactive debugging tool used with the iRMX 86 Operating System. The
Debugger is especially useful because it is "sensitive" to iRMX 86

objects and it lets you debug one or more tasks while the rest of the
system continues to run. This manual includes descriptions of iRMX 86
Dynamic Debugger commands.

Introduction 6-7



iRMX
1
" 86 LITERATURE

iRMX
1
" 86 SYSTEM DEBUGGER REFERENCE MANUAL

This manual describes the System Debugger, a static debugging tool that

is useful in diagnosing system crashes and other "freeze" situations.
The System Debugger, like the Dynamic Debugger, is attuned to iRMX 86

objects. The System Debugger is an extension of the iSDM 86 or 286
System Debug Monitor. This manual includes descriptions of System
Debugger commands.

iRMX™ 86 CRASH ANALYZER REFERENCE MANUAL

This manual describes the iRMX 86 Crash Analyzer, a utility used to

produce post-mortem memory dumps, and to print a formatted display that
describes iRMX 86 objects (memory segmemts, tasks, jobs, etc.) along with
the state of each object at the time the system failed.

Because the Crash Analyzer is such a useful tool for development, you
will probably want to include it in the early stages of your development
cycle. The reference manual describes everything that you need to know
about hardware requirements, operating the Crash Analyzer, and
interpreting the formatted output.

iRMX
rM

86 BOOTSTRAP LOADER REFERENCE MANUAL

This manual describes the Bootstrap Loader. The Bootstrap Loader is used
to start a system running by loading the Operating System from a

secondary storage device, and transferring control to the Operating
System. The Bootstrap Loader is usually in the computer ROM.

If your application uses the Bootstrap Loader, you will want to use this
manual

.

iRMX
TH

86 INSTALLATION AND CONFIGURATION GUIDE

This volume describes how to get your IRMX 86 Operating System up and
running on your hardware. The information in this volume is designed for
system managers and/or engineers.

This volume also contains the Master Index for the iRMX 86 documentation
set, which is useful to any user of the system.

iRMX
TH

86 INSTALLATION GUIDE

The INTELLEC Microcomputer Development System is a general purpose tool

for programming microcomputers. When you purchase the iRMX 86 Operating
System, you receive the iRMX 86 software on several flexible disks and
you receive the iSDM 86,286 System Debug Monitor, depending on your
hardware.

Introduction 6-8



iRMX™ 86 LITERATURE

The iRMX 86 INSTALLATION GUIDE tells you how to use the iRMX 86 software

and the iSDM package in conjunction with your Intellec Microcomputer
Development System and any Intel single board computer.

The manual describes everything necessary to get the installation systems

running. This includes instructions for installing wire jumpers on an
Intel Single Board Computers, loading and running an installation system,
and using the Human Interface commands included in the installation
systems. If you are familiar with the Intellec Microcomputer Development
System, this manual will prove very useful.

iRMX™ 86 CONFIGURATION GUIDE

As you build an application system upon the iRMX 86 Operating System, you

must decide which optional IRMX 86 features you want in your system.
Once you have made these decisions and have written your application

software, you can configure your system. Configuration is the process of

building a complete system from the iRMX 86 Nucleus, your application
software, and iRMX 86 options that you have selected.

The iRMX 86 CONFIGURATION GUIDE describes the iRMX 86 Interactive

Configuration Utility (ICU). The ICU leads a system programmer through
the process of configuration by displaying a logical series of "menus"

that describe each choice he or she must make. Each menu then allows a

default answer, or allows the programmer to change the default. The ICU,

using these answers, creates a file that automatically links and locates
the application system software.

MASTER INDEX FOR RELEASE 6 OF THE iRMX™ 86 OPERATING SYSTEM

The Master Index is your road map to the four-volume iRMX 86

documentation set. It is intended for all levels of users.

Introduction 6-9



iRMX™ 86 LITERATURE

Table 6-1. Correlation of Manuals and Features

Title

IRMX 86 Nucleus

Reference Manual

IRMX 86 Basic I/O System

Reference Manual and

IRMX 86 Extended I/O System

Reference Manual

IRMX 86 Human Interface

Reference Manual

IRMX 86 Operator's Manual

IRMX 86 Bootstrap Loader

Reference Manual

IRMX 86 Application Loader

Reference Manual

IRMX 86 Instal I at ion Guide

IRMX 86 Configuration Guide

IRMX 86 Debugger Reference

Manual

IRMX 86 System Debugger

Reference Manual

IRMX 86 Crash Analyzer

Reference Manual

Guide to Writing Device Drivers for

the iRMX 86 and iRMX 88 I/O Systems

IRMX 86 Universal Development

Interface Reference Manual

Feature

Object-Oriented Architecture

Multiprogramming

Multitasking

Interrupt Processing

Preemptive, Priority-based Scheduling
Error Hand 1 1 ng

Dynamic Memory Allocation

Intertask Coordination

Run-Time Binding

Extendi bi I ity

Processor Selectivity

Choice of I/O Systems

Hierarchical Naming of Mass Storage Files
File Access Control

Control of File Fragmentation

Device- Independent I/O

Terminal Support Code

Custom Interactive Commands

Multi-Access Human Interface

File Maintenance Commands

Multi-Access Human Interface

Bootstrap Load I ng

Appl I cation Loading

Installation Systems

Interactive Configuration

Object-Oriented Dynamic Debugger

Debugging Support

System Debugging (static)

Debugging Support

Crash Analysis

Debugging Support

Selection of Device Drivers

Dev I ce- I ndependent I/O

Software Interface

Introduction 6-10



Primary references are underscored

80130 Operating System Component 4-38

access control 4-19

access time 4-20

application 1-2

Application Loader and application loading 4-24, 4-39, 6-6
application software 1-2

application system 1-2

architectural features 4-2
ASM86 4-31

assemblers 4-31

asynchronous events 4-4
automatic 1/0 buffering 4-14

BACKUP command 4-41

Basic I/O System 4-13 , 4-39, 6-5
binding 4-27

Bootstrap Loader and bootstrap loading 4-31 , 6-8

buffering 4-14

cataloging objects 4-28
choice of I/O systems 4-13

Command Line Interpreter (CLI) 4-26
commands 4-23
compilers 4-31

concurrent events 4-4

condition codes 4-29
configuration and the configuration utility 4-36, 6-9

controller (device) 4-21

COPY command 4-40
costs 3-1

Crash Analyzer 4-39 , 6-8
CREATEDIR command 4-41
custom commands 4-23

custom interactive commands 4-23
customizing features 4-23

data transfer rate 4-19

debugging 2-3, 4-11
Dynamic Debugger 4-11, 4-32, 4-39, 6-7

System Debugger 4-11, 4-33, 4-39, 6-8
development costs 3-1

development software and utilities 2-3, 4-31, 4-36

Introduction Index-1



INDEX (continued)

device controller 4-20

device drivers 4-20 , 4-39, 6-7

device-independent I/O 4-15 ,
5-6

device sensitivity 2-2

DIR command 4-40

directories 4-16

Disk Verification Utility 6-4

documentation 6-1
ordering of 6-1

DOWNCOPY command 4-40

dynamic debugging 2-3

dynamic memory allocation 4-7, 4-30

error processing 2-1, 4-29

escape sequences ( terminal) 4-22

event detection 2-1

exception codes 4-29
exception handlers 4-29

Extended I/O System 4-14 , 4-39, 6-5

extensions to Operating System 4-11
external references 4-27

file access control 4-19

file maintenance programs 4-40

file types 6-5

files 4-16 , 4-36, 4-40
FORMAT command 4-40

FORTRAN 4-3, 4-31

fragmentation (of files) 4-19

granules and granularity 2-2, 4-19

hierarchical file structure 4-16

host computer system 4-35

human engineering 2-3, 4-23 ,
5-4

Human Interface 4-23 , 4-39, 5-4, 6-6

multi-access 4-26

hypothetical system 5-1

I/O buffering 4-14

iAPX 36,88, 186, 188, 286-based computers lii, 1-1

input/output features 4-12

installation systems 4-35, 6-6

Interactive Configuration Utility (ICU) 4-36
interpreters 4-31

interrupts and interrupt processing 4-4, 5-3

intertask coordination 4-7, 5-4

iOSP 86 Support Package 4-38

iRMX compatibility mode 4-12
iSBC 86,88,186,188,286 boards 4-36
iSBC 957B Monitor 4-33

iSDM 86,286 System Debug Monitors 4-33

job 4-7

Introduction Index-

2



INDEX (continued)

languages and language translators 4-31, 4-36
linking 4-25
Load-Time Location 4-25

loading (program and overlay) 4-25
application 4-25, 4-39
bootstrap 4-31

mailbox 4-8

maintenance of software 3-2

manuals 6-1

ordering of 6-1

mass storage device 4-20
mass storage file allocation 2-2, 5-5

master index 6-9

memory allocation 2-2, 4-6
, 4-19

memory dump 4-34 , 6-8

messages between tasks 4-8

multi-access Human Interface 4-26
multiple terminal support 4-26

multiple users 2-2

multiple-buffered I/O 4-14
multiprogramming 4-6, 5-4

multitasking 4-4, 5-4
mutual exclusion 4-9

Nucleus 4-37 , 6-4

object directory 4-28
object-oriented architecture 4-3
objects 4-3, 4-32

on- target program development 4-35
operating information 6-3
Original Equipment Manufacturer (OEM) 1-1

overlays 4-25
owner (of file) 4-19

parsing of command lines 4-24
PASCAL 4-31
PL/M-86 4-31

polling 4-5
portability 4-31
preemptive priority-based scheduling 4-5

priority 4-6

processor selectivity 4-12
program environment 4-6 , 4-26

protection (files) 4-19

random I/O operations 4-14

reading ahead (file operation) 4-15

real-time events, software 2-1 , 4-4
real address mode 4-12

region 4-10
RENAME command 4-41
RESTORE command 4-41

root (of overlaid program) 4-25

Introduction Index-3



INDEX (continued)

RUBOUT key 4-21

run- time binding 4-27, 5-5

scheduling 2-1, 4-6

scrolling 4-22
security (files) 4-19

segment 4-9

selection of device drivers 4-20
semaphore 4-3, 4-10

sequential I/O operations 4-15

shared data regions 4-10
simultaneous multiple terminal support 4-25

software interface 4-31

see also: Universal Development Interface
start-up systems, see: installation systems
static debugging 2-4

see also: System Debugger
SUBMIT command 4-41

synchronization 4-10, 6-5

system calls 6-5, 6-6, 6-7
System Debugger 4-33 , 4-39, 6-8

target computer system 4-36

tasks and task scheduling 4-4
Terminal Handler 4-21, 4-39

Terminal Support Code 4-21

terminals (keyboard) 4-21

time-slicing, time-sharing 4-6
tools (for developing applications) 4-32
translation (Terminal Support Code) 4-22

type-ahead 4-22
typed architecture 4-3

units (semaphore) 4-10

Universal Development Interface (UDI) 4-31, 4-40, 6-7

UPCOPY command 4-40

user 1-2

Volume End User (VEU) 1-1

writing behind (file operation) 4-14

***

Introduction Index-4



iRMX™86
OPERATOR'S MANUAL





PREFACE

This manual is the primary reference for operators who access the iRMX 86

Operating System through a terminal using Human Interface commands. In
addition to Human Interface commands, this manual also discusses the
line-editing and control characters supported by the iRMX 86 Operating
System and two utilities available to iRMX 86 operators: the Patching
Utility and the Files Utility.

The manual is divided into the following chapters:

Chapter 1 discusses the Line-editing and control characters available
to terminals that access the iRMX 86 Operating System. This chapter
applies to all application systems, regardless of whether they
include the Human Interface.

Chapters 2 through 4 discuss the Human Interface. Chapter 2

introduces the operator to the Human Interface and describes the
general process of using it. Chapter 3 provides a detailed
description of Human Interface commands in alphabetical order.
Chapter 4 contains examples of Human Interface operations.

Chapter 5 discusses the Patching Utility, a utility that runs on both
iRMX 86-based systems and Series III Microcomputer Development
Systems.

Chapter 6 discusses the Files Utility, an iRMX 86 application system
that you can use to format and maintain iRMX 86 secondary storage
volumes.

Appendix A contains a list of iRMX 86 condition codes with short
descriptions of the codes.

NOTATIONAL CONVENTIONS

This manual uses the following notational conventions to illustrate
syntax:

UPPERCASE In examples of command syntax, uppercase information
must be entered exactly as shown. You can, however,
enter this information in uppercase or lowercase
characters.

lowercase In examples of command syntax, lowercase fields
indicate information to be supplied by the user,
must enter the appropriate value or symbol for
lowercase fields.

You

Operator iii



PREFACE (continued)

underscore In examples of dialog at the terminal, user input is

underscored to distinguish it from system output.

< > Angle brackets surround variable fields in messages
displayed by the Human Interface commands and by the

utilities. This information can vary from message to

message.

All numbers, unless otherwise noted, are assumed to be decimal.
Hexadecimal numbers include the "h" radix character (for example OFFh).

Operator :Lv



CONTENTS

PAGE

CHAPTER 1

LINE EDITING AND CONTROL CHARACTERS
Type-Ahead .

1""1

Controlling Input to a Terminal 1~2

Controlling Output to a Terminal 1-3

Escape Sequences.. I"""

CHAPTER 2

USING THE HUMAN INTERFACE
Requirement s 2-1

iRMX® 86 Layers.. 2-1

Hardware Requirements 2-2

Configurable Features of the Human Interface 2-2

Loading the Operating System 2-3

Loading the Operating System on an OEM System 2-4

Loading the Operating System on Intel Integrated Systems 2-4

Loading the Operating System Without a Resident Monitor 2-5

Loading From a PROM-Based Operating System 2-5

Accessing the Human Interface 2-6

File Structure 2-9

Types of Files 2-9

Named File Hierarchy. 2-9

Pathnames 2-11

Logical Names 2-14

Logical Names for Devices 2-15

Logical Names for Files 2-15

Where Logical Names are Stored 2-16

Logical Names Created by the Operating System 2-17

Removing Volumes from Devices • 2-19

Wild Cards 2-19

Devices 2-22

Automatic Device Characteristics Recognition 2-22

How Automatic Device Characteristics Recognition Works 2-22

Commands That Cannot Recognize Device Characteristics 2-24

Operational Considerations for iSBC® 215/iSBX™ 218 Devices 2-25

Command Syntax « 2-25

Command Name •
2-27

Prepositions » 2-28

One-for-One Match. 2-30

Concatenate 2-30

Error Conditions • • 2-30

Other Parameters 2-31

System Manager 2-32

Operator v



CONTENTS (continued)

PAGE

CHAPTER 3

HUMAN INTERFACE COMMANDS
Error Messages • . 3-1
Command Syntax Schematics 3-3

ATTACHDEVICE 3-7

ATTACHFILE 3-13
BACKUP 3-16
COPY 3-24

CREATEDIR 3-28
DATE 3-29

DEBUG 3-31

DELETE 3-33
DETACHDEVICE 3-35

DETACHFILE 3-38

DIR 3-40

DISKVERIFY 3-48

DOWNCOPY 3-53

FORMAT 3-56

INITSTATUS 3-67

JOBDELETE 3-69

LOCDATA 3-71

LOCK 3-75

LOGICALNAMES 3-77

MEMORY 3-80

PATH 3-81

PERMIT 3-83
RENAME 3-88

RESTORE 3-91

SUBMIT 3-98

SUPER 3-102

TIME 3-105
UPCOPY 3-107

VERSION 3-110

WHOAMI 3-112

CHAPTER 4

HUMAN INTERFACE EXAMPLES
Command Examples Format. 4-1

How to Begin a Console Session 4-1

How to Create a Simple Data File 4-2

How to Copy Files 4-3

How to Copy to New Files 4-4

How to Display the Contents of Files 4-5

How to Replace Existing Files 4-5

How to Concatenate Files 4-6

Operator vi



CONTENTS (continued)

PAGE

CHAPTER 4 (continued)
How to Delete Files 4-8

How to Use Directories 4-9

How to Create a New Directory 4-9

How to Refer to a Directory 4-10

How to Add New Entries to a Directory 4-11

How to Create a Directory Within a Directory 4-12

How to List Directories 4-13

How to Move Files Between Directories 4-14

How to Delete a Directory 4-14

How to Change Your Default Directory 4-15

How to Rename Files and Directories 4-16

How to Rename Files 4-16

How to Rename Directories 4-18

How to Move Files Across Volume Boundaries 4-19

How to Format a New Volume 4-20

Diskette Switching Procedures 4-22

CHAPTER 5

PATCHING UTILITY
Types of Patches 5-1

Kinds of Codes That Can Be Patched 5-2

Versions of the Patching Utility 5-2

Invoking the Patching Utility 5-2

Error Messages ,

5-4

Patching Procedures

.

5-5

Jump Instruction Patch. 5-6

In-Place Patch. 5-7

Listing Translator Header Records 5-7

CHAPTER 6

FILES UTILITY SYSTEM
Hardware Required 6-1

Starting the Files Utility. 6-2

Using the Files Utility. . • 6-3

Changing Diskettes »
6-3

Commands 6-3

ATTACHDEV (AD) 6-3

BREAK (BR) 6-4

CREATEDIR (CD) 6-4

DELETE (DE) 6-5

DETACH (DT) 6-5

DIR (DI) 6-5

Operator vii



CONTENTS (continued)

PAGE

CHAPTER 6 (continued)
DOWNCOPY (DC) 6-6

FORMAT (FO) , 6-6
HELP (HE) 6-9

UPCOPY (UC) . 6-9

Error Messages 6-9

APPENDIX A
CONDITION CODES SUMMARY . A-l

TABLES

1-1. Overview of Default Input Control Characters 1-5

2-1. Input Pathname And Output Pathname Combinations 2-29

3-1. Human Interface Command Dictionary 3-5

3-2. Suggested Physical Device Names 3-9

3-3. Controllers Connected to the iSBC® 186/03
SASI/SCSI Interface 3-11

3-4. Directory Listing Headings 3-45
3-5. Optimal Interleave Factor for Hard Disk Controllers 3-63

3-6. Flexible Disk Controllers (using 8" Disks) 3-64

A-l . iRMXw 86 Codition Codes A-l

FIGURES

2-1. Example Output of a System 86/300 SCT (Terse Mode) 2-6

2-2. Example of a Named-File Tree 2-10
2-3. File Structure on an Intel Supplied Start-up System 2-12

3-1. Sample DEBUG Display 3-32
3-2. FAST Directory Listing Example (Default Listing Format).... 3-43
3-3. SHORT Directory Listing Example 3-43
3-4

.

LONG Directory Listing Example 3-44
3-5. EXTENDED Directory Listing Example 3-44
3-6

.

INITSTATUS Display 3-67

***

Operator viii



CHAPTER 1

LINE EDITING AND CONTROL CHARACTERS

Every terminal connected to an iRMX 86 application system communicates

with the system via one of two software packages: the iRMX 86 Terminal

Handler or the Terminal Support Code feature of the Basic I/O System.

The Terminal Handler is an independent layer of the Operating System that

provides terminal I/O facilities for application systems that do not
include the Basic I/O System. Because this manual assumes you are using

an application system that includes the Basic I/O System, it does not

discuss how to communicate with an application system via the Terminal

Handler. Refer to the iRMX 86 TERMINAL HANDLER REFERENCE MANUAL for

information about the line-editing and control characters available with
the Terminal Handler.

The Terminal Support Code is a software package that interfaces to

terminal device drivers to provide terminal communication for systems

that include the Basic I/O System. This manual assumes that your
terminal communicates with the iRMX 86 application system via the

Terminal Support Code.

The Terminal Support Code provides a set of line-editing and control
characters that give you the basic editing and control functions you need

when entering text at a terminal. You can use these characters in

addition to the Human Interface commands described later in this manual.

This chapter discusses, along with the terminal support code, the line

editing features and control characters which are available. However,

the Terminal Support Code contains many features other than those

discussed in this chapter. Refer to the iRMX 86 BASIC I/O SYSTEM

REFERENCE MANUAL for a complete description of the Terminal Support Code.

TYPE-AHEAD

When you enter characters at the terminal, you can use the type-ahead

feature to enter a number of lines at one time. The Terminal Support
Code sends the first line to the Operating System for processing and

stores additional lines in a type-ahead buffer. It sends the next line

in the buffer to the Operating System after the Operating System finishes

with the first line. If the type-ahead buffer becomes full, the Terminal

Support Code sounds the terminal bell and refuses to accept input.

Operator 1-1



LINE EDITING AND CONTROL CHARACTERS

CONTROLLING INPUT TO A TERMINAL

The Terminal Support Code provides several characters that you can enter
to control and edit terminal input. Some of these characters correspond
to single keys on your terminal (such as carriage return or rubout). For
others, called control characters , you must press the CTRL key, and while
holding it down, also press an alphabetical key. This manual designates
control characters as follows:

CTRL/character

The editing and control characters are processed by the Terminal Support
Code. With the exception of the line terminator, they are not normally
included in the input line that is sent to the Operating System.

The control characters listed in this section are the default
characters. Each can be replaced with a different character by means of
a selection procedure described in the iRMX 86 BASIC I/O SYSTEM REFERENCE
MANUAL. The default editing and control characters for terminal input
include:

CARRIAGE RETURN
or

LINE FEED

RUBOUT

CTRL/p

Terminates the current line and positions the
cursor at the beginning of the next line.
Entering either of these characters adds a
carriage return/line feed pair to the input line.

Deletes (or rubs out) the previous character in
the input line. In response to the RUBOUT, your
terminal display changes in one of two ways,
depending on the configuration of the Terminal
Support Code. In one configuration, each RUBOUT
removes a character from the screen and moves the
cursor back to that character position. In the
other configuration, each RUBOUT echoes the
deleted character back to the terminal. In the
second configuration, also called hard-copy mode ,

the Terminal Support Code surrounds the echoed
characters with the "#" character to distinguish
the echoed characters from the surrounding text.

A "quoting" character, which removes, from the
character that follows it, any meaning that is
special to the Terminal Support Code. It
literalizes the next character, causing it to be
sent on to the Operating System, even if it is a
control character that the Terminal Support Code
understands. All control characters (except for
output control characters) sent to the Operating
System in this manner are not processed as
control characters. Output control characters
(such as CTRL/s and CTRL/q) perform their special
functions even if preceded by a CTRL/p. The
CTRL/p does not echo at the terminal.

Operator 1-2



LINE EDITING AND CONTROL CHARACTERS

CTRL/r

CTRL/u

CTRL/x

CTRL/z

If the current input line is not empty, this

character reprints the line with editing already
performed. This control character enables you to

see the effects of the editing characters entered
since the most recent line terminator. If the

current line is empty, this character reprints

the previous line, up to the point of the line

terminator. Additional CTRL/r characters display
previous lines, until there are no more lines in

the type-ahead buffer. Subsequent CTRL/r
characters display the last line found.

Discards the entire contents of the type-ahead
buffer.

Discards the current input line. This character

echoes the "#" character, followed by a carriage
return/line feed, at the terminal.

If entered as the only character in a line, this

character specifies an end-of-file, terminating a

read from the terminal. If entered on a

non-empty line, it terminates the line without

appending a carriage return/ line feed pair to the

line.

CONTROLLING OUTPUT TO A TERMINAL

When sending output to a terminal, the Terminal Support Code always

operates in one of four modes. You can switch the current output mode

dynamically to any of the other output modes by entering output control

characters. The output modes and their characteristics are as follows:

Normal The Terminal Support Code accepts output from the

application system and immediately passes the output

to the terminal for display.

Stopped The Terminal Support Code accepts output from the

application system, but it queues the output rather

than immediately passing it to the terminal.

Scrolling The Terminal Support Code accepts output from the

application system, and it queues the output as in the

stopped mode. However, rather than completely
preventing output from reaching the terminal, it sends

a predetermined number of lines (called the scrolling

count ) to the terminal whenever the operator enters a

"control character at the terminal.

Discarding The Terminal Support Code discards output from the

application system without displaying or queuing the

output

«

Operator 1-3



LINE EDITING AND CONTROL CHARACTERS

The following control characters, when entered at the terminal, change
the output mode for the terminal. Like the input control characters,
these are defaults. They can be changed by a selection process described
in the iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL.

CTRL/o Places the terminal in discarding mode if the terminal
is in a mode other than discarding mode. If the
terminal is already in discarding mode, the CTRL/o
character returns the terminal to its previous output
mode.

CTRL/q

CTRL/s

CTRL/t

CTRL/w

Resumes previous output mode. If you enter this
character after stopping output with the CTRL/s
character, output continues in the same manner as
before you entered the CTRL/s (that is, if your
terminal was in scrolling mode before you entered
CTRL/s, output resumes in scrolling mode). Entering
CTRL/q at any other time places your terminal in
normal mode (that is, all output is displayed at the
terminal without waiting for permission to continue).
Therefore, you can use CTRL/q to reverse the effect of
a CTRL/w and get your terminal out of scrolling mode.

Places the terminal in stopped mode (stops output).
You can resume output without loss of data by entering
the CTRL/q character. If the terminal is in
discarding mode (as a result of a CTRL/o character),
the CTRL/s character has no effect on output.

Places the terminal in scrolling mode and sets the
scroll count to one. This means that you must enter
another CTRL/t character after each displayed line in
order to continue the display.

Places the terminal in scrolling mode. In this mode,
the terminal displays output several lines at a time
(usually, enough lines to fill the screen) and then
waits for user input to continue. When you enter
another CTRL/w character, the terminal displays the
next screen of information. The scrolling count is
selectable; refer to the iRMX 86 BASIC I/O SYSTEM
REFERENCE MANUAL for more information.

Entering the CTRL/w character while the terminal is
scrolling increments the scrolling count by the
original scrolling count value. Therefore, you can
use CTRL/w to increase the number of lines the
terminal displays before stopping. Entering an input
line resets the scroll count to its original value.

An additional control character is supported which, although it doesn't
affect the output mode of the terminal, can affect output to the
terminal. This character is:

Operator 1-4



LINE EDITING AND CONTROL CHARACTERS

CTRL/c Deletes the type-ahead buffer and causes the Operating
System to abort the currently-executing program. If

you enter a Human Interface command to initiate a

program, you can enter CTRL/c to stop it.

For an overview of the control characters see Table 1-1 and Table 1-2.

Table 1-1. Overview of Default Control Characters

Characters Results

Default Input Control Characters

carriage return
line feed

or terminates current line and puts
cursor at start of next line

rubout deletes single character

CRTL/p removes any meaning special to

terminal support code

CRTL/r reprints line

CRTL/u discards type-ahead buffer

CRTL/x discards current input line

CRTL/z specifies an end of file

DefauIt Output Control Characters

CRTL/o places terminal in discarding mode

CRTL/q resumes output mode

CRTL/s stops output

CRTL/t scrolls output one line at a time

CRTL/w scrolls output

CRTL/c aborts currently executing program

Operator 1-5



LINE EDITING AND CONTROL CHARACTERS

ESCAPE SEQUENCES

The Terminal Support Code also accepts escape characters that you can
enter to further define your terminal. (For example, you could set the
scroll count or switch your terminal into transparent mode so that
control characters have no effect.) You can enter these escape
characters from the terminal, or you can write them to the terminal from
a program. Refer to the iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL for
more information about these escape characters.

***

Operator 1-6



CHAPTER 2

USING THE HUMAN INTERFACE

This chapter discusses how to use the Human Interface. It doesn't
provide detailed descriptions of individual commands. These descriptions
are in Chapter 3. However, it does address the following topics:

Requirements for including the Human Interface in your system.

Configurable features of the Human Interface.

The process of loading and accessing the Human Interface.

The iRMX 86 file structure and file-naming conventions (including
wild cards)..

Devices supported by the Human Interface.

Automatic Device Recognition.

The general syntax of a command.

The system manager.

REQUIREMENTS

This section explains the basic software and hardware requirements for
running the Human Interface.

iRMX 1" 86 LAYERS

The Human Interface is a layer of the iRMX 86 Operating System. To

include the Human Interface in your application system, you must also
include the following additional layers:

• Nucleus

• Basic I/O System

• Extended I/O System

• Application Loader

During command execution, the Human Interface invokes the services of

these other iRMX 86 layers in a way that is transparent to the operator.

Operator 2-1



USING THE HUMAN INTERFACE

Therefore, an operator needs little or no knowledge of operating system
structures to load and execute programs from the console keyboard. For
more information about iRMX 86 configuration, refer to the iRMX 86

CONFIGURATION GUIDE.

HARDWARE REQUIREMENTS

You can implement the iRMX 86 operating system on five different Intel
microprocessors. These CPUs are the iAPX 86, iAPX 88, iAPX 186, iAPX
188, and the iAPX 286 microprocessors. The iRMX 86 INSTALLATION GUIDE
explains how to install the Operating System on boards containing each of
the microprocessors.

Although you can use different Intel microprocessors to run the iRMX 86
operating system, the Human Interface does not change its appearance to

the user. Every command in this manual retains the format you see
described regardless of the microprocessor you use.

CONFIGURABLE FEATURES OF THE HUMAN INTERFACE

The Human Interface, like the other layers of the iRMX 86 Operating
System, is configurable. Thus, any description of how to use the Human
Interface depends a great deal on its configuration. This manual
describes several features of the Human Interface that may be different
(or not present at all) in your system. The configurable items that are

the most visible to the operator include:

• Multi-access . If your Human Interface is configured for

multi-access, several users can access the Human Interface at
once via separate terminals. One of the users, the system
manager, has more capabilities than other users and is

responsible for managing system resources and controlling who can
use the system. Users of a multi-access Human Interface are
concerned about user IDs, access rights to files, and attaching
and detaching devices — all in relation to the other users of
the system.

However, if your Human Interface is configured for single access,

you are less interested in much of this information. You are the
only user accessing the system; therefore you are not as

interested in user IDs and the system manager. You have no great
concern about file access rights since all the files on the
system are yours.

This manual attempts to satisfy both users. It explains all the
information that the user of a multi-access Human Interface
needs, but it also points out cases where information does not
apply to users of single-access systems. In all cases, the
information required by a user of a single-access Human Interface
is a subset of the information required by a user of a

multi-access system.

Operator 2-2



USING THE HUMAN INTERFACE

• Initial program . During initialization, the Human Interface
starts an initial program for each terminal. This initial
program is a Command Line Interpreter (CLI), a program that reads
commands and starts those programs running.

This manual assumes that the initial program for all users is the
CLI supplied by the Human Interface. If your Human Interface is
configured with a different initial program, the information in
this manual might not describe your Human Interface accurately.
The system prompts might be different, the command syntax might
be different, or you might be restricted to using a special
program such as an interpreter or a transaction processor. If

you suspect that your initial program is not the standard CLI,
contact the person who configured your system to determine the
differences..

• RAM Disk . The RAM Driver treats a reserved area of RAM as if

that area of RAM were a physical device. Reserving RAM for the
RAM Driver occurs at system configuration time. Once you have
allocated an area of memory for the RAM Driver, you can use such
commands as FORMAT and ATTACHDEVICE to manipulate the contents of
of the reserved memory.

There are other configuration options that affect how the system appears
to a user. When describing these items, this manual points out their
configurable nature and urges you to consult the iRMX 86 CONFIGURATION
GUIDE. If you are not involved in iRMX 86 configuration, contact the
person who configured your system to obtain more information.

LOADING THE OPERATING SYSTEM

Before you can access the Human Interface, someone must first load the
Operating System into the memory of your iRMX 86 system and start it
running. This process can vary from system to system (depending on such
things as the monitor you use), but generally it involves one of the
following procedures:

• Connecting the target system (the iRMX 86 system) to an Intel
Microcomputer Development System and using the iSDM 86 or iSDM
286 package to load the Operating System from development system
files to memory in the iRMX 86 system. This procedure is

normally done during the development phase of an application
system, when some of the system elements are still undergoing
development,. Refer to the iSDM 86 SYSTEM DEBUG MONITOR REFERENCE
MANUAL and the iSDM 286 SYSTEM DEBUG MONITOR REFERENCE MANUAL for
more information.

• Using the iRMX 86 Bootstrap Loader to load the Operating System
from iRMX 86 files to memory.

Operator 2-3



USING THE HUMAN INTERFACE

LOADING THE OPERATING SYSTEM ON AN OEM SYSTEM

On systems which are not part of Intel's family of integrated systems,
such as the System 86/310, you must verify that the device contains the
correct volume and then perform the following steps:

1. Reset the system; usually, reset involves pressing a RESET button
on the system chassis. A series of characters (usually
asterisks) should appear at the system terminal (the one
connected to the processor board). If you have an iSDM 286
monitor, no characters appear on the screen; you simply go to
step 2.

2. Type an uppercase U at the system terminal. This procedure
accesses the resident monitor. The monitor displays the
following information:

iSDM xxx MONITOR Vx.y
COPYRIGHT <year> INTEL CORPORATION

The period (.) is the monitor prompt. iSDM xxx indicates which
monitor you are using and Vx.y which version of the monitor you
are using.

3. Use the monitor's B command to bootstrap load the Operating
System. In most cases you do this by entering:

.B

For the default configuration of the Bootstrap Loader, this command loads
a file with pathname SYSTEM/RMX86 from the first available device. If

your Operating System resides on a file with a different pathname, you
must specify that pathname in the B command. Refer to the iRMX 86 LOADER
REFERENCE MANUAL, and the iRMX 86 CONFIGURATION GUIDE.

LOADING THE OPERATING SYSTEM ON INTEL INTEGRATED SYSTEMS

On Intel integrated systems (such as the System 86/310), you must verify
that the device contains the correct volume and then perform the
following steps:

1. Turn on the power to the terminals and to the system. If your
system contains multiple chassis (such as the 86/380
Microcomputer System), turn on the power to the PERIPHERAL
chassis before turning on the power to the PROCESSOR chassis.

Operator 2-4



USING THE HUMAN INTERFACE

2. Within a few seconds, the terminal connected to the system's
processor board (Jl connector) should begin displaying a series
of asterisks if the microprocessor is an iAPX 86 CPU. If the

microprocessor running the system is an iAPX 286 CPU, the display
will show only one astrisk. In either case, the system requires
no further input from you to load the Operating System from your
hard disk. In approximately 12 seconds, the System Confidence
Test (SCT), a diagnostic program residing in PROM which performs
an initial check of your hardware, begins to run automatically.
The SCT executes in its Terse Mode output (a short version of the
original SCT's output). If your want to run other modes of the

SCT, consult the SYSTEM x86/300 SERIES DIAGNOSTIC MAINTENANCE
MANUAL for more information. The system assumes a baud rate of
9600 for your terminal.

3. When the SCT successfully completes its check of the system, you
will see a display which is similar to Figure 2-1. Figure 2-1

shows the display you would see if your microcomputer was a

member of the System 286/300 series. But every display which the
SCT shows in its Terse Mode contains the same type of information.

4. When the SCT is successful, it invokes the Bootstrap Loader,
which attempts to load a file with the pathname /SYSTEM/RMX86.
The Bootstrap Loader, along with the SCT, resides in PROM.

5. If the SCT encounters a problem, it transfers control to the
monitor. Refer to the SYSTEM 86/300 SERIES DIAGNOSTIC
MAINTENANCE MANUAL if the Operating System fails to load. When
the Bootstrap Loader completes loading, you can access the Human
Inteface from any terminal, as described in the next section.

LOADING THE OPERATING SYSTEM WITHOUT A RESIDENT MONITOR

For some custom systems which do not include one of the monitors, you
simply ensure that an iRMX 86-formatted volume containing the Operating
System resides in the proper device and reset the system.

LOADING FROM A PROM-BASED OPERATING SYSTEM

Some systems contain the entire Operating System in PROM and do not

require you to load additional information from secondary storage. The
usual process for starting these systems is simply to reset the system.
If you were not involved in the configuration of your system and are
unsure about how to load and start the Operating System, contact the

person who configured your system.

Operator 2-5



USING THE HUMAN INTERFACE

Figure 2-1. Example Output of a System 86/300 SCT (Terse Mode)

ACCESSING THE HUMAN INTERFACE

Assuming that the Operating System software is loaded into the system,

you access the Human Interface by powering on your terminal. If your
application system is configured for automatic baud rate recognition, you
must also enter the following character at the keyboard:

U (uppercase U)

This character allows the Operating System to determine the baud rate of

your terminal.

Operator 2-6



USING THE HUMAN INTERFACE

When the Human Interface starts running,, it creates an environment for
you to enter commands. This environment is an iRMX 86 job, which this
manual refers to as an interactive job .

As part of creating this interactive job, the Human Interface assigns you
a user ID. This user ID is your "identity" in the system. It determines
your access to files and devices. Whenever you create files, the Human
Interface assigns your user ID as the owner ID of the file. Being the

owner of a file gives you complete control over the file; you can read

it, delete it, write it, update it, and select the access that you wish
to grant to other users. Your own ability to access files created by
other users depends on the access they grant you.

Once the interactive job has been created by the Operating System, an
initial program begins execution. The initial program that runs in your
interactive job (at your terminal) may be different from one that runs at
another terminal. (A configuration option specifies which initial
programs are associated with which user IDs.) Initial programs are
command line interpreters (CLIs), which read and parse command input and
start programs running based on that input. The Human Interface supplies
a standard CLI, which this manual assumes you are using. The standard
CLI begins running by displaying the following (configurable) header
message and prompt:

iRMX 86 HI CLI, V<x.y>: user = <user ID>
Copyright <year> Intel Corporation

where:

V<x.y> The version number of the Human Interface.

user = user ID A display of your user ID. The Human Interface
uses this ID to determine the type of access you
have to files and devices. Most single-access
systems are set up to give you an ID of WORLD
(65535 decimal), but some may differ. The user ID

WORLD is compatible with multi-access systems (if

transferring files is necessary), because every
multi-access user has read and write access to
files created by WORLD.

- (hyphen) The Human Interface prompt. This prompt implies
that the CLI is ready to accept command input.

If the information that appears at your terminal is different from this,
contact the person who configured your iRMX 86 Operating System to

determine the differences between your initial program and the standard
CLI.

Next, the standard CLI searches for the logon file, a file whose pathname
is :PROG:R?LOGON (later sections of this chapter discuss pathnames of
files). There can be a file with this name for each user of the system.

Operator 2-7



USING THE HUMAN INTERFACE

The CLI expects to find command invocation lines in this file. When it

finds this file, the CLI automatically invokes the SUBMIT command to

process all the commands in the file (refer to Chapter 3 for more

information about SUBMIT). You can modify the information in your
: PROG :R? LOGON file to change the amount of processing that occurs

automatically when the Operating System recognizes your terminal. The

Operating System does not have a default R7L0G0N file. If the Human
Interface does not find a R7L0G0N file, it returns an error message. You
can ignore the error message.

As supplied with the Start-Up versions of the Operating System, the

R7L0G0N file for each user contains the DATE and TIME commands which ask

you for the correct date and time as follows:

-date query

DATE:

In response, enter the date. Any of the following formats is acceptable:

5/13/83
1 OCT 83

25 OCTOBER 83

If you use an improper format, the DATE discards your entry and prompts

you for another date. For more information, refer to the description of

the DATE command in Chapter 3. After you enter the date correctly, DATE

responds by displaying the date. Then the following display occurs:

-time query

TIME:

In response, enter the correct time in the format:

hours : minutes : seconds

You can omit the last field or the last two fields. TIME sets the

omitted fields to zero. The following are all valid times:

13:02:45
8:34
17

For more information, refer to the description of the TIME command in

Chapter 3. TIME responds by displaying the date and time.

After processing all the commands in the logon file, the CLI issues its

prompt (-) and returns control to you. At this point you can enter Human
Interface commands and invoke programs.

Operator 2-8



USING THE HUMAN INTERFACE

FILE STRUCTURE

One of the primary uses of Human Interface commands is manipulating
files. Before you can use the Human Interface commands described in

Chapter 3, you should have an understanding of the kinds of files that
exist in an iRMX 86 environment and how to access those files.

TYPES OF FILES

There are three basic types of files in an iRMX 86 environment: named

files, physical files, and stream files. These files are used as follows:

Named files

Physical files

Stream files

Named files divide the data on mass storage devices
into individually-accessible units. Users and
programs refer to these files by name when they want
to access information stored in them. Terminal
operators access named files more often than any
other file type.

Physical files are mechanisms by which the Operating
System can access an entire I/O device as a single
file. The Human Interface accesses backup volumes
and devices such as line printers and terminals in
this manner. It also accesses secondary storage
devices (such as disk drives) as physical devices
when formatting them. When terminal operators
access physical files, it is usually in a manner
that is transparent to them (such as copying a named
file to the line printer or formatting a disk).

Stream files are mechanisms for communicating
between programs. Two programs can use a stream
file for communication if one program writes
information to the stream file while another program
reads the information. Terminal operators seldom
use stream files directly.

When manipulating data with Human Interface commands, you are most often
dealing with named files. Therefore it is important that you know about
the hierarchy of named files and file-naming conventions. The next
sections discuss these topics in detail.

NAMED FILE HIERARCHY

The iRMX 86 Operating System allows you to organize named files into

structures called file trees , as shown in Figure 2-2. Figure 2-3 shows

the actual file structure you recieve in a Start-Up system. The file

structure in Figure 2-3 is what you would see if you kept the original
file hierarchy intact in your system.

Operator 2-9



USING THE HUMAN INTERFACE

BILL
TOM

SIM-SOURCE
SIM-OBJECT

TEST- DATA
TEST-OBJECT

AA
SIM-SOURCE SIM-OBJECT

DEPT1
DEPT2
DEPT3

I

DEPT2

GEORGE
HARRY
SAM

I

GEORGE HARRY

J

DEPT3

]
SUE
BILL

SAM SUE BILL

I

A
TEST-OBJECT

BATCH -1

BATCH-2

AA
BATCH-1 BATCH-2

A
= DIRECTORY

= DATA FILE

Figure 2-2. Example of a Named-File Tree

As you can see from the figure, there are two kinds of files in the file

tree: data files and directories. Data files , (shown as triangles in

Figure 2-2) contain the information that you manipulate in the course of

your terminal session (for example, inventory, accounts payable, text,

source code, and object code). Directories (shown as rectangles in

Figure 2-2) contain only pointers to other files (either named files or

directories). The iRMX 86 Operating System allows you to have multiple
directories in a hierarchical structure so that instead of having a

single directory containing an enormous number of files, you can organize
your files into logical groupings under several directories. You can
display the list of files in any directory by invoking the DIR command
for that directory (refer to Chapter 3 for more information).

Operator 2-10



USING THE HUMAN INTERFACE

Another advantage of hierarchical file structure is that duplicate file

names are permitted unless the files reside in the same directory.
Notice in Figure 2-2 that the file tree contains two directories named

BILL. (These directories are on the extreme left and extreme right of

the figure.) However, the Operating System recognizes them as unique

files because each resides in a different directory.

Each file tree resides on a secondary storage volume — the storage

medium that contains the data. Examples of volumes include flexible
diskettes, hard disks, and bubble memories. Before you can place named

files on a volume, you must format the volume to accept named files. The
formatting process writes a number of data structures on the volume to

aid the Operating System in creating and maintaining files. You can use
the FORMAT command (described in Chapter 3) to format your volumes.

The uppermost point of each file tree is a directory called the root

directory . When formatted for named files, each secondary storage volume

has one and only one root directory. For these reasons:

• There can be only one file tree per secondary storage volume.

• A file tree cannot extend to more than one volume.

PATHNAMES

This section describes how to specify a particular file in a named-file
tree. For simplification, it assumes that all files reside in the same

file tree, and thus in the same volume. To identify the volume as well

as the file, you must include a logical name for the device as the first
portion of the file specification. Refer to the "Logical Names" section,

later in this chapter, for more information about logical names.

In a file tree, each file (data or directory) has a unique shortest path

connecting it to the root directory. For example, in Figure 2-2, the

shortest path from the root directory to file BATCH-2 goes through
directory DEPTl, through directory TOM, through directory TEST-DATA, and

finally stops at data file BATCH-2. When you want to perform an
operation on a file (for example, using the COPY command to copy one file
to another), you must specify not only the file's name, but the path

through the file tree to the file. This description is called the file's
pathname . For file BATCH-2 in Figure 2-2, the pathname is:

DEPTl /TOM/TEST-DATA/BATCH-2

Operator 2-11



o
o
pi

rt
O

ro

OP
C

<T>

S3
I

^

co
rt
n
c
o
rt
c
ft

O

DJ

CO
c

H«

CO
rt

l-{

rt
I

a
*a

w
CO

rt
fl>

B

= Attaching User \

= owner
WORLD = L

Human Interface
Commands
10 = owner 1

t = R/VWORLD =

RMX86
(0 = owner
WORLD =

iRMX™86 Libraries
and Configuration Files

owner
WORLD(0 = owner \
WORLD = R/

Include Files

/ = owner \
\W0RLD = R^

NDP87
(0 = owner \
WORLD = L/

nMAOO
(0 = owner \
WORLD = L/

= owner \
WORLD = L/

(ri_moo
= owner 1

WORLD = L/

Kl LI

= owner \
WORLD = L/

/ = owner \
Iuiori n = R J

(0 = owner \
WORLD = R/

WORLD
(WORLD = owner)

PROG
(WORLD = owner)

Kl 1
iRMX'"86 Interface Libraries and Language Libraries

/ = owner \
\WORLD = R/

R7LOGON
(WORLD = owner)

| |
= directory

A = data file

L = list access

R = read access

N = no access

DLAC = all access



USING THE HUMAN INTERFACE

This pathname consists of the names of files (in uppercase or lowercase

characters; the Operating System treats them as the same) and

separators. In this case, slashes (/) separate the individual components

of the pathname and tell the Operating System that the next component

resides down one level in the file tree. You can use another separator,

the circumflex or up-arrow ("), btween path components. Each circumflex

tells the Operating System that the next path component resides up one

level in the file tree. The following pathname, although not the

shortest possible pathname, indicates another path to file BATCH-2:

DEPT1/BILITT0M/TEST-DATA/BATCH-2

If you always start at the root directory, the circumflex separator is

not very useful, since you usually want to traverse down the file tree.

However, in some systems, your starting point in the file tree may be a

directory other than the root directory. In such cases the circumflex

separator is useful in accessing files in other branches of the file

tree. Your default prefix (discussed later in the "Logical Names"

section of this chapter) determines your starting point in the file tree.

For example, suppose your starting point in the file tree is the

directory TOM shown in Figure 2-2. In order for you to access a file in

directory BILL from this starting point, you must use the circumflex in

the pathname. To indicate file SIM-SOURCE in directory BILL, you could

enter the pathname:

"BILL/SIM-SOURCE

This path tells the Operating System to go up one level in the file tree

from the starting point (to directory DEPTl from directory TOM), search

in that directory for directory BILL, and search in directory BILL for

file SIM-SOURCE.

More than one circumflex allows you to go up any number of levels within

the file structrue. For example, if your starting point is TOM, then you

can go up to the root directory by using two circumflexes.

Another way to specify files in different branches of the file tree is by

including the slash separator as the first character in the pathname.

The slash tells the Operating System to ignore your normal starting point

and begin the path from the root directory. Using the previous example

where the starting point is directory TOM, another way to specify

SIM-SOURCE is with the pathname:

/DEPTl /BILL/SIM-SOURCE

The initial slash causes the Operating System to search in the root

directory for directory DEPTl instead of in the normal starting directory

(TOM).

Operator 2-13



USING THE HUMAN INTERFACE

LOGICAL NAMES

Although the Operating System allows you to use pathnames to refer to
files, it also allows you to create symbolic names that correspond to
files or devices. These symbolic names are called logical names . You
can create logical names that represent devices, data files, or
directories. After creating a logical name, you can refer to the entity
it represents by specifying the logical name. The rules for logical
names are:

• Each logical name must contain 1 to 12 ASCII characters.

• The hexadecimal representation of each character must be between
02 lh and 07 Fh inclusive (printable characters).

• The logical name cannot include the characters colon (:), slash
(/), up-arrow or circumflex (~), asterisk (*), and question mark

• When you specify a logical name, you must surround it with colons.

When referring to logical names, this manual always lists the surrounding
colons.

For an example of how to use logical names, refer again to Figure 2-2.

Suppose you have created a logical name called :ME: that represents the
pathname DEPT1/ TOM/ TEST-DATA (a later paragraph in this section discusses
how to create this logical name). If you want to refer to the directory
TEST-DATA, you can either specify its pathname as before, or you can
specify the logical name :ME:. If you want to refer to the file BATCH-1
under directory TEST-DATA, you can do this in either of the following
ways:

DEPTl/TOM/TEST-DATA/BATCH-1

or

: ME: BATCH-1

The second line shows that you can use a logical name as a beginning
portion (or prefix ) of a pathname. The logical name tells the Operating
System where to begin in its search for the file. However, you cannot
use a logical name in the middle or at the end of a pathname. If you use
a logical name, you must specify it at the beginning.

Notice that you must not include a slash or circumflex between the
logical name and the next path component if you want the Operating System
to search down one level. If you include the slash, the Operating System
ignores the normal starting point (the directory TEST-DATA) and searches
for the file BATCH-1 in the root directory of the volume. If you include
the circumflex, the Operating System searches up one level from the
starting point.

Operator 2--14



USING THE HUMAN INTERFACE

As a Human Interface* user, you deal with two general classes of logical

names: logical names for devices and logical names for files.

Logical Names for Devices

Device logical names allow you to refer to specific devices by name. The

Operating System can establish logical names for devices during system

initialization. You can establish other logical names for new or

existing devices by invoking the ATTACHDEVICE command (see Chapter 3 for

details).

By using device logical names as the prefix portion of your pathname

specifications, you can refer to any file on any device. For example,

suppose your system contains two flexible disk drives for which you have

established logical names :F0: and :F1:. (You used the ATTACHDEVICE
command to attach the devices as :F0: and :F1:.) If you have a diskette

containing the file DEPT2/HARRY, you could place the diskette in drive

:F0: and access the file with the pathname:

:F0:DEPT2/HARRY

If you put the same diskette in drive :F1:, you could access the file by

specifying the pathname:

:F1:DEPT2/HARRY

You can see that for devices containing named files, the device logical

name is actually a logical name for the root directory on that device.

If you enter the DIR command (described in Chapter 3) to list the

directory of device :F1:, as follows:

DIR :F1:

Logical Names for Files

A logical name for a file provides a shorthand way of accessing that

file. For example, suppose you have a file that resides several levels

down in the file tree, such as:

:F1 :DEPTl/T0M/TEST-DATA/BATCH-2

where :F1: is logical name for the device that contains the file. After

entering this pathname a few times, you might find it inconvenient to

continually enter so many characters. If so, you can establish a logical

name for this pathname, such as : BATCH : . (You could also say that you

attached the file with the logical name : BATCH:.) Then, whenever you

want to refer to the file in a command, you can specify the logical name

instead of the pathname.

Operator 2-15



USING THE HUMAN INTERFACE

If your logical names refer to directories instead of data files, you can
use the logical names in the prefix portion of a pathname. For example,
consider the same pathname:

:Fl:DEPTl/T0M/TEST-DATA/BATCH-2

Suppose you have attached the pathname :F1 :DEPT1/TOM/TEST-DATA as logical
name :TEST:; therefore it is a logical name for the directory TEST-DATA.
To refer to file BATCH-2, you could enter:

:TEST:BATCH-2

Logical names for files come into existence in two ways. One way is for
you to invoke the ATTACHFILE command (refer to Chapter 3 for details).
The other way is for the Operating System to create them. The Operating
System establishes a number of logical names for files during system
initialization. A later section lists these logical names.

Where Logical Names are Stored

When the Operating System creates logical names, at initialization time
or as a result of ATTACHFILE or ATTACHDEVICE commands, it does so by
placing the logical name, along with a token for a connection to the file
or device, into an object directory. This process is referred to as
cataloging the logical name (refer to the iRMX 86 EXTENDED I/O SYSTEM
REFERENCE MANUAL for more information about this process). The object
directory that receives this information determines the scope of the
logical name (that is, who can use the logical name). There are three
possibilities:

Root object directory

Global object directory

Logical Names cataloged in the object
directory of the root job can be accessed by
every user. When you use ATTACHDEVICE to

create logical names for devices, the
Operating System catalogs the logical names
in the root directory.

Logical names cataloged in the root object
directory remain valid until deleted or
until the system is reinitialized.

Logical names can be cataloged in the object
directory of a job that is designated as a
global job (refer to the iRMX 86 EXTENDED
I/O SYSTEM REFERENCE MANUAL for more
information about global jobs). Each
interactive job (user session) is a global
job. When you use ATTACHFILE to create
logical names for files, the Operating
System catalogs the logical names in your
global job. Likewise, if you invoke any
commands that issue ATTACHFILE commands

Operator 2-16



USING THE HUMAN INTERFACE

(such as a SUBMIT command), the Operating
System catalogs the logical names in your

global job. You (and any commands that you
invoke) can use the logical names cataloged
in your interactive job. However, other
users have no access to these logical names.

Logical names cataloged in your interactive

job remain valid for the life of your
interactive job or until deleted.

Local object directory Logical names can be cataloged in the object

directory of the job itself. When you
invoke a command (such as DIR), the

Operating System creates a job for that
command and catalogs certain objects in its

object directory. A command that you create
and invoke might also use iRMX 86 system
calls to catalog logical names in its own
object directory.

Logical names cataloged in a local job

remain valid only for the life of the job or

until deleted.

Whenever you (or one of the commands you invoke) use a logical name, the

Operating System searches for that logical name in as many as three

different object di
directory. If the
the global object d

rectories. It first looks in the local object
logical name is not defined there, it next looks in

irectory and finally, if necessary, the root object

directory. It uses the first such logical name it finds.

Because of this order of search, you can override the system logical

names (those cataloged in the root object directory) by cataloging the

same logical names (but representing different files or devices) in the

object directory of your interactive job. For example, suppose you used

the ATTACHFILE command to attach a file with the logical name : SYSTEM:.

Then, whenever you specify : SYSTEM:, the Operating System refers to your

file and not the one represented by the same logical name in the root

object directory.

Logical Names Created by the Operating System

The Operating System establishes several logical names that you can use

without first having to create them. It catalogs some of these logical

names in the root object directory (where they are available to all

users). It catalogs others in global object directories (these are

specific to each interactive job). It catalogs others in local object

directories (these are specific to each interactive job and to each

command invoked )

.

Operator 2-17



USING THE HUMAN INTERFACE

The Human Interface catalogs system-wide logical names in the root object
directory. These logical names are available to all users and they
represent the same file or device for all users. The number of logical
names created and their identities depend on the configuration of your
Operating System. However, the following logical names are available on
most systems.

BB:

:LANG:

SD:

: STREAM:

: SYSTEM:

:UTILS:

A device that is treated as an infinite sink (byte
bucket). Anything written to :BB: disappears, and
anything read from :BB: returns an end-of-file.

A directory used to store language products, such as
assemblers, compilers, and linkers.

The system device. If you used the Bootstrap Loader
to load your system, this logical name refers to the
device from which the Bootstrap Loader read the
Operating System file.

The prototype stream file connection. To create a

connection to a stream file, you must use this logical
name as the prefix portion of the pathname.

The directory containing the Human Interface commands.

A directory used to store utility programs created by
users.

:WORK: A directory that Intel language translators and
utilities use to store their temporary and work files

The following logical names are cataloged in each user's global object
directory. Although each user has access to these names, the names
represent different files or devices for each user.

$:

HOME:

;PROG:

Your default prefix. This is the path to your default
directory. If you do not specify a logical name (a
prefix) at the beginning of a pathname, the Operating
System automatically uses :$: as the prefix. In this
case, the Operating System assumes that the file
resides in the directory corresponding to :$:. During
an interactive session, you can use the ATTACHFILE
command to change the directory corresponding to :$:.

Your default prefix when you first start using the
Human Interface. Initially, :HOME: and :$: represent
the same directory. This logical name provides you
with the ability to re-establish your original :$:
logical name if you become lost in the hierarchical
file structure. You should not use ATTACHFILE to
change the directory corresponding to :HOME:.

A directory in which to store your programs.

Operator 2--18



USING THE HUMAN INTERFACE

The following logical names are cataloged in the local object directory
of each user and each command that a user invokes. These logical names
can have different meanings for each user and each command.

:CI: The terminal keyboard (or command input). As the name
implies, each user's :CI: refers to the terminal
associated with that user.

:C0: The terminal screen (or command output). As the name
implies, each user's :C0: refers to the terminal
associated with that user.

Upon initialization, your Human Interface may create additional logical
names. These logical names are configuration parameters. Contact the

person who configured your system for more information about the logical
names initially available to you. The iRMX 86 CONFIGURATION GUIDE
discusses this subject in more detail.

Removing Volumes from Devices

Removing volumes from devices (such as removing flexible diskettes from
drives) destroys any connections that may have existed to files on that

device. Therefore, any logical names that represent files on the volume
are no longer valid once you remove the volume. The names remain
cataloged in the directories, but they do not represent valid
connections. Therefore, before removing volumes, you should invoke
DETACHFILE commands to detach the files.

WILD CARDS

Wild cards provide a shorthand notation for specifying several files in a

single reference when entering commands. You can use either of two
special wild card characters in the last component of a pathname to

replace some or all characters in that component. The wild card
characters are:

? The question mark matches any single character. The Human
Interface allows any character to appear in that character
position. It selects every file that meets this
requirement. For example, the name "FILE?" could imply all
of the following files:

FILE1
FILE 2

FILEA

* The asterisk matches any number of characters (including zero
characters). The Human Interface allows any number of

characters to appear in that character position. It selects
every file that meets this requirement. For example, the
name "FILE*" could imply all of the following files:

Operator 2-19



USING THE HUMAN INTERFACE

FILE1
FILE.OBJ
FILE
FILECHANGE

You can use multiple wild cards in a single pathname. For example, the
name:

?PIF?.*

matches every file whose second through fourth characters are "PIF" and
whose sixth character is a period. These files could include all of the

following names (or more):

RPIFC.LIB
EPIFL.TXT
HPIFC

.

You can use wild cards in both input pathnames (files that commands read
for information) and output pathnames (files into which commands write
information). For example, in the command:

COPY A* TO B*

the A* represents the input pathname and B* represents the output
pathname. In this command (which copies information from one file to
another), the Human Interface searches the appropriate directory for all

files that begin with the "A" character. Then it copies each file to a

file of the same name, but beginning with the "B" character. If the

directory contains the files:

ALPHA
A112
A

the previous command would copy files in the following manner:

ALPHA TO BLPHA
A112 TO B112
A TO B

There are several operational characteristics that you should be aware of

when using wild cards:

• Wild cards are valid in the last component of the pathname only.
Therefore, :F1: SYSTEM/APP1/FILE* is a valid pathname, but
:F1: SYSTEM/APP*/FILE1 is not valid.

• You can negate the meaning of a wild card character by enclosing
it in quotes, either single (') or double ("). For example, if

you have a file named F*123, you can refer to it alone in a

command by specifying F'*'123 or 'F*123 f
.

Operator 2-20



USING THE HUMAN INTERFACE

• When you specify input and output pathnames in commands, you can

specify lists of pathnames, separated by commas. For example:

COPY A,B,C TO D,E,F

copies A to D, B to E, and C to F. If you use a wild cards in

any one of the output pathnames, you must use the same wild cards
in the same order in the corresponding input pathname. The term

"same order" means that if you use both the "*" and the "?"

characters, their ordering must be the same in both the input and

output pathnames. For example, the following is valid:

COPY A*B?C* TO *DE?FGH*I

However, the following is invalid because the wild cards are out

of order:

COPY A*B?C* TO *DE*FGH?I

• If you use wild cards in an input pathname, you can omit all wild
cards from the corresponding output pathname to cause the Human
Interface to perform file concatenation. For example, suppose a

directory contains files Al, Bl, and CI. The following command
is valid:

COPY *1 TO X

It copies files in the following manner:

Al TO X

Bl AFTER X
CI AFTER X

But if X is a directory, concatenation is not performed by this
series of commands. Instead, the Human Interface copies each
file over to the new directory. Refer to the "Command Syntax"
section later in this chapter for more information about the
prepositions TO and AFTER.

• The "*" character matches as close to the end of the pathname as

possible. For example, suppose the directory contains the file
"ABXCDEFXGH" , and you enter the command:

COPY *X* TO *1*

This command copies:

ABXCDEFXGH TO ABXCDEF1GH

The first asterisk matches the characters "ABXCDEF", and the

second asterisk matches the characters "GH".

Operator 2-21



USING THE HUMAN INTERFACE

• You can also use wild cards for finding invisible files. An
invisible file is a file which will not appear in any normal
directory listing. Thus, the file is "invisible" to the user.
The name of any invisible file must begin with the prefix R?.
Since the wildcard function does not automatically match
invisible files, you must explicitly state the R? prefix. You do
this procedure by using quotes. Thus to find all the invisible
files within a directory, you use the format "r 1

?
1 *". You need

to include the quotes so that "?" is not interpreted as a
wildcard symbol.

DEVICES

The iRMX 86 Operating System allows you to communicate with various types
of devices (disks, terminals, etc.). Each device supports one or more
types of files (named or physical). The following paragraphs identify,
in general, the kinds of devices with which you can communicate and the
types of files supported on those devices.

Terminals An operator needs the terminal to communicate with the
Human Interface. You can also write programs that
read from and write to terminals.

Disks Disks provide permanent storage for programs and
data. The Operating System allows you to communicate
with a variety of disk devices: Winchester disks,
other hard disks, and flexible diskettes.

Bubble Memory You can reconfigure the Operating System to include
support Bubble Memory. Once you have done this, you
can treat the bubble memory as a physical device, or
you can use it to store named files.

AUTOMATIC DEVICE CHARACTERISTICS RECOGNITION

Automatic device recognition gives the Operating System the ability to
recognize and access named disks of different formats without requiring
you to reattach the device. This feature does not work with physical
files. Refer to the iRMX 86 CONFIGURATION GUIDE for more information on
automatic device characteristics recognition.

HOW AUTOMATIC DEVICE CHARACTERISTICS RECOGNITION WORKS

The Basic I/O System, the Extended I/O System, and the formatting utility
(either the FORMAT command or the Files Utility) combine to provide the
automatic device characteristics recognition feature. They do this
procedure as follows:

Operator 2-22



USING THE HUMAN INTERFACE

1. When the formatting utility formats a disk as a named volume, it

formats with the same characteristics you specified when you used
ATTACHDEVICE to attach the device. However, it formats track
with a fixed density (single density) and a fixed sector size
(128 bytes) regardless of the way it formats the rest of the
disk. On track 0, the formatting program places the iRMX 86
volume label, a table that describes the characteristics of the
remainder of the volume (granularity, density, number of sides,

etc.). Refer to the iRMX 86 DISK VERIFICATION UTILITY REFERENCE
MANUAL for a description of the iRMX 86 volume label.

Because track is formatted the same way for all named disks,
the Basic I/O System can access the information on track
without knowing the format of the remainder of the disk.

2. When you attach a device to the system as a named device (using
the ATTACHDEVICE command), you specify the name of a DUIB
(device-unit information block) as one of the ATTACHDEVICE
parameters. The DUIB names you can use are the ones that you
specified as input: to the "Device-Unit Information" screen of the
ICU.

The DUIB tells the Basic I/O System which device-unit (disk
drive) to attach and which characteristics (granularity, density,
number of sides, etc.) to assume about the disk drive.

3. During the attach process, the Basic I/O System reads the

information from track (the volume label) and compares it with
the information in the DUIB you specified when attaching the
device. If the information does not match, the Basic I/O System
performs the following operations:

a. It compares the information in the volume label with all the

other DUIBs defined for that device-unit. If it finds a

match, it "switches" DUIBs and uses the matching one as the
current DUIB.

b. If none of the DUIBs defined for that device-unit match the

information in the volume label, the Basic I/O System creates
a temporary DUIB that does match. It uses the information
from the DUIB that you specified when attaching the device
and modifies it with information from the volume label. As a

name for the temporary DUIB, the Basic I/O System appends a

question mark (?) to the beginning of the old DUIB name.

4. Whenever you remove a disk from a drive, the Operating System
automatically detaches the device. If it was accessing the

device through a temporary DUIB (as opposed to the one you
specified as an ATTACHDEVICE parameter), it destroys the DUIB.

However, it remembers the name of the DUIB that you specified as
input to ATTACHDEVICE.

Operator 2-23



USING THE HUMAN INTERFACE

5. When you insert a new disk into the drive and attempt to access

it as a named volume (by invoking the DIR command, for example),

the Operating System automatically reattaches the device using
the same process listed in step 3.

From these steps, you can see that you can continue to change diskettes

without having to detach and reattach the device. The Operating System
does this change for you automatically. However, this process occurs
only for named-file operations. Whenever the Operating System performs

physical-file operations, it cannot use the temporary or "switched"

DUIBs. Instead, it must use the DUIB you specified as a parameter to

ATTACHDEVICE.

COMMANDS THAT CANNOT RECOGNIZE DEVICE CHARACTERISTICS

Because the automatic device characteristics recognition feature does not

apply to physical-file operations, some Human Interface commands cannot
make use of this feature. They are:

FORMAT
BACKUP
RESTORE
DISKVERIFY

Each of these commands must detach the device and re-attach it again as a

physical device. This process cancels the ability of the Basic I/O

System to recognize the characteristics of the volume. Therefore, these

commands assume that the device characteristics are those listed in the

DUIB you specified as an ATTACHDEVICE parameter. Consequently, if you do

not include, for example, a DUIB for a double-sided, double-density
diskette in your configuration, you cannot format such a diskette.

Neither can you create a backup volume in this format nor restore
information from one.

If you plan to use one of these commands and you are not sure how your

device was attached, use DETACHDEVICE and ATTACHDEVICE to reattach the

device with the characteristics you require.

OPERATIONAL CONSIDERATIONS FOR iSBC® 215/iSBX™ 218 DEVICES

If your system contains an iSBC 215/iSBX 218 controller, you may receive
error messages that are not appropriate when switching diskettes. For
example, if you attach your device as a double-sided/double-density
device and insert a single-sided/single-density diskette, you will
receive an I/O error message when attempting an I/O operation. In this
situation, the message does not indicate a problem. If you try the I/O

operation again, it will usually succeed.

Operator 2-24



USING THE HUMAN INTERFACE

COMMAND SYNTAX

This section describes the general syntax rules that apply when entering
Human Interface commands at a terminal. These rules apply equally to
both the supplied Human Interface commands and any user-created commands
that may have been added to your system. The individual command
descriptions in Chapter 3 contain additional and more specific
information about each supplied Human Interface command.

The elements that form a standard command entry include a command name,
required input parameters (if any), and optional parameters. The general
structure of a command line is as follows (brackets [] indicate optional
portions)

:

command-name [inpath-list [preposition outpath-list]
] [parameters] cr

where:

command-name

inpath-list

preposition

outpath-list

Pathname of the file containing the command's
executable object code.

One or more pathnames, separated by commas, of files
to be read as input during command execution.

A word that tells the executing command how to handle
the output. The four prepositions used in
Intel-supplied commands are TO, OVER, AFTER, and AS.

One or more pathnames, separated by commas, of files
that are to receive the output during command
execution.

parameters Parameters that cause the command to perform
additional or extended services during command
execution.

cr A line terminator character. This character
terminates the current line and causes the cursor to
go to a new line. This character also causes a

command to be loaded and executed if the cr character
is not preceded by the ampersand (&) symbol. The
RETURN (or CARRIAGE RETURN) key and NEW LINE (or LINE
FEED) key are both line terminators.

You can enter all elements of a command line in uppercase characters,
lowercase characters, or a mix of both. The Human Interface makes no
distinction between cases when it reads command line items. In addition,
you can include the following optional command line entries:

continuation
mark

An ampersand character (&) indicates that the command
continues on the next line. When you include the
ampersand character, the Human Interface displays two
asterisks (**) on the next line to prompt for the
continuation line. All characters appearing after the
continuation mark but before the line terminator are
interpreted as comments.

Operator 2-25



USING THE HUMAN INTERFACE

Within available memory limits, you can use as many

continuation lines for a given command as you desire.

After you enter the line terminator without a

preceding ampersand character, the invoked command

receives the entire command string as a single command.

comment A semicolon (;) character indicates that all text

character following it on the current line is a non-executable
comment. You can also enter comments after a

continuation mark (&) but before the line terminator.

A common use of comments in commands is in a SUBMIT

file list of commands (see the SUBMIT command in

Chapter 3).

quoting Two single-quote (') or double-quote (") characters

characters remove the semantics of special characters they

surround. For example, if you surround an ampersand

character (&) with single quotes, the ampersand is not

recognized as a continuation character. The same

holds for other characters such as asterisk (*),

question mark (?), equals (=), semicolon (;), and

others. The only special characters not affected by

the quoting characters are the pathname separators,

semicolon (;), and dollar sign ($).

Although you can use either single quotes or double quotes as

quoting characters, you must use the same quoting character at

the beginning and at the end of your quoted string. If you want

to include the quoting character inside your quoted string, you

must specify the character twice. For example:

' can '
'
t

'

You can accomplish the same effect by using the other quoting

character, for example:

"can't"

Although the Human Interface places no restriction on the number of

characters in a command, each terminal line can have a maximum of 255

characters, including any punctuation, embedded blanks, continuation

mark, non-executable comments, and carriage return. If your command

requires more characters, use continuation lines.

The following sections discuss the individual elements of the command

syntax in more detail.

Operator 2-26



USING THE HUMAN INTERFACE

COMMAND NAME

Each Human Interface command is a file of executable code that resides in

secondary storage. When you specify a command name, you actually specify

the name of the file containing the command's code. If you write your

own command (refer to the iRMX 86 HUMAN INTERFACE REFERENCE MANUAL for

information), you invoke it by entering the name of the file that

contains it. After you invoke a command, the Operating System loads it

from secondary storage into memory and executes it in conformance with

parameters you specify.

When you enter a command name, you can enter the complete pathname of the

command, or, in many cases, you can enter just the last component of the

pathname

.

• If you enter the complete pathname of the command (that is, if

you include a logical name as the prefix portion of the

pathname), the Operating System searches only the device and

directory you specify for the command. If it cannot find the

command there, it returns an error message.

• If you enter only the last component of the pathname (such as

COPY instead of :F1 : SYSTEM/COPY) , the Operating System
automatically searches a certain number of directories for the

command. It does not return an error message until it has

searched each of the directories. The number of directories
searched and the order of search are Human Interface
configuration parameters. However, in the default case, the

Operating System searches the following directories, in order,

for commands:

: PROG

:

:UTILS:
: SYSTEM:
:LANG:
:$:

When writing your own commands, you can take advantage of the order in

which the Operating System searches directories. For example, suppose

you write your own copy command, one that provides more or different

functions than the Human Interface COPY command. If you want to invoke

your own program whenever you type the command "COPY", you can simply

place your copy program in a file called COPY in your :PROG: directory.

Since the Operating System searches the :PROG: directory before searching

the : SYSTEM: directory (the directory that normally contains Human

Interface commands), it will invoke your copy program when you enter the

command "COPY".

If you still want to be able to invoke the Human Interface COPY command,

you can do so by entering its complete pathname, that is, by entering the

following:

: SYSTEM: COPY

Operator 2-27



USING THE HUMAN INTERFACE

PREPOSITIONS

Preposition parameters in a command line tell the command how you want it
to process the output file or files. The Human Interface commands
usually provide three options in the choice of a preposition: TO, OVER,
and AFTER. The preposition AS is also available for use in the
ATTACHDEVICE and ATTACHFILE commands. The TO preposition and :C0:
(console screen) will be used by default if you do not specify a
preposition and an output file. The prepositions have the following
meaning:

TO Causes the command to send the processed output to new files;
that is, to files that do not already exist in the given
directory. If a listed output file already exists, the
command displays the following query at the console screen:

<pathname>, already exists, OVERWRITE?

Enter a Y or y if you wish to write over the existing file.
Enter any other character if you do not wish the file to be
overwritten. In the latter case, the command does not
process the corresponding input file but rather goes to the
next input file in the command line. Commands process input
files and write to output files on a one-for-one basis. For
example:

COPY A,B TO C,D

copies file A to file C and file B to file D.

OVER Causes the command to write your input files to the output
files in sequence, destroying any information currently
contained in the output files. It creates new output files
if they do not exist already. For example:

COPY SAMP1,SAMP2 OVER 0UTl,0UT2

copies the data from file SAMP1 over the present contents of
file 0UT1, and copies the data of SAMP2 over the contents of
file 0UT2.

AFTER Causes the command to append the contents of one or more
files to the end of one or more new or existing files (file
concatenation). For example:

COPY IN1,IN2 AFTER DESTl,DEST2

appends the contents of file INI to the the end of file
DEST1, and appends the contents of IN2 to the end of DEST2.

AS A special preposition used with the ATTACHDEVICE and
ATTACHFILE commands. When you use the AS preposition, the
Operating System does not assume that the command contains
input pathnames and output pathnames. Rather, it sees the

Operator 2-28



USING THE HUMAN INTERFACE

parameters as entities that: it must associate (for example,
ATTACHFILE associates a pathname with a logical
name).INPATH-LIST AND OUTPATH-LIST

An inpath-list specifies the files on which a command is to operate. An
outpath-list defines the destination or destinations of the processed
output. Each inpath-list or outpath-list consists of a pathname (or
logical name) or list of pathnames. If you specify multiple pathnames,
you must separate the individual pathnames with commas. Embedded blanks
between pathnames are optional. You can also use wild cards to indicate
multiple pathnames (refer to the "Wild Cards" section of this chapter).
Usually when you specify multiple pathnames, each pathname in the
inpath-list has a corresponding pathname in the outpath-list. For
example, the command:

COPY A, B TO C, D

copies file A to file C and also copies file B to file D. Therefore, A
and C are corresponding pathnames, and so are B and D. However, there
are some instances when the number of input pathnames you enter differs
from the number of output pathnames. The validity of the operation
depends on whether the pathname lists contain single pathnames,

Table 2-1. Input Pathname and Output Pathname Combinations

Human Interface
Inpath-list Outpath-list Action

single pathname single pathname one-for-one match
single pathname list of pathnames error
single pathname wild-card pathname error
single pathname list of wild cards error
single pathname pathname to directory one-for-one match

list of pathnames single pathname concatenate
list of pathnames list of pathnames one-for-one match
list of pathnames wild-card pathname error
list of pathnames list of wild cards error
list of pathnames pathname to directory one-for-one match

wild-card pathname single pathname concatenate
wild-card pathname list of pathnames error
wild-card pathname wild-card pathname one-for-one match
wild-card pathname pathname to directory one-for-one match
wild-card pathname list of wild cards error

list of wild cards single pathname concatenate
list of wild cards list of pathnames concatenate
list of wild cards wild-card pathname concatenate
list of wild cards list of wild cards one-for-one match
list of wild cards pathname to directory one-for-one match

Operator 2-29



USING THE HUMAN INTERFACE

lists of pathnames, a wild-card pathname, or lists of wild-card
pathnames. Table 2-1 lists the possibilities and describes the Human
Interface's action in each instance. The following sections discuss the

Human Interface's actions in more detail.

One-For-One Match

The combinations in Table 2-1 that are marked "one-for-one match" are

those in which each element in the inpath-list is matched with an element
of the outpath-list. An example of this is the command:

COPY A*, B* TO C*, D*

In this case, the Human Interface copies all files beginning with the
character "A" to corresponding files beginning with the character "C"

.

When it finishes this operation, it advances past the comma to the next
set of pathnames (copies all files beginning with "B" to corresponding
files beginning with "D" ).

Concatenate

The combinations in Table 2-1 that are marked "concatenate" are those in
which there are multiple input pathnames that correspond to a single
output pathname. In this situation, the Operating System automatically
appends the remaining input files to the end of the specified output
file, regardless of the preposition you specify.

This allows you to combine one-for-one file operations (as in TO or OVER
preposition) with file concatenation (as in the AFTER preposition) in a

single command, and thus avoid entering an extra command to perform a

separate concatenation operation. The following example explains this
situation.

Assume that in a COPY command, you use the TO preposition and specify the
following Input and output pathnames:

COPY A,B,C TO D

When the Human Interface processes the command line, it copies file "A"

to file "D" and appends files "B" and "C" to the end of file "D" as
follows:

A TO D
B AFTER D

C AFTER D

Notice that this concatenation occurs only when there are multiple
elements in the inpath-list that correspond to a single element of the
outpath-list. This means that the following commands are invalid:

Operator 2-30



USING THE HUMAN INTERFACE

COPY A, B, C TO D, E ; INVALID COMMAND

COPY A*, B*, C* TO D*, E* ; INVALID COMMAND

Error Conditions

The combinations in Table 2-1 that are marked "error" indicate invalid

operations. For these combinations, the Human Interface returns an error

message without performing the requested operation.

OTHER PARAMETERS

Most commands allow you to enter parameters other than inpath-lists,

outpath-lists, and prepositions. These other parameters are known as

keyword parameters, because you must enter a particular word, called a

keyword, to obtain the additional or extended services provided by the

parameter.

For example, the DIR command (described in Chapter 3) lists the contents

of a directory. You can enter several different keyword parameters to

specify the amount of information displayed and the format of the

display. A command such as:

DIR : SYSTEM: EXTENDED

displays the contents of the : SYSTEM: directory in extended format. You

could substitute other keywords such as SHORT or LONG to obtain different

formats.

The command descriptions in Chapter 3 list the keyword parameters

available with each command. However, the descriptions list the complete

names for the keywords. When you use keywords, you can enter their

complete names or you can enter only as many characters as are necessary

to uniquely identify the keyword. For example, you could enter the

previous command as:

DIR : SYSTEM: E

For the DIR command, the character E uniquely identifies the EXTENDED

parameter. Other keywords might require additional characters to make

them unique.

Some keyword parameters also require an associated value. An example of

this is the FORMAT command (described in Chapter 3), which prepares

secondary storage volumes for iRMX 86 use. A command such as:

FORMAT :F1:TEST FILES = 60

Operator 2-31



USING THE HUMAN INTERFACE

formats a volume on device :F1: and sets up the volume to contain at most
60 files. The keyword in this command (FILES) has an associated value
(60). Although this example and the descriptions in Chapter 3 use the
equal sign (=) to associate keywords and values, there are actually two
ways to do this. They are:

keyword = value
keyword (value)

The blanks are optional. You can use either method when entering Human
Interface commands.

SYSTEM MANAGER

The multi-access Human Interface supports a user called the system
manager . The system manager's primary purpose is to maintain the
multi-access configuration files. The system manager can modify these
files to add or delete user IDs, add or delete terminals, and change
terminal or user characteristics (refer to the iRMX 86 CONFIGURATION
GUIDE for more information). For security reasons, no user other than
the system manager can access these files.

In addition, the system manager has a special user ID which gives that
user privileges that other users do not have. The system manager:

• Has read access to all data files and list access to all
directories.

• Can change the access rights of any file, regardless of the
file's owner.

• Can detach devices attached by any user.

• Can delete any user from the system.

Any operator can become the system manager by invoking a Human Interface
command called SUPER. This command (which requires entering a password)
changes the operator's user ID from its normal value to that of the
system manager. Once an operator invokes SUPER, that operator has all
the powers of the system manager. Refer to Chapter 3 for more
information about the SUPER command.

***

Operator 2-32



CHAPTER 3

HUMAN INTERFACE COMMANDS

This chapter presents the commands in alphabetical sequence without

regard for functional organization. The Human Interface Command

Dictionary (Table 3-1) also lists a functional grouping of the commands

for fast reference.

The commands described in this chapter are supplied by Intel for iRMX 86

Operating Systems that are configured with the Human Interface. If you

are a new user of the Human Interface, it is suggested that you review

the information on file-naming conventions and invocation considerations

in Chapter 2 before reading this chapter.

This chapter does not describe how to specify the names of the devices

and directories that contain the Human Interface commands. This is

because during the Human Interface configuration process you can specify

a number of directories that the Human Interface automatically searches

for commands. If you place your Human Interface commands in one of these

directories (normally the : SYSTEM: directory), you can invoke the

commands by entering only their names. However, if your commands reside

in a directory that the Human Interface does not search automatically, or

if you have multiple commands with the same name in different

directories, you can use the complete pathname for the command. For

example, if the DIR command resides in directory COMMANDS on device :F6:

(a directory not normally searched by the Human Interface), you can

invoke the command by entering:

:F6: COMMANDS /DIR

Refer to the iRMX 86 CONFIGURATION GUIDE for more information about Human

Interface Configuration.

ERROR MESSAGES

Each command can generate a number of error messages which indicate

errors in the way you specified the command. The messages that apply to

a specific command are listed with that command. However, the following

are general error messages that can appear with many of the commands:

• command not found

There is no file whose pathname is the same as the command name

you specified, nor can the Human Interface find the file in any

of the directories it automatically searches.

Operator 3-1



HUMAN INTERFACE COMMANDS

• <logical name>, device does not belong to you

The device you specified was originally attached by a user other
than WORLD or you.

• <pathnarae>, file does not exist

The pathname you specified does not represent an existing file.

• <pathname>, invalid file type

You specified a data file for an operation that required a

directory, or vice versa.

• <logical name) , invalid logical name

The logical name you specified contains unmatched colons, is

longer than 12 characters, or contains invalid characters.

• <pathname>, invalid pathname

The pathname you specified contains invalid characters or a

component of the pathname (other than the last one) does not
exist or does not represent a directory.

• <logical name>, is not a device connection

The logical name you specified does not represent a connection to

a physical device.

• <logical name>, logical name does not exist

The logical name you specified does not exist.

• parameters required

The command you specified cannot be entered without parameters.

• program version incompatible with system

The command and the Operating System are not compatible. The

command expects to obtain information from internal tables that
are not present. Therefore the command cannot run successfully.

• <control>, unrecognized control

The parameter you entered is not valid for the specified command.

Operator 3-2



HUMAN INTERFACE COMMANDS

<exception value> : <exception mnemonic>, while loading command

The Operating System encountered an exceptional condition while

attempting to load the command into memory from secondary

storage. The message lists the. exception code encountered.

<exception value> : <exception mnemonic>

An operational error occurred during the execution of the

command. The <exception value> and <exception mnemonic> portions

of the message indicate the exception code encountered.

<parameter>, <exception value> : <exception mnemonic>

The command encountered an exceptional condition while attempting

to process the <parameter> portion of the command. The

<exception value> and <exception mnemonic> portions of the

message indicate the exception code encountered.

COMMAND SYNTAX SCHEMATICS

The syntax for each command described in this chapter is presented by

means of a "railroad track" schematic, with syntactic elements scattered

along the track. Your entrance to any given schematic is always from

left to right, beginning with some command name entry.

Elements shown in uppercase characters must be typed in a command line

exactly as shown in the command schematics except that you can type them

either in uppercase or lowercase characters; the Human Interface makes no

distinction between cases in alphabetic characters. Syntactic elements

shown in lowercase characters are generic terms, which means that you

supply the specific item, such as the pathname for a file.

The vertical dotted line separates the position-dependent parameters from

those that are position-independent. Parameters to the left of the

dotted line must be entered in the order listed (from left to right).

Parameters to the right of the dotted line can be entered in any order

(as long as they obey the rest of the syntax).

The example that follows shows all the possible paths through a railroad

track schematic. Notice that the main track goes through required

elements in a given command.

"Railroad sidings" go through optional parameter elements. In some

cases, you have a choice of going through one of several possible sidings

before returning to the main track. In still other cases, the main track

itself diverges into two separate tracks, which means that you must

select one parameter or the other but not both.

Operator 3-3



(START) 0—

In this example:

A is a required element. It is position-dependent; it must be
entered first.

Either B or C is required but not both. These elements are also
position-dependent. Whichever element you enter must follow A
immediately.

D, E, or F are all optional but only one can be selected. These
are position-independent elements. If you select one of these
elements, you can enter it before or after G.

G is required. It is a position-independent parameter. You can
enter it before or after D, E, or F.

Operator 3-4



Table 3-1. Human Interface Command Dictionary

Command Synopsis Page

File Management Commands

ATTACHFILE Associates a logical name with an existing file. 13

COPY Creates new data files, or copies files to

other pathnames. 24

CREATEDIR Creates one or more new directories. 28

DELETE Deletes data files and empty directories from a

volume on secondary storage. 33

DETACHFILE Removes the association of a logical name with
a file. 38

DIR Lists a directory's filenames (and optionally,
file attributes). 40

DOWNCOPY Copies files and directories from an iRMX 86

volume mounted on a secondary storage device to
an ISIS-II secondary storage device. 53

PERMIT Grants or rescinds user access to a file. 83

RENAME Renames files or directories. 88

UPCOPY Copies files and directories from an ISIS-II
secondary storage device to an iRMX 86 volume
mounted on a secondary storage device. 107

Volume Management Commands

ATTACHDEVICE Attaches a new physical device to the system
and catalogs its logical name in the root
job's object directory. 7

BACKUP Copies named files to a backup volume. 16

DETACHDEVICE Removes a physical device from system use and

deletes its logical name from the root job's
object directory. 35

DISKVERIFY Verifies the data structures of named and
physical volumes. 48

FORMAT

._ .

Formats an iRMX 86 volume. 56

Operator 3-5



Table 3-1. Human Interface Command Dictionary (continued)

Command Synopsis Page

Volume Management Commands (continued)

LOCDATA Puts relocatable programs in absolute locations. 71

RESTORE Copies files from a backup volume to a named
volume. 91

Multi-Access Commands

INITSTATUS Displays the initialization status of Human
Interface terminals. 67

JOBDELETE Deletes a running interactive job. 69

LOCK Prevents the Human Interface from automatically
creating an interactive job. 75

SUPER Changes the operator's user ID into that of

the system manager (user ID 0). 102

General Utility Commands

DATE Sets or resets the system date, or displays
the current date. 29

DEBUG Transfers control to the iSDM 86 or iSDM 286

monitor to debug an iRMX 86 application program. 31

LOGICALNAMES Lists all the logical names within the system 77

MEMORY Displays the memory available to the user. 80

PATH Shows the pathname for a file. 81

SUBMIT Reads, loads, and executes a string of commands
from secondary storage instead of the keyboard. 98

TIME Sets or resets the system clock, or displays
the current system time. 105

VERSION Displays the version numbers of commands. 110

WHOAMI Displays the current ID associated with the user. 112

Operator 2»-6



ATTACH DEVIC

ATTACHDEVICE

This command attaches a physical device to the Operating System and
associates a logical name with the device. The command catalogs the
logical name in the root object directory, making the logical name
accessible to all users. The format of the command is as follows:

INPUT PARAMETERS

physical name

AS

: logical name

Physical device name of the device to be attached
to the system. This name must be the name used in
one of the Basic I/O System's Device Unit
Information Blocks (DUIB), as defined at system
configuration time (see Table 3-2).

Preposition; required for the command.

A 1- to 12-character name, that represents the
logical name to be associated with the device.
Colons surrounding the logical name are optional;
however, if you use colons, you must use matching
colons.

NAMED

PHYSICAL

Specifies that the volume mounted on the device is
already formatted for NAMED files. Examples of
volumes that can contain named files are diskettes
or hard disk platters. If neither NAMED nor
PHYSICAL are specified, NAMED is the default. See
the FORMAT command in this chapter for a further
description of NAMED files.

Specifies that the volume mounted on the logical
device is considered to be a single, large file.
Examples include line printers and terminals. See
the FORMAT command in this chapter for a further
description of PHYSICAL volumes.

Operator 3-7



ATTACH DEVICE

WORLD Specifies that user ID WORLD (65535 decimal) is the

owner of the device. This implies that any user can

detach the device. If you omit this parameter, your

user ID is listed as the owner of the device. In this

case, only you and the system manager can detach the

device.

DESCRIPTION

ATTACHDEVICE attaches a device to the system and catalogs a logical name

for it in the root job's object directory. The logical name is the means

by which all users can access the device. Devices must have their

characteristics listed in the Basic I/O System's Device Unit Information

Block (DUIB) at configuration time before they can be attached with the

ATTACHDEVICE command.

Table 3-2A and Table 3-3B list the physical device names normally used

with the Basic I/O System. Your system might support a subset of these

devices or it might support devices not listed. If it supports the

devices listed, it might support them under different names. Therefore,

consult the person who configured your system to determine the correct

device names for your system.

One frequent use of the ATTACHDEVICE command is to attach a new device,

such as a new disk drive or a line printer, without having to reconfigure

portions of the Operating System. (See the DETACHDEVICE command in this

chapter for a description of how to detach a device from the system

without reconfiguring.)

Unless you have a user ID of WORLD (65525) or specify the WORLD

parameter, once you attach a device, only you and the system manager can

detach the device. This limitation prevents users from detaching devices

belonging to other users and prevents you from accidentally detaching

system volumes. However, if you have a user ID of WORLD or specify the

WORLD parameter, any device that you attach can be detached by any other

user. Refer to the DETACHDEVICE command for more information.

When the device attachment is completed, the ATTACHDEVICE command

displays the following message:

<physical name), attached as <logical name>, id = <user id>

where <physical name) and <logical name> are as specified in the

ATTACHDEVICE command and <user id> is your user ID (or WORLD, if you

specify the WORLD parameter).

Operator 3-8



ATTACH DEVICE

Table 3-2. Suggested Physical Device Names

Physical
Device Device Unit Bytes per
Names Controller Type Number Sides Density Sector

Flexible Disk Drives: 8 Inch Drives

FO 204 Shugart SA800 1 Single 128
Fl 204 Shugart SA800 1 1 Single 128

FXO 204 Shugart SA800 1 Single 512
FX1 204 Shugart SA800 1 1 Single 512

AFO 208 Shugart SA800 1 Single 128

AF1 208 Shugart SA800 1 1 Single 128

AFDO 208 Shugart SA800 1 Double 256
AFD1 208 Shugart SA800 1 1 Double 256

AMFO 208 Shugart SA410 1 Double 256

AMF1 208 Shugart SA410 1 1 Double 256

AFDDO 208 Shugart SA850/SA851 2 Double 256

AFDD1 208 Shugart SA850/SA851 1 2 Double 256

AFDXO 208 Shugart SA850/SA851 2 Double 1024
AFDX1 208 Shugart SA850/SA851 1 2 Double 1024

WFO 218(A) Shugart SA800 1 Single 128
WF1 218(A) Shugart SA800 1 1 Single 128
WFDO 218(A) Shugart SA800 1 Double 256
WFD1 218(A) Shugart SA800 1 1 Double 256
WMFO 218(A) Shugart SA410 1 Double 256
WMF1 218(A) Shugart SA410 1 1 Double 256

WFDDO 218(A) Shugart SA850/SA851 2 Double 256
WFDD1 218(A) Shugart SA850/SA851 1 2 Double 256

WFDXO 218(A) Shugart SA850/SA.851 2 Double 1024
WFDX1 218(A) Shugart SA850/SA851 1 2 Double 1024

Flexible Disk Drives:: 5 1/4 Inch Drives

AMFDXO 208 Shugart 450 2 Double 512

AMFDX1 208 Shugart 450 1 2 Double 512
AMFDYO 208 Shugart 460 2 Double 512

AMFDY1 208 Shugart 460 1 2 Double 512
PMFO* 218A Shugart 460 2 Double 512

PMFDXO* 218A Shugart 450 2 Double 512

PMFDX1* 21 8A Shugart 450 1 2 Double 512

PMFYO* 218A Shugart 460 2 Double 512

PMFY1* 21 8A Shugart 460 1 2 Double 512

WMFDXO 218(A) Shugart 450 2 Double 512
WMFDX1 218(A) Shugart 450 1 2 Double 512

WMFDYO 218(A) Shugart 460 2 Double 512

WMFDY1 218(A) Shugart 460 1 2 Double 512

* Mounte d on processor board. (A) = either 218 or 218A controllerr

.

Operator 3-9



ATTACH DEVICE

Table 3-2. Suggested Physical Device Names (continued)

Physical
Device
Names Controller Device Type Unit Number

Bytes per
Sector

Hard Disk Drives

DO
Dl

DSO
DS1

206
206

206
206

1

1

512
512
128

128

Winchester Disk Drives

WO
Wl
IWO
MWO
PWO
SWO
CMO
CMl
CMBO
CMBl

215
215
215
215
215
215
215
215
215
215

generic drive
generic drive
Priam 3450 (8")

Memorex 101 (8")

Pertec D8000 (8")

Shugart SA1002 (8")

CMl 5412 (5 1/4")

CMl 5412 (5 1/4")

CMl 5419 (5 1/4")

CMl 5419 (5 1/4")

1

1

1

1024
1024
1024
1024
1024
1024
1024
1024
1024
1024

Storage Module Disk (SMD) Drives

SMDO
SMD1

220
220 1

1024
1024

Bubble Memory Device

BXO
BO

251

254

256
256

Others

BB
STREAM
T(n)*
LP

Byte bucket (already attached)
Stream file device (already attac
terminal
line printer

hed)

* Physic
follow

al device name
red by a single

s for terminals begin with the letter
digit.

°T° and are

Operator 3-10



ATTACH DEVICE

Table 3-3. Controllers Connected to the iSBC® 186/03
SASI/SCSI Interface

Device Manufacturer Unit Bytes Per
Name And Model Number Sector

SAO * generic controller 512

SCO * generic controller 512

ATSO ** Adaptec ACB-4000 512

XESO ** Xebec S1410 512

FJSO Fujitsu M2312K 512

SHSO ** Shugart SA1610-2 512

* SAO is the SASI generic device name. SCO is the SCSI generic device
name.

** These controllers support the ST506 Winchester Interface.

ERROR MESSAGES

• <device name) , cannot attach device

There is a hardware problem or for SCSI an incorrect
configuration.

• <device name) , cannot be ATTACHED as <type> device

The device specified by <device name) cannot support the type of

files specified by <type> (NAMED or PHYSICAL). ATTACHDEVICE does

not attach the device. For example, the NAMED option is not
valid for a device such as a line printer.

• <device name), device already attached

The specified device has already been attached. ATTACHDEVICE
does not attach the device.

• <device name), device does not exist

The physical device name you specified does not correspond to a

name the Basic I/O System recognizes. That is, the person who
configured your application system did not specify <device name)
as the name of a device-unit during configuration of the Basic
I/O System. ATTACHDEVICE does not attach the device.

Operator 3-11



ATTACH DEVICE

<logical name>, logical name already exists

The specified logical name is already cataloged in the root job's

object directory. ATTACHDEVICE does not attach the device.

0085 : E$LIST, too many device names

You tried to attach more than one physical device with a single
ATTACHDEVICE command. ATTACHDEVICE does not attach more than one
device.

<logical name>, volume is not a NAMED volume

ATTACHDEVICE attempted to attach a device as a named device and

discovered a physical volume on the device. However,
ATTACHDEVICE does attach the device. You can use the device
after formatting the volume as a named volume or after inserting
a named volume in the device.

<logical name) , volume not formatted

<logical name>, <exception value> : <exception mnemonic)

ATTACHDEVICE attempted to attach a device as a named device and

encountered an I/O error while searching for the volume's root
directory. This usually indicates that the volume is not
formatted. However, ATTACHDEVICE does attach the device.

<logical name>, volume not mounted

The specified device does not contain a volume. However,
ATTACHDEVICE does attach the device.

• <exception value> : <exception mnemonic), while collecting device
name

ATTACHDEVICE encountered an exceptional condition while parsing
the device name from the command line. This message lists the
resulting exception code. ATTACHDEVICE does not attach the
device.

<exception value) : <exception mnemonic), while collecting
logical name

ATTACHDEVICE encountered an exceptional condition while parsing
the logical name from the command line. This message lists the
resulting exception code.

Operator 3-12



ATTACHFIL

ATTACHFILE

This command allows you to associate a logical name with an existing
file. The command catalogs the logical name in your global object
directory. The format of this command is as follows:

INPUT PARAMETERS

pathname Pathname of the file to which the Human Interface
associates a logical name.

: logical name: 1- to 12-character name that represents the
logical name to be associated with the file.
Colons surrounding the logical name are optional;
however, if you use colons, you must use matching
colons. If you omit this parameter, the default
logical name is :$:.

If you enter the ATTACHFILE command without parameters, the default is:

ATTACHFILE .-HOME: AS :$:

DESCRIPTION

The ATTACHFILE command allows you to associate a logical name with an
existing file. After making this association, you can use the logical
name, instead of the entire pathname, to refer to the file.

When the attachment is complete, ATTACHFILE displays the following
message:

<pathname>, attached AS <logical name)

where <pathname> and <logical name) are as specified in the ATTACHFILE
command

.

ATTACHFILE makes the association between a file and a logical name by

cataloging a connection to the file in your global object directory (this
is normally the object directory of your interactive job). It catalogs
the connection under the name specified as the logical name. If there is

another connection cataloged in the object directory under the same

logical name, ATTACHFILE uncatalogs and deletes the previous connection
before cataloging the new one. If an object other than a connection

Operator 3-13



ATTACHFILE

is cataloged in the directory under the specified logical name,

ATTACHFILE leaves the previous object as is, does not catalog the new
connection, and displays an error message to describe the situation.

Because ATTACHFILE catalogs the connection in your global object
directory, the logical name has effect only within your interactive job.

Therefore, several users can specify the same logical name without
affecting the others.

If you specify a pathname for a file but omit the logical name,

ATTACHFILE attaches the file as :$:. This allows you to change your
default prefix. Changing your default prefix can be useful when you want

to manipulate files that reside in a directory other than the one

specified by your original default prefix. For example, suppose you have

a file that you normally refer to as:

:PROG: SOURCE/PLM/ INTERRUPT/TEST. P86

You can change your default prefix with the command:

ATTACHFILE SOURCE/PLM/ INTERRUPT

Then, you can refer to the file as simply:

TEST.P86

When you finish using the files in directory : PROG: SOURCE /PLM/ INTERRUPT,

you can return your default prefix to its original setting by entering:

ATTACHFILE

This is the same as entering:

ATTACHFILE :HOME: AS :$:

:HOME: is a logical name that refers to the same directory as your
original default prefix. Therefore, you can change your default prefix
as much as you like with ATTACHFILE and return to the original setting by

making reference to :HOME:. However, you cannot use ATTACHFILE to change
the meaning of :HOME:. (Also, you cannot use ATTACHFILE to change the

meaning of :CI: and :C0:.)

The logical name created with ATTACHFILE remains valid until one of the

following situations occur:

• A DETACHFILE command (described later in this chapter) dissolves
the association between file and logical name.

• The interactive session that specified the ATTACHFILE command
terminates processing. This event occurs when a user, in

response to the Human Interface prompt, enters a Control-Z
character to reinitialize the interactive job. In this case, the
Operating System deletes the interactive job and then recreates
it.

Operator 3-14



ATTACH DEVICE

• A task deletes the connection to the file via a Basic I/O System

or Extended I/O System call (refer to the iRMX 86 BASIC I/O

SYSTEM REFERENCE MANUAL or the iRMX 86 EXTENDED I/O SYSTEM

REFERENCE MANUAL for more information about connections). In

this instance, the. logical name remains cataloged in the global

directory, but the connection to which it refers does not exist.

• A user forcibly detaches the volume containing the file via the

DETACHDEVICE command (described later in this chapter).

• A user removes the volume from the drive.

ERROR MESSAGES

• <logical name), list of logical names not allowed

You entered more than one logical name as input to ATTACHFILE.

• <pathname>, list of pathnames not allowed

You entered more than one pathname as input to ATTACHFILE.

• <logical name>, logical name not allowed

You attempted to attach a file using a logical name :HOME:, :CI:,

or :C0:. You cannot change the meaning of these logical names.

• <logical name>, not a file connection

The logical name you specified, <logical name>, is already

cataloged in object directory of the session and does not

represent a connection object.

• <pathname>, not allowed as default prefix

You attempted to attach a physical or stream file as your default

prefix (:$:). Only named files are valid.

• <logical name>, too many logical names

Your global object directory is full. Therefore ATTACHFILE is

unable to catalog the file's name in the object directory.

Operator 3-15



BACKUP

BACKUP

This command saves files on a named volume by copying them to a physical
volume which serves as a backup storage device. This command provides a
way of saving a large volume (a Winchester disk, for example) onto a
number of smaller volumes such as diskettes or onto another mass storage
device such as a tape drive. Later, you can use the RESTORE command
(described later in this chapter) to retrieve these files and copy them
to a named volume.

TO

TIME
hh:mm:ss

INPUT PARAMETERS

pathname

DATE

mm/dd/yy

DATE
mm/dd/yy FORMAT QUERY

x-667

Pathname of a file on the source volume. BACKUP
saves all the files starting from this point on
the file tree. If you specify the logical name of
the device only, BACKUP saves all files in the
volume, beginning with the root directory. If you
specify a file and not a directory, then only the
specified file is saved.

BACKUP saves all files created or modified on or
after the date and time specified with the
DATE/TIME parameters. If the DATE parameter is
omitted, the date defaults to the current system
date. If both date and time parameters are
omitted (DATE/TIME), then the date and time
default to 1/1/78 and 00:00:00.

Form used to specify the DATE

mm Numerical designation for the month. (For
example: 1 represents January, 2 represents
February, etc.). Must be a digit.

dd Numerical designation for the day of the
month. Value must be in digits.

year Designation for the year. You enter this
as a two digit number, as follows:

Operator 3--16



entered year actual year

TIME

hh:ram: ss

<name>=name

FORMAT

through 77

78 through 99

100 through 1977

1978 through 2099
2100 and up

2000 through 2077

1978 through 1999

error
1978 through 2099

error

TIME is used in conjunction with the DATE

parameter to determine which files to

save. If TIME is omitted, the default is

00:00:00. BACKUP saves only those files
modified since the specified date or time,

Format for TIME parameter:

hh Hours specified as 0-24

mm Minutes specified as 0-59

ss Seconds specified as 0-59

Name that is given to the backup volume.

If you have a set of physical volumes,

this name applies to the set as a whole.

Causes BACKUP to format each volume

before writing to it. Interleave is set

to one. FORMAT should be inserted
whenever a new volume is used.

QUERY Causes the Human Interface to prompt for

permission to save each file. The Human
Interface prompts with one of the

following queries:

pathname, BACKUP Data File?
or

pathname, BACKUP Directory?

Enter one of the following responses to

the query:

ENTRY

Y or y

E or e

Action

Save the file.

Exit from BACKUP.

R or r

N or n

Operator 3-17

Continue saving files

without further query.

If data file, do not save
the file; if directory
do not save the

directory or any file in
in that part of the
directory tree. Query for
the next file, if any.



BACKUP

Other

OUTPUT PARAMETERS

TO

OVER

AFTER

: backup device;

Error message and
reprompt.

Causes BACKUP to send the processed
output to new backup volume. This
preposition also causes BACKUP to read
the volume label from each newly mounted
physical volume in an attempt to
determine the volume type. This is an
attempt to ensure that the volume is
compatible with any previously mounted
volumes in the backup set.

Causes BACKUP to begin writing on each
fresh volume without checking the label
for compatibility. BACKUP writes over
any previous files or directories on the
backup volume.

Causes BACKUP to search the mounted
volume looking for the end of a previous
backup operation. BACKUP then appends
the file or directory after the previous
backup operation. If more volumes are
needed to complete the backup operation,
then BACKUP behaves as if the TO
preposition had been specified for
subsequent volumes. If FORMAT was
specified, BACKUP formats any new volumes
required to finish the backup operation.

The logical name of the device to which
BACKUP copies the files.

DESCRIPTION

BACKUP is a utility which saves named files on backup volumes such as
tapes or diskettes. For BACKUP to save files from a named volume, you
must have read access to the files and to the directories that contain
them.

BACKUP saves the following information for each file:

File name

Access list, including owner

Extension data

File granularity

Contents of the file

Operator 3--18



BACKUP

When you enter BACKUP, the command displays the following sign-on message:

iRMX 86 BACKUP, Vx.y
Copyright <year> Intel Corporation

where Vx.y is the version number of the utility.

Once the command line has been scanned the following message is displayed

to indicate what TIME and DATE has been used to save files:

All Files Modified After <date> , <time> Will Be Saved

where <date> and <time> are the values you specified in the date and time

parameters (or defaults). BACKUP then prompts you to mount the backup
volume.

When you use the BACKUP command, you do not have to format a volume

previous to issuing the command. BACKUP has a FORMAT parameter which you
can use to format any volume while a backup operation is occurring.

Whenever BACKUP requires a new backup volume, the command displays the

following message:

<device>, Mount Backup Volume [(name) #<nn>] , Enter Y to Continue:

where <device> is the logical name of the backup device, (name) is the

name of the physical volume set, and nn is the identifying number of the

requested volume. In response to this message, you place a volume in the
backup device and enter one of the following responses:

Entry Action

Y, y, R or r Continue the backup process.

E or e Exit from the BACKUP command.

Any other Invalid entry; reprompt for entry,
character

BACKUP continues prompting for a backup volume until you supply one that

it can access.

If BACKUP detects that a volume cannot be read, that a volume is named
volume, or that the volume is a physical volume containing data, the

command informs you with one the following messages:

<device>, Recognized Volume
<device>, Volume Not Correctly Formatted
<device>. Backup Volume <name> #<nn>, <date>, <time> Mounted
<device>, Named Volume, <name> Mounted

where <device> is the logical name of the backup device, <name> is the

Operator 3-19



BACKUP

volume name as recorded in the label, <nn> Is the volume number of the

backup volume, and <date> and <time> are the date and times when the last
backup operation was performed. If the situation is appropriate, then
the command may prompt you by a request to FORMAT or to OVERWRITE the
mounted volume in the following way:

<device>, Enter Y to Overwrite /Format:

In response to this prompt, you enter one of the following:

Entry Action

Y or y Use the volume as a backup volume.

R or r Use the volume and do not query for permission
again. This is equivalent to specifying 'OVER'
on the command line for the rest of the BACKUP
operation.

E or e Exit from the BACKUP command.

N or n Reprompt for another volume.

Other Invalid Response—reprompt for entry.

When BACKUP has finished has finished a backup routine, the command
prints the following message:

Physical Volume (name), #nn, Complete

After the backup operation is complete, the number of data files and
directories which were saved are displayed for you in the following
format

:

nn Data File[s] Saved
nn Director [y] [ies] Saved

BACKUP [Not] Complete

ERROR MESSAGES

If the error message requires a response, enter one of the following:

Entry Action

Y, y, R or r Continue the backup process.

E or e Exit from the BACKUP command.

Any other Invalid entry; reprompt for entry,
character

Operator 3-20



BACKUP

<backup dev:Lce>, backup operation not completed

When BACKUP requested a new backup volume, you specified an "E"

to exit BACKUP. This message is a reminder that the backup
operation is not complete. The last file on the last backup
volume may be incomplete.

• <backup device>, backup volume #<nn>, <date>, <time>, mounted
<backup device>, enter Y to overwrite:

The backup volume you supplied already contains backup
information. BACKUP lists the logical name of the backup device,
the volume number, and the date on which the original backup
occurred. It overwrites this volume if you enter Y, y, R, or r.

• <backup device>, cannot attach volume
<backup device>, <exception value> : <exception mnemonic>
<backup device>, mount backup volume #<nn>, enter Y to continue:

BACKUP cannot access the backup volume. This could be because

there is no volume in the backup device or because of a hardware
problem with the device. The second line of the message
indicates the iRMX 86 exception code encountered. BACKUP
continues to issue this message until you supply a volume that
BACKUP can access.

• <pathname>, <exception value> : <exception mnemonic>, cannot back
up file

For some reason BACKUP could not copy a file from the named
volume, possibly because you do not have read access to the file
or because there is a faulty area on the named volume. The
message lists the pathname of the file and the exception code
encountered. BACKUP copies as much of the file as possible and
continues with the next file.

<backup device>, device in use

<backup device>, <exception value> : <exception mnemonic>

The device you specified for the backup device is the same device
that contains your input pathname. Continuing would result in
damage to the files on the input volume.

<backup device>, error writing volume label

<backup device>, <exception value> : <exception mnemonic>

Operator 3-21



BACKUP

<backup device>, input and output are on same device

The device you specified for the backup device is the same device

that contains your input pathname. Continuing would result in

damage to the files on the input volume.

<backup device>, invalid backup device

The logical name you specified for the backup device was not a

logical name for a device. Examples of invalid names are :CI:,

: CO : , and : HOME :

.

<exception value> : <exception mnemonic>, invalid DATE or TIME

For either the DATE or TIME parameter, you entered a value that

is out of range (such as 31/02/81 or 26:03:62). The message
lists the exception code encountered as a result of this entry.

invalid output specification

You did not supply the logical name of the backup device when you
entered the BACKUP command.

<backup device>, mount backup volume #<nn>, enter Y to continue:

When BACKUP attempted to write a label on the backup volume, it

encountered an error condition, possibly because of a faulty area
on the volume, or because the volume is write-proteeted. The
second line of the message indicates the IRMX 86 exception code

encountered. BACKUP reprompts for a different backup volume.

• <backup device>, named volume, <volume name>, enter Y to

overwrite:

The backup volume you supplied is a named volume. BACKUP lists
the logical name of the device containing the volume and the

volume name. It overwrites this volume if you enter Y, y, R, or
r.

• <backup device> not correctly formatted, enter Y to format:

The backup volume was not correctly formatted.

• <exception value> : <exception m.nemonic>, requested date/time
later than system date/ time

Either the date and time you specified in the BACKUP command are

in error or you did not set the system date and time.

Operator 3-22



BACKUP

<pathname>, too many input pathnames

You attempted to enter a list of pathnames or use a wild-carded
pathname as the input pathname. You can enter only one pathname
per invocation of BACKUP.

<pathname>, too many output pathnames

You attempted to enter a list of logical names for the backup
device. You can enter only one output logical name per
invocation of BACKUP.

<pathname>, unable to complete directory

BACKUP encountered an error when accessing a file in the

<pathname> directory. It skips the rest of the files in the

directory and goes on to the next directory. This error could
occur if you do not have list access to the directory.

<backup device>, unrecognized volume, enter Y to overwrite:

The backup volume you supplied is a formatted volume, but it has

a label that is not readable. BACKUP will overwrite this volume
if you enter Y, y, R, or r.

<backup device>, volume not formatted

<backup device>, mount backup volume #<nn>, enter Y to continue:

The backup volume you supplied was not formatted. BACKUP

continues to issue this message until you supply a formatted
backup volume.

• <backup device>, write error on backup volume
<backup device>, <exception value> : <exception mnemonic>

BACKUP encountered an error condition when writing information to

the backup volume. The second line of the message lists the

exception code encountered. This error is probably the result of

a faulty area on the volume.

Operator 3-23



COPY

COPY

This command reads data from the specified input source or sources and

writes the output to the specified destination file or files.

The format of the command is as follows:

INPUT PARAMETERS

inpath-list

QUERY

One or more pathnames for the files to be copied.

Multiple pathnames must be separated by commas.

Separating blanks are optional. To copy files on

a one-for-one basis, you must specify the same

number of files in the inpath-list as in the

outpath-list.

Causes the Human Interface to prompt for

permission to copy each file. Depending on the

specified preposition (TO, OVER, or AFTER), the

Human Interface prompts with one of the following
queries

:

<pathname>, copy TO <out-pathname>?

<pathnarae>, copy OVER <out-pathname>?

<pathname>, copy AFTER <out-pathname>?

Enter one of the following (followed by a carriage
return) in response to the query:

Entry Action
Y or y Copy the file.
E or e Exit from COPY command.

R or r Continue copying files without
further query.

Any other Do not copy this file; go to the

character next file in the input list.

Operator 3-24



OUTPUT PARAMETERS

TO

OVER

AFTER

outpath-list

Writes the listed input files to named new
output files. The specified output file or

files should not already exist. If they do,

COPY displays the following message:

<pathname>, already exists, OVERWRITE?

Enter Y, y, R, or r if you wish to write over

the existing file. Enter an "N" (upper or lower

case) or a carriage return alone if you do not
wish to overwrite the existing file. In the

latter case, the COPY command will pass over the

corresponding input file without copying it, and
will attempt to copy the next input file to its

corresponding output file.

If you specify multiple input files and a single

output file, COPY appends the remaining input

files to the end of the output file.

Writes the input files over (replaces) the

existing output files on a one-for-one basis,

regardless of file size. If an output file does

not already exist, its corresponding input file
is written to a new file with the corresponding
output file name. If you specify multiple input
files and a single output file, COPY appends

the remaining input files to the end of the

output file.

Appends the input file or files to the current

data in the existing output file or files. If

the output file does not already exist, all

listed input files will be concatenated into a

new file with the listed output file name.

One or more pathnames for the output files.

Multiple pathnames must be separated by commas.

Separating blanks are optional. If you omit the

preposition and outpath-list parameters, COPY

displays the output at your console screen (TO

:C0:).

DESCRIPTION

The COPY command can be used to perform several different operations.

Some of these include:

Operator 3-25



COPY

Creating new files (TO preposition).

Copying over existing files or creating new files (OVER
preposition).

Adding data to the end of existing files (AFTER preposition).

Copying a list of files to another list of files on a

one-for-one basis.

Concatenating two or more files into a single output file.

As each file is copied, the COPY command displays one of the following
messages:

<pathname>, copied TO <out-pathname>

<pathname>, copied OVER <out-pathname>

<pathname>, copied AFTER <out-pathname>

When you copy files, the number of input pathnames you specify must
equal the number of output pathnames, unless you specify only one

output pathname. In the latter case, COPY appends the remainder of the
input files to the end of the ouput file. As each file is appended,
the following message is displayed on the console screen:

<pathname>, copied AFTER <output-file>

If you specify multiple output files, and there are more input files
than output files, or if you specify fewer input files than output
files, COPY returns an error message.

Also, if you specify a wild-card character in an output pathname, you
must specify the same wild-card character in the corresponding input
pathname. Other combinations result in error conditions.

You cannot successfully use COPY to copy a directory to a data file or

to another directory. Although a directory can be copied, the
attributes of the directory are lost. That is, the directory can no
longer be used as a directory. However, a file listed under one
directory can be copied to another directory. For example:

COPY SAMP/TEST/A TO :Fl : /ALPHA/BETA

This would copy the A data file to a different volume, directory, and
filename, where the new file's pathname would be :Fl: /ALPHA/BETA.

The user ID of the user who invokes the COPY command is considered the

owner of new files created by COPY. Only the owner can change the

access rights associated with the file (refer to the PERMIT command
later in this chapter).

Operator 3-26



COPY

When COPY creates new files, it sets the access rights and list of

accessors as follows:

• It sets the file for ALL access (delete, read, append, and

change)

.

• It sets the owner as the only accessor to the file.

Refer to the PERMIT command for more information about access rights

and the list of accessors.

ERROR MESSAGES

• <pathname>, output file same as input file

You attempted to copy a file to itself.

• <pathname>, UPDATE or ADD access required

Either you cannot overwrite the information in a file because

you do not have update access to it, or you cannot copy

information to a new file because you do not have add entry

access to the file's parent directory.

Operator 3-27



CREATEDIR

CREATEDIR

This command creates one or more iRMX 86 user directories,

as follows:

The format is

INPUT PARAMETER

inpath-list One or more pathnames of the iRMX 86 directories

to be created. Multiple pathnames must be

separated by commas. Embedded blanks between
commas and pathnames are optional.

DESCRIPTION

CREATEDIR creates a directory with all access rights available to you,

the owner. That is, you can delete, list, add, and change the contents
of the directory you created with CREATEDIR. Other users (except the

system manager) have no access to the directory unless you use the PERMIT
command (described later in this chapter) to change the access rights and
list of accessors.

The following message is displayed if a directory is successfully created:

<directory-name>, directory created

You can create new directories that are subordinate to other directories.

For example:

CREATEDIR AB/DC/EF/GH

causes the newly-created directory GH to be nested within existing
directory EF, which in turn, is nested within directory DC, and so on.

The directories AB, DC, and EF must already exist before entering this

command.

You can check the contents of the directory at any time by using the DIR
command to list the directory (see the DIR command in this chapter).

ERROR MESSAGE

• <directory-name>, file already exists

The pathname of the directory to be created already exists

Operator 3-28



DATE

This command sets a new system date or displays the current date,

format is as follows:

The

-^ dd month year

mm/dd/year

QUERY

INPUT PARAMETERS

dd

month

mm

year

QUERY

Two-digit number that specifies the day of the

month. Both digits are not required to set this

parameter.

Designation for the month. You can enter the whole

name (such as AUGUST) or enough characters to

distinguish one month from another (for example, AU,

to distinguish AUGUST from APRIL). You can use this

form for specifying the month only when using the

"dd month year" format.

Numerical designation for the month (for example: 1

represents January, 2 represents February, etc.).

You can use this form for specifying the month only

when using the "mm/dd/year" format. Both digits are

not required to set this parameter.

Designation for the year. You can enter this as a

two- or four-digit number, as follows:

entered year

through 77

78 through 99

100 through 1977
1978 through 2099
2100 and up

actual year

2000 through 2077

1978 through 1999
error
1978 through 2099
error

Causes DATE to prompt for the date by issuing the

following message:

DATE:

DATE continues to issue this prompt until you enter

a valid date.

Operator 3-29



DATE

DESCRIPTION

If you set one date parameter, you must set all three; there are no

default settings for individual date parameters. You must separate the

dd, month, and year entries with single blanks.

If you omit the date parameters, DATE displays the current date and time

in the following form:

dd mm yy, hh:mm:ss

When the Operating System displays the date, it displays only the first

three characters of the month and the last two digits of the year. It

separates the hours, minutes, and seconds of the time with colons.

When you start up or reset the Operating System, the date is automatically

set to the last time you accessed the : SYSTEM: directory. You may then

reset the DATE setting to any acceptable value.

ERROR MESSAGES

• <date>, invalid date

You entered an invalid date. This error could result from

specifying a day that is invalid for the month you specified (such

as 31 FEB 82), entering characters for the year parameter that do

not fall into the legitimate ranges listed under the year
parameter, entering a month parameter that does not uniquely
identify the month, or entering invalid characters.

• <parameter>, invalid syntax

You specified both a date and the QUERY parameter in the DATE

command.

Operator 3-30



DEBUG

This command allows you to debug your iRMX 86 application jobs if your
system is configured with the iSDM 86, iSDM 286, or iSBC 957B monitors.

INPUT PARAMETERS

pathname

parameter- string

Pathname of the file containing the application
program to be debugged.

String of required, optional, and default
parameters that can be used in the command line to
load and execute the application program.

DESCRIPTION

DEBUG loads your specified application program into main memory and
transfers control to the system monitor. You can then use the monitor to
single-step, display registers, and set breakpoints within the program.
Refer to the iSDM 86 SYSTEM DEBUG MONITOR REFERENCE MANUAL and the iSDM
286 SYSTEM DEBUG MONITOR REFERENCE MANUAL for more information.

When you invoke the DEBUG command, it displays the following message:

DEBUG file, <pathname>

where <pathname> is the pathname of the file containing the application
job to debug. Then DEBUG loads the application job and displays
information about the location of the job's segments and groups. Figure
3-1 shows an example of this output.

As Figure 3-1 shows, the first line of the display lists the token for
the job that was created. The remaining lines list the base portions of
all segments and groups assigned by LINK86 when the code was linked. The
S(n) and G(n) values are the same as those that appear on the link map.
Therefore, you can match the base values shown in this display with the
offset values shown in the link map to determine the exact location of a

symbol listed in the link map. Refer to the iAPX 86, 88 FAMILY UTILITIES
USER'S GUIDE for information about LINK86 and the link map.

Operator 3-31



DEBUG

SEGMENT AND GROUP MAP FOR JOB: A88F

NAME BASE NAME BASE NAME BASE NAME BASE NAME BASE

S(l) 9E4E S(2) 9E32 S(3) 9CFF S(5) 9CEC S(6) A863

S(7) A229 S(8) A84D S(9) A152 S(13) 9C91 S(15) 9C85

S(17) 9C67 S(18) 9C5C

G(l) A229 G(2) A152

Figure 3-1. Sample DEBUG Display

When DEBUG executes, the monitor in your system disables interrupts.

This causes the time-keeping function to stop when code is not

executing. This slowing of the timing function:

• Affects the ability of the Nucleus to execute time-out tasks that

have provided time limits to system calls, such as RECEIVE$UNITS
and RECEIVE $MESSAGE.

• Affects the ability of the Basic. I/O System to keep track of the

tirae-of-day and write its data structures to secondary storage.

Unless you use the monitor's NQ command to single-step through code, the

system monitor cannot tolerate interrupts while single-stepping. The NQ

command disables interrupts while single-stepping, allowing you to

single-step through code without being interrupted by the system clock.

When DEBUG is invoked to debug an application program, it loads the

application program into its own dynamic, memory. As a result of this
process, the application program obtains dynamic memory from the memory
pool of DEBUG, not from the memory pool of the user session. Because
DEBUG uses a different set of default values than the CLI, it is possible

that the program may behave differently than when it is run independently,

ERROR MESSAGE

• <exception value> : <exception mnemonic> command aborted by EH

While processing, the DEBUG command encountered an exceptional
condition. Therefore, the Human Interface's exception handler

aborted the command. The message lists the exception code that
occurred.

Operator 3-32



DELETE

DELETE

This command removes data files and empty directories from secondary

storage. The format is as follows:

INPUT PARAMETERS

inpath-list

QUERY

One or more pathnames for the named data files or

empty directories to be deleted. Multiple

pathname entries must be separated by commas.

Separating blanks are optional.

Causes the DELETE command to ask for your

permission to delete each file in the list. Prior

to deleting a file, the DELETE command displays

the following query:

<pathname>, DELETE?

Enter one of the following (followed by a carriage

return) in response to the query:

Entry Action

Y or y Delete the file.

E or e Exit from DELETE command.

R or r Continue deleting without further

query.

Any other Do not delete file; query for next

character file in sequence.

DESCRIPTION

The DELETE command allows you to release unused secondary storage space

for new uses by removing empty directories and unneeded data files. To

delete a file, you need not be the owner of the file; however you must

have delete access to the file. If a user or program is accessing the

file (has a connection to the file) when you enter the DELETE command,

DELETE marks the file for deletion and deletes it when all connections to

the file are gone.

Operator 3-33



DELETE

Non-empty directories cannot be deleted. If you wish to delete a

directory that contains files, you must first delete all its contents.
For example, if you wish to delete a directory named ALPHA whose entire
contents consist of a directory BETA containing a data file SAMP, you
would enter the following command:

DELETE ALPHA/BETA/ SAMP, ALPHA/BETA, ALPHA

This command sequence would delete all the files contained under ALPHA
before deleting the directory itself.

DELETE displays the following message as it deletes each file or marks
the file for deletion:

<pathname>, DELETED

ERROR MESSAGE

• <pathname>, DELETE access required

You do not have permission to delete the specified file.

Operator 3-34



DETACHDEVICE

DETACHDEVICE

This command detaches the specified devices and deletes their logical

names from the root job's object directory. The format of this command
is as follows:

INPUT PARAMETER

logical-name-list One or more logical names of the physical devices
that are to be detached. Colons surrounding each

logical name are optional; however, if you use
colons, you must use matching colons. Multiple
logical names must be separated by commas.

FORCE Causes DETACHDEVICE to detach the device even if

connections to files on the device currently exist

DESCRIPTION

The DETACHDEVICE command allows you to detach a device without having to

reconfigure the system. After a device is detached, no volume mounted on

that device is accessible for system use.

Unless you are the system manager (user ID 0), you can detach only the

following devices:

• Devices that are configured with your user ID as the owner ID

• Devices you originally attached using the ATTACHDEVICE command

• Devices originally attached using the WORLD parameter of

ATTACHDEVICE

• Devices originally attached by user WORLD (user ID 65535)

DETACHDEVICE returns an error message if you attempt to detach devices

originally attached by other users. This error prevents users from

detaching devices belonging to other users and from accidentally
detaching system volumes. However, the system manager can detach all

devices.

Operator 3-35



DETACH DEVICE

Unless you specify the FORCE parameter, you cannot detach a device if any

connections exist to files on the device (that is, if other users are

currently accessing the device). However, the FORCE parameter causes

DETACHDEVICE to delete all connections to files on the device before

detaching the device.

After detaching the device and deleting its logical name from the root

job's object directory, the DETACHDEVICE command displays the following
message:

<logical-name>, detached

NOTE

Using the DETACHDEVICE command to

detach the device containing your Human
Interface commands causes loss of

access to Human Interface functions

until the system is restarted.

ERROR MESSAGES

• <logical narae>, can't detach device
<logical name>, <exception value> : <exception mnemonic>

An exceptional condition occurred which prevented DETACHDEVICE
from detaching the device. This message lists the resulting
exception code.

• <logical name>, device does not belong to you

The device was originally attached by a user other than WORLD or

you. Thus you cannot detach the device.

• <logical name>, device has outstanding file connections

There are existing connections to files on the device. Because

you did not specify the FORCE parameter, DETACHDEVICE does not
detach the device.

<logical name>, device is in use

Another user or program is accessing the device (has a connection

to a file). Therefore, you must specify the FORCE parameter in

order to detach the device.

Operator 3-36



DETACH DEVICE

• <logical name>, outstanding connections to device have been
deleted

There were outstanding connections to files on the volume.

However, because you specified the FORCE parameter, DETACHDEVICE
deleted those connections. This is a warning message that does

not prevent DETACHDEVICE from detaching the device.

Operator 3-37



DETACH FILE

DETACHFILE

This command allows you to terminate the association of a logical name
with a file. The format of this command is as follows:

PARAMETERS

logical-name-list List of logical names, separated by commas, that
represent the files to be detached. Each logical
name must be contain 1 to 12 characters. Colons
surrounding each logical name are optional;
however, if you use colons, you must use matching
colons.

DESCRIPTION

You establish an association between a file and a logical name by
entering the ATTACHFILE command. DETACHFILE breaks this association. It
does this by uncataloging the logical name from your interactive job's
global object directory. When DETACHFILE detaches a file in this manner,
it displays the following message:

<logical name>, detached

where <logical name) is the name you specified.

You cannot use DETACHFILE to detach logical names that do not represent
files. DETACHFILE returns an error message if you make such an attempt.
In particular, you cannot use DETACHFILE to detach devices.

You cannot use DETACHFILE to detach logical names originally created by
other users. DETACHFILE searches for logical names in the global object
directory of your interactive job only. It does not search the root
job's object directory nor the object directories of any other
interactive jobs.

Operator 3-38



DETACH FILE

ERROR MESSAGES

• <exception value> : <exception mnemonic> invalid global job

The Human Interface encountered an internal system problem when
it attempted to remove the logical name from the global job's
object directory. The message lists the resulting exception code.

<logical name) , logical name does not exist

The logical name is not cataloged in the global object directory
of your interactive job.

<logical name>, logical name not allowed

The logical name you specified was either :$:, :HOME:, :CI: , or

:C0:. You cannot detach the files associated with these logical
names.

<logical name) , not a file connection

The logical name you specified is cataloged in the global object

directory of your interactive job, but it is not the logical name
of a file.

Operator 3-39



DIR

This command lists the names and attributes of the data and directory

files contained in a given directory. The format of the command is as

follows:

INPUT PARAMETERS

inpath-list

FAST

SHORT

ONE

One or more pathnames of the directories to be

listed (the pathnames can represent data files if

the PARENT parameter is also specified). Multiple
directory pathname entries must be separated by
commas. Separating blanks are optional. If no

pathname is specified, the user's default
directory is listed.

Lists only the filenames and directory names in

the directory. The output format contains five
columns of filenames unless you also specify the

ONE parameter (see Figure 3-2 at the end of this
command description). FAST is the default if you
omit the listing format.

Lists the file information in a two-column format

(see Figure 3-3 at the end of this command
description)

.

Lists the output of a FAST or SHORT listing in

single-column format. ONE is the default number
of columns for EXTENDED or LONG listings.

Operator 3-40



LONG

EXTENDED

FREE

INVISIBLE

Lists file information in a one-line format (see
Figure 3-4 at the end of this command description).

Lists all available information for each data file
or directory file in the directory. The first
line for each file is the same as for the LONG
form. The second line contains the last access
date, creation date, and the accessor list. The
listing is in a double-column format (see Figure
3-5 at the end of this command description).

Lists the amount, of free space available on the

volume containing the given directory. The
listing shows the number of free files, free
volume blocks, and free bytes.

Lists the invisible files (those beginning with
the characters "R?" or "r?") in addition to the

rest of the files in the directory. If you omit

this parameter, DIR does not display invisible
files.

PARENT

QUERY

Causes DIR to display an entry for the directory

specified in the inpath-list in addition to the

files contained in the directory. This parameter
is useful for obtaining information about the root
directory of a volume when using the LONG or
EXTENDED parameters.

Causes the DIR command to prompt you for

permission to list a directory by issuing the

following message:

<pathname>, DIR?

Enter one of the following (followed by a carriage
return) in response to the query:

Entry

Y or y

Action

List the directory,

E or e Exit from DIR command.

R or r

Any other
character

Continue listing directories without
further query.

Do not list directory; query for the

next directory, if any.

FOR Selects only those files within a specific
directory in the path-list. FOR can be used with
wildcard file designators.

Operator 3-41



OUTPUT PARAMETERS

TO Copies the directory listing to the specified

destination data file. If the destination file

already exists, DIR displays the following
information:

<pathname>, already exists, OVERWRITE?

OVER

AFTER

Enter Y, y, R, or r if you wish to delete the

existing file. Enter any other character if you
do not wish to delete the file.

If you omit the TO/OVER/AFTER preposition and the

output pathname, TO :C0: is the default.

Copies the directory listing to the specified
output file and writes over (replaces) the

previous contents.

Appends the directory listing to the current

contents of the specified output file.

outpath-list One or more pathnames of the files to receive the

directory listing. Multiple pathname entries must
be separated by commas. Separating blanks are

optional. If you omit the preposition and the

outpath-list, the default destination is the

user's console screen (TO :C0:).

DESCRIPTION

You do not need to be the owner of a directory to list its contents with

DIR; however, you must have list access to the directory.

The amount of information listed for each file depends upon what listing

format you specify (FAST, SHORT, LONG, or EXTENDED). The end of the

SHORT, LONG, and EXTENDED DIR listings show the amount of space used
(first line) by the files and the amount of free space left over (second
line)

.

An example of each type of listing format is provided at the end of the

DIR command description in Figures 3-2 through 3-5 respectively. Table
3-3, which follows the figures, provides an explanation of the
illustrated headings.

If you want to list the default user directory but also wish to specify a

listing format other than FAST, use the default directory name

explicitly. For example:

Operator 3-42



DIR

DIR :$: EXTENDED

displays a listing of the default directory in the EXTENDED format. Note
that the identity of your default directory is a configuration option.

Figures 3-2, 3-3, 3-4, and 3-5 show output examples for FAST, SHORT,

LONG, and EXTENDED listing formats respectively. Table 3-3 defines the
displayed column headings.

If a file name begins with the characters "R?" or "r?", it is an

invisible file. Normally DIR does not display invisible files. However,

you can specify the INVISIBLE parameter to display these files.

-DIR alpha

03 MAR 82 04:25:40
DIRECTORY OF alpha ON mvol

fnamel fname2 fnarae3 fname4 fname

5

fname6 fname7 fname8 fname9 fnamelO
fname 11 . . .

Figure 3-2. FAST Directory Listing Example (Default Listing Format)

-DIR mydirectory2 S

03 MAR 82 21:55:24
DIRECTORY OF mydirectory2 ON myvol

NAME AT ACC
append -R

—

REFERENCE DR -L~
LEMONADEIT DRAU
time DRAU
test -R

—

testprog.a86 -RA-
EXPERIMENTAL DR -LAC

BLKS LENGTH NAME
02 1425 alpha. obj
1 10 DATA

123456789 123456789
6 5374 detachdevice
5 4415 schedule

DATABASE. LST
BACKUP

2 2040
1 20

AT ACC BLKS LENGTH
DRAU 3 2871

DR DLAC 1 4

DRAU
U

-RAU
DR DLAC

3414
6976

11 10336
1 10

13 FILES
33 FILES

44 BLOCKS
3,000 BLOCKS

36895 BYTES
3,072,000 BYTES FREE

Figure 3-3. SHORT Directory Listing Example

Operator 3-43



DIR

-DIR mydirectoryl L

03 MAR 82 21:55:24
DIRECTORY OF mydirectoryl ON myvol

NAME
ed

programs
fmat-.

OBJFILE
ALPHA1.P86
ALPHA1.MP1
manuals

AT ACC
-R—

DR DL—
DRAU

U
DLAC
DLAC

DR -L—

BLKS
11

30
1

3

2

6

1

GRAN
LENGTH VOL FIL OWNER

1057 1024 1 # 47

30185 1024 1 # 47

39 1024 1 # 655535
2895 1024 1 # 47

1304 1024 1 # 50
5397 1024 1 # 50

304 1024 1 # 47

LAST MOD
02 MAR 82

03 MAR 82

08 NOV 81

18 DEC 81

22 OCT 81

22 OCT 81

02 JUL 80

7 FILES
33 FILES

54 BLOCKS
3,000 BLOCKS

41181 BYTES
3,072,000 BYTES FREE

Figure 3-4. LONG Directory Listing Example

-DIR mydir E

03 MAR 82 21:55:24
DIRECTORY OF mydir ON myvol

GRAN
NAME AT ACC BLKS LENGTH VOL FIL OWNER LAST MOD

programs DR DL— 30 :30185 1024 1 # 47 03 MAR 82
CREATION: 01 JAN 81 04:05:44 ACCESSORS ACC
LAST ACC: 03 MAR 82 05:52:33 # 47 DL—
LAST MOD: 03 MAR 82 05:52:33 # 50

# 82
-LA-
-L—

ed -R— 11 1057 1024 1 # 47 02 MAR 82
CREATION: 11 NOV 81 12:24:05 ACCESSORS ACC
LAST ACC: 02 MAR 82 14:22:16 # 47 -R—
LAST MOD: 02 MAR 82 14:22:16

fmat DRAU 1 39 1024 1 # 65535 08 NOV 81
CREATION: 01 NOV 81 08:54:39 ACCESSORS ACC
LAST ACC: 03 MAR 82 14:56:59 # 65535 DRAU
LAST MOD: 08 NOV 81 20:44:01

testdir DR DLAC 1 32 1024 1 # 47 01 MAR 82
CREATION: 02 FEB 82 15:02:42 ACCESSORS ACC
LAST ACC: 03 MAR 82 09:32:53 # 47 DLAC
LAST MOD: 01 MAR 82 13:13:07 # 50

# 65535
-LA-
-L—

4 FILES 43 BLOCKS 32213 BYTES
33 FILES 3,000 BLOCKS 3,072,000 BYTES FREE

Figure 3-5. EXTENDED Directory Listing Example

Operator 3-44



Table 3-4. Directory Listing Headings

Heading Meaning

NAME

AT

ACC

14-character file name.

File attribute, where:
DR = Directory
MP = Bit map file
blank = Data file

File access rights of the user who entered the DIR command,

where:

BLKS

LENGTH

VOL

FIL

OWNER

LAST MOD

LAST ACC

CREATION

Directories:

Data Files:

Delete
List
Add

I |
Change

DLAC

DRAU
I

I Update
I Append

Read
Delete

Nine-digit number (five digits on SHORT listing) giving the

volume-granularity units allocated to the file. On the

SHORT display, if the number of digits exceeds five, DIR
displays the file in the nine-digit form (see the

LEMONADEIT file in Figure 3-5).

10-digit number (7 digits on SHORT listing) giving the

length of the file in bytes. On the SHORT form, if the

number of digits exceeds 7, the file is displayed in the

10-digit form (see the LEMONADIT file in Figure 3-5).

Five-digit number giving the volume granularity in bytes.

Three-digit number giving the granularity of the file in

multiples of volume granularity.

14-character, alphanumeric owner name.

Date of last file modification.

Date of last file access.

Date of file creation.

Operator 3-45



Table 3-4. Directory Listing Headings (continued)

Heading Meaning

ACCESSORS User IDs of users who have access to the file.

ACC Access rights of the corresponding user. The format of
this field is identical to ACC as described previously.

ERROR MESSAGES

• no directory files found

None of the files you specified were directories.

• <pathname>, READ access required

You do not have read (list) access to the directory.

• <pathname>, UPDATE or ADD access required

Either you cannot overwrite the information in a file because you
do not have update access to it, or you cannot copy information
to a new file because you do not have add entry access to the
file's parent directory. The oul:path-list is most likely to be
at fault.

EXAMPLES

The examples that follow show how a directory's files are listed when you
use your default prefix in a directory's pathname. In the examples,
directory names are enclosed in triangles; data file names are enclosed
in rectangles.

Assume you have the following directory structure for your files:

Operator 3-46



DIR

Example 1

:

Suppose your default prefix is :F0:Q. This example shows the files
that would be listed in response to various DIR commands. It shows
the pathnames that you could enter and the resulting files that DIR
would list.

Pathname

omitted
f

A
A/d
A/CB
A/CB/e

Files Listed

A, f

not allowed because f is a data file
bb, CB, d

not allowed because d is a data file
e, f

not allowed because e is a data file

Example 2:

Suppose your default prefix is :F0:Q/A. This example also shows the

files that would be listed in response to various DIR commands.

Pathname Files Listed

omitted
A

CB

bb, CB, d

not allowed because directory A does not
contain an entry A
e, f

Operator 3-47



DISKVERIFY

DISKVERIFY

This command invokes the disk verification utility which verifies the
data structures of iRMX 86 physical and named volumes. This utility can
also be used to reconstruct portions of the volume and perform absolute
editing on the volume. The format of the DISKVERIFY command is as
follows:

DISKVERIFYJ-T :logicalname: \r

{PHYSICAL}

INPUT PARAMETERS

: logical-name: Logical name of the secondary storage device
containing the volume.

DISK Displays the attributes of the volume (such as type of
volume, device granularity, block size, number of
blocks, interleave factor, extension size, volume
size, and number of fnodes) and returns control to you
at the Human Interface level. You can then enter any
Human Interface command.

If you omit this parameter (and the VERIFY parameter),
the utility displays a sign-on message and the utility
prompt (*). You can then enter individual disk
verification commands. These commands are described
in the iRMX 86 DISK VERIFICATION UTILITY REFERENCE
MANUAL.

Operator 3-48



DISKVERIFY

VERIFY or V Performs a verification of the volume. If you

specify this parameter and omit the options, the

utility performs the NAMED verification.

If you specify this parameter, the utility
performs the verification function and returns
control to you at the Human Interface level. You
can then enter any Human Interface command.

If you omit this parameter (and the DISK
parameter), the utility displays a sign-on message
and the utility prompt (*). You can then enter
individual disk verification commands. These
commands are described in the iRMX 86 DISK
VERIFICATION UTILITY REFERENCE MANUAL.

NAMED1 or Nl VERIFY option that applies to named volumes only.

This option checks the fnodes of the volume to

ensure that they match the directories in terms of
file type and file hierarchy. (Refer to the

description of the FORMAT command for more
information about fnodes.) This option also

checks the information in each fnode to ensure
that it is consistent. As a result of this
option, DISKVERIFY displays a list of all files on

the volume that are in error, with information
about each file. Refer to the iRMX 86 DISK
VERIFICATION UTILITY REFERENCE MANUAL for more
information.

NAMED or N

ALL

NAMED2 or N2

VERIFY option that performs both the NAMEDl and

NAMED2 verification functions on a named volume.
If you omit the VERIFY option, NAMED is the
default option.

VERIFY option that applies to both named and
physical volumes. For named volumes, this option
performs both the NAMED and PHYSICAL verification
functions. For physical volumes, this option
performs only the PHYSICAL verification function.

VERIFY option that applies to named volumes only.

This option checks the allocation of fnodes on the
volume, checks the allocation of space on the

volume, and verifies that the fnodes point to the

correct locations on the volume. Refer to the

iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL
for more information.

PHYSICAL VERIFY option that applies to both named and

physical volumes. This option reads all blocks on
the volume and checks for I/O errors.

Operator 3-49



DISKVERIFY

LIST VERIFY option that you can use with other VERIFY
options that, either explicitly or implicitly,
specify the NAMED1 option. When you use this
option, the file information generated by VERIFY
is displayed for every file on the volume, even if
the file contains no errors. Refer to the iRMX 86
DISK VERIFICATION UTILITY REFERENCE MANUAL for
more information.

OUTPUT PARAMETERS

TO Copies the output from the disk verification
utility to the specified file. If the file
already exists, DISKVERIFY displays the following
information:

<pathname>, already exists, OVERWRITE?

Enter Y, y, R, or r to write over the existing
file. Enter any other character if you do not
wish to overwrite the file.

If no preposition is specified, TO :C0: is the
default.

OVER

AFTER

outpath

Copies the output from the disk verification
utility over the specified file.

Appends the output from the disk verification
utility to the end of the specified file.

Pathname of the file to receive the output from
the disk verification utility. If you omit this
parameter and the TO/OVER/AFTER preposition, the
utility copies the output to the console screen
(TO :C0:). You cannot direct the output to a file
on the volume being verified. If you attempt
this, the utility returns an E$NOT_CONNECTED error
message.

DESCRIPTION

When you enter the DISKVERIFY command, the utility responds by displaying
the following line:

iRMX 86 DISK VERIFY UTILITY, Vx.y
Copyright <year> Intel Corporation

where Vx.y is the version number of the utility. If you specify the
VERIFY or DISK parameter in the DISKVERIFY command, the utility performs
the operation specified in the parameter and copies the output to the
console (or to the file specified by the outpath parameter).

Operator 3-50



DISKVERIFY

Refer to the iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL for a

description of the output. After generating the output, the utility
returns control to the Human Interface, which prompts you for more Human
Interface commands. The following is an example of a DISKVERIFY command
that uses the VERIFY option:

-DISKVERIFY ;F1; VERIFY NAMED2
iRMX 86 DISK VERIFY UTILITY , Vx.y
Copyright <year> Intel Corporation
DEVICE NAME = Fl : DEVICE SIZE = 0003E900 : BLOCK SIZE = 0080

f NAMED2 ' VERIFICATION
BIT MAPS O.K.

The following is an example of a DISKVERIFY command that uses the DISK
option:

-DISKVERIFY :F2: DISK
iRMX 86 DISK VERIFY UTILITY, Vx.y
Copyright <year> Intel Corporation

Device name = WFO

Named disk, Volume name = UTILS
Device gran = 0080
Block size = 0080

No of blocks = 0000072D : No of Free blocks - 00000408
Volume size = 0003E900
Interleave = 0005

Extension size = 03

No of fnodes = 0038 : No of Free fnodes = 0022

However, if you omit the VERIFY and DISK parameters from the DISKVERIFY
command, the utility does not return control to the Human Interface.
Instead, it issues an asterisk (*) as a prompt and waits for you to enter

individual DISKVERIFY commands. The following is an example of such a

DISKVERIFY command:

-DISKVERIFY :Fl:

iRMX 86 DISK VERIFY UTILITY, Vx.y
Copyright <year> Intel Corporation

After you receive the asterisk prompt, you can enter any of the

DISKVERIFY commands listed in the iRMX 86 DISK VERIFICATION UTILITY
REFERENCE MANUAL.

ERROR MESSAGES

• argument error

The VERIFY option you specified is not valid,

Operator 3-51



DISKVERIFY

command syntax error

You made a syntax error when entering the command,

• device size inconsistent

size in volume label = <valuel> : computed size = <value2>

When the disk verification utility computed the size of the

volume, the size it computed did not match the information
recorded in the iRMX 86 volume label. It is likely that the

volume label contains invalid or corrupted information. This

error is not a fatal error, but it is an indication that further

error conditions may result during the verification session. You

may have to reformat the volume or use the disk verification
utility to modify the volume label. Refer to the iRMX 86 DISK
VERIFICATION UTILITY REFERENCE MANUAL for more information about

the disk verification utility commands.

• not a named disk

You tried to perform a NAMED, NAMED1, or NAMED2 verification on a

physical volume.

The NAMED1, NAMED2, and PHYSICAL verification options can also produce

error messages. Refer to the iRMX 86 DISK VERIFICATION UTILITY REFERENCE

MANUAL for more information about these messages.

EXAMPLE

The following command performs both named and physical verification of a

named volume.

-DISKVERIFY :F1: VERIFY ALL

iRMX 86 DISK VERIFY UTILITY, Vx.y
Copyright <year> Intel Corporation

DEVICE NAME = Fl : DEVICE SIZE = 0003E900 : BLK SIZE = 0080

'NAMED1 1 VERIFICATION

'NAMED2' VERIFICATION
BIT MAPS O.K.

'PHYSICAL' VERIFICATION
NO ERRORS

Operator 3-52



DOWNCOPY

DOWNCOPY

This command copies files from a volume on an iRMX 86 secondary storage

device to a volume on an ISIS-II secondary storage device via the

monitor. The format: is as follows:

INPUT PARAMETERS

inpath-list

QUERY

One or more iRMX 86 pathnames for files, separated

by commas, that are to be copied to ISIS-II

secondary storage. Separating blanks between

pathnames are optional. The files may be copied

in the listed sequence either on a one-for-one

basis or concatenated into one or more files.

Causes the Human Interface to prompt for

permission to copy each iRMX 86 file to the listed
ISIS-II destination file. Depending on which
preposition you specify (TO, OVER, or AFTER), the

Human Interface prompts with one of the following

queries:

<pathname>, copy down TO <outfile>?

<pathname>, copy down OVER <outfile>?

<pathname>, copy down AFTER <outfile>?

Enter one of the following in response to the

query

:

Entry Action

Y or y Copy the file.

E or e Exit from the DOWNCOPY command.

R or r Continue copying files without
further query.

Any other Do not copy this file; query

character for the next file in sequence.

Operator 3-53



DOWNCOPY

OUTPUT PARAMETERS

TO

OVER

AFTER

outfile-list

Reads iRMX 86 files and copies them TO new ISIS-II
files in the listed sequence. If the specified
output files already exist in the ISIS-II
directory when the TO parameter is used, DOWNCOPY
displays the following message:

<filenarae>, already exists, OVERWRITE?

Enter Y, y, R, or r if you wish to delete the

existing file. E'.nter any other character if you
do not wish the €'.xisting file to be deleted.

If no preposition is specified, TO :C0: (ISIS-II

console screen) is the default. If more input
files than output: files are specified, the
remaining input files are appended to the end of
the last-specified ISIS-II file.

Copies the iRMX 86 input files OVER the existing
ISIS-II destination files in the specified
sequence. If you specify multiple input files and
one output file, DOWNCOPY appends the remaining
input files to the end of the output file.

Copies the iRMX 86 input files, in sequence, AFTER
the end of data on the existing ISIS-II
destination files.

One or more ISIS-II filenames for the output
files. Multiple filenames must be separated by
commas. Separating blanks are optional. If the
preposition and output file defaults are not used
in the command line, the output goes to the

ISIS-II console screen.

DESCRIPTION

The DOWNCOPY command cannot be used to copy directories from an iRMX 86

system to a Series III Microcomputer Development System; only files can
be copied.

Before you enter a DOWNCOPY command on t:

target system must be connected to a Ser
package, the iSDM 86 monitor, and the iS

must start your iRMX 86 system from the
loading the software into the target sys

command to start execution, or by using
bootstrap load the software). DOWNCOPY
your system from the iRMX 86 terminal or
between the Series III system and target:

iRMX 86 system.

he iRMX 86 console keyboard, your
ies III system via the iSBC 957B
DM 286 monitor. To do this, you
Series III terminal (either by
tern and using the monitor G

the monitor B command to
does not function if you start up
if you establish the link
system after starting up your

Operator 3-54



DOWNCOP\

When DOWNCOPY copies files to the development system, it turns off all
ISIS-II file attributes.

As each file in the input list is copied, one of the following messages
will be displayed on the Human Interface console output device (:C0:):

<pathname>, copied down TO <out-filename>

<pathname>, copied down OVER <out-filename>

<pathname>, copied down AFTER <out-filename>

When the DOWNCOPY command is executing, the monitor disables interrupts.
This event affects services such as the time-of-day clock. Also, the
Operating System is unable to receive any characters that you type-ahead
while the monitor is disabling interrupts.

ERROR MESSAGES

• <pathname>, DELETE access required

DOWNCOPY could not replace an existing ISIS-II file because the
file is write-protected.

• <pathname>, ISIS ERROR: <nnn>

An ISIS-II Operating System error occurred when DOWNCOPY tried to
transfer the file to the Microcomputer Development System. Refer
to the INTELLEC SERIES III MICROCOMPUTER DEVELOPMENT SYSTEM
CONSOLE OPERATING INSTRUCTIONS for a description of the resulting
error code.

• ISIS link not present

The the iRMX 86 system is not connected to the development system
via the monitor.

Operator 3-55



FORMAT

FORMAT

This command formats or reformats a volume on an iRMX 86 secondary

torage device, such as a diskette, tape drive, hard disk, or bubble
s

memory. The format is as follows:

1 PT

INPUT PARAMETERS

: logical-name:

volume-name

FILES=num

Logical name of the physical device-unit to be

formatted. You must surround the logical name

with colons. Also, you must not leave space

between the logical name and the succeeding volume

name parameter.

Six-character, alphanumeric ASCII name, without

embedded blanks, to be assigned to the volume. If

you include this parameter, you must not leave

spaces between the logical name and the volume

name.

Defines the maximum decimal number of user files

that can be created on a NAMED volume. (This

parameter is not meaningful when formatting a

PHYSICAL volume and is ignored if specified for

such volumes.) FORMAT uses the information

specified in this parameter to determine how many

structures (called fnodes ) to create on the NAMED

volume. The range for the FILES parameter is 1

through 32,761, although the maximum number of

user files you can define depends on the settings

of the GRANULARITY and EXTENSIONSIZE parameters

(as explained in the "Description" portion of this

command write-up). When you use this parameter,

FORMAT creates six additional fnodes for internal

system files. If not specified, the default is

200 user files.

Operator 3-56



FORMAT

FORCE Forcibly deletes any existing connections to files
on the volume before formatting the volume. If you
do not specify FORCE, you cannot format the volume
if any connections to files on the volume still
exist.

MAPSTART=num Gives the volume block number where the fnodes file,

bit: map files, and the root directory should start.
The size of the block is set by the GRANULARITY
parameter. If no number is given, the Operating
System puts the fnodes file in the center of the
volume. If the number is too low, the Operating
System places the map files at the lowest available
space on the volume.

GRANULARITY=num Volume granularity; the minimum number of bytes to

be allocated for each increment of file size on a

NAMED volume. (This parameter is not meaningful for
PHYSICAL volumes, and is ignored if specified for
such volumes.) FORMAT rounds the value you specify
up to the next multiple of the device granularity.
Then it places the decimal number in the header of

the volume, where it becomes the default file
granularity when a file is created on the volume.
The range is 1 through 65,535 (decimal) bytes,
although the maximum allowable volume granularity
depends on the settings of the FILES and
EXTENSIONSIZE parameters (as explained in the
"Description" portion of this write-up). If not
specified, the default granularity is the device
granularity. Once the volume granularity is

defined, it applies to every file created on that
volume

.

NOTE

Using a large volume granularity (in

excess of 1024), might cause users to

exceed their memory limits when
executing programs that reside on the

volume. This error can occur because
the Operating System uses the volume
granularity as a minimum buffer size
when reading and writing files.

EXTENSIONSIZE=num Size, in bytes, of the extension data portion of each
file. (This parameter is not meaningful for PHYSICAL
volumes, and is ignored if specified for such
volumes.) The range is through 255 (decimal),
although the maximum allowable extension size depends
on the settings of the FILES and GRANULARITY
parameters (as explained in the "Description" portion
of this write-up). If not specified, the default
extension size is 3 bytes.

Operator 3-57



FORMAT

INTERLEAVE-num

NAMED

PHYSICAL

QUERY

Interleave factor for a NAMED or PHYSICAL volume.

Acceptable values are 1 through 255 decimal. If

not specified, the default value is 5. See the

interleave discussion under "Description" in this

section.

The volume can store only named files; that is,

the volume can hold many files (up to the number

of fnodes allocated), each of which can be

accessed by its pathname. A diskette or hard disk

surface are examples of devices that would be

formatted for named files. If neither NAMED nor

PHYSICAL is specified, the volume is formatted for

the file specified when you attached the device

(with the ATTACHDEVICE command).

The volume can be used only as a single, physical

file. The GRANULARITY and FILES parameters are

not meaningful when PHYSICAL is specified for the

volume. If neither NAMED nor PHYSICAL is

specified, the volume is formatted for the file
type specified when you attached the device (with

the ATTACHDEVICE command).

Prompts the user for permission to format the

volume. The Human Interface displays the

following:

<volume name), FORMAT?

If the user replies with a 'Y', f y\ 'R 1

, or'r',
then the volume Is formatted. Any other response

is considered by the Human Interface be a 'no'.

DESCRIPTION

Every physical device-unit used for secondary storage must be formatted

before it can be used for storing and then accessing its files. For

example, every time you mount a previously unused diskette into a drive,

you must enter a FORMAT command to format that diskette as a new volume

before you can create, store and access files on it.

Once a volume is formatted, its name becomes a volume identifier when you

display any directory of the volume, and the name appears in the

directory's heading. Although the Human Interface uses the volume name

in its own internal processing when you access the volume, you need not

specify the volume name in any subsequent command after the volume is

formatted. You must specify only the logical name of the secondary

storage device that contains the volume..

Operator 3-58



FORMAT

Volume Name

The Human Interface requires a volume name for its own internal

processing of your read/write accesses to the volume. Once the volume is

formatted, you need never specify the volume name in a command; you only

specify the logical name for the device on which you later mount the

volume.

For diskettes, a volume name gives you a method for identifying a volume

in case the stick-on label on the diskette gets lost or destroyed. You

need only mount the disk on a drive and enter a DIR command for that

drive to get a directory listing that specifies the volume name.

Fnodes

The number of fnodes on a volume defines the number of files that can

exist on the volume. You can specify the number of fnodes reserved for

user files with the FILES parameter. Each fnode is a data structure that

contains information about a file. Each time you create a file on the

volume, the Operating System records information about the file in an

unused fnode. Later, it uses the fnode. to determine the location of the

file on the volume. You can locate fnodes anywhere you wish on a volume.

Internal Files

When you format a named volume, FORMAT creates six internal system

files. It names three of these files and lists their names in the root

directory of the volume. The files are invisible. The files are:

file description

R?SPACEMAP Volume free space map

R?FNODEMAP Free fnodes map
R?BADBLOCKMAP Bad blocks map

R?VOLUMELABEL Volume label

The Operating System grants the user WORLD read access to these files.

Refer to the iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL for more

information about these files.

Operator 3-59



FORMAT

Root Directory

FORMAT also uses one of the fnodes for the root directory. It lists the

user who formats the volume as the owner, giving that user all access
rights. No other user has access to the root directory until the owner
explicitly grants access. The owner can. grant other users access to the
volume via the PERMIT command described later in this chapter. However,
because the owner has all access rights to the root directory, the owner
can obtain exclusive access to the volume, and can obtain delete access
to any file created on the volume, even files created by other users.

Extension Data

Each fnode contains a field that stores extension data for its associated
file. An operating system extension can access and modify this extension
data by invoking the A$GET$EXTENSION$DATA and A$SET$EXTENSION$DATA system
calls (refer to the iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL for more
information). When you format a volume, you can use the EXTENSIONSIZE
parameter to set the size of the extension data field in each fnode.
Although you can specify any size from C to 255 bytes, the Human
Interface requires all fnodes to have at least 3 bytes of extension data.

Volume Granularity

The default volume granularity is always the granularity of the physical
device for the volume. For example, if the default granularity for a

device is 128 bytes of secondary storage, the I/O System will
automatically allocate permanent storage to each new file you create on
that volume in multiples of 128 bytes, regardless of whether the file
requires the full amount.

Relationship between FILES, GRANULARITY, and EXTENSIONSIZE

Although the FILES, GRANULARITY, and EXTENSIONSIZE parameters have
maximum values which are listed in the parameter descriptions, the
combination of these parameters must also satisfy the following formula;

(87 + EXTENSIONSIZE) x (FILES + 6) / GRANULARITY <^ 65535

where all numbers are decimal. FORMAT displays an error message if the

combination of parameter values exceeds the limit.

Interleave Factor

The interleave factor applies to volumes formatted either for NAMED or

Operator 3-60



F0RMA1

PHYSICAL files. The interleave factor specifies the logical sector

sequence. If the consecutively-accessed sectors of a disk are staggered

(that is, if they are not consecutive physical sectors), disk access time

can decrease considerably. The reason for this decrease is that although

a controller cannot: read a sector and issue another read command in the

time it takes for the next sector to be positioned under the head, the

controller can perform this operation in less time than it takes for the

disk to revolve once. Therefore, if the consecutively-accessed sectors

are staggered correctly, the next accessed sector will be positioned

under the read head just as the controller becomes ready to read it.

The amount of staggering is called the interleave factor . An interleave

factor of two means that as the disk rotates, the controller

consecutively accesses every second sector. An interleave factor of five

means that the controller consecutively accesses every fifth sector. The

following diagram illustrates how a controller accesses sectors on a

12-sector disk with an interleave factor of two.

Access Number Rotation NumberSector Number

Sector

Sector 1

Sector 2

Sector 3

Sector 4

Sector 5

Sector 6

Sector 7

Sector 8

Sector 9

Sector 10

Sector 11

1

6 2

1 1

7 2

2 1

8 2

3 1

9 2

4 1

10 2

5 1

11 2

Note that the interleave factor also implies the number of disk rotations

necessary to access all the sectors on a given track. Thus from the

previous diagram you can see that an interleave factor of two implies

that it takes two rotations of the disk to access all the sectors on a

track.

Operator 3-61



FORMAT

When The Interleave Factor Is Important

The interleave factor is important when large transfers of consecutive
data take place at speeds that approach the maximum transfer rate of the
disk. This type of transfer occurs in the following cases:

• When you bootstrap load the Operating System from disk.

• When you use the Application Loader to load an application
program from disk.

• When you invoke programs that perform large transfers of
consecutive data, such as the Human Interface COPY command.

How To Select An Interleave Factor

Suitable interleave factors depend on the turnaround time of the software
that controls the I/O operations; that is, the time between reading a
sector and becoming ready to read the next sector. In the cases listed
in the previous paragraph, the turnaround time between sector accesses is
different. Therefore the ideal interleave factors could be different.
The differences are:

• The Bootstrap Loader instructs the disk controller to read one
sector at a time. Thus, the turnaround time depends on the
execution overhead of the Bootstrap Loader and is comparatively
long. A large interleave factor is optimal for flexible disks
that you use with the Bootstrap Loader. For hard disks however,
the Bootstrap Loader has no effect on the turnaround time because
revolution speed is so great that: more than one disk revolution
occurs between sector reads.

• The Application Loader reads several sectors at a time into its
internal buffer. Then it takes a relatively long time to process
the object records in this buffer. The ideal interleave factor
here is one that optimizes for the object record processing time
between disk accesses. For flexible diskettes, this interleave
factor is somewhat smaller than that for the Bootstrap Loader.
However, hard disks, as in the previous paragraph, are not
affected by the Application Loader.

• Applications which transfer large amounts of consecutive data
(such as the COPY command) can initiate data transfers involving
many sequential sectors. Thus the controller accesses sectors on
a given track as fast as possible. Here, the ideal interleave
factor is one that optimizes for the turnaround speed of the disk
controller.

The ideal interleave factor depends heavily on the application. However,
because the revolution speed of hard disks is so high, you should format
them with interleave factors that are optimized for the turnaround speed
of the disk controller.

Operator 3-62



FORMAT

The value to use for flexible diskettes depends on how you are going to
use the diskettes. For flexible diskettes that contain
bootstrap-loadable information (system disks), you should select an
interleave factor that optimizes for Bootstrap Loader performance. This
ensures that the bootstrap loading process completes in a reasonable
amount of time, despite using a device that is relatively slow-turning.
For non-system diskettes that contain loadable files (such as Human
Interface commands), select an interleave factor that optimizes for
Application Loader performance. Otherwise, select a value that optimizes
for copying.

If you do not know the optimal value for an interleave factor, it is
better to specify an interleave factor that is too large rather than one
that is too small. An interleave factor that is slightly larger than
optimal causes the disk to move only an extra sector or two before
reaching the correct: sector. However, an interleave factor that is less
than optimal causes the disk to make nearly a complete revolution before
reaching the sector.

Optimal Interleave Factors For Intel Devices

This section lists the optimum values for some devices that Intel has
tested.

Table 3-5. Optimal Interleave Factor for Hard Disk Controllers

Device Optimal Interleave Factor

iSBC 206 device

iSBC 215 device
Priam
ANSI
Fujitsu/Memorex
Shugart SA 1004/Quantum
CMI

RMS

iSBC 220 device

iSBC 254 device (Not applicable to bubble memory devices)

Operator 3-63



FORMAT

Table 3-6. Flexible Disk Controllers (using 8" disks)

Device

Optimal Interleave Factor For

Application Loader Bootstrap Loader COPY

iSBC 204 device

iSBC 208 device

iSBX 218 device

5

5

5

7

7

7

1

1

2

Output Display

The FORMAT command displays one of the following message when volume

formatting is completed. For physical volumes:

volume (<volume name)) will be formatted as a PHYSICAL volume

device gran. = <number>
interleave = <number>
volume size = <k-number> K (or M)

TTTTTTTTTTTTTTTTTTT. .

.

volume formatted

While the storage device is being formatted, FORMAT displays on the

console the letter "T" for every 100 tracks formatted. For example, if

you see three T's on the screen, the Operating System has finished

formatting at least 300 tracks. Displaying the T's on the screen is

useful when you format large capacity disks. A continuous stream of T's

lets you know that the system hasn°t failed diring the FORMAT operation.

For named volumes:

volume (<volume name>) will be formatted as a NAMED volume

granularity = <number> map start = <number>

interleave = <number> sides = <sides>
files = <number> density = <density>
extensionsize = <number> disk size = <d-size>

volume size = <k-number> K (or M)

TTTTTTTTTTTT . .

.

volume formatted

Operator 3-64



FORMAT

where:

<nuraber>

<volume name>

<number>

<k-number>

<sides>

<density>

<d-size>

Position where the fnodes start.

Volume name specified in the FORMAT command.

Decimal number as specified in the command (or the
default)

Volume size in K (1024-byte units) or M
( 104857 6-byte units). FORMAT displays the volume
size in Kbyte units unless the size is greater
than 25 Mbytes.

Number of sides of the volume that will be

formatted (1 or 2). This field is displayed only
for flexible diskettes in which FORMAT can
recognize this characteristic.

Density at which the volume will be formatted

(single or double). This field is displayed only
for flexible diskettes in which FORMAT can
recognize this characteristic.

Size of the volume (8 or 5.25). This field is

displayed only for flexible diskettes in which
FORMAT can recognize this characteristic.

ERROR MESSAGES

<logical name>, can't attach device
<logical name>, <exception value> : <exception mnemonic>

FORMAT cannot attach the device for formatting, or it cannot
re-attach the device (that is, restore it to its original
condition) after formatting takes place.

<logical name>, can't detach device
<logical name), <exception value> : <exception mnemonic>

FORMAT cannot detach the device for formatting, which means that

the volume does not exist, the volume is busy, or the device on
which the volume is mounted is not currently attached to the
system.

<logical name) , device is in use

You cannot format the volume because there are outstanding
connections to files on the volume and you did not specify the

FORCE parameter.

Operator 3-65



FORMAT

<vol-name>, fnode file size exceeds 65535 volume blocks

The values you specified for fnode size, granularity, and

extension data size cause the formula listed in the "Description'
section to exceed its limit.

<number>, invalid number

You specified an out-of-range number for any of the FILES,
GRANULARITY, EXTENSIONSIZE, or INTERLEAVE parameters.

<logical-name>, map files do not fit

The volume is too small for the map files or the map start block
is too high to allow room for the map files.

• <logical name>, outstanding connections to device have been
deleted

There were outstanding connections to files on the volume.

However, because you specified the FORCE parameter, FORMAT
deleted those connections. This is a warning message that does
not prevent FORMAT from formatting the volume.

• 0085 : E$LIST, too many values

You entered multiple logical-name /volume-name combinations
separated by commas. FORMAT can format only one volume per
invocation.

<logical-name>: <exception code> unit status <xx>

An I/O error occurred while physically formatting the volume,

<exception code> informs you of the type of error.

<volume name>, volume name is too long

FORMAT requires the volume name you specify to be 6 characters or
less.

Operator 3-66



INITSTATUS

INITSTATUS

This command displays the initialization status of Human Interface

terminals. The format of this command is as follows:

<^^TATUS^>

DESCRIPTION

INITSTATUS displays at the user terminal the initialization status of all

Human Interface terminals. Figure 3-6 illustrates the format of the

INITSTATUS display.

TERMINAL CONFIG DEVICE INIT USER JOB USER

DEVICE NAME EXCEP EXCEP EXCEP STATE ID ID

.TO. 0000 0000 0000 LE 1 65535

.Tl. 0000 0000 0000 -E 2 1

.T3. 0000 0002 —

.T4. 0021

Figure 3-6. INITSTATUS Di!splay

The columns listed in Figure 3-6 contain the following information.

TERMINAL
DEVICE NAME

CONFIG EXCEP

DEVICE EXCEP

The physical name of the terminal, as defined during

the configuration of the Basic I/O System and as

attached by the Human Interface. Periods surround

each name.

Hexadecimal condition code that the Human Interface

received when it attempted to interpret the terminal

definition and user definition files (refer to the

iRMX 86 CONFIGURATION GUIDE for more information). A

zero value indicates a normal condition. Nonzero

values Indicate exceptional conditions. Refer to

Appendix B for a list of exception codes.

Hexadecimal condition code that the Human Interface

received when it originally attached the terminal as a

physical device.

Operator 3-67



INITSTATUS

INIT EXCEP Condition code that the Human Interface received when
it created a job for the interactive session.

USER STATE Two characters that indicate the current state of the
terminal. The first character can be either:

L The terminal is locked and cannot be
reinitialized (refer to the LOCK command
later in this chapter).

- The terminal is unlocked.

The second character can be either:

JOB ID

USER ID

E The Human Interface created the interactive
job associated with this terminal and the
job exists.

The interactive job does not exist.

A sequential number that the Human Interface assigns
to the interactive job during initialization. You
must specify this number as a parameter in the
JOBDELETE command in order to delete the corresponding
interactive job.

User ID associated with the interactive job. This ID
is the identification of the user that the Human
Interface associates with the job when the user begins
a Human Interface session.

ERROR MESSAGE

• not a multi-access system

The Human Interface cannot return information about terminals
because it is not configured for multi-access.

Operator 3-68



JOBDELETE

JOBDELETE

This command deletes a running interactive job. The system manager can

use this command to delete any interactive job. Other users can delete

only those interactive jobs that have the same user ID that they have.

The format of this command is as follows:

-<^ JOBDELETeT^) ( job-id-listJ>

x-202

where:

job-id-list One or more job IDs, separated by commas, of the

interactive jobs to be deleted. You can obtain

the IDs of jobs by invoking the INITSTATUS command

(described earlier in this chapter).

DESCRIPTION

The JOBDELETE command allows users to delete interactive jobs. Deleting

an interactive job causes the Human Interface to terminate the

corresponding user session.

When JOBDELETE attempts to delete a job, it first attempts to delete the

job's offspring jobs (for example, a SUBMIT file or a program invoked as

a result of an RQ$CREATE$IO$JOB system call). It deletes multiple levels

of offspring jobs. However, JOBDELETE cannot delete any interactive job

(or offspring) that contains extension objects. Refer to the iRMX 86

NUCLEUS REFERENCE MANUAL for more information about deleting jobs

containing extension objects.

Normally, when a user's interactive job is deleted, the Human Interface

recreates the interactive job, thus restarting the user session.

However, if the LOCK command (described later in this chapter) has been

specified for the user's terminal, the Human Interface does not

automatically recreate the user's interactive job after a JOBDELETE

command. Therefore, the system manager can use the combination of LOCK

and JOBDELETE to remove users from the system prior to a system shutdown.

As JOBDELETE deletes each job, it displays the following message at the

user terminal (:C0:):

<job-ID>, deleted

where <job-ID> is the identifier of the deleted job.

Operator 3-69



JOBDELETE

ERROR MESSAGES

• <job-ID>, does not exist

The interactive job associated with the identifier <job-ID> does
not exist. It has already been deleted.

• <job-ID>, invalid job id

The number <job-ID> is not a job ID that is associated with any
terminal managed by the Human Interface.

• <job-ID>, job does not belong to you

The user who attempted to delete the interactive job does not
have the same user ID as the interactive job or is not the system
manager.

• <job-ID>, not deleted
<job-ID>, <exception value> : <exception mnemonic>

An exceptional condition occurred, preventing JOBDELETE from
deleting the job <job-ID>. JOBDELETE displays the exception code
that resulted.

Operator 3-70



LOCDATA

LOCDATA

This command locates a data stream and transforms it into an object

module that the iAPX 86, 88 utilities (LINK86, LOC86, LIB86, etc.) can

process and the iRMX 86 Bootstrap Loader can load. By locating the data

stream, it sets the absolute address at: which the Bootstrap Loader loads

the data. You normally use this command when creating an application

system that includes a RAM-disk (an area of memory that the Operating

System treats as a secondary storage device). The format of this command

is as follows:

INPUT PARAMETERS

inpath

BASE=value

NAME=string

x-668

Pathname of the file to be processed,

wild-card pathnames are not allowed.

Multiple or

Base portion of the address at which LOCDATA
locates the data stream. The data stream can be

located only on 16-byte (paragraph) boundaries.

Therefore LOCDATA always uses a value for the

offset portion of the address (that is, value :0).

You can specify a radix character of "0" or "H" at

the end of the value to indicate octal or

hexadecimal, respectively. If you omit the radix

character, decimal is the default.

If you omit this parameter, LOCDATA assumes a

value of 0.

If you are using LOCDATA to set up the information

to be bootstrap loaded into a RAM DISK, you must

set this parameter to correspond to the beginning

address of the memory device. Refer to the iRMX

86 CONFIGURATION GUIDE for more information about

setting up a RAM DISK.

Module name which LOCDATA associates with the

output module. Whenever you use LINK86 or LOC86

to process the module, this name appears in the

map files. You should use a valid PL/M-86
identifier for this parameter. If you omit this

parameter, LOCDATA uses a default value of

@L0CDATA.

Operator 3-71



LOCDATA

OUTPUT PARAMETERS

TO Writes the processed output to a named file. The
specified output file should not already exist.

If it does, LOCDATA displays the following message:

OVER

outpath

<pathname>, already exists, OVERWRITE?

Enter Y, y, R, or r if you wish to write over the

existing file. Enter an "N" (upper or lower case)

or a carriage return alone if you do not wish to

overwrite the existing file. In the latter case,

the LOCDATA command will exit without processing
the data.

Writes over (replaces) the existing output file,

regardless of file size. If the output file does
not already exist, LOCDATA creates a new file.

Pathname of the file to receive the output of
LOCDATA. Multiple or wild-card pathnames are not
allowed.

DESCRIPTION

LOCDATA transforms an arbitrary string of data into a module that you can

add to a library using LIB86 and load into memory using the iRMX 86

Bootstrap Loader. LOCDATA creates an L-module to contain the data. The
L-module consists of an L-module header record (LHEADR), a SEGDEF record,
a number of physically-enumerated data records (PEDATA), and a module end

record (MODEND). LOCDATA places the module name into the LHEADR record.
It sets the appropriate fields of the MODEND record to indicate that the

module is a non-main module with no start address. Refer to the iAPX 86,

88 FAMILY UTILITIES USER'S GUIDE for more information about L-modules.

After processing the data, LOCDATA displays one of the following messages:

<inpath>, located TO <outpath>

<inpath>, located OVER <outpath>

Two of the LOCDATA parameters allow you to specify information about the

L-module that LOCDATA creates. The BASE parameter allows you to specify
the base address of the module. When the Bootstrap Loader loads the

module, it places the data at the specified base address with an offset
of 0. The NAME parameter allows you to specify a module name. If you
process the module with LINK86 or LOC86, the resulting map files list the
name you specify as the only symbol name in the module.

Operator 3-72



LOCDATA

LOCDATA is a valuable tool for configuring an application system that

includes a RAM DISK (an area of memory that acts like a secondary storage
device) . LOCDATA allows you to process an entire volume of Human
Interface commands (and any other files you desire) so that you can

include a copy of that volume in a library that the Bootstrap Loader

loads. If you do this correctly, when you bootstrap load the system your
RAM DISK will be formatted automatically, and it will contain the

commands and files you need. This feature is useful in many applications
and is necessary when installing the Operating System on a system that

contains a tape drive and an unformatted Winchester disk.

To create an application system that contains a RAM DISK that receives

data via the Bootstrap Loader, perform the following steps:

1. Configure a version of the Operating System that includes a RAM
DISK. Refer to the iRMX 86 CONFIGURATION GUIDE for more
information. Make a special note of the address to which you
assign the device.

2. Bootstrap load this new version of the Operating System.

3. Attach the RAM DISK as a named device. For example, you could

enter the following command:

ATTACHDEVICE RAM AS :RAM:

4. Format the RAM DISK for named files. For example, you could
enter the following command:

FORMAT :RAM:

5. Copy Human Interface commands (and other files that you require)

to the RAM DISK. An error message will occur when you run out of

room in the RAM DISK.

6. Detach the RAM DISK. For example:

DETACHDEVICE :RAM:

7. Attach the RAM DISK as a physical device. For example:

ATTACHDEVICE RAM AS :RAM: PHYSICAL

This allows you to access all the data in the device, including

the formatting information.

8. Use LOCDATA to process the information from the RAM DISK and

place the output in another file. Use the address of the RAM
DISK as the value, for the BASE parameter. For example, if you
configured your RAM DISK to have a base address of 5000H, you
could enter the following command:

LOCDATA :RAM: TO COMMANDS BASE=5000H NAME=COMMAND5000

Operator 3-73



LOCDATA

9. Use LIB86 to add the processed output (in this case, the file

COMMANDS) to the library that contains the bootstrap loadable
version of the Operating System.

Now, whenever you bootstrap load this version of the Operating System,
the RAM DISK will be formatted, and it will contain the commands and
files that LOCDATA placed into the COMMANDS file.

The iRMX 86 CONFIGURATION GUIDE contains more information about the

configuration of the RAM DISK. It also describes how to configure a

system that you can bootstrap load from a tape device.

ERROR MESSAGES

• invalid input specification

The input pathname you specified contains invalid characters.

• <value>, invalid number

The value you entered with the BASE parameter was not a valid
hexadecimal, decimal, or octal number.

• invalid output specification

The preposition or the output pathname you specified contains
invalid characters.

• <pathnarae>, list of pathnames not allowed

You entered more than one pathname for either the inpath or
outpath parameters.

• <pathname>, output file same as input file

You attempted to place the output into the input file. LOCDATA
does not allow this.

Operator 3-74



LOCK

LOCK

This command prevents the Human Interface from automatically recreating

the interactive job for a terminal once that interactive job has been

deleted. As a result of disallowing recreation of the interactive job,

users cannot access that specific terminal. This process is called

locking the terminal. The system manager can use this command to lock

any terminal. Other users can lock only those terminals whose
interactive jobs have the same user ID that they have. The format of

this command is as follows:

-^Jerminal-name-hstj)—y

x-203

where:

terminal-name-list One or more terminal device names, separated by

commas, of the terminals to be locked. You can
obtain the terminal device names by invoking the

INITSTATUS command (described earlier in this

chapter)

.

* A special character indicating that all

configured terminals should be locked.

DESCRIPTION

The system manager can use the LOCK command in conjunction with the

JOBDELETE command either to selectively delete users from the system or

to shut down the entire system. LOCK prevents the Human Interface from

recreating a user's interactive job once that job has been deleted.

Interactive jobs can be deleted in any of the following ways:

• As a result of the JOBDELETE command (described earlier in this

chapter)

• By shutting off the terminal

• By entering an end-of-file character (CTRL/z) at the terminal

As LOCK locks each terminal, it displays the following message to the

user terminal (:C0:):

<terminal-name> , locked

where <terminal-name> is the terminal device name of the locked terminal

Operator 3-75



LOCK

ERROR MESSAGES

• lock not allowed

You attempted to lock your own terminal. Only system managers
can lock their own terminals.

<terminal-name>, not found

A terminal with device name <terminal-name> is not configured
into your application system.

not a multi-access system

The LOCK command does not function if the Human Interface is

configured for single-access only.

Operator 3-76



LOGICALNAME

LOGICALNAMES

This command lists all the current logical names available to the user,

LOCIGALNAMESJ-*

INPUT PARAMETERS

FAST

SHORT

LONG

ROOT

USER

SYSTEM

OUTPUT PARAMETERS

outpath-list

7—

^

TO

-(^OVEr') > (^J outpath J^)—

'

AFTER

x-662

Lists the logical names in a system without

providing any additional information beyond the

name itself. FAST is the default parameter.

Lists all the logical names with the following

additional information: type of logical name, the

physical device name, owner of the logical name,

and the current connections to the file or device.

Like the SHORT parameter, but also adds the

complete pathname associated with a logical name.

If ROOT is specified with the LONG parameter, then

the pathname associated with the logicalname is

displayed back to the root device.

Displays all the logical names associated with the

current user.

Displays the logical names of system defined files

and devices.

The pathname of the file to receive the output of

command

.

Operator 3-77



LOGICALNAMES

DESCRIPTION

The following is an example of the listing you get when you invoke the
command with a FAST control (FAST is also the default parameter)

:

—LOGICALNAMES FAST

USER LOGICAL NAMES:

$ CI HOME
TERM ACCOUNTS

CO PROG

SYSTEM LOGICAL NAMES

SYSTEM WORK *SD *BB *STREAM

When an asterisk preceeds a name, the logical name refers to a logical
device.

The following example shows the output listing when you use the SHORT
parameter:

—LOGICALNAMES SHORT

USER LOGICAL NAMES:

name type fdr con dev name owner

$ dir NAM 3 smdO WORLD
CI file PHY 5 Tl

CO file PHY 5 Tl

HOME dir NAM 3 smdO WORLD
PROG dir NAM 2 smdO WORLD
TERM file PHY 5 Tl

SYSTEM LOGICAL NAMES:
name type fdr con dev name owner

SYSTEM dir NAM 1 smdO
WORK dir NAM 1 smdO WORLD
SD ldev NAM 1 smdO
BB ldev PHY BB
STREAM ldev PHY 1 STREAM

In the listing, TYPE refers to the kind of logical name: file, directory,
map (system file), or logical device (ldev). fdr (file driver) indicates
whether the connection is to a named or physical file. The number of

connections which a file or device has is under the CON heading. The dev
name heading shows the physical device associated with the logical name.

In the case of a directory or file, the name shows on what the device the
file or directory exists. The originator of the connection to the
logical name is shown under the owner heading.

The use of the LONG parameter produces the same type of listing as the
SHORT parameter with the addition of the complete pathname of the logical
name. Following is an example of the LONG listing:

Operator 3-78



LOGICALNAMES

—LOGICALNAMES LONG

USER LOGICAL NAMES:

name type fdr con dev name owner pathname

$ dir nam 3 smdO WORLD : sd:user/world
CI file PHY 5 Tl :ci:

CO file PHY 5 Tl :co:

HOME dir NAM 3 smdO WORLD : sd: user/world
PROG dir NAM 2 smdO WORLD :$:prog

TERM file PHY 5 Tl : term:

SYSTEM LOGICAL NAMES:

name type fdr con dev name owner pathname
SYSTEM dir NAM 1 smdO : sd: system
WORK dir NAM 1 smdO WORLD : sd:work
SD ldev NAM 1 smdO :sd:

BB ldev PHY BB :bb:

STREAM ldev PHY 1 STREAM : stream:

The ROOT parameter produces the same type of listing as the LONG
parameter except that the pathname starts at the root directory. Thus,
you get a complete description of the pathname associated with the

logical name.

If the pathname has elipses before it ( . . ./user/dirl/dir2/dir3/filename)

,

LOGICALNAMES truncated the pathname because it was too long to fit in its
column. The pathname only shows the last elements of the pathname which
describes a file or directory.

Operator 3-79



MEMORY

MEMORY

This command displays the available memory in the user's memory pool.

MEMORY

DESCRIPTION

This command requires no parameters. The following is an example of the

listing produced by this command:

—MEMORY
AVAILABLE MEMORY: 123.4 K BYTES

Operator 3-80



PATH

PATH

This command lists the pathname of a data file or directory

7 ^

INPUT PARAMETERS

inpath-list

_J>J-<^^-^<3

x-663

The list of files whose pathnames you want to know.

The default file is your home directory.

ROOT Specifies that the pathname should start from the

root directory of whatever device holds the file

or directory.

OUTPUT PARAMETERS

TO

OVER

Writes the listed input files to named new output

files. The specified output file or files should

not already exist. If they do, PATH displays the

following message:

<pathname>, already exists, OVERWRITE?

Enter Y, y, R, or r if you wish to write over the

existing file. Enter an N (upper or lower case)

or a carriage return alone if you do not wish to

overwrite the existing file. In the latter case,

the PATH command will pass over the corresponding
input file without copying it, and will attempt to

copy the next input file to its corresponding
output file.

If you specify multiple input files and a single

output file, PATH appends the remaining input

files to the end of the output file.

Writes the input: files over (replaces) the

existing output files on a one-for-one basis,

regardless of file size. If an output file does

not already exist, its corresponding input file is

written to a new file with the corresponding
output file name. If you specify multiple input

files and a single output file, PATH appends the

remaining input files to the end of the output
file.

Operator 3-81



PATH

AFTER Appends the input file or files to the current
data in the existing output file or files. If the
output file does not already exist, all listed
input files will be concatenated into a new file
with the listed output file name.

outpath-list One or more pathnames for the output files.

DESCRIPTION

This command is useful for finding where you may be located within the
file structure. The command gives the following listing when it is
invoked with no input file listing:

—PATH
: sd:user/world

Operator 3--82



PERMIT

This command allows you to grant or revoke user access to files that you

own. The format of this command is as follows:

o

Ji

2>J L<^r^J L

INPUT PARAMETERS

pathname-list

access

One or more pathnames, separated by commas, of the

files that are to have their access rights or list

of accessors changed.

Access characters that grant or rescind the

corresponding access to the file, depending on the

value parameter that follows. The possible values

include:

value

D

L or R

C or U

N

access

Delete

List (for directories) and
read (for data files)

Add entry (for directories)
and append (for data files)

Change (for directories) and

Update (for data files)

Rescinds all access not
explicitly granted (used
without an accompanying value)

Operator 3-83



PERMIT

value

If specified wit
access character
Specifying N alo
the users specif
the file's acces
characters grant
characters and r

use L and R inte
and directories;

hout an accompanying value, each
grants the specified access,
ne rescinds all access and removes
led with the USER parameter from
s list. Specifying N with other
s the access specified by those
escinds all other access. You can
rchangeably for both data files
likewise C and U.

Value which specifies whether to grant or rescind
the associated access right. Possible values
include:

user-list

DATA

DIRECTORY

MAP

value

1

meaning

Rescind the access right

Grant the access right

The default value is 1. That is, specifying an
access character without a value grants the
corresponding access.

User IDs for whom the previously-specified access
rights apply. Two special values are also
acceptable for this parameter. They are:

WORLD Special user ID (OFFFFh) giving all
users access to the file.

* Designator indicating that the
access rights apply to all users
currently in the file's access list.

The Operating System limits each file to three
user IDs in the access list. If you omit this
parameter, PERMIT assumes the user ID associated
with your interactive job.

Specifies that the access information applies to

the data files in the pathname list. If you omit
both the DATA and DIRECTORY parameters, PERMIT
assumes both.

Specifies that the access information applies to
the directories in the pathname list. If you omit
both the DATA and DIRECTORY parameters, PERMIT
assumes both.

Specifies that access information also applies to
the map and volume label files in the pathname
list.

Operator 3-84



QUERY Causes PERMIT to prompt for permission to modify
the access rights associated with each file. It

does this prompting by displaying the following
message:

<pathname>

,

accessor = <new id>, <new access>, PERMIT?

—

Enter one of the following (followed by a carriage
return) in response to the query:

Entry Action

Y or y Change the access.

E or e Exit from the PERMIT command.

R or r Change the access and continue
with the command without
further query.

Any other Do not change access; continue
character with PERMIT command and query

for next access change, if any,

DESCRIPTION

You can use the PERMIT command to update the access information for the
following files:

• Files for which you are listed as the owner.

• Files for which you have change-entry access to the file's parent
directory.

You cannot change the access information for other files. PERMIT can

perform the following functions:

• Adding or subtracting users from a file's list of accessors.

This list determines which users have access to the file.

• Setting the type of access (access rights) granted to the users
in the accessor list.

Currently the Operating System allows only three user IDs in the list of

accessors, but one of these IDs can be the special ID WORLD, which grants
access to all users.

You specify the type of access to be granted or rescinded by means of

access characters and values. You can concatenate access characters and
values together or you can separate the individual access specifications
with commas. For example, if you want to grant delete access and rescind
add and update access, you could enter any of the following combinations:

Operator 3-85



PERMIT

AODUO
AO,D,UO
AOD1UO
AO,Dl,UO

As you can see from the previous lines, D is equivalent to Dl . Also, the
order in which you specify access characters is not important.

If there are multiple occurrences of an access character in the PERMIT
command, PERMIT uses the last such character to determine the access.
For example, the combination:

D0,A1,R1,D1

is the same as the combination:

A1,R1,D1

In the first combination, the Dl overrides the DO.

You can use the N character to rescind all access to the file. If
specified alone, it removes user IDs from the accessor list. However,
the N character can also be useful when changing access rights, if you
don't remember the specified user's current access rights. In this case
you can specify the N character first, to clear all the access rights,
and follow it with other characters to grant the desired access. For
example, if you want to grant list access only, instead of specifying:

DOAOCOL

you could specify:

NL

After changing the access information for a file, PERMIT displays the
following information:

<pathname>

,

accessor = <accessor ID>, <access>

where <pathname> is the pathname of the specified file, <accessor ID> is

the user ID of one of the files accessors, and <access> indicates the
access rights that the corresponding user has. PERMIT displays the
access rights as access characters: DLAC for directories and DRAU for
data files. If a particular access right is not allowed, the display
replaces the corresponding character with a dash (-). For example, the
display:

-L-C

indicates that the corresponding user has list and change access.

Operator 3-86



PERMIT

ERROR MESSAGES

• <pathname> , accessor limit reached

The Operating System permits only three IDs in the accessor list

of a file. Before you can add another accessor, you must remove
one of the current accessors by setting its access rights to N.

<pathname>, directory CHANGE access required

Either you are not the owner of the file specified by <pathname>,

or you do not have change access to the file's parent directory.
You must satisfy one of these two conditions in order to use the

PERMIT command.

<user ID>, duplicate USER control

You must specify the keyword and parameter combination USER =

userlist only once during the PERMIT command. However, you can
specify multiple user IDs by separating them with commas in the

userlist. PERMIT exits without updating the access rights.

<character>, invalid access switch

The character you entered to indicate the access rights for the

file was not a valid access character. PERMIT exits without
updating the access rights.

<invalid id>, invalid user id

The user IDs you supply with the USER parameter must consist of

decimal or hexadecimal characters, the characters WORLD, or the

character *. PERMIT exits if supplied other characters.

missing access switches

You must specify one or more access characters with the PERMIT
command. PERMIT exits without updating the access rights.

no files found

There were no files of the type you specified (data, directory,

or both) in the pathname list.

Operator 3-87



RENAME

RENAME

This command allows you to change the pathname of one or more data files

or directories. RENAME is effective across directory boundaries on the

same volume. The format is as follows:

INPUT PARAMETERS

inpath-list

QUERY

One or more pathnames, separated by commas, of

files or directories that are to be renamed.

Blanks between pathnames are optional separators.

Causes the Human Interface to prompt for

permission to rename each pathname in the input

list by issuing one of the following messages:

<oldname>, rename TO <newname>?

<oldname>, rename OVER <newname>?

Enter one of the following (followed by a carriage

return) in response to the query:

Entry Action

Y or y Rename the file.

E or e Exit from RENAME command.

R or r Continue renaming without further

query.

Any other Do not rename file; query for the next

character file in sequence.

OUTPUT PARAMETERS

TO Moves the data to the new pathnames in the output

list. A new pathname in the output list should
not already exist. If the output pathname already

exists, RENAME' displays the following message:

Operator 3-88



RENAME

OVER

outpath-list

<pathname>, already exists, DELETE?

Enter Y, y, R, or r to delete the existing file.

Enter any other character if you do not wish tp

delete the file. In the later case, RENAME skips

over the specified file without changing it and
attempts to rename the next pathname in the list.

Changes each old pathname in a list to the

corresponding new pathname, even if the new
pathname already exists. OVER cannot be used to

rename a non-empty directory over another
non-empty directory.

List of new pathnames. Multiple pathnames must be
separated by commas. Separating blanks are

optional.

DESCRIPTION

The primary distinction between the RENAME command and the COPY command

is that, as the RENAME command runs, it releases the pathnames of the
input files for new uses without performing any further operation on the

files.

Another distinction between RENAME and COPY is that RENAME cannot be used

across volume boundaries; that is, you cannot use the RENAME command to

rename a file or move data from a volume located on one secondary storage

device to a volume located on another secondary storage device (for

example, from one diskette to another). An attempt to do so causes an

error message. Use the COPY command or a combination of COPY and DELETE
commands if you wish to rename files or move data across volume
boundaries.

To use RENAME, you must have delete access to the current file and

add-entry access to the destination directory. If you rename a file OVER
an existing file, you must also have delete access to the second file.

Although RENAME Can be used to rename an existing directory pathname TO a

new pathname, it cannot be used to rename an existing directory OVER

another existing directory. For example:

-RENAME ALPHA TO DELTA ; allowed
-RENAME ALPHA OVER BETA ;not allowed (unless BETA is empty)

-RENAME ALPHA/SAMP1 OVER BETA/TESTl ; allowed

Operator 3-89



RENAME

NOTE

Changing the name of a directory also

changes the path of all files listed in

that directory. All subsequent
accesses to those files must specify
the new pathnames for the files.

As each file in a pathname list is renamed, the RENAME command displays

one of the following messages, as appropriate:

<old pathname>, renamed TO <new pathname>
or

<old pathname>, renamed OVER <new pathname>

ERROR MESSAGES

• <old pathname>, DELETE access required

You cannot rename a file unless you have delete access to that
file.

• <new pathnarae>, directory ADD ENTRY access required

You cannot rename a file unless you have add-entry access to the

destination directory.

• <new pathname>, new pathname same as old pathname

You specified the same name for the input pathname as you did for

the output pathname.

• TO or OVER preposition expected

Either you used the AFTER preposition with the RENAME command or

the number of files in your inpath-list did not match the number
in your outpath-list.

Operator 3-90



RESTORE

RESTORE

This command transfers files from a backup volume to a named volume.

The format of this command is as follows:

^~~CT To
J)
-""

-Qjbackup device^)—

<

^-( OVER )

—

c

INPUT PARAMETERS

: backup device:

QUERY

l^-^NAME = ~~~^_) L_^-^ER | FY ~^_J L-^^query^)-^

Logical name of the backup device from which
RESTORE retrieves files.

Causes the Human Interface to prompt for

permission to restore each file. The Human
Interface prompts with one of the following
queries:

<pathname>, RESTORE data file?

or

<pathname>, RESTORE directory?

Enter one of the following responses to the query:

Entry

Y or y

E or e

R or r

Any other
character

Action

Restore the file.

Exit from the RESTORE command.

Continue restoring files without
further query.

If data file, do not restore the

file; if directory file, do not

restore the directory or any
file in that portion of the
directory tree. Query for the

next file, if any.

Operator 3-91



RESTORE

VERIFY

NAME=narae

Verifies that RESTORE has produced a restorable
set of volumes. RESTORE produces one of the
following messages:

<pathnarae>, Restored
or

<dir>, Directory Restored

Begins restoration from a specific volume. If no
name is given, RESTORE only writes back the first
volume it encounters.

OUTPUT PARAMETERS

TO Restores the files from the backup volume to new
files on the named volume, if the files do not
already exist. If a file being restored already
exists on the named volume, RESTORE displays the
following message:

<pathname>, already exists, OVERWRITE?

Enter one of the following in response to the
query

:

Entry

Y, y, R, or r

E or e

Action

Delete the file and replace

it with the one from the
backup volume.

Exit from the RESTORE
command.

Any other
character

Do not restore the file; go

on to the next file.

OVER Restores the files from the backup volume over
(replaces) the files on the named volume. If a

file does not exist on the named volume, RESTORE
creates a new file on the named volume. When you
specify the OVER preposition, RESTORE does not
prompt you for permission to overwrite existing
files.

pathname Pathname of a file which receives the restored
files (you must specify a directory pathname when
restoring more than one file). If you specify a

logical name for a device, RESTORE places the
files under the root directory for that device.
However, the device must contain a volume
formatted as a named volume. If you wish to

restore files to the directory in which they
originated, you should specify the same pathname
parameter as you used with the BACKUP command.

Operator 3-92



RESTORE

DESCRIPTION

RESTORE is a utility which copies files from backup volumes (where the

BACKUP command originally saved them) to named volumes. RESTORE copies

the files to any directory you specify, maintaining the hierarchical

relationships between the backed-up files. RESTORE allows the transfer

operation to begin at any physical or logical volume in a backup volume

set.

Normally, when RESTORE copies files, it copies only those files to which

you have access. When it copies these files to the named volume, it

establishes your user ID as the owner ID (regardless of what the previous

owner ID was). However, if you are the system manager (user ID 0),

RESTORE restores all files from the backup volume and leaves the owner ID

the same as it was.

When copying files, RESTORE reconstructs the following information:

File name

Access list

Extension data

File granularity

Contents of the file

Each backup volume which is used as input to the RESTORE command must

contain files placed there by the BACKUP command. In addition, if the

backup operation required multiple backup volumes, you must restore these

volumes in the same order as they were backed up.

The output volume which receives the restored files must be a named

volume. You must have sufficient access rights to the files in that

volume to allow RESTORE to perform all necessary operations. For RESTORE

to create new files on a named volume, you must have add entry access to

directories on that: volume. For RESTORE to restore files over existing

files, you must have add entry and change entry access to the files in

that volume and delete, append, and update access to data files.

When you enter the RESTORE command, RESTORE displays the following

sign-on message:

iRMX 86 DISK RESTORE UTILITY Vx.y
Copyright <year> Intel Corporation

where Vx.y is the version number of the utility. Then the command

prompts you for a backup volume.

Whenever RESTORE requires a new backup volume, it issues the following

message:

<backup device>, mount backup volume #<nn>, enter Y to continue:

Operator 3-93



RESTORE

where <backup device> indicates the logical name of the backup device and
<nn> the number of the requested volume. (RESTORE in some cases displays
additional information to indicate problems with the current volume.) In
response to this message, place the backup volume in the backup device
(make sure that the volume number is correct if the backup operation
involved multiple volumes). Enter one of the following:

Entry Action

Y, y, R, or r Continue the restore process.

E or e Exit from the RESTORE command.

N or n Reprompt for a new volume.

Any other Invalid entry; reprompt for entry,
character

RESTORE continues prompting you until you supply the correct backup
volume If a data file with the same pathname already exists when you use
the TO proposition, RESTORE displays the following message:

pathname , already exists, OVERWRITE?

Enter one of the following prompts:

Entry Action

Y, y, R, or r Continue the restore process.

E or e Exit from the RESTORE command.

N or n Reprompt for a new volume.

Any other Invalid entry; reprompt for entry,
character

As it restores each file, RESTORE displays one of the following messages
at the Human Interface console output device (:C0:):

<pathname>, restored/verified

or

<pathname>, directory restored

If a "not restored" prompt is displayed, then a more detailed error
message is printed.

Operator 3-94



RESTORE

ERROR MESSAGES

• <pathname>, access to directory or file denied

RESTORE could not restore a file, either because you did not have

add entry access to the file's parent directory or because you

did not have update access to the file. RESTORE continues with
the next file.

• <backup device>, backup volume #<nn>, <date>, mounted

<backup device>, backup volume #<nn>, <date>, required

<backup device>, mount backup volume #<nn>, enter Y to continue:

RESTORE cannot continue because the backup volume you supplied is

not the one that RESTORE expected. Either you supplied a volume

out of order or you supplied a volume from a different backup

session. RESTORE reprompts for the correct backup volume.

• <backup device>, cannot attach volume

<backup device>, <exception value> : <exception mnemonic>

<backup device>, mount backup volume #<nn>, enter Y to continue:

RESTORE cannot access the backup volume. This could be because

there is no volume in the backup device or because of a hardware
problem with the device. The second line of the message

indicates the iRMX 86 exception code encountered. RESTORE
continues to issue this message until you supply a volume that

RESTORE can access.

• <pathname>, <exception value> : <exception mnemonic>, error

during BACKUP, file not restored

When the BACKUP utility saved files, it encountered an error when

attempting to save the file indicated by this pathname. RESTORE

is unable to restore this file. The message lists the iRMX 86

exception code encountered.

• <pathname>, <exception value> : <exception mnemonic>, error

during BACKUP, restore incomplete

When the BACKUP utility saved the files, it encountered an error

when attempting to save the file indicated by this pathname.

RESTORE restores as much of the file as possible to the named

volume. The message lists the iRMX 86 exception code encountered.

Operator 3-95



RESTORE

• <backup device>, error reading backup volume

<backup device>, <exception value> : <exception mnemonic>

RESTORE tried to read the backup volume but encountered an error

condition, possibly because of a. faulty area on the volume. The
second line of the message indicates the iRMX 86 exception code
encountered.

• <pathname>, <exception value> : <exception mnemonic>, error
writing output file, restore incomplete

RESTORE encountered an error while writing a file to the named
volume. This message lists the iRMX 86 exception code
encountered. RESTORE writes as much of the file as possible to

the named volume.

<pathname>, extension data not restored, <nn> bytes required

The amount of space available on the named volume for extension
data is not sufficient to contain all the extension data
associated with the specified file. The value <nn> indicates the
number of bytes required to contain all the extension data. This

message indicates that the named volume on which RESTORE is

restoring files is formatted differently than the named volume
which originally contained the files. To ensure that you restore
all the extension data from the backup volume, you should restore
the files to a volume formatted with an extension size set equal
to the largest value reported in any message of this kind. Refer
to the description of the FORMAT command for information about
setting the extension size.

<backup device>, invalid backup device

The logical name you specified for the backup device was not a

logical name for a device.

<backup device> , not a backup volume

<backup device>, mount backup volume #<nn>, enter Y to continue:

The volume you supplied on the backup device was not a backup
volume. RESTORE continues to issue this message until you supply
a backup volume.

<pathname>, not restored

For some reason, RESTORE was unable to restore a file from the
backup volume. RESTORE continues with the next file. Another
message usually precedes this message to indicate the reason for
not restoring the file.

Operator 3-96



RESTORE

output specification missing

You did not specify a pathname to indicate the destination of the

restored files.

<pathname>, READ access requiresd

You do not have read access to a file on the backup volume;

therefore RESTORE cannot restore the file.

<pathname>, too many input pathnames

You attempted to enter a list of logical names for the backup
devices. You can enter only one input logical name per

invocation of RESTORE.

Operator 3-97



SUBMIT

SUBMIT

This command reads and executes a set of commands from a file in

secondary storage instead of from the console keyboard.

INPUT PARAMETERS

pathname

parameter-list

Name of the file from which the commands will be
read. This file may contain nested SUBMIT
commands

.

Actual parameters that are to replace the formal

parameters in the SUBMIT file. You must surround
this parameter list with parentheses. You can
specify as many as 10 parameters, separated by
commas, in the SUBMIT command. If you omit a

parameter, you must reserve its position by
entering a comma. If a parameter contains a

comma, space, or parenthesis, you must enclose the
parameter in single quotes. The sum of all
characters in the parameter list must not exceed
512 characters.

OUTPUT PARAMETERS

TO Causes the output from each command in the SUBMIT
file to be written to the specified new file
instead of the console screen. If the output file
already exists, the SUBMIT command displays the
following message:

<pathnarae>, already exists OVERWRITE?

Operator 3-98



OVER

AFTER

Enter Y, y, R, or r if you wish the existing

output file to be deleted. Enter any other
character if you do not wish the existing file to

be deleted. A response other than Y or y causes

the SUBMIT command to be terminated and you will

be prompted for a new command entry.

Causes the output for each command in the SUBMIT

file to be written over the specified existing
file instead of the console screen.

Causes the output from each command in the SUBMIT

file to be written to the end of an existing file

instead of the console screen.

out-pathname

ECHO

Pathname of the file to receive the processed
output from each command executed from the SUBMIT

file. If no preposition or output file is

specified, TO :C0: is the default.

ECHO causes the a copy of the data read from the

first level of a SUBMIT file to be sent to the

CRT. This parameter lets you know which action
specified within a SUBMIT file is currently
executing. Nested SUBMIT commands do not have

their contents sent to the console.

DESCRIPTION

To use the SUBMIT command you must first create a data file that defines

the command sequence and formal parameters (if any). The Operating
System first looks for the pathname ending in "CSD". If no such file is

found, then the Operating System looks for the specified file in the

pathname.

Any program that reads its commands from the console input (:CI:) can be

executed from a SUBMIT file. If another SUBMIT command is itself used in

a SUBMIT file, it causes another SUBMIT file to be invoked. You can nest

SUBMIT files to any level of nesting until memory is exhausted (each
level of SUBMIT requires approximately 10K of dynamic memory) . When one

nested SUBMIT file completes execution, it returns control to the next

higher level of SUBMIT file.

If, during the execution of SUBMIT (or any nested SUBMIT), you enter the

CTRL/c character to abort processing, all SUBMIT processing exits and

control returns to your user session.

When you create a SUBMIT
specifying the characters
SUBMIT executes the file,
actual parameters listed
replaces all instances of

of %1, and so forth). If

SUBMIT removes the quotes

file, you indicate formal parameters by

%n, where n ranges from through 9. When
it replaces the formal parameters with the

in the SUBMIT command (the first parameter
%0, the second parameter replaces all instances
the actual parameter is surrounded by quotes,

before performing the substitution. If there

Operator 3-99



SUBMIT

is no actual parameter that corresponds to a formal parameter, SUBMIT
replaces the formal parameter with a null string.

When you specify a preposition and output file (other than :C0:) in a

SUBMIT command, only your SUBMIT command entry will be echoed on the
console screen; the individual command entries in the submit file are not
displayed on the screen as they are loaded and executed.

The SUBMIT command will display the following message when all commands
in the submit file have been executed:

END SUBMIT <pathname>

A SUBMIT can contain SUPER subcommands. But before you invoke a SUBMIT
file with SUPER subcommands, you must first invoke the SUPER command.
The following steps show you the general procedure for using the a SUBMIT
command which contains SUPER directives:

• Invoke SUPER. Give the appropriate password.

• Invoke the SUBMIT file.

• SUBMIT functions are performed by the Operating System.

• SUBMIT command finishes.

• EXIT from SUPER.

ERROR MESSAGES

• <pathname>, end of file reached before end of command

The last command in the input file was not specified completely.
For example, the last line might contain a continuation character.

• <parameter>, incorrectly formed parameter

You separated the individual parameters in the parameter list
with a separator character other than a comma.

• <pathname>, output file same as input file

You attempted to place the output from SUBMIT into the input file.

• <pathname>, too many input files

You specified more than one pathname as input to SUBMIT. SUBMIT
can process only one file per invocation.

• <parameter>, too many parameters

Operator 3-100



SUBMIT

You specified more than 10 parameters in your parameter list

<pathname>, UPDATE or ADD access required

SUBMIT cannot write its output to the output file because you do

not have update access to the file (if it already exists) or

because you do not have add access to the file's parent directory

(if the file does not currently exist).

EXAMPLE

This example shows a SUBMIT file that uses formal parameters and the

command that you can enter to invoke this SUBMIT file. The SUBMIT file,

which resides on file :Fl xMOVE$FILE, contains the following lines:

ATTACHDEVICE Fl AS %0

CREATEDIR %0/%l
UPCOPY :F1:%2 TO %0%l/%2

The SUBMIT file contains three formal parameters, indicated by %0, %1,

and %2. The %0 indicates the logical name of an iRMX 86 device; the %1

indicates the name of a directory on that device; the %2 indicates the

name of a file which will be copied from an ISIS-II disk to the iRMX 86

device.

The SUBMIT command used to invoke this file is as follows:

-SUBMIT :F0:MOVE$FILE (:Fl:, PROG, FILEl)

The command sequence created and executed by SUBMIT is shown as it would

be echoed on the console output device.

-ATTACHDEVICE Fl AS :Fl:

Fl, attached as :Fl:

-CREATEDIR :Fl:/PR0G
:F1:PR0G, directory created
-UPCOPY :F1: FILEl TO :Fl :PR0G/FILE1
:F1:FILE1 upcopied TO :F1: PROG/FILEl
END SUBMIT :F0 :M0VE$FILE

Operator 3-101



SUPER

SUPER

This command allows operators who are designated as system managers to

change their user IDs to the system manager user ID (user ID 0). Having
entered the SUPER command, these users can invoke a sub-command to change
to any other user ID. The format of this command is as follows:

x-206

DESCRIPTION

SUPER allows you to change your user ID to that of the system manager.
It has two sub-commands (CHANGE ID and EXIT) that are available only after
you have invoked SUPER. CHANGEID allows you to change your user ID to

any possible value. EXIT exits the SUPER utility.

To invoke SUPER, you must know a password associated with the system
manager. This password is stored in the user definition file for user ID

(refer to the iRMX 86 CONFIGURATION GUIDE for more information). After
you enter the SUPER command, SUPER prompts for the password by displaying:

ENTER PASSWORD:

You must then enter the correct password. (SUPER does not echo your
input at the terminal.) After you enter the correct password, SUPER
changes your user ID to user ID and issues the following prompt.

super-

This prompt is a new system prompt (replacing the "-") that appears

whenever the Human Interface is ready to accept input. At this point,

you can enter any Human Interface commands and access any files available
to the system manager. If you create new files, they will be listed as
owned by user ID 0. You can also invoke the sub-commands available with
SUPER.

SUBCOMMANDS

There are two sub-commands available with SUPER: CHANGEID and EXIT. You
can invoke these sub-commands only after first invoking the SUPER command,

The CHANGEID sub-command allows you to change your current user ID to any

value between and 65535 decimal. The format of the CHANGEID
sub-command is as follows:

Operator 3-102



SUPER

<£CHANGEID

where:

id Value to which you want to change your user ID.

This integer can be any numeric value from to
65535 decimal, or the characters "WORLD" which
specifies ID 65535 decimal. If you omit this
value, CHANGEID sets your user ID to that of the
system manager (user ID 0).

If you change your user ID to anything other than that of the system
manager (user ID 0), the system prompt changes to the following:

super(id)-

where id is the decimal equivalent of your new user ID (or the characters
"WORLD").

The EXIT sub-command exits from the SUPER utility. The format of this
sub-command is as follows:

<C1*i7 J>

After you enter this sub-command, the Human Interface changes your user
ID back to the ID you had before entering the SUPER command. It also
changes the system prompt back to the '"-" value. To change your user ID

again, you must invoke the SUPER command.

ERROR MESSAGES

• <exception value> : <exception mnenonic> cannot set default user

An internal system problem prevented the Human Interface from
changing your user ID.

• <user-id>, invalid user id

The user ID you specified contained invalid characters or was not
in the range to 65535 decimal.

Operator 3-103



SUPER

invalid password

The password you entered does not match the password associated

with the system manager that is listed in the user definition

file.

<exception value> : <exception mnemonic>, SUPER is unavailable

The Human Interface encountered an error while reading the

password you entered or while accessing the system manager's user

definition file (to determine if the password is correct). This

message lists the exception code that occurs.

Operator 3-104



TIME

TIME

This command sets the system clock. If no new time is entered, the TIME
displays the current system time. The format is as follows:

x-209

INPUT PARAMETERS

hh

mm

ss

QUERY

Hours specified as through 24.

Minutes specified as through 59. If you omit

this parameter, is assumed.

Seconds specified as through 59. If you omit
this parameter, is assumed.

Causes TIME to prompt you for the time by issuing
the following message:

TIME:

TIME continues to issue this message until you
enter a valid time.

DESCRIPTION

You must separate the individual time parameters with colons.

If you omit the time parameters, TIME displays the current date and time

in the following format:

dd mmm yy, hh:mm:ss

where dd mmm yy indicates the date and hh:mm:ss indicates the time.

Operator 3-105



TIME

To obtain the correct time when you enter the TIME command without

parameters, you must initially set the time. If you request the time on

a system in which you haven't already set the time, TIME command displays

the last time (and date) you accessed the : SYSTEM: directory.

ERROR MESSAGES

• <time>, invalid time

You specified an invalid or out-of-range entry for one or more of

the time parameters.

• <parameter>, invalid syntax

You specified both a time and the QUERY parameter in the TIME

command

.

Operator 3-106



UPCOPY

UPCOPY

This command copies files from a volume on ISIS-II secondary storage to a

volume on iRMX 86 secondary storage.

INPUT PARAMETERS

inpath-list

QUERY

List of one or more filenames of the ISIS-II files

that are to be copied to iRMX 86 secondary

storage, either on a one-for-one basis or

concatenated into one or more iRMX 86 output files.

Causes the Human Interface to prompt for

permission to copy each ISIS-II file to the listed

iRMX 86 output file. Depending on which
preposition you specify (TO, OVER, or AFTER), the

Human Interface prompts with one of the following

queries:

<in-pathname>, copy up TO <out-pathname>?

<in-pathname>, copy up OVER <out-pathname>?

<in-pathname>, copy up AFTER <out~pathname>?

Enter one of the following (followed by a carriage

return) in response to the query:

Entry Action

Y or y Copy the file.

E or e Exit from the UPCOPY command.

R or r Continue copying files without

further query.

Any other Do not copy this file; go to

character the next file in sequence.

Operator 3-107



UPCOPY

OUTPUT PARAMETERS

TO

OVER

AFTER

outpath-list

Copies the ISIS-II file or files TO a new
iRMX 86 file or files in the listed sequence.
If the output file already exists, UPCOPY
displays the the following message:

<pathnarae>, already exists, OVERWRITE?

Enter Y, y, R, or r if you wish to write over
the existing file. Enter any other character if

you do not wish the file to be overwritten.

If no preposition is specified, TO :C0: is the

default. If more input files than output files
are specified in the command line, the remaining
input files will be appended to the end of the
last listed output file.

Copies the listed ISIS-II input file or files
OVER existing iRMX 86 destination files in the
listed sequence. If more input files than
output files are listed in the command line, the
remaining input files will be appended to the
end of the last listed output file.

Appends the listed ISIS-II input file or files
AFTER the end-of-data on an existing iRMX 86

output file or files in the listed sequence.

One or more pathnames of the iRMX 86 destination
files. Multiple pathnames must be separated by
commas. Separating blanks are optional. If the
preposition and output parameter defaults are
used in the command line, the output will go to
the iRMX 86 console screen.

DESCRIPTION

Before you enter an UPCOPY command on the iRMX 86 console keyboard, you
must have your target system connected to a development system via the
monitor. To do this, you must start your iRMX 86 system from the
development system terminal (either by loading the software into the
target system and using the monitor G command to start execution, or by
using the monitor B command to bootstrap load the software). UPCOPY does
not function if you start up your system, from the iRMX 86 terminal or if
you establish the link between development system and target system after
starting up your iRMX 86 system.

The user ID of the user who invokes the UPCOPY command is considered the
owner of new files created by UPCOPY. Only the owner can change the
access rights associated with the file (refer to the PERMIT command).

Operator 3--108



UPCOPY

As it copies each ISIS-II file in the input list, UPCOPY displays one of

the following messages at the terminal, as appropriate:

<in-pathname>, copied up TO <out-pathname>

<in-pathname>, copied up OVER <out~pathname>

<in-pathname>, copied up AFTER <out-pathname>

When the UPCOPY command is executing, the monitor disables interrupts.

This action affects services such as the time-of-day clock. Also, the

Operating System is unable to receive any characters that you type-ahead

while the UPCOPY command is executing.

ERROR MESSAGES

• <pathname>, ISIS ERROR: <nnn>

An ISIS-II Operating System error occurred when UPCOPY tried to

transfer the file to the Microcomputer Development System. Refer

to the INTELLEC SERIES III MICROCOMPUTER DEVELOPMENT SYSTEM

CONSOLE OPERATING INSTRUCTIONS for a description of the resulting

error code-

• ISIS link not present

The the iRMX 86 system is not connected to the development system

via the monitor.

• <pathnarae>, UPDATE or ADD access required

Either you cannot overwrite the information in a file because you

do not have update access to it, or you cannot copy information

to a new file because you do not have add entry access to the

file's parent directory.

Operator 3-109



VERSION

VERSION

This command displays the version number of a file if that file has a
version number. The file can be an object file or library. The format
of this command is as follows:

INPUT PARAMETER

pathname-list One or more pathnames, separated by commas, of
commands for which a version number is desired,

DESCRIPTION

When you enter the VERSION command, it displays the version number of
each file, if there is one, in the following format:

<pathname>, <command-name> version is x.

y

where:

<pathname>

<command-name>

x.y

Pathname of the file containing the command.

Name of the specified command; Intel-supplied
commands have names as listed in this manual.

Version number of the command.

You can use VERSION to determine the version number of any Human
Interface command. You can also use it to determine the version numbers
of commands that you write. If the file is a library, the command shows
the current and previous version numbers. However, for VERSION to work
on your commands, you must include a literal string in the command's
source code to specify the name of the command and its version. The
string must contain the following information:

' progran^versionjiumbe^xxxx'

,

' program_name=yyyy . .
. yyy '

,

where:

program__version_number= You must specify this portion exactly as
shown (lower case, underscore separating the
words, no spaces).

Operator 3-110



program name=

yyyy...yyy

xxxx Version number of the product. This can be
any four characters, but it must be exactly
four characters long.

This portion is optional. However, if you
want VERSION to recognize and display the
program name, you must specify this portion
exactly as shown.

Name of the command. This name can be any
number of characters.

The literal string must be terminated with a
byte of binary zero.

An example of such a literal string is:

DECLARE version (*) BYTE DATA( f programmersion_number=V8.5 '

,

' program_name=MYPROGRAM' ,0)

;

If your program includes this declaration, when you invoke VERSION, it
will display the following information:

<pathname>, MYPROG version is V8.5

A literal string that does not include the program name is:

DECLARE vers2(*) BYTE DATA( 'programmersion_number=l 983 ' ,0);

If your program includes this declaration, when you invoke VERSION, it
will display the following information:

<pathname>, version is 1983

ERROR MESSAGES

• <pathname>, does not contain a program version number.

• <pathname>, is not an object module.

Operator 3-111



WHOAMI

WHOAMI

This command lists the currents user's Identification and access rights

WHOAMI

DESCRIPTION

This example shows the output from WHOAMI:

—WHOAMI
USER ID: 5

ACCESS ID'S: 5, WORLD

The number after USER is the user's ID number. The numbers after ACCESS

are the ID'S of people who have given the user access to their files.

See the iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL for more information on

USER groups.

***

Operator 3-112



CHAPTER 4
HUMAN INTERFACE EXAMPLES

This chapter shows you how to use some of the Human Interface commands.
Its primary intent is to introduce you to basic techniques by presenting a

series of examples that illustrate typical command entries.

COMMAND EXAMPLES FORMAT

To make it easier to follow the interactive dialog between the user and
Human Interface in the examples, the user keyboard entries are
underscored . All other items displayed in the examples are Human Interface
command output. For instance, in the example:

-copy samp to test
samp copied TO test
-copy test
aaaaa
bbbbb
test copied TO :C0:

the underscored items are user command entries; all other characters and

lines are output by the Human Interface or the supplied commands.

Control characters, such as (CTRL/z), are enclosed in parentheses in the

examples to indicate that such entries are not echoed at the console screen
as they are entered. Do not actually enclose control key entries in
parentheses.

HOW TO BEGIN A CONSOLE SESSION

You can begin an interactive dialog with the Human Interface after the

initial program displays a sign-on message at your console screen.
Although the sign-on message is a system configuration option, the message
supplied with the default initial program of the Human Interface is as
follows:

1RMX 86 HI CLI Vx.y: USER = <userid>
COPYRIGHT <year> Intel Corporation

This message tells you the Human Interface is running; it also tells you
your user ID. The hyphen (-) is a Human Interface prompt to indicate that
it is ready to accept your first command line. Begin entering a command
immediately after and on the same line as the prompt. For example:

-copy :ci: to testl

Operator 4-1



HUMAN INTERFACE EXAMPLES

HOW TO CREATE A SIMPLE DATA FILE

You can use the COPY command to create data files during a console

session. Assume you wish to create a file called ALPHA and write two

lines of data into the file. Also assume you wish the data file to be

listed under your default directory. Enter the following command and

data:

-copy :ci: to alpha
aaaaa
bbbbb
cr (carriage return)

(CTRL/z)

:ci: copied TO alpha

In this example, the :ci: in the COPY command line tells the command to

read data from the keyboard (:ci: = console input) and write the data

(aaaaa and bbbbb) to a new file named ALPHA. Because you did not preface

the file name with a directory name, COPY places the file ALPHA in your
default directory.

The command does not prompt you for the data lines; you simply begin

entering data after you press RETURN at the end of the command line.

Your CTRL/z entry writes an end-of-file mark at the end of your data to

inform the COPY command that there is no more data to be copied.

Note that after you enter the last line of data, you must press the

RETURN key before you enter a CTRL/z to insert an end-of-file.

Otherwise, none of the characters entered after you press the RETURN key

and before you enter a CTRL/z are written to the file. For example:

-copy :ci: to alpha
ccccc
ddddd (CTRL/z) (then press RETURN)

would only write the data ccccc to the new file named ALPHA.

Since control characters are not echoed on the screen as you enter them,

(such as a RETURN or CTRL function), the above file creation sequence

would be displayed on the screen as follows:

-copy :ci: to alpha
ccccc
ddddd

:ci: copied TO alpha

Now, assume that when you entered the COPY command line, the Human
Interface sent you the following message and query:

-copy :ci: to alpha
alpha, already exists, OVERWRITE?

Operator 4-2



HUMAN INTERFACE EXAMPLES

Whenever you create a new data file, the COPY command expects a new
pathname rather than one already listed in the directory file. If your
entry to the query is:

alpha, already exists, OVERWRITE? v_

the COPY command deletes the data in the existing file and waits for you

to enter new data under that pathname.

If your response to the query is:

alpha, already exists, OVERWRITE? n (or any other character except y)

your COPY command is ignored and the Human Interface prompts for a new
command entry by issuing a hyphen (-).

HOW TO COPY FILES

COPY command options provide a number of different ways for you to copy
existing files. You exercise these options either by specifying one of

the TO/OVER/AFTER prepositions, by the way in which you specify your input
file and output file pathname lists, or by a combination of both
techniques. The services of the COPY command include:

Copying files on a one-for-one basis.

Displaying the contents of files at the console screen.

Creating multiple copies of the same file.

Copying data from multiple files to a new or existing file.

Replacing data in one file with data from another file.

Adding data from one or more files to the end of the data in
another file.

Combining one-for-one file copying with file concatenation in a

single COPY command.

The examples that follow show you how to use these services. They also

call your attention to certain file handling considerations when using the
COPY command.

Operator 4-3



HUMAN INTERFACE EXAMPLES

HOW TO COPY TO NEW FILES

Copying existing files to new files is most frequently done on a one-for-one

basis; that is, you list a number of existing files to be copied and a

matching list of files to receive the copies. The files are copied in the

same sequence you specify in the input list and output list on the command
line. For example, assume you wished to copy files Al, A2, and A3 to files
Bl, B2, and B3 respectively. Enter the following command:

-copy al, a2, a3 to bl, b2, b3

al copied TO bl

a2 copied TO b2

a3 copied TO b3

You could also make use of the wild card feature when copying files. If the

files Al, A2, and A3 are the only files in the directory that begin with the
character "A", you can use the following command to perform the same operation:

-copy a* to b*
al copied TO bl

a2 copied TO b2
a3 copied TO b3

The asterisks in the command are the wild card characters. In this instance,
the command copies all files in the default directory that start with the

character "A" to new files starting with the character "B." If files other

than Al, A2, and A3 also begin with the character "A", this command will copy
them also.

When you copy files, you can specify wild card characters (as in the previous
example), lists of file names (as in the example before that), or a

combination of both. However, some of the possible combinations are invalid.
When copying files, remember the following rules:

• If you specify multiple input pathnames and a single output pathname,

file concatenation takes place. If the output parameter is simply a

directory with no wild card in its pathname, then the Human Interface
copies all the files listed in the input parameter into the

directory. Each file keeps its original name in the new directory
(such as alpha).

• If you specify multiple output pathnames, you must specify the same

number of input pathnames as output pathnames. Specifying more input
pathnames than output pathnames results in an error message. For
example, the command:

-copy a,b,c to d,e (invalid)

returns an error message. The command:

-copy a,b to c,d,e (invalid)

also returns an error message. Refer to the "Inpath-List and

Outpath-List" section of Chapter 2 for more information.

Operator 4-4



HUMAN INTERFACE EXAMPLES

HOW TO DISPLAY THE CONTENTS OF FILES

When you perform a number of file manipulations during a single session,

it is occasionally advisable to display a file's contents at the terminal

before proceeding further. Assume you wish to display the contents of a

file named ALPHA that is contained in your default directory. Simply

enter the command:

-copy alpha
aaaaa
aaaaa

alpha copied TO :C0:

This COPY command example uses the default preposition (TO) and default

output file (:C0:) t which means that the command copies the output to the
console screen.

You can halt the scrolling of a displayed list to examine the data more
closely. Press the following CTRL keys to control scrolling of the

output:

CTRL/s Stops the data from scrolling off the screen until you
press a CNTRL/q.

CTRL/q Resumes scrolling of listed data until the end-of-file is

reached or you enter a CTRL/c.

CTRL/c Cancels listing the data and returns control to the Human

Interface, which prompts for a new command.

HOW TO REPLACE EXISTING FILES

There may be occasions when you wish to update the contents of an

existing file. One way to do this updating is to create a new file and
then replace the contents of the old file with the new data. Although

you can use the RENAME command to perform this operation, this section

shows how to replace the contents of a file with the COPY command's OVER
preposition.

Assume the following conditions:

• You have a file named ALPHA that is accessed under that name by a

number of different programs. ALPHA has outmoded data.

• Since you cannot change the name without also modifying the

programs that access ALPHA, you must retain the name but update
the outmoded file contents.

Operator 4-5



HUMAN INTERFACE EXAMPLES

I

Enter the following command sequence:

-copy :cl: to temp
nu nu nu nu
nu nu nu nu
(CTRL/z )

:ci: copied TO temp
-copy temp over alpha
temp copied OVER alpha
-copy alpha
nu nu nu nu
nu nu nu nu

alpha copied TO :C0:

The last COPY ALPHA command lists the file at the terminal to show that

the old file contents have been successfully replaced.

You could have used the TO preposition in the COPY command to write TEMP
over ALPHA; but since the Human Interface always expects a new output
file when the TO preposition is used, this would have caused unnecessary
keystrokes, as shown in the following:

-copy temp to alpha
alpha, already exists, OVERWRITE? %_
temp copied TO alpha

Note that you now have two copies of the same new data; one in the TEMP
file and one in the ALPHA file. If you had used the OVER preposition in
a RENAME command instead of the COPY command, file TEMP would have been
deleted automatically when RENAME was executed. However, if you did not
want two existing copies of the same data, you could update the existing
file directly from the keyboard. Enter the following command:

-copy :ci: over alpha
newnewnew
(CTRL/z)
:ci: copied OVER alpha

HOW TO CONCATENATE FILES

Concatenation is the process of combining a number of files by appending
them in sequence into a single file. You can use the COPY command in
several ways to concatenate files:

• by specifying the AFTER preposition in the command line

• by specifying multiple input pathnames and a single output
pathname (if the output pathname is a directory, concatenation
does not occur)

Operator 4-6



HUMAN INTERFACE EXAMPLES

• by using a combination of both techniques

Assume you have four existing files named A, B, C, D respectively, and
want to append the contents of B, C, and D to the end of file A.
Although you could specify the TO preposition in the COPY command line,
the TO preposition would force you to enter extra keystrokes because your
listed output file (A) already exists. It would also force you to delete
the previous contents of A, which is not always desirable. Therefore,
use the AFTER preposition, as follows:

-copy b,c,d after a
b copied AFTER a

c copied AFTER a

d copied AFTER a

Now, assume you wish to concatenate all four files into a new file called
ALL. You can still use the AFTER preposition, or you can use the TO
parameter, as follows:

-copy a,b,c,d to all
a copied TO all
b copied AFTER all
c copied AFTER all
d copied AFTER all

In this example, file A is copied to ALL and the remaining input files
are automatically appended to the end of ALL.

You can save keystrokes when listing a series of files on the screen by
using this automatic concatenation in a single command line. Assume you
wish to list files named ALPHA, BETA, and GAMMA. Enter the following
command, using the default TO preposition and default output file (:C0:):

-copy alpha, beta, gamma
aaaaa
aaaaa
alpha copied TO :C0:

bbbbb
bbbbb
beta copied AFTER :C0:

ggggg
ggggg
gamma copied AFTER :C0:

When data sequence and/or data format are important in a concatenated
file, remember that all copy operations are performed in the sequence you
specify in the command line.

Assume you have formatted data in a group of files named A, B, C, D, and
E, and you wish to concatenate their contents into a new file named
SQUARE in that sequence. However, if you list the input files on the
command line in a haphazard sequence, as follows:

-copy b,a,d,c,e to square

Operator 4-7



HUMAN INTERFACE EXAMPLES

the format of the total data block is destroyed, as can be seen in the

following incorrect and correct versions of the listed output. Although

the data block of Latin words shown in the left-hand example seems

correct when read horizontally, the intent and meaning of the vertical

columns has been lost. The right-hand example shows the corrected file

sequence:

b,a,d,c,e a,b,c,d,e
sequence sequence

AREPO SATOR
SATOR AREPO
OPERA TENET
TENET OPERA
ROTAS ROTAS

In the right-hand example, the Latin "magic square" now reads the same

both horizontally and vertically, which was the intended operation.

HOW TO DELETE FILES

It is vital to good file housekeeping that you routinely delete obsolete

or unused files and empty directories. (Deleting unused directories is

described later in this chapter.) In addition to the obvious benefit of

recovering unused secondary storage, deleting your obsolete files reduces
confusion and file manipulation errors.

Assume that you want to delete files ALPHA and BETA from the system.

Enter the following command:

-delete alpha, beta
alpha, deleted
beta, deleted

Now, assume that you entered the following command line and received the

following error message:

-delete ay, bee, key
ay, deleted
bee, deleted
key, does not exist

The error message for the KEY file tells you one of three things:

• There is a syntax error in the spelling of the KEY file.

• The file does not exist.

• The file exists in a directory other than the one you are

currently accessing (see the directory examples later in this

chapter).

Operator 4-8



HUMAN INTERFACE EXAMPLES

HOW TO USE DIRECTORIES

A directory is a kind of file under which you assign and maintain other
files or directories. It is distinguished from a data file by a

directory heading that is automatically created when you create a new
directory. Under that heading, the directory maintains a formatted list
of its containing files and directories . This heading is updated
whenever you assign new files to the directory. Directories provide you
with a convenient and efficient technique for organizing large numbers of

files into logical groupings. Creating your own directories aids you in
two ways:

• It allows you to organize your files into logical groupings.
This capability eases the task of maintaining large numbers of
files on the system.

• It reduces the possibility of accidental destruction of files,
either by yourself or other system users.

A directory contains a list of all files assigned under its name, which
you can display by using the DIR command (described later). Optional DIR
command parameters also allow you to access and display other pertinent
information about each file, such as file size and other file attributes.

Previous command examples in this chapter, when creating and accessing
files, have used the default directory configured for your user ID. The
following examples show you how to create and use your own directories
for easier file management.

HOW TO CREATE A NEW DIRECTORY

Whenever you wish to group a series of files under a single topical
structure, you normally create a new directory in which to assign them
before creating the files themselves. (You can also move existing files

under a new directory name by using the RENAME command, as described
later.

)

You create new directories by using the CREATEDIR command to specify a

list of directory names for the new directories. You will find it easier
to keep track of both your directories and files if you use directory
names that give some, hint of a directory's topical structure.

Assume you wish to create two directories named MYTEST and NUTEST under
which you will assign several practice files. Enter the following
command

:

-createdir MYTEST, NUTEST
MYTEST, directory created
NUTEST, directory created

Operator 4-9



HUMAN INTERFACE EXAMPLES

This example specified the directory pathnames as uppercase characters.

It is suggested that you also capitalize all directory pathnames in a

CREATEDIR command and use lowercase characters for data pathnames when

you create new files with the COPY command. This practice is recommended
because, when you subsequently list a directory by using the DIR command
(described later), it will be much easier for you to distinguish between
data file names and directory names.

Once you create directories and data files, you can enter their pathnames

in either lowercase or uppercase characters in subsequent commands; the
Human Interface commands make no distinction in interpretation.

HOW TO REFER TO A DIRECTORY

After you create a new directory, all named files or directories that you

assign to that directory will have a hierarchical relationship to this
"parent" directory. This relationship to the parent is called a path .

When you wish to access any file or other directory assigned to the
parent, you must specifically identify the path in the form of a pathname
in your command.

For example, assume your default directory has a directory named NUTEST

under which you have another directory named SAMP. SAMP, in turn, has a

data file named TEST. NUTEST is then the parent directory for the SAMP
directory and SAMP, in turn, is the parent for the TEST data file. In a

command, the pathname for the SAMP directory would be NUTEST/SAMP, where
the slash characters separate the individual hierarchical components of
the pathname. The pathname for the TEST data file would be

NUTEST/SAMP/TEST.

If the files are contained in your default directory, you can refer to

them without specifying a logical name as a prefix. When you enter the

pathname:

NUTEST/SAMP/TEST

the Human Interface automatically appends the prefix :$: to the

beginning. However, if the files are contained in a directory other than
your default directory, you must enter the complete pathname for the

file. For example, if the files reside on a device whose logical name is

:AD3:, you must include this logical name as the prefix portion of the

pathname, as follows:

:AD3: NUTEST /SAMP/TEST

If you omit the :AD3: portion, the Human Interface assumes the files

reside in the default directory.

Operator 4-10



HUMAN INTERFACE EXAMPLES

HOW TO ADD NEW ENTRIES TO A DIRECTORY

Previous data file examples in this chapter used the default directory
(as configured for your system) for all file creation and access.
Consequently, each example that created a new file or accessed an
existing file specified only the last component of the file's pathname;
it did not need to specify a logical name or intermediate pathname
components. However, whenever you wish to create a new data file to be
assigned to a specific directory, you must precede the filename with the

directory name and separate the two names with a slash (/) in the COPY
command, as described in the previous subsection. You might also need to

specify a logical name, if the directories do not reside in your default
directory.

For example, assume you wish to create files named SAMPl and SAMP2 and

assign them to the MYTEST directory (MYTEST resides in your default
directory). Enter the following commands:

-copy :ci: to mytest/sampl
aaaaa
(CTRL/z)

:ci: copied TO mytest/sampl
-copy :ci: to mytest/samp2
bbbbb
(CTRL/z)

:ci: copied TO mytest/samp2

Remember that once you have added files to a specific directory, every
subsequent operation involving those files must specify a preceding
directory name and the slash separator (unless you change your default
directory, as described in a later section). For example, assume you
want to delete files SAMPl and SAMP2 from the MYTEST directory. You
might enter the following command:

-delete mytest/sampl, samp2
mytest/sampl, deleted
samp2, does not exist

The Human Interface issues the "does not exist" message for SAMP2 because
it looked for the file in your default directory instead of the MYTEST
directory. The correct command line entry should have been:

-delete mytest/sampl, mytest/samp2

so that the Human Interface would search the correct directory for each
listed file.

Operator 4-11



HUMAN INTERFACE EXAMPLES

HOW TO CREATE A DIRECTORY WITHIN A DIRECTORY

In the same manner that you create new directories in your default
directory, you can also create new directories in other directories,
therefore expanding the file hierarchy.

For example, assume you have data files ALPHA, BETA, and GAMMA assigned
to the MYTEST directory and now wish to add a new directory file named
URTEST to the directory. Enter a CREATEDIR command, as follows:

-createdir mytest/URTEST
mytest/URTEST, directory created

Now, assume you wish to create a new data file named NOMOR and assign it

to the URTEST directory. Enter the following COPY command:

-copy :ci: to mytest/urtest/nomor
nononon
nononon
(CONTROL/z )

:ci: copied TO mytest/urtest/nomor

The "MYTEST/URTEST" sequence is the path from your default directory to
the URTEST directory, and the "MYTEST/URTEST/NOMOR" sequence is the path
from your default directory to the NOMOR file. When you use
file-handling commands, you must always specify a path to the file,
either a path from your default directory to the file, or a path from
some other known point (such as from the root directory for another
device). For example, assume you have another data file in URTEST named
SUMOR and wish to list both NOMOR and SUMOR on the console screen. Enter
the following command and specify the pathname for each file:

-copy mytest/urtest/nomor,mytest/urtest/sumor
nononon
nononon
mytest/urtest/nomor copied TO :C0:

sumsumsum
sumsumsum
mytest/urtest/sumor copied TO :C0:

If the directory MYTEST resides on a device (for example, :F6:) other
than your default device, you would specify the previous command as
follows:

-copy :f6:mytest/urtest/nomor, :f6:mytest/urtest/sumor
nononon
nononon
:f6:mytest/urtest/nomor copied TO :C0:

sumsumsum
sumsumsum
:f6:mytest/urtest/sumor copied TO :C0:

Operator 4-12



HUMAN INTERFACE EXAMPLES

You can also specify file operations involving two or more different

directories, and these directories need not be on the same path. Assume
you wish to list the ALPHA file from MYEST and a file named DIFF on a

directory path ONE/MOR. Enter the following command:

-copy mytest/alpha,one/mor/dif

f

aaaaa
aaaaa
mytest/alpha copied TO :C0:

yyyyy
yyyyy
one/more/dif f copied TO :C0:

HOW TO LIST DIRECTORIES

Previous examples have shown you how to list the contents of data files

by specifying a directory pathname in a COPY command. However, you

should not use the COPY command to list the contents of directories,

because COPY lists the directory as though it were a data file. For

example, if you enter the COPY command to list the MYTEST directory on

the screen, you obtain:

-copy mytest
alphabetagammaurtest copied to :C0:

The resulting output is almost unreadable. Instead, use the DIR command

to list the directory's catalog of files as follows:

-dir mytest

01 JAN 78 00:00:00
DIRECTORY OF MYTEST ON VOLUME disk2

alpha beta g£imma

URTEST

This example used the DIR command's default TO preposition and FAST

format for the listing. You could have sent the directory listing to

another output file and specified either the OVER preposition, to write

the listing over the file's previous contents, or the AFTER preposition,

to append the directory listing to other data. If you want to list more

information about each file, specify the EXTENDED parameter. See the DIR

description in Chapter 3 for examples of the available listing formats.

Operator 4-13



HUMAN INTERFACE, EXAMPLES

HOW TO MOVE FILES BETWEEN DIRECTORIES

There may be situations when you wish to reorganize a large group of
existing files under new headings (directories). You can copy files from
one directory to another by using the COPY command. For example, assume
you wish to copy files ALPHA, BETA, and GAMMA from your default directory
to the existing directory MYTEST. Enter the following command line,
using the QUERY parameter (optional):

-COPY alpha, beta, gamma, to MYTEST QUERY
alpha, COPY TO MYTEST/alpha? y_

alpha COPIED TO MYTEST/alpha
beta, COPY TO MYTEST/beta? y
beta COPIED TO MYTEST/beta
gamma, COPY TO MYTEST/gamma? y
gamma COPIED TO MYTEST/gamma

Assume you later decide to move file ALPHA back to your default
directory. You need not specify the default directory in the new
pathname for ALPHA. Enter the following command:

-rename mytest/alpha to alpha
mytest/alpha renamed TO alpha

Any subsequent operations involving file ALPHA would only require the
file name. For example:

-copy alpha
aaaaa
aaaaa
alpha copied TO :C0:

HOW TO DELETE A DIRECTORY

You delete unused directories from secondary storage by using the DELETE
command. However, the Human Interface protects you from accidently
destroying valuable files by refusing to delete a directory that contains
one or more files. For example, assume you wish to delete directory
MYTEST and do not realize it contains a data file named ALPHA and a
directory named DED that itself contains a data file named LIV. You
enter the following command:

-delete mytest
mytest, directory not empty

Operator 4-14



HUMAN INTERFACE EXAMPLES

At this point you should list the MYTEST directory by using the DIR
command to determine the contents of MYTEST, as follows:

-dir mytest

01 JAN 78 00:00:00
DIRECTORY OF MYTEST ON VOLUME disk2

alpha DED

You now have two options. You can use the RENAME command to move any
files to be saved to a different directory on the same volume, or you can
use the DELETE command to delete the entire contents of MYTEST before
deleting the directory.

Assume you wish to move ALPHA to the NUTEST directory and delete the rest
of the directory's contents so that MYTEST itself can be deleted. Enter
the following commands:

-rename mytest/alpha to nutest/alpha
mytest/alpha renamed TO nutest/alpha
-delete mytest/ded/liv,mytest/ded,mytest
mytest/ded/liv deleted
mytest/ded deleted
mytest deleted

The RENAME command automatically deleted the MYTEST/ALPHA pathname from
the MYTEST directory. Note how the pathname sequence in the DELETE
command travelled upward through the hierarchical structure, with the
MYTEST directory being the. last item to be deleted.

HOW TO CHANGE YOUR DEFAULT DIRECTORY

Suppose your default: directory contains a directory called MYTEST which
contains another directory called URTEST which in turn contains several
data files called MOR, SUMOR, STILMOR, and N0M0R. If you plan to
manipulate these data files extensively, your Human Interface commands
can become very cumbersome, due to the length of the pathnames involved.
For example, suppose you wish to copy the data files to files called
ALPHA, BETA, DELTA, and GAMMA in the same directory. The command to do
this is:

-copy mytest/urtest/mor, mytest/urtest/sumor, mytest/urtest/stilmor, &
**mytest/urtest7nomor to mytest/urtest/alpha, mytest/urtest/beta, &
**mytest/urtest/delta, mytest/urtest/gamma

If there are more levels in the directory structure, your commands can
become even longer.

Operator 4-15



HUMAN INTERFACE EXAMPLES

To eliminate some of these long pathnames, you can use the ATTACHFILE

command to change your default directory to be a directory closer to the
level of the files with which you are working. To make the previous

command shorter, you could change your default directory to the URTEST
directory, as follows:

-attachfile mytest/urtest as :$;

mytest/urtest attached AS :$:

Now, when you make references to files without specifying the entire
pathname, the Human Interface assumes that they reside in the URTEST
directory, not your previous default directory. Therefore, to perform

the same operation as in the previous COPY command, you could now enter
the following command:

-copy mor, sumor, stilmor, nomor to alpha, beta, delta, gamma

You can use the ATTACHFILE command to change your default directory to

any directory that you wish, so that you can manipulate the files in that
directory more easily. To return to your original default directory,

enter the following command:

-attachfile

This command uses the default parameters and has the same effect as

"ATTACHFILE :HOME: AS :$:". The :HOME: logical name represents your
original default directory; therefore the command returns :$: to its

original value.

HOW TO RENAME FILES AND DIRECTORIES

The most direct method to save the contents of a file or directory but

change its pathname is to use the the RENAME command. To make the

process easier to follow, this section discusses the renaming of files

and directories separately.

HOW TO RENAME FILES

Assume you wish to change the name of file ALPHA to a new name of OMEGA,

where OMEGA does not already exist. Enter the following command:

-rename alpha to omega
alpha renamed TO omega

The ALPHA pathname is automatically deleted from the system when the

RENAME command is executed. You can also rename lists of files to new
pathnames In this case, it is useful to include the QUERY parameter in

your command line to make certain that your old pathnames and new
pathnames are matched up in the way you intend.

Operator 4-16



HUMAN INTERFACE EXAMPLES

Assume you wish to rename files ALPHA, BETA, and GAMMA to TOM, DICK, and

HARRY respectively. Enter the following command sequence:

-rename alpha, beta, gamma to torn, dick, harry
alpha renamed TO torn

beta renamed TO dick
gamma renamed TO harry

Remember that when using the RENAME command, you must always have a

one-for-one match of pathnames between the new list and the old file
list. For example, more old pathnames than new pathnames would cause the

following exchange at the terminal:

-rename alpha, beta to torn

alpha renamed TO torn

TO or OVER preposition expected

Similarly, specifying fewer old pathnames than new pathnames would cause
the following exchange:

-rename alpha to beta, torn

008B: E$UNMATCHED LISTS

So far, these RENAME examples have used the TO parameter to give new
names to existing files. However, you can also use the OVER preposition
with RENAME. The primary purpose of OVER is to move data from one named
file over the data in another existing file. This use of the OVER
preposition matches the action of the OVER preposition in the COPY
command with one important distinction: RENAME automatically deletes the
input file when the command is executed.

Exercise a little care here! It's easy to get into semantic confusion
when using the OVER preposition in a RENAME command. Just remember a few
simple rules:

• Use the pathname of the data to be moved to a different but

existing pathname as the input parameter; that is, on the
left-hand side of the OVER preposition. This pathname will be
deleted when the command is executed.

• Use the pathname that receives the input data as the ouput
parameter; that is, on the right-hand side of the OVER
preposition. The previous contents of this file will be replaced
when the command is executed.

For example, assume you have a file named ABLE whose contents consist of

the data line aaaaa, and another file named BAKER whose contents consist
of the data line bbbbb. You wish to rename ABLE with the name BAKER.
Enter the following command:

-rename able over baker
able renamed OVER baker

Operator 4-17



human interface; examples

Now display the contents of the file previously named ABLE but now named
BAKER:

-copy baker
aaaaa

baker copied TO :C0:

The previous contents of BAKER have been deleted, and pathname ABLE has
been deleted from its directory. You can also use the TO preposition to
rename files x^ith other existing pathnames. Using TO might be slightly
less confusing but you must enter extra keystrokes. For example, assume
you wish to rename ALPHA and BETA with the existing file names GAMMA and
DELTA. Enter the following command:

-rename alpha, beta to gamma, delta
gamma, already exists, OVERWRITE? y_

alpha renamed TO gamma
delta, already exists, OVERWRITE?

j_

beta renamed TO DELTA

HOW TO RENAME DIRECTORIES

A directory can be renamed to new pathname on the same volume (but not to
an existing pathname). Assume you have a directory whose pathname is
ALPHA/BETA and you wish to rename it with a new pathname of AY/BEE.
Enter the following command:

-rename alpha/beta to AY/BEE
alpha/beta renamed TO AY/BEE
-dir alpha/beta
alpha/beta, does not exist

Be careful when renaming directories! The last message explains the
consequences of renaming a directory to a new pathname. ONCE YOU RENAME
A DIRECTORY, ALL FILES LISTED UNDER THAT DIRECTORY WILL ALSO HAVE THIER
PATHNAMES CHANGED. If your system has other programs that use data files
that are listed under the old directory name, those programs will never
find the files. In such a case, you must either rename the directories
to their original names or modify the programs.

In summary, the distinctions between using the RENAME and COPY commands
are as follows:

• When you use COPY to move the contents of an existing file TO a

new file or OVER an existing file, the input file still exists.

• When you use RENAME to move the contents of an input file TO a

named new file or OVER an existing file, the input pathname is
automatically released for new uses.

Operator 4-18



HUMAN INTERFACE EXAMPLES

HOW TO MOVE FILES ACROSS VOLUME BOUNDARIES

You can use all Human Interface file-handling commands except RENAME to

manipulate files across volume boundaries. That is, you can copy files
or directories from one diskette or disk platter to another one mounted
on a different drive. The restriction against using RENAME across volume
boundaries is intended for the protection of files against accidental
deletion.

You access a different volume by entering the logical name for the device
(the drive on which the volume is mounted) as the first item in the
pathname. For example, assume you have a volume mounted on a drive whose
logical name is :fl:. Further assume you wish to list the root directory
for that volume to see what directories and data files you have on the
volume. Enter the following command:

-dir :fl ;

01 JAN 81 00:00:00
DIRECTORY OF :fl: ON VOLUME disk2

able baker chuck OMNI samp
BUS nusamp STATS

Assume you wish to copy file ABLE from this volume mounted on :fl: to the
MYTEST directory (which resides in your default directory). Enter the
following command:

-copy :fl:/able to mytest/able
:fl:/able copied TO mytest/able

If you then wish to delete files ABLE and BAKER from the : f1 : volume,
simply enter the command:

-delete : f 1: /able, :f 1 : /baker
:fl:/able, deleted
:fl: /baker, deleted

Now, assume the following conditions:

• You have two data files on the :fl: volume with the pathnames
STATS/SALES/FEB and STATS /SALES/MAR.

• You wish to merge both files to a new file with the pathname
MYTEST/PEEK/SUBTOT on your system's default volume.

Enter the following command:

-copy : fl:/stats/sales/f eb, : fl: /stats/sales/mar to mytest/peek/subtot
: f 1: /stats/sales/feb copied TO mytest/peek/subtot
:fl: /stats/sales/mar copied AFTER mytest/peek/subtot

Operator 4-19



HUMAN INTERFACE EXAMPLES

Note that a volume prefix must be specified for each pathname in any

command that crosses volume boundaries. A volume uses the prefix of the

drive on which it is mounted.

HOW TO FORMAT A NEW VOLUME

Whenever you wish to use a new volume on a secondary storage device (such

a diskette, disk platter, or bubble memory), you must format the volume

before you can write any information in it. Assume you are going to

mount a new diskette on a disk drive with the prefix :fl: that you have

attached (with the ATTACHDEVICE command) as a named device.

Enter the following command:

-format :fl;

volume () will be formatted as a NAMED volume
granularity = 128 map start = 938
interleave = 5 sides = 1

files = 200 density = single
extensionsize = 3 disk size = standard (8")

volume size = 250K

TTTTTTTTTTTTTTTTTT. .

.

volume formatted

This formatting example exercised all the default options.

This example did not specify a volume name as parameter of FORMAT. A
volume name is not required; however, for diskettes, a volume name gives

you a method for identifying a volume in case the stick-on label on the

diskette gets lost or destroyed. You need only mount the disk on a drive
and enter a DIR command for that drive to get a directory listing that

specifies the volume name.

The GRANULARITY, INTERLEAVE, EXTENSIONSIZE, MAPSTART, and FILES

parameters tell the FORMAT command how you want the physical space (for

instance, disk surface space) on the volume allocated and accessed for

maximum efficiency. The default parameters caused the NEWVOL example to

be formatted with the following attributes:

• Since the device is attached as a named device, the NAMED
parameter is the default with FORMAT. It specifies that you will
be using the volume only to handle named files and directories.
If you specified the PHYSICAL parameter, the entire volume would
be treated as a single, large physical file. Once you you define
the volume as NAMED or PHYSICAL, you can only use it for that
purpose.

Operator 4-20



HUMAN INTERFACE EXAMPLES

• The GRANULARITY parameter specifies the minimum number of bytes

to be allocated for each increment of file size on the volume.
The default granularity is the granularity of the physical

device. Once the volume granularity is defined, it is applied to

every file you create on the volume.

For example, assume the default volume granularity for your

device is 1024 bytes. Each time you create a new file on the

volume, the I/O System automatically allocates 1024 bytes of

primary storage to that file, whether or not the file requires

the full 1024 bytes. If the size of your file exceeds 1024
bytes, the I/O System will increment your file size by still

another block of 1024 bytes, and so on, until the end-of-file is

reached.

• The INTERLEAVE default specifies that you want an interleave

factor of 5. The interleave factor defines the number of
physical sectors that occur between sequential logical sectors.

This value maximizes access speed for the files on a given

volume, depending upon the intent of the volume and the device
configuration of your system.

For example, an interleave value of 5 for a flexible disk system
means that, for each file, the 1/0 System will read every fifth
sector on the diskette, starting from an index of 1 (other, hard

disk systems may be different, depending on your hardware
configuration). Therefore, the I/O System does not need to wait

for the disk to make a complete revolution before^ it accesses the

next sector; the next sector by an increment of 5 is ready to be

accessed for read/write by the time the first accessed sector has

been processed.

Note that the INTERLEAVE is the only optional parameter that is

meaningful for volumes formatted for PHYSICAL files; the FILES,

EXTENSIONSIZE, and GRANULARITY options are ignored in FORMAT
commands that specify a PHYSICAL file format for the volume.

• The default FILES parameter specifies that you wish create a

maximum of 50 user files on the volume. Although the actual

number of files you can specify is 1 through 32,761, at a

practical level, one of your determining factors will be the
incremental file size you specify in the GRANULARITY parameter.

The default EXTENSIONSIZE parameter specifies that you wish to

create three bytes of extension data for each file. The Human

Interface requires that at least three bytes of extension data be

available. Other system programs included in your system may
require larger values.

• The MAP START gives the volume block number where the fnode and
map files start. If you do not specify a number, the Human
Interface places the fnode and map files in the center of the

volume.

Operator 4-21



human interface; examples

DISKETTE SWITCHING PROCEDURES

If your system is configured with the iSBC 204 flexible disk controller

and you are using single-density diskettes to perform file management

functions, a special procedure is required to switch the diskettes.

Perform the following steps:

1. Remove the old diskette and mount the new one into the drive.

2. Enter a DIR command for the root directory of the new diskette to

force physical access. The root directory "name" is actually the

prefix (logical name) for the drive on which the diskette is

mounted. For example:

-dir :fl:

The following exception message will be displayed:

E$I0

3. Ignore the error message and begin entering Human Interface
commands that access the volume.

***

Operator 4-22



CHAPTER 5
PATCHING UTILITY

The iAPX 86, 88 Patching Utility is a utility that runs on both iRMX 86

application systems and Series III Microcomputer Development Systems. It
modifies combine-type attributes of object modules, permitting them to be
written over (or repaired) with replacement modules. This capability
provides you with a method of modifying relocatable object modules with
software updates or repair code. The process requires that the
replacement code first be generated with the ASM86 Assembler.

The Patching Utility also enables you to list the translator header
records of the modules in a library. This listing allows you to see
which patches have been installed in a module or a library.

In previous releases of the iRMX 86 Operating System, the Patching
Utility served as a means of applying Intel-supplied software updates to

your system. This method of applying software updates is no longer in
effect. Software updates are now being distributed by Intel through the
iRMX 86 Update Package. Fixes to software problems (referred to now by
the general term "ZAP's") are applied to your system automatically when
the update is installed. You will not have to invoke the patch utility
to do this. Instructions for installing the update are included in the
customer letter that accompanies each update package. The update package
is describe in detail in the Installation Guide.

TYPES OF PATCHES

You can update a module to a newer version or add repair code in two ways:

• As a patch that generates a jump instruction to the replacement
code and appends the replacement code to the end of the original
module.

• As an in-place patch that directly overlays the replacement code
on that of the original module.

An example of each technique is provided later in this chapter.

Operator 5-1



PATCHING UTILITY

KINDS OF CODES THAT CAN BE PATCHED

The Patching Utility requires you to relink your object modules after you

install the patches. Therefore you cannot patch modules which have been
located at absolute addresses (run through LOC86) or those which have
been linked using the BIND control of LINK86. Absolute and bound modules

cannot be relinked; therefore they cannot be patched.
For example:

Object Module Patch

iRMX 86 System Libraries Yes

Human Interface Commands No

An iRMX 86 Application System No

VERSIONS OF THE PATCHING UTILITY

There is one version of the Patching Utility. The Patching Utility runs
on an iRMX 86 application system and can be invoked with a Human
Interface command. The Patching Utility can also run on a Series III

Microcomputer Development System and can be invoked using the Series III
RUN command. The name of the file containing the Patching Utility is

called PTCH86.86.

If you are using a Series III system and your release diskette is in ISIS

format (media type B), use the COPY command to copy PTCH86.86 from the
Release Diskette onto an Intellec disk. If your release diskette is in

iRMX 86 format (either media type E or media type J), use the Human
Interface DOWNCOPY command (refer to Chapter 3) or the Files Utility

(refer to Chapter 6) to transfer a copy of PTCH86.86 to the Intellec disk.

If you are using an iRMX 86 system and your release diskette is in iRMX

86 format (either media type E or media type J), execute the "instal.csd"
command file (using the SUBMIT command) residing on the Release
Diskette. The instal.csd file copies PTCH86.86 from the diskette into

the appropriate iRMX directory. In the process PTCH86.86 is

automatically renamed to PTCH86. (Your system must conform to the
standard iRMX 86 directory structure in order for the instal.csd command
file to work.) If your Release Diskette is in ISIS-II format (media type
B), use the Human Interface UPCOPY command (refer to Chapter 3) or the

Files Utility (refer to Chapter 6) to transfer a copy of PTCH86.86 into
the RMX system. Since iRMX 86 does not require the ".86" suffix in order
to run the Patch Utility, you may want to change the PTCH86.86 name (e.g.

from PTCH86.86 to PTCH86).

INVOKING THE PATCHING UTILITY

Before invoking the Patching Utility, ensure that the file containing it

resides in the proper place. If you are using the Series III version,
ensure that the PTCH86.86 resides on drive of your development system.

Operator 5-2



PATCHING UTILITY

If you are using the iRMX 86 version, ensure that PTCH86 resides in your
default directory or in one of the directories that the Operating System
automatically searches (usually :PROG: and : SYSTEM:). Then you can
invoke the Patching Utility by entering one of the following commands:

Series III Invocation

iRMX 86 Invocation

where:

pathname Pathname of the file containing an iAPX 86, 88

object module produced by PL/M-86, ASM86, or
LINK86. If you are listing the translator
header records, the object module can be one
produced by LOC86 or LIB86.

segmentname Name of the segment whose combine-type attribute
is to be modified. The name must be a valid
segment name (usually CODE). If you omit this
parameter (and the segraentattribute parameter),
the utility does not modify the attributes of
any segment. Instead, it displays the
translator header records contained in the
module

.

segmentat tribute Combine-type attribute to be given to the named
segment. You must specify one of the following
values for this attribute:

COMMON

PUBLIC

Allows patch code to be overlaid on the segment.

Returns the segment to the combination mode
normally given by the PL/M-86 compiler.

Operator 5-3



PATCHING UTILITY

Refer to the ASM86 LANGUAGE REFERENCE MANUAL for a more detailed
explanation of combine-type attributes.

In response, the Patching Utility displays the following header message:

Operating system> iAPX 86, 88 OBJECT PATCHING UTILITY, Vx.y

Copyright <year> Intel Corporation

where:

<operating system> Name of the operating system, either iRMX 86 or

SERIES III.

x.y Version number of the Patching Utility.

If you exclude the optional segmentname and segmentattribute parameters,

the utility next displays the translator header records contained in the

object file. These header records serve to identify the patches that
have been made to a module (described later in this chapter). This
displays allows you to determine the update status of the file.

If you specify the segmentname and segmentattribute parameters, the

utility omits the display of the translator header records. Instead, it

changes the combine-type attribute as specified and displays the

following message:

ATTRIBUTE MODIFIED

Any other message indicates an error condition.

ERROR MESSAGES

When the Patching Utility encounters an error condition during a module
repair session, it displays one of the following error messages:

• ERROR nnn

When using the Patching Utility on a Series III development
system, the operating system returned an error message. Refer to

the INTELLEC SERIES III MICROCOMPUTER DEVELOPMENT SYSTEM CONSOLE
OPERATING INSTRUCTIONS for a description of numbered messages of

this form.

<exception code value> : <exception code mnemonic>

When using the Patching Utility on an iRMX 86 application system,

the operating system returned an exceptional condition code.

Refer to Appendix A of this manual for summary of these condition
codes. Refer to the appropriate iRMX 86 manual for detailed
descriptions of iRMX 86 exception codes.

Operator 5-4



PATCHING UTILITY

INVALID MODULE TYPE

The file specified is not suitable for the segment attribute
modification and subsequent patching.

INVALID RECORD TYPE

The object file contains an invalid record type for the object
module format. Perhaps you entered the wrong file name or

specified a file that contains code other than object code.

INVALID SYNTAX

The command line contains an error that was caused by a missing
file name or a missing or misspelled keyword.

SEGMENT NOT FOUND

The desired record was not found before the end of the module.

PATCHING PROCEDURES

Repair modules that you insert into existing modules must be generated
with the ASM86 Assembler. To patch an independent object module
containing errors (patching library modules is described later in this
chapter), you must first invoke the Patching Utility to modify the
combine-type attribute in the desired module segment to COMMON. This

step allows you to use LINK86 to overlay the repair module on the segment
to be patched. After linking with the repair module, you then use the

Patching Utility to restore the PUBLIC attribute to the segment. The

following example illustrates the steps for repairing independent object
module files:

1. Enter the PTCH86 command to set: the CODE segment combine-type
attribute to COMMON. For example, on a Series III development
system, enter:

RUN PTCH86 badmodule CODE COMMON

2. Enter the LINK86 command to overlay the repair object module on

the original version. (When entering the LINK86 input parameter
list, the name of the original module MUST precede the name of

the repair module) For example:

RUN LINK86 badmodule, repairmodule TO newmodule

3. Enter the PTCH86 command to restore the CODE segment to PUBLIC,
for example:

RUN PTCH86 newmodule CODE PUBLIC

Operator 5-5



PATCHING UTILITY

Typical examples of jump instruction overlays, in-place patch overlays,
library module patching, and listing module header records are given in
the following sections. A submit file, PATCH. CSD, is provided on the
Release Diskette as an example of how to use the Patching Utility.

JUMP INSTRUCTION PATCH

In the following example, the module generates a patch that overlays a
three-byte jump instruction on offset 0100H through 0102H of the original
module. The jump transfers control to repair code at offset 0500H. The
repair code is appended to the end of the module.

EXAMPLE

:

NAME REPAIR_V00001 ;

CODE SEGMENT WORD COMMON
CGROUP GROUP CODE

ASSUME CS : CGROUP

; Identifying module name.

CODE 1

ORG 0100H ; Offset of area in original
; module to be patched.

JMP REPAIRCODE

RETURN LABEL NEAR ;

ORG 0500H ;

REPAIRCODE:

; (Repair goes here)

JMP RETURN ;

CODE ENDS
END

; Return here from repair area.

Offset of end of original
module.

; Return control to original
module.

When making a jump instruction patch similar to the one listed
previously, you must overlay the three-byte jump instruction on one of
the following:

• A three-byte instruction

• A two-byte instruction and a one-byte instruction

• Three one-byte instructions

Otherwise, you must place NOP instructions after the JMP instruction and
before the RETURN label so that the repair code returns to the start of
the next instruction (not to the middle of a previous instruction).

Operator 5-6



PATCHING UTILITY

IN-PLACE PATCH

The following example generates an in-place patch that directly overlays
repair code on a module's previous code.

EXAMPLE

:

NAME

CODE

END

REPAIR V00002 ; Module name identification.

CODE SEGMENT
CGROUP GROUP

ASSUME

ORG

ADD

ENDS

WORD COMMON
CODE
CS : CGROUP

CODE'

0200H ; Offset of the original operand.

AX, 3 ; Replaces the original value with a "3"

; (the new instruction must be the same

; size as the original instruction).

LISTING TRANSLATOR HEADER RECORDS

If you want the Patching Utility to list an object module's translator
header records on the console screen, enter the PTCH86 command without
specifying the segment name or segment attribute. The listed records

allow you to identify the patches that have been made to the module. A
typical PTCH86 command entry (from an 1RMX 86 system) and resulting
header record display is as follows:

-PTCH86 FILE. OBJ
iRMX 86 iAPX 86, 88 OBJECT PATCHING UTILITY, Vx.y

ORIGINALMODULE
0RIGINALM0DULE_REPAIR_V030-01
ORIGINALMODULE_REPAIR__V030-02

The "030" stands for version 3.0 of the software being patched, and "01'

and "02" are the patch numbers of the Intel-supplied patches that have

been made to the module. The Patching Utility can perform this listing
operation on both object modules and libraries.

***

Operator 5-7





CHAPTER 6
FILES UTILITY SYSTEM

Because INTELLEC Microcomputer Development Systems do not recognize

iRMX 86 diskette files, you cannot read, write, or format iRMX 86

diskettes directly from the ISIS-II operating system. However, you can

perform these operations indirectly from the Development System by using

the iRMX 86 Files Utility System. The iRMX 86 Files Utility System is an

iRMX 86 application system that allows you to perform the following

operations:

Format an iRMX 86 diskette.

Copy a file from an ISIS-II diskette to an iRMX 86 diskette.

Copy a file from an iRMX 86 diskette to an ISIS-II diskette.

Delete a file from an iRMX 86 diskette.

Create a directory on an iRMX 86 diskette.

Display, on the Development System terminal, the contents of a

directory of an iRMX 86 diskette.

If you cannot use the startup system (described in the iRMX 86

INSTALLATION GUIDE) to format your first iRMX 86 secondary storage

volumes and transfer necessary files (such as Human Interface commands)

to these volumes, you can use the Files Utility for this purpose. The

Files Utility System also gives you the ability to build and maintain
secondary storage volumes for iRMX 86 application systems that do not

include the Human Interface.

HARDWARE REQUIRED

The Files Utility System requires the following hardware:

• A Series III Microcomputer Development System having at least 64k

bytes of memory and at least one disk drive (hard or flexible).

The Files Utility is not supported on Series IV Microcomputer

Development Systems.

• A target system consisting of an iAPX 86, 88, 186, or 188-based

Single Board Computer, at least 192k bytes of memory, and at

least one disk drive (hard or flexible). THE FILES UTILITY DOES

NOT RUN ON iAPX 286 MICROPROCESSOR BASED SYSTEMS.

• The iSDM 86 MONITOR.

Operator 6-1



FILES UTILITY SYSTEM

STARTING THE FILES UTILITY

Before you can enter commands to the Files Utility, you must start it
up. This involves connecting certain hardware modules and then entering
appropriate commands at the Series III terminal.

After you have assembled your hardware, perform the following steps:

1. Place an ISIS-II system diskette containing the iSDM 86 monitor
software into drive of your INTELLEC Microcomputer Development
System and the Utilities release diskette into any other drive.

2. Load the ISIS-II system.

3. Enter the following:

ISDM 86

. R :fx:fs86

or

. R :fx:fs!86

where

:

fx Identifier of the disk drive containing the Utility
release diskette.

fs86 Identifies the monitor as iAPX 86 microprocessor
based.

fsl86 Identifies the monitor as iAPX 186 microprocessor
based.

These commands instruct the monitor to load the Files Utility System from
a diskette on the INTELLEC system into RAM on the target system.
The screen of your INTELLEC system should display the heading:

iRMX 86 FILES UTILITY Vx.y
Copyright <year> Intel Corporation

The Files Utility signals that it is ready to accept your next command by
displaying an asterisk (*) at the screen of the INTELLEC system.

Operator 6-2



FILES UTILITY SYSTEM

USING THE FILES UTILITY

The Files Utility provides 10 file management commands, as follows:

ATTACHDEV DIR
BREAK DOWNCOPY
CREATEDIR FORMAT
DELETE HELP
DETACH UPCOPY

The commands are described in alphabetical sequence later in this

chapter. However, before actually using the commands, you should

understand the diskette handling procedures and how the Files Utility
System handles errors.

CHANGING DISKETTES

When the Files Utility is running and you have already performed an

operation on a particular diskette, you cannot simply remove that

diskette from the drive and replace it with another. The Utility System

is not aware of diskette changes and treats the second diskette as if it

were the first, and thereby possibly writes over or destroys valuable

information. To change diskettes in a drive, you must enter a DETACH

command to logically detach the drive from the system, change diskettes,

and then (with one exception) enter an ATTACHDEV command to again
logically attach the device.

The one exception to this command entry sequence is the FORMAT command.

As described later in this chapter, this command writes iRMX 86

formatting information on blank diskettes. Since the FORMAT command

always expects a blank diskette and a detached drive, you can replace

diskettes in a drive any number of times if you use only the FORMAT
command before entering the ATTACHDEV command. The FORMAT command

destroys the information, if any, previously contained on the diskette.

COMMANDS

This section provides descriptions of the Files Utility commands and

their parameters in alphabetical sequence. Each command has a

two-character abbreviation. You can use either the full name or its

abbreviation when entering a command.

ATTACHDEV (AD)

This command attaches a physical device to the system and associates a

logical name with the device. The command can also be used to display

the current attachment of a logical name. The format is as follows:

Operator 6-3



where

:

FILES UTILITY SYSTEM

AD) (T :logicalname:
J)-

: logical-name: A 1-to 12-character ASCII name, surrounded by
colons.

=physical-name If used, there must be no spaces surrounding the
equal sign. This specifies the physical device
name as configured in the I/O System (see Table
3-2). If physical name is omitted, the current
attachment is displayed by default; for example:

AD :F0: (command entry)
:F0: = FXO (displayed output)

BREAK (BR)

This command causes an exit from the Files Utility System to the
monitor. The format is as follows:

CREATEDIR (CD)

This command creates an iRMX 86 directory file on the attached device,
The format is as follows:

where:

rmx-pathname Pathname of the iRMX 86 directory file to be
created.

Operator 6-4



FILES UTILITY SYSTEM

DELETE (DE)

This command removes the specified iRMX 86 file from the directory where

it is listed. The format command is as follows:

where:

rmx~pathname Pathname of the iRMX 86 file to be deleted.

DETACH (DT)

This command detaches a logical name from the system. The command is

used for changing diskettes, prior to entering a FORMAT command, or to

reconfigure a device to a different sector size. The format is as

follows:

DT \——(Tlogical-devicename:

where:

: logical-name

:

The logical name you assigned to a physical
device via an ATTACHDEV command.

DIR (DI)

This command lists an iRMX 86 directory file at the Development System
console. The format is as follows:

where:

rmx-pathname Pathname of the iRMX 86 directory file to be

listed.

Operator 6-5



FILES UTILITY SYSTEM

S Switch that causes a "long" or expanded display
of directory file that includes: file type (a
"DR" heading for a directory file, a "MP" heading
for the bit map file, or a blank heading for a
data file), number of blocks, and number of bytes
in file. If S is not specified, a "fast" format
will be displayed, consisting of file names only.

The directory file listing includes a line that lists the size of the
directory. This line appears as:

<n> FILES

In this line, <n> specifies the number of entries currently present in
the directory. If you specify the S parameter, this command also lists
the following information about the directory:

<numblks> BLOCKS <numbytes> BYTES

In this line, <numblks> specifies the number of volume-granularity blocks
allocated to files in the directory and <numbytes> specifies the number
of bytes allocated to files in the directory.

DOWNCOPY (DC)

This command creates an ISIS-II file and copies the specified iRMX 86
file to it. If the ISIS-II file already exists, it is written over. The
format is as follows:

where:

rmx-pathname Pathname of the iRMX 86 file to be copied,

isis-filename Name of the ISIS-II file to be created.

FORMAT (FO)

This command writes iRMX 86 formatting information on a secondary storage
device. It performs the same kind of operations as the Human Interface
FORMAT command described in Chapter 3. All information previously
contained on the device is destroyed by the formatting operation. Each
device must be formatted before it can be used by the iRMX 86 Operating
System.

Operator 6-6



FILES UTILITY SYSTEM

The FORMAT command expects an unattached device. The device can either

be unattached at system start up, or you can detach it by entering a

DETACH command prior to entering the FORMAT command. Since the device

remains unattached after FORMAT completes execution, you must attach the

device by entering an ATTACHDEV command before entering any other Utility

command except another FORMAT command. (See also the "Changing
Diskettes" section in this chapter, and the ATTACHDEV and DETACH command
descriptions.)

The FORMAT command contains parameters that are specified in the form

"keyword=value". When entering parameters of this type, you must not
place any spaces around the equal sign. Also, you can abbreviate each of

these keywords as shown. The abbreviations and the format of this

command are as follows:

x-220

where:

physicalname Physical device name for the drive, as configured
in the I/O System, that denotes the iRMX 86 drive
on which the diskette resides. Possible values
are itemized in Table 3-2.

volumename A 1- to 10-character volume name that identifies

the diskette. Decimal digits, uppercase and

lowercase letters, and the following special
characters can be used in the volume names:

%

+ /
= ?

nodes The number of files (including internal system

files) that can be created on this volume. If

you omit this parameter, a default value of 57 is

assumed.

Operator 6-7



FILES UTILITY SYSTEM

gran The granularity, in bytes, for this volume. The
granularity is the number of bytes obtained
during each diskette access. If you omit this
parameter, the default volume granularity is the
device granularity (the number of bytes in a

physical sector). Specifying any value less than
the device granularity causes the default to be
used. Any non-multiple of device granularity
(such as 128 or 512) is rounded upward to the
next higher multiple of device granularity.

num

ileave

Size, in bytes, of the extension data associated
with each file. This data is used by
A$GET$EXTENSION$DATA and A$SET$EXTENSION$DATA
system calls (refer to the iRMX 86 BASIC I/O
SYSTEM REFERENCE MANUAL). The Human Interface
requires files it accesses to have three bytes of
extension data. The range is through 255
(decimal). If not specified, the default is
three bytes.

The interleave factor for the volume, or the
number of physical sectors between logical
sectors. You can specify any integer from 1 to
13 for this value. If you omit this parameter, a

default value of 5 is assumed.

switch A switch that indicates the support option for
this volume. One value can be entered for the
switch:

NAMED The volume is created to contain named
files. The ROOT directory is

initialized.

If you omit this switch, the volume is created as
a single physical file. In this case, FORMAT
records the interleave information on the
diskette but does not initialize any of the
iRMX 86 file structures.

When it formats a named volume, the FORMAT command creates six internal
system files. It names four of these files and lists their names in the
root directory of the volume. The files are:

file description

R7SPACEMAP
R?FNODEMAP
R7BADBL0CKMAP
R7V0LUMELABEL

Volume free space map
Free fnodes map
Bad blocks map
Volume label

The command assumes that the user WORLD is the owner of these files.
Refer to the iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL for more
information about these files.

Operator 6-8



FILES UTILITY SYSTEM

HELP (HE)

This command displays a list of the available Files Utility commands and
their syntax on the console screen. The format is as follows:

€>

UPCOPY (UC)

This command creates an iRMX 86 file and copies the specified ISIS-II
file to it. If the iRMX 86 file already exists, it is written over. The
format is as follows:

®-c
where:

isis-filename Name of the ISIS-II file to be copied,

rmx-pathname Pathname of the iRMX 86 file to be created.

ERROR MESSAGES

The Files Utility displays all error messages on the screen of the
INTELLEC Microcomputer Development System. These messages can be in any
of three forms. They are:

• UNRECOGNIZED COMMAND

The Files Utility does not recognize the spelling of your
command. It prompts for another command. 1

• ISIS ERROR # <nnn>

The Files Utility actually uses the ISIS-II operating system to

read and write diskettes attached to the INTELLEC Microcomputer
Development System. If the ISIS-II system detects any errors, it
returns an error code to the Files Utility. To interpret this
error message, refer to the INTELLEC SERIES III MICROCOMPUTER
DEVELOPMENT SYSTEM CONSOLE OPERATING INSTRUCTIONS. Fatal errors
require you to restart the Files Utility System by using the
FILES. CSD file, as described earlier in this chapter.

Operator 6-9



FILES UTILITY SYSTEM

RMX EXCEPTION # <mmmm>

When reading or writing on drives attached to the target system,

the Files Utility System uses the iRMX 86 Nucleus and the iRMX 86

I/O System. If either of these layers returns an exceptional

condition code, the Files Utility displays the condition code in

this format, where mmmm is in hexadecimal. For a brief

explanation of such an error message, refer to Appendix A. After
displaying this message, the Files Utility prompts for the next

command.

***

Operator 6-10



APPENDIX A
CONDITION CODES SUMMARY

Table A-l provides a list of the iRMX 86 condition codes that can occur
during system operations. This table provides a minimum of information
about each condition code. In most cases, the condition code must be
considered in terms of the unique circumstances that caused the
condition. Table A-l is provided to guide you to the most appropriate
manual. The appropriate iRMX 86 manuals have more detailed descriptions
of the meanings. The appropriate manual is listed in the column marked
"Manuals".

Table A-l. iRMXw 86 Condition Codes

Hex.
Value

Mnemonic Manuals
N B E L H

Meaning

OH E$OK ***** No exceptional conditions (normal)

Environmental Conditions

IH E$TIME ***** A time limit (possibly a limit of

zero time) expired without a task's
request being satisfied.

2H E$MEM ***** Insufficient available memory to

satisfy a task's request.

3H E$BUSY * Another task currently has access to

data protected by a region.

4H E$LIMIT ***** A task attempted an operation which,
if it had been successful, would
have violated a Nucleus-enforced
limit.

5H E$CONTEXT ***** A system call was issued out of
proper context.

6H E$EXIST ***** A token parameter has a value which
is not the token of an existing
object.

N Nu

B Ba

E Ex

icleus Refere
sic I/O Syst
[tended I/O S

nee Manual
em Ref Manual
ys Ref Manual

L Loader Reference Manual
H Human Interface Reference Manual

Operator A-l



CONDITION CODE SUMMARY

Table A-l. iRMX™ 86 Condition Codes (continued)

Hex.
Value

Mnemonic Manuals
N B E L H

Meaning

Environmental Conditions (continued)

7H E$ STATE * A task attempted an operation which

would have caused an impossible
transition of a task's state.

8H E$NOT$CON-
FIGURED

***** This system call is not part of the

present configuration.

9H E$INTER-
RUPT $SAT-
URATION

* An interrupt task has accumulated the

maximum allowable amount of

SIGNAL$INTERRUPT requests.

OAH E$ INTER-
RUPT$-
OVERFLOW

* An interrupt task has accumulated
more than the maximum allowable
amount of SIGNAL$INTERRUPT requests.

20H E$FEXIST * * File already exists.

21H E$FNEXIST * * * * File does not exist.

22H E$DEVFD * * * Device and file driver are

incompatible.

23H E$ SUPPORT * * * * Combination of parameters not
supported.

24H E$EMPTY$-
ENTRY

* * The specified slot in a directory
file is empty.

25H E$DIR$END * * The specified slot is beyond the end

of a directory file.

26H E$FACCESS * * * * File access not granted.

27H E$FTYPE * * * Incompatible file type.

28H E$ SHARE * * * * Improper file sharing requested.

29H E$SPACE * * No space left.

N Nu
B Ba
E Ex

cleus Referenc
sic I/O Systen
tended I/O Sys

.e Manual
1 Ref Manual
» Ref Manual

L Loader Reference Manual
H Human Interface Reference Manual

Operator A-2



CONDITION CODE SUMMARY

Table A-l. iRMX™ 86 Condition Codes (continued)

Hex.
Value

Mnemonic Manuals
N B E L H

Meaning

Environmental Conditions (continued)

2AH E$IDDR * * Invalid device driver request.

2BH E$IO * * * * An I/O error occurred.

2CH E$FLUSHING * * * * Connection specified in call was
deleted before the operation was
completed.

2DH E$ILLVOL * * * Invalid volume name.

2EH E$DEV$OFF-
LINE

* The device being accessed is now
offline.

2FH E$IFDR * * Invalid file driver request.

3OH E$FRAGMENT-
ATION

* The file is too fragmented to be

extended.

31H E$DIR$NOT$-
EMPTY

* * The call attempted to delete a

directory with files.

32H E$NOT$FILE$-
CONN

* The connection parameter is not a

file connection.

33H E$NOT$DEV~
ICE$CONN

* The connection parameter is not a

device connection.

34H E$CONN$NOT$-
OPEN

* The connection is closed or open but

not compatible with current request.

35H E$CONN$OPEN * The task is trying to open a connection
which is already open.

36H E$BUFFERED$-
CONN

* The connection was opened with one or

more buffers.

37H E$OUTSTAND-
ING$CONN

* A soft detach was specified, but

connections to the device still exist.

N Nuc
B Bas
E Ext

leus Reference
ic I/O System R
ended I/O Sys R

Manual
ef Manual
ef Manual

L Loader Reference Manual

H Human Interface Reference Manual

Operator A-3



CONDITION CODE SUMMARY

Table A-l. iRMX™ 86 Condition Codes (continued)

Hex.
Value

Mnemonic Manuals
N B E L H

Meaning

Environmental Conditions (continued)

38H

39H

3AH

3BH

3CH

3DH

3EH

3FH

40H

42H

44H

45H

E$ALREADY$-
ATTACHED

E$DEV$-
DETACHING

E$NOT$SAME$-
DEVICE

E$ILLOGICAL$-
RENAME

E$STREAM$-
SPECIAL

E$INVALID$-
FNODE

E$PATHNAME$-
SYNTAX

E$FNODE$-

LIMIT

E$LOG$NAME$-
SYNTAX

E$IOMEM

E$MEDIA

E$LOG$NAME$-
NEXIST

The specified device is already
attached.

The file is on device that is

being detached.

The existing pathname and the new
pathname refer to different devices.
You cannot simultaneously rename a
a file and move it.

The call attempted to rename a dir-
ectory to a new path containing
itself.

A stream file is out of context.

The connection refers to a file with
an invalid fnode.

The specified pathname contains invalid
characters.

The volume already contains the maximum
number of files.

The specified path starts with a colon
(:) but does not contain a second,
matching colon.

The Basic I/O System has insufficient
memory to process a request.

The device containing a specified file
is not online.

The Extended I/O System was unable
to find a specified logical name in
the object directories that it checks.

N Nucleus Reference Manual
B Basic I/O System Ref Manual
E Extended I/O Sys Ref Manual

L Loader Reference Manual
H Human Interface Reference Manual

Operator A-4



CONDITION CODE SUMMARY

Table A-l. iRMXm 86 Condition Codes (continued)

Hex.
Value

Mnemonic Manuals
N B E L H

Meaning

Environmental Conditions (continued)

46H E$NOT$OWNER * The user who attempted to detach the

device is not the owner of the device.

47H E$IO$JOB * The Extended I/O System cannot create

an I/O job because the size specified
for the object directory is too small.

50H E$IO$UNCLASS * An unknown type of I/O error occurred.

51H E$IO$SOFT * * A soft I/O error occurred. A retry
might be successful.

52H E$IO$HARD * * A hard I/O error occurred. A retry is

probably useless.

53H E$IO$OPRINT * * The device was off-line. Operator
intervention is required.

54H E$IO$WRPROT * * The volume is write-protected.

55H E$IO$NO$DATA * * A tape drive attempted to read the next

record, but found no data.

56H E$IO$MODE * * A tape drive attempted a read (write)

operation before the previous write
(read) operation completed.

61H E$BAD$GROUP * * Invalid group component in the a group
definition record.

62H E$BAD$-
HEADER

* * Invalid header record in the object
file.

63H E$BAD$SEG-
DEF

* * Invalid segment definition record.

64H E$CHECKSUM * * A checksum error occurred while
reading an object record.

N Nuc

B Bas
E Ext

leus Reference Manual
ic I/O System Ref Manual
ended I/O Sys Ref Manual

L Loader Reference Manual
H Human Interface Reference Manual

Operator A-5



CONDITION CODE SUMMARY

Table A-l . iRMX 1" 86 Condition Codes (continued)

Hex.

Value
Mneraoni c Manuals

N B E L H
Meaning

Envi ronmental Conditions (continued)

65H E$EOF * * Unexpected end of file encountered
while reading object records.

66H E$FIXUP * * Invalid fixup record in the object
file.

67H E$NO$LOADER
$MEM

* * Insufficient memory to satisfy
loader dynamic memory requirements.

68H E$NO$MEM * * Insufficient memory to create PIC/LTL
segments.

69H E$REC$FOR-
MAT

* * Invalid record format encountered.

6AH E$REC$-
LENGTH

* * Record length of an object record
exceeds configured loader-buffer size.

6BH E$REC$TYPE * * Invalid record type encountered in the
object file.

6CH E$NO$START * * Start address not found.

6DH E$JOB$SIZE * * Maximum job-size specified is less
than the memory requirement specified
in the object file.

6EH E$OVERLAY * Overlay name does not match with any
of the overlay module names.

6FH E$LOADER
$SUPPORT

* * The object file being loaded requires
features not supported by the
configured loader.

70H E$SEG$
BOUNDS

* One of the data records in a module
loaded by the Application Loader
referred to an address outside the
segment created for it.

N Nuc

B Bas

E Ext

:leus Reference
jic I/O System
:ended I/O Sys

i Manual
Ref Manual
Ref Manual

L Loader Reference Manual
H Human Interface Reference Manual

Operator A-6



Hex.
Value

CONDITION CODE SUMMARY

Table A-l. iRMX™ 86 Condition Codes (continued)

Mnemonic Manuals
N B E L H

Meaning

Environmental Conditions (continued)

80H

81H

87H

88H

89H

8AH

8BH

E$LITERAL

E$STRING$-
BUFFER

82H E$SEPARA-
TOR

83H E$CONTINUED

84H E$INVALID$-
NUMERIC

85H E$LIST

86H E$WILDCARD

E$PREPOSI-
TION

E$PATH

E$CONTROL$C

E$CONTROL

E$UNMATCHED
$LISTS

The parse buffer contains a literal
with no closing quote.

The string to be returned as the

parameter name exceeds the size of

the buffer the user provided in the
call.

The parse buffer contains a command
separator.

The parse buffer contains a

continuation character.

A numeric value contains invalid

characters.

The last value of the value list is

missing.

A wild-card character appears in an

invalid context, such as an
intermediate component of a pathname.

The same preposition as on the the

command line was indicated, but can

not be used.

The command line specifies an invalid

pathname.

The user typed CONTROL-C while the

command was being loaded.

The command line contains an invalid

control.

There were no more input pathnames
although the output pathname list was
not empty.

N Nucleus Reference Manual L

B Basic I/O System Ref Manual H
E Extended I/O Sys Ref Manual

Loader Reference Manual
Human Interface Reference Manual

Operator A-7



CONDITION CODE SUMMARY

Table A-l. iRMXw 86 Condition Codes (continued)

Hex.

Value
Mnemonic Manuals

N B E L H
Meaning

Programmer Errors

8CH E$DATE * The operator entered an invalid date.

8DH E$NO$PARAM-
ETERS

* A command expected parameters, but the
operator didn't supply any.

8EH E$VERSION * The Human Interface is not compatible
with the version of the command the
operator invoked.

8FH E$GET$PATH$-

ORDER

* A command called C$GET$OUTPUT $PATHNAME
before calling C$GET$INPUT$PATHNAME

.

00C0H E$UNKNOWN$-
EXIT

The program exited normally.

00C1H E$WARNING$
EXIT

The program issued warning messages.

00C2H E$ERROR$EXIT The program detected errors.

00C3H E$FATAL$EXIT A fatal error occurred in the program.

00C4H E$ABORT$EXIT The system aborted the program.

00C5H E$UDI$ IN-
TERNAL A UDI internal error occurred.

8000H E$ZERO$-
DIVIDE

* A task attempted to divide by zero.

8001H E$OVERFLOW * An overflow interrupt occurred.

8002H E$TYPE * * * * * A token parameter referred to an
existing object that is not of the
required type.

N Nuc

B Bas
E Ext

leus Reference Manual
ic I/O System Ref Manual
ended I/O Sys Ref Manual

L Loader Reference Manual
H Human Interface Reference Manual

Operator A-8



CONDITION CODE SUMMARY

Table A-l. iRMX™ 86 Condition Codes (continued)

Hex. Mnemonic Manuals Meaning
Value N B E L H

Programmer Errors (continued)

8004H E$PARAM ***** A parameter which is neither a token

nor an offset has an invalid value.

8005H E$BAD$CALL * * The. I/O System code has been damaged,

probably due to a bug in an

application task. Recovery is not
possible.

8006H E$ARRAY$- * Hardware or software has detected an

BOUNDS array overflow.

8007H E$NDP$- * An 8087 Numeric Processor Extension

STATUS error has been detected; Operating
System extensions can return the

status of the 8087 to the exception
handler.

8008H E$CHECK$EX~
CEPTION

* A software interrupt 17 has occurred.

8009H E$EMULATOR$- * The iAPX 186 or 286 processor tried
TRAP to execute an ESC instruction with

the "emulator" bit set in the

relocation register (iAPX 186) or the
machine status word (iAPX 286).

800AH E$INTERRUPT$- * An iAPX 286 LIDT instruction changed

TABLE$LIMIT the interrupt table limit to a value

between 20H and 42H.

800BH E$CPUXFER$- * For an iAPX 286 processor, the

DATA$LIMIT processor extension data transfer
exceeded the offset of OFFFFH in a

segment

.

800CH E$SEG$WRAP$- * For an iAPX 286 processor, either a

AROUND word operation attempted a segment

wraparound at offset OFFFFH; or a

PUSH, CALL, or INT instruction
attempted to execute while SP=1.

N Nilcleus Reference Manual L Loader Reference Manual

B Biisic I/O System Ref Manual H Human Interface Reference Manual

E E2ctended I/O Sys Ref Manual

Operator A-9



CONDITION CODE SUMMARY

Table A-l. iRMX™ 86 Condition Codes (continued)

Hex.
Value

Mnemonic Manual
N B E L

5

H
Meaning

Programmer Errors (continued)

8017H E$CHECK$EX-
CEPTION

* A Pascal task has exceeded the bounds
of a CASE statement.

8021H E$NOUSER * * * No default user.

8022H E$NOPREFIX * * * No default prefix.

8040H E$NOT$LOG$-
NAME

* * Specified object is not a device
connection or file connection.

8041H E$NOT$-
DEVICE

* A token parameter referred to an
existing object that is not, but
should be, a device connection.

8042H E$NOT$CON-
NECTION

* A token parameter referred to an
existing object that is not, but
should be, a file connection.

8060H E$JOB$PARAM * * The maximum job-size specified is

less than the minimum job-size.

8080H E$PARSE$-
TABLES

* There is an error in the internal
parse tables.

8081H E$JOB$-
TABLES

•k An internal Human Interface table was
overwritten, causing it to contain an
invalid value.

8085H E$ERROR$~
OUTPUT

* The command invoked by C$SEND$COMMAND
includes a call to C$SEND$EO$RESPONSE,
but the command connection does not
permit C$SEND$EO$RESPONSE calls.

N Nu<

B Bas

E Ex1

:leus Referenc
sic I/O System
tended I/O Sys

e Manual
Ref Manual
Ref Manual

L Loader Reference Manual
H Human Interface Reference Manual

Operator A--10



CONDITION CODE SUMMARY

Table A-l. iRMX™ 86 Condition Codes (continued)

Hex.
Value

Mnemonic Manuals
N B E L H

Meaning

Programmer E rrors (continued)

8083H E$DEFAULT$SO * The default output name STRING is

invalid.

8084H E$ STRING * The pathname to be returned exceeds
253 characters in length.

80C6H E$RESERVE$-
PARAM

The calling program tried to reserve

memory for more than 12 files or

buffers.

80C7H E$OPEN$PARM The calling program requested more

than two buffers when opening a file.

N Nuc

B Ba«

E Ext

ileus Reference Manual
sic I/O System Ref Manual
:ended I/O Sys Ref Manual

L Loader Reference Manual

H Human Interface Reference Manual

Operator A-ll





INDEX

Primary references are underscored .

:$: logical name 2-14, 2-18, 3-13

access rights 3-8, 3-26, 3-28, 3-35, 3-46, 3-83 , 3-89

accessing the Human Interface 2-6

AD command (Files Utility) 6-3

AFTER preposition 2-21, 2-28
ampersand 2-25

AS preposition 2-28

ATTACHDEVICE command 2-15, 3-7

ATTACHFILE command 2-16, ^vET"
attaching

devices 3-7

files 3-13

automatic device recognition 2-22

automatic search 2-27

BACKUP command 3-16

backup volumes 3-93
:BB: logical name 2-18

see also: byte bucket
beginning a console session 2-4

,
4-1

blocks 3-49

Bootstrap Loader 2-3, 3-71

BR command (Files Utility) 6-4
bubble memory 2-22

byte bucket (:BB:) 2-18

carriage return 1-2

CD command (Files Utility) 6-4
CHANGEID sub-command 3-102

changing diskettes 6-3

:CI: logical name 2-19

:C0: logical name 2-19
combine-type attributes 5-1

command
dictionary 3-5

file 3-98

line interpreter (CLI) 2-3

name 2-25, 2-27
syntax 2-25

commands 3-1

comment 2-26

COMMON attribute 5-3

communicating with devices 2-22

concatenating files 2-30, 4-6
condition codes A-l
configuration 2-2

Operator Index-1



INDEX (continued)

connections 2-16, 3-13, 3-57

continuation mark 2-25

control characters 1-1

Control-"key", see CTRL/"key"
COPY command 3-24 ,

4-2

CREATEDIR command 3-28, 4-9

creating data files 4-2

creating directories 6-4
CTRL/c 1-5

CTRL/o 1-4

CTRL/p 1-2

CTRL/q 1-4

CTRL/r 1-3

CTRL/s 1-4

CTRL/t 1-4

CTRL/t 1-4

CTRL/u 1-3

CTRL/w 1-4

CTRL/x 1-3

CTRL/z 1-3

data files 4-2

DATE command 3-29

DC command (Files Utility) 6-6

DE command (Files Utility) 6-4

DEBUG command 3-31

default prefix 2-18
,
4-15

DELETE command IF3J, 4-8, 4-14

deleting files 3-33 , 4-8, 6-5

DETACHDEVICE command 3-35

DETACHFILE command 3-38

detaching
devices 3-35

files 3-38

logical names 6-5

device
communications 2-23

logical names 2-15

name 3^9, 3-67, 3-75

device unit information block (DUIB) 2-23, 3-8

DI command (Files Utility) 6-5
dictionary 3-5

DIR command 3-40 , 4-13
directories 2-10, 3-40, 4-9

creation of 3-28, 4-9

deletion of 4-14

discarding mode 1-3, 1-4

diskette switching 4-21, 6-3

DISKVERIFY command 3-48
displaying memory 3-80
D0WNC0PY command 3-53

DT command (Files Utility) 6-5
DUIB 2-23, 3-8

Operator Index-2



INDEX (continued)

error messages (Human Interface) 3-1

escape sequences 1-6

examples 4-1

exception codes A-l
EXIT sub-command 3-103
extension data 3-57, 3-60 , 4-21, 6-8

file
data 2-10

directory 2-10

length 3-45

named 2-9, 3-7

physical 2-9, 3-7

root directory 2-11

stream 2-9

structure 2-9

Files Utility 6-1

commands 6-3

error messages 6-9

hardware 6-1
invocation 6-2

fnodes 3-57, 3-59 ,
6-7

FO command (Files Utility) 6-7

FORMAT command 3-56 , 4-20

formatting volumes 6-7

global object directory 2-16, 3-13, 3-38

granularity 3-45
, 3-49, 3-57, 3-60, 4-20, 6-8

groups 3-31

hard-copy mode 1-2

HE command (files utility) 6-9

header records 5-8

hierarchy 2-9

:H0ME: logical name 2-18 , 3-13
Human Interface commands 3-1, 3-73

in-place patch 5-6

initial program 2-3

INITSTATUS command 3-67

inpath-list 2-25, 2-29

interactive job 2-]_, 3-69, 3-75

interleave factor 3-58, 3-61, 4-21, 6-8

selection of 3-62
importance of 3-62

internal files 3-59

invisible files 3-41
iSBC 957B package 3-31

iSDM 86,286 System Debug Monitors 2-3, 2-4, 3-31

ISIS-II files 3-53, 3-107, 6-6

job ID 3-68, 3-69

J0BDELETE command 3-69

jump instruction patch 5-5

Operator Index-3



INDEX (continued)

keyword parameters 2-31

L-module 3-72

:LANG: logical name 2-18

library module patching 5-7

line editing 1-1

line feed 1-2

line terminator 1-2, 2-25
link map 3-31

listing directories 4-13, 6-5

listing translator header records 5-8
loading the operating system 2-3

local object directory 2-17 , 2-19

LOCDATA command 3-71

LOCK command 3-75

LOGICALNAMES command 3-77

logical names 2-14
devices 2-15

files 2-15

logon file 2-7

MEMORY command 3-80

monitor 2-3, 3-31, 3-53
multi-access 2-2

named files 2-9
,
3-7

normal mode 1-3

null string 3-100

object directories 2-16

global 2-16 , 2-18, 3-13, 3-38
local 2£D7 2-19

root 2-16 ,
3-7

outpath-list 2-25, 2-29

output mode 1-3

OVER preposition 2-28

owner 2j-2_, 3-35, 3-45, 3-85

paragraph 3-71

parameters 2-25, 2-31

password 3-102
Patching Utility 5-1

error messages 5-4

invocation 5-2

patching procedures 5-5

versions 5-2

PATH command 3-81

pathnames 2-11

listing of 3-81

separators 2-11
PERMIT command 3-83
physical files 2-9, 3-7

physical names 3-9

prefix 2-14
, 2-18, 2-27

preposition 2-25, 2-28

Operator Index-4



INDEX (continued)

:PROG: logical name 2.-18

:PROG:R?LOGON file 2-7

PROM-based loading 2-5

prompt 2-7, 3-102
PTCH86.86 5-2

PTCH86.R86 5-2
PUBLIC attribute 5-3

quoting characters 1-2, 2-18

R?BADBL0CKMAP file 3-59, 6-8

R7FN0DEMAP file 3-59, 6-8

R7L0G0N file 2-7

R?SPACEMAP file 3-59, 6-8

R7V0LUMELABEL file 3-59, 6-8

RAM disk 2-3, 3-73

RENAME command 3-88 , 4-14, 4-16
replacing files 4-5

requirements 2-1

RESTORE command 3-91
RMX86 file 2-3

root directory 2-11 , 2-14, 3-60

root object directory 2-16 , 3-7

rubout 1-2

scrolling mode 1-3, 1.-4

SCSI (Small Computer Systems Interface) driver 3-11
:SD: logical name 2-18

search order 2-27

segments 3-31, 5-3

separators 2-13

single-access 2-2

state 3-68

stopped mode 1-3, 1-4

storing logical names 2-16
stream files 2-9

: STREAM: logical name 2-18
structure of files 2-9

sub-commands 3-87

SUBMIT command 2-8, 3-98

SUPER command 2-32, 3-102
switching of diskettes 4-21

syntax 2-25 , 3-3

System Confidence Test: (SCT) 2-5

system device 2-18

: SYSTEM: logical name 2-18 , 3-1

system manager 2-32 , 3-8, 3-35, 3-102
SYSTEM/RMX86 file 2-5

terminal device name 3-67, 3-75

Terminal Handler 1-1

Terminal Support Code 1-1

TIME command 3-105
TO preposition 2-28

Operator Index-5



INDEX (continued)

translator header records 5-8

trees 2-9

type-ahead 1-1

UC command (Files Utility) 6-9

UPCOPY command 3-107

user ID 2-2, 2-32, 3-46, 3-68, 3-102, 4-L
user state 3-68

:UTILS: logical name 2-18

VERSION command 3-95
volume 2-11

, 3-91

boundaries 4-18

name 3-59, 6-7

wild cards 2-19
,
4-4

WHOAMI command 3-112
:W0RK: logical name 2-18

WORLD 2-7, 3-8, 3-35

ZAP (Patching Utility) 5-1

***

Operator Index-6



iRMX™ 86
DISK VERIFICATION UTILITY

REFERENCE MANUAL





This manual documents the Disk Verification Utility, a software tool that

runs as a Human Interface command, verifying and modifying the data
structures of iRMX 86 named and physical volumes. The manual describes

the utility invocation and contains detailed descriptions of all utility
commands. Also, because users must be familiar with the structure of

iRMX 86 volumes to use the Disk Verification Utility features
intelligently, the manual contains an appendix that describes the

structure of iRMX 86 named volumes.

READER LEVEL

This manual is intended for system programmers who have had experience in

examining actual volume information. It does not attempt to teach the

user the proper procedures for examining and editing volume information.

NOTATIONAL CONVENTIONS

This manual uses the following conventions to illustrate syntax.

UPPERCASE Uppercase information must be entered exactly as

shown. You can, however, enter this information in

uppercase or lowercase.

lowercase Lowercase fields contain variable information. You

must enter the appropriate value or symbol for

variable fields.

underscore

<variable>

In examples of dialog at the terminal, user input is

underscored to distinguish it from system output.

Whenever an error message or the output resulting
from a DISKVERIFY command contains a variable part,

that variable part is enclosed in angle brackets < >.

Also, this manual uses the "railroad track" schematic to illustrate the

syntax of the disk verification commands. This syntax consists of what
looks like an aerial view of a model railroad setup, with syntactic
elements scattered along the track. To interpret the command syntax, you

start at the left side of the schematic, follow the track through all the

syntactic elements you desire (sharp turns and backing up are not

allowed), and exit at the right side of the schematic. The syntactic
elements that you encounter, separated by spaces, comprise a valid

command. For example, a command that consists of a command name and two

optional parameters would have the following schematic representation:

Disk Verify iii



PREFACE
(continued)

You could enter this command in any of the following forms:

COMMAND
COMMAND paraml
COMMAND param2
COMMAND paraml param2

The arrows indicate the possible flow through the tracks; they are
omitted in the remainder of the manual.

Disk Verify iv



CONTENTS

PAGE

CHAPTER 1

INVOKING THE DISK VERIFICATION UTILITY
Invocation 1-2

Output „ 1-4

Invocation Error Messages. 1-5

CHAPTER 2

DISKVERIFY COMMANDS
Command Names
Parameters .

Input Radices
Aborting DISKVERIFY Commands,
Command Error Messages,

2-1

2-1
2-2
2-2
2-3

Command Dictionary. 2-4

ALLOCATE Command. „ ,

DISK Command
DISPLAYBYTE Command ,

DISPLAYDIRECTORY Command....,
DISPLAYFNODE Command
DISPLAYNEXTBLOCK Command....
DISPLAYPREVIOUSBLOCK Command,

DISPLAYWORD Command
EXIT Command
FREE Command ,

HELP Command ,

LISTBADBLOCKS Command.......
Miscellaneous Commands......

ADD.
ADDRESS

,

BLOCK..
DEC
DIV.

HEX.

MOD
MUL
SUB

QUIT Command
READ Command ,

SAVE Command
SUBSTITUTEBYTE Command.
SUBSTITUTEWORD Command.
VERIFY Command ,

WRITE Command ,

2-5
2-8
2-10
2-13
2-15
2-20
2-21
2-22
2-25
2-26
2-28
2-29

2-30
2-30
2-30
2-31
2-32
2-32
2-32
2-33
2-33
2-34
2-36
2-37
2-38
2-40
2-43
2-46
2-56

Disk Verify v



CONTENTS
(continued)

PAGE
APPENDIX A
STRUCTURE OF iRMX™ 86 NAMED VOLUMES
Introduction A-l
Volume Labels A-

2

ISO Volume Label A-2
1RMX™ 86 Volume Label A-

4

Initial Files A-8
Fnode File A-8
Fnode (Fnode File) A-13
Fnode 1 (Volume Free Space Map File) A-14
Fnode 2 (Free Fnodes Map File) A-14
Fnode 4 (Bad Blocks File) A-15
Fnode 5 (Volume Label File) A-15
Fnode 6 (Root Directory) A-16
Other Fnodes A-16

Long and Short Files A-16
Short Files A-16
Long Files A-18

Flexible Diskette Formats A-20

TABLES

A-l . Eight-Inch Diskette Characteristics A-20
A-2. 5 1/4-Inch Diskette Characteristics A-21

FIGURES

2-1

.

DISPLAYBYTE Format 2-11
2-2

.

DISPLAYWORD Format 2-23
2-3

.

LISTBADBLOCKS Format 2-29
2-4. NAMED1 Verification Output 2-48
2-5

.

NAMED2 Verification Output 2-49
2-6. PHYSICAL Verification Output 2-49
A-l

.

General Structure Of Named Volumes A-l
A-2

.

Short File Fnode A-17
A-3. Long File Fnode A-19

Disk Verify vi



CHAPTER 1

INVOKING THE DISK VERIFICATION UTILITY

In the process of using an iRMX 86 application system, you may have
occasion to store data on secondary storage devices, sometimes large
amounts of data. Due to the nature of secondary storage devices,
unforseen circumstances such as power irregularities or accidental reset
may destroy information on these devices, causing them to be inaccessible
to your iRMX 86 system. In some cases, the loss of only a small amount
of data can render an entire volume, such as a disk, useless.

In such cases, it is desirable to have a mechanism to examine and modify
the damaged volume. This mechanism would allow you to determine how much
of the information on the volume was damaged. It would also allow you to
recreate file structures on the damaged volume so that you could salvage
some of the valid data. The iRMX 86 disk verification utility is a tool
that allows you to perform these functions.

The disk verification utility verifies the data structures of iRMX 86
physical and named volumes. It can also be used to reconstruct the free
fnodes map, the volume free space map, and the bad blocks map of the
volume and perform absolute editing.

You can use the disk verification utility in one of two ways:

• As a single command which verifies the structures of a volume and
returns control to the Human Interface.

• As an interactive program which allows you to check and modify
information on the volume by entering individual disk
verification commands.

To take full advantage of the capabilities of the disk verification
utility, you must be familiar with the structure of iRMX 86 named
volumes. Appendix A contains detailed information about the volume
structure. If you are unfamiliar with the iRMX 86 volume structure, you
should avoid using the individual disk verification commands. When used
carelessly, these commands can make your volumes unusable.

However, even if you know nothing about iRMX 86 volume structures, you
can still use the utility as a single command to verify that the data
structures on an iRMX 86 volume are valid.

Disk Verify 1-1



INVOKING THE DISK VERIFICATION UTILITY

INVOCATION

The format of the Human Interface command used to invoke the disk

verification utility is as follows:

DISKVERIFYj-^ :logical name: \*r

outpathV' ^'-{yERIFY)

DISK

{PHYSICAL}

where:

: logical-name:

TO

OVER

AFTER

outpath

Logical name of the secondary storage device
containing the volume.

Copies the output from the disk verification
utility to the specified file. If no preposition
is specified, TO :;C0: is the default.

Copies the output from the disk verification
utility over the specified file.

Appends the output from the disk verification
utility to the end of the specified file.

Pathname of the file to receive the output from the

disk verification utility. If you omit this
parameter and the TO/OVER/AFTER preposition, the
utility copies the output to the console screen (TO

:C0:). You cannot direct the output to a file on
the volume being verified. If you attempt this,

the utility returns an E$NOT_CONNECTION error
message.

Disk Verify 1-2



INVOKING THE DISK VERIFICATION UTILITY

DISK Displays the attributes of the volume being verified.

If you specify this parameter, the utility performs

the disk function and returns control to you at the

Human Interface level. You can then enter any Human
Interface command provided that the device verified
is not the system device. Refer to the description
of the DISK command in Chapter 2 for more

information. Any parameter after this one is

ignored.

VERIFY or V Performs a verification of the volume. This

verification function and the associated options are
described in detail in the "VERIFY Command" section

of Chapter 2. If you specify this parameter and
omit the options, the utility performs the NAMED
verification.

NAMED 1 or Nl

NAMED or N

ALL

NAMED2 or N2

If you specify this parameter, the utility performs
the verification function and returns control to you
at the Human Interface level. You can then enter
any Human Interface command if the device is not the

system device (:sd:).

If you omit this parameter and the DISK parameter,
the utility displays a header message and the

utility prompt (*). You can then enter any of the

disk verification commands listed in Chapter 2.

VERIFY option that applies to named volumes only.

This option checks the fnodes of the volume to

ensure that they match the directories in terms of

file type and file heirarchy. This option also
checks the information in each fnode to ensure that

it is consistent. Refer to the description of the

VERIFY command in Chapter 2 for more information.

VERIFY option that performs both the NAMEDl and

NAMED2 verification functions on a named volume. If

you omit the VERIFY option, NAMED is the default
option.

VERIFY option that applies to both named and
physical volumes. For named volumes, this option
performs both the NAMED and PHYSICAL verification
functions. For physical volumes, this option
performs the PHYSICAL verification function.

VERIFY option that applies to named volumes only.

This option checks the allocation of fnodes on the

volume, checks the allocation of space on the

volume, and verifies that the fnodes point to the

correct locations on the volume. Refer to the

description of the VERIFY command in Chapter 2 for

more information.

Disk Verify 1-3



INVOKING THE DISK VERIFICATION UTILITY

PHYSICAL VERIFY option that applies to both named and
physical volumes. This option reads all blocks on
the volume and checks for I/O errors.

LIST VERIFY option that you can use with those VERIFY
parameters that, either explicitly or implicitly,
specify the NAMED1 parameter. When you use this
option, the file information generated by VERIFY is
displayed for every file on the volume, even if the
file contains no errors. Refer to the description
of the VERIFY command in Chapter 2 for more
information.

OUTPUT

When you enter the DISKVERIFY command, the utility responds by displaying
the following line:

iRMX 86 DISK VERIFY UTILITY, Vx.x
Copyright <year> Intel Corporation

where Vx.x is the version number of the utility. If you specify the
VERIFY or V parameter in the DISKVERIFY command, the utility performs a
verification of the volume and copies the verification information to the
console (or to the file specified by the outpath parameter). The
verification information is the same as that produced by the VERIFY
utility command. Refer to the description of the VERIFY command in
Chapter 2 for a description of the verification output. After generating
the verification output, the utility returns control to the Human
Interface, which prompts you for more Human Interface commands. The
following is an example of such a DISKVERIFY command:

-DISKVERIFY : Fl : VERIFY NAMED2
iRMX 86 DISK VERIFY UTILITY , Vx.x
DEVICE NAME = Fl : DEVICE SIZE = 0003E900 : BLOCK SIZE = 0080

' NAMED2 ' VERIFlCATION

BIT MAPS O.K.

However, if you omit the VERIFY (or V) parameter from the DISKVERIFY
command, the utility does not return control to the Human Interface.
Instead, it issues an asterisk (*) as a prompt and waits for you to enter
individual DISKVERIFY commands. The following is an example of such a
DISKVERIFY command:

-DISKVERIFY :F1:

iRMX 86 DISK VERIFY UTILITY , Vx.x

Disk Verify 1-4



INVOKING THE DISK VERIFICATION UTILITY

After you receive the asterisk prompt, you can enter any of the

DISKVERIFY commands listed in the next section. If you enter anything
else, the utility will display an error message.

NOTE

Although DISKVERIFY many be used to

verify the system device (:sd:), you
must be aware that all connections to

the device are deleted by the Operating
System. After you exit, you will have
to reboot the Operating System.

INVOCATION ERROR MESSAGES

Message

argument error

Description

The VERIFY option you specified is

not valid.

0021 : E$FILE_NOT_EXIST or
0040 : E$L0GICAL NAME SYNTAX

0045 : E$LOG_NAME_NEXIST or
<logical name>, logical name
does not exist

8042 : E$N0T CONNECTION

command syntax error

device size inconsistent
size in volume label =! <valuel>
: computed size = <value2>

not a named disk

The logical name you specified was

not surrounded by colons (:), was
longer than 12 characters, or

contained invalid characters.

You specified a nonexistent <logical
name> in either the : logical name:
parameter or the outpath parameter.

You attempted to direct output to a

file on the volume being verified.

You made a syntax error when
entering the command.

When the disk verification utility
computed the size of the volume,

the size it computed did not match
the information recorded in the

iRMX 86 volume label. It is likely
that the volume label contains
invalid or corrupted information.
This error is not a fatal error, but
it is an indication that further
error conditions may result during
the verification session. You may
have to reformat the volume or use

the disk verification utility to

modify the volume label.

You tried to perform a NAMED,

NAMED1, or NAMED2 verification on a

physical volume.

*•*#

Disk Verify 1-5





CHAPTER 2
DISKVERIFY COMMANDS

When the disk verification utility issues the asterisk prompt, you can

enter individual DISKVERIFY commands to examine or change system
information on the volume. This process usually involves reading a

portion of the volume into a buffer, modifying that buffer, and writing
the information back to the volume. This chapter describes the commands
that allow you to perform these operations.

The commands in this chapter are presented in alphabetical order, without
regard to function. Before describing the individual commands, this

chapter discusses command names, parameters, input radices, and error
messages. It also provides a command dictionary.

COMMAND NAMES

When you enter a DISKVERIFY command, you can enter the command name or
command name abbreviation as listed in this chapter, or you can enter any
portion of , the command name that uniquely identifies the command from all
other DISKVERIFY commands.

For example, when specifying the DISPLAYFNODE command, you can enter the

command name as:

DISPLAYFNODE
DF
DISPLAYF

or any other partial form of the word DISPLAYFNODE that contains at least
the characters DISPLAYF.

PARAMETERS

Several DISKVERIFY commands have parameters which this chapter describes

as being in the form:

keyword = value

Even though the individual command descriptions do not mention this, you
can also enter these parameters in the form:

keyword (value)

Disk Verify 2-1



DISKVERIFY COMMANDS

For example, the following are two acceptable ways of specifying a FREE
command

:

FREE FNODE =10

FREE FNODE (10)

INPUT RADICES

DISKVERIFY always produces numerical output in hexadecimal format.

However, when you provide input to DISKVERIFY, you can specify the radix
of numerical quantities by including a radix character immediately after
the number. The valid radix characters include:

radix character example

hexadecimal h or H 16h, 7CH

decimal t or T 23t, 100T

octal o, 0, q, or Q 27o, 33Q

If you omit the radix character, DISKVERIFY assumes the number is
hexadecimal.

ABORTING DISKVERIFY COMMANDS

You can abort the following DISKVERIFY commands by typing a C0NTR0L-C
(press the CONTROL key, and while holding it down, press the C key) at
your keyboard.

DISK
DISPLAYBYTE
DISPLAYDIRECTORY
DISPLAYFNODE
DISPLAYNEXTBLOCK
DISPLAYPREVIOUSBLOCK
DISPLAYWORD
LISTBADBLOCKS
SUBSTITUTEBYTE
SUBSTITUTEWORD
VERIFY

C0NTR0L-C terminates the command and returns control to the disk
verification utility.

Disk Verify 2-2



DISKVERIFY COMMANDS

COMMAND ERROR MESSAGES

Each DISKVERIFY command can generate a number of error messages which
indicate errors in the way you specified the command or problems with the
volume itself. The messages for each command are listed with the command
itself. However, the following messages can also occur with many of the

commands:

Message

block I/O error

command syntax error

illegal command

Description

The utility attempted to read or write a

block on the volume and found that the block
was physically flawed. Thus it cannot
complete the requested command.

You made a syntax error in a command.

The command you specified is not a valid
DISKVERIFY command.

fnodes/space map fnode
fnode data inconsistent

not a named disk

The command cannot find the initial fnode

files. See Appendix A for more information
concerning the initial fnode files.

When the disk verification utility begins
processing, it obtains some information from
the iRMX 86 volume label. If the label
contains invalid information, the utility
(in some cases) can assume that a named
volume is a physical volume. If this
occurs, the commands that apply to named
volumes only (such as DISPLAYFNODE,
DISPLAYDIRECTORY, and VERIFY NAMED) issue
this message. If you are convinced that
your volume is indeed a named volume, this

message may indicate that the iRMX 86 volume
label is corrupted.

seek error The utility unsuccessfully attempted to seek
to a location on the volume. This error
normally results from invalid information in

the iRMX 86 volume label or in the fnodes.

Disk Verify 2-3



COMMAND DICTIONARY

Command Synopsis Page

ALLOCATE Marks a particular fnode or volume
block as allocated 2-5

DISK Lists the attributes of the volume 2-8

DISPLAYBYTE Displays the working buffer in byte format 2-10

DISPLAYD IRECTORY Displays directory contents 2-13

DISPLAYFNODE Displays fnode information 2-15

DISPLAYNEXTBLOCK Displays the "next" volume block 2-20

DISPLAYPREVIOUSBLOCK Displays the "previous" volume block 2-21

DISPLAYWORD Displays the working buffer in word format 2-22

EXIT Exits the disk verification utility 2-25

FREE Marks a particular fnode or volume
block as free 2-26

HELP Lists the DISKVERIFY commands 2-28

LI STBADBLOCKS Displays all the bad blocks on the volume 2-29

miscellaneous Perform useful arithmetic and conversion
commands functions; the commands include ADD,

SUB, MUL, DIV, MOD, HEX, DEC, ADDRESS,
and BLOCK. 2-30

QUIT Exits the disk verification utility 2-36

READ Reads a volume block into the working
buffer 2-37

SAVE Writes the updated fnode, free space maps,
and bad block maps to the volume 2-38

SUBSTITUTEBYTE Modifies the contents of the working
buffer in byte format 2-40

SUBSTITUTEWORD Modifies the contents of the working
buffer in word format 2-43

VERIFY Verifies the volume 2-46

WRITE Writes the working buffer to the volume 2-55

Disk Verify 2-4



ALLOCATE COMMAND

This command designates file descriptor nodes (fnodes) and volume blocks

as allocated. You can also use this command to designate one or a range
of volume blocks as "bad." The format of the ALLOCATE command is as

follows:

ALLOCATE

-(allocate)-h

<!
FNODE = fnodenum*

-f FNODE == fnodenum, fnodenum V

-(bLOCK = blocknum)-

-f BLOCK = blocknum, blocknum V

«BAD BLOCK = blocknum^
MiBAD BLOCK = blocknum, blocknum

INPUT PARAMETERS

fnodenum

blocknum

Number of the fnode to allocate. This number can

range from through (max fnodes - 1), where max
fnodes is the number of fnodes defined when the

volume was originally formatted. Two fnode values
seperated by a comma signifies a range of fnodes.

Number of the volume block to allocate. This

number can range from through (max blocks - 1),

where max blocks is the number of volume blocks in

the volume. Two block numbers seperated by a comma
signifies a range of fnodes.

OUTPUT

If you are using ALLOCATE to allocate fnodes, ALLOCATE displays the

following message:

<fnodenum>, fnode marked allocated

where <fnodenum> is the number of the fnode that the utility designated

as allocated.

If you are using ALLOCATE to allocate volume blocks, ALLOCATE displays
the following message:

<blocknum>, block marked allocated

where <blocknum> is the number of the volume block that the utility
designated as allocated.

Disk Verify 2-5



ALLOCATE

If you are using ALLOCATE to designate one or more volume blocks as
"bad," ALLOCATE displays the following message:

<blocknum>, block marked bad

where <blocknum> is the number of the volume block that the utility
designated as "bad." If this block was not allocated before you attempt
to designate it as "bad", ALLOCATE also displays:

<blocknum>, block marked allocated

ALLOCATE checks the allocation status of fnodes or blocks before
allocating them. Therefore, if you specify ALLOCATE for a block or fnode
that is already allocated, ALLOCATE returns one of the following messages:

<fnodenum>, fnode already marked allocated

<blocknum>, block already marked allocated

<blocknum>, block already marked bad

DESCRIPTION

Fnodes are data structures on the volume that describe the files on the
volume. They are created when the volume is formatted. An allocated
fnode is one that represents an actual file. ALLOCATE designates fnodes
as allocated by updating the FLAGS field of the fnode and free fnodes map
file with this information.

An allocated volume block is a block of data storage that is part of a
file; it is not available to be assigned to a new file. ALLOCATE
designates volume blocks as allocated by updating the volume free space
map with this information.

When you use ALLOCATE to designate bad blocks, it not only updates the
volume free space map, but it also marks the bit as "bad" in the bad
blocks file.

ERROR MESSAGES

Message

argument error

<blocknum>, block out of range

Description

You made a syntax error in the
command or specified a nonnumeric
character in the blocknum or
fnodenum parameter.

The block number that you specified
was larger than the largest block
number in the volume.

Disk Verify 2-6



ALLOCATE

<fnodenum>, fnode out of range The fnode number that you specified
was larger than the largest fnode
number in the volume.

no badblocks file Your system does not have a bad
blocks file. This message could

appear because you used a Release 4

or earlier version of the Human
Interface command, FORMAT, when you

formatted your disk.

Disk Verify 2-7



DISK

DISK COMMAND

This command displays the attributes of the volume being verified. You
can abort this command by typing a CONTROL-C (press the CONTROL key, and
while holding it down, press the C key). The format of the DISK command
is as follows:

OUTPUT

The output of the DISK command depends on whether the volume is formatted
as a physical or named volume. For a physical volume, the DISK command
displays the following information:

Device name = <devname>
Physical disk

Device gran
Block size

No of blocks
Volume size

<devgran>
<devgran>
<numblocks>
<size>

where:

<devname> Name of the device containing the volume. This is

the physical name of the device, as specified in the
ATTACHDEVICE Human Interface command.

<devgran> Granularity of the device, as defined in the device
unit information block (DUIB) for the device. Refer
to the iRMX 86 CONFIGURATION GUIDE for more
information about DUIBs. For physical devices, this
is also the volume block size.

<numblocks> Number of volume blocks in the volume.

<size> Size of the volume, in bytes.

For a named volume, the DISK command displays the following information:

Device name = <devname>
Named disk, Volume name = <volname>

Device gran = <devgran>
Block size = <volgran>

No of blocks = <numblocks> : No of Free blocks = <numfreeblocks>
Volume size = <size>
Interleave = <inleave>

Extension Size = <xsize>
No of fnodes = <numfnodes> : No of Free fnodes = <numfreefnodes>

Disk Verify 2-8



The <devnarae>, <devgran>, <numblocks>, and <size> fields are the same as
for physical files. The remaining fields are as follows:

<volname>

<volgran>

<numfreeblocks>

<inleave>

<xsize>

<numfnodes>

<numfreefnodes>

Name of the volume, as specified when the volume
was formatted.

Volume granularity, as specified when the volume
was formatted.

Number of available volume blocks in the volume.

The interleave factor for a named volume.

Size, in bytes, of the extension data portion of

each file descriptor node (fnode).

Number of fnodes in the volume. The fnodes were
created when the volume was formatted.

Number of available fnodes in the named volume.

Refer to Appendix A or to the description of the FORMAT command in the
iRMX 86 OPERATOR'S MANUAL for more information about the named disk
fields.

DESCRIPTION

The DISK command displays the attributes of the volume. The format of
the output from DISK depends on whether the volume is formatted as a
named or physical volume.

Disk Verify 2-9



DISPLAYBYTE

DISPLAYBYTE COMMAND

This command displays the specified portion of the working buffer in byte

format. It displays the buffer in 16-byte rows. You can abort this
command by typing a CONTROL-C (press the CONTROL key, and while holding

it down, press the C key). The format of the DISPLAYBYTE command is as
follows:

INPUT PARAMETERS

startof fset

endoff set

Number of the byte, relative to the start of the

buffer, which begins the display. DISPLAYBYTE
starts the display with the row containing the

specified offset. If you omit this parameter,
DISPLAYBYTE starts displaying from the beginning of

the working buffer.

Number of the byte, relative to the start of the

buffer, which ends the display. If you omit this
parameter, DISPLAYBYTE displays only the row
indicated by startof fset . However, if you omit
both startof f set and endoff set, DISPLAYBYTE
displays the entire working buffer.

OUTPUT

In response to the command, DISPLAYBYTE displays the specified portion of

the working buffer in rows, with 16 bytes displayed in each row. Figure
2-1 illustrates the format of the display.

As Figure 2-1 shows, DISPLAYBYTE begins by listing the block number of

the data from the contents of the buffer. It then lists the specified
portion of the buffer, providing the column numbers as a header and
beginning each row with the relative address of the first byte in the

row. It also includes, at the right of the listing, the ASCII
equivalents of the bytes, if the ASCII equivalents are printable

characters. (If a byte is not a printable character, DISPLAYBYTE
displays a period in the corresponding position.)

Disk Verify 2-10



DISPLAYBYTE

BLOCK NUMBER = blocknum

offset 0123456789ABCDEF ASCII STRING
0000 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
0010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ,

0020 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

Figure 2-1. DISPLAYBYTE Format

DESCRIPTION

DISKVERIFY inanintains a working buffer for READ and WRITE commands. The

size of the buffer is equal to the volume's granularity value. After you
read a volume block of memory into the working buffer with the READ
command, you can display part or all of that memory, in byte format, by
entering the DISPLAYBYTE command. DISPLAYBYTE displays the hexadecimal
value for each byte in the specified portion of the buffer.

If you omit all parameters, DISPLAYBYTE displays the entire block stored
in the working buffer.

ERROR MESSAGES

Message

argument error

invalid offset

Description

You made a syntax error in the command or

specified a nonnumeric character in one of
the offset parameters.

You either specified a larger value for

startoffset than for endoffset or you
specified an offset value that was larger
than the number of bytes in the block.

Disk Verify 2-11



DISPLAYBYTE

EXAMPLES

Assuming that the volume granularity is 128 bytes and assuming that you
have read block 20h into the working buffer with the READ command, the
following command displays that block.

*DISPLAYBYTE

BLOCK NUMBER =20

offset 0123456789ABCDEF ASCII STRING
0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0010 00 00 08 00 00 00 00 00 00 00 01 00 OF FF FF 00
0020 00 00 00 00 00 05 00 00 00 00 25 00 08 01 FF FF %...

0030 25 IF 00 00 2E 00 00 00 25 IF 00 00 2B 00 00 00 % %...+.

0040 01 00 00 00 01 00 80 00 00 00 00 00 00 00 00 00
0050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0060 00 00 00 00 00 00 00 00 00 00 00 00 80 00 00 00
0070 00 00 00 00 01 00 OF FF FF 00 00 00 00 00 00 05

*

The following command displays the portion of the block containing the
offsets 31h through 45h.

*D 31, 45

BLOCK NUMBER =20

offset 0123456789ABCDEF ASCII STRING
0030 25 IF 00 00 2E 00 00 00 25 IF 00 00 2B 00 00 00 % %...+.
0040 01 00 00 00 01 00 80 00 00 00 00 00 00 00 00 00

*

Disk Verify 2-12



DISPLAYDIRECTOFT

DISPLAYDIRECTORY COMMAND

This command lists all the files contained in a directory. You can abort
this command by typing a CONTROL-C (press the CONTROL key, and while
holding it down, press the C key). The format of the DISPLAYDIRECTORY
command is as follows:

INPUT PARAMETER

fnodenum Number of the fnode that corresponds to a directory
file. This number can range from through (max
fnodes - 1), where max fnodes is the number of
fnodes defined when the volume was originally
formatted. DISPLAYDIRECTORY lists all files
contained in this directory.

OUTPUT

In response to the command, DISPLAYDIRECTORY lists information about all
files contained in the specified directory. The format of this display
is as follows:

FILE NAME FNODE TYPE FILE NAME FNODE TYPE FILE NAME FNODE TYPE

<filenam> <fnode> <type> <filenam> <fnode> <type> <filenam> <fnode> <type>
<filenam> <fnode> <type> <filenam> <fnode> <type> <filenam> <fnode> <type>

where:

<f ilenam>

<fnode>

Name of the file contained in the directory.

Number of the fnode that describes the file.

Disk Verify 2-13



DISPLAYDIRECTORY

<type> Type of the file., The <type> can be:

Type of file
DATA
DIR
SMAP
FMAP
BMAP
VLAB

Description
data files
directory files
volume free space map
free fnodes map
bad blocks map
volume label file

DESCRIPTION

DISPLAYDIRECTORY displays a list of files contained in the specified
directory, along with their fnode numbers and types. With this
information you can use other disk verification commands to examine the
individual files.

ERROR MESSAGES

Message

argument error

Description

You specified a nonnumeric character
in the fnodenum parameter.

<fnodenum>, fnode not allocated The number you specified for the
fnodenum parameter does not
correspond to an allocated fnode.
This fnode does not represent an
actual file.

<fnodenum>, not a directory
fnode

<fnodenum>, fnode out of range

The number you specified for the
fnodenum parameter is not an fnode
for a directory file.

The number you specified for the
fnodenum parameter is larger than
the largest fnode number on the
volume

.

EXAMPLE

The following command lists the files contained in the directory whose
fnode is fnode 9.

*DISPLAYDIRECTORY 5

FILE NAME FNODE TYPE

change. p86 0006 DATA
PLACES 0009 DIR

FILE NAME FNODE TYPE

samp.txt 0007 DATA
change. plm 000A DATA

FILE NAME FNODE TYPE

NAMES 0008 DIR

Disk Verify 2-14



DISPLAYFNODE

DISPLAYFNODE COMMAND

This command displays the fields associated with an fnode. You can abort

this command by typing a CONTROL-C (press the CONTROL key, and while
holding it down, press the C key). The format of the DISPLAYFNODE

command is as follows:

INPUT PARAMETER

fnodenum Number of the fnode to be displayed. This number

can range from through (max fnodes - 1), where
max fnodes is the number of fnode s defined when the

volume was originally formatted.

OUTPUT

In response to this command, DISPLAYFNODE displays the fields of the

specified fnode. The format of the display is as follows:

Fnode number = <fnodenum>
flags
type

file gran/vol gran
owner

create, access, mod times
total size

total blocks
block pointer(l)
block pointer(2)
block pointer(3)
block pointer(4)
block pointer (5)
block pointer (6)
block pointer (7)
block pointer(8)

this size
id count

accessor(l)
accessor(2)
accessor(3)

parent
aux(*)

<flgs>
<typ>
<gran>
<own>
<crtime>, <acctime>, <modtime>
<totsize>
<totblks>
<blks>, <blkptr>
<blks>, <blkptr>
<blks>, <blkptr>
<blks>, <blkptr>
<blks>, <blkptr>
<blks>, <blkptr>
<blks>, <blkptr>
<blks>, <blkptr>
<thissize>
<count>
(access), <id>
<access>, <id>
<access>, <id>
<prnt>
<auxbytes>

Disk Verify 2-15



DISPLAYFNODE

where

:

<fnodenum>

<flgs>

Number of the fnode being displayed. If the fnode
does not describe an actual file (that is, if it is
not allocated), the following message appears next
to this field:

*** ALLOCATION STATUS BIT IN THIS FNODE NOT SET ***

In this case, the fnode fields are normally set to

zero.

A word defining the attributes of the file.
Significant bits of this word are:

Bit Meaning

Allocation status. This bit is set to

1 for allocated fnodes and set to for
free fnodes.

<typ>

1 Long or short file attribute. This bit
is set to 1 for long files and set to
for short files.

5 Modification attribute. This bit is

set to 1 whenever a file is modified.

6 Deletion attribute. This bit is set to

1 to indicate a temporary file or a

file that is going to be deleted.

The DISPLAYFNODE command displays a message next to

this field to indicate whether the file is a long
or short file.

Type of file. This field contains a value and a

message. The possible values and messages are:

Value Message

00 fnode file
01 volume map file
02 fnode map file
03 account file
04 bad block file
06 directory file
08 data file
09 volume label file

<gran>

<own>

File granularity, specified as a multiple of the
volume granularity.

User ID of the owner of the file.

Disk Verify 2-16



DISPLAY FNODE

<crtime>
<acctime>
<modtime>

<totsize>

<totblks>

<blks>, <blkptr>

<thissize>

<count>

<access>, <id>

Time and date of file creation, last access, and
last modification. These values are expressed as
the time since January 1, 1978.

Total size, in bytes, of the actual data in the
file.

Total number of volume blocks used by the file,
including indirect block overhead.

Values which identify the data blocks of the
file. For short files, each <blks> parameter
indicates the number of volume blocks in the data
block and each <blkptr> is the number of the
first such volume block. For long files, each
<blks> parameter indicates the number of volume
blocks pointed to by an indirect block and each
<blkptr> is the block number of the indirect
block.

Size in bytes of the total data space allocated
to the file, minus any space used for indirect
blocks.

Number of user IDs associated with the file.

Each pair of fields indicate the access rights
for the file (access) and the ID of the user who
has that access ID. Bits in the <access> field
are set to indicate the following access rights:

Bit

1

2

3

Data File
Operation

delete
read
append
update

Directory
Operation

delete
display
add entry
change entry

<prnt>

<auxbytes>

Appendix A contains a

The first ID listed is the owning user's ID.

Fnode number of the directory file which contains
the file.

Auxiliary bytes associated with the file.

more detailed description of the fnode fields.

Disk Verify 2-17



DISPLAYFNODE

DESCRIPTION

Fnodes are system data structures on the volume that describe the files

on the volume. The fnode structures are created when the volume is

formatted. Each time a file is created on the volume, the iRMX 86 Basic

I/O System allocates an fnode for the file and fills in the fnode fields
to describe the file. The DISPLAYFNODE command allows you to examine

these fnodes and determine where the data for each file resides.

ERROR MESSAGES

Message

argument error

<fnodenum>, fnode out of range

Description

You entered a value for the fnodenum
parameter that was not a legitimate
fnode number.

The number you specified for the

fnodenum parameter is larger than

the largest fnode number on the

volume.

EXAMPLE

The following example displays fnode 6 (root directory) of a volume.

Notice that the parent of the root directory is the root directory itself

*DISPLAYFNODE 6

Fnode number = 6

flags
type

file gran/vol gran
owner

create, access, mod times
total size

total blocks
block pointer (1)
block pointer(2)
block pointer(3)
block pointer(4)
block pointer(5)
block pointer(6)
block pointer (7)
block pointer(8)

this size
id count

accessor(l)
accessor(2)

0025 => short file
06 => directory file

01
0000
00000017, 00000158, 00000018
00000400
00000001
0001, 000050
0000, 000000
0000, 000000
0000, 000000
0000, 000000
0000, 000000
0000, 000000
0000, 000000
00000400
0001
OF, 0000
00. 0000

Disk Verify 2-18



DISPLAYFNODE

accessor(3) : 00, 0000
parent : 0006
aux(*) : 000000

Disk Verify 2-19



DISPLAYNEXTBLOCK

DISPLAYNEXTBLOCK

This command displays the "next" volume block. (The "next" volume block

is the block which immediately follows the block currently in the working

buffer.) The display format can be either WORD or BYTE. The utility

remembers the mode in which you displayed the volume block currently in

the working buffer and it displays the next block in that format. So, if

you used DISPLAYBYTE to display the current volume block, the next volume
block appears in BYTE format; if you used DISPLAYWORD, the next volume

block appears in WORD format. DISPLAYNEXTBLOCK uses the BYTE format as a

default if you have not yet displayed a volume block. You can abort this

command by typing a CONTROL-C (press the CONTROL key, and while holding

it down, press the C key)

.

<Eh
carriage return

1123

OUTPUT

In response to the command, DISPLAYNEXTBLOCK reads the "next" volume

block into the working buffer and displays it on the screen. The format

(WORD or BYTE) of the new volume block depends upon the command you used

to display the current volume block.

DESCRIPTION

The DISPLAYNEXTBLOCK command copies the "next" volume block from the

volume to the working buffer and displays it at your terminal. It

destroys any data currently in the working buffer. Once the block is in

the working buffer, you can use SUBSTITUTEBYTE and SUBSTITUTEWORD to

change the data in the block. Finally, you can use the WRITE command to

write the modified block back out to the volume.

NOTE

If you specify the DISPLAYNEXTBLOCK
command at the end of the volume, the

utility "wraps around" and displays the

first block in the volume.

Disk Verify 2-20



DISPLAYPREVIOUSBLOC

DISPLAYPREVIOUSBLOCK

This command displays the "previous" volume block. (The "previous"

volume block is the block which immediately precedes the block currently
in the working buffer.) The display format can be either WORD or BYTE.

The utility remembers the mode in which you displayed the volume block
currently in the working buffer and it displays the previous block in

that format. So, if you used DISPLAYBYTE to display the current volume
block, the previous volume block appears in BYTE format; if you used

DISPLAYWORD, the previous volume block appears in WORD format.
DISPLAYPREVIOUSBLOCK uses the BYTE format as a default if you have not

yet displayed a volume block. You can abort this command by typing a

CONTROL-C (press the CONTROL key, and while holding it down, press the C

key).

<

1121

OUTPUT

In response to the command, DISPLAYPREVIOUSBLOCK reads the "previous"

volume block into the working buffer and displays it on the screen. The

format (WORD or BYTE) of the new volume block depends upon the command

you used to display the current volume block.

DESCRIPTION

The DISPLAYPREVIOUSBLOCK command copies the "previous" volume block from

the volume to the working buffer and displays it at your terminal. It

destroys any data currently in the working buffer. Once the block is in

the working buffer, you can use SUBSTITUTEBYTE and SUBSTITUTEWORD to

change the data in the block. Finally, you can use the WRITE command to

write the modified block back out to the volume.

NOTE

If you specify the DISPLAYPREVIOUSBLOCK
command at the beginning of the volume,

the utility "wraps around" and displays
the last block in the volume.

Disk Verify 2-21



DISPLAYWORD

DISPLAYWORD COMMAND

This command displays the specified portion of the working buffer in word
format. It displays the buffer in 8-word rows. You can abort this
command by typing a CONTROL-C (press the CONTROL key, and while holding
it down, press the C key). The format of the DISPLAYWORD command is as
follows:

^-<DISPLAYWORc£W

> (pvv
J

startoffset ^N

INPUT PARAMETERS

startoffset Number of the byte, relative to the start of the

buffer, which begins the display. DISPLAYWORD
starts the display with the row containing the

specified offset. If you omit this parameter,
DISPLAYWORD starts displaying from the beginning of

the working buffer.

endof fset Number of the byte, relative to the start of the
buffer, which ends the display. If you omit this
parameter, DISPLAYWORD displays only the row
indicated by startoffset. However, if you omit
both startoffset and endoff set, DISPLAYWORD
displays the entire working buffer.

OUTPUT

In response to the command, DISPLAYWORD displays the specified portion of

the working buffer in rows, with 8 words displayed in each row. Figure
2-2 illustrates the format of the display.

As Figure 2-2 shows, DISPLAYWORD begins by listing the block number of

the data being displayed. It then lists the specified portion of the
buffer, providing the column numbers as a header and beginning each row
with the relative address of the first word in the row.

Disk Verify 2-22



DISPLAYWORI

BLOCK NUMBER = blocknum

offset 02468ACE
0000 0100 0302 0504 0706 0908 0B0A ODOC OFOE

0010 0000 0000 0000 0000 0000 0000 0000 0000

0020 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

Figure 2-2. DISFLAYWORD Format

DESCRIPTION

After you read a block of memory into the working buffer with the READ

command, you can display part or all of that memory, in word format, by

entering the DISPLAYWORD command. DISPLAYWORD displays the hexadecimal

value for each word in the specified portion of the buffer.

If you omit all parameters, DISPLAYWORD displays the entire block stored

in the working buffer.

ERROR MESSAGES

Message

argument error

invalid offset

Description

You made a syntax error in the

command or specified a nonnuraeric

character in one of the offset

parameters.

You either specified a larger value

for startoffset than for endoffset
or you specified an offset value

that was larger than the number of

bytes in the block.

Disk Verify 2-23



DISPLAYWORD

EXAMPLES

Assuming that the volume granularity is 128 bytes and that you have read
block 20h into the working buffer with the READ command, the following
command displays that block in word format.

*DISPLAYWORD

BLOCK NUMBER = 20

offset 2 4 6 8 A c E
0000 0000 0000 0000 0000 0000 0000 0000 0000
0010 0000 0080 0000 0000 0000 0001 FF0F 00FF
0020 0000 0000 0500 0000 0000 0025 0108 FFFF
0030 1F25 0000 002E 0000 1F25 0000 002B 0000
0040 0001 0000 0001 0080 0000 0000 0000 0000
0050 0000 0000 0000 0000 0000 0000 0000 0000
0060 0000 0000 0000 0000 0000 0000 0080 0000
0070

*
0000 0000 0001 FF0F 00FF 0000 0000 0500

The following command displays the portion of the block that contains the
offsets 31h through 45h (words beginning at odd addresses).

*DW 31, 45

BLOCK NUMBER =20

offset 02468ACE
0031 001F 2E00 0000 2500 001F 2B00 0000 0100
0041 0000 0100 8000 0000 0000 0000 0000 0000

*

The following command displays the portion of the block that contains the
offsets 30h through 45h (words beginning at even addresses).

*DISPLAYWORD 30 , 45

BLOCK NUMBER =20

offset
0030
0040

*

02468ACE
1F25 0000 002E 0000 1F25 0000 002B 0000
0001 0000 0001 0080 0000 0000 0000 0000

Disk Verify 2-24



EXIT COMMAND

This command exits the disk verification utility and returns control to
the Human Interface command level. The format of the EXIT command is as
follows:

—< EXIT

This command is identical to the QUIT command,

Disk Verify 2-25



FREE

FREE COMMAND

This command designates fnodes and volume blocks as free (unallocated),

It also removes volume blocks from the bad blocks file. The format of
the FREE command is as follows:

iFNODE == fnodenum»
FNODE = fnodenum, fnodenum

—@

—

(

<BLOCK == blocknum

<
urn V

BLOCK = blocknum, blocknum>
< BADBLOCK = blocknum>
BADBLOCK = blocknum, blocknumy-"

INPUT PARAMETERS

fnodenum

blocknum

Number of the fnode to free. This number can range
from through (max fnodes - 1), where max fnodes
is the number of fnodes defined when the volume was
originally formatted.

Number of the volume block to free. This number
can range from through (max blocks - 1), where
max blocks is the number of volume blocks in the
volume.

OUTPUT

If you are using FREE to deallocate fnodes, FREE displays the following
message:

<fnodenum>, fnode marked free

where <fnodenum> is the number of the fnode that the utility designated
as free.

If you are using FREE to deallocate volume blocks, FREE displays the
following message:

<blocknum>, block marked free

where <blocknum> is the number of the volume block that the utility
designated as free.

If you are using FREE to designate one or more "bad" blocks as "good",

FREE displays the following message:

<blocknum>, block marked good

where <blocknum> is the number of the volume block that the utility
designated as "good."

Disk Verify 2-26



FREE

FREE checks the allocation status of fnodes or blocks before freeing
them. Therefore, if you specify FREE for a block or fnode that is

already allocated, FREE returns one of the following messages:

<fnodenum>, fnode already marked free

<blocknum>, block already marked free

<blocknum>, block already marked good

DESCRIPTION

Free fnodes are fnodes for which no actual files exist. FREE designates

fnodes as free by updating both the FLAGS field of the fnode and the free
fnodes map file.

Free volume blocks are blocks that are not part of any file; they are
available to be assigned to any new or current file. FREE designates
volume blocks as free by updating the volume free space map.

When you use the FREE command to designate one or more bad blocks as

"good", it removes the block number from the bad blocks file. However,

it does not update the volume free space map which designates the block
as available for use. Therefore, DISKVERIFY does not know that the block
is free.

ERROR MESSAGES

Message

argument error

<blocknum>, block out of range

<fnodenum>, fnode out of range

no badblocks file

Description

You made a syntax error in the

command or specified a nonnumeric
character in the blocknum or
fnodenum parameter.

The block number that you specified
was larger than the largest block
number in the volume.

The fnode number that you specified
was larger than the largest fnode
number in the volume.

Your system does not have a bad

blocks file. This message could
appear because you used an old
version of the Human Interface
command, FORMAT, when you formatted
your disk.

Disk Verify 2-27



HELP

HELP COMMAND

This command lists all available DISKVERIFY commands and provides a short
description of each command. The format of this command is:

OUTPUT

In response to this command, HELP displays the following information:

read
display byte/word
display next block

display previous block
substitute byte/word

write
verify

save

allocate/free
listbadblocks

disk
exit/quit
Control-C

display directory
display fnode

miscellaneous commands
address

block
hex/ dec

add/sub/mul/div/mod

read a disk block into the buffer
display the buffer (byte/word format)
read and display 'next' volume block
read and display 'previous' volume block
modify the buffer (byte/word format)
write to the disk block from the buffer
verify the disk
save free fnodes, free space, and bad blocks maps
allocate/free fnodes, space blocks, or bad blocks
list bad blocks on the volume
display disk attributes
quit disk verify
abort the command in progress
display the directory contents
display fnode information

convert block number to absolute address
convert absolute address to block number
display number as hexadecimal/decimal number
arithmetic operations on unsigned numbers

Disk Verify 2-28



LISTBADBLOCK!

LISTBADBLOCKS

This command displays all the bad blocks on a named volume. You can
abort this command by typing a CONTROL-C (press the CONTROL key, and
while holding it down, press the C key) . The format of the LISTBADBLOCKS
command is as follows:

(LISTBADBLOCKS

OUTPUT

In response to this command, LISTBADBLOCKS displays up to eight columns
of block numbers that you specified as "bad." Figure 2-3 illustrates the
format of the display.

Bad Blocks on Volume: volumenum

<blocknum> <blocknum> <blocknum> <blocknum> <blocknum> <blocknum>
<blocknum> <blocknum> <blocknum> <blocknum> <blocknum> <blocknum>

<blocknum> <blocknum> <blocknum> <blocknum> <blocknum> <blocknum>

Figure 2-3. LISTBADBLOCKS Format

If you have not specified any bad blocks, LISTBADBLOCKS displays the
following message:

no badblocks.

ERROR MESSAGES

Message

no badblocks file

Description

Your system does not have a bad blocks
file., This message could appear
because you used an old version of the
Human Interface command, FORMAT, when
you formatted your disk or because the
disk is a physical volume.

Disk Verify 2-29



MISCELLANEOUS COMMANDS

MISCELLANEOUS COMMANDS

The following commands provide you with the ability to perform arithmetic

and conversion operations within the disk verification utility. The
commands perform the operations on unsigned numbers only and do not

report any overflow conditions.

ADD

This command adds two numbers together. Its format is:

where

:

argl and arg2 Numbers which the command adds together.

In response, the command displays the unsigned sum of the two numbers in

both hexadecimal and decimal format.

ADDRESS

All memory in a volume is divided into volume blocks, which are areas of

memory the same size as the volume granularity. Volume blocks are

numbered sequentially in the volume, starting with the block containing
the smallest addresses (block 0). The ADDRESS command converts a block

number into an absolute address on the volume, so that you don't have to

perform this conversion by hand. The format of this command is:

where:

blocknum Volume block number which ADDRESS converts into an

absolute address. This parameter can range from
through (max blocks - 1), where max blocks is the

number of volume blocks in the volume.

Disk Verify 2-30



MISCELLANEOUS COMMANDS

ADDRESS (continued)

In response, ADDRESS displays the following information:

absolute address = <addr>

where:

<addr> Absolute address (in hexadecimal) that corresponds

to the specified block number. This address

represents the number of the byte that begins the

block and can range from through (volume size -

1), where volume size is the size, in bytes, of the

volume.

BLOCK

The BLOCK command is the inverse of the address command. It converts a

32-bit absolute address into a volume block number, so that you don't

have to perform this conversion by hand. The format of this command is:

where

:

address Absolute address, which BLOCK converts into a block

number. This parameter can range from through

(volume size - 1), where volume size is the size,

in bytes, of the volume.

In response, BLOCK displays the following information:

block number = <blocknum>

where:

<blocknum> Number of the volume block that contains the

specified absolute address. The BLOCK command

determines this value by dividing the absolute

address by the volume block size and truncating

the result.

Disk Verify 2-31



MISCELLANEOUS COMMANDS

DEC

This command finds the decimal equivalent of a number. Its format is:

where

:

arg Number for which the command finds the decimal
equivalent. This number can be no longer than 10
digits. The default base is in hexadecimal.

In response, the command displays the decimal equivalent of the specified
number

.

DIV

This command divides one number by another. Its format is:

where:

argl and arg2 Numbers on which the command operates. It
divides argl by arg2. These arguments can be no
longer than 10 digits decimal or 8 digits
hexadecimal.

In response, the command displays the unsigned, integer quotient in both
hexadecimal and decimal format.

HEX

This command finds the hexadecimal equivalent of a number. Its format is;

x-235

Disk Verify 2-32



MISCELLANEOUS COMMANDS

HEX (continued)

where:

arg Number for which the command finds the hexadecimal
equivalent. This number can be no longer than 10

digits decimal.

In response, the command displays equivalent of the specified number.

MOD

This command finds the remainder of one number divided by another,
format is:

Its

x-236

where:

argl and arg2 Numbers on which the command operates. It performs
the operation argl modulo arg2. These arguments
can be no longer than 10 digits decimal or 8 digits
hexadecimal.

.

In response, the command displays the value argl modulo arg2 in both
hexadecimal and decimal format.

MUL

This command multiplies two numbers together. Its format is:

where:

argl and arg2 Numbers which the command multiplies together.
These arguments can be no longer than 10 digits
decimal or 8 digits hexadecimal.

In response, the command displays the unsigned product of the two numbers
in both hexadecimal and decimal format..

Disk Verify 2-33



MISCELLANEOUS COMMANDS

SUB

This command subtracts one number from another. Its format is:

where

:

argl and arg2 Numbers on which the command operates. The command
subtracts arg2 from argl. These arguments can be

no longer than 10 digits decimal or 8 digits
hexadecimal.

In response, the command displays the unsigned difference in both
hexadecimal and decimal format.

ERROR MESSAGES

Message

argument error

<blocknum>, block out of range

<address>, address not on
the disk

Description

You made a syntax error in the
command, specified a nonnumeric
value for one of the arguments, or

specified a value for a block number
parameter that was not a valid block
number

.

If the command was an ADDRESS
command, the block number you
entered was greater than the number
of blocks in the volume.

If the command was a BLOCK command,
BLOCK converted the address to a

volume block number, but the block
number was greater than the number
of blocks in the volume.

Disk Verify 2-34



EXAMPLES

MISCELLANEOUS COMMANDS

*MUL 134T, 13T

6CE ( 1742T)
*+ 8, 4

OC ( 12T)
*SUB 8884, 256
862E (34350T)
*MOD 1225, 256T

25 ( 37T)
*HEX 155T
9B

*ADDRESS 15

absolute address = 0A80
*

*BLOCK 2236
block number = 44

Disk Verify 2-35



QUIT

QUIT COMMAND

This command exits the disk verification utility and returns control to

the Human Interface command level. The format of the QUIT command is as
follows:

This command is identical to the EXIT command.

Disk Verify 2-36



READ COMMAND

This command reads a volume block from the disk into the working buffer,

The format of the READ command is:

INPUT PARAMETER

blocknum Number of the volume block to read. This number

can range from through (max blocks - 1), where
max blocks is the number of volume blocks in the

volume.

OUTPUT

In response to the command, READ reads the block into the working buffer

and displays the following message:

read block number: <blocknum>

where <blocknum> is the number of the block.

DESCRIPTION

The READ command copies a specified volume block from the volume to the

working buffer. It destroys any data currently in the working buffer.

Once the block is in the working buffer, you can use DISPLAYBYTE and

DISPLAYWORD to display the block and you can use SUBSTITUTEBYTE and

SUBSTITUTEWORD to change the data in the block. Finally, you can use the

WRITE command to write the modified block back out to the volume to

repair damaged system data.

ERROR MESSAGES

Message

argument error

<blocknum>, block out of range

Description

You specified a nonnumeric character

in the blocknum parameter.

The block number that you specified

was larger than the largest block
number in the volume.

Disk Verify 2-37



SAVE

SAVE COMMAND

This command writes the reconstructed free fnodes map, volume free space
map, and the bad blocks map to the volume being verified. (The NAMED2
and PHYSICAL options of the VERIFY command originally created the maps.)
The format of the SAVE command is:

OUTPUT

In response to this command, SAVE displays the following message:

save fnode map?

If you want to write the reconstructed free fnodes map to the volume,
enter Y or YES. Otherwise, enter any other character or a carriage
return alone. If you enter YES, SAVE writes the free fnodes map to the
volume and displays the following message:

free fnode map saved

In any case, SAVE next displays the following message:

save space map?

If you want to write the reconstructed free space map to the volume,
enter Y or YES. Otherwise, enter any other character or a carriage
return alone. If you enter YES, SAVE writes the volume free space map to
the volume and displays the following message:

free space map saved

SAVE displays the following message if the bad blocks map is constructed:

save bad blocks map?

If you want to write the reconstructed bad blocks map to the volume,
enter Y or YES. Otherwise, enter any other character or a carriage
return alone. If you enter YES, SAVE writes the volume bad blocks map to
the volume and displays the following message:

bad block map saved

Disk Verify 2-38



DESCRIPTION

Whenever you perform a VERIFY function with the NAMED2 option (refer to

the description of the VERIFY command for more information), VERIFY

creates its own free fnodes map and volume free space map. It does this

by examining all directories and fnodes on the volume, not by copying the

maps that exist on the volume. To create the free fnodes map, it

examines every directory on the volume to determine which fnodes

represent actual files. To create the volume free space map, it examines

the POINTER(n) fields of the fnodes to determine which volume blocks the

files use.

If the volume has a bad blocks file, and you perform a VERIFY function

with the PHYSICAL option (refer to the description of the VERIFY command

for more information), VERIFY creates its own bad blocks map. It does

this by examining every block on the volume, not by copying the maps that

exist on the volume.

VERIFY then compares the newly created maps with the maps that exist on

the volume. If a discrepancy exists, VERIFY displays a message to

indicate the discrepancy.

The SAVE command takes the free fnodes map, the volume free space map,

and the bad block map created during the VERIFY operation and writes them

to the volume, replacing the maps that currently exist.

ERROR MESSAGE

Message

nothing to save

Description

You did not enter the VERIFY command

with the NAMED2, NAMED, PHYSICAL, or

ALL options prior to entering the

SAVE command. Thus SAVE has no free

fnode map, volume free space map, or

bad block map with which to replace

those that exist on the volume.

EXAMPLE

The following example illustrates the format of the SAVE command after

you use VERIFY and the NAMED or NAMED2 option.

*SAVE
save fnode map? no
save space map? v_

free space map saved

Disk Verify 2-39



SUBSTITUTEBYTE

SUBSTITUTEBYTE COMMAND

This command allows you to interactively change the contents of the
working buffer (in byte format). You can abort this command by typing a
CONTROL-C (press the CONTROL key, and while holding it down, press the C
key). The format of the SUBSTITUTEBYTE command is:

INPUT PARAMETER

offset Number of the byte, relative to the start of the
working buffer, which the command can change in
response to user input. This number can range from

to (block size - 1), where block size is the size
of a volume block (and thus the size of the working
buffer). If you omit this parameter, the command
assumes a value of 0.

OUTPUT

In response to the command, SUBSTITUTEBYTE displays the specified byte
and waits for you to enter a new value. This display appears as:

<offset>: val -

where <offset> Is the number of the byte, relative to the start of the
buffer, and val is the current value of the byte. At this point, you can
enter one of the following:

• A value followed by a carriage return. This causes
SUBSTITUTEBYTE to substitute the new value for the current byte.
If the value you enter requires more than one byte of storage,
SUBSTITUTEBYTE uses only the low-order byte of the value.
SUBSTITUTEBYTE then displays the next byte in the buffer and
waits for your further response.

• A carriage return alone. This causes SUBSTITUTEBYTE to leave the
current value as is and display the next byte in the buffer. It
then waits for your response.

Disk Verify 2-40



SUBSTITUTEBYTE

A value followed by a period (.) and a carriage return. This
causes SUBSTITUTEBYTE to substitute the new value for the current
byte. It then exits from the SUBSTITUTEBYTE command and gives
you the asterisk (*) prompt, permitting you to enter any
DISKVERIFY command.

A period (.) followed by a carriage return. This exits the
SUBSTITUTEBYTE command and gives you the asterisk (*) prompt,
permitting you to enter any DISKVERIFY command.

DESCRIPTION

The SUBSTITUTEBYTE command gives you the ability to interactively change
bytes in the working buffer. Once you enter the command, SUBSTITUTEBYTE
displays the offset and the value of the first byte. You can change the
byte by entering a new byte value, or you can leave the byte as is by
entering a carriage return only. The command then displays the next byte
in the buffer. In this manner, you can consecutively step through the
buffer, changing whatever bytes are appropriate. When you finish
changing the buffer, you can enter a period followed by a carriage return
to exit the command.

The SUBSTITUTEBYTE command considers the working buffer to be a circular
buffer. That is, entering a carriage return when you are positioned at
the last byte of the buffer causes SUBSTITUTEBYTE to display the first
byte of the buffer.

The SUBSTITUTEBYTE command changes only the values in the working
buffer. To make the changes in the volume, you must enter the WRITE
command to write the working buffer back to the volume.

ERROR MESSAGES

Message

argument error

<offsetnum>, invalid offset

Description

You specified a nonnumeric character
in the offset parameter.

You specified an offset value that
was larger than the number of bytes
in the block.

Disk Verify 2-41



SUBSTITUTEBYTE

EXAMPLE

This example changes several bytes in two portions of the working
buffer. Two SUBSTITUTEBYTE commands are used. Carriage returns are
denoted by a <cr> to aid your understanding of this example.

*SUBSTITUTEBYTE<cr>

0000: A0 - 00<cr>
0001: 80 - <cr>
0002: E5 - <cr>
0003: FF - 31<cr>
0004: FF - .<cr>

*SUBSTITUTEBYTE 40<cr>

0040: 00 - E6<cr>
0041: 00 - E6<cr>
0042: 00 - .<cr>

Disk Verify 2-42



SUBSTITUTEWORD

SUBSTITUTEWORD COMMAND

This command allows you to interactively change the contents of the working
buffer (in word format). You can abort this command by typing a CONTROL-C
(press the CONTROL key, and while holding it down, press the C key). The
format of the SUBSTITUTEWORD command is:

^^JJUBSTITUTEWORtT^v

V i 1 SW > J
offset

x-243

INPUT PARAMETER

offset Number of the byte, relative to the start of the

working buffer, which the command can change in

response to user input. This number can range from
to (block size - 1), where block size is the size of a

volume block (and thus the size of the working
buffer). If you omit this parameter, the command
assumes a value of 0.

OUTPUT

In response to the command, SUBSTITUTEWORD displays the word beginning at

the specified byte and waits for you to enter a new value. This display
appears as:

<offset>: val -

where <offset> is the number of the byte which begins the word, relative to

the start of the buffer, and val is the current value of the word. At this
point, you can enter one of the following:

• A value followed by a carriage return. This causes SUBSTITUTEWORD
to substitute the new value for the current word. If the value you
enter requires more than one word of storage, SUBSTITUTEWORD uses
only the low-order word of the value. SUBSTITUTEWORD then displays
the next word in the buffer and waits for your further response.

• A carriage return alone. This causes SUBSTITUTEWORD to leave the

current value as is and display the next word in the buffer. It

then waits for your response.

• A value followed by a period (.) and a carriage return. This
causes SUBSTITUTEWORD to substitute the new value for the current
byte. It then exits from the SUBSTITUTEWORD command and gives you
the asterisk (*) prompt, permitting you to enter any DISKVERIFY
command.

Disk Verify 2-43



SUBSTITUTEWORD

A period (.) followed by a carriage return. This exits the
SUBSTITUTEWORD command and gives you the asterisk (*) prompt,
permitting you to enter any DISKVERIFY command.

DESCRIPTION

The SUBSTITUTEWORD command is exactly like the SUBSTITUTEBYTE command
except that it allows you to interactively modify words instead of
bytes. Once you enter the command, SUBSTITUTEWORD displays the offset
and the value of the first word. You can change the word by entering a
new word value, or you can leave the word as is by entering a carriage
return only. The command then displays the next word in the buffer. In
this manner, you can consecutively step through the buffer, changing
whatever words are appropriate. When you finish changing the buffer, you
can enter a period followed by a carriage return to exit the command.

The SUBSTITUTEWORD command considers the working buffer to be a circular
buffer. That is, entering a carriage return when you are positioned at
the last byte of the buffer causes SUBSTITUTEWORD to display the first
byte of the buffer.

The SUBSTITUTEWORD command changes only the values in the working
buffer. To make the changes in the volume, you must enter the WRITE
command to write the working buffer back to the volume.

ERROR MESSAGES

Message

argument error

<offsetnum>, invalid offset

Description

You specified a nonnuraeric character
in the offset parameter.

You specified an offset value that
was larger than the number of bytes
in the block.

EXAMPLE

This example changes several bytes in two areas of the working buffer.
Two SUBSTITUTEWORD commands are used. Carriage returns are denoted by a
<cr> to aid your understanding of this example.

Disk Verify 2-44



SUBSTITUTEWORD

EXAMPLE (continued)

*SUBSTITUTEWORD<cr>

0000: A0B0 - 0000<cr>
0002: 8070 - gcjrT

0004: E511 - <cr>
0006: FFFF - 3111<cr>
0008: FFFF - .<cr>

* SUBSTITUTEWORD 35<cr>

0035: 0000 - E6FF<cr>
0037: 0000 - E6AB<cr>
0039: 0000 - .<cr>

Disk Verify 2-45



VERIFY

VERIFY COMMAND

This command checks the structures on the volume to determine whether the
volume is properly formatted. You can abort this command by typing a
CONTROL-C (press the CONTROL key, and while holding it down, press the C

key). The format of the VERIFY command is:

INPUT PARAMETERS

NAMED1 or Nl Checks named volumes to ensure that the information
recorded in the fnodes is consistent and matches
the information obtained from the directories
themselves. VERIFY performs the following
operations during a NAMED1 verification:

• Checks fnode numbers in the directories to see
if they correspond to allocated fnodes.

• Checks the parent fnode numbers recorded in the
fnodes to see if they match with the information
recorded in the directories.

• Checks the fnodes against the files to determine
if the fnodes specify the proper file type.

• Checks the POINTER(n) structures of long files
to see if the indirect blocks accurately reflect
the number of blocks used by the file.

• Checks each fnode to see if the TOTAL SIZE,
TOTAL BLKS, and THIS SIZE fields are consistent.

• Checks the bad blocks file to see if the blocks
in the file correspond to the blocks marked as
"bad" on the volume.

Disk Verify 2-46



VERIFY

NAMED or N

ALL

NAMED2 or N2

Performs both the NAMED1 and NAMED2 operations on

a named volume. If you omit the parameter from
the VERIFY command, NAMED is the default parameter.

Performs all operations appropriate to the

volume. For named volumes, this option performs
both the NAMED and PHYSICAL operations. For
physical volumes, this option performs the

PHYSICAL operations.

Checks named volumes to ensure that the

information recorded in the free fnodes map and

the volume free space map matches the actual files

and fnodes. VERIFY performs the following

operations during a NAMED2 verification:

• Creates a free fnodes map by examining every
directory in the volume. It then compares that

free fnodes map with the one already on the
volume.

• Creates a free space map by examining the

information in the fnodes. It then compares

that free space map with the one already on the

volume.

• Checks to see if the block numbers recorded in

the fnodes and the indirect blocks actually
exist.

• Checks to see if two or more files use the same

volume block.

• Checks to see if two or more files use the same

fnode

.

• Checks the volume free space map for any bad
blocks that are marked as "free."

PHYSICAL

LIST

Reads all blocks on the volume and checks for I/O

errors. This parameter applies to both named and

physical volumes. VERIFY also creates a bad

blocks map by examining every block on the volume.

When you specify this option, the file information

in Figure 2-4 is displayed for every file on the
volume, even if the file contains no errors. You
can use this option with all parameters that,

either explicitly or implicitly, specify the
NAMEDl parameter.

Disk Verify 2-47



VERIFY

OUTPUT

VERIFY produces a different kind of output for each of the NAMED1,
NAMED2, and PHYSICAL options. The NAMED and ALL options produce
combinations of the first three kinds of output.

Figure 2-4 illustrates the format of the NAMEDl output (without the LIST
option)

.

DEVICE NAME = <devname>

'NAMEDl' VERIFICATION

DEVICE SIZE = <devsize> BLK = <blksize>

FILE=(<filename>, <fnodenum>): LEVEL=<lev>: PARENT=<parnt> : TYPE=<typ>
<error messages>

FILE=(<filename>, <fnodenum>): LEVEL=<lev>: PARENT=<parnt> : TYPE=<typ>
<error messages>

FILE=(<filename>, <fnodenum>): LEVEL=<lev>: PARENT=<parnt>:
<error messages>

Figure 2-4. NAMEDl Verification Output

TYPE=<typ>

The following paragraphs identify the fields listed in Figure 2-4.

<devname>

<devsize>

<blksize>

<filename>

<fnodenum>

<lev>

<parnt>

<typ>

Physical name of the device, as specified in the
ATTACHDEVICE Human Interface command.

Hexadecimal size of the volume, in bytes.

Hexadecimal volume granularity. This number is the
size of a volume block.

Name of the file (1 to 14 characters).

Hexadecimal number of the file's fnode.

Hexadecimal level of the file in the file hierarchy.
The root directory of the volume is the only level
file. Files contained in the root directory are level
1 files. Files contained in level 1 directories are
level 2 files. This numbering continues for all levels

of files in the volume.

Fnode number of the directory which contains this file,

in hexadecimal.

File type, either DATA (for data files) or DIR (for
directory files). If VERIFY cannot ascertain that the
file is a directory or data file, it displays the
characters "****" ±n this field.

Disk Verify 2-48



VERIFY

<error messages> Messages, which indicate the errors associated with
the previously-listed file. The error messages
which can occur are listed later in this section.

As Figure 2-4 shows, the NAMEDl option (without the LIST option) displays
information about each file that is in error. If you used the LIST
option with the NAMEDl option, the file information in Figure 2-4 is
displayed for every file, even if the file contains no errors. The
NAMEDl display also contains error messages which immediately follow the
listing of the affected files.

Figure 2-5 illustrates the format of the NAMED2 output.

DEVICE NAME = <devname> : DEVICE SIZE = <devsize> : BLK SIZE - <blksize>

'NAMED2' VERIFICATION

BIT MAPS O.K.

Figure 2-5. NAMED2 Verification Output

The fields in Figure 2-5 are exactly the same as the corresponding fields
in Figure 2-4.

If VERIFY detects an error during NAMED2 verification, it displays one or

more error message in place of the "BIT MAPS O.K." message.

Figure 2-6 illustrates the format of the PHYSICAL output.

DEVICE NAME - <devname> : DEVICE SIZE = <devsize> : BLK SIZE - <blksize>

'PHYSICAL' VERIFICATION

NO ERRORS

Figure 2-6. PHYSICAL Verification Output

The fields in Figure 2-6 are exactly the same as the corresponding fields
in Figure 2-4.

Disk Verify 2-49



VERIFY

If VERIFY detects an error during PHYSICAL verification, it displays one

or more error message in place of the "NO ERRORS" message.

If you specify NAMED verification, VERIFY displays both the NAMEDl and

NAMED2 output. If you specify the ALL verification for a named volume,

VERIFY displays the NAMEDl, NAMED2, and PHYSICAL output. If you specify
the ALL verification for a physical volume, VERIFY displays the PHYSICAL
output.

DESCRIPTION

The VERIFY command checks physical and named volumes to ensure that the

volumes contain valid file structures and data areas. VERIFY can perform
three kinds of verification: NAMEDl, NAMED2, and PHYSICAL. NAMEDl and

NAMED2 verifications check the file structures of named volumes. They do
not apply to physical volumes. A PHYSICAL verification checks each data
block of the volume for I/O errors. PHYSICAL verification applies to

both named and physical volumes.

As part of the NAMED2 verification, VERIFY creates a free fnodes map and

a volume free space map which it compares with the corresponding maps on
the volume. You can use the SAVE command to write the maps produced
during NAMED2 verification to the volume, overwriting the maps on the
volume.

When you perform a PHYSICAL verification on a named volume, VERIFY also
creates a bad blocks map. You can use the SAVE command to write the bad
blocks map produced during PHYSICAL verification to the volume; this

destroys the bad blocks map already on the volume.

ERROR MESSAGES

Four kinds of error messages can occur as a result of entering the VERIFY
command: VERIFY command errors, NAMEDl errors, NAMED2 errors, and
PHYSICAL errors.

VERIFY command error

Message

argument error

Description

The parameter you specified is not a

valid VERIFY parameter.

Disk Verify 2-50



NAMEDl errors

VERIFY

The following messages can appear in a NAMEDl display, immediately after

the file to which they refer.

Message

<blocknum^-blocknumn>

,

block bad

<blocknumi-blocknumn>

,

invalid block// recorded in

the fnode/indirect block

Description

The block numbers displayed in this

message are marked as "bad."

One of the POINTER(n) fields in the

fnode specifies block numbers that
are larger than the largest block
number in the volume.

directory stack overflow This message can indicate an
internal error in the disk
verification utility. However, it

can also indicate that a directory
on the volume lists, as one of its

entries, itself or one of the parent
directories in its pathname. If

this happens, the utility, when it

searches through the directory tree,

continually loops through a portion
of the tree, overflowing an internal
buffer area.

file size inconsistent
total$size = <totsize> :

this$size = <thsize> ::

data blocks = <numblks>

The TOTAL SIZE, THIS SIZE, and TOTAL
BLKS fields of the fnode are
inconsistent.

<filetype>, illegal file type The file type of a user file, as

recorded in TYPE field of the fnode,

is not valid. The valid file types

and their descriptions are as
follows:

Filetype Description

DIR directory
DATA data
SMAP volume free

space map
FMAP free fnodes map
BMAP bad blocks map
VLAB volume label file

Disk Verify 2-51



VERIFY

<fnodenum>, allocation status
bit in this fnode not set

<fnodenum>, fnode out of range

The file is listed in a directory
but the flags field of its fnode
indicates that fnode is free. The
free fnodes map may or may not list
the fnode as allocated.

The fnode number is larger than the
largest fnode number in the fnode
file.

<fnodenum>, parent fnode number
does not match

invalid block//

recorded in the

fnode/indirect block

insufficient memory to
create directory stack

sum of the blks in the
indirect block does not
match block in the fnode

The parent fnode number in the file
does not match the parent fnode
number in the directory. VERIFY
displays the fnode number of the
directory that contains the file,
not the fnode number recorded in the
PARENT field of the file's fnode.

The file is a long file and one
of the fnodes or indirect blocks
specifies a block number that is
larger than the largest block number
in the volume.

There is not enough dynamic memory
in the system for the utility to
perform the verification.

The file is a long file, and the
number of blocks listed in a

POINTER(n) field of the fnode does
not agree with the number of blocks
listed in the indirect block.

total-blocks does not reflect
the data-blocks correctly

The TOTAL BLKS field of the fnode
and the number of blocks recorded in
the POINTER(n) fields are
inconsistent.

NAMED2 errors

The following messages can appear in a NAMED2 display.

Message Description

<blocknum^-blocknum2>

,

bad block not allocated
The volume free space map indicates
that the blocks are free, but they
are marked as "bad" in the bad
blocks file.

Disk Verify 2-52



VERIFY

<blocknum>, block allocated
but not referenced

<blocknum>, block referenced
but not allocated

The volume free space map lists the

specified volume block as allocated,
but no fnode specifies the block as

part of a file.

An fnode indicates that the specified

volume block is part of a file, but

the volume free space map lists the

block as free.

directory stack overflow This message can indicate an internal

error in the disk verification utility.

However, it can also indicate that a

directory on the volume lists, as one

of its entries, itself or one of the

parent directories in its pathname.
If this happens, the utility, when it

searches through the directory tree,

continually loops through a portion of

the tree, overflowing an internal
buffer area.

Fnodes map indicates
fnodes > max$ fnode

<fnodenum>, fnode map bit marked
allocated but not referenced

The free fnodes map indicates that

there are a greater number of

unallocated fnodes than the maximum
number of fnodes in the volume.

The free fnodes map lists the specified
fnode as allocated, but no directory
contains a file with the fnode number.

<fnodenum>, fnode referenced but The specified fnode number is listed

fnode map bit marked free in a directory, but the free fnodes
map lists the fnode as free.

Free space map indicates
Volume block > max$Volume$block

The free space map indicates that there

are a greater number of unallocated
blocks than the maximum number of

blocks in the volume.

insufficient memory to create
directory stack

insufficient memory to create
fnode and space maps

insufficient memory to create
bad blocks map

There is not enough dynamic memory in

the system for the utility to perform
the verification.

During a NAMED2 verification, the

utility tried to create a free fnodes
map and a volume free space map.

However, there is not enough dynamic

memory available in the system to

create these maps.

During a PHYSICAL verification, the

utility tried to create a bad blocks
map. However, there is not enough

dynamic memory available in the system
to create the map.

Disk Verify 2-53



VERIFY

<blocknum>, multiple reference
to this block
<fnodenum> , multiple reference
to this fnode

More than one fnode specifies this
block as part of a file.
The directories on the volume list
more than one file associated with
this fnode number.

PHYSICAL error

Message

<blocknum>, error

Description

An I/O error occurred when VERIFY
tried to access the specified volume
block. The volume is probably flawed,

other errors

The following error messages indicate internal errors in the disk
verification utility. Under normal conditions these messages should never
appear. However, if these messages (or other undocumented messages that
also appear to indicate internal problems) do appear during a NAMEDl or
NAMED2 verification, you should exit the disk verification utility and
re-enter the DISKVERIFY command.

directory stack empty
directory stack error
directory stack underflow

EXAMPLE

The following command performs both named and physical verification on a
named volume.

*VERIFY ALL

DEVICE NAME = Fl : DEVICE SIZE = 0003E900 : BLK SIZE = 0080

'NAMEDl' VERIFICATION

'NAMED2' VERIFICATION

BIT MAPS O.K.

'PHYSICAL' VERIFICATION

NO ERRORS

*

Disk Verify 2-54



WRIT

WRITE COMMAND

This command writes the contents of the working buffer to the volume

The format of this command is:

INPUT PARAMETER

blocknum Number of the volume block to which the command
writes the working buffer. If you omit this
parameter, WRITE writes the buffer back to the

block most recently accessed.

OUTPUT

In response to the command, WRITE displays the following message:

write to block <blocknum>?

where <blocknum> is the number of the volume block to which WRITE intends

to write the working buffer. If you respond by entering Y or any

character string beginning with Y, WRITE copies the working buffer to the

specified block on the volume and displays the following message:

written to block number block <blocknum>

Any other response aborts the write process.

DESCRIPTION

The WRITE command is used in conjunction with the READ, DISPLAYBYTE,

DISPLAYWORD, SUBSTITUTEBYTE, and SUBSTITUTEWORD commands to modify
information on the volume. Initially you use READ to copy a volume block

from the volume to a working buffer. Then you can use DISPLAYBYTE and

DISPLAYWORD to view the buffer and SUBSTITUTEBYTE and SUBSTITUTEWORD to

change the buffer. Finally, you can use WRITE to write the modified

buffer back to the volume. By default, WRITE copies the buffer to the

block most recently accessed by a READ or WRITE command.

A WRITE command does not destroy the data in the working buffer. The

data remains the same until the next SUBSTITUTEBYTE, SUBSTITUTEWORD, or

READ command modifies the buffer.

Disk Verify 2-55



WRITE

ERROR MESSAGES

Message

argument error

<blocknum>, block out of range

Description

You made a syntax error or specified
nonnumeric characters in the
blocknum parameter.

The block number you specified was
larger than the largest block number
in the volume.

EXAMPLE

The following command copies the working buffer to the block from which
it was read.

*WRITE
write to block 4B? v_

*written to block number 4B

***

Disk Verify 2-56



APPENDIX A
STRUCTURE OF iRMX™ 86 NAMED VOLUMES

This appendix describes the structure of an iRMX 86 volume that contains
named files. Those users who wish to examine named file volumes or

create their own formatting utility programs can use this information.

This appendix is intended for system programmers who have had experience
in reading and writing actual volume information. It does not attempt to

teach the reader these functions.

INTRODUCTION

Each iRMX 86 named volume contains ISO (International Organization for

Standardization) label information as well as iRMX 86 label information
and files. Figure A-l illustrates the general structure of a named file
volume.

reserved
for

Bootstrap
Loader

iRMX™ 86
Volume
Label

absolute byte
number

uninitialized,

reserved
for future

ISO
standard-
ization

ISO
Volume
Label

uninitialized,

reserved
for future

ISO
standard-
ization

reserved
for

Bootstrap
Loader

fnode
file

bad
blocks

file

volume
free space
map file

Data

and

Directory

files

free (nodes
map file

root
directory

383 384 511J512
767|768 895J896

1023|l024 3327J3328
-

X-645

Figure A-l. General Structure Of Named Volumes

Disk Verify A-l



STRUCTURE OF iRMX"
1

86 NAMED VOLUMES

This appendix discusses the structure in more detail. It includes
information concerning the following:

ISO Volume Label
iRMX 86 Volume Label
fnode file
volume free space map file
free fnodes map file
bad blocks map file
root directory

It also discusses the structure of directory files and the concepts of
long and short files.

The blocks in Figure A-l that are reserved for the Bootstrap Loader are
not discussed. To include these blocks on a new volume that you are
formatting, you should copy them from an already formatted volume.

NOTE

The following sections of this appendix
refer to a data type called DWORD.
DWORD must be declared literally as
POINTER. This results in a 32-bit
variable for the PLM/86 models COMPACT,
MEDIUM, and LARGE.

VOLUME LABELS

This section describes the structure of the volume labels that must be
present on a named volume. These labels are the ISO volume label and the
iRMX 86 volume label.

ISO VOLUME LABEL

The ISO (International Organization for Standardization) volume label is

recorded in absolute byte positions 768 through 895 of the volume (for
example, sector 07 of a single density flexible diskette). The structure
of this volume label is as follows:

Disk Verify A-2



STRUCTURE OF iRMX™ 86 NAMED VOLUMES

DECLARE
ISO$VOL$LABEL STRUCTURE

(

LABEL$ID(3) BYTE,

RESERVED$A BYTE,
VOL$NAME(6) BYTE,

VOL$STRUC BYTE,

RESERVED$B(60) BYTE,
REC$SIDE BYTE,

RESERVED$C(4) BYTE,

ILEAVE(2) BYTE,
RESERVED$D BYTE,

ISO$VERSION BYTE,
RESERVED$E(48) BYTE);

where:

LABEL$ID(3)

RESERVED$A

VOL$NAME(6)

VOL$STRUC

RESERVED$B(60)

REC$SIDE

RESERVED$C(4)

ILEAVE(2)

RESERVED$D

ISO$VERS ION

RESERVED$D(48)

Label identifier. For named file volumes, this

field contains the ASCII characters "VOL".

Reserved field containing the ASCII character "1".

Volume name. This field can contain up to six

printable ASCII characters, left justified and

space filled. A value of all spaces implies that

the volume name is recorded in the iRMX 86 Volume
Label (absolute byte positions 384-393).

For named file volumes, this field contains the

ASCII character "N", indicating that this volume
has a non-ISO file structure.

This is a reserved field containing 60 bytes of

ASCII spaces.

For named file volumes, this field contains the

ASCII character "1" to indicate that only one side

of the volume is to be recorded.

This is a reserved field containing four bytes of

ASCII spaces.

Two ASCII digits indicating the interleave factor

for the volume, in decimal. ASCII digits consist
of the numbers through 9. When formatting named

volumes, you should set this field to the same

interleave factor that you use when physically
formatting the volume.

This is a reserved field containing an ASCII space.

For named file volumes, this field contains the

ASCII character "1", which indicates ISO version
number one.

This is a reserved field containing 48 ASCII spaces.

Disk Verify A-3



STRUCTURE OF iRMX™ 86 NAMED VOLUMES

iRMX
1" 86 VOLUME LABEL

The iRMX 86 Volume Label is recorded in absolute byte positions 384
through 511 of the volume (sector 04 of a single density flexible
diskette). The structure of this volume label is as follows:

DECLARE
RMX$VOLUME$ INFORMATION STRUCTURE

(

VOL$NAME(10) BYTE,
FLAGS BYTE

,

FILE$DRIVER BYTE,
VOL$GRAN WORD,
VOL$SIZE DWORD,
MAX$FN0DE WORD,
FNODE$START DWORD,
FNODE$SIZE WORD,
R00T$FN0DE WORD,,

DEV$GRAN WORD,
INTERLEAVE WORD,
TRACK$SKEW WORD,
SYSTEM$ ID WORD,
SYSTEM$NAME(12) BYTE,,

DEVICE$SPECIAL(8) BYTE);

where:

VOL$NAME(10)

FLAGS

Volume name in printable ASCII characters, left
justified and zero filled.

BYTE which lists the device characteristics for
automatic device recognition. The individual bits
in this byte indicate the following characteristics
(bit is right-most bit):

Bit Meaning

VF$AUT0 flag. When set to
one, this bit indicates that
the FLAGS byte contains valid
data for automatic device
recognition. When set to
zero, it indicates that the
remaining flags contain
meaningless data.

VF$DENSITY flag. This bit
indicates the recording
density of the volume. When
set to one, it indicates
modified frequency modulation
(MFM) or double-density
recording. When set to zero,

Disk Verify A-4



STRUCTURE OF iRMX1" 86 NAMED VOLUMES

Bit Meaning

it indicates frequency

modulation (FM) or
single-density recording.

2 VF$SIDES flag. This bit
indicates the number of

recording sides on the
volume. When set to one, it
indicates a double-sided
volume. When set to zero, it

indicates a single-sided
volume.

3 VF$MINI flag. This bit

indicates the size of the
recording media. When set to

one, it indicates a
5 1/4-inch volume. When set

to zero, it indicates an
8-inch volume

.

4 VF$NOT$FLOPPY. This bit

indicates the type of disk
you are using. When this bit
is set to one and when Bit
is set to one, it indicates a

Winchester disk.

FILE$DRIVER Number of the file driver used with this volume.

For named file volumes, this field is set to four.

VOL$GRAN Volume granularity, specified in bytes. This value

must be a multiple of the device granularity. It

sets the size of a logical device block, also
called a volume block.

VOL$SIZE Size of the entire volume, in bytes.

MAX$FNODE Number of fnodes in the. fnode file. Refer to the

next section for a description of fnodes.

FNODE$START A 32-bit value which represents the number of the

first byte in the fnode file (byte is the first

byte of the volume).

FNODE$SIZE Size of an fnode, in bytes.

ROOT$FNODE Number of the fnode describing the root directory.
Refer to the next section for further information.

Disk Verify A-5



STRUCTURE OF iRMXw 86 NAMED VOLUMES

DEV$GRAN

INTERLEAVE

TRACK$SKEW

Device granularity of all tracks except track zero
(which contains the volume label). This field is
important only when the system requires automatic
device recognition.

Block interleave factor for this volume. This
value indicates the physical distance, in blocks,
between consecutively-numbered blocks on the
volume. A value of one indicates that
consecutively-numbered blocks are adjacent. A
value of zero indicates an unknown or undefined
interleave factor.

Offset, in bytes, between the first block on one
track and the first block on the next track. A
value of zero indicates that all tracks are
identical.

SYSTEM$ID Numerical code identifying the operating system
that formatted the volume. The following codes are
reserved for Intel operating systems:

Operating System Code

iRMX 86
iRMX 88

OS 88

- OFh
lOh - lFh
20h - 2Fh

SYSTEM$NAME(12)

Currently, the iRMX 86 Operating System places a

zero in this field,.

Name of the operating system which formatted the
volume, in printable ASCII characters, left
justified and space filled. Zeros (ASCII nulls)
indicate that the operating system is unknown. The
iRMX 86 Operating System currently places several
pieces of information into this field, as follows:

• The left-most six bytes of this field contain
the ASCII characters "iRMX86" to identify the
operating system. Former iRMX 86 releases
filled this field with zeros.

• The next byte is an ASCII character which
identifies the program that formatted the
volume. The following characters apply:

Character

F

U

Formatting Program

Human Interface FORMAT command

iRMX 86 Files Utility

Disk Verify A-6



STRUCTURE OF iRMX 1" 86 NAMED VOLUMES

If the formatting program is unable to provide this
information, it places an ASCII space in this field.

• The next two bytes contain a two-digit ASCII
sequence number which is incremented by the
formatting program each time the formatting
program changes in a way that affects the volume
format. The Release 4 FORMAT Human Interface
command places the characters "00" in this field.

• The right-most: three bytes of the field contain
a three-digit ASCII number specifying the
version of the Basic I/O System that was used in
formatting the volume (for example, the
characters "030" would indicate version 3.0).
If the formatting program is unable to obtain
this information, it places ASCII spaces in this
field.

DEVICE$SPECIAL(8) Reserved for special device-specific information.
When no device-specific information exists, this
field must contain zeros. If the device is a
Winchester disk with an iSBC 215 controller or if
the device is a disk with an iSBC 220 controller,
the iRMX 86 Operating System imposes a structure on
this field and supplies the following information:

SPECIAL STRUCTURE

(

CYLINDERS WORD,
FIXED BYTE,
REMOVABLE BYTE,
SECTORS BYTE,
SECTOR SIZE WORD,
ALTERNATES BYTE);

where:

CYLINDERS Total number of cylinders on the
drive.

FIXED Number of heads on the fixed
disk or Winchester disk.

REMOVABLE Number of heads on the removable
disk cartridge.

SECTORS Number of sectors in a track.

SECTOR_SIZE Sector size, in bytes.

ALTERNATES Number of alternate cylinders.

The remainder of the Volume Label (bytes 430 through 511) is reserved and
must be set to zero.

Disk Verify A-7



STRUCTURE OF iRMX 1" 86 NAMED VOLUMES

INITIAL FILES

Any mechanism that formats iRMX 86 named volumes must place five files on

the volume during the format process. These five files are the fnode file,

the volume free space map file, the frees fnodes map file, the bad blocks

file, and the root directory. The first: of these files, the fnode file,

contains information about all of the files on the volume. The general

structure of the fnode file is discussed first. Then all of the files are

discussed in terms of their fnode entries and their functions.

FNODE FILE

A data structure called a file descriptor node (or fnode) describes each
file in a named file volume. All the fnodes for the entire volume are
grouped together in a file called the fnode file . When the I/O System
accesses a file on a named volume, it examines the iRMX 86 Volume Label
(described in the previous section) to determine the location of the fnode

file, and then examines the appropriate fnode to determine the actual
location of the file.

When a volume is formatted, the fnode file contains six allocated fnodes. In

addition to the six allocated files, there also any number of unallocated
fnodes. The original number of unallotted fnodes depends on the FILES
parameter of the FORMAT command. These allocated fnodes represent the fnode
file, the volume free space map file, the free fnodes map file, the bad

blocks file, the root directory, and one other file. Later sections of this
chapter describe these files. The size of the fnode file is determined by

the number of fnodes that it contains. The number of fnodes in the fnode
file also determines the number of files that can be created on the volume.

The number of files is set when you format the storage medium.

The structure of an individual fnode in a named file volume is as follows:

DECLARE
FNODE STRUCTURE

(

FLAGS WORD,
TYPE BYTE,
GRAN BYTE,
OWNER WORD,
CR$TIME DWORD,
ACCESS$TIME DWORD,
MOD$TIME DWORD,
TOTAL$SIZE DWORD,
TOTAL$BLKS DWORD,

P0INTR(40) BYTE,

THIS$SIZE DWORD,
RESERVED$A WORD,
RESERVED$B WORD,
ID$COUNT WORD,

ACC(9) BYTE,
PARENT WORD,
AUX(*) BYTE);

Disk Verify A-8



where:

STRUCTURE OF iRMX™ 86 NAMED VOLUMES

FLAGS A WORD which defines a set of attributes for the

file. The individual bits in this word indicate
the following attributes (bit is the right-most
bit):

Bit Meaning

Allocation status. If set to one, this
fnode describes an actual file. If set
to zero, this fnode is available for
allocation. When formatting a volume,
this bit is set to one in the six
allocated fnodes. In other fnodes, it is

set to zero.

1 Long or short file attribute. This bit
describes how the PTR fields of the fnode
are interpreted. If set to zero,
indicating a short file, the PTR fields
identify the actual data blocks of the
file. If set to one, indicating a long

file, the PTR fields identify indirect
blocks. Indirect blocks are described
later in this section. When formatting a

volume, this bit is always set to zero,

since the initial files on the volume are
short files.

Bit Meaning

2 Reserved bit which is always set to one.

3-4 Reserved bits which are always set to

zero.

5 Modification attribute. Whenever a file

is modified, this bit is set to one.
Initially, when a volume is formatted,
this bit is set to zero in each fnode.

6 Deletion attribute. This bit is set to

one to indicate that the file is a

temporary file or that the file is going
to be deleted (the deletion may be
postponed because additional connections
exist to the file). Initially, when the

volume is formatted, this bit is set to

zero in each fnode.

7-15 Reserved bits which are always set to
zero.

Disk Verify A-9



STRUCTURE OF iRMX 1" 86 NAMED VOLUMES

TYPE Type of file. The following are acceptable types:

Mnemonic Value Type

FT$FNODE fnode file
FT$VOLMAP 1 volume free space map
FT$FNODEMAP 2 free fnodes map
FT$ACCOUNT 3 space accounting file
FT$BADBLOCK 4 bad device blocks file
FT$DIR 6 directory file
FT$DATA 8 data file
FT$VLABEL 9 volume label file

During system operation, only the I/O System can
access file types other than FT$DATA and FT$DIR.
These file types are discussed later in this
section.

GRAN

OWNER

CR$TIME

File granularity, specified in multiples of the
volume granularit)'. The default value is 1. For
the files initially present on the volume (fnode
file, volume free space map file, free fnodes map
file, bad blocks file, root directory), this value
can be set to any multiple of the volume
granularity.

User ID of the owner of the file. For the files
initially present on the volume, this parameter is
important only for the root directory. For the
root directory, this parameter should specify the
user WORLD (FFFFH). The I/O System does not
examine this parameter for the other files (fnode
file, volume free space map file, free fnodes map
file, bad blocks file) and so a value of zero can
be specified.

Time and date that:

as a 32-bit value.,

of seconds since a

time. By convent

1

A.M., January 1, 1

present on the vol
only for the root
specified for the
free space map fil
blocks file).

the file was created, expressed
This value indicates the number
fixed, user-determined point in

on, this point in time is 12:00
978. For the files initially
ume, this parameter is important
directory. A zero can be

other files (fnode file, volume
e, free fnodes map file, bad

ACCESS$TIME

M0D$TIME

Time and date of the last file access (read or

write), expressed as a 32-bit value. For the files
initially present on the volume, this parameter is

important only for the root directory.

Time and date of the last file modification,
expressed as a 32--bit value. For the files
initially present on the volume, this parameter is

important only for the root directory.

Disk Verify A-10



STRUCTURE OF iRMX™ 86 NAMED VOLUMES

TOTAL$SIZE Total size, in bytes, of the actual data in the
file.

TOTAL$BLKS Total number of volume blocks used by this file,
including indirect block overhead. A volume block
is a block of data whose size is the same as the
volume granularity. All memory in the volume is
divided into volume blocks, which are numbered
sequentially, starting with the block containing
the smallest addresses (block 0). Indirect blocks
are discussed later in this section.

POINTR(40) A group of bytes on which the following structure
is imposed:

PTR(8) STRUCTURE

(

NUM$BL0CKS WORD,
BLK$PTR(3) BYTE);

This structure identifies the data blocks of the
file. These data blocks may be scattered
throughout the volume, but together they make up a

complete file. If the file is a short file (bit 1

of the FLAGS field is set to zero), each PTR
structure identifies an actual data block. In this
case, the fields of the PTR structure contain the
following:

NUM$BL0CKS Number of volume blocks in the
data block.

BLK$PTR(3) A 24-bit value specifying the
number of the first volume block
in the data block. Volume blocks
are numbered sequentially,
starting with the block with the
smallest address (block 0). The
bytes in the BLK$PTR array range
from least significant
(BLK$PTR(0)) to most significant
(BLK$PTR(2)).

If the file is a long file (bit 1 of the FLAGS
field is set to one), each PTR structure identifies
an indirect block (possibly consisting of more than
one contiguous volume block) , which in turn
identifies the data blocks of the file. In this
case, the fields of the PTR structure contain the
following:

NUM$BLOCKS Number of volume blocks pointed to

by the indirect block.

Disk Verify A-ll



STRUCTURE OF iRMX 1" 86 NAMED VOLUMES

BLK$PTR(3) A 24-bit volume block number of the
Indirect block.

THIS$SIZE

RESERVED$A

RESERVED$B

ID$COUNT

ACC(9)

Indirect blocks are discussed later in this section.

Size, in bytes, of the total data space allocated to the
file. This figure does not include space used for
indirect blocks, but it does include any data space

allocated to the file, regardless of whether the file
fills that allocated space.

Reserved field which is set to zero.

Reserved field which is set to zero.

Number of access-ID pairs declared in the ACC(9) field.

A group of bytes on which the following structure is

imposed:

ACCESS0R(3)
ACCESS
ID

STRUCTURE

(

BYTE,
WORD);

This structure contains the access-ID pairs which define
the access rights for the users of the file. By
convention, when a file is created, the owning user's ID
is inserted in ACCESSOR(O), along with the code for the
access rights. The fields of the ACCESSOR structure
contain the following:

ACCESS Encoded access rights for the file. The
settings of the individual bits in this field
grant (if set to one) or deny (if set to zero)
permission for the corresponding operation.
Bit is the right-most bit.

Bit

1

2

3

4-7

Data File
Operation
delete
read
append
update

Directory
Operation
delete
display
add entry
change entry

reserved (must be 0)

ID ID of the user who gains the corresponding
access permission.

PARENT Fnode number of directory file which lists this file.

For files initially present on the volume, this
parameter is important only for the root directory. For
the root directory, this parameter should specify the
number of the root directory's own fnode. For other
files (fnode file, volume free space map file, free
fnodes map file, bad blocks file) the I/O System does
not examine this field.

Disk Verify A-12



STRUCTURE OF iRMX" 86 NAMED VOLUMES

AUX(*) Auxiliary bytes associated with the file. The
named file driver does not interpret this field,
but the user can access it by making
GET$EXTENSION$DATA and SET$EXTENSION$DATA system
calls. The size of this field is determined by the

size of the fnode, which is specified in the iRMX
86 Volume Label. The Files Utility allocates three
bytes for this field by default. If you use the
Human Interface FORMAT command or create your own
utility to format a volume, you can make this field
as large as you wish; however, a larger AUX field
implies slower file access.

Certain fnodes designate special files that appear on the volume,

following sections discuss these fnodes and the associated files.
The

FNODE (FNODE FILE)

The first fnode structure in the fnode file describes the fnode file

itself. This file contains all the fnode structures for the entire
volume. It must reside in contiguous locations in the volume. Fields of

fnode must be set as follows:

• The bits in the FLAGS field are set to the following (bit is

the right-most bit):

Bit Value Description
1 Allocated file

1 Short file
2 1 Primary fnode

3-4 Reserved bits
5 Initial status is unmodified
6 File will not be deleted

7-15 Reserved bits

The TYPE field is set to FT$FNODE.

The GRAN field is set to 1.

The OWNER field is set to 0.

The CR$TIME, ACCESS$TIME, and M0D$TIME fields are set to 0.

Since the iRMX 86 Volume Label specifies the size of an
individual fnode structure and the number of fnodes in the fnode
file, the value specified in the T0TAL$SIZE field of fnode must

equal the product of the values in the FN0DE$SIZE and MAX$FN0DE
fields of the iRMX 86 Volume Label.

The T0TAL$BL0CKS field specifies enough volume blocks to account

for the memory listed in the T0TAL$SIZE field. The product of

the value in the T0TAL$BL0CKS field and the volume granularity
equals the value of the THIS$SIZE field, since the fnode file is

a short file.

Disk Verify A-13



STRUCTURE OF iRMX 1" 86 NAMED VOLUMES

• Since the fnode file must reside in contiguous locations in the

volume, only one PTR structure describes the location of the
file. The value in the NUM$BLOCKS field of that PTR structure
equals the value in the TOTAL$BLOCKS field. The BLK$PTR field
indicates the number of the first block of the fnode file.

• The ID$COUNT field is set to zero, indicating that no users can
access the file.

FNODE 1 (VOLUME FREE SPACE MAP FILE)

The second fnode, fnode 1, describes the volume free space map file. The
TYPE field for fnode 1 is set to FT$VOLMAP to designate the file as such.

The volume free space map file keeps track of all the space on the

volume. It is a bit map of the volume, in which each bit represents one
volume block (a block of space whose size is the same as the volume
granularity). If a bit in the map is set to one, the corresponding
volume block is free to be allocated to any file. If a bit in the map is

set to zero, the corresponding volume block is already allocated to a

file. The bits of the map correspond to volume blocks such that bit n of

byte m represents volume block (8 * m) -I- n. The bits in the remaining
space allocated to the map file (those that do not correspond to actual
blocks of memory) must be set to zero.

When the volume is formatted, the volume free space map file indicates
that the first 3328 bytes of the volume (the label and bootstrap
information) plus any files initially placed on the volume (fnode file,

volume free space map file, free fnodes map file, bad blocks file) are
allocated.

FNODE 2 (FREE FNODES MAP FILE)

The third fnode, fnode 2, describes the free fnodes map file. The TYPE
field of fnode 2 is set to FT$FNODEMAP to designate the file as such.

The free fnodes map file keeps track of all the fnodes in the fnodes
file. It is a bit map in which each bit represents an fnode. If a bit
in the map is set to one, the corresponding fnode is not in use and does
not represent an actual file. If a bit in the map is set to zero, the
corresponding fnode already describes an existing file. The bits in the

map correspond to fnodes such that bit n of byte m represents fnode
number (8 * m) + n. The bits in the remaining space allocated to the map
file (those that do not correspond to actual fnode structures) must be
set to zero.

When the volume is formatted, the free fnodes map file indicates that

fnodes 0, 1, 2, 3, and 4 are in use. If other files are initially placed
on the volume, the free fnodes map file must be set to indicate this as
well.

Disk Verify A-14



STRUCTURE OF iRMX™ 8(3 NAMED VOLUMES

FNODE 4 (BAD BLOCKS FILE)

The fifth fnode, fnode 4, contains all the bad blocks on the volume,

TYPE field of fnode 4 is set to FT$BADBLOCK to indicate this.

The

If there are any unusable blocks on a volume, this fnode must be

initialized to describe a file which consists of all such bad blocks. If
there are no bad blocks on the volume, the fnode must still be set up as

allocated, and of the indicated type, but it should not assign any actual
space for the file.

FNODE 5 (VOLUME LABEL FILE)

This fnode contains the first 3328 bytes of any volume. The information
in this file defines the volume as a whole. The TYPE field of this node
is set to FT$VLABEL. You cannot write to this fnode.

FNODE 6 (ROOT DIRECTORY)

The root directory is a special directory file. It is the root of the

named file hierarchy for the volume. The iRMX 86 Volume Label specifies
the fnode number of the root directory. The root directory is its own

parent. That is, the PARENT field of its fnode specifies its own fnode
number.

The root directory (and all directory files) associates file names with

fnode numbers. It consists of a number of entries that have the

following structures

DECLARE
DIR$ENTRY STRUCTURE(

FNODE WORD

,

COMPONENT ( 14

)

BYTE )

;

where:

FNODE

COMPONENT (14)

Fnode number of a file listed in the directory.

A string of ASCII characters that is the final

component of the path name identifying the file.

This string is left justified and null padded to

14 characters.

When a file is deleted, its fnode number in the directory entry is set to

zero.

Disk Verify A-15



STRUCTURE OF iRMX™ 86 NAMED VOLUMES

OTHER FNODES

When a volume is formatted, one other fnode is set up, fnode 3,
representing a file of type FT$ACCOUNT, The fnode is set up as
allocated, and of the indicated type, but it does not assign any actual
space for the file.

When formatting a volume, no other fnodes in the fnode file represent
actual files. The remaining fnodes must have bit zero (allocation
status) set to zero.

LONG AND SHORT FILES

A file on a volume is not necessarily one contiguous string of bytes. In
many cases, it consists of several contiguous blocks of data scattered
throughout the volume. The fnode for the file indicates the locations
and sizes of these blocks in one of two ways, as short files or as long
files.

SHORT FILES

If the file consists of eight or less distinct blocks of data, its fnode
can specify it as a short file. The fnode for a short file has bit 1 of
the FLAGS field set to zero. This indicates to the I/O System that the
PTR structures of the fnode identify the actual data blocks that make up
the file. Figure A-2 illustrates an fnode for a short file. Decimal
numbers are used in the figure for clarity.

Disk Verify A-16



STRUCTURE OF iRMX 1" 86 NAMED VOLUMES

Label and
Bootstrap
Information

data block

Volume granularity = 1024

Figure A-2. Short File Fnode

As you can see from Figure A-2, fnode 8 identifies the short file. The

file consists of three distinct data blocks. Three PTR structures give

the locations of the data, blocks. The NUM$BLOCKS field of each PTR

structure gives the length of the data block (in volume blocks) and the

BLK$PTR field points to the first volume block of the data block.

The other fields shown in Figure A-2 include TOTAL$BLKS, THIS$SIZE, and

TOTAL$SIZE. The TOTAL$BLKS field specifies the number of volume blocks

allocated to the file, which in this case is eight. This equals the sum

of NUM$BLOCKS values (3+2+3), since short files use all allocated

space as data space.

Disk Verify A-17



STRUCTURE OF iRMXw 86 NAMED VOLUMES

The THIS$SIZE field specifies the number of bytes of data space allocated
to the file. This is the sum of the NUM$BLOCKS values (3+2+3)
multiplied by the volume granularity (1024) and equals 8192.

The TOTAL$SIZE field specifies the number of bytes of data space that the
file occupies. This is designated in Figure A-2 by the shaded area. As
you can see, the file does not occupy all the space allocated for it, and
so the TOTAL$SIZE value (8000) is not as large as the THIS$SIZE value.

LONG FILES

If the file consists of more than eight distinct blocks of data, its
fnode must specify it as a long file. The fnode for a long file has bit
1 of the FLAGS field set to one. This tells the I/O System that the PTR
structures of the fnode identify indirect blocks. The indirect blocks
identify the actual data blocks that make up the file.

Each indirect block contains of a number of indirect pointers, which are
structures similar to the PTR structures. However, an indirect block can
contain more than eight structures and thus can point to more than eight
data blocks. In fact, an indirect block can consist of more than one
volume block; however, all volume blocks of of an indirect block must be
contiguous. The structure of each indirect pointer is as follows:

DECLARE
IND$PTR

NBLOCKS
BLK$PTR

STRUCTURE

(

BYTE,
BL0CK$NUM)

;

where:

NBLOCKS

BLK$PTR

Number of volume blocks in the data block.

A 24-bit volume block number of first volume block
in the data block. Volume blocks are numbered
sequentially throughout the volume, starting with
the block with the smallest address (block 0).

The iRMX 86 Operating System determines how many indirect pointers there
are in an indirect block by comparing the NBLOCKS fields of the indirect
pointers with the NUM$BLOCKS field of the fnode. It assumes that the
indirect block contains as many pointers as necessary for the sum of the
NBLOCKS fields to equal the NUM$BLOCKS field.

Figure A-3 illustrates an fnode for a long file,
used in the figure for clarity.

Decimal numbers are

Disk Verify A-18



STRUCTURE OF iRMX'" 86 NAMED VOLUMES

Label and bootstrap
information

(node 9

volume granularity -• 1024

Figure A-3. Long File Fnode

As you can see from Figure A-3, fnode 9 identifies the long file. The
actual file consists of nine distinct data blocks. One PTR structure and
an indirect block give the locations of the data blocks. The NUM$BLOCKS
field of the PTR structure contains the number of volume blocks pointed
to by the indirect block. The BLK$PTR field points to the first volume
block of the indirect block.

In the indirect block, each NBLOCKS field gives the length of an
individual data block and each BLK$PTR field points to the first volume
block of a data block.

Disk Verify A-19



STRUCTURE OF iRMXm 86 NAMED VOLUMES

Figure A-3 also lists the TOTAL$BLKS, THIS$SIZE, and TOTAL$SIZE values,

which are more complex than for a short file. The TOTAL$BLKS field
specifies the number of volume blocks allocated to the file, which in

this case is 21. Twenty of the volume blocks are used for actual data
storage and one of the blocks is used for the indirect block.

The THIS$SIZE field specifies the number of bytes of data space allocated
to the file, and does not include the size of the indirect block. This

size is equal to the NUM$BLOCKS value (20) or the sum of NBLOCKS values

in the indirect block (2 +1+2+3+ 2 +3+3+2+2= 20) multiplied
by the volume granularity (1024) and equals 20480.

The TOTAL$SIZE field specifies the number of bytes of data space that the

file currently occupies. This is designated in Figure A-3 by the shaded
areas. As you can see, the file does not occupy all the space allocated
for it, and so the TOTAL$SIZE value (20300) is not as large as the

THIS$SIZE value.

FLEXIBLE DISKETTE FORMATS

The flexible diskette device drivers supplied with the iRMX 86 Basic I/O

System can support several diskette characteristics. Tables A-l and A-2

list these characteristics.

Table A-l. Eight-Inch Diskette Characteristics

Sector
Size

Density Sectors
per Track

Device Size (in bytes)

One sided Two Sided

128

256

512
1024

256
512

1024

Single
Single
Single
Single

Double
Double
Double

26

15

8

4

26
15

8

. _ ,. ..... .. .

256256
295168
314880
315392

509184
587264
626688

—

512512

590848
630272
630784

1021696
1177600
1255424

Disk Verify A-20



STRUCTURE OF iRMX™ 86 NAMED VOLUMES

Table A-2. 5 1/4-Inch Diskette Characteristics

Sector
Size

Density Sectors
per Track

Device Size (in bytes)

One Sided Two Sided
40 Tracks 80 Tracks 40 Tracks 80 Tracks

128 Single 16 81920 163840 163840 327680

256 Single 9 91904 184064 184064 368384
512 Single 4 81920 163840 163840 327680

1024 Single 2 81920 163840 163840 327680

256 Double 16 1617921 325632 325632 653312

512 Double 8 1617921 325632 325632 653312
1024 Double 4 1617921 325632 325632

. - ... i . '

653312

For compatibility with ECMA (European Computer Manufacturers Association)
and ISO (International Organization for Standardization), the iRMX 86

device drivers, when called by the formatting tools (the FORMAT Human
Interface command and the FORMAT Files Utility command), can format the
beginning tracks of all flexible diskettes in the same manner. A
configuration option for each driver allows you to specify the following:

• For all 5 1/4-inch and 8-inch flexible diskettes, the device
drivers format track of side with single-density, 128-byte
sectors, with an interleave factor of 1.

• In addition, for 8-inch, double-sided, double-density flexible
diskettes, the device drivers format track of side 1 with
double-density, 256-byte sectors.

The iRMX 86 device drivers map the sectors on these beginning tracks into

blocks of device granularity size so that the Basic 1/0 System and
Bootstrap Loader can treat flexible diskettes as if they contain a
contiguous string of blocks, all of the same size.

However, this mapping is not exact when you use 8-inch, double-sided,
double-density diskettes and specify a device granularity of 512 or

1024. A problem arises because there are 26 128-byte sectors in a track,

which is not an integral mapping for device granularities of 512 or
1024. Thus the device driver combines the left-over 128-byte sectors of

track 0, side with the first sectors of track 0, side 1 in order to

make a block of device granularity size. This continues throughout track
0, side 1, but the same problem occurs with the last 256-byte sectors of

track 0, side 1; there are not enough sectors to make a block of device
granularity size. When the device driver tries to combine these
left-over sectors of track 0, side 1 with the first sectors of track 1,

side 0, it finds that the sectors of track 1, side are already of
device granularity size. Therefore, since the device driver cannot
access partial sectors, it is left with one block (the left-over sectors
of track 0, side 1) that is less than device granularity size. When the

device granularity is 512, this small block is block 19; when the device
granularity is 1024, the small block is block 9.

Disk Verify A-21



STRUCTURE OF iRMX™ 86 NAMED VOLUMES

If nothing is done to exclude this smaller-than-normal block from use,

the device driver will treat this block as a normal block, assuming it is

of device granularity size. Thus if you try to write information to that

block, the driver will attempt to write an entire device granularity
block of information into a block that is much shorter, causing you to

lose information.

To prevent this situation, the Human Interface FORMAT command
automatically declares this smaller-than-normal block as allocated in the
volume free space map when it formats the volume. This prevents the

Basic I/O System from ever writing information into this block. If you
write your own formatting utility, you should also declare this block as
allocated.

•kick

Disk Verify A-22



Primary references are underscored*

aborting DISKVERIFY commands 2-2

ALL option 2-47

ALLOCATE command 2-5
automatic device recognition A-4
auxiliary bytes A-13

bad blocks file A-15, A-28
bad blocks

in FREE command 2-27
map 2-38

command dictionary 2-4
command error messages 2-3

Control-C 2-2

density A-4
device granularity A-5
device recognition A-4
directory A-16
DISK command 1-3, 2-8

DISKVERIFY command 1-2

error messages 1-5

output 1-4

DISPLAYBYTE command 2-10
DISPLAYDIRECTORY command 2-13
DISPLAYFNODE command 2-15
DISPLAYNEXTBLOCK command 2-20
DISPLAYPREVIOUSBLOCK command 2-21
DISPLAYWORD command 2-22

example volume A-22
EXIT command 2-25

file
driver A-5
granularity 2-15, A-10
owner 2-15, A-ll
type 2-15, A-10

fnode file A-8, A-U_
t A-24

fnodes 2-15, A-5, A-

7

FREE command 2-26
free fnodes map 2-38, 2-39, A-15 , A-26, A-33
free space map 2-38, 2-39, A-14, A-25, A-32

Disk Verify Index-1



INDEX (continued)

granularity 2-15, A-5, A-10

HELP command 2-28

initial files A-8
input radices 2-2

interleave factor A-3, A-5

invoking of 1-1

iRMX 86 volume label A-4 , A-23

ISO information A-l

ISO label A-2 , A-22

keyword 2-1

LIST option 2-47

LISTBADBLOCKS command 2-29

long files 2-15, A-9, A-12, A-18

miscellaneous commands 2-30

ADD 2-30

ADDRESS 2-30

BLOCK 2-31

DEC 2-32
DIV 2--32

HEX 2-32
MOD 2--33

MUL 2--33

SUB 2--34

error messages
exaniples 2-35

2-34

named disk fields 2-9

NAMED verification 1-3, 2-47

named volume structure A-l

NAMED1 verification 1-3, 2-46

output 2-48

errors 2-51

NAMED2 verification 1-3, 2-47

output 2-49

errors 2-52

notational conventions iii

owner 2-15, A-ll

parameters 2-1

parent directory A-13
PHYSICAL verification 1-3, 2-47

output 2-49

errors 2-54

QUIT command 2-36

railroad track schematic iii

READ command 2-37

reader level iii

Disk Verify Index-2



INDEX (continued)

recording
density A-4
sides A-5
size A-5

related publications iv
root directory A-5, A-16 , A-29, A-33

SAVE command 2-38

short files 2-15, A-9, A-12, A-17
size A-5
structure of iRMX 86 named volumes A-l
SUBSTITUTEBYTE command 2-40

SUBSTITUTEWORD command 2-43

syntax iii

track skew A-6

variable iii
VERIFY command 1-3, 2-46

working buffer 2-3 7

WRITE command 2-55

***

Disk Verify Index-3


