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PREFACE,

The Royal College of Science for Ireland was esta-

blished in 1867 by the Science and Art Department

of the Committee of Council on Education, for the

purpose of giving instruction in science applicable to

the industrial arts.

In the spring of 1870, the Author delivered at the

College a special course of twenty Evening Lectures

upon " Experimental Mechanics," addressed to artisans

and others unable to attend the ordinary classes. These

Lectures, revised and some of them rewritten, form

the present volume.

It has been the aim of the Author, however fulfilled,

to create in the mind of the student physical ideas

corresponding to theoretical laws ; and thus to produce

a work which may be regarded either as a supplement

or an introduction to manuals of theoretical mechanics.

To realize this design, the copious use of experimental

illustrations was neeessary. The apparatus used at the
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lectures and figured in the volume has been princi-

pally built up from Professor Willis'
1 most admirable

system. It is impossible to over-estimate the number

of forms which this Protean system is capable of

assuming in the lecture room. It provides, on a sub-

stantial scale, the principal parts that are required for

the illustration of most branches of experimental

mechanics. A collection of this apparatus is in daily

use in the Institution.

It is the Author's practice to allow his pupils to

share in the performance of the experiments. This

method of instruction, at all times desirable, is especially

useful when tables of numerical results have to be

constructed.

The Table of Contents will show that, in the selection

of the subjects, the question of practical utility- has

in many cases been regarded as the one of paramount

importance.

The elementary truths of mechanics are too well

known to admit of novelty, but it is believed tihaj) the

mode of treatment which is adopted is, more or less

original. This is especially the case in the Lectures

1 Willis' " System of Apparatus fpr the Use, of Lecturers and

Experimenters in Mechanical Philosophy." London : Weale, and Co.
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relating to Friction (V.), to the mechanical powers

(VII., IX.), to the strength of timber and structures

(XL, XIL, XIIL), to the laws of motion (XV.), and

to the pendulum (XVIII., XIX.).

The Author thanks his friend Dr. Tarleton, F.T.C.D.,

for the kindness with which he undertook to read over

the proof-sheets, and for many valuable suggestions.

The illustrations have been drawn from the apparatus,

by Mr. Collings, under the Author's supervision. Mr.

Cooper has executed the engraving.

Eoyai. College of Science,

1871.
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EXPERIMENTAL MECHANICS.

LECTURE I.

THE COMPOSITION OF FORCES.

Introduction.—The Definition of Force.—The Measurement of Force.

—Equilibrium of Two Forces.—Equilibrium of Three Forces.—

A

Small Force can overcome Two Larger Forces.

INTRODUCTION.

1. I shall endeavour in this course of lectures to

prove the elementary laws of mechanics to you by

means of experiments. In order to understand the sub-

ject treated in this manner, you need not possess any

mathematical knowledge beyond an acquaintance with

the rudiments of algebra, and a few simple geometrical

terms and principles. But even to those who, having

an acquaintance with mathematics, have by its means

acquired a knowledge of mechanics, experimental illus-

trations may still be useful. By actually seeing the

truth of results with which you are theoretically familiar,

clearer conceptions may be produced, and perhaps new

lines of thought opened up. Besides, many of the me-

chanical principles which lie rather beyond the scope of
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elementary works on the subject are very susceptible of

being treated experimentally ; and to tbe considera-

tion of these some of the lectures of this course will

be devoted.

Many of our illustrations will be designedly drawn

from very commonplace sources : by this means I would

try to impress upon you that mechanics is not a science

that exists in books merely, but that it is a study of

those principles which are constantly in action about us.

Our own bodies, our houses, our vehicles, all the imple-

ments and tools which are in daily use—in fact all objects,

natural and artificial, contain illustrations of mechanical

principles. Examine the action of a crane raising

weights, of a canal boat descending through a lock.

Notice the way a roof is made, or how it is that a bridge

can sustain its load. Take some opportunity of examin-

ing the parts of a clock, of a sewing-machine, and of a

lock and key ; visit a saw-mill, and ascertain the action

of all the machines you see there ; try to familiarize

yourself with the principles of the tools which are to be

found in any workshop. A vast deal of interesting and

useful knowledge is to be acquired in this way.

THE DEFINITION OF FORCE.

2. It is necessary to know the answer to this question,

What is a force ? People who have not studied

mechanics occasionally reply, A push is a force, a steam-

engine is a force, a horse pulling a cart is a force, gravi-

tation is a force, a movement is. a force, ~&c. &c. With-

out discussing how far these are correct, I may say at

once, that not one of them conveys the precise meaning

which the word has in mechanics. The true definition
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of force is that which tends to produce or destroy motion.

You may probably not fully understand this until some
explanation has been given ; but, at all events, put any
other notion of force out of your mind. Whenever I use

the word Force, do you think of the words " something

which tends to produce or destroy motion," and I trust

before the close of the lecture you will understand how
admirably the definition conveys what force really is.

3. When a string is attached to this small weight, I

can, by pulling the string, move the weight along the

table. In this case, there is something transmitted from

my hand along the string to the weight in consequence

of which the weight moves : that something is a force. I

can also move the weight by pushing it with a stick,

because force is transmitted along the stick, and makes

itself known by producing motion. In using a bow and

arrow, when I have drawn the bow I feel the string pull-

ing the arrow, so that when released the arrow darts off.

Here motion has been produced, and the force of elasti-

city of the bow has produced it. Before I released the

arrow there was no motion, yet still the bow was exert-

ing force and tending to produce motion. Hence in

describing force we must say "that which tends to

produce motion," whether it succeed in producing it

or not.

4. But forces may also be recognized by their tendency

to destroy motion. Before I release the arrow I am con-

scious of exerting a force upon it in order to counteract

the pull of the bow. Here my force is merely manifested

by its destroying the motion that, if it were absent, the

bow would produce. So when I hold a weight in my
hand, the force of my hand destroys the motion that the

weight would have were I to let it fall ; and if a weight

b 2
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greater than I could support were placed in my hand, my
efforts to sustain it would still be properly called force,

because they tended to destroy motion, though unsuccess-

fully. We see by these simple cases that a force may be

recognized either by producing motion or trying to pro-

duce it, or by destroying motion or tending to destroy

it ; and hence the propriety of the definition of force must

be admitted.

THE MEASUREMENT OF FORCE.

5. It is evident that forces differ in magnitude, and it

becomes necessary to establish some means of measuring

them. The pressure exerted by a 1 lb. weight at London

is the standard with which we shall compare other forces.

The piece of iron or other substance which is attracted

to the earth with a force of 1 lb. in London, is attracted

to the earth with a greater force at the pole and a less

force at the equator; hence, in order to define the

standard force, we have to mention the locality in

which the pressure of the 1 lb. weight is exerted.

It is easy to conceive that the magnitude of a pushing

or a pulling force may be described as equivalent to -so

many pounds. The force which the muscles of a man's

arm can exert is measured by the weight which he can

lift. If a weight be suspended from an india-rubber

spring, it is evident it will stretch the spring so that the

weight pulls the spring and the spring pulls up the

weight ; hence the number of pounds in the weight is the

measure of the force the spring is exerting. In every

case the magnitude of a force is described by the number
of pounds expressing the"weight to-which it is equivalent.

There is another and better mode of measuring force
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occasionally used in mechanics, but the simpler method
will suffice for our purpose.

6. But besides knowing the magnitude of a force, it is

also necessary for us to be able to express conveniently

the direction in which it acts. The direction in which a

force tends to make the point to which it is applied move
is called the direction of the force. Let us suppose, for

example, that a force of 3 lbs. is applied at the point

A, Fig. 1, tending to make a move in the direction ab.

A standard line c of certain
, .

length is to be taken. It is
A

supposed that a line of this l~~~~o '

length represents a force of

1 lb. The line ab is to be measured, equal to three

times c in length, and an arrow-head is to be placed

upon it to shjow the direction in which the force acts.,

Hence by means of a line of certain length and direction,.

and having an arrow-head attached to it, we are able

completely to represent a force.

EQUILIBRIUM OF TWO FORCES.

7. In Fig. 2 we have represented two equal weights

to "which strings are at-

tached; these strings, after

passing over pulleys, are

fastened in a knot c. c is

pulled by two equal and

opposite forces—I mark off

parts CD, ce, to indicate

the forces (Art. 6) ; and

since there is no reason

why c should move to one

side more than the other, it remains at rest. Hence, then,

Fio. 2.
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we learn that two equal and opposite forces counteract each

other, and each of them may be regarded as destroying

the motion which the other is striving to produce. If I

make the weights unequal by placing an additional

pound on one of the hooks, the knot is no longer at rest

;

it instantly moves off in the direction of the larger force.

8. "When at rest under the action of two equal and

opposite forces, a point is said to be in equilibrium.

This word is used with reference to any set of forces

which counteract each other. When one force acts upon

a body, one more force at least must be present in order

that the body should, be at rest. If two forces acting on

a point be not opposite, they will not be in equilibrium
;

this is easily shown by pulling the knot c in Fig. 2

downwards. When released, it flies back again. This

proves that if two forces be in equilibrium, djheir direc-

tions must be opposite, for otherwise they will produce

motion. We have already seen that the two forces must

be equal.

EQUILIBRIUM OF THREE FORCES.

9. We now come to the important case where three

forces act on a point : this is to be studied by the appara-

tus represented in Fig. 3. It consists essentially of two

pulleys h,h, each about 2" 1 diameter, which are capable of

turning very freely on their axles ; the distance between

1 We shall always, in these lectures, represent feet or inches in the

manner usual among practical men—1' is one foot, 1" is one inch.

Thus, for example, 3' 4" is to be read " three feet four inches.'' When
it is necessary to use fractions we shall always employ decimals. For

example,
,/-

5 is the mode of expressing a Tength of half an inch,

3' l"-9 is to be read " three feet one inch and nine-tenths of an inch."
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these pulleys is about 5', and they are supported at a

height of 8'.by a frame which will easily be understood

from the figure. Over these pulleys passes a fine cord, 9'

or 10' long, having a light hook at each end e,i<\ To

the centre of this cord D another cord 2' long is attached,

Fig.

which at its free end G is also furnished with a hook.

A number of iron weights, 0"5 lb., 1 lb., 2 lbs., Ac, with

rings at the top, are used ; one or more of these can

easily be suspended from the hooks as occasion may

require.

] 0. We commence by placing one pound on each of
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the hooks. The cords are seen to place themselves

in a certain definite manner after a few oscillations.

D is the point where the cords are united. If we

move the point D fco any new position, it will not, when

liberated, remain there ; it returns to where it was

before. At this point the forces represented by the

three weights are applied in directions corresponding

to their respective cords, op, o q, o s, in Fig. 4, show

the position which the cords assume.

On examining these positions, we find

that the three angles pos, Q o s,

p o Q, are all equal. This may very

easily be proved by holding ' behind

the cords a piece of cardboard on

s which three lines meeting at a point
FlG

'

4- and making equal angles have been

drawn ; it will then be seen that the cords coincide with

the three lines on the cardboard.

11. This might have been anticipated, because, the

forces acting at o being all equal, we might have inferred

that when in equilibrium they would be symmetrically

arranged about the point ; and the only way in which

the three lines could be symmetrically arranged is when

they make equal angles with each other.

12. The forces being each 1 lb., mark off along the

three lines in Fig. 4 (which represent their directions)

three equal parts op, oq, os, and place the arrow-

heads to show the direction in which each force is

acting ; the forces are then completely represented both

in position and magnitude.

Since these forces make equilibrium, each of them

may be considered to be counteracted by the other two.

For example, o s is annulled by oq and o :a. But
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o s could be balanced by a force o R equal and opposite

to it. Hence o R is capable of producing by itself the

same effect as the forces op and oq taken together.

Therefore o R is equivalent to o p and o Q. Here we
learn the important truth that two forces not in the

same direction can be replaced by a single force. The

process is called the composition of forces, and the

single force is called the resultant of the two forces,

o R is only one pound, yet it is equivalent to the forces

o P and o Q together, each of which is also one pound.

This is because the forces o p and o Q partly counteract

each other. We shall presently learn that one force may
even counteract two greater forces.

13. Draw the lines p r and Q R ; then the angles p o R

and qor are equal, because they are the supplements

of the equal angles pos and Q o s ; and since the angles

p o R and qor together make up one-third of four right

angles, it follows that each of them is two-thirds of

one right angle, and therefore equal to the angle of an

equilateral triangle. Also o p being equal to o Q and o R

common, the triangles op r and oqr must be equi-

lateral. Therefore the angle prq is equal to the angle

r o Q ; thus p R is parallel to o Q : similarly Q R is parallel

to op; that is, oprq is a parallelogram. Hence we

see that the resultant of two forces is the diagonal of a

parallelogram, of which they are the two sides.

14. This remarkable property is called the parallelo-

gram of force. Stated in its general form, the doctrine

of the parallelogram of force asserts that two forces

acting at a point have a resultant, and that this resultant

is represented both in magnitude and direction by the

diagonal of the parallelogram, two adjacent sides of

which are the lines which represent the forces. //
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I 15. The parallelogram of force may be illustrated in

various ways by means of the apparatus of Fig. 3.

Attach, for example, to the middle hook G 1*5 lb., and

place lib. on each of the end hooks E, F. Here the three

"weights are not equal, and symmetry will not enable us,

as it did in the previous case, to foresee the condition

which the cords will assume ; but they will be observed to

settle in a definite position, to which they will inva-

riably return if withdrawn from it.

Let op, OQ (Fig- 5) be the directions of the cords

;

o p and o Q being each of the length

which corresponds to 1 lb., while o s

corresponds to 1*5 lb. Here, as before,

o P and o Q together may be considered

to counteract o s. But o s could have

been counteracted by or equal and

opposite to it.- Hence o R may be re-

garded as the single force equivalent to

o p and o Q, that is, as their resultant

;

and thus it is proved experimentally that

these forces have a resultant. We can

further verify that the resultant is the

diagonal of the parallelogram of which
the forces are sides. Construct a parallelogram on a

piece of cardboard having its four sides equal, and one

of the diagonals half as long again as one of the sides.

This may be done very easily by first drawing one of the

two triangles into which the diagonal divides the paral-

lelogram. The diagonal is to be produced beyond the

parallelogram in the direction o s. When the cardboard

is placed close against the cords, the two, cords will lie

in the directions 0Pj oq, while the produced diagonal

will be in the vertical o s. Thus it is verified experi-

s

Fig. 5.
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A

mentally that the parallelogram of force is true in this

case also.

16. In the same figure the two forces OP and OS may
be considered to be counterbalanced by the force o Q ; in

other words, o Q must be equal and opposite to a force

which is the resultant of op and o s. Here we see that

two unequal forces may be compounded into one resultant.

17. Let us place on the central hook a a weight of

5 lbs., and weights of 3 lbs. and 4 lbs. on the other

hooks. This is, in fact, the case shown in Fig. 3. The

weights being unequal, we cannot immediately infer

anything with reference to the position of the cords,

but still we find, as before, that the cords assume a

definite position, to which they return when temporarily

displaced. Let Fig. 6 represent the

positions of the cords. No two of

the angles are in this case equal.

Still each of the forces is counter-

balanced by the other two. Each is

therefore equal and opposite to the

resultant of the other two. Construct

the parallelogram on cardboard. This

can be done by forming the triangle

ope, whose sides are 3, 4, and 5, and

then drawing o Q and u Q parallel to

rp and o P. Produce the diagonal o K

to s. This parallelogram being placed

behind the cords, you see that the directions of the cords

coincide with its sides and diagonal, thus verifying the

parallelogram of force in a case where all the forces

are of different magnitudes.

1 8. It is easy, by the application of a. set square, to

prove that in this case the cords attached to the 3 lb. and

s

Fig. 6.
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4 lb. weights are at right angles to each other ; the corner

of an ordinary card, or sheet of paper, shows this very-

well. But we can also infer, from the parallelogram of

force, that this must be the case. In Fig. 6, the sides of

the triangle opk are 3, 4, and 5 respectively. But since

the square of 5 is 25, and the squares of 3 and 4 are 9

and 16, it follows that the square of one side of this

triangle is equal to the sum of the squares of the two

opposite sides, and therefore that this is a right-angled

triangle (Euclid, i. 48). Hence since PR is parallel to

o q, the angle p o Q must also be a right angle,

A SMALL FORCE CAN OVERCOME TWO LARGER FORCES.

19. Cases might be multiplied indefinitely by placing

various amounts of weight on the hooks, constructing

the parallelogram on cardboard, and comparing it with

the cords as before. We shall, however, confine our-

selves to one more illustration, which is capable of very

remarkable applications. Attach 1 lb. to each of the end

hooks ; the cord joining them remains straight until

drawn down by placing a weight on the centre hook..

A very small weight will suffice to do this. Let us put

on -

5 lb. ; the position the cords then assume is indicated

in Fig. 7. As before, each force

„._-?--_ ^ equal and opposite to the re-

sultant of the other two. Hence

a force of 0"5 lb. is the resultant

of two forces each of 1 lb. ; or

we may say that we have a

force of 0"5lb. actually counter-

balancing 2 lbs. The reason of this is, that the forces

of lib. are very nearly opposite, and therefore to a large
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extent counteract each other. Constructing the card-

board parallelogram in the manner already described,

we easily see, by comparison, that the principle of the

parallelogram of force holds in this case also.

20. No matter how small be the weight we place

in the middle, you see that the cord is deflected ; and

if there be a weight in the middle, no matter how great

a weight were attached to the ends, it would be im-

possible to straighten the cord. The cord could break,

but it could not become horizontal. Look at a telegraph

wire ; it is never in a straight line between two con-

secutive poles, and its curved form is more evident the

greater be the distance between the poles. But in

putting up a wire great straining force is used, by means

of special machines for the purpose ; yet the wires cannot

be straightened : this is because the weight of the wire

itself acts as a force pulling it downwards. Just as the

cord in our experiments cannot be straight when any

force, however small, is pulling it downwards at the centre,

so it is impossible by any exertion of force to straighten

the long wire ; the wire could be broken by the machine,

but it could not be straightened. Some further illus-

trations of this principle will be given in our next

lecture, and with one application of it the present will

be concluded.

21. One of the most important practical problems in

mechanics is to make a small force overcome a greater.

There are a vast number of ways in which this may be

accomplished for different purposes, and to the con-

sideration of them several lectures of this course will be

devoted. Perhaps, however, there is no arrangement

more simple than that which is furnished by the prin-

ciples we have been considering. We shall employ it
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to enable us to raise a 28 lb. weight by means of a 2 lb.

weight. I do not say that this particular application

is of much practical use. I show it to you rather as a

remarkable deduction from the parallelogram of forces

than as a useful machine.

A rope is attached at one end of an upright, A (Fig. 8),

Fig. 8. 7

and passes over a pulley b at the same vertical height

about 16' distant. A weight of 28 lbs. is fastened to the

free end of the rope, and the supports must be heavily

weighted or otherwise secured from moving. The rope

lies apparently horizontally, in consequence of its weight

being very small compared with the strain (28 lbs.) to

which it is subjected ; this position is indicated in the

figure by the dotted line ab. We now suspend from

the middle of the rope a weight of 2 lbs. Instantly the

rope moves to the position represented in the figure.

But this it cannot do without at the same moment
raising slightly the 28 lbs. This is evident, because, since

two sides of a triangle, ob, ca, are greater than the third

side, ab, more of the rope must lie between the supports

when it is bent down by the 2 lb. weight than when it

was horizontal. But this can only have taken place by
shortening the rope between the pulley B and the 28 lb.
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weight, for the rope is firmly secured at the other end.

The amount by which the weight has been raised is

so small that it is not visible to you at a distance. We
can, however, easily show by an electrical arrangement

that it is really higher.

22. When an electric current passes through this

alarum you hear the bell ring, and the moment I stop the

current the bell stops. A contrivance like this is used in

telegraph offices when it is necessary to call the attention

of the clerk to a message. I have fastened one piece of

brass to the 28 lb. weight and another to the support

close above it, but unless the weight be raised a little the

two will not be in contact ; the electricity is intended to

pass from one of these pieces of brass to the other, but it

cannot pass unless they are touching. When the rope is

horizontal the two pieces of brass are separated, the current

does not pass, and our alarum is dumb ; but the moment

I hang on the 2 lb. weight to the middle of the rope

it raises the weight a little, brings the pieces of brass in

contact, and now you all hear the alarum. On removing

the 2 lbs. the current is interrupted and the noise ceases.

23. I am sure you must all have noticed that the 2 lb.

weight descended through a distance of many inches,

easily visible to all the room ; that is to say, the small

weight moved through a very considerable distance,

while in so doing it only raised the larger one a very

small distance. This is a point of the very greatest im-

portance ; I therefore take the first opportunity of calling

your attention to it.



LECTURE II.

THE RESOLUTION OF FORCES.

Introduction.—One Force resolved into Two Forces.—Experimental

Illustrations.—Sailing.—One Force resolved into Three Forces

not in the same Plane.—The Jib and Tie-rod.

INTRODUCTION.

Fig. 9.

24. As the last lecture was princi-

pally concerned with discussing how

one force could replace two forces, so in

the present we shall examine the kin-

dred question, How may two forces re-

place one force ? Since the diagonal

of a parallelogram is a single force

equivalent to those represented by the

sides, it is obvious that one force may
be resolved into two others, provided it

be the diagonal of the parallelogram

formed by them.

25. We shall frequently employ in

the present lecture, and in some of

those that follow, the spring balance

which is represented in Fig. 9 : the

weight is attached to tbe hook, and

when the balance is suspended by the

ring, a pointer indicates the number of pounds on a scale.
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This balance is very convenient for showing the strain

along a cord ; for this purpose the balance is held by the

ring while the cord is attached to the hook. It will be

noticed that the balance has two rings and two correspond-

ing hooks. The hook and ring at the top and bottom will

weigh up to 300 lbs., corresponding to the scale which

is seen. The hook and ring at the side correspond to

another scale on the other face of the plate ; this second

scale weighs up to about 50 lbs., consequently for a weight

under 50 lbs. the side hook and ring are employed, as

• they give a more accurate result than would be obtained

by the top and bottom hook and ring, which are intended

for larger weights. These ingenious and useful balances

are very accurate, and can easily be tested by raising

known weights. Besides the instrument thus described,

we shall sometimes use one of a smaller size, and we shall

'

be able with this aid to trace the existence and magnitude

of forces in a most convenient manner. ^

ONE v^RCE ^RESOLVED) INTO TWO FORCES.

26. We shall first prove that a single force can be

resolved into a pair of forces ; for this purpose we shall

use the arrangement shown in Fig. 10 (see next page).

The ends of a cord are fastened to two small spring

balances ; to the centre E of this cord a weight of 4 lbs.

is attached. At a and b are pegs from which the

balances can be suspended. If the distances ae, be be

each 12", the distance ab should be about 18". When

the cord is thus placed, and the weight allowed to hang

freely, each of the cords ea, eb is strained by an amount

of force that is shown to be 3 lbs. by the balances. But

the weight of 4 lbs. is the only weight acting ; hence it

o
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must be equivalent to two forces of 3 lbs. each along

the directions ae and be. Here the two forces to which

4 lbs. is equivalent are each of them less than 4 lbs.,

though taken together they exceed it.

Fig. 10.

27. But remove the cords from ab and hang them on CD,

the length CD being 1' 10", then, the strains shown along

fc and fd are each 5 lbs ; here, therefore, one force of

4 lbs. is equivalent to two forces each of 5 lbs. In the last

lecture (Art. 19) we saw that one force could balance two

greater forces ; here we see the analogous case of one force

being changed into two greater forces. Further, we learn

that the number of pairs of forces into which one force

may be decomposed is unlimited, for with every different

distance between the pegs different strains will be indi-

cated by the balances.

Whenever the "weight is suspended from a point half-

way between the balances, the strains along the cords

are equal ; but by placing the weight nearer one balance

than the other, a greater strain will be indicated on that

scale to which the weight is nearest.
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EXPERIMENTAL ILLUSTRATIONS.

28. The decomposition of one force into two forces

greater than itself, is capable of being illustrated in a

variety of ways, two of which will be here explained.

In Fig. 1 1 an arrangement for this purpose is shown. A
piece of stout twine ae, able to support from 20 lbs. to

30 lbs., is fastened at one end A to a fixed support, and

Fig. 11.

at the other end B to the eye of a wire-strainer. A wire-

-strainer consists of an iron rod, with an eye at one

end and a screw and a nut at the other ; it is used for

tightening wires in wire fencing, and is employed in this

case for the purpose of stretching the cord. When the

string is tightening, the nut must be turned cautiously,

otherwise the string would be broken. This being done,
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I take a piece of ordinary sewing-thread, which is of

course weaker than the stout twine. I tie the thread to

the middle of the cord at c, catch the other end in my
fingers, and pull ; something must break—something

has broken : but what has broken ? Not the slight thread,

it is still whole ; it is the cord which has snapped. Now
this illustrates the point on which we have been dwell-

ing. The force which I transmitted along the thread was

Fie. 12.

insufficient to break it ; the thread transferred the force

to the cord, but under such circumstances that the force

was greatly magnified, and the consequence was that this

magnified force was able to break the cord before the

original force could break the thread. We can also see

why it was necessary to stretch the cord. In Fig. 10,

the strains along the cords arc greater when the cords
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are attached at c and D, than when they are attached at

a and b ; that is to say, the more the cord is stretched

towards a straight line, the greater are the forces into

which the applied force is resolved.

29. We give a second example, in illustration of the

same principle.

In Fig. 12 is shown a chain 8' long, one end of which

b is attached to a wire-strainer, while the other end is

fastened to a small piece of pine A, which is 0""5 square

in section, and 5" long between the two upright irons by

which it is supported. By means of the nut of the wire-

strainer I straighten the chain as I did the string of

Fig. 11, and for the same reason. I then put a piece

of twine round the chain and pull it gently. The

strain brought to bear on the wood is so great that it

breaks across. Here, then, the small force of a few

pounds, transmitted to the chain by pulling the string,

is magnified to upwards of a hundredweight, for less

than this would not break the wood. The explanation

is precisely the same as when the string was broken by

the thread.

SAILING,

30. The action of the wind upon the sails of a vessel

affords a very instructive and useful example of the

decomposition of forces. By the parallelogram of force

we are able to explain how it is that a vessel is able

even to sail against the wind. A force is that which

tends to produce motion, and motion generally takes place

in the line of the force. In the case of the action of

wind on a vessel through the medium of the sails, we

have motion produced which is not necessarily in the
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direction of the wind, and which may be to a certain

extent opposed to it. This apparent paradox requires

some elucidation.

31. Let us first suppose the wind to be blowing in a

direction shown by the arrows of Fig. 13, perpendicular

to the line ab in which the ship's course lies.

Fig. 13.

/
In what direction must the sail be set ? It is clear

that the sail must not be placed along the line ab, for

then the only effect of the wind would be to blow the

vessel sideways ; nor could the sail be placed with its

edge to the wind, that is, along the line ow, for then the

wind would merely glide along the sail without producing

a propelling force. Let, then, the sail be placed between

the two positions, as in the direction pq. The line ow
represents the magnitude of the force of the wind pressing

on the sail (Art. 6).
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We shall suppose for simplicity that the sail is one

of those attached to the yards of a ship, so that it

extends on both sides of o. Through o draw or perpen-

dicular to pq, and from w let fall the perpendicular wx
on pq, and we on or. By the principle of the paral-

lelogram of force, the force ow may be decomposed into

the two forces ox and or, since these are the sides of the

parallelogram of which ow, the force of the wind, is the

diagonal. We may then leave ow out of consideration,

and imagine the force of the wind to be replaced by the

pair of forces ox and or; but the force ox cannot pro-

duce an effect, it merely represents a force which glides

along the surface of the sail, not one which pushes

against it ; so far as this component goes, the sail has

its edge towards it, and therefore the force produces

no effect. On the other hand, the sail is perpendi-

cular to the force o R, and this is therefore the effi-

cient component.

The force of the wind is thus measured by or, both in

magnitude and direction : this force represents the actual

pressure on the mast produced by the sail, and from the

mast communicated to the ship. Still or is not in the

direction in which the ship is sailing : we must again

decompose the force in order to find its useful effect.

This is done by drawing through R the lines rl and em
parallel to oa and ow, thus forming the parallelogram

omrl. Hence, by the parallelogram of force, the -force

or is equivalent to the two forces olt and -m7

The effect of ol upon the vessel is to propel it in a

direction perpendicular to that in which it is sailing. We
must, therefore, endeavour to counteract this force as far

as possible. For this purpose it is that a vessel has a keel,

and that her form is designed so as to present the greatest
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possible resistance to being pushed sideways through the

water : the deeper the keel the more completely is the

C5& effect of ol annulled. Still ol would in all cases

produce some effect were it not finally got rid of by

means of the rudder, which, by turning the head of the

vessel a little towards the wind, makes her sail in a

direction sufficiently to windward to counteract the

small effect of ol in driving her leeward.

Thus ol is disposed of, and the only force remaining is

o m, which acts directly to push the vessel in the required

direction. Here, then, we see how the wind, aided by the

resistance of the water, is able to make the vessel move in

a direction perpendicular to that in which the wind blows.

We have seen that the sail must be set somewhere between

the direction of the wind and that of the ship's motion.

It can be proved that when the direction of the sail is

such as to bisect the angle wob, the magnitude of the

force om is greater than when the sail has any other

position.

32. The same principles show us how a vessel is able to

sail against the wind : she cannot, of course, sail straight

against it, but she can sail within half a right angle of it,

or perhaps even less. This can be seen from Fig. 1 4.

The small arrows represent the wind, as before. Let

ow be the line parallel to them, which measures the force

of the wind, and let the sail be placed along the line pq ;

ow is decomposed into ox and oy, ox merely glides

along the sail, and oy is the effective force. This is de-

composed into ol and om ; ol is counteracted, as already

explained, and om is the force that propels the vessel

onwards. Hence we see that there is a force acting to

push the vessel onwards, even though the movement be

partly against the wind.
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It will be noticed in this case that the force ol acting

to leewards exceeds om pushing onwards. Hence it is

that vessels with a very deep keel, and therefore opposing
very great resistance to moving leewards, can sail more
closely to the wind than others not so constructed ; a
vessel should be formed so that she shall move as freely

as possible in the direction of her length, for which
reason she is sharpened at the bow, and otherwise shaped
for gliding through the water easily : this is in order that

om may have to overcome as little resistance as possible.

Fig. 14.

The sail p q should bisect the angle A o w for the wind to

act in the most efficient manner. Since, then, a vessel can

sail towards the wind, it follows that, by taking a zigzag

course, she can proceed from one port to another, even

though the wind be blowing from the place to which she

would go towards the place from which she comes. This

well-known manoeuvre is called tacking.. You will under-

stand that in a sailing-vessel the rudder has a more im-

portant part to play than in a steamer : in. the latter it

is only useful for changing the direction of the vessel's
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motion, while in the former it is not only necessary for

changing the direction, but must also be used to keep

the vessel to her course by counteracting the effect of

leeway.

ONE FORCE RESOLVED INTO THREE FORCES NOT IN THE

SAME PLANE.

;

33. Up to the present we have only been considering

forces which lie in the same plane, but in nature we meet

with forces acting in all directions, and therefore we

must not be satisfied with confining our inquiries to the

Fie. 15.

simpler case. We proceed to show, in. two different ways,
how a force can be decomposed into three forces not in

the same plane, though passing through the same point.

The first mode of doing so is as follows. To three points
a,b,c (Fig. 15) three spring balances are attached ; a, b, c
are not in the same straight line, though they are at the
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same vertical height : to the spring balances cords are at-

tached which unite in a point o, from which a weight w is

suspended. This weight is supported by the three cords,

and the strains along these cords are indicated by the

spring balances. The greatest strain is on the shortest

cord and the least strain on the longest. Here the force

w lbs. produces three forces which taken together exceed

its own amount.
^

If I add a second weight w I find, as we

might have anticipated, that the strains indicated by the

scales are precisely double what they were before. This

shows that the proportion of the force to each of the

components into which it is decomposed does not depend

on the actual magnitude of the force, but on the relative

direction of the force and its components.

34. Another mode of showing the decomposition of

one force into three forces not

in the same plane is represented

in Fig. 16. The tripod is

formed of three strips of pine,

4' x 0" 5 x 0" • 5, secured'

by a piece of wire running

through each at the top ; one

end of this wire hangs down,

and carries a hook to which

is attached a weight of 28 lb.

This weight is supported by

the wire, but the strain on

the wire must be borne by

the three wooden rods : hence

there is a force acting down-

wards through the wooden

rods. We cannot render this manifest by a contrivance

like the spring scales, because it is a push instead of a

Fig. 16.
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pull. However, by raising one of the legs I at once become

aware that there is a force acting downwards through it.

The" weight is, then, decomposed into three forces, which

act downwards through the legs ; these three forces

are not in a plane, and the three forces taken together

are larger than the weight.

35. This contrivance is very well known for supporting

weights ; it is convenient on account of its portability, and

is very steady. You may judge of its strength by the

model represented in the figure, for though the legs are

very slight, yet they support very securely a considerable

weight. The pulleys by means of which gigantic weights

are raised are often supported by colossal tripods, some-

times called shears. They possess stability and steadiness

in addition to great strength. We shall have occasion to

use tripods subsequently in these lectures (see Figs. 49

and 92).

36. An important point may be brought out by con-

trasting the arrangements of Figs. 15 and 16. In the

one case three cords are used, and in the other three rods.

Three rods would have answered for both, but three cords

would not have done for the tripod. In one the strings

are strained, and the tendency of the strain is to break

the string, but in the other the nature of the force down
the rods is entirely different ; it does not tend to pull

the rod asunder, it is trying to crush the rod, and had

the weight been large enough the rods would bend and

break. I hold one end of a pencil in each hand and then

try to pull the pencil asunder ; the pencil is in the con-

dition of the strings of Fig. 1 5 ; but if instead of pulling

I push my hands together, the pencil is like the rods in

Fig. 16.

37. This distinction is of great importance in me-
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chanics. A string which is in a state of tension is called

a tie, while a rod in a state of compression is called a

strut. Since a rod can resist both tension and com-

pression it can serve either as a tie or a strut, but a cord

or chain can only act as a tie. A pillar is always a strut,

as the superincumbent load makes it to be in a state

of compression. These words will very frequently be

used during this course of lectures, and it is necessary

that they be thoroughly understood.

THE JIB AND TIE ROD.

38. As an illustration of the nature of the tie and strut,

and also for the purpose of giving a useful example of

the decomposition of forces, I use the apparatus of

Fig. 17 (see next page).

This represents the principle which is employed in the

common lifting crane, and which has numerous appli-

cations in practical mechanics. A piece of pine bc
3' 6" long and 1" x 1" section is capable of turning .

round its support at the bottom b by means of a joint

or hinge : this piece is called the jib ; it is held up by

a tie ao 3' long, which is attached to the support

exactly above the joint, ab is l' long. From the

point c a wire descends, having a hook at the end on

which a weight can be hung. The tie is attached to the

spring balance, the index of which shows the strain.

The spring balance is supported by a wire-strainer, by

turning the nut of which the length of the wire can be

shortened or lengthened as occasion requires. This is

necessary because when different weights are suspended

from the hook the spring is stretched more or less, and

the screw is then employed to keep the entire length of
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the tie at 3'. The remainder of the tie consists of copper

wire.

39. Suppose a weight of 20 lbs. be suspended from

the hook, it endeavours to pull the top of the jib

downwards; but the tie holds it back, consequently

the tie is put into a state of tension, as indeed^ its

Fig. 17.

name signifies, and the magnitude of that tension is

shown to be 60 lbs. by the spring balance. Here we
find again what we have already so often referred to

;

namely, one force developing another force that is

greater than itself, for ,the strain along the tie is three

times as great as the strain in the vertical wire by which

it was produced. ,C

40. What is the condition of the jib ? It is evidently

being pushed downwards on its joint at b; it is there-
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fore in a state of compression ; it is a strut. This

will be evident if we think for a moment how absurd

it would be to endeavour to replace the jib by a string

or chain : the whole arrangement would collapse. The

weight of 20 lbs. is therefore decomposed by this contri-

vance into two other forces, one of which is resisted by

a tie and the other by a strut.

41. We have no means of showing the magnitude of

the strain along the strut, but we shall prove that it can

be computed by means of the parallelogram of force

;

this will also explain how it is that the tie is strained by

a force three times that of the weight which is used.

Through c (Fig. 18) draw cp parallel to the tie ab, and

p q parallel to the strut c B, then B p is the diagonal of the

>"

Fir,. 18.

parallelogram whose sides are each equal to B c and B Q. If

therefore we consider the force of 20 lbs. to be represented

by bp, the two forces into which it is decomposed will

be shown by b q and B c ; but A B is equal to, b q, since

each of them is equal to cp; also b p is equal to A c.

Hence the weight of 20 lbs. being represented by ac,

the strain along the tie will be represented by the length

Jl b, and that along the strut by the length b c. Eemem-

bering that A B is 3' long, cb3' 6", and AC V, it follows
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that the strain along the tie is 60 lbs., and along the strut

70 lbs., when the weight of 20 lbs. is suspended from

the hook.

42. In every other case the strains along the tie and

strut can be determined, when the suspended weight is

known, by their proportionality to the sides of the

triangle formed by the tie, the jib, and the upright

post.

43. In this contrivance you will recognize, no doubt,

the framework of the common lifting crane, but that

very essential portion of the crane which provides for

the raising and lowering is not shown here. To this we

shall return again in a subsequent lecture (Art. 332).

You will of course understand that the tie rod we
have been considering is entirely different from the

chain for raising.

44. It is easy to see of what importance to the

engineer the information acquired by means of the

decomposition of forces may become. Thus in the simple

case with which we are at present engaged, suppose an

engineer were required to erect a frame whieh was to

sustain a weight of 10 tons, let us see how he would be

enabled to determine the strength of the tie and jib.

It is of importance in designing any structure not to

make any part unnecessarily strong, as doing so involves

a waste of valuable material, but it is of still more vital

importance to make every part strong enough to avoid

the risk of accident not only under ordinary circum-

stances, but also under the exceptionally great shocks

and strains to which every structure is liable.

45. According to the numerical proportions we have em-

ployed for illustration, the strain along the tie rod would

be 30 tons when the load was 10 tons, and therefore the
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tie must at least be strong enough to bear a pull of 30

tons ; but it is customary, in good engineering practice, to

make the machine of about ten times the strength that

would just be sufficient to sustain the ordinary load.

Hence the crane must be so strong that the tie rod

would only be broken by 100 tons suspended from the

chain ; that is, by a strain of 300 tons upon the tie rod.

This large increase is necessary on account of the jerks

and other occasional great strains that arise in the

raising and lowering of heavy weights. For a crane

intended to raise 10 tons, the engineer must therefore

design a tie rod which not less than 300 tons would

tear asunder. If the tie rod be composed of wrought

iron rods, we can determine its size by the following

considerations. It has been proved by actual trial that a

rod of wrought iron of average quality one square inch in

section, requires twenty tons to tear it asunder. Hence

fifteen such rods, or one rod the section of which was

equal to fifteen square inches, would require 300 tons

to pull it asunder, and this is therefore the proper size

for the tie rod of the crane we have been considering.

46. In the same way we ascertain the actual strain

down the jib ; it amounts to 35 tons, and the jib must

be ten times as strong as a strut .which would collapse

under a strain of 35 tons.

47. It is necessary that the upright support ab (Fig. 17)

be secured very firmly. It is easy to see from the figure

that the tie rod is pulling the upright, and tending, in

fact, to make it snap off near B ; a crane post must be

firmly imbedded in masonry, or otherwise secured, to

resist the pull of the tie.

D
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PARALLEL FORCES.

Introduction.—Pressure of a Loaded. Beam oh its Supports.—Equi-

librium of a Bar supported on a Knife-edge.—The Composition

of Parallel Forces.—Parallel Porces acting in' opposite directions.—

:

The Couple.—The Weighing Scales.

INTRODUCTION.

48. The parallelogram of force enables us to find the

resultant of two forces which intersect : but since parallel

forces do not intersect, we are unable to apply the con-

struction to determine the resultant of two parallel forces.

We can, however, find this resultant very simply by

other means ; to explain the method of doing so, we
shall approach the subject by means of some experi-

mental arrangements, which appear to lead most naturally

to the desired end.

9 10 n IS 13 14
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Fig. 19.

49. Fig. 19 represents a wooden rod 4' long, sus-

tained by resting on two supports ab, and having the

length ab divided into 14 equal parts. Let a weight of
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1 4 lbs. be hung on the rod at its middle point c ; this

weight must be borne by the supports, and it is evident

that they will bear it equalty, for since the weight is a/t

the middle of the rod, there is no reason why one end

should be differently circumstanced from the other.

Hence the total pressure on each of the supports will be

7 lbs., together with half the weight of the wooden bar.

50. If a weight of 14 lbs. be placed at d, it is not

then so easy to see in what proportion the weight is

divided between the supports. We can easily under-

stand that the support near the weight must bear more

than the remote one, but how much more ? When we
are able to answer this question, we shall see that it

will lead us to a knowledge of the composition of

parallel forces.

PRESSURE OF A LOADED BEAM ON ITS SUPPORTS.

51. We shall employ the apparatus shown in Fig. 20.

An iron bar 5' (/' long, weighing 10 lbs., rests in the hooks

of the spring balances a,c, in the manner shown in the

figure. These hooks are exactly five feet apart, so that

the bar projects 3" beyond each end. The space between

the hooks is divided into twenty equal portions, each of

course 3" long. The bar is sufficiently strong to bear the

weight B of 20 lbs. suspended from it by an S book, with-

out appreciable deflection. Before the weight of 20 lbs. is

suspended, the spring scales each show a strain of 5 lbs.

We would expect this, for it is evident that the whole

weight of 10 lbs. should be borne equally by the two

supports.

52. When I place the weight in the middle, 10 divi-

sions from each end, I find the balances each indicate 1 5 lbs.

D 2
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But 5 lbs. is due to the weight of the bar. Hence the

20 lbs. is divided equally, as we have already seated that

it should be. But let the 20 lbs. be moved to/ a position

which is 4 divisions from the right, and 16 divisions

from the left ; then the right-hand scale reads 21 lbs.,

and the left-hand reads 9 lbs. To get rid of the weight

of the bar itself, we must subtract 5 lbs. from each.

Fig. 20.

We Jearn therefore that the 20 lbs. pull the right-hand

spring scale with a strain of 16 lbs., and the left with

a strain of 4 lbs. Observe this closely ; you see the

number of divisions in the bar is equal to the number of

pounds weight suspended from it, and here we see that

when the weight is 16 divisions from the left, the strain

of 16 lbs. is shown on the right. At the same time the

weight is 4 divisions from the right, and 4 lbs. is the

strain shown on the left.
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.53. I will state the law a little more generally, and

we shall find that the bar will prove it to be true in

all cases. The law is this, divide the bar into as many-

equal parts as there are pounds in the weight, then the

pressure in pounds on one end is the number of divisions

that the weight is distant from the other.

54. For example, suppose I place the weight 2 divisions

from one end : I read by the scale at that end 23 lbs.

;

subtracting 5 lbs. I find that the pressure is 1 8 lbs., but

the weight is then exactly 18 divisions distant from the

other enrl. We can easily verify this rule whatever be

the position which the 20 lbs. occupies.

55. If the weight be placed between two divisions,

instead of being, as we have hitherto supposed, exactly at

one of the marks on the bar, the result is also readily

ascertained. If the weight were, for example, 3
-

5 divi-

sions from one end, the strain on the other would be

3 "5 lbs., and in like manner for other cases.

56. We have then proved by actual experiment this

very curious and beautiful law of nature; the same result

could be inferred, by reasoning from the parallelogram

of force, but the purely experimental proof is more in

accordance with our scheme. This is one of the most

important truths of mechanics, and we shall have many

occasions to employ it in this and subsequent lectures.

57. Keturning now to Fig. 19, with which we com-

menced, the rule we have acquired will enable us to see

how the weight is distributed. We divide the length of

the bar between the supports into 1 4 equal parts because

the weight is 14 lbs. : if, then, the weight be at d, 10 divi-

sions from one end A, and 4 from the other B, the pres-

sure at the corresponding ends will be 4 and 10. If the

weights were 2\5 divisions from one end, and therefore
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il'5 from the other, the corresponding pressures would

be 11 "5 lbs. and 2 -

5 lbs. These are the pressures pro-

duced by the 1 4 lb. weight, but the actual weight sup-

ported at each end is 6 ounces greater if the wooden bar

which weighs 12 ounces be taken into account.

58. Let us suspend a second weight from another

point of the bar. We must then find the pressures

which each Separately would produce according to the

rule, and these are to be added together, and to half the

weight of the bar to find the total pressure. Thus, if one

weight of 14 lbs. were in the middle, and another at a

distance of 11 divisions from one end, the middle weight

would produce 7- lbs. at each end and the other 3 lbs. and

11 lbs., and therefore the total pressures produced by the

weights would be 10 lbs. and 18 lbs. The same prin-

ciples will evidently apply, if there be several weights :

the application of the rule is more simple when all the

weights are equal, for then the same divisions will answer

for finding the effect of each weight.

59. The principles involved in these calculations are of

the very greatest importance. We shall further examine

them by a different method which, however, leads to a

similar result.

EQUILIBRIUM OF A BAR SUPPORTED ON A KNIFE-EDGE.

60. The weight of the bar has hitherto somewhat com-

plicated our calculations; our results would appear more
satisfactorily if we could avoid this weight, but since

we want a strong bar, its weight is not so small that we
could afford to overlook it altogether. By means of the

arrangement of Fig. 21, we can, however, counterpoise

the weight of the bar. To the centre of A B a cord is
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attached, which passing over a pulley r> attached to the

framework carries a hook. The bar being a pine rod,

4 feet long and 1 inch square, weighs about 12 ounces;

Fro. 21.

consequently if this weight be, as it is in the figure,

suspended from the hook, the bar will be counterpoised,

and will remain at whatever height it is placed.
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61. A B is divided by lines drawn along it at distances

of 1" apart ; there are thus 48 of these divisions. It

carries at one end a small pin driven into it, from

which a weight may be hung while at the other end,

which is intended for larger weights ; the ring of the

weight is slipped on the bar itself.

62. Underneath the bar lies an important portion of

the arrangement ; namely, the knife-edge G. This is a

blunt edge of steel firmly fastened to the support which

carries it. This support can be moved along underneath

the bar so that the knife-edge can be placed under any

of the divisions required. It is shown in the figure at

the division o. The bar being counterpoised, though

still unloaded with weights, may be brought down till it

just touches the knife-edge ; it will then remain hori-

zontal, and it will retain this position whether the knife-

edge be at either end of the bar, or in any intermediate

position. I shall hang weights at the extremities of the

rod, and we shall find that there is for each pair of

weights just one position at which, if the knife-edge be

placed, it will sustain the rod horizontally. We shall

then examine the relations between these distances and

the weights that have been attached, and we shall trace

the connection between the results of this method and

those of the arrangement that we used in Art. 51.

63. Supposing that 6 lbs. be hung at each end of the

rod, we might easily foresee that the knife-edge should be

placed in the middle, and we find our anticipations veri-

fied. When the edge is exactly at the middle, the rod

remains horizontal ; but if it be moved, even by a very

small amount, to either side, the rod instantly descends

on the other. The edge is then 24 inches distant from

each end ; and if I multiply this number by 6, the
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number of pounds I find 144 for the product, and this

number is the same of course for both sides. The im-

portance of this remark will be seen directly.

64. The weight of the bar being counterpoised hi the

manner already explained, we may omit every thought

of its weight ; the total weight then to be supported by

the knife-edge is 12 lbs.

65. If I remove one of the 6 lb. weights and replace it

by 2 lbs., leaving the other and the knife-edge unaltered,

the bar instantly descends on the side of the heavy

weight ; but, by slipping the knife-edge along the bar,

I find that when I have moved it to within a distance of

12 inches from the 6 lb., and therefore 36 inches from

the 2 lb., the bar will remain horizontal. The edge

must be at the right place ; a quarter of an inch to one

side or the other would upset the bar. The whole strain

borne by the knife-edge is of course 8 lbs., being the sum
of the weights. If we multiply 2, the number of pounds

at one end, by 36, the distance of that end from the knife-

edge, we find the product 72 ; and we would have found

precisely the same number by multiplying 6, the number

of pounds in the other weight, by 12, its distance from

the knife-edge. To express this result concisely we shall

introduce the word " moment," a term of frequent use

in mechanics. The 2 lb. weight is a force tending to

pull its end of the bar downwards by making the bar

turn round the knife-edge. The magnitude of this force,

multiplied into its distance from the knife-edge, is called

the moment of the force. We can then express the result

at which we have arrived by saying that, when the

knife-edge has been placed so that the bar remains hori-

zontal, the moments of the forces produced by the weights

about the knife-edge are equal.
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66. This may be illustrated by hanging 7 lbs. and

5 lbs. from the ends ; it is found that the knife-edge

must be placed 20 inches from the larger weight, and.

therefore, 28 inches from the smaller, but 5 x28 = 140,

and 7 x 20 = 140, thus verifying the law. The appa-

ratus will verify the law in every case, provided the

weights be not too heavy for the bar.

THE COMPOSITION OF PARALLEL FORCES.

67. Having now examined these cases experimentally,

we proceed to investigate what may be learned from the

results we have proved.

The weight of the bar in the first case being allowed

for in the way we have explained by subtracting 5 lbs.

from each of the strains indicated by the spring balance,

we may omit it from consideration. The balances being

pulled downwards by the bar when it is loaded, they

must conversely pull the bar upwards. This will be

evident if .we look at a weight—say 14 lbs.—suspended

from one of these scales : it hangs at rest ; therefore its

weight, which is constantly urging it downwards, must

be counteracted by an equal force pulling it upwards.

The scale of course shows 14 lbs. ; thus the spring exerts

in an upward pull a force which is precisely equal to the

force with which it is itself pulled downwards.

68. Hence the springs are exerting forces at the ends

of the bar in pulling them upwards, and the scales indi-

cate the magnitude of these forces. The bar is thus -sub-

ject to three forces, viz. : the weight of 20 lbs. which is

hanging from it, and which acts vertically downwards,

and the two other forces which, act vertically upwards,

and the united action of the three make equilibrium.
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69. Let lines be drawn, representing the forces in

the manner already explained (Art. 6). We have then

three parallel forces ap, bq, cr acting

on a rod in equilibrium (Fig. 22). The
j

two forces ap and bq may be con-

sidered as balanced by the force cr in

the position shown in the figure, but

the force cr would be balanced by the

equal and opposite force cs, represented \

by the dotted line. Hence this last *

force is precisely equivalent to ap and

bq. In other words, it must be their re-

sultant. Here then we learn that a pair r

of parallel forces, acting in the same f«>. 22.

direction, can be compounded into a single resultant.

70. We also see that the magnitude of the resultant

is equal to the sum of the magnitude of the forces, and

further we find the position of the resultant by this

rule. Acid the two forces together; divide the distance

between them into as many equal parts as is contained

in the sum, measure off from the greater of these two

forces as many parts as there are pounds in the magni-

tude of the smaller force, and that is the point required :

this rule is very easily inferred from that which we were

taught by the experiments in Art. 51.

PARALLEL FORCES ACTING IN OPPOSITE DIRECTIONS.

71. Since the forces ap, bq, cr (Fig. 22) are in equi-

librium, it follows that we may look on B Q as balancing

in the position which it occupies the two forces of ap

and CR in their positions. This may remind us of the

numerous instances we have already met with, where
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our force balanced two greater forces : in the present case

A P and c R are acting in opposite directions, and the

force B Q which balances them is equal to their difference.

A force bt equal and opposite to bq must then be the

resultant of c R and A P, since it is able to produce the

same effect. Notice that in this case the resultant of

the two forces is not between them, but that it lies on

the side of the larger. When the forces act in the same

direction, the resultant is always between them.

72. The actual position which the resultant of the

opposite parallel forces occupies is to be found by the

following rule. Divide the distance between the forces

into as many equal parts as there are pounds in their

difference, then measure from the point of application

of the larger force as many of these parts as there are

pounds in the smaller ; the point thus found determines

the position of the resultant. Thus, if the forces be 14

and 20, the difference between them is 6, and there-

fore the distance between their directions is divided

into six parts ; from the point of application of the

'

force of 20, 14 parts are measured off, and thus the

position of the resultant is determined. Hence we
have the means of compounding two parallel forces in

all cases.

THE COUPLE. \

73. In one case, however, two parallel forces have no

resultant ; this occurs when the two forces are equal, and

in opposite directions. A pair of forces of this kind is

called a couple ; there is no single" force which could

balance a couple,—it can only be counterbalanced bv
another couple acting in an opposite manner. This
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remarkable case, as well as others, may be studied by the

arrangement of Fig. 23.

A wooden rod, A B 48" x 0" • 5 x 0" • 5, has strings

attached to it at points A D, one foot distant. The string

at D passes over a pulley e, and to the end of each a hook

p Q is attached for the purpose of receiving weights ; the

weighb of the rod itself, which only amounts to three

ounces, may be neglected, as it is very small compared

with the weights which will be used.

Fig. 23.

74. Supposing 2 lbs. to be placed at p, and 1 lb. at Q, we
have two parallel forces acting in opposite directions ; since

their difference is 1 lb., the line A D is not to be divided,

and the point f where D f is equal to A D is the point

where the resultant is applied. You see that this is easily

verified, for by placing my finger over the rod at F, it

remains horizontal and in equilibrium ; whereas, when I

move my finger to one side or the other, equilibrium is

impossible. If I move it nearer to b, the end A ascends.

If I move it towards A, the end B ascends.

75. For the case when the two forces are equal, 2 lbs.

is to be placed on each of the hooks p and Q. It will

then be found that the finger placed in any position

along the rod will not keep it in equilibrium ; that is to
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say, no single force can counteract the two forces which

form the couple. Let o be the point midway between A

and D. The forces evidently tend to raise o B and turn

the part o A downwards ; but if I try to restrain o B by

holding a rod firmly above it so that it presses against

it as at the point x, instantly the rod begins to bend

round x and the part from A to x descends. I find

similarly that any attempt to prevent o A from going

down by holding a rod under it fails equally to produce

equilibrium. But if I press the rod downwards at one

point, and at the same time upwards at another with

suitable force, I can produce equilibrium ; in this case the

two pressures form a couple, and it is this couple which

neutralizes the couple produced by the weights. We
learn then, that a couple can be balanced by a couple,

and by a couple oidy.

76. We have already defined a moment. You see

from Fig. 20 a confirmation of the property shown in

Art. 65. The moment of the force 16 at a around the

point B is equal to the moment of the force 4 at c about B,

since each of them is the product of 4 and 16. This will

indicate the connection between the results represented

in Fig. 20 and the arrangement of Fig. 21. There we
found that the moments of the forces at each end of the

rod about the knife-edge were equal.

THE WEIGHING SCALES.

77. Another apparatus by which the nature of parallel

forces may be investigated is shown in Fig. 2 4 ; this

consists of a slight frame of wood a bo, 4' long. At
E, a pair of steel knife-edges is clamped to the frame.

The knife-edges rest on two pieces of steel, one of which
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is shown at o F. When the knife-edges are suitably

placed, the frame balances itself very delicately ; in fact, a

small piece of paper laid at A will instantly cause that

side to descend. Indeed, it is found that some slight

counterpoise must always be added to one side or the

other, in order to compensate for the inevitable slight

difference in weight, which even by careful construction

of the frame cannot be avoided.

Fig. 24.

78. We attach two small hooks A and B : these are

made of fine wire and weigh but little. The frame being

exactly balanced, its weight may be left out of con-

sideration. With this apparatus we can easily verify the

principle of equality of moments : for example, if I place

the hook A at a distance of 9" from o and load it with

1 lb., I find that when b is laden with -

5 lb. it must be

at a distance of 18" from o in order to counterbalance

A ; the moment in the one case is 9 x 1, in the other

18 x 0"5, and these are obviously equal.

79. Let a weight of 1 lb. be placed on each side of

the centre, the frame will only be in equilibrium when
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the weights are at precisely the same distance from the

centre. This is the principle of the ordinary weighing

scales ; the frame which is in this case called a beam is

sustained by two knife-edges, smaller, however, than

those represented in the figure. The pans p,p are sus-

pended from the extremities of the beam, and should be

at equal distances from its centre. These scale-pans must

be of equal weight, and then, when equal weights are

placed in them, the beam will remain horizontal. If the

weight in one slightly exceed that in the other, the pan

containing the heavier weight will of course descend.

80. That a pair of scales should weigh accurately, it is

necessary that the weights be correct ; but even with

correct weights, a balance of defective construction will

give an inaccurate result. The error frequently arises

from a slight inequality in the lengths of the arms of the

beam. When this is the case, the two weights which will

balance are not equal. Supposing, for instance, that with

an imperfect balance I endeavour to weigh a pound of

shot. If I put the weight on the short side, then the

quantity of shot balanced is less than 1 lb. ; while if the

1 lb. weight be placed at the long side, it will require

more than 1 lb. of shot to balance it. The mode of test-

ing a pair of scales is then evident. Let weights be

placed in the pans which balance each other ; if then the

weights be interchanged and the balance still remains

horizontal, it is correct. >

81. Suppose, for example, that the two arms be 10

inches and 1 1 inches long, then, if 1 lb. weight be placed

in the pan of the 10-inch end, its moment is 10 ; and if

xf of 1 lb. be placed in the pan belonging to the 11 -inch

end, its moment is also 10 : hence 1 lb. at the short end

balances t^ of 1 lb. at the long end ; and, therefore, if
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the shopkeeper placed his weight in the short arm, his

customers would lose A part of each pound for which

they paid ; on the other hand, if the shopkeeper placed

his 1 lb. weight on the long arm, then this would require

H lb. in the pan belonging to the short arm to balance

it. Hence in this case the customer would get tV lb. too

much. It follows, therefore, that if a shopman placed

the weights alternately in the one scale and the other he

would be a loser on the whole ; because, though every

alternate customer gets A lb. less than he ought, yet

the others get tV lb. more than they have paid for.
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THE FORCE OF GRAFITT.

Introduction.—Specific Gravity.—The Plummet and Spirit Level.

—

The Centre of Gravity.—Stable and Unstable Equilibrium.

—

Property of the Centre of Gravity in a Eevolving Wheel.

INTRODUCTION.

82. In the last three lectures we have been occupied

with forces in the abstract ; we have seen how they are

to be represented, how compounded together and decom-

posed into others ; we have explained what is meant by

forces being in equilibrium, and we have shown instances

where the forces lie in the same plane or in different

planes, and where they intersect or are parallel to each

other. These subjects are the elements of mechanics

;

they form the skeleton which in this and subsequent

lectures we shall try to clothe in a more attractive

garb. We shall commence by studying the most re-

markable force in nature, a force constantly in action,

and one to which all bodies are subject, a force which

distance cannot annihilate, and one the properties of

which have led to the most sublime discoveries of human
intellect. This is the force of gravity.

83. If I drop a stone from my hand, it falls to the

ground. Now that which produces motion is a force

:

hence the stone must have been acted upon by a force



LECT. IV.] THE FORCE OF GRAVITY. 51

which drew it to the ground. On every part of the

earth's surface experience shows that a body tends to

fall. This fact will prove that there is an attractive

force in the earth tending to draw all bodies towards it.

84. Let abcd (Fig. 25) be points from which stones

are let fall, and let the circle represent the section of the

earth ; let pqrs be the points on the surface of the earth

on which the stones will drop when allowed to do so.

The four stones will move in the directions of the

arrows : from a to P the stone moves in an opposite

direction to the motion from c to e; from b to Q it

moves from right to left, while from D to s it moves from

left to right. The movements are in different direc-

tions ; but if I produce these directions, as indicated by

the dotted lines, they each pass through the centre o.

85. Hence each stone in falling moves towards the

centre of the earth, and the force actuating each stone

acts towards the centre of the earth. We therefore

assert that the earth has an attraction for the stone, in

consequence of which the stone tries to get as near its

E 2
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centre as possible, and this attraction is called the force

of gravitation.

86. We are so excessively familiar with the falling of

a body that it does not excite in us any astonishment,

and rarely even provokes our curiosity. A clap of thun-

der, which every one notices, though much less frequent,

is not really more remarkable. We all look with attention

on the attraction of a piece of iron by a magnet, and

justly so, for the phenomenon is very curious, and yet

the falling of a stone is produced by a far grander and

more important force than the force of magnetism.

87. It is gravity which causes the weight of bodies. I

hold a piece of lead in my hand : gravity tends to pull it

downwards, and it produces a pressure on"*my hand which

I call weight. Gravity acts with slightly different force

at different parts of the earth's surface. This is due to

two distinct causes, one of which may be mentioned here,

while the other will be subsequently referred to. The

earth is not perfectly spherical, it is flattened a little at

the poles ; consequently at the pole a body is nearer the

general mass of the earth than it is at the equator; there-

fore it is more attracted at the pole, and therefore weighs

more. A mass which weighs 200 lbs. at the equator

would weigh one pound more at the pole : about one-

third of this increase is due to the cause here pointed

out. (See Lecture XVII)
88. Gravity is a force which attracts every particle of

matter ; it acts not merely on those parts of a body
which are on the surface, but it equally affects those in

the interior. This is proved by observing that a body
weighs the same amount, however its shape be altered :

for example, suppose I take a ball of putty which weighs

1 lb., I shall find that its weight remains unchanged when
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the ball is flattened into a thin plate, though in the latter

case the surface, and therefore the number of superficial

particles, is larger than it was in the former.

SPECIFIC GRAVITY. ^

89. Gravity produces different effects upon different

bodies. This is commonly expressed by saying that some

substances are heavier than others ; for example, I have

here a piece of wood and a piece of lead of equal bulk.

The lead is drawn to the earth with a greater force than

the wood. Bodies are usually termed heavy when they

sink in water, and light when they float upon it. But

a body sinks in water if it weigh more than an equal

bulk of water, and floats if it weigh less. Hence it is

natural to take water as a standard with which the

weights of other bodies may be compared.

90. I take a certain volume, say a cubic inch of cast

iron such as this I hold in my hand, and which has been

accurately shaped for the purpose. This cube is heavier

than one cubic inch of water, but I shall find that a

certain quantity of water is equal to it in weight ; that is

to say, a certain number of cubic inches of water, and it

may be fractional parts of a cubic inch, are precisely of

the same weight. This number is called the specific

gravity of cast iron.

91. It would be impossible to counterpoise water

with the iron without holding the water in a vessel, and

the weight of the vessel must then be allowed for. I

adopt the following plan. I have here a number of inch

cubes of wood (Fig. 26), which alone are of course lighter

than cubic inches of water, but I have weighted them by

placing grains of shot into holes bored for the purpose.

The weight of each cube has been accurately adjusted to
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be equal to that of a cubic inch of water. , This may be

tested by actual weighing. I weigh one of the cubes and

find it to be 252 grains, which is well known to be the

weight of a cubic inch of water.

92. But the cubes may be shown to be identical in weight

with the same bulk of water by a simpler method. One

of them placed in water should have no tendency to sink,

since it is not heavier than water, nor on the other hand,

Fig. 26.

since it is not lighter, should it have any tendency to

float. It should then remain in the water in whatever

position it may be placed. It is very difficult to prepare

one of these cubes so accurately that this result should

be attained, and it is impossible to ensure its continuance

for any time owing to changes of temperature and the

absorption of water by the wood. "We can, however, by

a slight modification, show you that one of these cubes is
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at all events nearly equal in weight to the same bulk of

water. In Fig. 26 is shown a tall jar which is filled,

with fluid ; its appearance is that of a vessel filled with

water, but I have arranged it in the following manner. I

first poured into the jar a very weak solution of salt and

water which partially filled it, I then poured gently upon,

this a little pure water, and finally filled up the jar with

water containing a little spirits of wine : the salt and

water is a little heavier than pure water, while the spirit

and water is a little lighter. I take one of the cubes and

drop it gently into the glass ; it falls through the spirit

and water, and after making a few oscillations settles

itself at rest in the stratum shown in the figure. This

shows us that our prepared cube is a little heavier

than spirit and water, and a little lighter than salt and

water, and hence we infer that it must at all events be

very near the weight of pure water which lies between

the two. We have also a number of half cubes, quarter

cubes, and half quarter cubes, which have been similarly

prepared to be of equal weight with an equal bulk of

water.

93. We shall now be able to measure the specific gra-

vity of a substance. In one pan of the scales I place the

inch cube of cast iron, and I find that 7^ of the wooden

cubes, which we may call cubes of water, will balance

it. We therefore say that the specific gravity of iron

is rather over 1. The exact number found by more

accurate methods is 7"2. It is often convenient to re-

member that 23 cubic inches of cast iron weigh 6 lbs., and

that therefore one cubic inch weighs very nearly \ lb.

94. I have also cubes of brass, lead, and ivory ; by

counterpoising them with the cubes of water, we can

easily find their specific gravities; they are shown
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together with that of east iron in the following

table ;

—

Substance. Specific Gravity.

Cast Iron 7-2

Brass 8 -

l

Lead 11-3

Ivory 1'8

95. The mode here adopted of finding specific gravities

is entirely different from the far more accurate methods

which are actually used, but the latter are complicated,

and depend on more difficult principles than we have

been considering. The method we have used is intended

more as an explanation of the nature of specific gravity

than as a good means of determining it, though, as we
have seen, it gives a result which is sufficiently near the

truth for many purposes.

THE PLUMMET AND SPIKIT-LEVEL.

96. The tendency of the earth to draw all bodies

towards it is well illustrated by the useful line and

plummet. This consists merely of a string to one end of

which a leaden weight is attached. The string when at

rest hangs vertically ; if the weight be drawn to one side,

it will, when released, swing backwards and forwards,

until it finally settles again in the vertical : the reason

of this is, that when the string is vertical the weight is

nearer the earth than in any other position.

97. The surface of water in equilibrium is a horizontal

plane ; this is also a consequence of gravity. All the

particles of water try to get as near the earth as

possible, and therefore, if any portion of the water were

higher than the rest, it would immediately spread, as by
doing so it could get lower.
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98. Hence the surface of a fluid at rest enables us to

find a perfectly horizontal plane, while the plummet gives

us a perfectly vertical line : both these consequences of

gravity are of the utmost importance.

99. The spirit-level is another common and very useful

instrument which depends on gravity. It consists of a

glass tube slightly curved, with its convex surface up-

wards, and attached to a plate. This tube is nearly filled

with spirit, but a bubble of air is allowed to remain.

The tube is permanently adjusted so that when the plate

is laid on a perfectly horizontal surface, the bubble will

rise to the top : this gives a means of ascertaining whether

a surface is level, for unless it be so, the bubble will not

rest at the top.

THE CENTRE OF GRAVITY.

100. We proceed to an experiment which will give us

an insight into a curious property of gravity. I have

here a plate of sheet iron ; it has the

irregular shape shown in Fig. 27. Five

small holes abode are punched at differ-

ent positions on the margin. Attached

to the framework is a small pin from

which I can suspend the iron plate by

one of its holes a: the plate is not

supported in any other way ; it hangs

freely from the pin, around which it

can be easily turned. I find that there

is one position, and one only, in which

the plate will rest ; if I withdraw it from

that position, it returns to it after a few oscillations. In

order to mark this position, I suspend a line and plum-

Fig. 27.
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met from the pin, having rubbed the line with chalk. I

allow the line to come to rest in front of the plate. I

then carefully flip the string against the plate, and thus,

produce a chalked . mark : this of course traces out a

vertical line ad on the plate.

I now remove the plummet and suspend the plate

from another of its holes B, and repeat the process, thus

drawing a second chalked line B p across the plate, and

so on with the other holes : I thus obtain five lines across

the plate, represented by dotted lines in the figure. It

is a very remarkable circumstance that these five lines

all intersect, in the same point P ; and if additional

holes were bored in the plate, whether in the margin or

not, and the chalk line drawn from each of them in

the manner described, they would one and all pass

through the same point. This remarkable point is called

the centre of gravity of the plate, and the result at which

we have arrived may be expressed by saying that from

whatever point Jthe plate be suspended the vertical line

through it passes through the centre of gravity.

101. At the centre of gravity p a hole has been bored,

and when I place the supporting pin through this hole

yoia see that the plate will rest indifferently in all posi-

tions : this is a curious property of the centre of gravity.

The centre of gravity may in this respect be contrasted

with another hole Q, which is only an inch distant : when

I support the plate by this hole, it has only one position

of rest, viz. when the centre of gravity p is vertically

beneath q. Thus the centre of gravity differs remarkably

from any other point in the plate.

102. We may conceive the force of gravity on the

plate to act as a force applied at p. It will then be easily

seen why this point remains vertically underneath the
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point of suspension when the body is at rest. If I

attached a string to the plate and pulled it, the plate

would evidently place itself so that the direction of the

string would pass through the point of suspension ;

in like manner gravity so places the plate that the

direction of its force passes through the point of

suspension.

103. We have learned, then, that a plate of any form

has in it one point possessing very remarkable properties,

and we may state in general that in every body, no

matter what its shape be, there is a point called the centre

of gravity, such that if the body be suspended from this

point it will remain in equilibrium indifferently in any

position, and that if the body be suspended from any

other point then it will be in equilibrium, when the centre

of gravity is directly underneath the point of suspension.

In general, it will of course be impossible to support a

body exactly at its centre of gravity, as this point is in

the mass of the body, and it may also sometimes happen

that the centre does not lie in the body at all, as for

example in a ring, in which case the centre of gravity is

at the centre of the ring. We need not, however, dwell

on these exceptional cases, as sufficient illustrations of

the truth of the laws mentioned will present themselves

subsequently.

STABLE AND UNSTABLE EQUILIBRIUM.

104. An iron rod ab, capable of revolving round an

axis passing through its centre P, is shown in Fig. 28.

The centre of gravity is at the axis, and consequently,

as is easily seen, the rod will remain at rest in whatever

position it be placed. But let a weight R be attached to
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the rod by means of a binding screw. The centre of

gravity of the whole is no longer at the centre of the

rod ; it has moved to a point s nearer the weight ; we

may easily ascertain its position by removing

the rod from its axle and then ascertaining the

point about which it will balance. This may

| be done by placing the bar on a knife-edge,

and moving it to and fro until the right

position be secured ; mark this position on the

rod, and return it to its axle, the weight

being still attached. We do not now find that

the rod will balance in every position. You
see it will rest if the point s be directly under-

neath the axis, but not if it lie to one side or

the other. But if s be directly over the axis,

as in the figure, the rod is in a curious con-

dition. It will, when carefully placed, remain

at rest; but if it receive the slightest dis-

placement, it will tumble over. The rod is in

equilibrium in this position, but it is what

is called unstable equilibrium. If the centre
Fig. 28. £ gravity \,q vertically below the point of

suspension, the rod will return again if moved away : this

position is therefore called one of stable equilibrium. It

is very important to notice the distinction between these

two kinds of equilibrium.

105. Another way of stating the case is as follows.

A body is in stable equilibrium when its centre of gravity

is at the lowest point ; unstable when it is at the highest.

This may be very simply illustrated by an ellipse,

which I hold in my hand. The centre of gravity of this

figure is at its centre. Now the ellipse, when resting on

its side, is in a position of stable equilibrium ; its centre



lect. iv.] CENTRE OF GRAVITY IN A REVOLVING WHEEL. 61

of gravity is then clearly at its lowest point. But I can

also balance the ellipse on its narrow end, though if I

do so the smallest touch suffices to overturn it. The

ellipse is then in unstable equilibrium ; in this case,

obviously, the centre of gravity is at the highest point.

106. I have here a sphere, the centre of gravity of

which is at its centre ; in whatever way the sphere is

placed on the plane, its centre is at the same height, and

therefore cannot be said to have any highest or lowest

point ; in such a case as this the equilibrium is neutral.

If the body be displaced, it will not return to its old

position, as it would have done had that been a position

of stable equilibrium, nor will it deviate further there-

from as if the equilibrium had been unstable : it will

simply remain in the new position to which it is brought.

107. An iron ring about 6" diameter is

shown in Fig. 29.

I try to balance it upon the end of a stick h,

but I cannot succeed in doing so. This is

because its centre of gravity s is above the
Fig. 29.

point of support; but if I place the stick at

F, the ring is in stable equilibrium, for now the centre

of gravity is below the point of support.

PROPERTY OF THE CENTRE OF GRAVITY IN A REVOLVING

WHEEL.

108. There are many other very curious consequences

which follow from the properties of the centre of gravity,

and we shall conclude by illustrating one of the most

remarkable, which is at the same time of the utmost

importance in machinery.

109. It is necessary that a machine should work
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as steadily as possible, and that undue vibration and

shaking of the framework should be avoided : this is par-

ticularly the case when any parts of the machine move

with a great velocity, as, if these be heavy, very great

vibration will be produced when the proper adjustments

are not made. The connection between this and the

centre of gravity will be understood by reference to the

Fig. 30.

accompanying figure (Fig. 30). In this we have an

arrangement consisting of a large cog wheel c working

into a small one B, whereby, when the handle H is turned,

a velocity of rotation can be given to the iron disk d,

which weighs 14 lbs., and is 18" in diameter. This disk

being uniform, and being attached to the axis at its

centre, it follows that its centre of gravity is also the
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centre of rotation. The wheels are attached to a stand,

which, though massive, is still unconnected with the floor.

By turning the handle I can rotate the disk very rapidly,

even as much as twelve times in a second. Still the

stand remains quite steady, and the shutter bell attached

to it at E is silent.

110. Through one of the holes in the disk, I fasten a

small iron bolt and a few washers, altogether weighing

about 1 lb. ; that is, only one-fourteenth of the weight

of the disk. "When I turn the handle very slowly, the

machine works as smoothly as before ; but as I increase

the speed up to one revolution every two seconds, the

bell begins to ring violently, and when I increase it still

more, the stand quite shakes about on the floor. What
is the reason of this ? By adding the bolt, I slightly

altered the position of the centre of gravity of the disk,

but I made no change of the axis about which the disk

rotated, and consequently the disk was not on this occa-

sion turning round its centre of gravity : this it was which

caused the vibration. It is absolutely necessary that the

centre of gravity of any heavy piece, rotating rapidly

about an axis, should lie in the axis of rotation. The

amount of vibration produced by a high velocity is quite

out of proportion to the very small size of the mass which

produces it.

111. But in order that the machine may work smoothly

again, it is not necessary to remove the bolt from the hole.

If by any means I bring back the centre of gravity to the

axis, the same end will be attained. This is very simply

effected by placing a second bolt of the same size at the

opposite side of the disk, the two being at equal distances

from the axis ; on turning the handle, the machine is seen

to work as smoothly as it did in the first instance.
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112. The most common rotating pieces in machines

are wheels of various kinds; and in these the centre of

gravity is evidently identical with the centre of rotation ;

but if from any cause a wheel, which is to turn rapidly,

has an extra weight attached to one part, this weight

must be counterpoised by one or more on other portions

of the wheel, in order to keep the centre of gravity of the

whole in its proper place. The cause of the vibration

will be understood after the lecture on centrifugal force

(Lect. XVII.)



LECTURE V.

THE FORGE OF FRTCTION.

Iutro.luctlon. — The Mods of Experimenting.

—

- The Coefficient of

Friction.—A more accurate Law of Friction.—Effect of the Extent

of the Experiments.—The Angle of Friction.—Another Law of

Friction.—Concluding Remarks.

INTRODUCTION.

113. A discussion of the force of friction is a necessary

preliminary to the study of the mechanical powers which

we shall presently commence. Friction renders the in-

quiry into the mechanical powers more difficult than it

would be if this force were absent ; but it is too im-

portant in its effects to be overlooked.

114. The nature of friction may be understood by

Fig. 31 : this represents a section of the top of a smooth

m
Br

Fio. 31.

table levelled so that c d is a horizontal line ; on this

rests a block of wood or any other material a, its

surface in contact with the table being also smooth. To a

a cord is attached, which, passing over a pulley r, is

F
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attached to another weight b. If b exceed a certain

weight, A is pulled along the table ; but if B be small,

both A and b remain at rest. What supports B when at

rest ? It is the friction between A and the table ; there

is a certain amount of coherence between the two sur-

faces which the weight of B cannot overcome. Friction

is a force, because it prevents the motion of b. It is

generally manifested as a force by destroying motion,

though sometimes indirectly producing it.

115. The true cause of the force is roughness of the

surfaces in contact, which the utmost care in polishing

cannot wholly efface. The minute asperities on one sur-

face are detained in corresponding hollows in the other,

and consequently force must be exerted to make one

surface slide upon the other. By care in polishing the

surfaces the amount of friction may be diminished, but it

can only be decreased to a certain limit, beyond which no

amount of polishing produces any perceptible difference.

116. The law of friction between smooth surfaces must,

then, be inquired into, in order that we may make allow-

ance for it when its effect is of importance. We shall find

in this inquiry that some interesting laws of nature will

appear, but the discussion of the experiments is some-

times a little difficult, and the truths arrived at are

principally numerical.

THE MODE OF EXPERIMENTING.

117. Friction is present between every pair of surfaces

which are in contact : there is friction between two pieces

of wood, and between a piece of wood and a piece of

iron ; but the amount of the force depends upon the

character of the surfaces: We shall confine ourselves to
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the friction of wood upon wood, as more will be learned

by a careful study of a special case than by a less minute

examination of a number of pairs of different substances.

118. The apparatus used is shown in Fig. 32. A
plank of pine 6' x 1 1" x 2" is planed on its upper sur-

face, levelled by a spirit-level, and firmly secured to the

framework at a height of about 4' from the ground. On
it is a pine slide 9" x 9", the grain of which is cross-

wise to that of the plank ; upon the slide the load a is

placed. A rope is attached to the slide, which passes over

a very freely mounted cast iron pulley c, 14" diameter,

and carries at the other end a hook weighing one pound,

to which weights b can be attached.

119. The mode of experimenting consists in placing a

certain load on a, and then ascertaining what weight

applied to B will draw the loaded slide along the plane.

As several trials are generally necessary to determine the

power, a rope is attached at the back of the slide, and

passes over the two pulleys D ; this makes it easy for the

experimenter, when applying the weights at b, to draw

back the slide to the end of the plane by pulling the

ring E : this rope is of course left quite slack during the

process of the experiment, since the slide must not be

retarded. The loads used at a during the series of expe-

riments ranged from one stone up to eight stone. These

weights include the weight of the slide, which is under

1 lb. A number of weights with rings were used for the

hook B ; they consisted of O'l, (J- 5, 1, 2, 7, 14 lbs. A slight

amount of friction has to be overcome in the pulley c,

but the pulley being large its friction is very small, and

can easily be allowed for on principles which will be

explained in Art. 130.

F 2
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'120. An example of the experiments tried is thus de-

scribed. A weight of 56 lbs. is placed on the slide,

and it is found on trial that 29 lbs. on B, including

the weight of the hook itself, is sufficient to starv the

slide ; the weight is placed on the hook pound by pound
care being taken to avoid a sudden jerk.
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121. These experiments were tried when the weights

on a were successively increased, and the results are

recorded in Table I.

Table I.

—

Friction.

Smooth horizontal surface of pine 72" X 11"; slide also of pine 9" X 9";

grain crosswise ; slide is not started ; force acting on slide is gradually

increased until motion commences.

Number of
Experiment.
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being generally greater in the former than in the latter,

the discordance being especially noticeable in experiment

8, where the results were 50 lbs. and 33 lbs. In the column

of mean results these irregularities do not appear so

strongly marked : this column certainly shows that the

friction increases with the weight, but it is sufficient to

observe that while the difference of 1 and 2 is 9 lbs., and

that of 2 and 3 is only 2 lbs., it is hopeless to get much

accurate information from these results.

123. But is friction so capricious that it is amenable to

no better law than these experiments appear to indicate 1

We must look a little more closely into the matter. When
two pieces of wood have remained in contact and at rest

for some time, a second force besides friction resists their

separation : the wood is compressible, the surfaces come

closely into contact, and the coherence due to this cause

must be overcome before motion commences. The initial

coherenceis uncertain ; it depends probably on a multitude

of minute circumstances which it is impossible to estimate,

and its presence has vitiated the results which we have

found so unsatisfactory.

124. These difficulties we can avoid by starting the

slide in the first instance. This may be conveniently

effected by the screw shown at F in Fig. 32 ; a string

attached to its end is fastened to the slide, and by giving

the handle of the screw a few turns the slide is set in

motion. A body once set in motion will continue to

move with the same velocity unless acted upon by a force
;

hence the weight at B just overcomes the friction when
the slide moves along uniformly after receiving a start

:

this velocity was in one case of average speed measured

to be 16" pejr minute.

125. Indeed in no case can the slide commence to
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move unless the force exceed the friction. The amount
of this excess is quite indeterminate. It is certainly

greater between wooden surfaces than between less com-

pressible surfaces like those of metals. In the latter case,

when the force exceeds the friction by a small amount,

the slide starts off with an excessively slow motion, while

with wood the force must exceed the friction by a larger

amount before the slide commences to move, but when
it does move the motion is rapid.

126. If the power be too small, the load either does not

continue moving after the start, or it stops irregularly.

If the power be too great, the load is drawn with an ac-

celerated velocity. The correct amount is easily recog-

nized by the uniformity of the movement, and even when
the slide is heavily laden, a few tenths of a pound on the

power hook make a great difference.

127. The accuracy with which the friction can be

measured may be appreciated by inspecting Table II.

Table II.

—

Friction.

Smooth horizontal surface of pine 72" X 11"
; slide also of pine 9" X 9"

;

grain crosswise ; slide started ; force applied is sufficient to maintain

uniform motion of the slide.

Number of
Experiment.
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1 28. Two series of experiments to determine the power

necessary to maintain the motion have been recorded.

Thus, in experiment 7, the load on the slide being 98 lbs.,

it was found that 26\3 lbs. was sufficient to draw the

slide along, and a second trial being made quite inde-

pendently, the power found was 26 1 lbs. : a mean of

the two values, 26 -3 lbs., is adopted as being near the

truth. The greatest difference between the two series,

amounting to 0'7 lb., is found in experiment 6 ; a third

value was therefore obtained for the friction of 84 lbs. :

this amounted to 23"5 lbs., which is intermediate be-

tween the two former results, and 23'4 lbs., a mean of the

three, is adopted as the final result.

129. The close concordance of the experiments in this

table shows that the means of the fifth column are pro-

bably very near the true values of the friction for the

corresponding loads upon the slide.

130. The mean values must, however, be slightly di-

minished before we can assert that they represent only

the friction of the wood upon the wood. The pulley

over which the rope passes turns round its axle with a

small amount of friction which must be overcome by the

power. The mode of estimating this amount, which in

these experiments never exceeds -

5 lb, may be gathered

from Art. 160, but need not be dwelt-err further. The

corrected values are shown in the third column of Table III.

Thus, for example, 4 "9 of experiment 1 consists of 4
"7,

the true friction of the wood, and 0'2, which is the fric-

tion of the pulley ; and 2 6 "3 of experiment 7 is similarly

composed of 25 -

8 and -

5. It is the corrected values

which will be employed in our subsequent calculations.
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THE COEFFICIENT OF FRICTION.

131. Having ascertained the values of the force of

friction for eight different weights, we proceed to inquire

what law may be founded on our results. It is evident

that the friction increases with the load, of which it is

always greater than a fourth, and less than a third. It

is then natural to surmise that the friction is really

a constant fraction of the load—in other words, that

F = k R, where k is a constant number.

132. To test this supposition we must try to deter-

mine k ; this may be ascertained by dividing any value

of F by the corresponding value of R. If this be done,

we shall find that each of the experiments yields a dif-

ferent quotient; the first gives .0 '336, and the last 0'262,

wdiile the other experiments give results between these

extreme values. These numbers are tolerably close to-

gether, but there is still sufficient discrepancy to show

that it is not strictly true to assert that the friction is

proportional to the load.

133. But the law as thus stated is still approximately

true, and sufficiently so for many purposes of calculation,

and the question then arises, which of the different values

of k shall we adopt ? or can we adopt any of them ? By a

method which is described in the Appendix we can deter-

mine a value for k which, while it does not represent any

one of the experiments precisely, yet represents them

collectively better than it is possible for any other value

to do. The number thus found is
-

27. It is inter-

mediate between the two values already stated as ex-

tremes. The character of this result is determined by an

inspection of Table ill.
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Table III.

—

Friction.

Friction of pine upon pine ; the mean values of the friction given in Table II.

(corrected for the friction of the pulley) compared with the formula

F = 0-27 B.

Number of
Experiment.
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of the coefficients of friction of various substances, wood,

stone, metals, &c. The use of these coefficients depends

upon the assumption of the ordinary law of friction,

namely, that the friction is proportional to the pressure

:

this law is accurate enough for most purposes, especially

when used for loads that lie between the extreme weights

employed in calculating the value of the coefficient which

is employed.

A MOEE ACCURATE LAW OF FRICTION.

136. In performing one of these experiments with care,

it is unusual to make an error amounting to more than

a few tenths of 1 lb., and it is hardly possible that any

of the mean values we have found should be in error

to so great an extent as 0'5 lb. But with the value of

the coefficient of friction which is used in Table III., the

differences amount sometimes to 0'9 lb. With any other

coefficient than that adopted, the differences would have

been greater. Now these differences are too great to be

attributed to errors of experiment, and hence we infer

that the law of friction which has been assumed is not

strictly true. The signs of the differences indicate that

this law gives values which are too small for small loads,

and for large loads are too great.

137. We are therefore led to inquire whether some

other relation between F and R may not represent the

experiments with greater fidelity than the common law

of friction. If we diminished the coefficient by a small

amount, and then added a constant quantity to the pro-

duct of the coefficient and the load, the effect of this

change would be that for small loads the calculated

values would be increased, while for large loads they
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would be diminished! This is the kind of change which

we have indicated as necessary in order to reconcile the

observed and calculated values.

138. We infer therefore that some relation of the form

F = x + y R will probably be a more correct law, and

we must find x and y. By substituting a value of R and

the corresponding value of F, one equation between x

and y is obtained, and a second equation is found by

taking another pair of corresponding values. From these

two equations values of x- and y may be deduced by the

well-known process, but the formula thus obtained will

not represent the whole series of experiments well. For

this reason the method described in the Appendix must

be used, which, founded on all the experiments together,

gives a formula representing them collectively. The

formula thus found is

F = 144 + 0-252 R.

This formula is 'compared with_ the experiments in

Table IV.

Table IV.—Friction.

Friction of pine upon pine ; the mean values of the friction given in Table II.

(corrected for the friction of the pulley) compared with the formula

F =1-44 + 0-252 B.

Number of
Experiment.

R.
Total load on
slide in lbs.

Corrected
mean value of

friction.

1
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The fourth column contains the calculated values ::

thus, for example, in experiment 4, where the load is

56 lbs. the calculated value is l
-44 + -252 x 56 =

15 -

6; the difference 0"2 between this and the observed

value 158 is shown in the last column.

139. It will be observed that the greatest difference

in this table is
-

4 lbs., and that therefore the formula

represents the experiments with considerable accuracy..-

It is undoubtedly nearer the truth than the former law

(Art. 133); in fact, the differences are now such as might

really belong to errors unavoidable in making the ex-

periments.

140. This formula may be used for calculating

the friction for am*- load between 14 lbs. and 112 lbs.

Thus, for example, if the load be 63 lbs., the friction is

1-44 -I- 0-252 x 63= 17-3 lbs., which does not differ

much from 17'0 lbs., the value found by the former law.

We must, however, be cautious not to apply this formula

to weights which do not lie between the indicated limits

:

for example, to take an extreme case, if R = 0, the for-

mula would indicate that the friction was 1
-

44, which is

evidently absurd ; here the formula errs in excess, while

if the load were extremely large it is . certain it would

err in defect.

EFFECT OF THE EXTENT OF THE EXPERIMENTS.

141. In a subsequent lecture we shall employ as an

inclined plane the plank we have been examining, and

we shall require to use the knowledge of its friction

which we are now acquiring. The weights which we

shall then employ range from 7 lbs. to 56 lbs. Now,

assuming the ordinary law of friction, we have found
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that 0"27 is the best value of its coefficient when the

loads range between 14 lbs. and 112 lbs. Suppose we

only consider loads up to 56 lbs., we find that the co-

efficient 0'288 will best represent the experiments within

this range, though for 112 lbs. it wrould give an error

of nearly 3 lbs. The results calculated by the formula

F = -288 R are shown in Table V., where the greatest

difference is 0'7 lb.

Table V.

—

Friction.

Friction of pine upon pine ; the mean values of the friction given in Table II.

(corrected for the friction of the pulley) compared with the formula

F= 0-2881?.

Number of
Experiment.
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Table VI.

—

Friction.

Friction of pine upon pine ; the mean values of the friction given in Table II.

(corrected for the friction of the pulley) compared with the formula

F = 0-9 -f 0-266 B.

Number of
Experiment.
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which divided by the length of the plane, 6', is the sine of

the inclination. The starting-screw r>, whose use has

been already mentioned, is also fastened to the frame-
work in the position shown in the figure.
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144. Suppose the slide A be weighted and placed upon

the inclined plane b c, if the end c be only slightly ele-

vated, the slide remains at rest ; the reason being that

the friction between the slide and the plane neutralizes

the force of gravity. But suppose, by means of the

pulley-block, c be gradually raised, an elevation is at last

reached at which the slide starts off, and rims with an

accelerating velocity to the bottom of the plane. The

angle of elevation of the plane when this occurs is called

the angle of friction.

145. The weights with which the slide was laden in

these experiments were 14 lbs., 56 lbs., and 112 lbs., and

the results are given in Table VII.

Table VII.

—

Angle op Friction.

A smooth plane of pine 72" X 11" carries a loaded slide of pine 9" X 9"

;

one end of the plane is gradually elevated until the slide starts off.

Number of
Experiment.
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and ascertaining if the motion would continue. This

requires the aid of an assistant who must continually

start the slide with the help of the screw, while the

elevation of the plane is being slowly increased. The

result of these experiments is given in Table VIII.

Table VIII.

—

Akqlb or Friction.

A smooth plane of pine 72" X 11" carries a loaded slide of pine 9" X 9"
;

one end of the plane is gradually elevated until the slide, having received a

start, moves off uniformly.

Number of ^Jfigg? Angle of

Experiment, j

tne
j

5™ 1- m
elevation.

1
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started is 19
0,

2, and its tangent is 0'35. The experiments

of Table I. are, as already pointed out, essentially un-

certain, but it is necessary to refer to them here in order

to show that in no sense is the coefficient of friction

exactly equal to the tangent of the angle of friction. If

we adopt the mean values given in the last column of

Table I., the best coefficient of friction which can be

deduced from them is 0"41. Whether, therefore, the

slide be started or not started, the tangent of the angle

of friction is smaller than the corresponding coefficient

of friction. When the slide is started, the tangent is

about 1 1 per cent, less than the coefficient ; and when the

slide is not started, it is about 1 4 per cent. less. There

are doubtless many cases in which these differences are

sufficiently small to be neglected, and in which, therefore,

the law may be received as true.

ANOTHER LAW OF FRICTION.

149. The area of the wooden slide is 9" x 9", but we

should have found that the friction was the same what-

ever were the area of the slide, so long as the nature

of its surface remained unaltered. This follows as a con-

sequence of the approximate law that the friction is pro-

portional to the pressure. Suppose that the weight were

100 lbs., and the area of the slide 100 inches, there

would then be a pressure of 1 lb. per square inch over

the surface of the slide, and therefore the friction to be

overcome on each square inch would be
-27 lb., or for the

whole slide 27 lbs. If, however, the slide had only an

area of 50 square inches, the load would produce a pres-

sure of 2 lbs. per square inch ; the friction would therefore

be 2 x 0"27= 0'54 lb. for each square inch, and the total

G 2
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friction would be 50 x "5 4 = 27 lbs., the same as before :

hence the total friction is independent of the extent of

surface. This would be equally true even though the

weight were not, as we have supposed, uniformly dis-

tributed over the surface of the slide.

CONCLUDING REMARKS.

150. The importance of friction in mechanics arises

from its universal presence. We often recognize it as a

destroyer or impeder of motion, as a waster of our

energy, and as a source of loss and inconvenience. But,

on the other hand, friction is often indirectly the means

of producing motion, and of this we have a splendid

example in the locomotive engine. The engine being

very heavy, the wheels are pressed closely to the rails

;

there is friction enough to prevent the wheels slipping,

consequently when the engines force the wheels to turn

round they must roll onwards. The coefficient of fric-

tion of wrought iron upon wrought iron is about 0"2.

Suppose a locomotive weigh 30 tons, and the share of

this weight borne by the driving wheels be 10 tons, the

friction between the driving wheels and the rails is 2

tons. This is the greatest force the engine can exert on

a level line. A force of 10 lbs. for every ton weight of

the train is known to be sufficient to sustain the motion,

consequently the engine we have been considering should

draw along the level a load of 448 tons.

151. But we need not to go to the steam-engine to

learn the use of friction. We could not exist without it.

In the first place we could not move about, for walking is

only possible on account of the friction between the soles

of our boots and the ground; nor if we were once in
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motion could we stop without coming into collision with

some other object, or grasping something to hold on by.

Objects could only be handled with difficulty, nails would

not remain in wood, and screws would be equally useless.

Buildings could not be erected, nay, even hills and moun-

tains would gradually disappear, and finally dry land

would be immersed beneath the level of the sea. Friction

is, so far as we are concerned, quite as essential a law of

nature as the law of gravitation. We must not seek to

evade it in our mechanical discussions because it makes

them a little more difficult. Friction obeys laws ; its

action is not vague or uncertain. When inconvenient

it can be diminished, when useful it can be increased
;

and in our lectures on the mechanical powers, to

which we now proceed, we shall have opportunities of

describing machines which have been devised in obe-

dience to its laws.



LECTURE VI.

THE PULLEY.

Introduction.—Friction between a Rope and an Iron Bar.—The Use of

the Pulley.—Large and Small Pulleys.—The Law of Friction in

the Pulley.—Wheels.—Energy.

INTRODUCTION.

152. The pulley forms a good introduction to the very

important subject of the mechanical powers. But before

entering on the discussion of the mechanical powers, it

will be necessary for us to explain what is meant in me-

chanics by " work," or " energy," as it is more appro-

priately called, and we shall therefore include a short

outline of this subject in the present lecture.

153. The pulley is a machine which is employed for

the purpose of changing the direction of a force. We
frequently wish to apply a force in a different direction

from that in which it is convenient to exert it, and the

pulley enables us to do so. We are not now speaking of

the arrangements for increasing power in which pulleys

play an important part ; these will be considered in the

next lecture : we refer only to change of direction. In

fact, as we shall presently see, a small amount of force is

lost when the single pulley is used, so that this machine

cannot be called a mechanical power.
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154. The occasions upon which a single pulley is used
are very numerous and familiar. Let us suppose a

sack of corn has to be elevated from the lower to one of

the upper stories of a building. It may of course be
raised by a man who carries it, but he has to carry

his own weight in addition to that of the sack, and
therefore the quantity of exertion used is greater

than absolutely necessary. But supposing there be a

pulley at the top of the building over which a rope

passes ; then, if a man attach one end of the rope to

the sack and pull the other, he raises the sack without

raising his own weight. The pulley has thus provided

the means by which the downward force has been changed

in direction to an upward force.

155. The weights, ropes, and pulleys which are used

in our windows for counterpoising the weight of the

sash afford a very familiar instance of how a pulley

changes the direction of a force. Here the downward
force of the weight is changed by means of the pulley -

into an upward force, which nearly counterbalances the

weight of the sash.

FRICTION BETWEEN A ROPE AND AN IRON BAR.

156. You are doubtless familiar with the ordinary

form of the pulley ; it consists of a wheel capable of

turning very freely on its axle, and it has a groove in its

circumference in which the rope lies. But why is it

necessary to give the pulley this form ? Why could not the

direction of the rope be changed by simply passing it

over a bar, as well as by the more complicated pulley ?

We shall best' answer this question by actually trying the

experiment, which we can do by means of the apparatus
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of Fig. 34 (see page 91). In this are shown two iron

studs, G, H, 0"*6 diameter, and about 8" apart; over these

passes a rope which has a hook at each end. If I suspend

a weight of 14 lbs. from one hook A, and pull the hook b,

I can by exerting sufficient force raise the weight on A,

but with this arrangement I am conscious of having to

exert a very much larger force than would have been

necessary to raise 1 4 lbs. by merely lifting it.

157. In order to study the question exactly, we shall

ascertain what weight suspended from the hook b will

suffice to raise a. I find that in order to raise 14 lbs. on

A no less than 4 7 lbs. is necessary on B, consequently

there is an enormous loss of force : more than two-thirds

of the force which is exerted is expended uselessly. If

instead of the 1 4 lbs. weight I substitute any other weight,

I find the same result, viz. that more than three times

its amount is necessary to raise it by means of the rope

passing over the studs. If the man, in raising a sack,

were to pass the rope over two bars such as these, for

every stone the sack weighed he would have to exert a

force of more than three stones, and therefore there would

be a very extravagant loss of power.

158. Whence arises this loss 1 The rope in moving

slides over the surface of the iron studs. Although these

are quite smooth and polished, yet when there is a strain

on the rope it presses closely upon them, and there is a

certain amount of force necessary to make the rope slide

along the iron. In other words, when I am trying to

raise up 14 lbs. with this contrivance, I not only have its^

weight opposed to me, but also another force due to the

sliding of the rope on the iron : this force is friction

(Lecture V.). Were it not for friction, a force of 1 4 lbs. on

one hook would exactly balance 1 4 lbs. on the other, and
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the slightest addition to either weight would make it

descend and raise the other. If, then, we are obliged to

change the direction of a force, we must devise some
means of doing so which does not require so great a

sacrifice as the arrangement with the two bars.

THE USE OF THE PULLEY.

159. We shall next inquire how it is that we are en-

abled to obviate friction by means of a pulley. It is evi-

dent we must provide an arrangement in which the rope

shall not be required to slide upon an iron surface. This

end is attained by the pulley, of which we may take i,

Fig. 34, as an example. This represents a cast iron wheel

14" in diameter, with a V-shaped groove in its circum-

ference to receive the rope : this wheel turns on a -f-inch

wrought iron axle, which is well oiled. The rope used is

about 0""25 in diameter.

1 60. From the hooks E E at each end of the rope a

1 4 lb. weight is suspended. These equal weights balance

each other. According to our former experiment with the

studs, it would be necessary for me to treble the weight

on one of these hooks in order to raise the other, but here

I find that an additional 0"5lb. placed on either hook

causes it to descend and make the other ascend. This

is a great improvement ; 0*5 lb. now accomplishes what

33 lbs. was before required for. We have avoided a great

deal of friction, but we have not got rid of it altogether,

for 025 lb. is incompetent, when added to either weight,

to make that weight descend.

161. To what is the improvement due?" When the

weight descends the rope does not slide upon the wheel,

but it causes the wheel to revolve with it, consequently
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there is little or no friction at the circumference of the

pulley ; the friction is transferred to the axle. We still

have some resistance to overcome, but for smooth oiled

iron axles the friction is very small, hence the ad-

vantage of the pulley.

There is in every pulley a small loss of power from the

necessity of bending the rope ; this need not concern us

at present, for with the very pliable plaited rope that we

have employed the effect is inappreciable, but with large

strong ropes the loss becomes of importance. The amount

of loss in different kinds of ropes has been determined

by careful experiments.

LARGE AND SMALL PULLEYS.

162. There is a considerable advantage obtained by

using large rather than small pulleys. The amount of

force necessary to overcome friction varies inversely as

the size of the pulley. We shall be able to demonstrate

this by actual experiment with the apparatus of Fig. 34.

A small pulley K is attached to the large pulley i ; they

are in fact one piece, and turn together on the same axle.

Hence if we first determine the friction with the rope

over the large pulley, and then with the rope over the

small pulley, any difference can only be due to the

difference in size, as all the other circumstances are

the same.

163. In making the experiments we must attend to

the following point. The pulleys and the socket on which

they are mounted weigh several pounds, and consequently

there is friction on the axle arising from the weight of

the pulleys, quite independently of any weights that

may be placed on the hooks. We must then, if possible,
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evade the friction of the pulley itself, so that the amount

of friction which is observed will be entirely clue to the

weights raised. This can be easily done. The rope and

hooks being on the large pulley i, I find that -16 lb.

attached to one of the hooks is sufficient to overcome the

Fig. 34.

friction of the pulley, and to make the hook E descend and

raise f. If therefore we leave 016 lb. on e, we may con-

sider the friction due to the weight of the pulley, rope,

and hooks as neutralized.

164. I now place a stone weight on each of the hooks

E and f. The amount necessary to make the hook E

and its load descend, is 0'28 lb. This does not of course

include the weight of 0'16 lb. already referred to. We see
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therefore that with the large pulley the amount of friction

to be overcome in raising one stone is 0"28 lb.

165. Let us now perform precisely the same experi-

ment with the small pulley. I transfer the same rope

and hooks to K, and I find that 0'16 lb. is not now suffi-

cient to overcome the friction of the pulley, but I add

on weights until o will just descend, which occurs when
the load reaches -95 lb. This weight is to be left on

c as a counterpoise, for the reasons already pointed out.

I place a stone weight on c and on d, and you see that

c will descend when it receives an additional load of

1'35 lbs. ; this is therefore the amount of friction to be

overcome when a stone weight is raised over the pulley K.

166. Let us compare these results with the dimensions

of the pulleys. The proper way to measure the effective

circumference of a pulley when carrying a certain rope,

is to measure the length of that rope which will just

embrace it. The length measured in this way will of

course depend to a certain extent upon the size of the

rope. I find that the circumferences of the two pulleys

are 43" - and 9
//-

5. The ratio of these is 4"5 : the corre-

sponding amounts of friction we have seen to be 0"28 lb.

and T35 lbs. The larger of these quantities is 4 8 times

the smaller. This number is very close to 4*5
; we must,

as already explained (Art. 1 36), not expect perfect accu-

racy in experiments in friction. In the present case the

agreement is within the 1-1 6th of the whole, and we may
regard it as a proof that the friction of a pulley is in-

versely proportional to the circumference of the pulley.

167. It is easy to see the reason why friction should

diminish when the size of the pulley is increased. The
friction acts at the circumference of the axle about which

the wheel turns ; it is there present as a force tending
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to retard motion. Now the larger the wheel the greater

will be the distance from the axis at which the force

acts which overcomes the friction, and therefore the less

need be the magnitude of the force. You will perhaps

understand this better after the principle of the lever has

been discussed (Art. 237).

168. We may deduce from these considerations the

practical maxim that large pulleys are economical of

power. This rule is well known to engineers ; large

pulleys should be used, not only for diminishing friction,

but also to avoid loss of power by excessive bending of

the rope. A rope is bent gradually around the circum-

ference of a large pulley with far less force than is neces-

sary to accommodate it to a smaller pulley : the rope also

is apt to become injured by excessive bending. In coal

pits the trucks laden with coal are hoisted to the surface,

or as miners say, " to bank," by means of Avire ropes

which pass from the pit over a pulley into the engine-

house : this pulley is of very large dimensions, for the

reasons we have pointed out.

THE LAW OP FEICTION IN THE PULLEY.

169. I have here a wooden pulley 3
//-
5 in diameter ; the

boss is lined with brass, and turns very freely on an iron

spindle. I place the rope and hooks upon the groove.

Brass rubbing on iron has but little friction, and when

7 lbs. is placed on each hook, 5 lb. added to either will

make it descend and raise up the other. Let 14 lbs. be

placed on each hook, 0'5 lb. is no longer sufficient ; 1 lb.

is required : hence when the weight is doubled the

friction is also doubled. Repeating the experiment with

21 lbs. and 28 lbs. on each side, the corresponding weights
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necessary to overcome friction are 1"5 lb. and 2 lb. In the

four experiments the weights used are in the proportion

1, 2, 3, 4 ; and the forces necessary to overcome frictiou,

0'5 lb., 1 lb., 1"5 lb., and 2 lb., are in the same proportion.

Hence the friction is. proportional to the load.

WHEELS.

170. The wheel is one of the most simple and effective

devices for overcoming friction. A sleigh is a very ad-

mirable vehicle on a smooth surface such as ice, but it is

totally unadapted for use on common roads ; the reason

being that the amount of friction between the sleigh and

the road is so great that to move the sleigh the horse

would have to exert a force which would be very great

compared with the load he was drawing. But a vehicle

properly mounted on wheels moves with the greatest ease

along the road, for the circumference of the wheel does

not slide, and consequently there is no friction between

the wheel and the road ; the wheel however turns on its

axle, therefore there is sliding, and consequently friction,

at the axle, but the axle and the wheel are very perfectly

fitted to each other, and the surfaces are lubricated with

oil, so that the friction is extremely small.

171. With large wheels the amount of friction on the

axle is less than with small wheels : other advantages

of large wheels are that they do not sink much into

depressions in the roads, and that they have also an in-

creased facility in surmounting the innumerable small

obstacles from which even the best road is not free.

172. When it is desired to make a pulley turn with

extremely small friction, its axle, instead of revolving in

fixed bearings, is mounted upon what are called friction
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wheels. A set of friction wheels is shown in the appa-

ratus of Fig. 66 : when the axle revolves, the friction

between the axles and the wheels causes the latter to

turn round with a comparatively slow motion ; thus all

the friction is transferred to the axles of the four friction

wheels, which, as they move in their bearings with

extreme slowness, cause the pulley to be but little

affected by friction. The amount of friction may be

understood from the following experiment. A silk cord

is placed on the pulley, and 1 lb. weight is attached to

each of its ends : these of course balance. A number of

fine wire hooks, each weighing O'OOl lb., are prepared,

and it is found that when a weight of 0"004 lb. is

attached to either side it is sufficient to overcome friction

and set the weights in motion. „

ENERGY.

173. In connection with the subject of friction, and

also as introductory to the mechanical powers, the notion

of " work," or as it is more properly called " energy," is of

great importance. The meaning of this word as employed

in mechanics will require a little consideration.

174. In ordinary language, whatever a man does that

can cause fatigue, whether of body or mind, is called

work. If the man be carrying up hods of mortar, or

breaking stones, or digging or rowing, or pushing a laden

wheelbarrow, or forging hot iron, or engaged in any

other occupation which induces bodily fatigue, he is said

to be doing work ; or if a man be engaged in any intel-

lectual occupation, such as studying or writing a book,

or making a speech, he experiences mental fatigue, and

perhaps bodily fatigue as well, and is justly said to be
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doing work. In mechanics, however, we mean by energy

the particular kind of work which is equivalent to raising

weights.

175. Suppose a weight to be on the floor and a stool

beside it : if a man raise the weight and place it upon the

stool, the exertion that he expends is energy in the sense

in which the word is used in mechanics. The amount of

exertion necessary to place the weight upon the stool de-

pends upon two things, the magnitude of the weight, and

the height of the stool. It is clear that both these things

must be taken into account, for although we know the

weight which is raised, we cannot tell the amount of

exertion that will be required until we know the height

through which it is to be raised; and if we know the

height, we cannot appreciate the quantity of exertion

until we know the weight.

176. The following plan has been adopted for expressing

quantities of energy. The small amount of exertion

necessary to raise 1 lb. avoirdupois through one British

foot is taken as a standard, compared with which all

other quantities of energy are estimated. This quantity

of exertion is called in mechanics the unit of energy,

and sometimes also the foot-pound.

177. If a weight of 1 lb. has to be raised through a

height of 2 feet, or a weight of 2 lbs. through a height

of 1 foot, it will be necessary to expend twice as much
energy as would have raised a weight of 1 lb. through

1 foot, that is 2 foot-pounds.

If a weight of 5 lbs. had to be raised from the floor up

to a stool 3 feet high, how many units of energy would

be required ? To raise 5 lbs. through 1 foot requires

5 foot-pounds, and the process must be again repeated

twice before the weight arrive at the top of the stool.
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For the whole operation 15 foot-pounds will there-

fore be necessary.

If 100 lbs, be raised through 20 feet, 100 foot-pounds

of energy is required for the first foot, the same for the

second, third, &c, up to the twentieth, making a total of

2,000 foot-pounds.

Here is a practical question for the sake of illustration.

Which would it be preferable to carry, a trunk weighing

40 lbs. to a height of 20 feet, or a trunk weighing

50 lbs. to a height of 15 feet ? We shall find how much
energy would be necessary in each case: 40 times 20 is

800 ; therefore in the first case the energy would be 800

foot-pounds. But 50 times 15 is 750 ; therefore the

amount of work, in the second case, is only 750 lbs.

Hence it is less exertion to carry 50 lbs. up 15 feet

than 40 lbs. up 20 feet.

178. Every source of energy, whether it be the muscles

of men or other animals, water-wheels, steam-engines,

or other prime movers, is to be measured by foot-

pounds.

The power of a steam-engine is spoken of as so many
horse-power. By this it is meant that a steam-engine,

for example, of 3 horse-power, could, when working for an

hour, do as much work as 3 horses could when working

for the same time ; but as the power of a horse is an

uncertain quantity, differing in different animals and

perhaps not quite uniform in one, the selection of this

measure for the efficiency of the steam-engine is incon-

venient. We replace it by a standard horse-power which

is, I believe, somewhat larger than the actual energy

of any horse. A horse-power in the steam-engine is

a power, capable of exerting 33,000 foot-pounds per

minute.

H
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179. To illustrate this by an example: if a mine be

1,000 feet deep, how much water per minute would a 50

horse-power engine be capable of raising from the bottom?

The engine would yield 50 x 33.000 units of work per

minute, but the weight has to be raised 1,000 feet, con-

sequently the number of pounds of water raised is

•

50
? ny = uu*-
1,000 ' '

.

180. We shall apply the principle of work to the con-

sideration of the pulley already described (Art. 169). In

order to raise a weight of 14 lbs., it is necessary that

the rope to which the power is applied should be pulled

downwards by a force. of 15 lbs., the extra pound being

on account of the friction. To fix our ideas, we shall

suppose the 14 lbs. to be raised 1 foot ; to lift this load

directly, without the intervention of the pulley, 14 foot-

pounds would be necessary, but when it is raised by

means of the pulley, 15 foot-pounds are necessary.

Hence there is an absolute loss of 1 foot-pound of energy

when the pulley is used. If a steam-engine of one

horse-power were employed in raising weights by a rope

passing over a pulley similar to that on which we have

experimented, only irths of the work would be employed,

but

33,000 X l^ = 30,800.
15

The engine would therefore usefully perform 30,800 foot-

pounds per minute.

181. The effect of friction on a pulley, or on any other

machine, is always to waste energy, To perform a

piece of work directly requires a certain number of

foot-pounds, while to do it by the machine requires more,

on account of loss by friction. This may at first sight
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appear somewhat paradoxical, as it is well known that

by levers, pulleys, &c., an enormous mechanical advan-

tage may be gained. This subject will be fully explained

in the next and following lectures, which relate to the

mechanical powers.

IS 2. We shall conclude with a few observations on

a point of the greatest importance. We have seen a

case where 15 foot-pounds of energy only accomplished

1 4 foot-pounds of work, and thus 1 foot-pound appeared to

be lost. We say that this was expended upon the fric-

tion ; but what is the friction ? The axle is gradually

worn away by rubbing in its bearings, and, if it be not

properly oiled, it becomes heated. The unit of energy that

is lost to us usefully is expended in grinding down the

axle, and it may be in heating it; the energy is not

lost, but produces its effect in a way we do not want,

and is rather injurious than otherwise. We know that

energy cannot be lost, however it may be transformed
;

if it disappear in one shape, it is only to reappear in

another. A loss by friction merely means a transference of

work to some other object rather than that which we
wish to accomplish. It has long been known that

matter is indestructible : it is equally certain that energy

is indestructible.

h 2



LECTURE VII.

TEE PULLET-BLOCK.

Introduction. — The Single Moveable Pulley. •— The Three-sheave

Pulley-block—The Differential Pulley-block.—The Epicycloidal

Pulley-block.

INTRODUCTION".

183. In the first lecture I showed how a large weight

could be raised by a smaller weight (Art. 21), and I

stated that this subject would again occupy our atten-

tion during the course. I now commence to fulfil

this promise. The question to be discussed is this" how
can we by means of a small force overcome a greater

force ? This is a subject of practical importance. A man
of average strength is not able to raise more than 1 cwt.

without great exertion, yet the weights which it is

necessary to move about often weigh many hundred-

weights, or even tons. It is not always practicable

to employ numerous hands for the purpose, nor is a

steam-engine or other great source of power at all times

available. But what are called the mechanical powers

enable the forces at our disposal to be greatly increased.

One man, by their aid, can exert as much force as several

could without such assistance ; and when they are em-

ployed to augment the power of several men or of a

steam-engine, gigantic weights amounting to sixty tons

or more can be managed with facility.
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184. In the various arts we find innumerable cases

where great resistances have to be overcome ; we also

find a corresponding number and variety of devices con-

trived by human skill to conquer them. The girders

of an iron bridge have to be adjusted upon their piers

;

the boilers and engines of an ocean steamer Lave to be

placed in position ; a great casting has to be lifted from

its mould ; a railway locomotive has to be placed on

the deck of a vessel for transit ; a weighty anchor has

to be lifted from the bottom of the sea ; an iron plate

has to be rolled or cut or punched : for all of these cases

suitable arrangements must be devised in order that the

requisite power may be obtained.

185. We are ignorant of the means which the ancients

employed in raising the vast stones of those buildings

which travellers in the East have described to us. It is

sometimes thought that by a large number of men these

stones could have been transported without the aid of

appliances which we would now use for a similar ptirpose.

But it is more likely that some of the mechanical powers

were used, as, with a multitude of men, it is difficult to

ensure the proper application of their united strength. In

Easter Island, hundreds of miles distant from civilized

land, and now inhabited by savages, vast idols of stone

have been found in the hills, which must have been raised

by human labour. It^is curious to speculate on the

extinct race by who'm this work was achieved, and on

the means which they must have employed.

186. The mechanical powers are usually enumerated

as follows :—The pulley, the lever, the wheel and axle,

the wedge, the inclined plane, the screw. These different

powers are so frequently used in combination that the

distinctions cannot be always maintained. The classifica-
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tion will, however, suffice to give a general notion of the

subject at the commencement.

187. Many of the most valuable mechanical powers

are machines in which cords or chains play an important

part. Pulleys are employed wherever it is necessary to

change the direction of a cord which is transmitting power.

In the present lecture we shall examine into the most

important mechanical powers that are produced by the

combination of a rope with pulleys.

THE SINGLE MOVEABLE PULLEY.

188. We commence with the most simple case, that of

the single moveable pulley (Fig. 35). The rope is firmly

secured at one end A ; it then passes down under the

moveable pulley B, and upwards over a fixed pulley. To

the free end c, which depends from the fixed pulley,

the power c is applied while the load D to be raised is

suspended from the moveable pulley. - We shall first

study the relation between the power and the load in a

simple way, and then we shall describe the more careful

and exact experiments.

189. When the load is raised the moveable pulley B

must of course be raised up with it, and part of the

power is expended for this purpose. But we can get rid

of the weight of B by first attaching to the power end

of the rope a weight just sufficient in itself to lift up
the moveable pulley when not carrying a load. The

weight necessary for doing this is easily found by trial to

be a: little over l
-

5lbs, weight. This is to be permanently

attached to the power rope, and also a hook for the

reception of the power weights.

190. Let us suspend 14 lbs. from the load hook, and
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ascertain what power will raise the load. We leave the

weight of the pulley and l
-

5 lbs. at c out of considera-

tion, since they mutually destroy. I find by experiment

that 7 lbs. on the power hook is not sufficient to raise the

load, but if one pound be added, the power descends, and

the load is raised. Here, then, is a remarkable result ; a

Fig. 35.

weight of 8 lbs. has overcome 14 lbs. In this we have

the first application of the mechanical powers to increase

our available forces.

191. We shall examine the reason of this mechanical

advantage. If the load be raised one foot, the power

must descend two feet : this is apparent, for in order

to raise the load the two parts of the rope descending
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from A and c to B must each be shortened one foot,

and this can only be done by the power descending two

feet. Hence when the load of 14 lbs. is placed on the

load hook, for every foot it is raised the power must

descend two feet: this, though a simple point, is one of

the greatest importance, as upon it the action depends.

In all the mechanical powers it is essential to examine

into the number of feet through which the power must

act in order to raise the load one foot : this number

we shall always call the velocity ratio.

192. To raise 14 lbs. through one foot requires 14 foot-

pounds. Hence, were there no such thing as friction,

7 lbs. on the power hook would be sufficient to raise the

load ; because 7 lbs. descending through two feet yields

14 foot-pounds. But there is a loss of energy on

account of friction, and a power of 7 lbs. is not suffi-

cient : 8 lbs. are necessary. 8 lbs. in descending two feet

performs 16 foot-pounds ; of these only 14 are utilized on

the load, the remainder being the quantity of energy that

has been absorbed by friction. We learn, then, that in

the moveable pulley the quantity of energy employed is

really greater than that which would lift the weight

directly, but that the actual power which has to be

exerted is less.

193. Suppose that 28 lbs. be placed on the load hook,

a few trials assure us that a power of 16 lbs. (but not

less) will be sufficient to raise it; that is to say, when
the load is doubled, we find, as we might have ex-

pected, that the power must be doubled also. It is

easily seen that the loss of energy by friction amounts

to 4 foot-pounds. We thus verify, in the case of the

moveable pulley, the remarkable law of friction already

referred to as approximately true (Art. 135).
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194. By means of a moveable pulley a man is able to

raise a weight nearly double as great as he could lift

directly. By experiments carefully made, it has been

found that when a man is employed in the particular

exertion necessary for raising weights over a pulley, he

is able to work most efficiently when the pull he is

required to make is about 40 lbs. A man could, of

course, exert greater power than this, but in an ordinary

day's work it is found that he is able to perform more foot-

pounds when the pull is 40 lbs. than when it is larger or

smaller. If therefore the weights to be lifted amount

to about 80 lbs., energy may be economized by the use of

the single moveable pulley, although by so doing a greater

quantity of energy would be actually expended than

would have been necessary to raise the weights directly.

195. Some experiments on larger weights, made with

care, have been tried with the moveable pulley we have

just described ; their results are recorded in Table IX.

Table IX.

—

Single Moveable Pulley.

Moveable pulley of cast iron 3" -25 diameter, groove 0"'6 wide, wrought iron

axle 0"'6 diameter ; fixed pulley of cast iron 5" diameter, groove 0"'4 wide,

wrought iron" axle 0"'6 diameter, axles oiled ; flexible plaited rope 0" -25

diameter; velocity ratio 2, mechanical efficiency 1'8, useful effect 90 per

cent. ; formula P = 2'21 + 05453 B.

Number of
Experiment.
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The dimensions of the pulley are stated in the table

because, for pulleys of different construction, the results

would not necessarily be the same. An attentive study

of this table will, however, show the general character

of the relation existing between the power and the

resistance in all the arrangements of this class.

The table consists of -five columns. The first contains

merely the numbers of the experiments for convenience of

reference. In the second column, headed R, the weights,

expressed in pounds, which are raised in each experiment,

are given ; that is, the weight attached to the hook,

not including the weight of the lower pulley. The

weight of this pulley is not counterpoised in these ex-

periments. In the third column the weights are re-

corded, which were found to be of sufficient power to raise

the corresponding weights in the second column. Thus,

in experiment 7, a weight of 198 lbs. being attached to

the. moveable pulley, it is found that 110 5 lbs. applied as

a power will be sufficient to raise it. The third column

has been determined by actual trial in- the manner

described in Art. 190.

196. By an examination of the columns of the power

and the load, we see that the power always amounts to

more than half the load. The excess is partly due to a

small portion of the power (about l
-

5lbs.) being em-

ployed in raising the lower block, and partly to friction.

For example, in experiment 7, if there had been no

friction and if the lower block were without weight, a

power of 99 lbs. would have been sufficient; but, owing

to the presence of these disturbing causes, 110"5 lbs. are

necessary : of this amount 1 "5 lbs. is due to the weight

of the pulley, 10 lbs. is the force of friction, and the

remaining 99 lbs. raises the load.
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197. By a careful examination of this table we can

ascertain a certain relation between the power and the

load ; it is found that they are connected together by a

tule, which may be enunciated as follows.

The power is found by multiplying the weight of the

load by 05453, and adding 22 to the product Calling

P the power, andR the load, we may express the relation

thus:P=2-21 + 0-5453i2. For example, in experiment 5

,

the product of 142 and 0'5453 is 77*43, and to which,

when 221 is added, we find for P 79"64, very nearly the

same as 80 lbs., the observed value of the power.

In the fourth column the values of P calculated by

means of this rule are given, and in the last column we
find the difference between the observed and the calculated

values shown for the sake of comparison. It will be

seen that the difference in no case amounts to 0"5 lb.,

consequently the rule expresses the experiments very well.

The mode of deducing this rule from the experiments is

given in the Appendix.

198. The quantity 2 -21 is partly that portion of the

power due to the weight of the moveable pulley, and partly

due to friction.

199. "We can readily ascertain from the rule how much

power is necessary to raise a given weight ; for example,

suppose 200 lbs. be attached to the moveable pulley, we

find that 111 lbs. must be applied as the power. But in

order to raise 200 lbs. one foot, the power exerted must

act over two feet ; hence the number of foot-pounds re-

quired is 2 x 1 1 1 = 222. The quantity of energy that is

lost is 22 foot-pounds. Out of every 222 foot-pounds

applied, 200 are usefully employed ; that is to say, about

90 per cent, of the applied energy is utilized, while the

remaining 10 per cent. i3 lost.
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THE THREE-SHEAVE PULLEY-BLOCK;.

200. The next arrangement we shall employ is a pair

of pulley-blocks s T, Fig. 35, each containing three sheaves,

as the small wheels are termed. A rope is fastened to

the upper block, s ; it then passes down to the lower block

t under one sheave, up again to the upper block and over

a sheave, and so on, as shown in the figure. To the

end of the rope from the last of the upper sheaves the

power H is applied, and the load a is suspended from the

hook attached to the lower block. When the rope is

pulled, it gradually raises the lower block ; and to raise

the load one foot, each of the six parts of the rope from

the upper block to the lower block must be shortened one

foot, and therefore the power must have pulled out six

feet of rope. Hence for every foot that the load is raised

the power must have acted through six feet ; that is to

say, the velocity ratio is 6.

201. If there were no friction, the power would only

be one-sixth of the load. This follows at once from the

principles already explained. Suppose the load be 60 lbs.,

then to raise it one foot would require 60 foot-pounds,

and the power must therefore exert 60 foot-pounds; but

the power moves over six feet, therefore a power of 10 lbs.

would be sufficient. Owing, however, to friction, some

energy is lost, and we must have recourse to experiment

in order to test the real efficiency of the machine. The

single moveable pulley nearly doubled our power ; we
shall prove that the three-sheave pulley-block will quad-

ruple it. In this case we deal with large weights of 1 cwt.

and 2 cwt., so with reference to them we may leave the

weight of the lower block out of consideration.
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202. Let us first attach 1 cwt. to the. load hook; we
find that 29 lbs. placed on the power hook is the smallest

weight that will raise it : this is almost exactly one-

quarter of the load ; 28 lbs. would be precisely so. If 2 cwt.

be placed on the hook, we find that 56 lbs. will just

raise it : this time it is exactly one-quarter. The experi-

ment has been tried of placing 4 cwt. on the hook ; it is

then found that 109 lbs. will raise it, which is only 3 lbs.

short of 1 cwt. These experiments demonstrate that

for a three-sheave pulley-block of this construction we
may safely apply the rule, that the power is one-

quarter of the load.

203. We are thus- enabled to see how much of our

exertion in raising weights must be expended in merely

overcoming friction, and how much may be utilized. Sup-

pose for example that we have a weight of 100 lbs. to raise

one foot by means of the pulley-block ; the power we must

apply is 25 lbs., and six feet of rope must be drawn out

from between the pulleys : therefore the power exerts

150 foot-pounds of energy. Of these only 100 foot-pounds

are usefully employed, and thus 50 foot-pounds, one-third

of the whole, have been expended on friction. Here we

see what occurs in all the mechanical powers, that not-

withstanding a small force overcomes a large one, there is

an actual loss of energy in the machine. The real advan-

tage consists in this, that by the pulley-block I can

raise a greater weight than I could move without

assistance, but I do not create energy ; I merely modify

it, and Ipse by the process.

204. The result of a series of experiments made with

this j>air f pulley-blocks is given in Table X.
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Table X.—Three-Sheave Pullet-blocks.

Sheaves cast iron 2"'5 diameter
;

plaited rope 0" -25 diameter ; velocity

' ratio 6 ; mechanical advantage 4 ; useful effect 67 per cent. ; formula

P = 2-36 + 0-238 B.

Number of
Experiment.
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fifth column, the differences between the observed and the

calculated values of the powers are given, and it will be

seen that the difference in no case reaches 1 lb.

208. I will next perform an experiment with the

three-sheave pulley-block, which will give us an insight

into the exact amount of friction without calculation

by the help of the velocity ratio. We can first counter-

poise the weight of the lower block by attaching weights

to the power. It is found that about l
-

6 lbs. is sufficient

for this purpose. I attach a 56 lb, weight as a load, and

find that 13 "J. lbs. is sufficient power to raise it. This

amount is partly composed of the force necessary to

raise the load if there were no friction, and the rest is

due to the friction. I next remove the power weights

;

when I have taken off a pound, you see the power and

the resistance balance each other ; but when I reduce the

power to 5'5 lbs. (not including the counterpoise), the

load is sufficient to overhaul the power, and raise it.

We have therefore proved that a power of 13 'libs, or

greater raises 56 lbs., that any power between 13 "libs,

and 55 lbs. balances 56 lbs., and that any power less

than 5 '5 lbs. is raised by 56 lbs.

When the power is raised, the force of friction, to-

gether with the power, must be overcome by the load.

Let us call X the real power that would be necessary to

balance 56 lbs. in a perfectly frictionless machine, and Y
the force of friction. We shall be able to determine X
and Y by the experiments just performed. When the

load is raised a power equal to X + Y must be applied,

and therefore X + Y = 13"1. On the other hand,

when the poster-is raised, the force X is just sufficient to

overcome both the friction Y and the weight 5 '5; there-

fore X = Y + 5-5.
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Solving this pair of equations, we find that X= 9 "3 and

Y = 3
-

8. Hence we infer that the power in the fric-

tionless machine would be 9 "3
; but this is exactly what

would have been deduced from the velocity ratio, for

56 h- 6 = 9'3 lbs. In this result we find a perfect ac-

cordance between theory and experiment.

THE DIFFERENTIAL PULLEY-BLOCK.

209. By increasing the number of sheaves in a pair of

pulley-blocks the power may be increased ; but the length

of rope (or chain) requisite for several sheaves becomes a

practical inconvenience. There are also other reasons

which make the differential pulley-block, which we shall

now consider, more convenient for many purposes than the

common pulley-blocks when a considerable augmentation

of power is required.

210. The principle of the differential pulley is very

ancient, but it is only recently that it has been embodied

in a machine of practical utility. In designing any

mechanical power the object to be aimed at is this, that

while the power moves over a considerable distance, the

load shall only be raised a short distance. When this

object is attained, we then know by the principle of

energy that we have gained an increase of power.

211. Let us consider the means by which this is

effected in that ingenious contrivance, Weston's differen-

tial pulley-block. The principle of this machine will be

understood from Fig. 36 and Fig. 37.

It consists of three parts,—an upper pulley-block, a

moveable pulley, and an endless chain. We sball briefly

describe them. The upper block p is furnished with a

hook for attachment to a support. The sheave it con-
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Fig. 3B.

tains resembles two sheaves, one a little smaller than the

other, fastened together : they are in fact one piece. The

grooves are furnished with ridges, which prevent the

chain from slipping round

them. The lower pulley Q con-

sists of one sheave, which is

also furnished with a groove ;

it carries a hook, to which

the load is attached. The

endless chain performs a part

that will be understood by

the arrow-heads attached to

it in the figure. The chain

passes from the hand at A up

to. l over the larger groove in

the upper pulley, then down-

wards at B, under the lower

pulley, up again at c, over the smaller groove in the

-upper pulley at a, and then back again by d to the hand

at A. When the hand pulls the chain downwards, the two

grooves of the upper pulley begin to turn together in

the direction shown by the arrows on the chain. The

large groove is therefore winding up the chain, while the

smaller groove is lowering.

212. In the pulley which has been employed in the

experiments to be described, the effective circumference

of the large groove is found to be ll"
-

84, while that of

the small groove is 10" "3 6. When the upper pulley has

made one revolution, the large groove must have drawn

up ll"
-84 of chain, since the chain cannot slip on account

of the ridges ; but in the same time the small groove has

lowered 10" -36 of chain: hence when the upper pulley

has revolved once, the chain between the two must have

T
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been shortened by the difference between 11""84 and

10"'36, that is by l"-48, but this can only have taken

place by raising the moveable pulley through half l""48,

that is through a space 0"74. The power has then acted

through ll" -

84, and has raised the resistance 0""74. The

power has therefore moved through a space 16 times

greater than that through which the load moves. In

fact, it is very easy to verify by actual trial that the

power must be moved through 1 6 feet in order that the

load may be raised 1 foot. We express this by saying

that the velocity ratio is 16.

213. By applying power to the chain at D proceeding

fromthe smaller groove, the chain is lowered

by the large groove faster than it is raised

by the small one, and the lower pulley

descends. The load is thus raised or

lowered with great facility by simply

pulling one chain A or the other d.

214. We shall next consider the me-

chanical efficiency of the differential

pulley-block. The block (Fig. 37) which

we shall use is intended to be worked by

one man, and will raise any weight not

exceeding a quarter of a ton.

We have already learned that for the

load to be raised one foot the power

must act through sixteen feet. Hence,

were it not for friction, we should infer

that the power need only be the sixteenth

part- of the load. A few trials will show

us that the real efficiency is not so

large, and that in fact more than half the

power exerted is merely expended uponFig. 37.
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overcoming friction, This will lead afterwards to a

result of considerable practical importance.

215. Placingupon the load-hook a weight of 200 lbs.,,

I find that 38 lbs. attached to a hook fastened on the

power-chain is sufficient to raise the load ; that is to say,

the power is about one-sixth of the load. If I make the

load 400 lbs. I find the requisite power to be 64 lbs.,

which is only about 3 lbs. less than one sixth of 400 lbs.

We may safely adopt the practical rule, that with a

differential pulley-block of this class a man would be

able to raise a weight six times greater than he could

raise without such assistance.

216. A series of experiments carefully tried with dif-

ferent loads have given the results shown in Table XI.

Table XI.

—

The Differential Pullet-block.

Circumference of large groove ll'
,-

84, of small groove 10"'36
; velocity ratio

16 ; mechanical efficiency 6'07 ; useful effect 38 per cent. ; formula

P = 3-87 + 0-1508 R.

Number of
Experiment.
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observed values of the corresponding powers. From

these the following rule for finding the power has been

obtained :

—

217. To find the power, multiply the load by 0-1508,

and add 3
-87 lbs. to the product; this rule may be

expressed by the formula P— 3-87 + 0-1508 B. (See

Appendix.)

218. The calculated values of the powers are given in

the fourth column, and the differences between the

observed and calculated values in the last column.

The differences do not in any case amount to 2'5 lbs., and

considering the size of the loads raised (up to a quarter

of a ton), the formula represents the experiments with

satisfactory precision.

219. Suppose for example 280 lbs. is to be raised; the

product of 280 and 0-1508 is 42'22, to which, when 3"87

is added, we find 46 '09 to be the requisite power. The

mechanical efficiency found by dividing 46 "09 into 280

is 6-07.

220. To raise 280 lbs. one foot 280 foot-pounds of

energy would be necessary, but in the differential pulley-

block 46 -09 lbs. must be exerted for a distance of 1 6 feet in

order to accomplish this object. The product of 46 "09 and

16 is 73
7
"4. Hence the differential pulley-block requires

737"4 foot-pounds of energy to be applied to it in order

to produce 280 foot-pounds ; but 280 is only 38 per cent,

of 734-4, and therefore with a load of 280 lbs. only 38

per cent, of the energy applied to a differential pulley-

block is utilized. In general, we may state that not more

than about 40 per cent, is profitably used, and that the

remainder is employed in overcoming friction.

221. It is a very remarkable and useful property of

the differential pulley, that a weight which has been
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hoisted by it will remain suspended without any ten-

dency to run down : this is a source of great practical

convenience. In the pulleys we have previously con-

sidered this property does not exist. The weight raised by

the three-sheave pulley-block, for example, will run down

unless the free end of the rope be properly secured. The

difference in this respect between these two mechanical

powers is not a consequence of any special mechanism

;

it is simply caused by the excessive friction in the dif-

ferential pulley-block.

222. The,reason why the, load does not run down in the

differential pulley may be thus explained. Let us suppose

that a weight of 400 lbs. is to be raised one foot by the

differential pulley-block ; 400 units of work are necessary,

and therefore 1,000 units of work must be applied to the

power chain to produce the 400 units (since only 40 per

cent, is utilized)- The friction will thus have consumed

600 units of work when the load has been raised one

foot. If the power-weight be removed, the pressure

supported by the upper pulley-block is diminished. In

fact, since the power-weight is about £th of the load, the-

pressure on the axle when the power-weight has been

removed is only.fths of its previous value. The friction

is .produced, by the pressure of the pulleys on their

axles,- and is nearly proportional to that pressure : hence

when the power has been removed the friction on the

upper axle is fths of its previous value, while the

friction on the lower pulley remains unaltered.

We may therefore assume that the total friction is s^

least jlths of what it was before the power-weight was

removed. Will friction allow the load to descend? 600

foot-pounds of work were required to overcome the friction

in the ascent: at least 'x 600 = 514 foot-pounds would
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be necessary to overcome friction in the descent. But

where is this energy to come from ? The load in its

descent could only yield 400 units, and thus descent by

the mere weight of the load is impossible. To enable

the load to descend we have actually to aid the move-

ment by pulling the chain D (Figs. 36 and 37), which

proceeds from the small groove in the upper pulley.

223. The principle which we have here established

extends to other mechanical powers, and may be stated

generally. Whenever rather more than half of the

applied energy is uselessly consumed by friction, the

load will remain suspended without overhauling.

THE EPIOYULOIDAL PULLEY-BLOCK.

224. We shall conclude this lecture with some experi-

ments upon a mechanical power which has been recently

introduced by Mr. Eade under the name of the epi-

cycloidal pulley-block. It is shown in Fig. 49, and

also in Fig. 33. In this machine there are two chains :

one a slight endless chain to which the power is applied ;

the other a stout chain which has a hook at each end, from

either of which the load may be suspended. Each of these

chains passes over a sheave in the block: these -sheaves

are connected by an ingenious piece of mechanism which

we cannot describe here. This mechanism is so contrived

that, when the power causes the sheave to revolve over

which the slight chain passes, the sheave which carries

the large chain is also made to revolve, but very slowly.

225. By actual trial it is ascertained that the power

must be exerted through twelve feet and a half in order

to raise the load one foot ; the velocity ratio of the

machine is therefore 12 "5.
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226. The mechanical efficiency of the machine would,

if it were frictionless, be of course equal to its velocity

ratio; owing to the friction the mechanical efficiency is

less than the velocity ratio, and it will therefore be neces-

sary to make experiments. I attach to the load-hook a

weight of 280 lbs., and insert a few small hooks into the

links of the chain in order to receive weightspower v

56 lbs. is sufficient to produce motion, hence the mechani-

cal efficiency is 5. Had there been no friction a power of

.")(! lbs. would have been capable of overcoming a load of

12 - 5 x 56= 700 lbs. Thus 700 units of energy must be

applied to the machine in order to perform 280 units of

work. In other words, only 40 per cent, of the applied

energy is utilized.

227. An extended series of experiments upon the

epicycloidal pulley-block is recorded in Table XII.

Table XII.—The Epicycloidal Pulley-block.

Size adapted for lifting weights up to 5 cwt. ; velocity ratio 12'5
; mechanical

efficiency 5 ; useful effect 40 per cent. ; formula P = 5 8 + - 185 B.

Number of
Experiment.

1

2

3

4

5

(5

7

8

9

10

R.
Load in lbs.
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last column that the formula represents the experiments

with but little error.

228. Since 60 per cent, of energy is consumed by

friction, this machine, like the differential- pulley-block,

sustains its load when the chains are free. The differ-

ential pulley-block gives a mechanical efficiency of 6,

while the epicycloidal pulley-block has only a mechanical

efficiency of 5, and so far the former machine has the

advantage ; on the other hand, that the epicycloidal

pulley contains but one block, and that its lifting chain

has two hooks, are practical conveniences strongly in its

favour.



LECTURE VIII.

THE LEVER.

The Lever of the First Order.—The Lever of the Second Order.

—

The Shears.—The Lever of the Third Order.

THE LEVER OF THE FIRST ORDER.

229. There are many cases in which a machine for

increasing power is necessary where pulleys would be

quite inapplicable. To meet these various demands a

correspondingly various number of mechanical powers

has been devised. Amongst these the lever in several

different forms holds an important place.

230. The lever of the first order will be understood by

reference to Fig. 38. It consists of a straight rod mn, to

one end of which the power is applied by means of the

•

vweight c. At another point B the load is raised, while at

a the rod is supported by what is called the fulcrum.

In the case represented in the figure the rod is of iron,

1" x \" in section and 6' long ; it Aveighs 19 lbs. The

power is a 56 lb. weight : the fulcrum consists of a

moderately sharp steel edge firmly secured to the frame-

work. The load in this case is not a weight but a spring

balance H, and the hook of the balance is attached to the

frame. The 'spring is strained by the power of the lever,

and the index records the magnitude of the strain pro-
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cluced by the power. This is the lever with which we

shall commence our experiments.

231. In examining the relation between the power and

the load, the question is a little complicated by the

weight of the lever itself (19 lbs.), but we shall be able to

Fir.. 38

evade the difficulty by means similar to those employed

on a foimer occasion (Art. 60) ; we can counterpoise the

weight of the iron bar. This is easily done by attaching

a rope to the middle of the bar at d, carrying this rope

over a pulley f, and suspending a weight G of 19 lbs. from
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its free extremity. The bar is balanced, and we may
leave its weight out of consideration.

232. We might also adopt another plan analogous to

that of Art. 51, which is not, however, so convenient.

The weight of the bar produces a certain strain upon the

spring balance. I may first read off the strain produced

by the bar alone, and then apply the weight c and read

again. The observed strain is due both to the weight

c and to the weight of the bar. If I subtract the known
effect of the bar, the remainder is the effect of c. It is,

however, less complicated to counterpoise the bar, and
then the strains indicated by the balance are entirely

due to the power.

233. The lever is 6' long ; the point B is 6" from

the end, and b c is 5' long, b c is divided into 5 equal

portions of V ; a is at one of these divisions, 1' distant

from b, and c is 5' distant from b in the figure ; but c

is capable of being placed at any position, by simply

.sliding its ring along the bar.

234. The mode of experimenting is as follows :—The

weight is placed on the bar at the position c ; a strain

is immediately produced upon H ; the spring stretches a

little, and the bar becomes inclined. It may be noticed

that the hook of the spring balance passes through the

eye of a wire-strainer, so that by a turn or two of the

nut upon the strainer the lever can be restored to the

horizontal position.

235. The power of 56 lbs. being 4' from the fulcrum,

while the load is 1' from the fulcrum, it is found that

the strain indicated by the balance is 224 lbs. ; that is,

four times the amount of the power. If the weight be

moved, so as to be 3' from the fulcrum, the strain is

observed to be 1G8 lbs. ; and whatever be the. distance of
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the power from the fulcrum, we find that the strain

produced is obtained by multiplying the magnitude of

the power in pounds by the distance expressed in feet,

and it may be fractional parts of a foot. This law

may be expressed more generally by stating that the

power is to the load as the distance of the load from

the fulcrum is to the distance of the power from

the fulcrum.

236. We can verify this law under varied circum-

stances. I move the steel edge which forms the fulcrum

of the lever until the edge is 2' from b, and secure it in

that position. I place the weight c at a distance of 3'

from the fulcrum. I now find that the strain on the

balance is 84 lbs. ; but 84 is to 56 as 3 is to 2, and

therefore the law is also verified in this instance.

237. There is another aspect in which we may ex-

press the relation between the ' power and the . load.

The law in this form is thus stated :
" The power multi-

plied by its distance from the fulcrum is equal to the

product of the load and its distance from the fulcrum."

Thus, in the case we have just considered, the product

of 56 and 3 is 168, and this is equal to the product of

84 and 2. This simple law gives a very convenient

method of calculating the load, when we know the power

and the distances of the power and the load from the

fulcrum. These distances are commonly called the arms

of the lever, and the rule is expressed more concisely

by stating that " The power multiplied into its arm is

equal to the load multiplied into its arm : " hence the

load may be found by dividing the product of the power

and the power arm by the load arm.

238. When the power arm is longer than the load

arm, the load is greater than the power ; but when the
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power arm is shorter than the load arm, the power is

greater than the load.

"We may regard the strain on the balance as a power

which supports the weight, just as we regard the weight

to be a power producing the strain on the balance. We
see, then, that for the lever of the first order to be efficient

as a mechanical power it is necessary that the power

arm be longer than the load arm.

239. The lever is an extremely simple mechanical

power ; it has only one moving part. Friction produces

but little effect upon it, so that the laws which we have

given may be actually applied in practice, without

making any allowance for friction. In this we notice

a very marked difference between the lever and the

pulley-blocks already described.

240. In the lever of the first order we find an excel-

lent machine for augmenting power. The pressure of

14 lbs. by means of this lever can produce a strain of

1 cwt., if tjje power be eight times as far from the

fulcrum as the load is from the fulcrum. This principle

it is which gives utility to the crowbar. The extremity

of -the bar is placed under a heavy stone, which it is

required to raise ; a support near that end serves as a

fulcrum, and then a comparatively small force exerted

at the power end will suffice to elevate the stone.

241. The applications of the lever are innumerable.

It is used not only for increasing power, but for modi-

fying and transforming it in various ways. The lever is

also used in weighing-machines, the principles of which

will be readily understood, for they are consequences of

the law we have explained. Into these various appliances

it is not our intention to enter at present ; the great

majority of them may, when met with, be easily under-
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stood by any who are familiar with the principle we

have laid down.

THE LEVEB OF THE SECOND OBDEB.

242. In the lever of the second order, the power is at

one end, the fulcrum at the other end, and the load lies

between the two : this lever therefore differs from the lever

of the first order, in which the fulcrum lies between the

two forces. The relation between the power and the load

in the lever of the second order may be studied by the

arrangement in Fig. 39.

243. The bar AC is a rod of iron 72" x I" x 1", as

before mentioned. The fulcrum a is a steel edge on which

the bar rests; the power consists of a spring balance H, in

the hook of which the end c of the bar rests ; the spring

balance is sustained by a wire-strainer, by turning the

nut of which the bar may be adjusted horizontally. The

part of the bar between the fulcrum A ancL the power c

is divided into five portions, each 1' long, and the points

A and c are each 6" distant from the extremities of the

bar. The load employed is 56 lbs. ; through the ring of

this weight the bar passes, and thus the bar supports the

load. The bar is counterpoised by the weight of 1 9 lbs.

at G, in the manner already explained (Art. 231).

244. The mode of experimenting is as follows ;—Let

the weight B be placed 1' from the fulcrum ; the strain

shown by the spring balance is about 1 1 lbs. If we
calculate the value of the power by the rule already

given, we should have found it to be almost the same.

The product of the load by its distance from the fulcrum

is 56, the distance of the power from the fulcrum is a
;

hence the value of the power should be .56 h- .5 = 112.
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245. If the weight be placed 2' from the fulcrum, the
strain is about 22 o lbs., and it is easy to ascertain 'that
this is the same amount as would have been found by
the application of the rule. A similar result would have
been obtained if the 56 lb. weight had been placed upon

Fig. 39.

any other part of the bar ; and hence we may regard the
rule (Art. 237) proved for the lever of the second order
as well as for the lever of the first order. In the present
case, the load is uniformly 56 lbs., while the power by
which it is sustained is always less than 56 lbs.
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246. The lever of the second order, like that of the

first order, is frequently applied to practical purposes

;

one of the most instructive of these applications is illus-

trated in the shears shown in Fig. 40.

These shears consist of two levers of the second order,

which by their united action enable a man to exert a

very large force, sufficient, for example, to cut with ease

a rod of iron 0"'25 square. The mode of action is simple.

Fig. 40.

The first lever A F has a handle at one end f, which is

22" distant from the other end A, where the fulcrum is

placed. At a point b on this lever, l
//-
8 distant from the

fulcrum A, a short link B c is attached ; the end of the

link c is jointed to a second lever c d : this second lever

is 8" long ; it forms one edge of the cutting shears, the

other edge being fixed to the framework.

247. I place a rod of iron 0""25 square between the

jaws of the shears in the position E, the distance d e being
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3" 5, and proceed to cut the iron by applying pressure to

the handle. Let us calculate the amount by which the

levers increase the power exerted upon F. Suppose for

example that I press downwards on the handle f with a

force of 10 lbs., what is the magnitude of the pressure

upon the piece of iron ? The effect of each lever is to be

calculated separately. We may ascertain the power exerted

at B by the rule of Art. 237 ; the product of the power

and its arm is 22 X 10 = 220 : this divided by the number

of inches, 1"8 in the line A B, gives a quotient 122, and

this quotient is the number of pounds pressure which is

exerted by means of the link upon the second lever. We
proceed in the same manner to find the magnitude of the

pressure upon the iron at E. The product of 122 and 8

is 976. This is divided by 3 '5, and the quotient found

is 279. Hence the exertion of a pressure of 10 lbs^ at f

produces a pressure of 279 lbs. at E. In round numbers,

we may say that the pressure is magnified 28-fold by

means of this combination of levers of tbe second order.

248. A pressure of 10 lbs. is not sufficient to shear

across the bar of iron, even though it be magnified to

279 lbs. I therefore suspend weights from f, and gradually

increase the load until the bar is cut. I find at the first

trial that 112 lbs. is sufficient, and a second trial with

the same bar gives 114 lbs. ; 113 lbs., the mean between

these results, maybe considered an adequate force. This

is the load on f ; the real pressure on the bar is 113 x 2 7 '9

= 3,153 lbs. : thus the actual pressure which was necessary

to cut the bar amounted to more than a ton.

249. We can calculate from this experiment the amount

of force necessary to shear across a bar one square inch

in section. We may reasonably suppose that the necessary

power is proportional to the section, and therefore the
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power will bear to 279 lbs. the proportion which a square

of one inch bears to the square of a quarter inch ; but

this ratio is 16 : hence the force is 16 x 3,153 lb3., equal

to about 22 '5 tons.

250. It is remarkable that 22 '5 tons is nearly the

strain (Art. 45) which would suffice to tear the bar in

sunder by actual tension. We shall subsequently return

to the subject of shearing iron in the lecture upon Inertia

(Lecture XVI.)

THE LEVER OF THE THIHD OKDEE.

251. The lever of the third order may be easily un-

derstood from Fig. 3.9, of which, we have already made

use. In the lever of the third order the fulcrum is at

one end, the load is at the other end, while the power lies

between the two. In this case, then, the power is repre-

sented by the 56 lb. weight, while the load is indicated by

the spring balance. The power always exceeds the load,

and consequently this lever is never employed when it is

required to gain power. Thus, for example, when the

power, 56 lbs., is 2' distant from the fulcrum, the load

indicated by the spring balance is about 23 lbs.

252. There arc, however, numerous cases in which this

lever is of use : for example, the treadle of a lathe or

grindstone is a lever of the third order. The fulcrum is

at one end, the foot applies the power, and the load is

at the other end : the convenience of the arrangement

consists in this, that the foot has only to move through a

small space.

253. The principles which have been discussed in

Lecture III. with respect to parallel forces, explain the

rules which have been laid down for levers of different
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orders; and will also enable us to express these rules

more concisely.

254. A comparison of Figs. 3D and 20 shows that the

only real difference between the arrangements is that in

Fig. 20 we have a spring balance o in the same place as

the steel edge a in Fig. 39. We may in Fig. 20 regard

one spring balance as the power, the other as the fulcrum,

and the weight as the load. Nor is there much difference

between the apparatus of Fig. 38 and that of Fig. 20. In

Fig. 38 the bar is pulled down by a force at each end,

one a weight, the other a spring balance, while it is sup-

ported by the upward pressure of the steel edge. In

Fig. 20 the bar is being pulled upwards by a force at

each end, and downwards by the weight. The two cases

are substantially the same. In each of them we find a

bar acted upon by a pair of parallel forces applied at

its extremities, and retained in equilibrium by a third

parallel force acting between them.

255. We may therefore apply to the lever the princi-

jdes of parallel forces already explained. We showed that

two parallel forces acting upon a bar could be compounded

into a resultant, applied at a certain point of the bar.

We have defined the moment of a force, and proved,

that the moments of two parallel forces about the point

of application of their resultant are equal (Art. 65).

256. In the lever of the first order there are two

parallel forces, one at each end ; these are compounded

into a resultant, and it is necessary that this resultant be

applied to the bar exactly over the steel edge or fulcrum

in order that the bar may be supported. In the levers of

the second and third orders, the power and the load are

two parallel forces acting in opposite directions ; their

resultant, therefore, does not lie between the forces, but is

K 2
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•

applied on the side of the greater, and at the point where

the steel edge supports the bar. In all cases the

moment of one of the forces about the fulcrum must be

equal to that of the other. From the equality of moments

it follows that the product of the power by the distance

of the power from the fulcrum equals the product of the

load, and the distance of the load from . the fulcrum :

from this principle the rules already given are imme-

diately inferred.

257. The principle of the lever may be deduced from

the principle of work ; the load, if nearer than the power

to the fulcrum, is moved through a smaller distance than

the power. Thus, for example, in the lever of the first

order: if the load be 12 times farther than the-poWef from

the fulcrum, then for every inch the load moves it will

be easily seen that the power must move 12 inches. The

number of units of work applied at one end of a machine

is equal to the number yielded at the other, always

excepting the loss due to friction, which is, however, so

small in the lever that it may be omitted. If then a

power of 1 lb. be applied to move the power end through

12 inches, one unit of work will have been put into

the machine. Hence one unit of work must be done \by

the load, but the load only moves through T\- of a foot,

and therefore it must exert a force of 12 lbs. : this is the

same result as would be given by the rule (Art. 237).

258. To conclude : we have first by actual experiment

determined the relation between the power and the load

in the lever ; we have seen that the law thus obtained

harmonizes with the principle of the composition of

parallel forces ; and, finally, we have shown how the same

result could also be deduced from the fertile and impor-

tant principle of work.



LECTURE IX.

THE INCLINED PLANE AND TEE SCREW.

The Inclined Plane without Friction.— The Inclined Plane with

Friction.—The Screw.—The Screw-jack.—The Bolt and Nut.

THE INCLINED PLANE WITHOUT FRICTION.

259. The mechanical powers now to be considered are

often used for other purposes beside those of raising great

weights. For example : the parts of a structure have to

be forcibly drawn together, a force of compression has to

be exerted, or the particles of a mass have to be driven

asunder, as in splitting. For purposes of this kind the

inclined plane in its various forms, and the screw, are of

the greatest use. The screw also, in the form of the screw-

jack, is sometimes used in raising weights. It is prin-

cipally convenient when the weight is enormously great,

and the distance through which it has to be raised com-

paratively small.

260. We shall commence with the study of the in-

clined plane. The apparatus used is shown in Fig. 41.

A B is a plate of glass 4' long, mounted on a frame and

turning round a hinge at A ; b d is an arc, whose centre is

at A, to which the frame may be clamped ; D c is a ver-

tical rod, to which the pulley c is clamped. This pulley

can be moved up and down, to be accommodated to the
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position of a b ; the pulley is made of brass, and turns very

freely. A little truck R is adapted to run on the plane

of glass. The truck is laden to

^ ^ weigh 1 lb., and this weight is

\ 1 ^ constant throughout the experi-

^^eV | ' ments ; the wheels being very free,

^Sr*^ 'II ^e truck runs w^^ ^ut ^tt;^e ^c"

^^^ J \f
tion on the glass plane.

D 261. But the friction, though

small, is appreciable, and it will

be necessary to ascertain the amount of the friction in

order to counteract the effect upon the motion. The

silk cord attached to the truck is very fine, and its

weight is neglected. A series of weights is provided

;

they are made of brass wire, and S-shaped, and weigh

0"1 lb. and O'Ol lb. : these can easily be hooked into the

loop on the cord at p. We first make the plane A b

horizontal, and bring down the pulley c so that the cord

shall be parallel to the plane ; a certain amount of

weight must be applied at p in order to draw the truck

along the plane : this weight is of course the friction, and

when it is applied at p the friction may be said to be

counterbalanced. But we cannot be sure that the friction

is the same when the plane is horizontal as when the

plane is inclined. We must therefore examine into this

question by a method analogous to that used in Art. 208.

262. Let the plane be elevated until b e, the elevation

of b above A D, is 20"; let c be properly adjusted : it

is found that when p is 0'45 lb. R is just pulled up ; and

on the other hand, when p is only 0"40 lb. R descends

and raises p ; and when p has any value intermediate

between these two, the truck remains in equilibrium.

We call the force of gravity acting down the plane b,
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and it follows that it must he 0'42.) lb., and the fric-

tion 0"02."3 lb. For when p raises r, p must overcome

R together with friction ; therefore the power must be

0"025 + 0"425 = 0"45. On the other hand, when R raises P,

R must also overcome the friction
-025, and therefore P

can only be (V425 — 0'025 = -40 ; R is thus found to be

a mean between the greatest and least values of p con-

sistent with equilibrium. If the plane be raised so that

the height b e is 33", the greatest and least values of P are
-

G(j and (V71 ; therefore r is G'68.5 and the friction

0"02.5, the same as before. Finally, making the height

b e 2", the friction is ascertained to be 0"020, almost the

same as the previous determinations. This inquiry shows

us that we may consider the friction constant at different

inclinations of the plane, at all events to the degree of

delicacy at which we are aiming. As in the experiments

r is always raised, we may place 0'025 lb. permanently

at p ; this Avill just counteract the friction, which we

may therefore dismiss from consideration. It is hardly

necessary to remark that, in afterwards recording the

weights placed at p, this counterpoise is not included.

263. We have now the means of studying the relation

between the power and the load in the frictionless in-

clined plane. The plane being raised to different eleva-

tions, we shall observe- the force necessary to raise the

constant load of 1 lb. Our course will be guided by first

examining into the subject with the aid of the principle

of energy. Suppose B E to be 2'; when the truck has been

moved from the bottom of the plane to the top, it will

have been raised vertically through a space of 2', and

two units of work must have been consumed. But the

plane being 4' long, the force which urges it up the plane

need only be 0'5 lb., for
-

5 lb. acting over 4' produces
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two units of work. In general, if I be the length of the

plane and h its height, R the load, and P the power, the

number of units necessary to raise the weight is R h, and

the number of units expended in pulling it up tbe plane

is PI : hence R h = PI, and consequently P:h: :R:l

;

that is, the power is to the height of the plane as the

load is to its length. In the present case R = 1 lb.,

Z= 48"; therefore P= 0-0208 h, where h is the height of

the plane, and P the power expressed in pounds.

264. We compare, then, the values of the powers calcu-

lated by this formula with the actual observed values

:

the result is given in Table XIII.

Table XIII.— Inclined Plane.

Glass plane 48" long, truck 1 lb. in weight, friction counterpoised ;

formula P = 0-0208 X h".

Number of
Experiment.
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265. The fifth column of the table shows the difference

between the observed and calculated powers. The very

slight differences, in no case exceeding the fiftieth part of

a pound, may undoubtedly be referred to the inevitable

errors of experiment.

THE INCLINED FLAKE WITH FRICTION.

266. The friction of the truck upon the glass plate is

very small in amount, and is shown to be practically

constant for the inclinations of the plane which were

used. But when the friction is large, we shall not be

justified in considering it constant at different elevations,

and we must adopt more rigorous methods. For this

inquiry we shall use the pine plank and slide already

described in Art. 118. We do not in this case seek to

diminish friction by the aid of wheels, and consequently

it will be of considerable amount.

267. In another respect also the experiments of Table

XIII. contrast with those now to be described. In the

former the load was constant, while the elevation was

changed. In the latter the elevation is to remain

constant while the load is changed. We shall find in

this experiment also that when the proper allowance is

made for friction, the law connecting the power and the

load is fully borne out.

268. The apparatus used is shown in Fig. 33 ; the

plane is, however, secured in one position, and the pulley

shown in Fig. 32 is attached to the framework, so that the

rope from the pulley to the slide is parallel to the incline.

The elevation of the plane in the position adopted is 1
7°

-

2,

so that its length, base, and height are in the proportions

of the numbers 1, 0-955, and 0'296. Weights ranging
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from 7 lbs. to 56 lbs. are placed upon the slide, and tin?

power is found which, when the slide is started by the

screw, will draw it steadily up the plane. The requisite

power consists of two parts, that which is necessary to

overcome gravity acting down the plane, and that which

is necessary to overcome friction.

269. The forces are shown in Fig. 4:2. n G, the force

of gravity, is resolved into R JL

and em; r l is evidently the force

acting down the plane, and a m
the pressure against the plane ; the

triangle G l r is similar to a b o,

hence if R be the load, the force

R L acting down the plane must

be 0'296 R, and the pressure upon the plane -955 R.

270. We shall first suppose the ordinary law that the

friction is proportional to the pressure to be true. The

pressure upon the plane A B, to which the friction is pro-

portional, is not the weight of the load. The pressure is

that component (r m) of the load which is perpendicular

to the plane ab. When the weights do not extend

beyond 56 lbs., the best value for the coefficient of

friction is
-288 (Art. 141) : hence the amount of friction

upon the plane is

0-288 x 0-955 R = 0275 R.

This force must be overcome in addition to 0296 R
(the component of gravity acting along the plane) : hence

the value of the power^

0-275 R +T>|$&&-« 0-571 R.

271. The values of the powers wbjeh have been observed

compared with the powers calculated by this formula are

shown in Table XIV.



LECT. IX.
|

1XCL1KK1) Pl.JXK WITH FHICT10X. 139

Table XIV.

—

Inclined Plane.

Smooth plane of pine 72" X 11"
; angle of inclination 17°'2; slide of pine,

grain crosswise ; slide started ; formula P = 0'571 B.

Number of

(
Experiment.

I
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The powers calculated by this formula are compared with

those actually observed in Table XV.

Table XV.

—

Inclined Plan^!.

Smooth plane of pine 72" X 11"; angle of inclination 17°'2
; slide of pine,

grain crosswise ; slide started ; formula P = 0'9 + 0'55 B.

Number of
Experiment.
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is the essential feature of a mechanical power. The me-

chanical efficiency is 30 h- 17"4 = 172.

276. The velocity ratio in the inclined plane is the

proportion of the distance through which the power

moves to the vertical height through which the weight is

raised, 1h-0'296 = 3
-

38. To raise 30 lbs. one foot, a force

of 17"4 lbs. must therefore be exerted through 3 -38 feet

;

that is, 58 -

8 units of work must be expended, though

only 30 units are accomplished. Hence 51 per cent, of

the energy applied is utilized, and the rest is expended in

overcoming friction.

277. "We have pointed out in Art. 223 that a machine

Avill overhaul when more than half the energy is utilized :

this is the case in the present instance ; hence the weight

will run down the plane if allowed to do so. This agrees

with what we have ascertained regarding the angle of

friction (Art. 148), for it was there that at about 13°"4,

and a fortiori at any greater inclination, the slide would

descend when started.

,

THE SCREW.

278. The inclined plane as a mechanical power is

generally disguised under the form of a wedge or a

screw. A wedge is an inclined plane which is forced

under the load ; it is usually moved by means of a

hammer, so that the efficiency of the wedge as a me-

chanical power is augmented by the effect of a blow.

279. The screw is the most useful mechanical power

which we possess. A screw may be formed by wrap-

ping a wedge-shaped piece of paper around a cylinder,

and then cutting a groove in the cylinder along the

spiral line indicated by the margin of the paper. Such a
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groove is a screw. In order that the screw may be used,

a nut is necessary ; the nut consists of a hollow cylinder,

the internal diameter of which is equal to the diameter of

the cylinder from which the screw is made. The nut

contains a spiral ridge, which fits into the corresponding

groove in the screw ; when the nut is turned round, it

moves backwards or forwards according to the direc-

tion of the rotation. Large screws of the better class,

such as those with which we shall first be occupied, are

always turned in a lathe, and are thus made with extreme

accuracy. Small screws are made in a simpler manner

by means of what is called a screw plate.

280. It is important to understand what is meant by

the word "pitch." A screw is said to have 10 threads to

the inch when it requires 10 revolutions of the nut in

order to move it one inch. A screw of this kind is said

to have a pitch of 10 threads to the inch. The shape

of the section of the thread is also to be noticed ; the

thread may be square or triangular, or, as is generally

the case in small screws, of a rounded form.

281. There is so much friction in the screw that ex-

periments are necessary to give Us any insight into the

law connecting the power and the load.

282. We shall commence with an examination of the

screw shown in Fig. 43.

The nut A is mounted upon a stout frame ; to the end

of the screw hooks are attached, in order to receive

the load, which does not exceed 224 lbs. ; at the top of

the screw is an arm E by which the screw is turned; to

the end of the arm a rope is attached, which passing-

over a pulley d", carries a hook for receiving the power c.

283. We first apply the principle of work to this screw.

The diameter of the circle described by the end of the
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arm is 20"'5
; its circumference is therefore U4"

-

4. The

screw contains three threads to the inch, hence in order

to raise the load 1." the power must travel through

3 x t>4"
-

4 = 193" ; therefore the velocity ratio is 193, and

were the screw capable of working without friction, 193

would represent the mechanical efficiency. In actually

performing the experiments the arm E is placed at right

Fie. 43

angles to the rope leading to the pulley, and the power

hook is weighted until, with a slight start, the arm is

drawn towards the pulley. The power can never draw the

arm more than a few inches, as when the cord ceases to

be perpendicular to the arm the power acts with diminished

efficiency ; consequently the load is only raised in each

experiment through a small fraction of an inch, perhaps

about one-twentieth.
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Table XVI.—The Screw.

Wrought iron screw, square thread, diameter 1"'25, pitch 3 threads to the

inch, arm \Q"'Zb ; nut cast iron, bearing surfaces oiled, velocity ratio 193,

useful effect 36 per cent., mechanical efficiency 70 ; formulaP = 0'0143 B.

Number of
Experiment.
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285. In order to lift 100 lbs. the formula shows that

1"43 lbs. would be necessary : hence the mechanical

efficiency of the screw is 100-^- 1'43 = 70. Thus this

screw is vastly more powerful than any of the pulley

systems which we have discussed. A machine so power-

ful, so compact, and so cheap is invaluable.

286. It is evident, however, that the distance through

which the screw can raise a weight must be limited by

the length of the screw itself.

287. We have seen that the velocity ratio is 1 93 ; there-

fore, in order to raise 100 lbs. 1 foot, T43 x 193 = 276

units of work must be consumed : of this quantity only

100 units, or 36 per cent., is usefully employed ; the rest

being consumed in overcoming the friction of the screw.

Thus about two-thirds of the energy applied to such a

screw is lost. Hence we find that the screw does not

overhaul, since less than 50 per cent, of the applied

energy is usefully employed. This is one of the most

valuable properties which the screw possesses.

288. We may contrast the screw with the pulley

block (Art. 200). They are both powerful machines : the

latter is bulky and economical of power, the former is

compact and wasteful of power ; the latter is adapted for

raising weights through .considerable distances, and the

former for exerting pressures through short distances.

THE SCKEWEJACK.

289. The importance of the screw as a mechanical

power justifies us in examining one of its most useful

forms, the screw-jack. This machine is used for exerting

great pressures, such for example as starting a ship which

is reluctant to be launched, or replacing a locomotive upon

L
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the line from which its wheels have slipped. These

machines vary slightly in form, as well as in the weights

for which they are adapted ; one of them is shown at d

in Fig. 44, and a description of its details is given in

Table XVII. We shall determine the powers to be

applied to- this machine for overcoming pressures not

exceeding half a ton.

290. To employ weights so large as half a ton would

be inconvenient under any circumstances, and impossible

in the lecture-room, but the required pressures can be

produced by means of a lever. In Fig. 44 is shown a

stout wooden bar 16' long. It is prevented from bending

by means of a chain ; at E the lever is attached to a

hinge, about which it turns freely ; at A a tray is placed

for the purpose of receiving weights. The screw-jack

is 2' distant from e, consequently the bar is a lever of

the second order, and any weight placed in the tray

exerts a pressure eightfold greater upon the top of the

screw-jack. Thus each stone in the tray produces a pres-

sure of 1 cwt. at the point d. The weight of the lever

and the tray is counterpoised by the weight c, so that

until the tray receives a load there is no pressure upon

the top of the screw-jack, and thus we may omit the

lever itself from consideration. The screw-jack is

furnished with an arm dg; at the extremity G of this

arm a rope is attached, which passes over a pulley and

supports the power B.

291. The velocity ratio for this screw-jack with an

arm of 33", is found to be 414, by the method already

described (Art. 283).

292. To determine its mechanical efficiency we must

resort to experiment. The result is given in Table XVII.

L 2
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Table XVII— The Screw-Jack.

Wrought iron screw, square thread, diameter 2", pitch 2 threads to the inch,

arm 33" ; nut brass, bearing surfaces oiled ; velocity ratio 414 ; useful effect,

28 per cent. ; mechanical efficiency 116 ; formula P = -66 + 0-0075 B.

Number of
Experiment.
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295. The details of an experiment on this subject will

be instructive, and afford a confirmation of the principles

laid down. In experiment 10 we find that 9
-

lbs. suffice

to raise 1,120 lbs. ; now by moving the pulley to the other

side of the lever, and placing the rope perpendicularly to

the lever, I find that to produce motion the other way

—

that is, of course, to lower the screw—a force of 3 -4 lbs.

must be applied. Hence, even with the assistance of the

load, a force of 3 "4 lbs. is necessary to overcome friction.

This will enable us to determine the amount of friction

in the same manner as we determined the friction in

the pulley-block (Art. 208). Let x be the force usefully

employed in raising, and y the force of friction ; then to

raise the load the power applied must be sufficient to

overcome both x and Y, and therefore we have x + y= 9
-

When the weight is to be lowered the force x of course

aids in the lowering, but x alone is not sufficient to

overcome the friction; it requires the addition of 3 '4 lbs.,

and we have therefore x+3"4= Y, and hence x= 2 -

8,

Y=6'2.

That is, 2 "8 is the amount of force which with a

frictionless screw would have been sufficient to raise half

a ton. But in the frictionless screw the power is found

by dividing the load by the velocity ratio. In this case

1120-^ 414= 27, which is within O'l lb. of the value of x.

The agreement of these results is satisfactory.

THE SCREW BOLT AND NUT.

296. The most useful application of the screw is met

with in the common bolt and nut, shown in Fig. 45. It

consists of a wrought iron rod with a head at one end and

a screw on the other, upon which the nut works. Bolts



150 EXPERIMENTAL MECHANICS. [lect. IX.

in many different sizes and forms represent the stitches

by which machines and frames are

most readily united. There are several

reasons why the bolt is so convenient.

It draws the parts into close contact

with tremendous force ; it is itself so

strong that the parts united practically

form one piece. It can be adjusted

quickly, and removed as readily. The

same bolt by the use of washers can be

applied to pieces of very different sizes.

No skilled hand is required to use the

simple tool that turns the nut. Adding

to this that bolts are cheap and durable,

we shall easily understand why they are

so extensively used.

297. We must remark, in conclusion, that the bolt

owes its utility to friction ; the screw does not overhaul,

hence when the nut is screwed home it does not recoil.

If it were not that more than half the power applied to

a screw is consumed in friction, the bolt and the nut

Avould either be rendered useless, or at least would

require to be furnished with some complicated apparatus

for preventing the motion of the nut.

Fig. 45.



LECTURE X.

THE WHEEL AND AXLE.

Introduction.—Experiments upon the "Wheel and Axle.—Friction

upon the Axle.—The Wheel and Barrel.—The Wheel and Pinion.

—

The Crane.—Conclusion.

INTRODUCTION.

298. The mechanical powers discussed in these lec-

tures may be grouped into two classes,—the first where

ropes or chains are used, and the second where ropes or

chains are absent. Belonging to that class in which ropes

are not employed, we have the screw discussed in the

last lecture, and the lever discussed in Lecture VIII.

;

while among those machines in which ropes or chains

form an essential part of the apparatus, the pulley

and the wheel and axle hold a prominent place. We
have already examined several forms of the pulley, and

we now proceed to the not less important subject of the

wheel and axle.

299. Where great resistances have to be overcome, but

where the distance through which the resistance must be

urged is short, the lever or the screw is generally found

to be the most appropriate means of increasing power.

When, however, the resistance has to be moved a con-

siderable distance, the aid of the pulley, or the wheel and
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axle, or sometimes of both combined, is called in. The

wheel and axle is the form of mechanical power which is

generally used when the distance is considerable through

which a weight must be raised, or through which some

resistance must be overcome.

300. The wheel and. axle assumes very many forms

corresponding to the various purposes to which it is

applied. The general form of the arrangement will be

Fig. 46.

understood from Fig. 46. It consists of an iron axle B,

mounted in bearings, so as to be capable of turning

freely; to this axle a rope is fastened, and at the

extremity of the rope is a weight D, which is gradually

raised as the axle revolves. Attached to the axle, and
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turning with it, is a wheel A with hooks in its circum-

ference, upon which lies a rope ; one end of this rope is

attached to the circumference of the wheel, and the other

supports a weight e. This latter weight may be called

the power, while the weight d suspended from the axle

is the load. When the power is sufficiently large, e

descends, making the wheel to revolve ; the wheel causes

the axle to revolve, and thus the rope is wound up and

the load D is raised.

301. When compared with the differential pulley as a

means of raising a weight, this arrangement appears

rather bulky and otherwise inconvenient, but, as we shall

presently learn, it is a far more economical means of

applying energy. In its practical application, moreover,

the arrangement is simplified in various ways, two of

which may be mentioned.

302. The capstan is essentially a wheel and axle ; the

power is not in this case applied by means of a rope, but

by direct pressure on the part of the men working it

;

nor is there actually a wheel employed, for the pressure

is applied to what would be the extremities of the spokes

of the wheel if a wheel existed.

303. In the ordinary winch, the power of the labourer

is directly applied to the handle which moves round in

the circumference of a circle.

304. There are innumerable other applications of the

principle which are constantly met with, and which can

be easily understood wTith a little attention. These we
shall not stop to describe, but we pass on at once to the

important question of the relation between the power

and the load.



1 54 EXPERIMENTAL MECHANICS. [lbct. x.

EXPERIMENTS UPON THE WHEEL AND AXLE.

305. We shall commence a series of experiments upon

the wheel A and axle B of Fig. 46. We shall first deter-

mine the velocity ratio, and then ascertain the mecha-

nical efficiency by actual experiment. The wheel is of

wood ; it is about 30" in diameter. The string to which

the power is attached is coiled round a series of hooks,

placed near the margin of the wheel ; the effective cir-

cumference is thus a little less than the real circum-

ference. I measure a single coil of the string, and find

the length to be 88""5. This length, therefore, we shall

adopt for the effective circumference of the wheel. The

axle is 0"'75 in diameter, but its effective circumference

is larger than the circle of which this length is the

diameter.

306. The proper mode of finding the effective circum-

ference of the axle in a case where the rope bears a

considerable proportion to the axle is as follows. Attach

a weight to the extremity of the rope sufficient to stretch

it thoroughly. Make the wheel and axle revolve suppose

20 times, and measure the height through which the

weight is lifted.; then the one-twentieth part of that

height is the effective circumference of the axle. By
this means I have found the circumference of the axle

we are using to be 2" ,

87,

307. Let us ascertain the velocity ratio in this machine.

When the wheel and axle have made one complete

revolution the power has been lowered through a distance

of 8
8"

-

5, and the load has been raised through 2"'87.

This is evident because the wheel and axle are attached

together, and therefore each completes one revolution in

the same time ; hence the ratio of the distance which the
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power moves over to that through which the load is raised

is 88" -

5 -T- 2"'87 = 31 very nearly. We shall therefore

suppose the velocity ratio to be 31. Thus this wheel and

axle has a far higher velocity ratio than any of the

pulleys which we have been considering.

308. Were friction absent the velocity ratio, 31, would

also express the mechanical efficiency of this wheel and

axle : but owing to the presence of friction the real

efficiency is less tlan this—how much less, we must

ascertain by experiment. I attach a load of 56 lbs. to

the hook which is borne by the rope descending from the

axle : this load is shown at d in Fig. 46. I find that a

power of 2 -

6 lbs. applied at E is just sufficient to raise D.

We infer from this result that the mechanical efficiency

of this machine is 56 h- 2'6 = 2T5. I add a second

56 lb. weight to the load, and I find that a power of

5
-

lbs. raises the load of 112 lbs. The mechanical effi-

ciency in this case is 112 -s- 5 = 22 • 5. We adopt the

mean value 22. Hence the mechanical efficiency is

reduced by friction from 31 to 22.

309. We may compute from this result the number of

units of energy which are utilized out of every 100 units

applied. Let us suppose a load of 100 lbs. is^to be raised

one foot ; a force of 100 -^ 22 = 4'6 lbs. will suffice to

raise this load. This force must be exerted through a

space of 31', and consequently 31 x 4*6 =143 units of

energy must be expended ; of this amount 100 units are

.usefully employed, and therefore the percentage of energy,

'utilized is 100+ 143 x 100 =Jl<d. It follows . that/

30 per cent, of the applied energy is consumed in over-

coming friction.

310. We can see the reason why the wheel and axle

overhauls—that is, runs clown of its own accord—when
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allowed to do so ; it is because less than half the applied

energy is expended upon friction (Art. 223).

311. A series of experiments which have been care-

fully made with this wheel and axle are recorded in

Table XVIII.

Table XVIII.

—

Wheel and Axle.

Wheel of wood ; axle of iron, in oiled brass bearings ; weight of wheel and

axle together, 16"5 lbs. ; effective circumference of wheel, 88"'5
; effective

circumference of axle, 2"'87
; velocity ratio, 31 ; mechanical efficiency, 22 ;

useful effect 70 per cent.; formula, P = 0'204 + 0-0426 R.

Number of
Experiinent.-
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have obtained it from the principle of the lever. The
wheel and axle both revolve about the centre of the

axle ; we may therefore regard the centre as the fulcrum

of a lever, and the points where the cords meet the wheel

and axle as the points of application of the power and

the load respectively.

314. By the principle of the lever of the first order

(Art. 237), the power is to the load in the inverse pro-

portion of the arms ; in this case, therefore, the power is

to the load in the inverse proportion of the radii of the

wheel and the axle. But the circumferences of circles

are in proportion to their radii, and therefore the power

must be to the load as the circumference of the axle is to

the circumference of the wheel.

315. This mode of arriving at the result is a little arti-

ficial ; it is more natural to deduce the law directly from

the principle of energy. In a mechanical power of any

complexity it would be difficult to trace exactly the trans-

mission of power from one part to the next, but the

principle of energy evades this difficulty ; no matter what

be the mechanical arrangement, simple or complex, of

few parts or of many, we have only to ascertain by trial

how many feet the power must traverse in order to raise

the load one foot ; the number thus obtained is the theo-

retical efficiency of the machine.

FRICTION UPON THE AXLE.

316. In the wheel and axle upon which we have been

experimenting, we have found that about 30 per cent, of

the power is consumed by friction. We shall be able to

ascertain to what this loss is due, and then in some

degree to remove its cause. From the experiments
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of Art. 166 we learned that the friction of a small pulley

was very much greater than that of a large pulley—in

fact, the friction is inversely proportional to the diameter

of the pulley. We infer from this that by winding the

rope upon a barrel instead of upon the axle, the friction

may be diminished.

317. We can examine experimentally the effect of fric-

tion on the axle by the apparatus of Fig. 47. b is a shaft

Fig. 47.

0""75 diameter, about which a rope is coiled several times;

the ends of this rope hang down freely, and to each of

them hooks E, F are attached. This shaft revolves in

brass bearings, which are oiled. In order to investigate

the amount of power lost by winding the rope upon an

axle of this size, I shall place a certain weight—suppose
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56 lbs.—upon one hook f, and then I shall ascertain what

amount of power hung upon the other hook E will be suf-

ficient to raise F. There is here no mechanical advantage,

so that the excess of load which E must receive in order

to raise F is the true measure of the friction.

318. I add on weights at E until the power reaches

85 lbs., when E descends. We thus see that to raise 56 lbs.

an excess of 29 lbs. was necessary to overcome the friction.

We may roughly enunciate the result by stating that to

raise a load in this way, half as much again is required

for the power. This law is verified by suspending 28 lbs.

at f, when-it is found that a power of 4 3 lbs. at E is re-

quired to lift it. Had the power been 42 lbs., it would

have been exactly half as much again as the load.

319. Hence in raising F upon this axle, about one-third

of the power which must be applied at the circumference

of the axle is wasted. This experiment teaches us where

the loss lies in the wheel and axle of Art. 305, and ex-

plains how it is that about a third of its efficiency is lost.

85 lbs. was only able to raise two-thirds of its own weight,

owing to the friction ; and hence we should expect to

find, as we actually have found, that the power applied

at the circumference of the wheel has an effect which is

only two-thirds of its theoretical efficiency.

320. From this experiment we should infer that the

proper mode of avoiding the loss by friction is to wind

the rope upon a barrel of considerable diameter rather

than upon the axle itself. I place upon a similar axle to

that on which we have been already experimenting a

barrel of about 15" circumference. I coil the rope two or

three times about the barrel, and let the ends hang down

as before. I then attach to each end 56 lbs. weight, and

I find that 10 lbs. added to either of the weights is suffi-
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cient to overcome friction, to make it descend, and raise

the other weight. The apparatus is shown in Fig. 47.

a is the barrel, c and D are the weights. In this arrange-

ment 1 lbs. is sufficient to overcome the friction which

required 29 lbs. when the rope was simply coiled around

the axle. In other words, by the barrel the friction is

reduced to one-third of its amount.

THE WHEEL AND BARBEL.

321. We next place the barrel upon the axis already ex-

perimented upon and shown in Fig. 46 at B. The cir-

cumference of the wheel is 88"'5
; the circumference of

the barrel is 14//-
9. The proper mode of finding the cir-

cumference of the barrel is to suspend a weight from the

rope, then raise this weight by making one revolution

of the wheel, and the distance through which the weight

is raised is the effective circumference of the barrel. The

velocity ratio of the wheel and barrel is then found, by
dividing 14-9 into 88-5, to be 5*94.

322. The mechanical efficiency of this machine is

determined by experiment. I suspend a weight of

56 lbs. from the hook, and apply power to the wheel.

I find that 10' 1 lbs. is just sufficient to raise the load.

323. The mechanical efficiency is to be found by
dividing 10 -

1 into 56; the quotient thus obtained is

5 '5 4. The mechanical efficiency does not differ much
from 5

-

94, the velocity ratio ; and consequently in this

machine but little power is expended upon friction.

324. We can ascertain the loss by computing the per-

centage of applied energy which is utilized. Let us sup-

pose a weight of 100 lbs. has to be raised one foot : for this

purpose a force ofl00-H5-54 = 18-l lbs. must be applied.
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This is evident from the definition of the mechanical

efficiency ; but since the load has to be raised one foot, it

is clear from the meaning of the velocity ratio that the

power must move over 5/-94 : hence the number of units

of work to be applied is to be measured by the product

of 5*94 and 18-1, that is, by 107*5 ; in order therefore

to accomplish 100 units of work, 107*5 units of work

must be applied. The percentage of energy usefully em-

ployed is 100 -h 107*5 x 100 = 93. This is far more than

70, which is the percentage utilized when the axle was

used without the barrel (Art. 309).

325. A series of experiments made with care upon the

wheel and barrel are recorded in Table XIX.

Table XIX.

—

The Wheel and Barrel.-

Wheel of wood, 88" -5 in circumference, on the same axle as a cast-iron

barrel of 14" -9 circumference ; axle is of wrought iron,
//-75 in diameter,

mounted iu oiled brass bearings
; power is applied to the circumference of the

wheel, load raised by rope round barrel ; velocity ratio, 5"94 ; mechanical

efficiency, 5'54
; useful effect, 93 per cent. ; formula, P = 0'5 + 0169 li.

Number of
Experiment.
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column of differences shows that the calculated and the

observed values agree very closely. The constant part

0"5 is partly due to the constant friction of the heavy

barrel and wheel, and partly, it may be, to small irregu-

larities which have prevented the centre of gravity of the

whole mass from being strictly in the axle.

326. Though this machine is more economical of

power than the wheel and axle of Art. 305, yet it is less

powerful; in fact, the mechanical efficiency, 5 '5 4, is only

about one-fourth of that of the wheel and axle. It is

therefore necessary to inquire whether we cannot devise

some method by which to secure the advantages of but

little friction, and at the same time have a large mecha-

nical efficiency : this we shall proceed to investigate.

THE WHEEL AND PINION.

327. By means of what are called cog-wheels or

toothed-wheels, we are enabled to combine two or more

wheels and axles together, and thus greatly to increase

the power which can be produced by a single wheel

and axle. Toothed-wheels are used for a great variety

of purposes in mechanics; we have already had some

illustration of their use during these lectures (Fig. 30).

The wheels which we shall employ are those often used

in lathes and other small machines ; they are what

are called 10-pitch wheels,—that is to say, a wheel of

this class contains ten times as many teeth in its circum-

ference as there are inches in its diameter. I have here

a wheel 20" diameter, and consequently it has 200 teeth ;

here is another which is 2\5" diameter, and which con-

sequently contains 25 teeth. -We shall mount these

Avheels upon two parallel shafts, so that they work one
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into the other in the manner shown in Fig. 46 : F is the

large wheel of 200 teeth, and a the pinion of 25 teeth.

The axles are 0"'75 diameter; around each of them a

rope is wound, from which a hook is suspended.

328. A comparatively small weight at K is sufficient

to raise a much larger weight at L ; but before inquiring

into the mechanical efficiency of this arrangement, we
shall as usual ascertain the velocity ratio. The wheel

contains eight times as many teeth as the pinion ; it is

therefore evident that when the wheel has made one

revolution, the pinion will have made eight revolutions

conversely, and the pinion must turn round eight times

to turn the wheel round once : hence the power which

is turning the pinion round must be lowered through

eight times the circumference of the axle, while the load

is raised through a length equal to the circumference of

the axle. It is therefore evident that the velocity ratio

of the machine is 8.

329. We determine the mechanical efficiency by trial.

Attaching a load of 56 lbs. at l, it is easily seen that a

power of 13 - 7 lbs. at K will be sufficient to raise the

load ; the mechanical efficiency of the machine is there-

fore about 4'1, which is almost exactly half the velocity

ratio. You see the machine is barely able to overhaul

;

from this we might have inferred, by the principles already

explained (Art. 223), that about half the power is ex-

pended on friction, and that therefore the mechanical

efficiency is about half the velocity ratio. The actual

percentage of energy that is utilized in this machine

is about 51. If I suspend 112 lbs. from the hook L,

26 lbs. is just enough to raise the load ; the mechanical

efficiency that would be deduced from this result is

112 _;_ 26 = 4'3, which is slightly in excess of the amount

M 2
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obtained in the former experiment. It is found to be

generally a property of the mechanical powers, that as

the load increases the mechanical efficiency slightly

increases.

330. In Table XX. will be found a series of experiments

upon the relation between the power and the load in the

wheel and pinion ; the table will sufficiently explain itself,

after the description of similar tables already given (Arts.

312, 325).

Table XX.^-The Wheel and Pinion.

Wheel (10-pitch), 200 teeth ;
pinion, 25 teeth ; axles equal, effective cir-

cumference of each being 2"'87
; oiled brass bearings ; velocity ratio

;

8 ; mechanical efficiency, 4 -

l ; useful effect, 51 per cent. ; formula,

P = 2-46 + 0-21 B.

Number of
Experiment.



lect. x.] THE CRANE. 1G5

THE CRANE.

332. We have already explained (Art. 38) the con-

struction of the lifting crane, so far as its framework is

concerned. "We now examine the mechanism by which

the weight is raised. "We shall employ for this purpose

the model which is represented in Fig. 48. The jib is

supported by a tie as in Fig. 1 7, and the crane is coun-

terpoised by means of the weights placed at h : this

counterpoise is necessary, because, when a load is sus-

pended from the cord passing over the pulley, the crane

would have a tendency to turn over if not counterpoised.

333. The load p is carried by a rope or chain which

passes over the pulley e and thence to the barrel d, upon

which the rope is to be wound. This barrel receives its

motion from a large wheel A, which contains 200 teeth.

The wheel A is turned by the pinion b : this pinion

contains 25 teeth. In the actual use of the crane, the

axle which carries this pinion would be turned round by

means of a handle ; but in order to make experiments

upon the relation of the power and the load, the handle

would be inconvenient, and therefore we have placed

upon the axle of the pinion a wheel c containing a groove

in its circumference. Around this groove a string is

wrapped, so that when a weight G is suspended from the

string it will cause the wheel to revolve. This weight

G will constitute the power by which the load e may lie

raised.

334. Let us compute the velocity ratio of this machine

before commencing experiments upon its mechanical

efficiency. The effective circumference of the barrel e is

found by trial to be 14
//-

9. Since there are 200 teeth

on A and 25 on B, it follows that the pinion B must
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revolve eight times to produce one revolution of the barrel.

Hence the wheel c to the circumference of which the

power is applied must also revolve eight times for one

revolution of the barrel. The effective circumference of

c is 43" ; the power must therefore have been applied

through 8x43" = 344", in order to raise the load 15" '9.

The velocity ratio is 344-4- 14"'9 =23 very nearly. We
can easily verify this value of the velocity ratio by
actually raising the load 1', when it is seen that the

number of revolutions of the wheel b is such that the

power must have moved over 23'.

335. The mechanical efficiency is to be found as usual

by trial. 56 lbs. placed at f is raised by 3 1 lbs. at G ; hence

the mechanical efficiency deduced from this experiment

is 56-i-3 -

l = 18. The percentage of useful effect is easily

obtained, as in Art. 324. It is found to be about 78.

Here, then, we have a machine possessing very con-

siderable efficiency, and being at the same time economical

of energy.
Table XXL—The Crane.

Circumference of wheel to which the power is applied, 43"
; train of wheels,

25 -j- 200 ; circumference of drum on which rope is wound, 14"9
; velocity-

ratio, 23 ; mechanical efficiency, 18 ; useful effect, 78 per cent. ; formula,

P = 00556 B.

Number of
Experiment.
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336. A series of experiments made with care is

recorded in Table XXL, and a comparison of the calcu-

lated and observed values will show that the formula

P = -0556 R represents the experiments with consider-

able accuracy.

337. It may be noticed that in this formula there is no

constant term, as is usual in the expression of the rela-

tion between the power and the load. The probable

explanation is to be found in the fact that some minute

irregularity in the form of the barrel or of the wheel

has been constantly acting as a small weight in favour of

the power. The power is always started from the same

position of the wheels in each experiment, and hence

any irregularity will be constantly acting in favour of

the power or against it ; here the former appears to have

been the case. In other cases doubtless the latter has

occurred ; the difference is, however, of extremely small

amount. The other cause of the presence of the con-

stant term is the friction of the machine itself when
carrying no load ; it has happened in the present case

that this friction has been almost exactly overcome by
the influence of the other cause referred to.

338. It is usual in cranes to have the power of adding

a second train of wheels, when the load is of large

amount. The power is applied to an axle which carries

a pinion of 25 teeth : this pinion works into a wheel of

200 teeth ; on the axle of the wheel with 200 teeth is

a pinion of 30 teeth, which works into a wheel of 180

teeth ; the barrel is on the axle of the last wheel. A
series of experiments upon this arrangement is shown in

Table XXII.
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Table XXII.—The Crane.

Circumference of wheel to which power is applied, 43" ; train of wheels,

30 -r- 180 X 25 -=- 200 ; circumference of drum on which rope is wound,
14"9

; velocity ratio, 137 ; mechanical efficiency, 87 ; useful effect, 63 per

cent. ; formula, P = 0-185 + 0-00782.fi.

Number of
Experiment.
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compactness of the differential pulley, its facility of

application, and the practical conveniences arising from

the property which it possesses of not overhauling,

nearly, if not quite, compensate for the superior me-

chanical advantage of the wheel and axle.

340. We may also contrast the wheel and axle with

the screw (Art. 293). The screw is remarkable among

the mechanical powers for a very high velocity ratio, and

for excessive friction. Thus we have seen in Art. 291

how the velocity ratio of a screw-jack with an arm

attached exceeded 400, while its mechanical efficiency

was little more than a fourth of the amount. No single

wheel and axle could conveniently be made to give a

mechanical efficiency of 100 ; but we have described

(Art. 338) a combination of different wheels and axles

which gives an efficiency nparly of this amount. The

friction in the wheel and axle is very much less than in

the screw, and consequently a great saving of power is

obtained by the use of the former machine.

341. In practice, however, it generally happens that

economy of energy does not weigh much in the selection

of a mechanical power for any purpose, as there are

always other considerations of far greater consequence.

342. For example, let us take the case of a lifting crane

employed in loading or unloading a vessel, and let us

inquire why it is that a train of wheels is used for the

purpose of producing the requisite power rather than a

screw. The answer is simple, the train of wheels is con-

venient, for by their aid any length of chain can be

wound upon the barrel ; whereas if a screw were used, we
should require a screw as long as the greatest height of

lift. This screw would be inconvenient, and be utterly

impracticable. This is the reason why a train of wheels
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is used, and the additional circumstance that a train of

wheels is more economical of energy than a screw is, com-

paratively speaking, of no consequence.

343. On the other hand, suppose that a very heavy

load has to be overcome for a short distance, for example

that of starting a ship launch, a screw-jack is evidently

the proper machine to employ ; it is portable and easily

applied, and though to use the screw-jack requires a little

more energy than would be necessary if a windlass were

employed, yet no engineer would erect the latter elaborate

machine for the purpose of making a single effort, when

the object can be simply accomplished otherwise.



LECTURE XL

THE MECHANICAL PROPERTIES OF TIMBER.

Introduction.—The General Properties of Timber.—Resistance to

Extension.—Eesistance to Compression.—Condition of a Beam

strained by a Transverse Force.

INTRODUCTION.

344. In the lectures on the mechanical powers which

have been just completed, we have seen how great weights

may be raised or other large resistances overcome. Of

not less importance than the mechanical powers is

the application of mechanical principles to structures.

These are fixtures, while machines are adapted for

motion ; a roof or a bridge is a structure, but a crane

or a screw-jack is a machine. Structures are employed

for supporting weights, and the mechanical powers give

the means of raising them.

345. A structure has to support both its own weight

and also any load that may be placed upon it. Thus a

railway bridge must at all times sustain what is called

the permanent load, and frequently, of course, the weight

of one or more trains. The problem which the engineer

solves is to design a bridge which shall be sufficiently

strong, and, at the same time, economical ; his skill is

shown by the manner in which he can attain these two

ends in the same structure.
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346. In the four lectures of the course which will be

devoted to this subject it will only be possible to give a

slight sketch, and therefore few details can be entered

upon. An extended account of the properties of dif-

ferent materials used in structures would be beyond our

scope, but there are some general principles relating to

the strength of materials which may be discussed.

Timber, as a building material, has, in modern times,

been replaced to a great extent by iron in large struc-

tures, but timber is more capable than iron of being

experimented upon in the lecture-room. The elementary

laws also, which we shall demonstrate with reference to

the strength of timber, are substantially the same as

the corresponding laws for the strength of iron or any

other material. Hence we shall commence the study

of structures by two lectures on timber. The laws

which we shall prove experimentally will afterwards

be applied to a few simple cases of bridges and other

actual structures.

THE GEEEKAL PROPERTIES OP TIMBER.

347. The uses of timber in the arts are as various as its

qualities. Some wood is useful for its beauty, and other

kinds for their strength or durability under different

circumstances. We shall only employ pine in our experi-

ments upon timber. This wood is selected because it is

so well known and so much used. A knowledge of the

properties of pine would probably be more useful than a

knowledge of the properties of any other wood, and at

the same time it must be remembered that the laws

which we shall establish by means of slips of pine may

be generally applied.
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348. A transverse section of a tree shows a number of

rings, each of which represents the growth of wood in

one year. The age of the tree may sometimes be ap-

proximately found by counting the number of rings.

The outer rings are the newer portions of the wood.

349. When a tree is felled it contains a large quantity

of sap, which must be allowed to evaporate before the

wood is fit for use. With this object the timber is stored

in suitable yards for two or more years according to the

purposes for which it is intended ; sometimes the process

of seasoning, as it is called, is hastened by other means.

Wood, when seasoning, contracts ; hence blocks of timber

are often found split from the circumference to the centre,

for the outer rings, being newer and containing more sap,

contract more than the inner rings. For the same reason

a plank is found to warp when the wood is not thoroughly

seasoned. The side of the plank which was farthest

from the centre of the tree contracts more than the

other side, and becomes concave. This can be easilv

verified by looking at the edge of the plank, for we there

see the rings of which the plank is composed.

350. Timber may be softened by steaming. I have

here an ordinary rod of pine, 24" x 0" -5 x 0"'5, and here

a second rod cut from the same piece and of the same
size, which has been exposed to steam of boiling water

for more than an hour : securing these at one end to a

firm stand, I bend them down together, and you see the

dry rod breaks very soon, while the steamed rod can be

bent much farther before it breaks. This property of

wood is used in shaping the timbers of wooden ships.

We shall be able to understand the reason by con-

sidering the nature of wood. AVood is composed of a

number of fibres ranged side by side and united together.



lect. xi.] RESISTANCE TO EXTENSION. 175

A rope is composed of a number of fibres laid together

and twisted, but the fibres are not coherent as they are

in wood. This is the reason why a rod of wood is stiff,

while a rope is flexible. The steam finds its way into

the interstices between the fibres of the wood ; it softens

their connections, and perhaps increases the flexibility of

the fibres themselves, and thus, when strained, the fibres

are better able to modify themselves than tbose of a

rod which has not been thus treated.

351. The structure of wood is also shown by the fol-

lowing simple experiment :—Here are two pieces of pine,

each 9" x 1" x 1". One of them I can easily snap across

with a blow, while I am totally unable to break the

other. Why is this ? Because one of these pieces is cut

against the grain, while the other is with it. In the first

case I merely tear asunder the connection between the

fibres, which is quite &&$y. In the other case I would

have to tear asunder the fibres themselves, which is

vastly more difficult. To a certain extent the distinction

of grain is also found in wrought iron, but the contrast

between the strength of iron with the grain and against

the grain is not so marked as it is in wood.

RESISTANCE TO EXTENSION.

352. It will be necessary to explain a little more

definitely what is meant by the strength of timber. We
may conceive a rod to be broken in three different ways.

In the first place the rod may be taken by a force at each

end and torn asunder by pulling, as a thread may be

broken. To do this requires a very great force, and the

strength of the beam with reference to such a mode of

destroying it is called its resistance to extension. In the
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second place, it may be broken by actual pressure upon

each end, as a pillar may be crushed by the superincum-

bent weight being too large ; the strength that relates to

this form of force is called resistance to compression

:

finally, the rod may be broken by a force applied trans-

versely (see Art. 362). The strength of pine with

reference to these different forms of force will be con-

sidered successively. The rods that are used have been

cut from the same piece of timber, which has been

selected on account of its straightness of grain and

freedom from knots. The rods are of different sections,

1" x 0" -

5 and //-
5 x 0"'5 being generally used, but some-

times \" x 1" is employed.

353. With reference to the strength of timber in its

capacity to resist extension, we can do but little in the

lecture room. I have here a pine rod A b, Fig. 49, of

dimensions 48" x 0"-5 x 0"*5. Each end of this rod is

firmly secured between two pieces of iron, which are bolted

together ; by means of these irons, the rod is suspended

from the hook of the epicycloidal pulley-block (Art. 224),

which is itself supported by a tripod ; a number of hooks

are attached to the rod for the purpose of carrying

weights. By placing 3 cwt. on these hooks and pulling

the hand chain of the pulley-block, I find that I can

raise the weight safely, and therefore the rod will support

at all events a tension of 3 cwt. From experiments

which have been made on the subject, it is ascertained

that nearly a ton would be necessary to tear such a rod

asunder ; hence we see that pine is enormously strong in

resisting a strain of extension. The tensile strength of

the rod does not depend upon its length, but upon the

area of its section. The section of the rod we have used

is one-fourth of a square inch, and the breaking weight
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of a rod one square inch in section is therefore about

four tons.

354. A rod of any material generally elongates more

or less under the action of a straining weight ; we can

ascertain whether this occurs perceptibly in wood. Before

Fig. 49.

the rod was strained I had marked two points upon

it exactly 2 feet apart. Now when the rod supports

3 cwt. I find that the distance between the two points

remains perceptibly the same. By more delicate measure-

ment I have no doubt we should find that the distance had

slightly elongated, but to an insignificant extent.

355. Let us contrast the resistance of a rod of timber

to extension with the effect upon a rope under the same

N
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circumstances. I have here a rope about u"'25 diameter ;

it is suspended from a point, and bears a 14 lb. weight

in order to stretch the rope completely. I mark points

upon the rope 2' apart. T now change the stone weight

for a weight of 1 cwt., and on measurement I find that

the two points which before were 2' apart, are now 2' 2"
;

thus the rope has stretched nearly at the rate of an inch

per foot for a strain of 1 cwt., while the timber did

not stretch perceptibly for a strain of 3 cwt.

356. We have already (Art. 37) explained the meaning

of the words " tie " and " strut
;

" a tie is used to resist

forces of extension, and thus from what we have seen

timber is admirably adapted to form ties : an enormous

strain is required to rend a beam asunder, and it does not

stretch to any appreciable extent. We shall subsequently

see the manner in which these useful properties of

timber are utilized in the arts of construction.

RESISTANCE TO COMPRESSION.

357. We proceed to examine into the capability of

timber to resist forces of compression, either as a pillar

or in any other form of " strut." A rope may compete

with timber as a tie, but is wholly inapplicable as a

strut. The use of timber as a strut depends in a great

degree upon the coherence of the fibres to each other, as

well as upon their actual rigidity. The action of timber

in resisting forces of compression is thus very different

from its action when resisting forces of extension ; we can

examine, by actual experiment, the strength of timber

under the former conditions, as the weights which it

will be necessary to employ arc within the capabilities of

our lecture-room apparatus.
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358. The apparatus is shown in Fig. 50. It consists

of a lever of the second order, 10' long, the mechanical
power of which is threefold ; the resistance of the bar
d e to be broken is the load to be overcome, and the

power consists of weights, to receive which the tray b is

used
; every pound placed in the tray produces a com-

pressive strain of 3 lbs. on the rod at d. The fulcrum is

at A and guides at G. The lever and the tray are heavy.

Fig. 50.

Their weight would complicate our calculations if it

were not counterpoised. A cord attached to the extremity

of the lever passes over a pulley F ; at the other end of

this cord, sufficient weights c are attached to neutralize

the weight of the lever. In fact, the lever and tray now
swing as if they had no weight, and we may therefore

leave them out of consideration. The rod d e to be ex-

perimented upon is fitted at its lower end E into a hole in

a cast-iron bracket : this bracket can be adjusted so as to

take in rods of different lengths ; the other end D of the

N 2
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rod passes through a hole in a second piece of cast-iron,

which is bolted to the lever : thus the rod is secured at

each end, and risk of slipping is avoided. The stands

are heavily weighted to secure the stability of the

arrangement.

359. The first experiment we shall make with this

apparatus is upon a pine rod 40" long and 0""5 square ;

the lower bracket is so placed that the lever is horizontal

when just resting upon the top of the rod. I begin to

place weights in the tray : these will produce a threefold

pressure, the effect of which will first be to bend the rod,

and, when the deflection has reached a certain amount, to

break it across. I place 28 lbs. in the tray : this produces

a pressure of 84 lbs. upon the rod, but the rod still remains

perfectly straight, so that it bears this pressure easily.

When the pressure is increased to 96 lbs. a very slight

amount of deflection may be seen. When the strain

reaches 114 lbs. the rod begins to bend into a curved

form, but with this pressure the amount of deviation of

the middle of the rod is still less than 0"2 -

5. Gradually

augmenting the pressure, I find that when it reaches

132 lbs. the deviation has reached 0""5
; and finally, when

48 lbs. is placed in the scale, that is, when the rod is

subjected to 144 lbs., it breaks across the middle. Hence

we see that this rod bore about 100 lbs. without sensibly

bending, but that it was broken when the weight was

increased about half as much again. Another experi-

ment with a similar rod gave a slightly less value

(132 lbs.) for the breaking weight. If I add these

results together, and divide the sum by 2, I find 138 lbs.

as the mean value of the breaking weight, and it is

probably near the truth.

360. Let us next try the resistance of a shorter rod of
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the same section. I place a piece of pine 20" long and
0" -

5 square in the apparatus, firmly securing each end, as

in the former case. The lower bracket is adjusted so as

to make the lever horizontal ; the counterpoise, of course,

remains the same, and weights are placed in the tray as

before. No deflection is noticed when the rod supports

126 lbs. ; a very slight amount of bending is noticeable

with 186 lbs. ; with 228 lbs., the amount by which the

centre of the rod has deviated laterally from its original

position is about 0""2
; and finally, when the load reaches

294 lbs., the rod breaks. Fracture first occurs in the

middle, but is immediately followed by other fractures

at the points where the ends of the rod are secured.

361. Hence the breaking load of a rod of 20" is more

than double the breaking load of a rod of 40" of the same

section ; from this we learn that the sections being equal,

short pillars are stronger than long pillars. The weight

that would tear either rod asunder by extension as a tie, is

very much greater than that which would suffice to crush

it as a strut. It has been ascertained by experiment

that the strength of a square pillar to resist compression

is proportional to the square of its section. Hence a rod

of pine, 40" long and 1" square, having four times the sec-

tion of the 40" rod we have experimented on, would be

sixteen times as strong, and consequently its breaking

weight would amount to nearly a ton.

CONDITION OF A BEAM STRAINED BY A TRANSVERSE

FORCE.

362. We next come to the very important subject of

the strength of timber when supporting a transverse

strain ; that is, when used as a beam. What is meant
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by a transverse strain will be understood from Fig. 51,

which represents a small beam, strained by a load at its

centre. Fig. 52 shows two supports 40" apart, across

which a rod of pine 48" x 1" x 1" is laid ; at the middle of

this rod a hook is placed, from which a tray for the recep-

tion of weights is suspended. A rod thus supported, and

bearing weights, is said to be strained transversely. This

form of strain is as commonly met with as the tensile

If!. 51.

and compressive strains already considered. A rafter of

a roof, the flooring of a room, a gangway, many forms

of bridge, and innumerable other examples, might be

given of beams strained in this manner. This subject

is so important that the remainder of this lecture and

the whole of the next will be devoted to it.

363. The first point to be noticed is the deflection of

the beam when a weight is suspended from it. The beam

is at first horizontal ; but as the weight in the tray is

augmented, the beam gradually curves downwards until,

when the weight reaches a certain amount, the beam
breaks across in the middle and the tray falls.

For convenience in recording the experiments the tray
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chain and hooks have been adjusted to weigh exactly

1 4 lbs. a b is a cord which is kept horizontal by the

weights v> : this cord gives a rough measure of the

deflection of the beam from its horizontal position when

strained by a load in the tray. In order to observe the

deflection accurately an instrument is used called the

cathetometer (g, Fig. 52). It consists of a small telescope,

Fin. 5-2.

which is always directed horizontally, though capable of

sliding up and down a vertical triangular rod ; on one

of the sides of the rod a scale is engraved, so that the

height of the telescope in any position can be accurately

determined. The cathetometer is levelled by means of

the screws H h, so that the triangular rod on which the

telescope slides is accurately vertical : the dotted line

shows the direction of the visual ray when the centre a of

the beam is seen by the observer through the telescope.
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Inside the telescope and at its focus a line of spider's

web is fixed horizontally ; on the bar to be observed, and

near its middle point c, a cross of two fine lines is marked.

The tray being removed, the beam becomes horizontal

;

the telescope of the cathetometer is then directed towards

the beam, so that the lines marked upon it can be seen

distinctly. By means of a screw the telescope may be

raised or lowered until the spider's web inside the

telescope is observed to pass through the image of the

intersection of the lines. The scale then indicates pre-

cisely how high the telescope is along its rod.

364. While I look through the telescope my assistant

suspends the tray from the beam. Instantly I see the

cross descend in the field of view. I lower the tele-

scope until the spider's web again passes through the

image of the intersection of the lines, and then by

looking at the scale I see that the telescope has been

moved down 0""19, that is, about one-fifth of an inch :

this is, therefore, the distance by which the cross lines

on the beam, and therefore the centre of the beam

itself, must have descended. Without this apparatus it

would be difficult to measure the amount of deflection

with any degree of precision. By placing successively

one stone after another upon the tray, the beam is seen to

deflect more and more, so that without the telescope you

can easily see the beam has deviated from the horizontal.

365. By observing, however, with the telescope, and

measuring in the way already described, the deflections

shown in Table XXIII. were determined. The scale

along the vertical rod was read after the spider's web had

been adjusted for each increase in the weight. The differ-

ence between each reading and the reading before the tray

was suspended is recorded as the deflection for each load.
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Table XXIII.

—

Deflection of a Beam.

A beam of pine 48" X 1" X 1" ; restiDg freely on supports 40" apart ; and
laden in the middle.

Number of
Experiment.
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A beam is always deflected whatever be the load it sup-

ports ; thus by looking through the telescope of the cathe-

tometer I can detect an increase of deflection when a single

pound is placed in the tray : hence whenever a beam is

used we must have deflection, it cannot be avoided. An
experiment will, however, show what amount of deflec-

tion does not produce an injurious effect.

368. A pine rod 40"xl"xl" is freely supported at

each end, the distances between the supports being 88",

and the tray is suspended from its middle point, A fine

pair of cross lines is marked upon the beam, and the tele-

scope of the cathetometer is adjusted so that the spider's

line exactly passes through the image of the intersection.

14 lbs. being placed in the tray, the cross is seen to

descend ; the weight being removed, the cross returns

precisely to its original position with reference to the

spider's line : hence, after this amount of deflection, the

beam has clearly returned to its initial condition, and is

evidently just as good as it was before. The tray next

received 56 lbs. ; the beam was, of course, considerably

deflected, but when the weight was removed the cross

again returned,—at all events, to within 0"'01 of where

the spider's line was left to indicate its former position.

We may consider that the beam is in this case also

restored to its original condition, even though it has

borne a strain which, including the tray, amounted to

70 lbs. But when the beam has been made to carry

84 lbs. for a few seconds, the cross does not completely

return on the removal of the load from the tray, but it

shows that the beam has now received a permanent
deflection of 0"-03. This is still more apparent after the
beam has carried 98 lbs., for when this load is removed
the centre of the beam is permanently deflected by 0""13.
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Here, then, we may infer that the fibres of the beam are

beginning to be strained beyond their powers of resist-

ance, and this is verified when we find that 28 addi-

tional pounds in the tray break the beam.

3(J9. Reasoning from this experiment, we might infer

that the elasticity of a beam is not affected by a weight

which is less than half that which would break it, and

that, therefore, it may bear without injury a weight not

exceeding this amount. As, however, in our experiments

the weight was only applied once, and then but for a

short time, we cannot be sure that a longer-continued or

more frequent application of the same strain might not

prove injurious ; hence, to be on the safe side, we assume

one-third of the breaking weight of a beam is the greatest

strain it should be made to bear in any structure.

370. We next consider the condition of the fibres of a

beam when strained by a transverse force. It is evident

that since the fracture commences at the lower surface of

the beam, the fibres there must be in a state of tension,

while those at the concave upper surface of the beam are

compressed together. This condition of the fibres may
be proved by the following experiment.

371. I take two pine rods, each 48" x l"x 1", perfectly

similar in all respects, cut from the same piece of timber,

and therefore probably of very nearly identical strength.

With a fine tenon saw I cut each of the rods half through

at its middle point. I now place one of these beams

on the supports 40" apart, with the cut side of the beam

upwards. I suspend from it the tray, which I gradually

load with weights until the beam breaks, which it docs

when the total weight is 81 lbs.

If I were to place the second beam on the same sup-

ports with the cut upwards, then there can be no doubt
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that it would require as nearly as possible the same

•weight to break it. I place it, however, with the cut

downwards, I suspend the tray, and find that the beam

breaks with a load of 31 lbs. This is less than half the

weight that would doubtless have been required if the cut

had been upwards.

372. What is the cause of this difference ? The fibres

being compressed together on the upper surface, a cut has

no tendency to open there ; and if the cut could be made
with an extremely fine saw, so as to remove but little

material, the beam would be substantially the same as if

it had not been tampered with. On the other band, the

fibres at the lower surface are in a state of tension ; there-

fore when the cut is below it yawns open, and the beam

is greatly weakened. It is, in fact, no stronger than a

beam of 48" X 0""5X 1", placed with its shortest dimension

vertical. If we remember that an entire beam of the

same size required about 140 lbs. to break it (Art. 366),

we see that the strength of a beam is reduced to one-

fourth by being cut half-way through and having the

cut underneath.

373. We may learn from this the practical conse-

quence that the sounder side of a beam should always

be placed downwards. Any flaw on the lower surface

will seriously weaken the beam : thus a knot in the

wood should certainly be placed uppermost, if there be a

choice. But if a portion of the actual substance of a

beam be removed—for example, if a notch be cut out of

it—this will be almost equally injurious on either side

of the beam.

374. This may be illustrated by a simple experiment.

I make two cuts 0"'5 deep in the middle of a pine rod
48" X 1" X 1". These cuts are 0" -

5 apart, and slightly
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inclined ; the piece between them being removed, a

wedge is shaped to fit tightly into the space ; the wedge

is long enough to project a little on one side. If the

wedge be uppermost when the beam is placed on the

supports, the beam will be in the same condition as if it

had two fine cuts on the upper surface. I now load the

beam with the tray in the usual manner, and I find it to

bear 70 lbs. securely. On examining the beam, which

has curved down considerably, I find that the wedge is

held in very tightly by the pressure of the fibres upon it,

but, by a sharp tap at the end, I knock out the wedge,

and instantly the load of 70 lbs. breaks the beam ; the

reason is simple— the piece being removed, there is no

longer any resistance to the compressive strain of the

upper fibres, and consequently the beam gives way.

375. The collapse of a beam by a transverse strain

commences by fracture of the fibres on the lower surface,

followed by a rupture of all fibres up to a considerable

depth. Here, then, we see that by a transverse force the

fibres in a beam of 48" X 1" X 1" are broken with a strain

of 140 lbs. (Art. 366) ; but we have already seen (Art. 353)

that to tear such a rod across by a direct pull at each end

a force of about four tons is necessary. Now, the break-

ing strain of the fibres must be a certain definite quantity,

yet we find that to overcome it in one way four tons is

necessary, while by another mode of applying the strain

140 lbs. is sufficient.

376. To understand this we may refer to the experi-

ment of Art. 28, wherein a piece of string was broken by

the transverse pull of a piece of thread. This was shown

to be due to the fact that one force may be resolved into

two others, each of them very much greater than itself.

This is what occurs also in the transverse deflection oi
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the beam : the force of 140 lbs. is changed into two other

forces enormously greater and sufficient to rupture the

fibres. We need not suppose that the force thus de-

veloped is so great as four tons, because that is the

amount required to tear across a square inch of fibres

simultaneously, whereas in the transverse fracture the

fibres appear to be broken row after row ; the fracture is

thus only gradual, nor does it extend through the entire

depth of the beam.

377. We shall conclude this lecture with one more

remark, on the condition of a beam when strained by a

transverse force. We have seen that the fibres on the

upper surface are compressed, while those on the lower

surface are extended ; but what is the condition of the

fibres in the interior ? There can be no doubt that the

following is the state of the case :—The fibres imme-

diately beneath the upper surface are in compression

;

at a greater depth the amount of compression diminishes

until at the middle of the beam the fibres are in their

natural condition ; on approaching the lower surface the

fibres commence to be strained in extension, and the

amount of the extension gradually increases until it

reaches a maximum at the lower surface.



LECTURE XIL

THE STRENGTH OF A BEAM.

A Beam free at the Ends and loaded in the Middle.—A Beam uni-

formly loaded.—A Beam loaded in the Middle, whose Ends are

secured.—A Beam supported at one end and loaded at the

other.

A BEAM FKEE AT THE ENDS AND LOADED IN THE
MIDDLE.

378. In the preceding lecture we have examined some

general circumstances in connection with the condition

of a beam acted on by a transverse strain ; we proceed

in the present to inquire more particularly into the

strength under these conditions. We shall, as before,

use for our experiments rods of pine only as we wish

rather to illustrate the general laws than to determine

the strength of different materials. The strength of a

beam depends upon its length, breadth, and thickness

;

we must endeavour to distinguish the effects of each of

these elements.

AVe shall only employ beams of rectangular section ;

this being generally the form in which beams of wood

are used. Beams of iron, when large, are usually not

rectangular, as the material can be more effectively dis-

posed in sections of a different form. It is important to
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distinguish between the stiffness of a beam in its capacity

to resist flexure, and the strength of a beam in its

capacity to resist fracture. Thus the stiffest beam which

can be made from the cylindrical trunk of a tree 1' in

diameter is 6" broad and 10""5 deep, while the strongest

beam is 7" broad and 9-#75 deep. We shall consider the

strength (not the stiffness) of beams.

379. We shall commence the inquiry by making a

number of experiments : these we shall record in a table,

and then we shall endeavour to see what we can learn

from an examination of this table. I have here ten pieces

of pine, of lengths varying from 1' to 4', and of three

different sections, viz. 1"X1" l"X0"-5,and 0"-5X0"-5.

I have arranged four different stands, on which we can

break these pieces : on the first stand the distance

between the points of support is 40", and on the other

stands the distances are 30", 20", and 10" respectively
;

the pieces being 4', 3', 2', and 1' long, will just be

conveniently held on the supports.

380. The mode of breaking is as follows :—The beam

being laid upon the supports, an S hook is placed at its

middle point, and from this S hook the tray is sus-

pended. . Weights are then carefully added to the tray

until the beam breaks ; the load in the tray, together with

the weight of the tray, is recorded in the table as the

breaking load.

381. In order to guard as much as possible against

error, I have here another set of ten pieces of pine,

duplicates of the former. I shall also break these ; and

whenever I find any difference between the breaking

loads of two similar beams, I shall record in the table

the mean between the two loads. The results are shown
in Table XXIV.
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Table XXIV.

—

Strength of a Beam.

Slips of pine cut from the same piece supported freely at each end ; the

length recorded is the distance between the points of support ; the load is

suspended from the centre of the beam, and gradually increased until the

beam breaks
;

u ^ -d ™™ area of section X depth
Formula, P = 6080 ; 7= *— .

length

Number of
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In this manner the column of breaking loads has been

found. The meaning of the two last columns of the

table will be explained presently.

383. We shall endeavour to elicit from these observa-

tions the laws which connect the breaking load with the

length, breadth, and depth of the beam.

384. Let us first examine the effect of the length ; for

this purpose we bring together the observations upon

beams of the same section, but of different lengths.

Sections of 0""5 x 0""5 will be convenient for this pur-

pose ; Nos. 4, 6, 8 and 10 are experiments upon beams

of this section. Let us first compare 4 and 8. Here we
have two beams of the same section, and the length of

one (40") is double that of the other (20"). When we
examine the breaking weights we find that they are

19 lbs. and 36 lbs.; the former of these numbers is

rather more than half of the latter. In fact, had the

breaking load of 40" been f lb. less, 18 -25 lbs., and had

that of 20" been \ lb. more, 36 "5 lbs., one of the breaking

loads would have been exactly half the other.

385. You must not look for perfect numerical accuracy

in these experiments ; Ave must only expect to meet with

approximation, because the laws for which we are in

search are in reality only approximate laws. Wood itself

is variable in quality, even when cut from the same

piece : parts near the circumference are different in

strength from those nearer the centre ; in a young tree

they are generally weaker, and in an old tree generally

stronger. Minute differences fin the grain, greater or less

perfectness in the seasoning, these are some of the

numerous circumstances which prevent one piece of

timber from being identical with another. We shall,

however, generally find that the effect of these differ-
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eiices is small, but occasionally this is not the case, and

in trying many experiments upon the breaking of timber,

discrepancies occasionally appear for which it is difficult

to account.

386. But you will find, I think, that, making reasonable

allowances for such difficulties as do occur, the laws on

the whole represent the experiments very closely.

387. We shall, then, assume that the breaking weight

of a bar of 40" is half that of a bar of 20" of the same

section, and we ask, Is this generally true ? is it true

that the breaking weight is inversely proportional to the

length ? In order to test this hypothesis, we can calcu-

late the breaking weight of a bar of 30" (No. 6), and then

compare the result with the observed value ; if the

supposition be true, the breaking weight should be given

by the proportion—
30"

:
40" :: 19 : Answer.

The answer is 25*3 lbs.; on reference to the table we find

25 lbs. to be the observed value, hence our hypothesis is

verified for this bar.

388. Let us test the law also for the 10" bar, No. 10

—

10": 40": : 19: Answer.

The answer in this case is 76, whereas the observed value

is 68, or 8 lbs. less; this does not agree very well with

the theory, but still the difference, though 8 lbs., is only

about 11 or 12 per cent, of the whole, and we shall still

retain the law, for certainly there is no other that can

express the result as well.

389. But the table will supply another verification.

In experiment No. 3, a 40" bar, 1" broad, and 0" -

5 deep,

broke with 38 lbs. ; and in experiment No. 7, a 20" bar of

the same section broke with 74 lbs. ; but 3 7,' the half of

74, is almost identical with the breaking weight of the

o 2
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40" bar. We shall, therefore, adopt the approximate law,

that for a given section the breaking load varies inversely

as the length of the beam.

390. We next inquire, what is the effect of the breadth

of the beam upon its strength ? For this purpose we

compare experiments Nos. 3 and 4 : we there find that a

bar 40" x 1" x 0"'5 is broken by a load of 38 lbs., while a

bar just half the breadth is broken by 1 9 lbs. We might

have anticipated this result, for it is evident that the bar

of No. 3 must have the same strength as two bars similar

to that of No. 4 placed side by side.

391. This view is confirmed by a comparison of Nos.

78, and where we find that a 20" bar takes twice the

load to break it that is required for a bar of half its

breadth. The law is also verified to a certain extent by

Nos. 5 and 6, though half the breaking weight of No. 5,

namely 29*5 lbs., is a little more than 25, the observed

breaking weight of No. 6 : a similar remark may be

made about Nos. 9 and 10.

392. Supposing we had a bar 40" long, 2" broad, and
0""5 deep, we can easily see that it is equivalent to two

bars like that of No. 3 placed side by side ; and we infer

generally that the strength of a bar is proportional to its

breadth ; or to speak more definitely, if I take two bars

of the same length and depth, the ratio of there breaking

loads is the same as the ratio of their breadths.

393. We next examine the effect of the depth of a

beam upon its strength. In experimenting upon a beam
placed edgewise, a precaution must be observed, which

would not be necessary if the same beam were to be

broken flatwise. When the tray is suspended, the beam,

if merely placed edgewise on the supports, would almost

certainly turn over ; it is therefore necessary to have its
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extremities in recesses in the supports, which will obviate

the possibility of this occurrence ; at the same time the

ends must not be firmly secured, for we are at present

discussing a beam free at each end, and the case where

the ends are not free will be presently considered.

394. Let us first compare together experiments Nos.

2 and 3 ; here we have two bars of the same size, the

section in each being l"
- x 0" -

5, but the first bar is

broken edgewise, and the second flatwise. The first

breaks with 77 lbs., and the second with 38 lbs. ; hence

the same bar is twice as strong placed edgewise as flat-

wise when one dimension of the section is twice as great

as the other We may generalize this law, and assert

that the strength of a beam broken edgewise is to the

strength of a similar beam broken flatwise, as the greater

dimension of its section is to the lesser dimension.

395. The strength of a beam 40" x 0" -

5 x "1 is four

times as great as. the strength of 40" x 0" -

5 x 0" -

5,

though the quantity of wood is only twice as great in

one as in the other. We have seen that the strength of

40" x l"x 0'"5 placed flatwise is only as strong as two

beams 40" x 0"'5 x 0""5 side by side, but the same is not

true of a beam placed edgewise : thus, for example, two

beams of experiment No. 4, placed one on the top of the

other, would break with about 40 lbs., whereas if the

same rods were in one piece, the breaking weight would

be nearly 80 lbs.

396. This may be illustrated in a different manner. I

have here two beams of 40" x 1" x 0" -

5 laid one on the

other ; they form one beam, equivalent to that of No. 1

in bulk, but I find that they break with 80 lbs., thus

showing that in reality the two are only twice as strong

as one of them.
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397. I take two similar bars, and, instead of laying

them loosely one on the other, I clamp them together

with clamps of Fig. 56. I now find that the bars thus

fastened together require 104 lbs. to break them. What
is the cause of this increase of strength 1 The moment

the rods begin to bend under the action of the weight,

the surfaces which are in contact move slightly one

upon the other in order to accommodate themselves to

the change of form. By clamping I render this motion

difficult, hence the beams deflect less, and require a

greater load to break them ; the case is therefore to some

extent approximated to the state of things when the two

rods form one solid piece, in which rase it would require

152 lbs. to produce fracture.

398. We shall be able by a little consideration to under-

stand the reason why a bar is stronger edgewise than flat-

wise. Suppose I try to break a rod across my knee by

pulling the ends held one in each hand, what is it that

resists the breaking 1 It is chiefly the tenacity of the

fibres on the convex surface of the bar. If the bar be

edgewise, these fibres are further away from the centre of

the bar, and act therefore at a greater leverage than if

the bar be flatwise : nor is the case different when the

bar is supported at each end, and the load placed in the

centre ; for the reactions of the supports are exactly

similar to the forces with which I pulled the ends of

the bar in the former case.

399. We shall now be able to calculate the strength of

any beam of pine when we know its dimensions.

Let us suppose a beam 12' long, 5" broad, and 7" deep.

This is five times as strong as a beam 1" broad and 7"

deep—in fact, we may conceive the original beam to

consist of 5 of these beams placed side by side ; the beam
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1" broad and 7" deep, is 7 times as strong as a beam 7"

broad, 1" deep (Art. 394). Hence the original beam must

be 35 times as strong as a beam 7" broad, 1" deep ; but

the beam 7" broad and 1" deep is seven times stronger

than a beam the section of which is 1" x 1", hence the

original beam is ^45 times as strong as a beam 12' long

and 1" x 1" in section, but the strength of the last beam

is found by the proportion—

•

144": 40":: 152 : Answer.

The answer is 42*2 lbs., and thus the strength of the

original beam is 42"2 x 245 = 10339.

400. We shall find it very useful to determine a

general expression by which we can calculate the weight

at once ; we shall therefore find the strength of a beam

which is I" long, b" broad, and d" deep.

Let us suppose a rod I" long, and 1" x 1" in section.

The breaking strength of this rod is thus found—
1 :40 : : 152 : Answer;

hence the breaking strength is ——• A beam which is
V

d" broad, I" long, and 1" deep, would be just as strong as

d of the bars I" x 1" x 1" placed side by side ; its strength

would therefore be

—

6080 ,

-r x d

If this beam, instead of being flatwise, were placed

edgewise, its strength would be increased in the ratio of

its depth to its breadth—that is, it would be increased

d-fold—and would therefore be

6080 i2-j-xd.

This, therefore, is the strength of a beam 1" broad, d"

deep, and I" long. Now, the strength of b of these bars
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placed side by side, would be the same as the strength

of one bar b" broad, d" deep, and I" long, which would

therefore be 6080 , !x ,

v

Since b d is the area of the section, we can express this

result conveniently by saying that the breaking weight of

a bar expressed in lbs. is

area of section x depth
6080 x ;——

r

*—
I

length

the depth and length being expressed in inches linear

measure, and the section in square inches.

401. In order to verify this rule, we have calculated

by its help the strength of all the ten bars given in

the table, and the result is recorded in the sixth column.

The difference between the amount calculated in this

way and the observed mean values is recorded in the

last column.

402. Thus, for example, in experiment No. 7 the length

is 20", breadth 1", depth 0"'5
; the formula gives, since

the area is 0""5,

P=6080^-^— = 76.
20

This agrees very nearly with 74 lbs., which is the mean
of the two observed values.

403. With the exceptions of Nos. 5 and 10, the differ-

ences are very small, and even in the excepted cases the

differences are not sufficient to make us doubt that the

law is really what it professes to be, namely an approxi-

mation.

404. We have already pointed out that a beam begins

to sustain permanent injury when it carries a load which

is greater than half that which would break it (Art. 368),

and we have shown that it is not in general safe to load
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1

a beam which is part of a permanent structure with more

than about a third or a fourth of the breaking weight.

Hence if we wanted to calculate a fair working load for

a beam of pine, we might employ the rule that the load

in lbs. was
area of section x depth

1500 x 1 it-
i

length

405. What we have said hitherto relates to pine ; had

we adopted any other kind of wood we should have

found a similar expression for the breaking weight, the

only difference being in the number which forms part of

the product. Thus, for example, had I taken oak, I

should have found that the number 6080 must be re-

placed by one a little larger.

A BEAM UNIFORMLY LOADED.

406. We have up to the present only considered the

case where the load is suspended from the centre of the

beam. But in the actual employment of beams the load

is not generally applied in this manner. Thus in the

rafters which support a roof the weight of the roof is not

applied only at the middle point, but every part in the

entire length has its own burden to support. The beams

which support a floor have to carry their load in what-

ever manner it may be placed on the floor : sometimes, as

for example in a corn- store, the pressure will be tolerably

uniform along the beams, while if the weights be irre-

gularly distributed on the floor, there will be corre-

sponding inequalities in the mode in which the loads are

carried by the beams. In order, therefore, to complete

our study of the strength of beams, it will be necessary

to examine the strength of a beam when its load is
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applied otherwise than in the manner we have already

considered.

407. We shall employ, in the first place, a beam 40"

long, 0"-5 broad, and 1" deep ; and we shall break this by

applying a load at two points of the beam instead of at

one point : this may be done in the manner shown in the

diagram, Fig. 53. a b is the beam resting on two sup-

ports ; c and d are the points of trisection of the beam

;

from these loops descend, in which rests an iron bar P Q

;

at the centre R of the bar p Q the load w is suspended.

1
B

IIIIIIBIlL

(§m

Fig. 53.

The load is thus applied equally at the two points c and

d, and we may regard A B as a beam loaded at its two

points of trisection. The tray is used which is shown* in

Fig. 58.

408. I proceed to break this bar. Adding weights to

the tray, I find that it yields with 117 lbs., and cracks

across between c and d. On reference to Table XXIV.
we see by experiment No. 2 that a bar precisely similar

required 77 lbs. at the centre ; now § x 77= 115'5; hence

we may state that as nearly as possible the bar is half as

strong again when the load is suspended from the two

points of trisection as it is when the load is suspended at

the centre. It is remarkable that in breaking the beam
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in this manner the fracture is equally likely to occur at

any point between c and D.

409. A beam uniformly loaded requires twice the

weight to break it that would be necessary if the load

were merely suspended from its centre. The mode of

applying a load uniformly is shown in Fig. 54.

Fig. 54.

A beam similar to that just described, 40" x 0"'5 x 1",

bears 10 stone, ranged along it in this manner, without

breaking ; one or two stone more would, however, doubt-

less produce fracture.

410. We infer from these considerations that beams

in the manner in which they are usually employed are

stronger than would apparently be indicated by Table

XXIV. ; this is because the loads are most commonly

not applied at the centre.

EFFECT OF SECURING THE ENDS OF A BEAM UPON ITS

STRENGTH.

411. You must have noticed that when weights were

suspended from a beam and the beam began to bend, the

ends curved upwards from the supports. This bending

of the ends is shown in Fig. 54. If we restrain the beam

from bending up in this manner, we shall add very con-

siderably to its strength. I can do this by clamping the

two ends down to the supports.
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412. Let us try this upon a beam 40" x 1" x 1". I

clamp each of its ends and then break it by a weight

suspended from the middle. I find that it requires

238 lbs. to accomplish fracture. This is a little more

than half as much again as 152 lbs., which we find, from

Table XXIV., was the weight required to break this bar

when its ends were free. In general we may say that

the strength of a beam is increased upwards of fifty per

cent, by having its extremities firmly secured.

413. When the beam breaks under these circumstances,

there is not only a fracture in the centre, but there is

also a fracture of the beam at each of the points of sup-

port ; the necessity for three fractures instead of one

explains the increase of strength which is obtained by

clamping the ends.

414. In structures the beams are generally more or

less secured at each end, and are therefore more capable

of bearing resistance than would be indicated by Table

XXIV. From the consideration of Arts. 409 and 412,

we can infer that a beam secured at each end and

uniformly loaded would require fully three times the

weight to break it that would be necessary if its ends

were free and if the load were applied at its centre.

BEAMS SECURED AT ONE END AND LOADED AT

THE OTHER.

415. A beam, one end of which is firmly imbedded in

masonry or otherwise secured, is occasionally called upon

to support a weight suspended from its extremity. Such

a case is shown in Fig. 55.

A B is a beam which is firmly imbedded at A, and the

weight w is suspended from B. In the case which we
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shall examine, ab is a bar 20" x 0"*5 x 0""5, and you see

that, when w reaches 10 lbs., the bar breaks. In expe-

riment No. 8, Table XXIV., a similar bar required

36 lbs. ; hence we see that the bar is broken in the

manner of Fig. 5 5 by one-fourth of the load which would

have been required if the beam had been supported at

each end and laden in the middle. The same law may
be observed by trial with other beams.



LECTURE XIII.

THE PRINCIPLES OF FRAMEWORK.

Introduction.—Weight sustained hy Tie and Strut.—Bridge with Two

Struts.—Bridge with Four Struts.—Bridge with Two Ties.—Simple

Form of Trussed Bridge.

INTRODUCTION.

416. In this lecture and the next we shall give a

slight sketch of the arts of construction. We shall em-

ploy slips of pine 0"'5 x 0" -

5 in section for the purpose of

making models of simple constructions : these slips can

he attached to each other by means of

the small clamps, about 3" long, shown in

Fig. 56, and the general appearance of

the models thus produced may be seen

from Figs. 58 and 62.

417. The following experiment shows the tenacity

with which these clamps hold. Two slips of pine, each

12"x 0" -

5 x 0" -

5, are clamped together, so that they over-

lap about 2", thus forming a length of 22"
: this rod is

raised as in Fig. 49, and it is found that weights amount-

ing to 2 cwt. can be suspended from it. Thus the clamped

rods bear a direct strain of 2 cwt. This property of the

clamps depends principally upon friction, aided doubtless

by a slight crushing of the wood, which brings the surfaces

into perfect contact.
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418. Hence the models thus united by the clamps are

possessed of strength quite sufficient for the experiments

which will be made upon them. They possess the great

advantage of being erected, varied or pulled down, with

the utmost facility.

We have learned that the compressive strength, and,

still more, the tensile strength of timber, is much greater

than its transverse strength. This principle is largely

used in the arts of construction. We endeavour by

means of suitable combinations to turn transverse strains

into strains of tension or compression, and thus strengthen

our constructions. It is most important to bear this

principle in mind. We shall illustrate it by simple forms

of framework.

WEIGHT SUSTAINED BY TIE AND STRUT.

419. We shall begin by a very simple case, and

one which is in extensive use ; it is represented by

Fig. 57.

Fir:. 57.

A B is a rod of pine 20" long. In the diagram it is

represented, for simplicity, imbedded at the end A in the
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support. In reality, however, it is clamped to the

support, and the same remark may be made about the

other diagrams referred to in this lecture. AVere A B un-

supported except at its end A, it would break when a

weight of 10 lbs. was suspended at B, as we have already

seen in Art. 415.

420. We must ascertain whether the transverse strain

on A B cannot be changed into strains of tension and

compression. The tie b c is attached by means of clamps ;

A b is sustained by this tie ; it cannot bend downwards

under the action of the weight w, because we should

then require to have on the same base and on the same

side of it two triangles, having their conterminous sides

equal, but this we know from Euclid (I. 7) is impossible.

Hence b is supported, and we find on trial that 112 lbs.

is easily borne at w, so that the strength is enormously

increased. In fact the transverse strain is now changed

into a compressive strain on A b, and a tensile strain

on b c.

421. The amount of these strains can be computed.

Draw the parallelogram cdeb; then if b d represent

the weight w, it may be resolved into two forces,—one,

b c, a force of extension on the tie ; the other, be, a

compressive force on A B, which is therefore a strut.

Hence the forces are proportional to the sides of the

triangle, abc, In the present case

A B = 20", AC= 18", B c = 27";

therefore, when w is 112 lbs., it is easy to see that the

strain on a b is 124 lbs., and on cb 168 lbs. ab would

require about 300 lbs. to crush it, and c B about 2,000

lbs. to tear it asunder, consequently the tie and strut can

support 1 cwt. with ease. If, however, w were increased

to about 270 lbs., the strain on a b would become too
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great, and the construction would fail by the collapse of

this strut.

422. When a structure is loaded up to the breaking

point of one part, it is proper that all the other parts

should be so designed that they shall be as near as

possible to their breaking points. In fact, since nothing

is stronger than its weakest part, any additional strength

which the remaining parts may possess adds no strength

to the whole, and is only so much material wasted.

Hence the structure would be just as strong, and would

be more properly designed if the section of b c were

reduced to one-fifth, for the tie would then break when the

strain upon it amounted to 400 lbs. When w is 270 lbs.

the strain on a b amounts to 300 lbs., and on bo to about

400 lbs., so that both tie and strut attain their breaking

strain together. In large structures where economy of

material is of importance, this principle is carefully

attended to by the designer. We shall not, however,

refer to it again.

a bridge with two struts.

423. We shall next examine the structure of the

bridge, which is shown in Fig. 58.

It consists of two beams, A b, 4' long, placed parallel

to each other at a distance of 3" -

5, and supported at each

end ; they are firmly clamped to the supports, and a

roadway of short pieces is laid upon them. At the

points of trisection of the beams c, D, struts cf, de
are clamped, their lower ends being supported by the

framework : these struts are 2' long, and there are two

of them supporting each of the beams. The tray G is

attached by a chain to a stout piece of wood, which

rests upon the roadway at the centre of the bridge.

p
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424. We shall first determine the strength of this

bridge by actual experiment, and then we shall endeavour

to explain the results by what we have already learned.

We can observe the deflection of the bridge by the

catbetometer in the manner already described (Art. 363).

Fio. 58.

By this means we shall ascertain whether the load has

permanently injured the elasticity of the bridge (Art. 368).

We shall first test the strength when a load is distributed

uniformly, just as the weights are disposed in the case of

Fig. 62. A cross is marked upon one of the beams, and
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is viewed in the cathetometer. I arrange 11 stone

weights along the bridge, and the cathetometer shows

that the deflection is only 0""09
: the elasticity of the

bridge remains unaltered, for when the weights are re-

moved the cross on the beam returns to its original

position ; hence the bridge is well able to bear this load.

425. I remove the row of weights from the bridge and

suspend the tray from the roadway. I take my place

at the cathetometer to note the deflection, while my
assistant places weights H H on the tray.' 1 cwt. being

the load, I see that the deflection amounts to 0" -

2

;

with 2 cwt. the deflection reaches 0"43" ; and the bridge

breaks with 238 lbs.

426. Let us endeavour to calculate the strength which

the struts have really imparted to the bridge. By Table

XXIV. we see that a rod 40" x 0" -

5 x 0""5 is broken by a

load of 19 lbs. : hence the beams of the bridge would

have been broken by a load of 3S lbs. This load is for

beams which are free at the ends, while the- beams of

the bridge were secured at the ends. Securing ;the ends

according to the principle of Art. 412 doubles' the

strength, but about 80 lbs. would certainly have broken

the bridge had it not been sustained by the struts.

The strength is, therefore, increased about threefold by

the struts, for a load of 238 lbs. was required to produce

fracture.

427. We might have anticipated this result, because

the points c and d being supported by the struts may be

considered as almost fixed points; in fact, the point c

cannot descend, because the triangle a c f is unalterable,

and for a similar reason D cannot descend : the beam

breaks between c and r>, and the force required must

therefore be sufficient to break a beam supported at the

p 2
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points c and d, whose ends are secured. But c D is one-

third of A B, and we have already seen that the strength

of a beam is inversely as its length (Art. 389) ; hence the

force required to break the beam when supported by the

struts is three times as large as would have been necessary

to break the unsupported beam. Thus the strength of

the bridge is explained.

428. As a load of 238 lbs. applied at the centre is

necessary to break this bridge, it follows from the prin-

ciple of Art. 409 that a load of double this amount, or

nearly 500 lbs., must be placed uniformly on the bridge

before it succumbs ; we can, therefore, understand how a

load of 1 1 stone was borne (Art. 424) without permanent

injury to the elasticity of the bridge. If we take the factor

of safety as 3, we see that a bridge of the form we have

been considering may carry, as its ordinary working

strain, a load which would have crushed the bridge

if unsupported by the struts.

429. The strength of the bridge in Fig. 58 is greater

in some parts than in others. At the points c and d a

very great strain could be borne; in fact the clamps

would slip before fracture could occur : the weakest

places on the bridge are in the middle points of the

segments A c, c D, and d b. The load we applied by the

tray was principally borne at the middle of d o, but

owing to the piece of wood which sustained the chain

having some length, the pressure was slightly dis-

tributed.

The exact strain upon the struts is difficult to find.

The strain upon cf must, however, be less than if the

part c D were removed, and half the load were suspended

from c. The strain in this case can be found (see Arts.

419—421).
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A BRIDGE WITH JFOUE STEUTS.

430. The same principles that we have employed in

the construction of the bridge of Fig. 58 may be ex-

tended further, as shown in the diagram of Fig. 59.

Fig. 59.

We have here two horizontal rods, 48" x 0" -

5 x 0"'5,

each end being secured to the supports ; one of these

rods is shown in the figure. It. is divided into five equal

parts in the points B, c, c'}
b'. We support the rod in

these four points by struts, the other extremities of which

are fastened to the framework. Now b, c, c', b' are fixed

points, as they are sustained by the struts : hence a

weight suspended from p, which is to break the bridge,

must be sufficiently strong to break a piece c c', which is

secured at the ends ; the rod a a' would have been broken

with 38 lbs., hence 190 lbs. would be necessary to break

c c'. There is a similar beam on the other side of the

bridge, and therefore to break the bridge 380 lbs. would

be necessary, but this force must be applied exactly at the

centre of cc'; and if the weight be so applied that it is

distributed over any considerable length, a heavier load

will be necessary. If I distribute the load over the

whole of c c', it appears from Art. 409 that 760 lbs.

would be necessary to produce fracture.
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431. This bridge is extremely strong. I place 18 stone

upon it ranged uniformly, and the cathetometer tells me

that the bridge only deflects 0" -

l, and that its elasticity is

not injured. Placing the tray in position, and loading

the bridge by this means, I find with a weight of 2 cwt.

that there is a deflection of 0"-15
; with 4 cwt., how-

ever, the deflection amounts to 0""72. We therefore infer

that the bridge is beginning to yield, and it collapses

when the load is increased to 500 lbs.

A BRIDGE WITH TWO TIES.

432. It often happens that circumstances may not

make it convenient to obtain points of support below the

bridge on which to erect the struts. In such a case, if

suitable positions for ties can be obtained, a bridge of

the form represented in Fig. 60 may be used.

ggggwjj

Fig. 60.

A d is a horizontal rod of pine 40" x 0"'5 x 0"'5
; it is

trisected in the points B and c, from which points the ties

B E and c E are secured to the upper parts of the frame-

work, ad is then supported in the points B and c,

which may therefore be regarded as fixed points. Hence,
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in the manner we have already explained, the strength of

the bridge should be increased nearly threefold. It would
require about 70 lbs. or 80 lbs. to break it without the

ties, and therefore we might expect that it would require

over 200 lbs. when supported by the ties. I perform

the experiment, and you see the bridge yields when
the load reaches 194 lbs.: this is somewhat less than

the amount we had calculated ; the reason being, I think,

that one of the clamps slipped before fracture. The

clamps do not answer as well for ties as for struts.

A SIMPLE FORM OF TRUSS.

433. It is often not convenient, or even possible, to

sustain a bridge by the methods we have been con-

sidering. It is desirable therefore to inquire whether we

cannot arrange some plan of strengthening, which shall

not depend upon external support.

434. We shall only be able to describe here some very

simple methods for doing this. Superb examples are to

be found in railway bridges all over the country, but

the full investigation of these complex structures is a

problem of no little difficulty, and one into which it

would be quite beyond our province to enter. We shall,

however, be able to show how the transverse strains can

be changed into strains of tension or compression, and it

is on this principle that the most complex lattice bridge

is based.

435. Let A B (Fig. 61) be a rod of pine 40" x 0"'5

x 0" -

5, secured at each end. We shall suppose that the

load is applied at the two points G and H, in the manner

shown in the figure. The load which a bridge must bear

when a train passes over it is distributed over a space
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equal to the length of the train, and the weight of the

bridge is of course distributed along the length of the

bridge ; hence the load which a bridge bears is at all

times more or less distributed, and never all concentrated

at the centre in the manner we have been considering.

In the present experiment we shall apply the breaking

load at the two points G and h, as this will be a variation

from the mode we have previously used, e f is an iron

Fig. 61.

bar supported in the loops e g and f h. Let us first try

what weight will break the beam. Suspending the tray

from e f, I find that a load of 48 lbs. is sufficient ; about

30 lbs. would have been enough bad not the ends been

clamped. The strength is due to the causes we have

already pointed out (see Arts. 407 and 412).

436. You observed that the beam, as usual, deflected

before it broke ; if we could prevent deflection we might

fairly expect to increase the strength. If I could support

the centre of the beam c, deflection would be prevented.

Now this can be done very simply. I clamp the pieces

d A, d B, D c on a new beam, and it is evident that c

cannot descend so long as the joints at A, B, D, c re-

main firmly secured. We now find that even with a

weight of 112 lbs. in the tray, the bar is unbroken. An
arrangement of this kind is called a truss, and we see
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that the truss bears securely more than double the load

which is sufficient to break the unsupported beam.

4:37. Two trusses of this kind, with a roadway laid

between them, would form a bridge, or if the trusses were

turned upside down they would answer equally well, but

a better arrangement for a bridge will be next described.

THE TRUSSED BRIDGE.

438. A splendid example of the trussed bridge was

erected by the late Sir I. Brunei over the Wye, for the

purpose of carrying a railway. The essential parts of

the bridge are shown in Fig. 62, which is made up of

slips of pine clamped together in the manner already

explained.

Fig. 62.

4:39. The model is composed of two similar trusses,

one of which we shall describe, ab is a rod of pine

48" x 0"'5 x 0"-5, supported at each extremity. This rod

is sustained at its points of trisection d, c by the uprights

d e and c F, while e and f are supported by the rods
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B E, F E, and A F ; the rectangle D E F c is stiffened by

the piece c e, and it would be desirable, though not

essential, to have a piece connecting D and F, but it has

not been introduced into the model.

440. We shall understand the use of the stiffening-

piece by an inspection of Fig. 63. Suppose abcd be

a quadrilateral, formed of four pieces

of wood hinged at the corners. It is

evident that this quadrilateral can be

deformed by pressing A and c together,

or by pulling them asunder ; even if

there were actual joints at the corners,

FlG - 63 -

it would be almost impossible to make

the quadrilateral stiff by the strength of the joints.

You see this by the quadrilateral of wood which I hold

in my hand ; the pieces are clamped together at the

corners, and no matter how tightly I" compress the

clamps, I am able with the slightest exertion to deform

-the quadrilateral.

441. We must therefore look for some method of

stiffening the figure. I have here a triangle of three

pieces, which have been simply clamped together at the

corners : this triangle is unalterable in form ; in fact, since

it is impossible to form two different triangles with the

same three sides, it is evident the triangle cannot be

altered. This points to the mode of evading the difficulty.

The quadrilateral is not stiff because innumerable

different quadrilaterals can be made with the same four

sides. But if I draw the diagonal ac of the quadrilateral

I divide it into two triangles, and hence if I attach to the

quadrilateral, which has been clamped at the four corners,

an additional piece in the direction of one of the

diagonals, it becomes unalterable in shape.
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442. In Fig. 63 we have drawn the two diagonals a c

and b d : one would be theoretically sufficient, but it is

desirable to have both, and for the following reason.

If I pull A and c apart, I stretch the diagonal AC and
compress bd. If I compress A and c together, I compress

the line A c and extend B d ; hence in one of these cases A o

is a tie, and in the other it is a strut. It is therefore easy

to see that one of the diagonals is always a tie, and the

other always a strut. If then we have only one diagonal,

it is called upon to perform alternately the functions of a

tie and of a strut. This is not desirable, because it is

evident that a piece which may act perfectly as a tie

would be very unsuitable for a strut, and vice versd. But

if we insert both diagonals we may make both of them

ties, or both of them struts, and the frame must be rigid.

Thus for example, I might make A c and b d slender bars

of wrought iron, which form admirable ties, though quite

incapable of acting as struts.

443. What we have said with reference to the

necessity for dividing a quadrilateral figure into triangles

applies still more to a polygon of a large number of

sides, and we may lay down the general principle that

every piece of rigid framework must be composed of

triangles.

444. Eeturning to Fig. 62, we see the reason why the

rectangle edcf must have one or both of its diagonals

introduced. A load placed, for example, at D would tend

to depress the piece D E, and thus deform the rectangle,

but when the diagonals are introduced this deformation

is impossible.

445. Hence one of these trusses is almost as strong as

a beam supported at the points c and D, and therefore,
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from the principle of Art. 389, its strength is three times

greater than that of an unsupported beam.

446. The two trusses placed side by side and carrying,

a roadway form an admirable bridge, quite independent

of all external support with the exception of the piers

upon which the extremities of the trusses rest. It would

be proper to connect the trusses together by means of

braces, which are not, however, shown in the figure.

The model is represented as carrying a uniform load

in contradistinction to Fig. 58, where the load is applied

at a single point.

447. With a load of eight stone ranged along it,

the bridge of Fig. 62 did not indicate an appreciable

deflection.



LECTURE XIV.

THE MECHANICS OF A BRIDGE.

Introduction.—The Girder.—The Tubular Bridge.—The Suspension

Bridge.

INTRODUCTION.

448. Perhaps you may have thought that the

structures we have been considering are not those which

are most universally used, and that the bridges which

are generally referred to as monuments of engineering

skill are of quite a different construction. Every one is

familiar with the arch, and at all events, by name, with

suspension bridges, and tubular bridges. We must there-

fore allude further to some of these structures, and this

we propose to do in the present lecture. It will only be

possible to do so to a very small extent, for whole treatises

have been written on these subjects.

We shall first give a brief account of the use of iron

in the arts of construction. We shall then explain

simply the principle of the tubular bridge, and also of

the suspension bridge. The more complex forms are

beyond our scope.

THE GIRDER.

449. Abeam which is intended to be supported at each

end, and to carry its load between the ends, is called a
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girder. Those rods upon which we have performed

experiments, the results of which have been given in

Table XXIV., are small girders ; but the term " girder
"

is generally understood to relate to structures of iron,

as beams on a large scale are often made of bars or

plates of iron riveted together.

450. We shall first consider the application of cast

iron to girders, and show what form they should assume.

451. A beam of cast iron, supposing its section to be

rectangular, has its strength determined by the same

laws as the rods of pine. Thus, supposing the section of

the beams to be the same, their strengths are inversely

proportional to their lengths, and the strength of a beam
placed edgewise is to its strength placed flatwise, in the

proportion of the greater dimension of its section to the

less dimension. These laws determine the strength of

every beam of cast iron when the strength of one beam
is known, and we must perform an experiment in order

to find the strength of one beam.

452. I take here a beam of cast iron, which is 2' long,

and 0"'5 x 0""5 in section. I support this beam at each

end upon a frame ; the distance between the supports

is 20". I attach the tray to the centre of the beam and

load it with weights. The ends of the beam rest freely

upon the supports, but I have taken the precaution of

tying each end by a piece of wire, so that they may
not fly when the fracture occurs. Loading the tray, I

find that 280 lbs. breaks the rod of iron.

453. Let us compare this result with No. 8 of Table

XXIV. There we find that a piece of pine, the same size

as the cast iron, was broken with 36 lbs. : the ratio of 280

to 36 is nearly 8, so that the beam of cast iron is about

8 times as strong as the piece of pine of the same size.
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This result is a little larger than I would have expected,

from an examination of tables of the strength of large

bars of cast iron ; the reason may be that a very-

small casting, such as this bar, is stronger in proportion

than a larger casting, owing to the iron not being so

uniform throughout the larger mass.

4.54. I hold here a bar of cast iron 12" long and
1" x 1" in section. I have not sufficient weights at hand

to break it, but we shall easily be able to compute how
much would be necessary by our former experiment.

43.5. In the first place a bar 12" long, and 0"*5 x 0"'5

of section, would require 20x280 -*- 12 = 467 lbs. by

the law that the strength is inversely as the length. We
also know that a beam 12""1 x l"x 1" is just the same

as two beams 12" x 1" x 0" -

5, each placed edgewise ; each

of these latter beams is twice as strong as 12" x l" x 0"'5

placed flatwise, because the strength when placed edge-

wise is to the strength when placed flatwise, as the

depth to the breadth, that is as 2 to 1 : hence the original

beam is four times as strong as one beam 12" x 1" x 0""5

placed flatwise ; but this last beam is twice as strong as

a beam 12" x 0""5 x 0" -

5, and hence we see that a beam
12" x l"x 1" is really 8 times as strong as a beam of

12" x 0""5 x 0"'5, but this last beam would require a

load of 467 lbs. to break it, and hence the beam of

12" x l"x 1" would require 467 x 8 = 3736 lbs. to pro-

duce fracture. This amounts to about a ten and a half.

456. It is a rule sometimes useful to practical men that

a bar of iron one foot long by one inch square would break

with about a ton weight. If the iron be of the same

quality as that which we have used, this result is too

small, but the error is on the safe side ; the real

strength will then be generally a little greater than the
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strength as calculated by this rule. Of course what we

have said with reference to the factor of safety in bars

of wood applies also to cast iron. The strain which the

beam has to bear in ordinary practice should only be a

small fraction of the load which would break the beam.

457. In making a girder of cast iron it is desirable for

the sake of economy that as little material as possible be

uselessly employed. It will of course be remembered that

a girder has to support its own weight, besides whatever

may be placed upon it; and if the girder be massive, its

own weight is a serious item. Of two girders, each

capable of bearing the same total load, the lighter,

besides employing less material, will be able to bear a

greater weight placed upon it. It is therefore for a double

reason desirable to diminish the weight. This remark

applies especially to a material such as cast iron, which

can at once be cast into the form in which it shall be

capable of offering the greatest resistance.

458. The principles which will guide us in ascertain-

ing the proper form to give a cast iron girder, are easily

deduced from what we have laid down in Lectures XL
and XII. We have seen that depth is very desirable for

a strong beam. If therefore we strive to attain great

depth in a light beam, the beam must be very thin. Now
an extremely narrow beam will not answer. In the first

place it would not be stiff, but would be liable to move
sideways ; and, in the second place, there is a still more

fatal difficulty. We have shown that when a beam of

wood is supporting a weight, the fibres at the bottom of

the beam are strained, the tendency being to tear them
across. The fibres on the top of the beam are compressed,

while the. centre of the beam is in its natural condition.

The condition of strain of a cast-iron beam is precisely
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Fig. 64.

similar
; the bottom portions are in a state of extension,

while the top is compressed. If therefore a beam be very
thin, and not inconveniently deep, the material at the
lower part may not be sufficient to withstand the strain,

and fracture is produced. The way to obviate this, is

to strengthen the bottom of the beam by placing extra

material upon it. Thus we are led to the idea of a

thin beam with an excess of iron at the bottom.

459. E F (Fig. 64) is the thin iron

beam along the bottom of which is

the stout flange shown at cd;
rupture cannot commence at the

bottom unless this flange be torn

asunder ; and unless the bottom be

torn across, it is clear that the

strain cannot rupture the beam at

the part f above the flange.

460. But the beam is in a state of compression along

its upper side, just as in the wooden beams which we
have already considered. If therefore the upper parts

were not powerful enough to resist this compression, they

would be crushed, and the beam would give way. The

remedy for this source of weakness is obvious ; a second

flange runs along the top of the beam, as shown at A B.

If this be strong enough to resist the compression, the

stability of the beam is ensured.

461. It will be noticed that the upper flange is very

much smaller than the lower flange ; the reason for this

depends upon a property of cast iron. This metal is more

capable of resisting forces of compression than forces of

extension, and it is only necessary to have one-sixth of

the iron on the upper flange that is required for the lower

flange. When the flanges have this proportion, the beam

Q
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is equally strong at both top and bottom ; adding material

to either flange without strengthening the other, will not

strengthen the beam, but will rather prove a source of

weakness, by increasing the weight which has to be

supported.

462. I have here a small girder of common tin-plate,

which has been made of the shape shown in Fig. 64. It

is 12" long. I support it at each end, and you see it bears

two hundred weight without apparent deflection.

THE TUBULAR BRIDGE.

463. I shall commence the description of the prin-

ciple of the tube by performing some experiments upon

the tube, which I hold in my hand. It is made of what

we are familiar with under the name of " tin," but which

is really sheet iron thinly covered over with tin ; the tube

is square, l' x 1" in section, and 38" long. It weighs a

little less than a pound.

464. Here is a solid rod of iron which is of the same

length as the tube, but which contains more iron. This

is easily verified by weighing the tube and the rod one

against the other. I shall regard the rod and the tube as

two girders, and experiment upon their strength, and we
shall find that, though the tube contains less substance

than the rod, it is much stronger.

465. I place the rod on a pair of supports about 3'

apart ; I then attach the tray to the middle of the rod :

14 lbs. produces a deflection of 0" -

51, and 42 lbs. bends

down the rod through 3"' 18. This is a very large deflec-

tion ; and when I remove the load, the rod only returns

through l"'78, thus showing that a permanent deflec-

tion of l""40 is produced. This considerable permanent
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deflection shows us that the bar is weakened, and very-

little more would doubtless break it.

466. But we place the tube upon the same supports,

and load it in the same manner. A load of 56 lbs. only-

produces a deflection of Q"'0$, and, when this load is

removed, the tube returns to its original position : this I

see by the cathetometer, for a cross is marked on the

tube, and I bring the image of it on the horizontal wire

of the telescope before the load of 56 lbs. is placed in the

tray. When the load is removed, I see that the cross

returns exactly to where it was before, thus proving that

the elasticity of the tube is unimpaired. When I double

the load, thus placing 1 cwt. in the tray, the deflection

only reaches 0" -

26, and, when the load is removed, the

tube is found to be permanently deflected by a quantity,

at all events not greater than 0""004 ; hence we learn

that the tube bears easily, and without injury, a load

more than double as great as that which completely

destroyed a rod of wrought iron, containing more iron

than the tube. I load the tube still further by placing

additional weights in the tray, and with 140 lbs. the

tube breaks : this is, however, accidental ; the fracture

has occurred at a joint which was soldered, and the real

breaking strength of the tube is doubtless far greater.

Enough, however, has been borne to show how great

is the increase of strength obtained by the tubular

form.

467. Let us inquire into the reason of this remarkable

result. We shall be able to understand it by means of

Fig. 64. If the thin portion of the girder e f be made of

two parts placed side by side, the strength will not be

altered. If we then imagine the flange A b widened to

the width of CD, and the two parts which form EF

Q 2
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opened out so as to form a tube, the strength of the

girder is still retained in its modified form.

468. A tube of rectangular section has the advantage

of greater depth than a solid rod of the same weight

;

and if the bottom of the tube be strong enough to resist

the extension, and the top strong enough to resist the

sompression, the girder will be stiff and strong.

469. In the Menai Tubular Bridge, where a gigantic

tube supported at each end bridges over a space of four

hundred and sixty feet, special arrangements have been

made for strengthening the top. It is formed of cells, as

wrought iron disposed in this way is more effective in

resisting compression than where it is in solid masses.

470. We have only spoken of rectangular tubes, but

it is equally true for tubes of circular or other section

that they are always stronger than the same quantity of

material, if made into a solid rod.

471. We find this principle in nature ; bones and

quills are frequently hollow in order to combine light-

ness with strength, and the stalks of many plants are

hollow for the same reason.

THE SUSPENSION BRIDGE.

472. Where a great span is required, the suspension

bridge possesses many advantages. It is lighter than a

girder bridge of the same span, and consequently cheaper,

while its singular elegance contrasts very favourably with

the appearance of more solid structures. On the other

hand, a suspension bridge is unable to carry railway

traffic, as it does not possess the steadiness which is

necessary for safety.

473. The mechanical character of this bridge is verv
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simple. If wo suppose a chain to be suspended from

two points to which its ends are attached, the chain

forms a certain curve called the catenary. It resembles

an arc of a circle to a certain extent, though still a distinct

curve. It would not be possible to make the chain lie

in a straight line between the two points of support, for

reasons pointed out in Art. 20. No matter how much
the chain be strained, it will still be concave. When
the chain is strained so much that the amount of depres-

sion in the middle is small compared with the distance

between the points of support, the curve in which the

chain lies, though still really a catenary, becomes indis-

tinguishable from the parabola.

474. In Fig. 65 is shown a model of a suspension

bridge. The chains are fixed at the points e and f ; they

then pass over the piers A, d, and form a span of nine feet.

The line B c shows the amount by which the chain has

deflected from the horizontal A D. When the deflec-

tion of the middle of the chain is about one-tenth

part of a d, the curve acd is quite indistinguishable

from the parabola. Since the chains hang in a curve,

it would be impossible to attach the roadway to the

chains ; the roadway is therefore suspended from the

chains, the lengths of the suspension bars being so regu-

lated as to make the roadway as nearly horizontal as

possible.

475. The roadway in the model is laden with 8 stone

weights, placed side by side. We have distributed this

load along the roadway in order to represent the per-

manent load which a suspension bridge has to carry.

The hundredweight thus arranged is substantially the

same as if it were actually distributed uniformly along

the length of the bridge. In a real suspension bridge
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the weight of the roadway produces a very considerable

strain along the chains.

476. We assume that the chain hangs in the form of

a parabola, and that the load is uniformly ranged along

the bridge. The strain upon the chains is greatest at their

highest points, and least at their lowest points, though

the difference is small. The amount of the strain oan be

calculated when the load, span, and deflection are known.

We cannot give the steps of the calculation, but we shall

enunciate the result.

477. The magnitude of the strain in pounds at the

lowest point c of each chain is found by multiplying the

total weight (including chains, suspension rods, and road-

way) by the span, and dividing the product by sixteen

times the deflection.

The strain upon the chain at the highest point A

exceeds the strain at the lowest point c, by a number of

pounds, which is found by multiplying the total load by

the deflection, and dividing the product by twice the span.

478. The total weight of roadway, chains, and load in

the model is 120 lbs. ; the deflection is 10", the span

108"; the product of the weight and span is 12,960 ;

sixteen times the deflection is 160; and, therefore, the

strain at the point c is found, by dividing 12,960 by

160, to be 81 lbs.

To find the strain at the point A, we multiply 120 by

10, and divide the product by 216 ; the quotient found

is 6. This added to 81 lbs. gives 87 lbs. for the strain

on the chain at A.

479. One chain of the model is attached to a spring-

balance at A ; by reference to the scale we see the strain

indicated is 90 lbs. : this is very close to the calculated

strain of 8 7 lbs.
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480. A large suspension bridge has its chains strained

by an enormous force. It is therefore necessary that the

ends of these chains be very firmly secured in the ground.

A good point of attachment is sometimes obtained by

anchoring the chain to a large mass of iron imbedded in

solid rock.

481. In Art. 45 we have pointed out how the dimen-

.
sions of the tie rod could be determined when the strain

was known. Similar considerations will enable us to

calculate the size of the chain necessary for a suspension

bridge when we have ascertained the strain to which it

will be subjected.

482. We can easily determine by trial what effect

is produced on the tension of the chain, by placing a

weight upon the bridge in addition to the permanent

load. I place another stone weight in the centre, and we
see that the tension of the spring-scale is now 1 00 lbs.

;

of course the tension of the other chain is the same :

and thus we find that a weight of 14 lbs. has produced

additional strains of 10 lbs. each in the two chains. A
weight of 28 lbs. is found to give a strain of 110 lbs.

483. The additional weights may be regarded as

analogous to the occasional loads which the suspension

bridge is required to carry. In a large suspension bridge

the tension produced by the occasional load is usually

only a small fraction of that produced by the permanent

load.



LECTURE XV.

THE MOTION OF A FALLING BODY.

Introduction.—The First Law of Motion.—The Experiment of Galileo

from the Tower of Pisa.—The Space is proportional to the Square

of the Time.—A Body falls 16' in the First Second.—-The Action

of Gravity is independent of the Motion of the Body.—How the

Force of Gravity is measured.—The Path of a Projectile is a

Parabola.

INTRODUCTION.

484. The branch of mechanics which treats of motion

and the forces producing it is called dynamics, and is

rather more difficult than statics, with which subject we

have been hitherto occupied ; the difficulty arises from

the introduction of a new element, time, into our calcu-

lations. The principles of dynamics were unknown to

the ancients. Galileo discovered some of its truths in

the seventeenth century ; and, since his time, the

science has grown rapidly. The motion of a falling body

was first correctly described by Galileo ; with this sub-

ject we can appropriately commence the lectures on

dynamics.

THE FIRST LAW OF MOTION.

485. Velocity, in ordinary language, is supposed to

convey a notion of rapid motion. Such is not pre-
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cisely the meaning of the word in mechanics. By
velocity is meant the rate at which a body moves,

whether the rate be fast or slow. This rate is most

conveniently measured by the number of feet moved
over in one second. Hence, when it is said the velocity

of a body is 25, it is meant that if the body continued

to move for one second with its velocity unaltered, it

' would in that time have moved over 25 feet.

486. The first law of motion may be stated thus. If

no force act upon a body, it will, if at rest, remain for

ever at rest ; or if in motion, it will continue for ever to

move with a uniform velocity. We know this law to

be true, and yet no one has ever seen it to be true for

the simple reason that we cannot realize the condition

which it requires. We cannot place a body in the con-

dition of being unacted upon by any forces. But we
may convince ourselves of the truth of the law by some

such reasoning as the following. If a stone be thrown

along the road, it soon comes to rest. The stone leaves

the hand with a certain velocity and receives no more

force from the hand. Hence, if no other force acted

upon it, we should expect, if the first law be true, that it

would continue to run on for ever with the velocity it

had at the moment of leaving the hand. But other

forces do act upon the stone ; the attraction of the

earth pulls it down ; and, when it begins to bound and

roll upon the ground, friction commences to act, deprives

it of its velocity, and finally brings it to rest. But let

the stone be thrown upon a surface of smooth ice ; when

it begins to slide, the force of gravity is counteracted by

the reaction of the ice : there is no other force acting

upon the stone except friction, which is small. Hence

we find that the stone will run on for an enormous
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distance. It requires but little effort of the imagination

to suppose a lake whose sur-

face is an infinite plane, per-

fectly smooth, and that the

stone is perfectly smooth also.

In such a case as this the first

law of motion amounts to the

assertion that the stone would

never stop.

487. We may, in the lec-

ture room, see the truth of

this law verified to a certain

extent by Atwood's machine

(Fig. 66). This machine has

been devised for the purpose

of investigating the laws of

motion by actual experiment.

It consists principally of a

pulley c, which is mounted so

that its axle rests upon two

pairs of wheels, as shown in

the figure ; the object of this

contrivance is to get rid of

friction, as already described

(Art. 172). A pair of equal

weights A, B are, attached by

a silken thread, which passes

over the pulley ; when one of

the weights is set in motion,

its weight is completely

counterbalanced by the other :

we may consider it not to be Fl°- 66-

acted upon by any forces, and you see that it moves
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uniformly, as far as the length of the thread will

permit.

488. If we try to conceive a body free in space, and

not acted upon by any force, it is more natural to suppose

that such a body, when once started, should go on moving

uniformly for ever, than that its velocity should be altered

according to what must be some arbitrary law. The true

proof of the first law of motion is, however, that all con-

sequences properly deduced from it, in combination with

other principles, are found to be verified. Astronomy

presents us with the best examples. The calculation of

the time of an eclipse is based upon laws which in them-

selves assume the first law of motion ; hence, when we
invariably find that an eclipse occurs precisely at the

moment at which it has been predicted, we have a

splendid proof of the sublime truth which the first

law of motion expresses.

THE EXPERIMENT OF GALILEO FROM THE TOWER
OF PISA.

489. The contrast between heavy and light bodies is so

marked that it is difficult at first to admit that a heavy

body and a light body will fall from the same height in

the same time. That they do so Galileo proved by drop-

ping a heavy ball and a light ball together from the top

of the Leaning Tower at Pisa. They were found to reach

the ground simultaneously. We shall repeat this experi-

ment on a smaller scale, and then we shall ascertain what

the phenomenon teaches.

490. The apparatus used is that of Fig. 67. It con-

sists of a stout framework supporting a pulley H at a

height of about 20 feet above the ground. This pulley
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Fig. 67.
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carries a rope ; one end of the rope is attached to a tri-

angular piece of wood, to which two electro-magnets G

are fastened. The electro-magnet is a piece of iron in

the form of a horse-shoe, around which is coiled a long

wire. The horse-shoe becomes a magnet immediately an

electric current passes through the wire ; it remains

a magnet as long as the current passes, and returns to

its original condition the moment the current ceases.

Hence, if I have the means of controlling the current, I

have complete control of the magnet
;
you see this ball

of iron remains attached to the magnet as long as the

current passes, but drops the instant I break the current.

The same electric circuit includes both the magnets;

each of them will hold up an iron ball F when the current

passes, but the moment the current is broken both balls

will be released. Electricity travels along a wire with

prodigious velocity. It would pass over many thousands

of miles in a second ; hence the time that it takes to pass

through the wires we are employing is quite inappre-

ciable. A piece of thin paper interposed between the balls

and the magnets will ensure the balls being dropped

simultaneously ; when this precaution is not taken one or

both of the balls may hesitate a little before commencing

to descend. A long pair of wires e, b must be attached

to the magnets, the other ends of the wires communi-

cating with the battery d ; the triangle and its load is

hoisted up by means of the rope and pulley, and the

magnets thus carry the balls up to a height of 20 feet

;

the balls we are using weigh about 0*25 lb. and 1 lb.

491. We are now ready to perform the experiment.

I break the circuit ; the two balls are disengaged simul-

taneously ; they fall side by side the whole way, and

reach the, ground together, where it is well to place a
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cushion to receive them. Thus you see the heavy hall

and the light ball fall in the same amount of time

from the same height.

492. But these balls are both of iron ; let us compare

together balls made of different substances, iron and wood

for example. A flat-headed nail is driven into a wooden

ball of about 2"'5 in diameter, and by means of the iron

head of the nail I can attach this, ball to the magnet

;

this wooden ball is on one magnet, while an iron ball is

on the other. I repeat the experiment in the same

manner, and you see these also fall together ; finally,

when an iron ball and a cork ball are dropped, the

latter is within two or three inches of its weighty

companion when the cushion is reached : this small

difference is due to the unequal effect of the resistance of

the air on the two different balls. There can be no doubt

that in a vacuum all bodies of whatever size or material

would fall precisely in the same time.

493. How is the fact that all bodies fall in the same

time to be explained ? Let us first consider two iron

balls. Take two equal particles of iron : it is evident

that these fall in the same time ; they would' do so if they

were very close together, even if they were touching, but

then they might as well be in one piece ; and thus we

should find that a body consisting of two particles takes

the same time to fall as one particle (omitting of course

the resistance of the air). Thus it appears most reason-

able that two balls of iron, even though unequal in size,

should fall in the same time.

494. The case of the wooden ball and the iron ball

will require a little thought in order to realize thoroughly

how much Galileo's experiment really proves. We must

first explain the meaning of the word mass in mechanics.
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495. It is not correct to define mass by the intro-

duction of the idea of weight, because the mass of a body

is something independent of the existence of the earth,

whereas weight is produced by the attraction of the

earth. It is true that weight is a convenient means of

measuring mass, but this is only a consequence of the

property of gravity which the experiment proves, namely,

that the attraction of gravity for a body is proportional

to its mass.

496. Let us select as the unit of mass the mass of a

piece of platinum which weighs 1 lb. ; it is then evident

that the mass of any other piece of platinum will be

expressed by the ratio which it bears to the standard

piece : but how are we to determine the mass of some

other substance, such as iron ? A piece of iron has the

same mass as a piece of platinum, if the same force acting

on either of the bodies for the same time produce the

same velocity. This is the proper test of the equality of

masses. The mass of any other piece of iron will be

represented by the number of times it contains a piece

equal to that which we have just compared with the

platinum ; similarly of course for other substances.

497. The magnitude of a force acting for a given time

is measured by the product of the mass set in motion and

the velocity which it has acquired. This is a truth estab-

lished, like the first law of motion, by indirect evidence.

498. Let us now apply these principles to explain the

experiment which showed us that a ball of wood and a

ball of iron fall in the same time. Forces act upon the

two bodies for the same time, but the magnitude of the

forces must be proportional to the mass of each body

multiplied into its velocity, and, since the bodies fall

simultaneously, their velocities are equal. The forces
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acting upon the bodies are therefore proportional to their

masses ; but the force acting on each body is the attraction

of the earth, therefore, the attraction of gravitation upon

different bodies is proportional to their masses.

499. This may be illustrated by contrasting the attrac-

tion of gravitation with that of a magnet. A magnet

attracts iron powerfully and wood not at all ; but the

earth recognizing no such difference, draws all bodies

towards it with forces proportional to their masses.

THE SPACE DESCRIBED BY A FALLING BODY IS PROPOR-

TIONAL TO THE SQUARE OF THE TIME.

500. It is necessary for us to inquire into the law by

which we can ascertain the distance a body will fall in a

given time ; it is not possible to experiment directly upon

this subject, as in two seconds a body will fall 64 feet

and acquire a prodigious velocity ; we can, however,

resort to Atwood's machine (Fig. 66) as a means of

diminishing the motion. For this purpose we require a

pendulum with a clock whose pendulum beats seconds.

501. On one of the equal weights A I place a slight

brass rod, whose weight gives a preponderance to A,

which would consequently descend. I hold the loaded

weight in my hand, and release it simultaneously with

the tick of the pendulum. I observe that it descends

5" before the next tick. Eeturning the weight to the

place from whence it started, I release it again, and I

find that at the second tick of the pendulum it has

travelled 20". Similarly we find that in three seconds it

descends 45". It greatly facilitates these experiments to

use a little stage which is capable of being slipped up and

down the scale, and which can be clamped to the scale in

4v
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any position. By actually placing the stage at the distance

of 5", 20," or 45" below the point from which the weight

starts, the coincidence of the tick of the pendulum with

the tap of the weight on its arrival at the stage is very

marked.

502. These three distances are in the proportion of

1, 4, 9 ; that is, as the squares of the numbers of seconds

1, 2, 3. Hence we may infer that in falling bodies the

space described is proportional to the square of the time.

503. The motion of the bodies in Atwood's machine

is very different from the motion of a body falling freely,

but the nature of the law in the two cases is the same.

In a body falling freely, the space described is propor-

tional to the square of the time. Atwood's machine

cannot, without some difficulty, tell us the actual space

through which a body falls in one second. If we can

find this distance by other means, we shall easily be able

to find the space through which a body will fall in any

number of seconds.

A BODY FALLS 16' IN THE FIRST SECOND.

504. The apparatus by which this important truth

may be demonstrated is shown in Fig. 67. A part of

it has been already employed in repeating the experi-

ment of Galileo, but two other parts must now be used

which will be briefly explained.

505. At a is shown a pendulum which vibrates once

every second ; it need not be connected with any clock-

work to sustain the motion, as when once set vibrating

it will continue to swing some hundreds of times. When
this pendulum is at the middle of its swing, the bob

just touches a slender spring, and presses it slightly
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downwards. The electric current which circulates

about the magnets G already described passes through

this spring when in its natural position ; but when the

spring is pressed down by the pendulum, the current is

interrupted. The consequence is that, as the pendulum

swings backwards and forwards, the current is broken

once every second. There is also in the circuit a little

electric alarum bell c, which is so arranged that, when

the current passes, the hammer is drawn from the bell

;

but, when the current is interrupted, a spring forces the

hammer against the bell and strikes it. When the circuit

is closed, the hammer is again drawn back. The pen-

dulum and the bell are in the same circuit, and thus every

vibration of the pendulum produces a stroke of the bell.

We may regard the strokes from the bell as the ticks of

the pendulum rendered audible to the whole room.

506. You will now understand the mode of ex-

perimenting. I draw the pendulum aside so that

the current passes uninterruptedly. An iron ball is

attached to one of the electro-magnets, and it is then

gently hoisted up until the height of the ball from the

ground is about 16'. A cushion is placed under the

ball in order to receive it when it falls. You are to

keep your eyes upon the cushion while you listen for

the bell. All being ready, the pendulum, which has

been held at a slight inclination, is released. The mo-

ment the pendulum reaches the middle of its swing it

touches the spring, rings the bell, breaks the current

which circulated around the magnet, and as there is now

nothing to keep up the ball, the ball falls to the cushion

;

but just as it arrives at the cushion, the pendulum has a

second time broken the circuit, and you observe the

falling of the ball upon the cushion to be identical with

K 2
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the second stroke of the bell. As these strokes are re-

peated at intervals of a second, it follows that the ball

has fallen 16' in one second. If the magnet be raised a

few feet higher, the ball may be seen to reach the cushion

after the bell is heard. If the magnet be lowered a few

feet, the ball reaches the cushion before the bell is

heard.

507. We have previously shown that the space is

proportional to the square of the time. We now se€

that when the time is one second, the space is 16'.

Hence if the time were two seconds, the space would be

4 x 16 = 64 feet ; and in general the space in feet is

equal to 16 multiplied by the square of the time in

seconds.

508. By the help of this rule we are sometimes

enabled to ascertain the height of a perpendicular cliff,

or the depth of a well. For this purpose it is con-

venient to use a stop-watch, which will enable us to

measure a short interval of time accurately to one-fifth

of a second. One person drops a stone into a well

;

a second observer, who has the watch, starts it the

moment the stone moves. He then listens carefully till

he hears the sound of the stone striking the water at

the bottom of the well, and then he stops the watch.

The interval recorded shows the time of descent ; the

square of the number of seconds (taking account of frac-

tional parts) multiplied by 1 6 gives the depth of the well.

THE ACTION OF GRAVITY IS INDEPENDENT OF THE MOTION

OF THE BODY.

509. We have already learned that the effect of gravity

in moving a body does not depend upon the nature of

the body. We have now to learn that its effect is un-
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influenced by auy motion which the body may possess.

Gravity pulls a body down 16' per second, if the body
start from rest. But suppose a stone be thrown upwards
with a velocity of 20 feet, where will it be at the end of

a second ? Did gravity not act upon the stone, it would
be at a height of 20 feet. The principle we have stated

tells us that gravity will draw this stone towards the

earth through a distance of 16', just as it would have

done if the stone had started from rest. Since the

stone ascends 20' in consequence of its own velocity,

and is pulled back 16' by gravity, it will, at the end

of a second, be found at the height of 4'. If, instead of

being shot up vertically, the body had been projected

in any other direction, the result would have been the

same
; gravity would have brought the body at the end of

one second 16' nearer the earth than it would have been

had gravity not acted. For example, if a body had been

shot vertically downwards with a velocity of 20'. it would

in one second have moved through a space of 36'.

510. We shall prove one case of this remarkable pro-

perty by experiment. The principle of doing so is as

follows :—Suppose we take two bodies, A and b. If these

be held at the same height from the ground and released

together, of course they reach the ground at the same

instant ; but if A, instead of being merely dropped, be

projected with a horizontal velocity at the same moment

that B is released, it is still found that A and b reach the

ground together.

511. You may very simply try this on a level floor.

In your left hand hold a marble, and drop it at the same

instant that your right hand throws another marble

horizontally. It will be seen that the two marbles

reach the ground together.
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512. A more accurate mode of making the experiment

is shown by the apparatus of Fig. 68.

Fig. 68.

In this we have an arrangement by which we ensure

that one ball shall be released just as the other is pro-

jected. At ab is shown a piece of wood about 2" thick
;

the circular portion (2' radius) on which the ball rests is

grooved, so that the ball only touches the two edges and

not the bottom of the groove. Each edge of the groove

is covered with tinfoil c, but the pieces of tinfoil on the

two sides must not communicate. One edge is con-

nected with one pole of the battery k, and the other edge

with the other pole, but the current is unable to pass

until a communication by a conductor is opened between

the two edges. The ball u supplies the bridge ; it is

covered with tinfoil, and therefore, as long as it is upon

the groove, the circuit is complete ; the groove is so placed
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that the tangent to it at the lowest point B is horizontal,

and therefore, when the ball rolls clown the curve, it is

projected from the bottom in a horizontal direction. A
spring is shown in the figure ; by drawing back the ball

G, when embraced by the spring, I can communicate to

the ball any amount of velocity within reasonable limits.

At H we have an electro-magnet, the wire around which

forms part of the circuit we have been considering.

This magnet is so placed that a ball suspended from

it is precisely at the same height above the floor, as the

tinned ball is at the moment when it leaves the groove.

513. You now understand the mode of proceeding.

Let the tinned ball be called g, and h be the ball attached

to the electro-magnet ; as long as G is on the curve, H is

held up, but the moment G leaves the curve, H is let fall.

We find invariably that whatever be the velocity with

which G is projected, it reaches the ground at the same

instant as h arrives there. Various dotted lines in the

figure show the different paths which g may traverse ; but

whether it fall at D, at e, or at I, the time is invariably

the same as that taken by H. Of course, if G were not

projected horizontally, we should not have arrived at

this result : all we assert is, that whatever be the motion

of a body, it will be at the end of a second, sixteen feet

nearer the earth (if possible) than it would have been

if gravity had not acted. If the body be projected

horizontally, its descent is due to gravity alone, and

is neither accelerated nor retarded by the horizontal

velocity. What this experiment proves is, that the

mere fact of a body having velocity does not affect the

action of gravity upon the body.

514. Though we have only shown that a horizontal

velocity does not affect the action of gravity, yet neither
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does a velocity in any direction. This is verified, like the

first law of motion, by the complete accordance of the

consequences deduced from it with observed facts.

515. We may summarize these results by saying that

no matter what be the material of which a body is com-

posed, whether it be large or small, moving or at rest,

if gravity act upon the body for t seconds, it will be

16Z2 feet nearer the earth at the end of that time, than

it would have been had gravity not acted.

516. A proposition which is of some importance may
be introduced here. Let us suppose a certain velocity

and a certain force. Let the velocity be such that a

point starting from A, Fig. 69, would in one second move

Fro. 69.

uniformly to b. Let the force be such that if it acted

on a particle originally at rest at a, it would in one

second draw the particle to D ; if then the force and the

velocity act together, where will the particle be at the

end of the second ? Complete the parallelogram abcd,
and the particle will be found at o. By what we have

seen the force will discharge its duty whether the body

have any velocity or not. The force will make the

particle move to a distance ad, in a direction parallel

to ad from whatever position the particle would have

assumed, had the force not acted ; but had the force not
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acted, the particle would have been found at b: hence,

when the force does act, the particle must be found at

c, since b c is equal and parallel to A d.

HOW THE FORCE OF GRAVITY IS MEASURED.

517. From the formula

Space = 16£ 2
,

we learn that a body falls through 64' in 2 seconds

;

therefore, since it falls 16' in the first second, it must

fall 48' in the second second. Let us examine this.

After falling for one second, the body acquires a certain

velocity, and with that velocity it commences the next

second. Now, according to what we have just seen,

gravity will act during the next second, quite inde-

pendently of whatever velocity the body may have

previously had. Hence in the second second gravity

pulls the body down 16', but the body moves altogether

through 48'; therefore it must move through 32' in

consequence of the velocity which has been impressed

upon it by gravity in the first second. We learn by

this that when gravity acts for a second, it produces

a velocity such that, if the body be conceived to move

uniformly with the velocity acquired, the body would

in one second pass through 32'.

518. In three seconds the body falls 144', therefore in

the third second it must have fallen

144'- 64'= 80';

but of this 80' only 16' could be due to the action of

gravity impressed during that second : the rest,

80' -16'= 64',

is due to the velocity with which the body commenced

the third second,
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519. We see therefore that after the lapse of two

seconds gravity has communicated to the body a velocity

of 64' per second ; we should similarly find, that at the

end of the third second, the body has a velocity of 96',

and in general at the end of t seconds a velocity of

32 1. This proves the remarkable truth that the velocity

developed by gravity is proportional to the time.

520. This law points out to us that the proper way of

measuring gravity is by the velocity produced in a falling

body at the end of one second. Hence we are accustomed

to say that g (as gravity is generally designated) is 32.

We shall afterwards show in the lecture on the pendulum

(XVIII.) how the value of g can be obtained accurately.

From the two equations, v= 32Z and s=16t 2
, it is

easy to infer another very well known formula, namely,

v2= 64s.

THE PATH OP A PROJECTILE IS A PARABOLA.

521. We have already seen, in the experiments of

Fig. 68, that a body projected horizontally describes a

curved path on its way to the ground. We are now
going to examine into the nature of this path. The

movement being rapid, it is difficult to follow the path

sufficiently to ascertain its nature ; we must therefore

adopt special means for definitely observing the form.

This can be done by the apparatus represented in Fig. 70.

B c is a quadrant of wood 2" thick ; it contains a groove,

along which the ball b will run when released. A series

of cardboard hoops are properly placed on a black board,

and the ball, when it leaves the quadrant, will pass

through all these hoops without touching any, and

finally fall into a basket placed to receive it. The
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quadrant must be secured firmly, and the ball must

always start from precisely the same place. This may be

done by bringing the ball home against a little ledge at

the top of the quadrant. The hoops are easily adjusted :

if the ball run down the quadrant two or three times, we

can see how to place the first hoop in its right position,

and secure it by drawing pins ; then by a few more trials

ip*qHHtti

1- 1 < ; . 70.

the next hoop is to be adjusted, and so on for the whole

eight.

522. The curved line from the bottom of the quadrant,

which passes through the centre of the hoops, is the path

in which the ball moves ; this curve is a parabola, of

which p is the focus and the line a a the directrix.

It is a property of the parabola that the distance of
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any point on the curve from the focus is equal to its per-

pendicular distance from the directrix. This is shown in

the figure. For example, the dotted line f d, drawn from

F to the lowest hoop d, is equal in length to the per-

pendicular D P let fall from B on the directrix A A.

523. The direction in which the ball is projected is in

this case horizontal, but, whatever be the direction of

projection, the path is a parabola. This can be proved

directly from the theorem of Art. 516.



LECTURE XVI.

THE FORCE OF INERTIA.

Inertia is a Force.—The Hammer.—The Storing of Energy.—The
Fly-wheel.—The Punching Machine.

INERTIA IS A FORCE.

524. A body unacted upon by force will continue for

ever at rest, or for ever moving uniformly in a straight

line. This is asserted by the first law of motion

(Art. 486). When a force tries to change either the

velocity or the direction of the motion, the body resists.

The force with which a body resists interference is called

the force of inertia.

525. Let us see how we can make the existence of

this force manifest. I have here an india-rubber spring ;

if I pull it at both ends it is stretched, but pulling one

end will not stretch it : hence, whenever we find a

spring to be stretched, there must be a force pulling it at

each end. Here is a heavy weight, 25 lbs., attached to

a wire which hangs from the ceiling. I fasten one end

of the spring to the weight and pull it ; the weight is

moved, but to move it the spring was stretched. Hence

there must have been a force exerted by the weight to

stretch the spring. This is the force of inertia, which

the weight manifested when a force endeavoured to
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disturb it from its position of rest. The ball is now-

swinging to and fro. If, holding one end of the spring, I

endeavour to stop the ball, you see the spring is stretched

again : this is due to the force of inertia, with which the

weight, now in motion, seeks to avoid being stopped.

526. If I place a weight upon the table, the spring

attached to it will be stretched before the weight can be

moved ; but in this case, the friction between the table

and the weight has to be overcome in addition to the

inertia, and therefore I have preferred the swinging ball

where there is no friction.

527. We can also show inertia to be a force, according

to the strict definition of force. The inertia of one body

can produce or destroy motion in another. Two equal

balls of putty, or some other substance possessing no

elasticity, when thrown one against the other with equal

velocities, destroy one another's motion by the collision,

and come to rest ; the motion of each ball is stopped by

the inertia of the other. Here we have the force of

inertia, manifested by the destruction of motion. Had one

of the balls been at rest, it would be put in motion when

struck by the other ball : the striking ball loses some of

its velocity ; this it cannot do without exerting force on

the body which has arrested it, and this force it is which

causes the arresting body to be put in motion. Inertia

can stretch a spring ; it can put a body in motion, or

it can stop motion ; and therefore it is in every respect

a force.

528. Notwithstanding what I have said, perhaps some

of you feel a difficulty in recognizing this force. You
may say it is the blow which has sent on the ball ; so

it is, but the blow only has its efficacy in consequence

of this property of inertia which all matter possesses.
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Another point which presents some difficulty, is the

uncertain amount of the force. The force of inertia,

developed when a body is stopped, depends upon

the manner in which it is stopped. If suddenly, the

inertia is enormous ; if gradually, the inertia is very

small. This will, it is hoped, be made clear presently.

529. Inertia is a property inherent in matter. Friction

can be avoided or diminished, inertia cannot. Could

inertia be evaded, the din of battle must cease, for

missiles would be powerless, and blows would lose their .

efficacy ; railway collisions would be harmless and ex-

plosions without danger ; but these advantages would be

dearly gained : for were inertia suspended, the moon

would fall upon the ' earth and the earth tumble into

the sun.

THE HAMMER.

530. The hammer and other tools which give a blow,

depend for their action upon inertia. The mere weight

of the head of a hammer produces no effect, if only laid

upon the nail ; it requires to be brought down with a

smart blow. What is the reason of this"? We have

here inertia acting as a mechanical power, overcoming

the great resistance which the wood opposes to the

entrance of the nail. The nail would probably require

a direct pressure of some hundreds of pounds, were it not

for assistance we receive from inertia.

531. We can study this property by the apparatus

shown in Fig. 71. This consists of a tripod, at the top

of which, about 9' from the ground, is a stout pulley c
;

the rope is about 1
5' long, and to each end of it a 14 lb.

weight is attached. These weights are shown a,t A and b.
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I raise A up to the pulley, leaving B upon the ground ; I

then let go the rope, and down falls A : it first pulls the

slack rope through, and then, when A is about 3' from

the ground, the rope becomes tight, b gets a violent

Fig. 71.

chuck and is lifted into the air. What has raised B % It

cannot be the mere weight of A, because that being

equal to B, could only just balance B, and is insufficient

to raise it. You may say it was the 'chuck' which raised

it ; so it was, only give the ' chuck ' the proper name

which belongs to it in mechanics. It must have been a

force which raised B ; that force could not have been the

mere weight of A, yet it was produced by A when its

motion was arrested. A was not stopped completely ; it



lect. xvi.] THE HAMMER. 257

only lost some of its velocity, but it could not lose any
velocity without opposing resistance: this resistance

must take the form of a pull on the rope by which A was
held back, and the force of inertia thus produced and

transmitted by the rope was added to the weight of a
in pulling up b. You see, therefore, that there were two

distinct forces concerned in the process.

532. Let us remove the 14 lb. weight from B, and

attach there a weight of 28 lbs., A remaining the same as

before (14 lbs.). I raise A to the pulley ; I allow it to fall.

You observe that b, though double the weight of a, is

again chucked up after the rope has become tight. We
can only explain this by the supposition that the force of

inertia, is sufficient, when added to the weight of A, to

raise up 28 lbs. Hence the inertia must be greater than

14 lbs.; for, were it only equal to 14 lbs., B would not be

raised up, though it would be balanced.

533. Finally, let us remove the 28 lbs. from B, put ou

56 lbs., and repeat the experiment again; you see that

even the 56 lbs. is raised up several inches. Here A,

when aided by the force of inertia, has actually over-

come a weight four times its amount. We have then,

by the help of inertia, a mechanical power, for a small

force ha3 overcome a greater.

534. After B is raised by the chuck to a certain

height it descends again, if heavier than A, and raises A.

The height to which B is raised is of course the same

as the height through which A descends while it is exert-

ing the force of inertia. You noticed that the height

through which 28 lbs. was raised, was considerably

greater than that through which the 56 lbs. was raised.

Hence we may draw the inference, that when A was

deprived of its motion while passing through a short

s
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space, it resisted with a greater force of inertia, than

when it was gradually deprived of that motion through a

longer space. This is a most important point. Sup-

posing I put a hundredweight at B, I have little doubt, if

the rope were strong enough to bear the strain, that the

inertia of a would raise b a little, but only a little :

hence A would be deprived of its motion in a very short

space, but the force of inertia exerted would be very

great.

535. But it is clear that matters would not be much

altered if a were to be stopped by some force, exerted

from below rather than above ; in fact, we may conceive

the rope omitted, and suppose A to be a hammer-head

falling upon a nail in a piece of wood. The blow would

drive the nail slightly deeper, and the entire velocity of

a would have to be destroyed while moving through a

small distance : consequently the inertia of A would exert

a large force. This explains the effect of a blow.

536. In the case that we have supposed, the weight

merely falls upon the nail : this is actually the principle

of the hammer used in pile-driving machines. A pile is

a large piece of timber, pointed and shod with iron at

one end : this end is driven down into the ground.

Piles are required for various purposes in engineering

operations. They are often intended to support heavy

loads, such as buildings ; they are therefore driven until

the resistance with which the ground opposes their

further entrance affords a guarantee that they shall

be able to bear what is required.

537. The machine for driving piles consists essentially

of a heavy mass of iron, which is raised to a height, and

allowed to fall upon the pile. The resistance to be over-

come depends upon the depth and nature of the soil : a
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pile may be driven two or three inches with each blow,

but the less the distance the pile enters each time, the

greater is the actual force with which the inertia of the

weight forces it downwards. In the ordinary hammer,

the power of the arm imparts velocity to the hammer-

head, in addition to that which is due to the fall ; the

effect produced is merely the same as if the hammer had

fallen from a greater height.

538. Another point may be mentioned here. A nail

will only enter a piece of wood when the nail and the

wood are pressed together with sufficient force. The nail

is urged by the hammer ; but what is the force acting upon

the wood ? If this be lying on the ground, or against a

wall, the reaction of the ground or the wall is ample

;

but in many cases the principal force on which the wood

must rely, is its own inertia, by which it resists motion.

If the wood be thin and unsupported at the back, the

inertia is not sufficient to supply force enough, and the

nail, consequently, does not enter. The usual remedy is

obvious. Hold a heavy mass of iron close at the back

of the wood: if the wood and iron together have sufficient

inertia, the nail will enter

THE STORING OF ENERGY.

539. Our conceptions of inertia will be very much

facilitated by some considerations founded on the

principles of energy. In the experiment of Fig. 71

let A be 14 lbs., and b, on the ground, be 56 lbs. Since

the rope is 15' long, A is 3' from the ground, and there-

fore 6' from the pulley. I raise A to the pulley, and, in

doing so, expend 6 x 14 = 84 units of energy. Energy

is never lost., and therefore I shall expect to recover this
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amount. I allow A to fall ; when it has fallen 6', it is

then precisely in the same condition as it was before

being raised, except that it has a considerable velocity

of descent. In fact, the 84 units of energy have been

expended in giving A a velocity. The strain raises B,

and it ascends to a height x ; to raise B, 56 x x units

of work have been consumed. At the instant when B is

at the height x, A must be at a distance of 6 + x feet

from the pulley ; hence the quantity of work performed

by A is 14 x (6 + x). But the work done by A must

be equal to that done upon B, and therefore

14 (6 + x) = 56 x,

whence x= 2. If there were no loss by friction, b would

be raised 2' ; but owing to friction, and doubtless also to

the rigidity of the rope, b is not raised so much. The

distance, as you see, is not even one foot. We may
regard the work done in raising A as energy stored up,

until A is allowed to fall, when the work is reproduced

in a modified form.

540. Let us apply this principle to the pile-driving

engine to which we have already referred ; we shall then

be able to see the actual magnitude of the force of inertia

developed in producing the blow. Suppose the "monkey,"

that is the heavy mass of iron, weigh 560 lbs. (a quarter

of a ton). A couple of men raise this by means of a small

windlass to a height of 1 a'. It takes them perhaps a

few minutes to do this ; their energy is then stored up :

they have expended 560x15 = 8,400 units of work.

When the monkey reaches the top of the pile in its fall,

it transfers to the pile the whole 8,400 units of work,

and this is expended in forcing the pile into the ground.

Suppose the pile to enter one inch, the reaction of the

pile upon the monkey must be so great, that the number
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of units of work performed in one inch is 8,400. Hence
this reaction must be 8,400 x 12 = 100,800 lbs. If the

reaction did not reach this amount, the monkey could

not be brought to" rest in the space of one inch. The
reaction .of the pile upon the monkey, and therefore the

action of the monkey upon the pile, is about 45 tons.

This is the actual pressure which has been exerted upon

the pile.

541. If the stratum into which the pile is penetrating

be more resisting than that which we have supposed,

—

for example, if the pile require a force of 100 tons to

drive it in,—the same monkey with the same fall would

still be sufficient, but the pile would not be driven so far

with each blow. The pressure required is 224,000 lbs. :

this exerted over a space of 0""45 would be 8,400 units of

work ; hence the pile would be driven
//-
45. The more

the resistance, the less the penetration produced by each

blow. A pile which is permanently intended to bear

a very heavy load, must be driven until it enters but

little with each blow.

542. "We may compare the pile-driver with the me-

chanical powers in one respect, and contrast it in

another. In each, we have machines which receive

energy and restore it modified into a greater power ex-

erted over a smaller distance ; but while the mechanical

powers restore the energy at one end of the machine,

simultaneously with their reception of it at the other,

the pile-driver is a reservoir which receives the energy

and does not restore, it until all has been received.

543. We have, then, a class of mechanical powers, of

which a hammer may be taken as the type, which depend

upon the storage of energy; the force of the arm is

stored in the hammer throughout its whole descent, to
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be instantly transferred to the nail in the blow. Inertia

is the property of matter which qualifies it for storing

energy. Energy is developed by the explosion of gun-

powder in a cannon. This energy is applied in over-

coming the inertia of the ball : the ball strikes the target,

and its inertia causes it to save a terrific blow. Here we

see energy stored in a rapidly moving body, a case to

which we shall presently return.

544. But energy can be stored in many ways ;
gun-

powder is itself energy in a compact and storable form.

The efforts which we make in forcing air into an air-cane

are not lost ; our energy is there stored for us, to be re-

produced in the discharge of a number of bullets. During

the few seconds occupied in winding a watch, the watch

is given a small charge of energy which it economizes

over the next twenty-four hours. In using a bow my
energy is stored up from the moment I begin to pull the

string until I release the arrow.

545. Many machines of extensive use depend upon

this principle. In the clock or watch the demand for

energy to sustain the motion is constant, while the

supply is only occasional ; in other cases the supply

is constant, while the demand is only occasional. I

may mention a good illustration of this. Suppose it be

required occasionally to hoist heavy weights up to a

great height. If an engine sufficiently powerful to

raise the weights be employed, the engine will be idle

except when the weights are being raised ; and if the

engine were to have much idle time, the waste of

fuel in keeping up the fire during the intervals would

make the arrangement very uneconomical. It would

be a far better plan to have a smaller engine; and

even though this' were not powerful enough to raise
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one of the weights directly, yet we might be able, by

keeping the engine continually working and storing up
its energy, to produce enough energy in the twenty-

four hours to raise all the weights which it would be

necessary to lift in the same time.

546. Let us suppose we want to raise slates from the

bottom of a quarry to the surface. A large pulley is

mounted at the top of the quarry, and over this a rope

is passed : to each end of the rope a bucket is attached,

so that when one bucket is at the bottom the other is at

the top, and their sizes and that of the pulley are so

arranged that the buckets can pass with safety. A
reservoir is established at the top of the quarry on a

level with the pulley, and an engine is set to work con-

stantly pumping up water from the bottom of the quarry

into the reservoir. Each of the buckets has a large tank

attached to it, which can be quickly filled or emptied.

The lower bucket is loaded with slates, and when ready

for work, the man at the top fills the tank of the

upper bucket with water : this bucket becomes so heavy

that it descends and raises the slates. When the heavier

bucket reaches the bottom, the water from its tank is

let out into the lower reservoir, from which the engine

pumps, and the slates are removed from the bucket

which has been raised. The two buckets are then ready

for the same operation again. If the slates be raised at

intervals of ten minutes, the energy of the engine will

be sufficient if, in ten minutes' work, it can pump up

enough water to fill one tank ; therefore, by the aid of

the water, we are able to accumulate for one effort the

whole power of the engine for ten minutes. The same

water may of course be used over and over again.
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THE FLY-WHEEL.

547. One of the best means of storing up energy is

by setting a heavy body in
-

rapid motion. This has

already been referred to in the ease of the cannon-ball.

In order to render this method practically available for

the purposes of machinery, the heavy body we use is a

fly-wheel, and the rapid motion imparted to it is that of

rotation about its axis. A very large amount of energy

can by this means be stored in a convenient and acces-

sible form.

548. We shall illustrate the principle by the apparatus

of Fig. 72. This represents a fly-wheel of iron b : its dia-

Fli:.

meter is 18", and its weight 26 lbs. ; the fly is carried

upon a shaft (a) of wrought iron f" in diameter. We
shall store up a quantity of energy in this wheel, by
setting it in rapid motion, and then we shall see how it

will return to us the energy we have imparted.
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549. A rope is coiled around the shaft ; by pulling this

rope the wheel is made to turn round : thus the rope is

the medium by which my energy shall be imparted to

the wheel. I need not catch hold of the rope directly,

but I can attach it to the hook of the spring balance

(Fig. 9) ; by taking the ring of the balance in my hand,

I see by the index the amount of the force I am
exerting. I find that when I walk backwards as quickly

as is convenient, pulling the rope all the time, the scale

shows a strain of about 50 lbs. What is it that produces

the strain on the scale \ There must be a force of 50 lbs.

pulling at each end. My hand imparts one of these

forces ; the other is imparted by the inertia with which

the wheel resists. To set the wheel rapidly in motion, I

pull about 20' of rope from the axle, so that I have im-

parted to the wheel somewhere about 50x20 = 1,000

units of energy. The rope is fastened to the shaft, so

that, after the rope has been all unwound, the wheel

begins to wind it in again. By measuring the time in

which the wheel made a certain number of coils of the

rope around the shaft, I am able to see that the wheel is

rotating at about the rate of 600 revolutions per minute.

550. Let us see how the stored-up energy can be

withdrawn. A piece of pine 24" x 1" x 1" requires a

force of about 300 lbs. applied to its centre to produce

fracture when both ends are supported. I arrange such

a piece of pine near the wheel. As the shaftis winding in

the rope, a tremendous chuck would be given to anything

which tried to stop the rope. If I tied the end of the

rope to the piece of pine, the chuck would break the rope
;

therefore I have fastened one end of a 10' length of chain

to the rope, and the other has been tied round the middle

of the pine-rod. The wheel first winds in the rope, then
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the chain takes a few turns before it tightens, when

crack goes the bar of pine. The wheel had no choice ; it

must either stop or break the bar : but nature forbids it

to stop without exerting its great force of inertia, and

that force was sufficient to break the bar. Here I never

exerted a force greater than 50 lbs. in setting the wheel

in motion. The wheel stored up and modified my energy

into a force of 300 lbs., which, however, had only to be

exerted over a very small distance.

551. But we may show the experiment in another

way, which is that represented in the figure (72). We
see the chain is there attached to two 56 lb. weights. The

mode of proceeding is that already described. The rope

is first wound round the shaft, then by pulling the rope

the wheel is made to revolve ; the wheel then begins to

wind in the rope again, and when the chain tightens the

two 56 lbs. are raised up to a height of 3 or 4 feet. Here,

again, the force has been stored and modified. But

though the fly-wheel will keep energy stored up, it

does so at some cost : the energy is continually being

wasted on friction and the resistance of the air ; in fact,

the energy would altogether disappear in a little time,

and the wheel would come to rest ; it is therefore de-

sirable to make the wheel yield up what it has received

as soon as convenient.

552. We can easily see the part which a fly-wheel

fulfils in a steam-engine. The action of the steam upon

the piston varies according to the different parts of the

stroke ; the fly-wheel obviates the inconvenience which

would arise from this irregularity. Its great inertia

makes it but little affected by the exuberant action of

the piston when its power is a maximum, while the

same inertia sustains the rr.otion when the piston is
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giving no assistance. The fly-wheel is a vast reservoir

into which the engine pours its energy, sudden floods

alternating with droughts ; but these succeed each other

so rapidly, and the area of the reservoir is so vast, that

its level remains uniform, and therefore the supplies

sent out to the consumers are regular and unvaried.

The consumers of the energy stored in the fly-wheel of

an engine are the machines in the mill ; they are sup-

plied by shafts which traverse the building, conveying,

by their rotation, the energy originally condensed within

the coal from which combustion has set it free.

THE PUNCHING MACHINE.

553. When energy has been stored in a fly-wheel, it

can be withdrawn either as a small force acting over a

great distance, or a large force over a small distance. In

the latter case the fly-wheel acts as a mechanical power,

and it is in this form that it is used in the very im-

portant machine to be next described. A model of the

punching machine is shown in Fig. 73.

The punching machine is usually worked by a steam-

engine, but a handle will move the model. The handle

turns a shaft on which the fly-wheel F is mounted. On

the shaft is a small pinion r> of 40 teeth : this works

into a large wheel E of 200 teeth, so that, when the fly and

the pinion have turned round 5 times, e will have turned

round once, c is a circular piece of wood called a cam,

Avhich has a hole bored through it, between the centre and

circumference ; by means of this hole, the cam is mounted

on the same axle as E, to which it is rigidly fastened, so

that the two must revolve together. A is a lever of the

first order, whose fulcrum is at A : the power-end of this
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lever rests upon the cam c ; the other end B contains

the punch. As the wheel E revolves it carries with it the

cam : this raises the lever and forces the punch down

a hole in a die into which it fits exactly. The plate of

metal to be punched is placed under the punch before it

is depressed by the cam, and the pressure drives the

punch through, cutting out a cylindrical piece of metal

from the hole : this model will, as you see, punch ordinary

tin-plate.

Fig. 73.

554. Let us examine the mode of action. The fly-wheel

being made to rotate rapidly, the punch is depressed once

for every 5 revolutions of the fly ; the resistance which

the metal opposes to being punched is very great, but the

leverage at which the lever acts is about 12. When the

punch comes down on the surface of the metal, one of

three things must happen : either the motion must stop

suddenly, or the machine must be strained and jfoi-

jured, or the metal must be punched. But the motion

cannot be stopped suddenly, because, before this could

happen, an infinite force of inertia would be developed

by the fly-wheel, which must make something yield. If

therefore we make the machine sufficiently massive to
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prevent yielding, the metal must be punched. Punching

machines are enormously strong, as it is necessary to

make the punching of the metal easier than breaking the

machine.

55 j. We shall be able to calculate, from what we have

already seen in Art. 249, what is the magnitude of the

force required for punching. We there saw that about

22 -

5 tons of pressure was necessary to shear a bar of iron

one square inch in section. Punching does not differ

much from, shearing, for in each case a certain area of

iron has to be cut ; the area in punching is measured by

the surface of the cylinder of iron which is cut out.

556. Suppose a plate be 0""8 thick, and it be re-

quired to punch out a hole 0" -

5 in diameter ; the area of

iron that has to be cut across is^xi x T=l'26 square

inches : hence, since 22 • 5 tons per square inch are required

for shearing, this hole will require 22' 5 x l
-26 = 28*4

tons. A pressure of about 28 tons must therefore be ex-

erted irpon the punch : this will require from the cam a

pressure of a little over 2 tons upon its end of the lever.

Though the iron must be cut out to a depth of
//-

8, yet

it is obvious that almost immediately after the punch has

penetrated the surface of the iron, the cylinder must be

entirely cut and begin to emerge from the other side of

the plate. We shall probably be correct in supposing

that the punching is completed when the punch has

•entered 0""1, and that it is only during this space that

the great pressure of 28 tons has to be exerted; only a

small pressure is afterwards necessary to overcome the

friction which opposes the motion of the cylinder of iron.

Hence, though so great a pressure has been required, yet

the number of units of energy is not very large ; it is

«„ x 2,240 x 28 = 523.i
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Therefore the number of units of energy actually

required is less than that which would be expended in

raising 1 cwt. up 5'.

557. The fly-wheel is here an accumulator of energy.

The time that is actually occupied in the punching is

extremely small, and the sudden expenditure of 523

units is gradually restored by the engine : a small engine

is therefore sufficient to work one of these machines ;

they proceed exactly on the same principle as the water

accumulator already mentioned. If the fly-wheel con-

tain 50,000 units of energy, the sudden call for 523 units

will not perceptibly affect its velocity. There is there-

fore an advantage in having a very heavy fly sustained

at a high speed for the working of a punching machine.



LECTURE XVII.

CENTRIFUGAL FORCE.

The Nature of Centrifugal Force.—The Action of Centrifugal Force

upon Liquids.—The Applications of Centrifugal Force.— The

Permanent Axes.

THE NATURE OF CENTRIFUGAL FORCE.

558. A body in motion will resist any, force which

tends to make it deviate from a straight line. This

resistance is a force of inertia. It is just as much due

to inertia as the resistance with which a body endeavours

to preserve its condition of rest or motion, which we
have already considered. The force which resists devia-

tion is usually called centrifugal force.

559. We noticed as one of the principal difficulties in

recognizing the force of inertia, that its amount depends

on the manner in which the velocity was changed ; so

we find that the amount of centrifugal force depends on

the manner in which the direction is changed.

560. I shall show you, by direct experiment, the exist-

ence of centrifugal force. You have already learned that,

whenever a spring has been stretched, force has been

exerted. A spring can be stretched by centrifugal force.

The apparatus we use is shown in Fig. 74.

The essential part of the machine consists of two balls

A, B, each 2" in diameter : these are thin hollow spheres of



272 EXPERIMENTAL MECHANICS. [lect. XVII.

silvered brass. The balls are supported on arms pa,qb,
which are attached to a piece of wood, P Q, capable of

turning round an axle at c. The arm a p is rigidly fixed

to p Q at P ; the other arm, B Q, is capable of turning round

a pin at q. An india-rubber door-spring is shown at F

;

one end of this is secured to pq, the other end to the

moveable arm, qb. If the arm qb be turned so as to

move B away from o, the spring f must be stretched.

Fig. 74.

A pinion is mounted on the same socket with c ; this

is behind p q, and therefore not seen in the figure : this

pinion is made to revolve rapidly by the large wheel E,

when e is turned by the handle r>.

561. The room being darkened, a beam from the lime-

light is allowed to fall on the apparatus : the reflection

of the light is seen in the two silvered balls as two

bright points. When r> is turned, the balls move round
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rapidly, and you see the points of light reflected from

them describe circles. The ball B when at rest is 4" from

c, while A is 8" from c ; hence the circle described by b

is smaller than that described by A. The appearance

presented is that of two concentric luminous circles.

As the speed increases, the inner circle enlarges till the

circles blend into one. By increasing the speed still

more, you see the circle whose diameter is enlarging

actually exceeding the fixed circle, and its size continues

to increase until the highest velocity which it is safe to

employ has been communicated to the machine.

562. What is the explanation of this ? The arm A is

fixed and the distance AC cannot alter, hence A describes

the fixed circle. B, on the other hand, is not fixed ; it

can recede from c, but only if there be a force impelling

it to do so sufficient to stretch the spring x. There must,

therefore, be a force urging B away from c, when B spins

round, and this force must become greater when the

velocity is increased. This is evident because the more

the spring is stretched, the greater must be the force

employed in stretching it.

563. This experiment, then, proves that there is a force

which tends to drive a body moving in a circle away

from the centre of that circle : this is what we call

centrifugal force.

It also teaches us that centrifugal force increases when

the velocity increases.

564. We can see the magnitude of this force by the

same apparatus. The ball b weighs 0*1 lb. I find

that I must pull it with a force of 3 lbs. in order to

draw it to a distance of 8" from c ; that is, to the same

distance as A is from c. Hence, when the diameters

of the circles in which the balls move are equal, the cen-

T
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trifugal force repelling b from the centre must be 3 lbs.

;

that is, it must be nearly thirty times as strong as gravity.

565. What is the cause of this remarkable force ? Let

us conceive a weight attached to a string to be swuDg

round in a circle, a portion of whose arc is shown in

Fig. 75.

o

Fig. 75.

Suppose the weight be at s and moving towards p, and

let a tangent to the circle be drawn at p. Take two

points on the circle, A and B, very near p ; the small arc

ab does not differ perceptibly from the part ab on the

tangent line : hence, when the particle arrives at A, it is

a matter of indifference whether it travels in the arc ab,

or along the line ab. Let us suppose it to move along

the Une. By the first law of motion, a particle moving

in the line ab would continue to do so ; hence, if the
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particle be allowed, it will move on to Q : but the par-

ticle is not allowed to move to q; it is found at R.

Hence it inust have been withdrawn by some force.

566. This force is supplied by the string to which the

weight is attached. The constant change from the

natural motion of the weight is constantly opposed by

the inertia of the weight, and this opposition is called

centrifugal force. Should the string be released, the

body flies off in the direction of the tangent p Q, to the

circle at the point which the body occupied at the instant

of release.

567. The centrifugal force increases in proportion

to the square of the velocity. If I double the speed

with which the weight is whirled round in the circle, I

quadruple the strain with which centrifugal force tends

to break the string. If the speed be trebled, the force is

increased ninefold, and so on. If the velocities with

which two bodies are moving in two circles be'equal, the

centrifugal force in the smaller circle is greater than that

of the larger circle, in the proportion of the radius of the

larger circle to that of the smaller.

THE ACTION OF CENTRIFUGAL FORCE UPON LIQUIDS.

568. I have here a small bucket nearly filled with

water : to the handle a piece of string is attached. If I

whirl the bucket round in a vertical plane sufficiently

fast, you see no water escapes, although the bucket is

turned upside down once in every revolution. This is

because the centrifugal force which tends to repel the

water from the centre is greater than the force of gravity,

and consequently the water does not fall out.

569. The action of centrifugal force upon liquids is

t 2
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also shown by the experiment which is represented in

Fig. 76.

A. glass beaker about half full of water is mounted so

that it can be spun round rapidly. The motion is given

by means of a large wheel turned by a handle, as shown

in the figure. When the rotation commences, the water

is seen to rise up against the glass sides and form a

hollow in the centre.

Fig. 76.

570. In order to demonstrate this clearly, I turn upon

the vessel a beam from the lime-light. I have previously

dissolved a little quinine in the water. The light of the

lamp is transmitted through a piece of dense blue glass.

When the light thus coloured falls on the water, the

quinine imparts a bluish luminosity to the whole mass.

This remarkable property of quinine, which is known

as fluorescence, enables you to see distinctly the hollow

in the water.

571. You observe that as the speed becomes greater

the hollow increases, and that if I turn the wheel

rapidly the water is driven out of the glass. The curved
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surface which the water assumes is that which would

be produced by the revolution of a parabola about

its axis.

572. The explanation is simple. Directly the glass

begins to revolve, the friction of its sides upon the water

makes the water rotate ; but when this happens, the

particles of water fly from the centre by centrifugal

force, and thus the liquid becomes elevated against the

sides of the glass.

573. But you may ask why all the particles of the

water acted upon by centrifugal force should not go to

the circumference, and thus line the inside of the glass

with a hollow cylinder of water ? The answer is easy ;

such an arrangement could not exist in a liquid. The

lower parts of the cylinder must bear the pressure of

the water above, and therefore have more tendency to

flatten out than the upper portions. This tendency could

not be overcome by the centrifugal force, a,s that is

equal on all parts at the same distance from the axis of

the cylinder.

574. A very beautiful experiment, which we shall

now show, was devised by M. Plateau, for the pur-

pose of studying a liquid removed from the action of

gravity.

The apparatus employed is represented in Fig. 77. A
glass vessel 9" cube is filled with a mixture of alcohol

and water. The relative quantities are so proportioned

that the fluid is of the same specific gravity as sweet oil.

This is possible, because sweet oil is heavier than alcohol

and lighter than water. In practice, however, it is found

difficult to realize this exactly ; the best plan is to make

two alcoholic mixtures so that oil will just float on one of

them, and just sink in the other. The lower half of the
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glass is to be filled with the former mixture and the

upper half with the latter. If, then, sweet oil Tte care-

fully introduced, it will form into a beautiful sphere in the

middle of the vessel, as shown in the figure. The oil is

then a liquid freed from the action of terrestrial gravity,

and forms a sphere in consequence of the mutual action

of its particles.

Fig. 77.

A vertical spindle passes through the vessel. On this

there is a small disk at the middle of its length, about

which the sphere of oil arranges itself symmetrically.

To the end of the spindle a handle is attached. When,
the handle is turned round slowly, the friction of the

disk and spindle communicates a motion of rotation to

the sphere of oil. We have then a liquid spheroidal mass

endowed with a movement of rotation; and we can study

the effect, of centrifugal force upon the form. "We first

see the sphere flatten down at its polos, and bulge at the
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equator. In order to show the phenomenon to those who
may not be near to the vessel, the sphere can be projected

on the screen by the help of the lime-light lamp and a

lens. We first see on jstie screen the yellow circle, and

then, as the movement begins, this gradually changes

into an ellipse. But a very remarkable modification of

the appearance is shown when the handle is turned some-

what icapidly. The ellipsoid gradually flattens down

until, when a certain velocity is attained, the surface

actually becomes indented at the poles, and then flies

from the axis altogether. Consequently the liquid

assumes the form of a beautiful ring,

and the appearance on the screen is

shown in Fig. 78.

575. The explanation of the pheno-

menon of the ring depends on more

than centrifugal force ; as the sphere of

oil spins round in the liquid, its surface

is retarded by friction ; so that when the velocity reaches

a certain amount, the centrifugal force drives the internal

portions of the sphere, which are in the immediate

neighbourhood of the spindle, out into the outer por-

tions, whose centrifugal force, owing to the retardation,

is considerably diminished.

576. The earth was, we believe, originally in a fluid

condition. It had then, as it has now, a rotation aruund

an axis ; the centrifugal force arising from this rotation

caused the earth to be slightly protuberant at the equator,

just as we have seen the sphere of oil bulging out under

the action of centrifugal force.

577. The centrifugal force on the earth has another

effect besides that of making the equator protuberant.

Bodies have their weight slightly diminished by the
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effect of this force, which acts in opposition to gravity.

This effect is greatest at the equator, where it amounts to

^irth of the weight ; it gradually diminishes as the lati-

tude increases, and is nothing at the poles (Art. 38 7) ;

THE APPLICATIONS OF CENTP.IFUGAL F02CE.

578. Centrifugal force has some applications in the

mechanical arts; we shall mention two of them. The

first is to the governor-balls of a steam-engine ; the

second is to the process of sugar-refining.

An engine which turns a number of machines in a

factory should work uniformly. Irregularities of motion

may be productive of lo3s and various inconveniences.

An engine would work irregularly either from variation

in the production of steam, or from the demands upon the

power being lessened or increased. Even if the first of

these sources of irregularity could be avoided by care, it

is clear that the second could not. Some machines in the

mill are occasionally stopped, others occasionally set in

motion, and the engine generally tends to go faster the

less it has to do. It is therefore necessary to provide

means by which the speed shall be restrained within

narrow limits, and it is obviously desirable that the con-

trivance used for this purpose should be self-acting. We
must, therefore, have some arrangement which shall

admit more steam to the cylinder when the engine is

moving too slowly, and less steam when it is moving too

quickly. The valve which is to regulate this must, then,

be worked by some force which depends upon the velo-

city of the engine ; this at once points to centrifugal

force as the proper force to be employed, since it depends

upon velocity. Such was the train of reasoning which
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led to the happy invention of the governor-balls : these

are shown in Fig. 79.

a B is a vertical spindle which is turned by the engine.

P P is a piece firmly attached to the spindle and turning

with it. pw,pw are arms terminating in weights w w

;

these are balls of iron, generally very massive : the arms

are free to turn round pins at

pp. At Q Q links are placed,

attached to another piece re,

which is able to slide up and

down the shaft. When ab
rotates, w and w are carried

round, and therefore fly out-

wards by centrifugal force ; to

do this they must evidently

pull the piece k r up the shaft.

We can easily imagine an ar-

rangement by which rr shall

be made to shut or open the

steam-valve according as it as-

cends or descends. The problem

is then solved, for if the engine

begin to go too rapidly, the balls

fly out further by the increased centrifugal force : this

movement raises the piece kr, which diminishes the

supply of steam, and consequently checks the speed.

On the other hand, when the engine works too slowly, the

balls fall in towards the spindle, the piece rr descends,

the valve is opened, and a greater supply of steam is

admitted. This beautiful contrivance is indispensable in

engines which are employed in manufactories. There

are other governors occasionally employed which de-

pend also on centrifugal force ; some of these are more
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sensitive than the governor-balls : but they are elaborate

machines, and are only employed under exceptional

circumstances.

579. The application of centrifugal force to sugar-

refining is a very beautiful modem invention. To ex-

plain it I must briefly describe the process of refining.

The raw sugar is dissolved in water, and the solution

is purified by filtration through flannel and animal char-

coal. The syrup is then boiled. In order to preserve the

colour of the sugar, and to prevent loss, this boiling is

conducted in vacuo, as by this means the temperature

required is much less than would be necessary with the

ordinarj7
- atmospheric pressure.

The evaporation having been completed, crystals jq£

sugar form throughout the_ mass.-jof .syiaga.' "ICo separate

"tfeeee- ery^alsJkxnji-theliqiior which surrounds them, the

aid of centrifugal force is called in. A mass of the

mixture is placed into a large iron tub, the sides of

which are perforated with small holes. The tub is then

made to rotate with prodigious velocity ; its contents

instantly fly off to the circumference, the liquid portions

find an exit through the perforations in the sides, but

the crystals are left behind. A little clear syrup is then

sprinkled over the sugar while still rotating : this washes

from the crystals the last traces of the coloured liquid,

and passes out through the holes ; when the motion

ceases, the inside of the tub contains a layer of per-

fectly pure white sugar, several inches thick, ready for

the market.

580. Centrifugal force is peculiarly fitted for this pur-

pose ; each particle of liquid isitself acted on by the force,

and strives to get out in consequence. The action on

the sugar is very different from what it would have been
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bad the mass been subjected to pressure by a screw-

press or otherwise ; the particles immediately acted on in

that case have to transmit the pressure to those within ;

and the consequence would be that, while the crystals of

sugar on the outside would be crushed and destroyed,

the water would only be very imperfectly driven from

the interior : water could lurk in the interstices of the

sugar, which remain notwithstanding the pressure.

581. But with the centrifugal force the water must

go, not^beeaase it is pushed by the crystals, but because

of its own inertia ; and it is found that the water can be

perfectly expelled with a velocity less than that which

would be necessary to produce cenlM&gai force -enough

to make the crystals injure each other.

THE PERMANENT AXES.

582. There are some curious properties of centrifugal

force which remain to be considered. These we shall

investigate by means of the apparatus of Fig. 80. This

consists of a pair of wheels b c, by which a considerable

velocity can be given to a horizontal shaft. This shaft

is connected by a pair of bevelled wheels D with a vertical

spindle F. The machine is worked by a handle A, and

the object to be experimented upon is suspended from

the spindle.

583. I first take a disk of wood 18" in diameter; a

hole is bored in the margin of this disk ; through this

hole a rope is fastened, by means of which the disk is

suspended from the spindle. The disk hangs of course

in a vertical plane.

584. I now begin to turn the handle round gently,

and you see the disk begins to rotate about the vertical
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diameter; but, as the speed increases, the motion be-

comes a little unsteady ; and finally, when I turn the

handle very rapidly, the disk springs up into a horizontal

plane, and you see it like the surface of a small table

:

the rope by which the disk is suspended swings round

and round in a cone, so rapidly that it is hardly seen.

Fig. 80.

585. We may repeat the experiment in a different

manner. I take a piece of iron chain about 2' long, G ; I

pass the rope through the two last links of its extremities,

and suspend the rope from the spindle. When I com-

mence to turn the handle, you see the chain gradually

opens out into a loop h ; and as the speed increases,
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the loop becomes an almost perfectly circular ring. Still

increasing the speed, I find the ring becomes unsteady,

till finally it rises into a horizontal plane. The ring

of chain in the horizontal plane is shown at i. When
the motion is further increased, the ring swings about

violently, and so I cease turning the handle.

586. The principles of centrifugal force will explain

these remarkable results ; we shall only describe that of

the chain, as the same explanation will suffice also for

the disk of wood. We shall begin with the chain hang-

PlG. 81.

ing vertically from the spindle : the moment rotation

commences, the chain begins to spin about a vertical

axis ; the effect of the centrifugal force is to make the

parts of the chain fly outwards from this axis ; this is

the cause of the looped form H which the chain assumes.

As the speed is increased more and more the loop gradu-

ally enlarges into a circle, because the centrifugal force

increases with the velocity. But we have also to inquire

into the cause of the remarkable change of position
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which the ring undergoes ; instead of continuing to

rotate about a vertical diameter, it comes into a hori-

zontal plane. This will be easily understood with the

help of Fig. 81. Let op represent the rope attached to

the ring, and o c be the vertical axis. Suppose the ring

to be spinning about the axis o c, when o c was a dia-

meter ; if then, from, any cause, the ring be slightly dis-

placed, we can show that centrifugal force will tend to

drive the ring further from the vertical plane, and force it

into the horizontal plane. Let the ring be in the posi-

tion represented in the figure ; then, since it revolves

about the vertical line o c, the centrifugal force upon p

and Q is urging these parts of the ring outwards in the

direction of the arrows, thus evidently tending to bring

the ring into the horizontal plane.

587. In Art. 104, we have explained what is meant

by stable and unstable equilibrium ; we have here found

a precisely analogous phenomenon in motion. The rota-

tion of the ring about its diameter is unstable, for the

minutest deviation of the ring from this position is fatal

;

centrifugal force immediately acts to augment the devia-

tion more and more, until finally the ring is brought

into the horizontal plane. Once in the horizontal plane,

the motion there is stable, for if the ring be displaced the

tendency of centrifugal force is to restore it to the hori-

zontal. Centrifugal force is therefore the cause of the

chain opening out into the ring, and also of the ring

assuming and retaining the horizontal position.

588. The ring, when in a horizontal plane, rotates

permanently about the vertical axis through its centre

;

this axis is called permanent, to distinguish it from all

other directions, as being the only axis about which the

motion is stable.
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589. We may show another experiment with the

chain : instead of passing the rope through the links at

its ends, I pass the rope through the centre of the chain,

and allow the ends of the chain to hang downwards. I

now turn the handle ; instantly the parts of the chain fly

outwards in a curved form ; by increasing the velocity,

the parts of the chain at length come to be almost in a

straight line. This phenomenon is easily explained by

centrifugal force.



LECTUEE XVIII.

THE SIMPLE PENDULUM.

Introduction.—The Circular Pendulum.—Law connecting the Time

of Vibration with the Length.—The Force of Gravity determined

by the Pendulum.—The Cycloid.

INTRODUCTION.

590. If a weight be attached to a piece of string, the

other end of which hangs from a fixed point, we have

what is called a simple pendulum. The pendulum is

of the utmost importance in science, as well as for

its practical applications as a time-keeper. In this

lecture and the next we shall treat of its general

properties ; and the last will be devoted to the practical

applications. We shall commence with the simple

pendulum, as already defined, and prove, by experiment,

the remarkable property which was discovered by

Galileo. The simple pendulum is often called the

circular pendulum.

THE CIRCULAK PENDULUM.

591. We first experiment with a pendulum on a

large scale. Our lecture theatre is 32 feet high, and

there is a wire suspended from the ceiling 27' long

;

to the end of this a ball of cast iron weighing 25 lbs.
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is attached. This wire when at rest hangs vertically

.in the direction oo (Fig. 82).

I draw the ball from its position of rest to A ; when
released, it slowly descends to c, where it was before ; it

then moves on the other side to b, and back again to my
hand at a. The ball—or to speak

more precisely, the centre of the !°

ball—moves in a circle, whose

centre is the point o in the ceiling

from which the wire is sus-

pended.

592. What causes the motion of

the pendulum when the weight is

released 1 It is the force of gravity

;

by moving the ball to a I raise it

a little, and therefore, when I re-

lease the ball, gravity acts ; to re-

turn to c again is the only manner

in which the mode of suspension

will allow the ball to fall. But

when the ball reaches its position

of rest c, what forces it onwards to

B ?—for gravity must be acting against the ball during

the. journey from c to b. The first law of motion ex-

plains this. In travelling from A to c the ball acquires a

certain amount of velocity, which becomes greatest at

c ; hence at c the ball has a tendency to go on, and it

is only when the ball has arrived at b that gravity

has conquered the force of inertia, and begins to make

the ball descend.

593. You see, the ball continues moving to and fro

—

oscillating, as it is called—for a long time. The fact is,

that it would oscillate for ever, were it not for the resist-

u

Fig. 82.
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ance of the air, and for some loss of energy at the point

of suspension.

594. By the time of an oscillation is meant the time

of going from A to b, but not back again. The time

of our long pendulum is nearly three seconds.

595. It is with reference to the time that Galileo

made his great discovery. He found that whether the

pendulum were swinging through the arc A B, or whether

it had been brought to a more distant point a', and so

was describing the arc a' b', the time of oscillation

remained the same. The arc through which the pen-

dulum oscillates is called its amplitude, so that we

may enunciate this truth more concisely by saying that

the time of oscillation is independent of the amplitude.

The means by which Galileo proved this, would hardly

be adopted in modern days. He allowed a pendulum

to perform a certain number of vibrations, say 100,

through the arc A B, and he counted his pulse during

the time ; he then counted the number of pulsations

while the pendulum vibrated 100 times in the arc a' b',

and he found the number of pulsations in the two cases

to be equal. Assuming, what is probably true, that

Galileo's pulse remained uniform throughout the experi-

ment, this result showed that the pendulum took the

same time to perform 100 vibrations, whether it swung
through the arc A B, or through the arc a' b'. This dis-

covery it was which first suggested the employment of

the pendulum as a means of keeping time.

596. We shall adopt a different method to show that

the time does not depend upon the amplitude. I have

here an arrangement which is represented in Fig. 83. It

consists of two pendulums ad and bc, each 12' long,

and suspended from two points A b, about 1' apart, in
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the same horizontal line. Each of these pendulums carry

a weight of the same size : they are in fact identical.

597. I take one of the balls in each hand. If I

withdraw each of them from its position of rest through

Fig. 83.

equal distances and then release them, both balls return

to my hands at the same instant. This might have been

expected from the identity of the circumstances.

u 2
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598. I next withdraw the weight c in my right hand

to a distance of 1', and the weight D in my left hand

to a distance of 2', and release them simultaneously.

What happens ? I keep my hands steadily in the same

position, and I find that the two weights return to them

at the same instant. Hence, though one of the weights

moved through an amplitude of 2' (c e) while the other

moved through an amplitude of 4' (df), the times oc-

cupied by each in making two oscillations are identical.

If I draw the right-hand ball away 3', while I draw the

left hand only 1' from their respective positions of rest,

I still observe the same result.

599. In two oscillations we can see no effect on the

time produced by the amplitude, and we are correct in

saying that, when the amplitude is only a small fraction

of the length of the pendulum, it has no effect. But if

the amplitude of one pendulum were very large, we
should find that its time of oscillation is slightly greater

than that of the other, though to detect the difference

would require a delicate test. One consequence of what

is here remarked will be noticed in Art. 654.

600. We next inquire whether the weight which is

attached to the pendulum has any effect upon the time

of vibration. Using the 12' pendulums of Fig. 83, I place

a weight of 12 lbs. on one hook and one of 6 lbs. on the

other. I withdraw one in each hand ; I release them ; they

return to my hand at the same moment. Whether I

withdraw the weights through long arcs or short ares,

equal or unequal, they invariably return together, and both

therefore have the same time of vibration. With other

weights of iron the same result is always obtained; hence

We learn that, besides being independent of the amplitude,

the time of vibration is also independent of the weight.
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601. Finally, let us see if the material of the weight
have any effect. I place a ball of wood on one hook and
a ball of iron on the other ; I swing them as before : the

vibrations are still isochronous, that is, performed in

equal times. A ball of lead is found to swing in the

same time as a ball of brass, and both in the same time

as a ball of iron or of wood.

602. In this we may be reminded of the experiments

on gravity (Art. 4.92), where we showed that all bodies

fall to the ground in equal times, whatever be their size

or material ; in both cases the fact proved is the same, that

gravity acts upon all bodies proportionally to their

masses, though the bodies be composed of very different

substances. It was by means of experiments upon

the pendulum that Newton proved that the weights of

different bodies are in the proportion of their masses.

LAW CONNECTING THE TIME OP VIBRATION WITH

THE LENGTH.

603. We have seen that the time of vibration of a pen-

dulum depends neither upon its amplitude, material, nor

weight ; we have now to learn on what the time does

depend. It depends upon the length of the pendulum.

The shorter a pendulum the less is its time of vibration.

We shall proceed to find by experiment the relation

between the time and the length of the cord by which

the weight is suspended.

604. I have here (Fig. 84) two pendulums ad, bc, one

of which is 12' long and the other 3'; they are mounted

side by side, and the weights are at the same distance

from the floor. I take one of the weights in each hand,

and withdraw them to the same distance from the position

of rest. I release the balls simultaneously ; c moves off
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rapidly, arrives at the end c' while d has only reached r/,

and returns to my hand just as d has completed one oscil-

lation. I do not seize c ; it goes off again, and returns

again exactly at the same moment as n reaches my hand.

Thus you see that c has performed four oscillations while

D has made two. This proves to us that when one of

-$

Fig. Si.

two pendulums is a quarter the length of the other, the
time of vibration in the short pendulum is exactly half
the time of vibration in the long pendulum.
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605. We shall repeat the experiment with the pen-

dulum 27' long, which is suspended from the ceiling,

and compare it with a pendulum 3' long, which is sus-

pended near it. I withdraw the weights and release

them as before ; and you see that the weight of the small

pendulum returns twice to my hand while the long

pendulum has not yet returned ; but that, keeping my
hands steadily in the same place throughout the experi-

ment, the long pendulum returns exactly at the same

instant as the short pendulum returns for the third time.

Hence we learn that a pendulum 27' long takes three

times as much time for its vibration as a 3' pendulum.

606. The lengths of the three pendulums on which we
have experimented (27', 12', 3'), are in the proportions

of the numbers 9, 4, 1 ; and the times of the oscillations

are proportional to 3, 2, 1 : hence we learn that the time

of vibration of a pendulum is proportional to the square

root of the length of the pendulum.

607. But the time of vibration must also depend upon

gravity ; for it is only owing to gravity that the pen-

dulum makes vibrations; and it is evident that, if gravity

were increased, the time of vibration would be diminished :

hence the expression for the time of vibration must be

proportional to the square root of the length, and must

also be diminished when gravity is increased.

It is found by calculation, and the result is con-

firmed by experiment, that the time of vibration is repre-

sented by the expression,

3-1416,/ Len%th
» Force ol gravity.

608. The force of gravity in London (Art. 517) is

32 '1908, so that the time of vibration of a pendulum in
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London is 0'5537v/ length : the length of a pendulum

which vibrates in one second, at London, is 3
/-
2616.

MODE OF FINDING GRAVITY BY THE PENDULUM.

609. The pendulum affords tbe proper means of

determining the force of gravity at any place on the

earth. We have seen that the time of vibration can be

expressed in terms of the length and the force of

gravity ; so conversely, when the length and the time

of vibration are known, the force of gravity can bo

determined ; the expression for gravity is

—

Length X
Time

610. It is, of course, quite impossible to observe the

time of one vibration with any degree of accuracy ; but

supposing we observe a large number of vibrations, say

100, and find the time taken to perform them, we shall

then find tbe time of one oscillation by dividing the

entire time by 100. The amplitude of the oscillations

may diminish, but they are still performed in the same

time ; and hence, if we are sure that we have not made a

mistake of more than one second in the whole time, there

cannot be an error of more than 0*01 second, in the

time of one oscillation. By taking a still larger number

of oscillations, the time may - be determined with the

utmost precision, so that this part of the inquiry presents

no difficulty.

611. But the length of the pendulum has also to be

ascertained, and this does present some difficulties. The

ideal pendulum whose length is required, is supposed to

be composed of a very fine, perfectly flexible cord, at the

end of which a particle without appreciable size is
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attached ; but this is very different from the pendulum

which we must employ. We are not sure of the exact

position of the point of suspension, and, although we use

a perfect sphere for the weight of the pendulum, the

distance between its centre and the point of suspension

is not precisely the length of the simple pendulum that

would vibrate isochronously. Owing to these circum-

stances, the measurement of the pendulum is embar-

rassed by considerable difficulties, which have only

been overcome by the most lavish expenditure of

mechanical skill.

612. We shall perform, in a very simple way, an

experiment for the purpose of determining the force of

gravity. I have here a silken thread which is fastened

by being clamped between two pieces of wood. A cast-

iron ball 2"'5 4 in diameter is suspended from this piece

of silk. The distance from the point of suspension of the

silk to the ball is 24" -

07, as well as it can be measured.

The length of the ideal pendulum which would vibrate

isochronously with this pendulum is 25" -

37, being about

(^"•03 greater than the distance from the point of suspen-

sion to the centre of the sphere.

613. The length having been ascertained, the next

point to be determined is the time of vibration. For this

purpose I use a stop-watch, which can be started or

stopped instantaneously by touching a little stud : this

watch will indicate time accurately to one-fifth of a

second. It is necessary that the pendulum should swing

in a small arc, as otherwise the oscillations are not strictly

isochronous. It is quite sufficient amplitude to allow

the ball to move to and fro through a few tenths of

an inch.

614. In order to observe the vibrations easily, I have
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mounted a little telescope, through which I can view the

top of the hall. In the eye-piece of the telescope a

vertical wire is fastened, and I count each vibration just

as the silk of the ball passes the vertical wire. Taking

my seat with the stop-watch in my hand, I write

down the position of the hands of the stop-watch;

and then look through the telescope. I see the silk

thread slowly moving to and fro, crossing the vertical

wire at every vibration
;

just as it passes the wire on

one occasion, I touch the stud and start the watch. I

allow the pendulum to make 300 vibrations, and

suddenly, as the silk arrives at the vertical wire for the

300th time, I stop the watch ; on reference I find that

241 '6 seconds have elapsed since the time the watch

was started. To avoid error, I repeat this experiment,

with precisely the same result: 24T6 seconds are again

required for the completion of 300 vibrations.

615. It is desirable to commence counting the vibra-

tions when the pendulum is at the middle of its stroke,

rather than when it arrives at its highest point. In the

former case the pendulum is moving with the greatest

rapidity, and therefore the identity of the thread with

the vertical wire in the telescope can be noticed with the

most perfect definiteness.

616. The time of one vibration is therefore found, by

dividing 241 6 by 300, to be 0-805 second. This is

certainly correct to less than a thousandth part of a

second. We have, then, a pendulum whose length is

25" -37 = 2'-114, vibrating in 0*805 second ; and from this

96.we find that gravity is 2
/-114 x |-

] = 32-1fe J
\ 0-805 /

This result agrees with what has been determined by

very careful measurement.
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Another method of finding gravity from the oscilla-

tions of a pendulum will be described in the next lecture

(Art. 638).

"f" THE CYCLOID.

617. If the amplitude of the vibration of a circular

pendulum bear a large proportion to the radius, the time

of oscillation is slightly greater than if the amplitude

be very small. In this case the weight moves in the arc

of a circle.

618. But there is a curve in which a weight may be

made to move where the time of vibration is precisely

the same, whatever be the amplitude. This curve is

called a cycloid. This is the curve which is described

by a nail in the circumference of a wheel, when the wheel

rolls along the ground. Thus, if a circle (Fig. 85) rolled

along the line ab, a point on its circumference describes

the cycloid adcpb. This curve does not differ very

much at its lower part from a circle whose centre is a

certain point o above the curve.

619. Suppose we had a piece of wire carefully shaped

to the curve adcpb, and that a ring could slide along

this wire without friction, it would be found that, whether
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the ring be allowed to drop from c, p or b, it would fall to

D precisely in the same time ; the ring would of course

rise upon the wire to an equal height on the other

side of D, and would continue to vibrate for ever. In

vibrations upon the cycloid, the amplitude is absolutely

without effect upon the time.

620. Owing, however, to the fact that a frictionless

wire is impossible, we cannot adopt this method, but we
can avail ourselves of a remarkable property of a cycloid.

OA (Fig; 85) is a curve consisting of a half cycloid ; in

fact, oa is just the same as bd, moved into a different

position, so also is ob. If a string of length od be

suspended from the point o, and have a weight attached

to it, the weight will describe the cycloid, provided that

the string wrap itself along the arcs oa and ob ; thus,

when the weight has moved from D to p, the string is

wrapped along the curve through the space ot, the part

tp only being free. This arrangement will always force

the point P to move in the cycloidal arc.

621. We are now in a condition to ascertain experi-

mentally, whether the time of oscillation in the cycloid

be independent of the amplitude. We use for this purpose

the apparatus shown in Fig. 86. dce is the arc of the

cycloid; Two strings are attached at o, and equal weights

a, b are suspended from them ; c is the middle point of

the arc. The time A will take to fall through the arc

AC is of course half the time of its oscillation. If, there-

fore, I can show that A and b both take the same time to

fall down to c, I shall have proved that the vibrations

are isochronous.

622. Holding, as shown in the figure, A in one hand

and B in the other, I release them simultaneously, and

you see the result,— they both meet at c : even if I
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bring a up to e, and bring b down close to c, the

result is the same. The motion of A is so rapid that

it arrives at c just at the same instant as B. When I

bring the two balls on the same side of c. and release

them simultaneously, A overtakes b just at the moment
when it is passing c. Hence, under all circumstances,

the times of descent are equal.

Fio. 86.

623. It will be noticed that the ball B, in the position

shown in the figure, is almost as free as if it were merely

suspended from o, for it is only when the ball is some

distance from the lowest point that the side arcs produce
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any appreciable effect upon the thread o b . The ball swings

from b to c nearly as in a circle whose centre is o. Hence,

in the circular pendulum, the vibrations when small are

isochronous, for in that case the cycloid and the circle

become indistinguishable.



LECTURE XIX.

THE COMPOUND PENDULUM AND THE COMPOSITION OF
FIBRATIONS.

Tlio Compound Pendulum.—The Centre of Oscillation.—The Centre

of Percussion.— The Conical Pendulum.—The Composition of

Vibrations.

THE COMPOUND PENDULUM.

624. Pendulous motion is met with in many other

forms besides that of the simple pendulum, which consists

of a weight and a cord. In fact, any body which rotates

about an axis may oscillate like a pendulum. A body

thus vibrating is called a compound pendulum. Every

pendulum is more or less a compound pendulum, for the

ideal form, which consists of an indefinitely small weight

attached to a perfectly flexible and imponderable string,

is an abstraction which can only be approximately

imitated in nature.

625. The first pendulum of this class which we shall

notice is the common clock pendulum (Fig. 87). This

consists of a wooden or steel rod a e, to which a brass or

leaden bob B is attached. This pendulum is suspended

by means of a steel spring c A, which being very flexible,

allows the pendulum to vibrate with considerable free-

dom. The use of the screw at e will be explained in
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Art. 665. A pendulum like this vibrates isochronously,

when the amplitude is small, but it is not easy to see

precisely what the length of the simple pendulum is

which would swing in the same time. In the

||
first place, we are uncertain as to what is

virtually the point of suspension, for the

spring, though flexible, will not yield at the

point c to the same extent as a string : thus

the effective point of suspension is really a

little lower than c. The other extremity is

still more uncertain, for the weight, so far

from being a single poiut, is not exclusively

in the neighbourhood of the bob, for the rod of

the pendulum has a weight that is appreciable.

This form of pendulum cannot therefore be

used where it is necessary to determine the

length with accuracy.

626. When the length of a pendulum is to

be measured, we must adopt other means of

supporting it than that of suspension from a

spring, in order to have a definite point from

which to measure. To illustrate the mode

that is to be adopted, I take here an iron bar

6' long and \" square, which weighs 19 lbs. I wish

to support this at one end so that it can vibrate

freely, and at the same time have a definite point of

suspension. I have here two small prisms of steel E

(Fig. 8 8) fastened to a brass frame ; these prisms are

called knife-edges, though they are far more blunt than

any knife—in fact, the edges meet at about an angle

of 45° : this frame and the knife-edges can be placed on

the end of the bar, and can be fixed there by tightening

two nuts. The object of having the knife-edges on a

Fig. 87.
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sliding frame is that they may be applicable to different

parts of the bar with facility. Tn some instruments used

in experiments requiring extreme delicacy, the knife-

edges which are attached to the pendulum are supported

upon plates of agate ; the edges are adjusted on the same

horizontal line, and the pendulum really vibrates about

this line, as about an axis. For our purpose it will be

sufficient to support the knife-edges upon small pieces

of steel, ab, Fig. 88, represents one side of the top of

the iron bar ; e is the knife-edge

projecting from it, with its edge

perpendicular to the bar ; there

is of course a similar edge on the

other side. CD is a steel plate

whose upper surface is polished ;

this piece of steel is firmly

secured to the framework. There

is of course a similar piece on

the other side, supporting the other knife-edge. The

bar, thus carried by its knife-edges, will, when once

started, vibrate backwards and forwards for an hour, as

there is very little friction between the edges and the

pieces which support them.

627. The general appearance of the apparatus, when
mounted, is shown in Fig. 89. ab is the bar : at a the

knife-edges and the framework are shown, and also the

pieces of steel which support the knife-edges. The whole

is carried by a horizontal beam bolted to two uprights ; a

glance at the figure will explain the arrangements made
to secure the steadiness of the apparatus ; the knife-edges

shown at b will be referred to presently (Art. 636).

628. This bar, as you see, vibrates to and fro ; and we
shall determine the length of a simple pendulum which

Fig. 88.
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would vibrate in the same period of time. The length

might be deduced by finding the time of vibration, and

then calculating from Art. 609. This would be the most

accurate mode of proceeding, but I have preferred to

adopt a simple method which does not require calculation.

Fig. 89.

A simple pendulum, consisting of a fine cord and a small

iron sphere c, is mounted behind the knife-edge, Fig. 89.

The point from which the cord is suspended lies exactly in

the line of the two knife-edges, and there is an adjust-

ment for lengthening or shortening the cord at pleasure.

629. I first let out 6' of cord, so that the simple pen-
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dulum has the same length as the bar. Taking the ball

in one hand and the bar in the other, I draw them aside,

and you see, when I release them, that the bar performs

two vibrations and returns to my hand before the ball.

Hence the length of the isochronous simple pendulum is

certainly less than the length of the bar ; for we see that

a pendulum of that length is too slow.

630. I now shorten the cord until it is only half the

length of the bar ; and, repeating the experiment, I see

that the ball returns to my hand before the bar, and

therefore the simple pendulum is too short. Hence we
learn that the isochronous pendulum is greater than half

the length of the bar, and less than the whole length.

631. Let us try a simple pendulum two-thirds of the

length of the bar. I repeat the experiment, and find

that the ball and the bar return to my hand precisely at

the same instant. Therefore two-thirds of the length of

the bar is the length of the isochronous simple pendulum.

632. In every uniform bar the time of vibration about

one end is the same as that of a simple pendulum, whose

length is two-thirds of the bar ; the rod we have used is

not strictly uniform, because of the knife-edges ; but

their weight (1*5 lb. each) maybe neglected when com-

pared with 19 lbs., the weight of the bar.

633. For this rule to be verified, it is essentially

necessary that the knife-edges be placed at one end of

the bar ; to illustrate this we may examine the oscilla-

tions of the small rod, shown at d (Fig. 89). This rod is

also of iron 24" x 0"'5 x
//-

5, and it is suspended from a

point near the centre by a pair of knife-edges if the

knife-edges could be placed so that the centre of gravity

of the whole lay in the line of the edges, it is evident

that the bar would rest indifferently, however it were

x -2
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placed, and would not oscillate. If then the edges be

very near the centre of gravity, we can easily understand

that the oscillations maybe very slow, and this is actually

the -Guse in the bur D. By the aid of the stop-watch, I

find that one hundred vibrations are performed in 248

seconds, and that therefore each vibration occupies 2'48

seconds. The length of the simple pendulum which has

2 '48 .seconds for its period of oscillation, is .about 20'.

Had the knife-edge been at one end, the length of the

simple pendulum would have been

24" x | = 16".

THE CE1TTRE OF OSCILLATION.

634. We have already explained that the isochronous

pendulum is that simple pendulum whose period of oscil-

lation ecpials that of a compound pendulum. Thus, for

example, in the 6' bar already described (Art. 626), this

length is 4'. If I measure off from the knife-edges a dis-

tance of 4', and mark this point upon the bar, the point

is called the centre of oscillation. The centre of oscilla-

tion in any compound pendulum is at a distance from the

knife-edge, equal to the length of the corresponding

simple pendulum. A -bar 72" long will vibrate in a

shorter time when the knife-edge is 15"''2 from one end

than when it has any other position. The length of the

corresponding simple pendulum is 41 //-
6.

635. In the bar D the centre of oscillation would be at

a distance of 20' below the knife-edges ; and in general

the position will vary with the position of the knife-

edges.

636. In the 6' bar b is the centre of oscillation. I take

another pair of knife-edges and place them on the bar, so
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that the line of the edges passes through b. I now lift the

bar carefully and turn it upside down, so that the edges

B rest upon the steel plates. In this position one-third of

the bar is above the axis of suspension, and the remaining

two-thirds below it. a is of course now at the bottom of

the bar, and is on a level with the ball, c : the pendulum

is made to oscillate about the knife-edges b, and the time

of its vibration may be approximately determined by

direct comparison with c, as already explained. I find that,

when I allow c and the bar to swing together, they both

vibrate precisely in the same time. You will remember,

that when the ball was suspended by a string of 4', its

vibrations were isochronous with thoce of the bar when

suspended from the edges a. Now, without having altered

c, but making the bar vibrate about b, I find that the

time of oscillation of the bar is still equal to that of c.

Therefore, the period of oscillation about a is equal to

that about B. Hence, when the bar is vibrating about b,

its centre of oscillation must be 4' from b, that is, it must

be at a : so that when the bar is suspended from a,

b is the centre of oscillation ; while, when the bar is sus-

pended from B, A is the centre of oscillation. This is

a most remarkable truth. It may be more concisely

expressed by saying that the centre of oscillation and the

centre of suspension are reciprocal.

637. Though the proof that we have given of this

curious law applies only to a uniform bar, yet the law

is itself true in general, whatever be the nature of the

compound pendulum.

638. We alluded in the last lecture (Art. 611) to the

difficulty of measuring with accuracy the precise length

of a pendulum ; an ingenious philosopher, Captain Kater,

saw in the reciprocity of the centres of oscillation ana
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suspension, a method by which this difficulty could be

evaded. We shall explain the principle. Let one pair

of knife-edges be at A. Let the other pair of knife-

edges, B, be placed as near as possible to the centre

of oscillation. We can test whether B has been placed

correctly : for the time taken by the pendulum to perform

100 vibrations about A should be equal to the time taken

to perform 100 vibrations about B. If the times are not

quite equal, B must be moved slightly until they are found

to be exactly equal. Now the length of the isochronous

simple pendulum is precisely equal to the distance be-

tween the knife-edges a, b ; but the distance, from one

edge to the other edge, presents none of the difficulties

in its exact measurement which we had before to contend

with : it can be found with precision. Hence, knowing

the length of the pendulum and its time of oscillation,

gravity can be found in the manner already explained.

639. I have adjusted the two edges of the 6' bar as

nearly as possible at the centres of oscillation and suspen-

sion, and we shall proceed to test the correctness of the

positions. Mounting the bar first by the knife-edges at

A, I set it vibrating. I take the stop-watch already re-

ferred to (Art. 613), and record the positions of its hands.

I then place my finger on the stud, and, just at the

moment when the bar is at the middle of one of its vibra-

tions, I start the watch. I count a hundred vibrations

;

and when the pendulum is again at the middle of its

stroke, I stop the watch, and find it records an interval

of 110'4 seconds. Thus the time of vibration is 1'104

seconds. Eeversing the bar, so that it vibrates about its

centre of oscillation b, I now find that 110"0 is the time

occupied by one hundred vibrations counted in the same

manner as before : hence 1'100 seconds is the time of one
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vibration about B : thus, the periods of the vibrations

are very nearly equal, as they differ only by rfsth part

of a second.

640. It would be difficult to render the times of oscil-

lation exactly equal by altering the position of B. In

Kater's pendulum the two knife-edges are first placed so

that the periods are as nearly equal as possible. The final

adjustments are given by moving a small sliding-piece

on the bar until it is found that the times of vibration

about the two edges are identical. We shall not, how-

ever, use this refinement in a lecture experiment ; I shall

adopt the mean value of T102 seconds. The distance of

the knife-edges is about 3'"992
; hence gravity may be

found from the expression (Art. 609)

/3-1416\ 2

3 "2 x \vmr)
The value thus deduced is 32 /-

4, which is too large by

about two or three inches.

641. With proper care Kater's pendulum can be made

to give a very accurate result. It is to be adjusted so that

there shall be no perceptible difference in the number of

vibrations in twenty^four hours, whichever edge be the

axis of suspension ; the distance between the edges is

then to be measured with the last degree of precision by

comparison with a proper standard.

THE CENTRE OF PERCUSSION.

642. The centre of oscillation in a body moving about

a fixed axis is identical with another remarkable point,

called the centre of percussion. We proceed to examine

some of the properties of a body thus suspended with

reference to percussion.
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For the purposes of this experiment the method of

suspension by knife-edges is too delicate to be adopted

;

the knife-edges would be injured by the blows which

must be given.

643. We shall first use a rod suspended from a pin

about which the rod can rotate. A B, Fig. 90, is a pine rod

48" x 1" x 1", free to turn around b. Suppose this

rod hang at rest. I take a stick in my hand,

and, giving the rod a blow, I make it vibrate

;

the rod will immediately act upon the pin at b ;

but the immediate effect upon b will be very

different according to the position at which the

blow is given. If I strike the upper part of the

rod at D, the action of ab upon the pin is a

pressure to the left. If I strike the lower part

at A, the pressure is to the right. But if I

strike the point c, which is distant from b by

two-thirds of the length of the rod, there is no

pressure upon the pin. In fact, for a blow below

c, the pressure is to the right ; for one above c,

it is to the left ; for one at c it is nothing.

644. We can easily verify this by holding one

extremity of a rod between the finger and thumb

of the left hand, and striking it in different

places with a rod held in the right hand ; the

I A pressure of the rod, when struck, will be felt by

Fig. 90. the fingers, and the circumstances already stated

can be verified.

645. But a more complete way of investigating the

subject is shown in Fig. 91. IB is a rod of wood,

which is suspended from a beam by the string fg.

A piece of paper is fastened to the rod at P by means
of a small slip of wood which is clamped firmly to the
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rod ; the other ends of this piece of paper are similarly

clamped at p and q.

646. When the rod receives a blow on the right-hand

side of A, we find that the piece of paper is broken

across at E, because the end F has

been driven by the blow towards

Q, and consequently caused the

fracture of the paper at a place, b,

where it had been specially nar-

rowed. I remove the pieces of

paper, and replace them by a new

piece precisely similar. I now
strike the rod at b,—a smart tap

is all that is necessary,—and the

piece of paper breaks at D. Fi-

nally replacing the pieces of paper

by a third piece, I find that when
I give the rod a tap (not a violent

blow) at c, neither D nor E are

broken.

647. This point o, where the rod

can receive a blow without pro^

ducing a strain upon the extremity,

is called the centre of percussion.

We see, from its being two-thirds

of the length of the rod distant from p, that it is

identical with the centre of oscillation of the rod, if

vibrating about knife-edges at p. It is true in general,

whatever be the shape of the body, that the centre of

oscillation is identical with the centre of percussion.

648. The principle embodied in what has been said of

the centre of percussion has many applications. Every

cricketer knows well that there is one part of his bat

Pie. 91.
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from which the ball flies without giving his hands any-

unpleasant shock. The explanation is simple. The bat

may be regarded as a body suspended from his hands

;

and if the blow be given with the centre of percussion

of the bat, there is no shock experienced. In a hammer

the centre of percussion is in the head, consequently a

nail can receive a violent blow from the head, without

injury to the hand which holds the handle of the

hammer.

THE CONICAL PENDULUM.

649. I. have here a tripod (Fig. 92) which supports a

heavy ball of cast iron by a string 6' long. If I with-

draw the ball from its position of rest, and merely

release it, the ball vibrates to and fro, the string con-

tinues always in the same plane, and the motion is that

produced by the circular pendulum. If at the same

instant that I release the ball, I impart to it a slight

push in a direction not passing through the position of

rest, the ball describes a curved path, returning to the

point from which it started. This motion is that of

the conical pendulum, because the string supporting the

ball describes a cone.

650. In order to examine the nature of the motion, we

can make the ball depict its own path, At the opposite

point of the ball to that from which it is suspended, a

hole is bored, and in this I have fitted a camel's-hair

paint-brush filled with ink. I bring a sheet of paper on

a drawing-board under the vibrating ball ; and you see

the brush traces an ellipse upon the paper, which I quickly

withdraw.

651. By starting the ball in different ways, I can make
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it describe very different ellipses : here is one that is

extremely long and narrow, and here another almost

circular. Pushing the ball with the proper velocity

perpendicularly to the line joining its position to the

position of rest, I can make the string describe a right

Fig. 92.

cone, and the ball a horizontal circle, but it requires

some care and several trials in order to succeed in this.

When the ellipse becomes very narrow, the motion passes

by insensible gradations into that of the common pen-

dulum, and the brush traces a straight line.
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652. When the ball is moving in a circle, its velocity

is uniform ; when moving in an ellipse, its velocity is

greatest at the extremities of the least axes of this

ellipse, and least at the extremities of the greatest axes

;

but, when the ball is vibrating to and fro, as in the

ordinary circular pendulum, the velocity is greatest at the

middle of each vibration, and vanishes of course each

time the pendulum reaches the extremity of its swing. It

is very remarkable, that under all circumstances the brush

traces an ellipse upon the paper ; for the circle and the

straight line are only extreme cases, the one being a very

round ellipse and the other a very flat one. The brush

will never trace any other form of curve.

653. How are we to explain the form of the path ?

To do so fully would require more calculation than

would be admissible here, but we can give a general

account of the phenomenon.

Let us suppose that the ellipse acbd, Fig. 93, is

the path described by a particle when suspended by a

string from a point vertically above Q, the centre of the

ellipse. To produce this motion I withdraw the particle

from its position of rest at o to A. If merely released,

the particle would swing over to B, and back again to

a ; but I do not simply release it, I give it a velocity

impelling it in the direction at. Through odrawcD
parallel to A T. If I .had taken the particle at o, and,

without withdrawing it from its position of rest, had

started it off in the direction o D, the particle would

continue for ever to vibrate backwards and forwards from

c to D. Hence, when I release the particle at A, and give

it a velocity in the direction A T, the particle commences

to move under the action of two distinct vibrations, one

parallel to ab, the other parallel to CD. What is the
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effect of these two vibrations impressed simultaneously

upon the same particle ? They are performed in the

same time, since all vibrations are isochronous. We
must conceive one motion starting from A towards o at

the same moment that the other commences to start

from o towards d. After the lapse of a short time, the

body has moved through A y in its oscillation towards o,

and in the same time through o z in its oscillation

towards d ; it is therefore found at x. Now, when the

Fig. 93.

particle has moved through a distance equal and parallel

to ao, it must be found at the point d, because the

motion from o to D takes the same time as from A to o.

Similarly the particle must pass through b, because in the

time occupied in going from A to b, the particle has had

time to go from o to T>, and back again. The particle

is found at p, because, after the vibration returning from

B has arrived at Q, the movement from d to o has

travelled on to R. In this way the particle may be

traced completely round its path by the composition of

the two motions. It can be proved that the path is an

ellipse, and not any other curve, by reasoning founded

upon the fact that the times of vibration are equal.
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654. Close examination reveals a very interesting

circumstance connected with this experiment. It may
be observed that the ellipse described by the body is

not quite fixed in position, but that it gradually moves

round in its plane. Thus, in Fig. 92, the ellipse which

is being traced out by the brush will gradually change

its position to the dotted line shown on the board. The

ellipse moves round in the same direction as tbat in

which the ball is moving. This phenomenon is more

marked with an ellipse whose dimensions are consider-

able in proportion to the length of the string. In fact,

if the ellipse be very small, the change of position is

imperceptible. The cause of this change is to be found

in the fact already mentioned (Art. 599), that though

the vibrations of a pendulum are very nearly isochronous,

yet they are not absolutely so ; the vibration in a long

arc taking a minute portion of time longer than a

vibration through a short arc.

This difference only becomes appreciable when the

larger arc is of considerable magnitude with reference

to the length of the pendulum.

655. How this produces the effect on the ellipse may
be explained by Fig. 94. The particle is describing the

ellipse adcb in the direction shown by the arrows.

This motion may be conceived to be compounded of

vibrations A c and b d, if we imagine the particle to have

been started from a with the right velocity in the

right direction. Now, at the point A, the motion is for

the instant perpendicular to o A ; in fact, the motion is

due for that moment exclusively to the vibration bd,

and there is no movement parallel to o A. We may then

define the extremity of the major axis of the ellipse to

be the position of the particle, when the motion parallel
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to that axis vanishes. Of course this applies equally to

the other extremity of the axis c, and similarly at the

points B or D there is no motion of the particle parallel

to BD.

656. Let us follow the particle, starting from A until

it returns there again. The movement is compounded of

two vibrations, one from A to c and back again, the

other along B d ; from o to D, then

from D to b, then from b to o, taking ^~^=-$-^

exactly double the time of one vibra- / \
\

tion from D to b. Now, if the time J \ \
of vibration along AC were exactly /

/
\

equal to that along bd, these two \~~T~~i- J

vibrations would bring the particle I
\ J

back to A again, precisely under the \
/

/

same circumstances. But they do \ ; /
not take place in the same time ; the \J

—

'

motion along AC takes a shade longer, rI0 . 94.

so that, when the motion parallel to

A c has ceased, the motion along d b has gone past to

a point Q, very near 0. Let ap = oq, and when the

motion parallel to AC has vanished, the particle will

be found at p ; hence p must be the extremity of the

major axis of the ellipse. In the next revolution, the

extremity of the axis will advance a little more, and

thus the ellipse moves round gradually.

THE COMPOSITION OF VIBRATIONS.

657. We have learned to regard one motion in the

conical pendulum, as compounded of two vibrations.

The importance of the composition of vibrations justifies

us in considering this subject experimentally in another
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way. The apparatus which wo shall employ is repre-

sented in Fig. 95.

A is a heavy iron ball weighing 25 lbs., suspended from
the tripod by a cord whose length can be modified at

pleasure : this ball itself forms the support of another

Fir. 05.

pendulum, b. The second pendulum is very light, being
merely a globe of glass filled with sand. Through a hole
at the bottom of the glass the sand runs out upon a
drawing-board placed underneath to receive it.

Thus the little stream of sand writes its own history
upon the drawing-board, and the curves traced out by
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the sand indicate the path in which the bob of the

second pendulum has moved.

658. If the lengths of the two pendulums be equal,

and their vibrations be in different planes, the curve de-

scribed is an ellipse ; passing at one extreme into a circle,

and at the other into a straight line. This is what we

might have expected, for the two vibrations are each

performed in the same time, and therefore the case is

analogous to that of the conical pendulum of Art. 649.

659. But the curve is of a very different character

when the cords are unequal. Let us study in particular

the case in which the second pendulum is only one-fourth

the length of the cord supporting the iron ball : . this is

actually the case represented iu

Fig. 95. The form of the path

described by the sand is given in

Fig. 96. The arrow-heads placed

upon the curve show the manner

in which it is formed. Let us

suppose that the formation of the
Fig 96

sand commences at a ; the curve

goes on to B, to o, to c, to d, and back to A : this shows

us that the bob of the lower pendulum must have per-

formed two vibrations up and down, and one right and

left. The motion is compounded of two vibrations at

right angles to each other, and the time of one vibration

is half that of the other.

The time of vibration is proportional to the square

roots of the length ; and, since the lower pendulum is

one-fourth the length of the upper, its time of vibration

is one-half. In this experiment, therefore, we have a

confirmation of the law of Art. 606.



LECTURE XX.

THE MECHANICAL PRINCIPLES OF A CLOCK.

Introduction.—The Compensating Pendulum.—The Escapement.

—

The Train of Wheels.—The Hands.—The Striking Parts.

INTRODUCTION.

660. We come now to the most important practical

application of the pendulum. The vibrations being

always isochronous, it follows that, if we count the

number of vibrations which the pendulum makes in a

certain time, we shall be able to ascertain the amount

of that time, provided we know the period of vibration

of the pendulum. Let us suppose a pendulum 3
9
'139

inches long ; such a pendulum will in London vibrate

exactly once a second, and is therefore called a seconds

pendulum. If I set one of these pendulums vibrating,

and devise means by which the number of its vibra-

tions shall be recorded, I have a means of measuring

time. This is in fact the principle of the common clock :

the pendulum vibrates once a second, and the number

of vibrations made from one epoch to another epoch

is shown by the hands of the clock. For example,

when the clock tells me that 15 minutes have elapsed,

what it really shows is that the pendulum has made
60 x 15 = 900 vibrations, each of which has occupied

one second.
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661. One duty of the clock is therefore to count and

record the number of vibrations of the pendulum ; but

the wheels and works have another part to discharge,

and that is to sustain the motion of the pendulum. The

friction of the air and the resistance experienced at the

point of suspension are forces tending to bring the pen-

dulum to rest ; to counteract the effect of these forces,

the pendulum must be continually supplied with fresh

energy. This supply is communicated to the pendulum

by the works of the clock, which will be more fully

detailed presently.

662. When the clock is wound up, a store of energy

is given to the machine, and this is doled out to the

pendulum in a very small impulse, which it receives at

every vibration. The clock-weight is of such a magni-

tude that it shall just be able to counterbalance the

retarding forces when the pendulum has a proper ampli-

tude of vibration. In all machines there is a certain

amount of energy lost in setting the parts in motion, and

in overcoming friction and other resistances ; in clocks

this represents the whole amount of the force, as there is

no external work to be performed.

THE COMPENSATING PENDULUM.

663. A pendulum whose length is 39"139 inches vi-

brates exactly once a second in London. It is essential

for the correct performance of a clock that the pendulum

should vibrate at a constant rate ; even the smallest

irregularity will produce an appreciable effect upon the

clock. Thus, suppose the pendulum vibrates in 1
-001

seconds instead of in one second, the clock loses one-

thousandth of a second at each beat ; and, since- there are

86,400 seconds in a day, it follows that the pendulum

Y 2
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will make only 86,400 — 86 '3 vibrations in a day, and

that therefore the clock will lose 86 - 3 seconds, or nearly

a minute and a half daily.

664. For correct performance it is therefore essential

that the time of vibration be rigidly constant. Now the

time of vibration depends upon' the length, and therefore

it is necessary that the length of the pendulum be ab-

solutely constant. If the length of the pendulum be

altered by one-tenth of an inch, the clock will lose or

gain nearly two minutes daily, according to whether the

pendulum be lengthened or shortened. Tn general we

may say that, if the pendulum be altered in length by K
thousandths of an inch, the number of seconds gained or

lost per day is 1'103 x k.

665. This explains the well-known practice of raising

or lowering the bob of the pendulum when the clock is

going too slow or too fast. Suppose the thread of the

screw used in doing this have twenty threads to the inch
;

then one complete revolution of the screw will raise the

bob through 50 thousandths of an inch, and therefore the

effect on the rate will be 1
-103 x 50 = 55 nearly. Thus,

the rate of the clock will be altered by about 55 seconds

daily. A screw by which this can be accomplished is

shown in Fig. 87. Whatever be the screw, its effect can

be calculated by the simple rule expressed as follows.

Divide 1103 by the number of threads to the inch;

the quotient is the number of seconds that the clock can

be made to gain or lose daily by one revolution of

the screw on the bob of the pendulum.

666. Let us suppose that the length of the pendulum
has been properly adjusted so that the clock keeps accu-

rate time. It is necessary that the pendulum should not

alter in length. But there is an ever-present cause con-
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stantly tending to change the length of the pendulum.

That cause is heat. We shall first prove by actual experi-

ment that bodies expand under the action of heat; then

we shall consider the irregularities introduced into the

motion of the pendulum by change of temperature ; and,

finally, we shall point out means by which these irregu-

larities may be effectually counteracted.

667. I have here a brass bar a yard long; it is at

present at the temperature of the room. If I heat the

bar over a lamp, it becomes longer ; but upon cooling, it

returns to its ' original dimensions. These alterations

of length are very small, indeed too small to be per-

ceived except by careful measurement ; but we shall be

able to show you iu a simple way that this bar does

Fi«. 97.

actually elongate when warmed. I place the bar ad in

the supports shown in Fig. 97. It is firmly secured at

B by means of a binding screw, and passes quite freely

through c ; if the bar elongate when it is heated by the

lamp, the point D must approach nearer to e. At H is

an electric battery, and at G an alarm clock rung by

electricity. One wire of the battery connects h and a,
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another connects G with e, and a third connects H with

the end of the brass rod. Now, until the electric current

becomes completed, the alarm is dumb, and the current

is not complete until the point touches E : when this is

the case, the current rushes from the battery along the

bar, then from n to E, from that through the alarm, and

so back to the battery. I move the bar so that the

point is not touching e, though extremely close to it. If

T press e towards the point, you hear the alarum, show-

ing that the circuit is complete ; removing my finger, the

alarm again becomes silent, because e springs back, and

the current is interrupted.

668. I place the lamp under the bar: the bar begins

to heat and to elongate ; and, as it is firmly held at B,

the point gradually approaches E ; it has now touched

E ; the circuit is complete, and the alarm rings. If I

withdraw the lamp, the bar cools. I can accelerate the

process by touching the bar with a damp sponge ; the

bar contracts, breaks the circuit, and the bell stops

:

heating the bar again with the lamp, the bell again

rings, to be again stopped by an application of the

sponge. Now, though you have not been able to see the

process, your ears have informed you that heat must

have elongated the bar, and that cold has contracted it.

669. What we have proved with respect to a bar of

brass, is true for a bar of any material ; and thus,

whatever be the substance of which a pendulum is

made, the rod must be longer in hot weather than in

cold weather : hence a clock will generally have a

tendency to go faster in winter than in summer.

670. The amount of change thus produced is, it

is true, small. For a pendulum with a steel rod, the

difference of temperature between summer and winter
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will cause a difference in the rate of five seconds daily,

or about half a minute in one week. The amount of

error thus introduced is of no great consequence in

clocks, which are only intended for ordinary use ; but in

astronomical clocks, where seconds or even portions of a

second are of the utmost importance, inaccuracies of this

magnitude would be quite inadmissible.

671. There are, it is true, some substances—for ex-

ample, slips of white deal—in which the rate of expansion

is less than that of steel ; consequently, the irregularities

introduced by employing a pendulum whose rod is a

slip of deal, would be less than that of the steel pen-

dulum we have mentioned ; but no substance is known
which would not undergo greater variations than are

admissible in the pendulum of an astronomical clock.

We must, therefore, devise some means by which the

effect of temperature on the length of a pendulum can be

avoided. Various means have been proposed for this pur-

pose ; we shall describe that which is generally adopted.

672. The mercurial pendulum (Fig. 98) is doubtless

familiar to many ; it is frequently used in clocks of good

quality. The rod by which the pendulum is suspended is

made of steel ; and the bob consists of a glass jar of

mercury. The distance of the centre of gravity of the

mercury from the point of suspension may practically be

considered as the length of the pendulum. The rate of

expansion of mercury is about sixteen times that of steel

:

hence, if we had the bob formed of a column of mercury

which was one-eighth part of the length of the steel rod,

the compensation would be complete. For, suppose the

temperature of the pendulum to be raised, the steel rod

would be lengthened, and therefore the vase of mercury

would be lowered ; on the other hand, the column of
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mercury would expand by an amount double that of the

steel rod : thus the centre of the column of mercury

would be raised by an amount exactly equal to that by

which the steel was elongated ; hence the centre of the

mercury is raised by its own expansion as much as it is .

lowered by the expansion of the steel, and therefore it

remains unaltered. By this contrivance the time of

oscillation of the pendulum is rendered

independent of the temperature. The

bob of the mercurial pendulum is

shown in Fig. 98. The screw is for

the purpose of raising or lowering the

entire vessel of mercury in order to

make the rate correct in the first in-

stance. It is of course essential that

the vessel should contain the proper

quantity of mercury.

THE ESCAPEMENT.

673. Great labour, both of practical

skill and theoretical investigation, has

been lavished upon the very important

part of a clock which is called the

escapement. A good escapement is es-

sential to the correct performance of the

clock. The pendulum must have its motion sustained by

receiving an impulse at every vibration : at the same time

it is desirable that the vibration of the pendulum should

be hampered as little as possible by mechanical con-

nection. The isochronism of the pendulum, on which its

utility as a time-keeper depends, is only a property of a

pendulum which is swinging quite freely ; hence we must

Fig. 98.
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endeavour to approximate the clock pendulum as nearly

as possible to a pendulum swinging quite freely. To
effect this, and at the same time to maintain the arc of

vibration constant, is the property of a good escapement.

674. A common form of escapement is shown in Fio-. 99.

The arrangement is somewhat different from that actually

Fig. 99.

found in a clock ; but I have constructed the machine in

this way in order to show clearly the action of the dif-

ferent parts, a is called the escapement-wheel : it is

surrounded by thirty teeth, and turns round once when



330 EXPERIMENTAL MECHANICS. [lect. xx.

the pendulum has performed sixty vibrations,—that is,

once a minute. I represents the escapement ; it turns

about an axis and carries the fork K : this fork projects

behind, and between the prongs the rod of the pendulum

passes. The pendulum is itself suspended from a point

o. At u, H are polished surfaces called the pallets

:

these fulfil a very important part.

675. The escapement-wheel is constantly urged to

turn round by the action of the weight and train of

wheels, of which we shall speak presently ; but the action

of the pallets regulates the rate at which the wheel can

revolve. When a tooth of the wheel falls upon the

pallet N, the latter is gently pressed away : this pressure

is transmitted by the fork to the pendulum ; as N moves

away from the wheel, the other pallet H approaches the

wheel; and by the time n has receded so far that the

tooth slips from it, H has advanced sufficiently far to

catch the tooth which immediately drops upon H. In

fact, the moment the tooth is free from n, the wheel

begins to turn in consequence of the weight A ; but the

wheel is quickly stopped by a tooth falling on H : the

noise of this collision is the well-known tick of the clock

Now what happens ? The pendulum is still swinging to

the left when the tooth falls on H. The action of the

tooth then tends to press H outwards, but the inertia of

the pendulum in forcing h inwards is at first sufficient to

overcome the outward pressure arising from the wheel

;

the consequence is that, after the tooth has" dropped, the

escapement-wheel moves back a little, or "recoils," as

it is called. If you look at any ordinary hall clock,

which has a second-hand, you will notice that after

each second is completed the hand recoils before start-

ing for the next second. The reason of this is, that the
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second-hand is turned directly by the escapement-wheel,

and that the inertia of the pendulum causes the escape-

ment-wheel to recoil. But the constant pressure of the

tooth soon overcomes the inertia of the pendulum, and H
is gradually pushed out until the tooth is able to "escape ;"

the moment it does so the wheel begins to turn round,

but is quickly brought up by another tooth falling on N,

which has moved sufficiently inwards.

The process we have just described then recurs over

again. Each tooth escapes at each pallet, and the escape-

ments take place once a second ; hence the escapement-

wheel with thirty teeth will turn round once in a minute.

676. Now, how far does this escapement leave the

pendulum free ? When the tooth is pushing n, the

pendulum is being urged to the left; the instant this

tooth escapes, another tooth falls on H, and the pen-

dulum, ere it has accomplished its swing to the left, has

a force exerted upon it to bring it to the right. When
this force and gravity combined have stopped the pen-

dulum, and caused it to move to the right, the tooth

soon escapes at h, and another tooth falls on n, then

retarding the pendulum. Hence, except during the very

minute portion of time that the wheel turns after one

escapement, and before the next tick, the pendulum is

never free ; it is urged forwards when its velocity is

great, but before it comes to the end of its vibration it

is urged backwards : this escapement does not there-

fore possess the characteristics which we pointed out

(Art. 673) as necessary for a really good escapement.

For the ordinary purposes of time-keeping, however, the

arrangement works sufficiently well, as the force which

acts upon the pendulum is in reality extremely small.

But for the refined uses of the astronomical clock, to
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which we have already alluded, the performance of a

recoil-escapement is inadequate.

The obvious defect in the recoil is the circumstance

that the pendulum is retarded during a portion of its

vibration ; the impulse forward is of course necessary,

but the retarding force is useless and injurious.

677. The "dead-beat" escapement was devised by the

celebrated clockmaker Graham, in order to avoid this

difficulty. If you observe the second-hand of a clock,

controlled by this escapement, you will understand why
it is called the dead beat : there is no recoil ; the second-

hand moves steadily over each second, and remains there

fixed until it starts for the next second.

The wheel and escapement by which this effect is

produced is shown in Fig. 100. A and b are the pallets,

by the action of the teeth on which the motion is given

to the crutch, which turns about the centre o ; from the

axis through this centre the fork descends, so that as the

crutch is made to vibrate to and fro by the wheel, the

fork is also made to vibrate, and thus sustain the motion

of the pendulum. But the essential feature in which

the dead-beat escapement differs from the recoil escape-

ment is this : when the tooth escapes from the pallet A,

the wheel turns ; but the tooth which in the recoil

escapement would have fallen on the other pallet, now
falls on a surface D, and not on the pallet b. d is part

of a circle whose centre is at o, the centre of motion

;

consequently, the tooth can neither affect the crutch, nor

be affected by it, when the tooth lies on the surface D.

678. There is thus no recoil, and the pendulum is

allowed to reach the extremity of its swing to the right

unretarded ; but when the pendulum is returning, the

crutch moves until the tooth D passes from the circular
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arc d on to the pallet B : instantly the tooth slides down

the pallet, giving the crutch an impulse, and escaping

when the point has traversed b. The next tooth that

comes into action falls upon the circular surface c, whose

centre is also at o : this tooth likewise remains at rest

until the pendulum has finished its swing, and has com-

lir

Fig. 100.

menced its return ; then the tooth slides down A, and the

process recommences as before.

679. The operations are so timed that the pendulum

receives its impulse (which takes place when a tooth

slides down a pallet) precisely when the pendulum is at

the middle of the stroke ; the pendulum is then unacted

upon till it reaches a similar position in the next vibra-

tion. This impulse at the middle of the stroke does not

affect the time of vibration, so that the pendulum works

very freely.
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680. There is still a certain minute resisting force

acting to retard the pendulum. This arises from the

pressure of the teeth upon the circular surfaces, for

there is a certain amount of friction, however carefully

the surfaces may be polished. This friction is not

found practically to be a source of any appreciable

irregularity.

In a clock furnished with a dead-beat escapement and

a mercurial pendulum, we have a superb time-keeper.

THE TRAIN OF WHEELS.

681. We have next to consider the manner in which

the supply of energy is communicated to the escapement-

wheel, and also the mode in which the vibrations of the

pendulum are counted. A train of wheels for this

purpose is shown in Fig. 99. The same remark may be

made about this train that we have already made about

the escapement,—namely, that it is more designed to

explain the principle clearly than to show the actual

construction of a clock.

682. The weight A which animates the whole machine

is attached to a rope, which is wound around a barrel B

;

the process of winding up the clock consists in raising

this weight. On the same axle as the barrel B is a large

toothed-wheel c ; this wheel contains 200 teeth. The

wheel' c works into a pinion D, containing 20 teeth

;

consequently, when the wheel c has turned round once,

the pinion d has turned round ten times. The large

wheel E is on the same axle with the pinion D, and turns

with D ; the wheel E contains 180 teeth, and works into

the pinion F, containing 30 teeth : consequently when E

has gone round once, f will have turned round six times ;
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and therefore, when the wheel c and the barrel b have

made one revolution, the pinion F will have gone round

sixty times; but the wheel G is on the same shaft
]
as the

pinion F, and therefore, for every sixty revolutions of the

escapement-wheel, the wheel c will have gone round once.

We have already shown that the escapement-wheel goes

round once a minute, and hence the wheel c must go

round once in an hour. If therefore a hand be placed

on the same axle with c, in front of a clock dial, the

hand will go completely round once an hour ; that is, it

will be the minute-hand of the clock.

683. The train of wheels serves also to transmit the

power of the descending weight and supply energy to the

pendulum. In the clock model you see before you, the

weight sustaining the motion is 56 lbs. The diameter

of the escapement-wheel is about double that of the

barrel, and the wheel turns round sixty times as fast as

the barrel ; therefore for every inch the weight descends,

the circumference of the escapement-wheel must move

through 120 inches. The force of 56 lbs. is therefore, at

all events, reduced to the one hundred-and-twentieth

part of its amount at the circumference of the escapement-

wheel. This fellows from the principles already ex-

plained in Arts. 191 and 192. In reality the force

is even less than this, as the friction in such a train

of wheels is considerable ; therefore the actual force

with which each tooth acts upon the pallet is only a

few ounces.

684. In a good clock an extremely minute force need

only be supplied to the pendulum, so that, notwith-

standing 86,400 vibrations have to be performed daily,

one winding of the clock in a week will supply sufficient

energy to sustain the motion.
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THE HANDS.

685. How is it that the hour-hand and the minute-

hand are made to revolve with different velocities about

the same dial 1 We shall be able to explain this by the

help of Fig. 101.

G is a handle by which I can turn round the shaft which

carries the wheel f, and the.hand B. The wheel f contains

20 teeth ; this wheel works into another wheel E, con-

taining 80 teeth ; the shaft which is turned by e carries

another wheel D, containing 25 teeth ; and d works into

a wheel c, containing 75 teeth, c is capable of turn-

Fig. 101.

ing freely round the shaft, so that the motion of the shaft

does not affect it, except, through the intervention of the

wheels E, f, and D. To c another hand A is attached,

which therefore turns round simultaneously with c. Let

us compare the motion of the two hands A and B.

We suppose that the handle g is turned twelve times

;

then, of course, the hand B, since it is on the shaft, will

turn twelve times. The wheel F also turns twelve times,

but E has four times the number of teeth that A has,

.

and therefore, when f has gone round four times, E will-

only have gone round once : hence, when f has revolved
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twelve times, e will have gone round three times, d

turns with E, and therefore the twelve revolutions of the

handle will have turned D round three times ; but since

c has 75 teeth and d 25 teeth, c will have only made
one revolution, while D has made three revolutions ;

hence the hand A will have made only one revolution,

while the hand B has made twelve revolutions.

We have already seen (Art. 682) how, by a train

of wheels, one wheel can be made to revolve once in an

hour. If that wheel be upon the shaft instead of the

handle a, the hand B will be the minute-hand of the

clock, and the hand A the hour-hand.

686. The action in this contrivance is worthy of

attention. The choice of wheels which would answer is

limited. For since the shafts are parallel, the distance

from the centre of the wheel F to the centre of the

wheel E, must be equal to the distance from the centre of

the wheel c to the centre of the wheel D. But it is

evident that the distance from the centre of F to the

centre of E is equal to the sum of the radii of the wheels

F and E. Hence the sum of the radii of the wheels

F and E, must be equal to the sum of the radii of

c and D ; and since the number of teeth in the wheels

are proportional to their radii, it follows that the sum of

the teeth in E and f must be equal to the sum of the

teeth in c and J). In the present case each of these

sums is equal to one hundred.

687. Other arrangements of wheels might have been

devised, which would give the required motion ; for ex-

ample, if F were 20, as before, and E 240, and if c and d

were each equal to 130, the sum of the teeth in each pair

would be 260. E would only turn round once for every

twelve revolutions of f, and c and d would turn with the

z
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same velocity as e ; hence the motion of the hand a would

be one-twelfth that of B. This plan requires larger wheels

than the train already proposed.

THE STRIKING PARTS.

688. We have examined the essential features of the

going parts of the clock ; to complete our sketch of this

instrument we shall describe the beautiful mechanism by

which the striking is arranged. The model which I shall

'

show you (Fig. 102) is, as usual, rather intended to illus-

trate the principles of the striking gear than to be an exact

counterpart of the arrangement found in clocks. Some

of the details are not reproduced in the model ; but

enough is shown to explain the principle, and to enable

the model to work.

689. The duty which the striking part of a clock

has to accomplish is this. When the hour-hand reaches

certain points on the dial, the striking is to commence ;

and a certain number of strokes must be delivered.

The apparatus has then both to initiate the striking and

control the number of strokes; the latter is by far the

more difficult duty. Two contrivances are in common
use ; we shall describe that which is used in the best

clocks.

690. An essential feature of the striking gear in the

repeating clock is the snail, which is shown at B. This

piece revolves once in twelve hours, and is, therefore,

attached to an axle which performs its revolution in ex-

actly the same time as the hour-hand of the clock. In

the model, the striking gear is shown detached from the

going parts, but it is easy to imagine that the snail

can receive this motion. The margin of the snail is
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marked with twelve steps, numbered from one to twelve.

The portions of the margin between each pair of steps is

a part of the circumference of a circle, of which tbe axis

of the snail is the centre. The correct figuring of the

snail is of the utmost importance to the correct perform-

ance of the clock. Above the snail is a portion of a

toothed wheel, f, called the rack ; this contains about

fourteen or fifteen teeth. When this wheel is free,

it falls down until a pin comes in contact with the

snail at b.

691. The distance through which the rack falls depends

upon the position of the snail ; if the pin come in con-

tact with the part marked I., as it does in the figure, the

rack will descend but a small distance, while, if the pin

fall on the part marked vn., the rack will have a longer

fall : hence as the snail changes its position with the

successive hours, so the distance through which the rack

falls changes also. The snail is so contrived that at each

hour the rack falls on a lower step than it does in the

preceding hour ; for example, during the hour of three

o'clock, the rack would, if allowed to fall, always drop

upon the part of the snail marked in., but, when four

o'clock has arrived, the rack would fall on the part

marked iv. ; it is to ensure this happening correctly that

such attention must be paid to the form of the snail.

692. A is a small piece called the gathering pallet

:

it is so placed with reference to the rack that, at each

revolution of A, the pallet raises the rack one tooth.

Thus, after the rack has fallen, the gathering pallet

gradually raises it.

693. On the same axle as the gathering pallet, and

turning with it, is another piece c. The object of this

piece c is to arrest the motion when the rack has been
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raised sufficiently. On the rack is a projecting pin ; the

piece c passes free of this pin until the rack has been

lifted to a certain height, when c is caught by the pin,

and the motion is arrested. The magnitude of the teeth

in the rack is so arranged with reference to the snail,

that the number of lifts which the pallet must make
in raising the rack is equal to the number marked upon

the step of the snail upon which the rack had fallen
;

hence the snail has the effect of controlling the number

of revolutions which the gathering pallet can make.

The rack is retained by a detent e, after being raised

each tooth.

694. The gathering pallet is turned by a small pinion

of 27 teeth, and the pinion is worked by the wheel c,

of 180 teeth. This wheel carries a barrel, to which a

movement of rotation is given by a weight, the arrange-

ment of which is evident : a second pinion of 27 teeth

on the same axle with d is also turned by the large

wheel c. Since these pinions are equal, they revolve with

precisely equal velocities. The second piuion carries a large

wheel D : over D the bell I is placed ; its hammer e is

soarranged that a pin attached to r> strikes the bell once

in every revolution of d. The action will now be easily

understood. When the hour-hand reaches the hour, a

simple arrangement raises the detent F ; the rack then

drops ; the moment the rack drops, the gathering pallet

commences to revolve and raises up the rack ; as each

tooth is raised a stroke is given to the bell, and thus

the bell strikes until the piece c is brought to rest

against the pin.

695. The object of the fan H is to control the rapi-

dity of the motion : when its blades are placed more or

less obliquely, the velocity is lessened or increased.





APPENDIX.

We shall now describe how the formulae in the tables have been

ascertained. The formulae can be deduced by two different

methods,—one that of graphical construction, the other that of

least squares. The first method is the more simple and requires

but little calculation ; though neatness and care are necessary in

constructing the diagrams. The second method will be described

for the benefit of those who possess the requisite mathematical

knowledge. The formulas, in the form in which they have been

recorded, have been deduced from the method of least squares,

as the results are. to a slight, though insignificant, extent more

accurate than those of the method of graphical construction.

This remark will explain why the terms in some of the formulas

are carried to a greater number of places of decimals than

could be obtained by graphical construction.

We shall confine the numerical examples to Tables III. and

IV., and show how the formulas of these tables have been

deduced by the two different methods.

Tables V., XIV., XVI., XXI., are to be found in the same

manner as Tables III. ; and Tables VI., IX., X., XL, XV, XVIL
XVIII., XIX., XX., XXI., XXII., in the same manner as

Table IV

I.

THE METHOD OF GRAPHICAL CONSTRUCTION.

Table III.

A horizontal line APS, shown on a diminished scale in Fig. 103,

is to be neatly drawn upon a piece of cardboard about 14" x 6".

A scale which reads to the hundredth of an inch is to be used
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in the construction of the figure. A pocket lens will be found

convenient in reading the small divisions. By means of a pair

of compasses and the scale, points are to be marked upon the

line aps, at distances l"-4, 2"-8, 4"-2, 5"-6, 7"-0, 8"
-4, 9"-8, ll"-2

from the origin A. These distances correspond to the magni-

tudes of the loads placed upon the slide on the scale of 0"1 to

lib. Perpendiculars to aps are to be erected at the points

marked, and distances f
i;
F
2

, F
3 , &c, set off upon these perpen-

diculars. These distances are to be equal on the adopted scale,

to the frictions for the corresponding loads. For example, we

see from Table III., Experiment 3, that when the load upon the

slide is 42 lbs., the friction is 12-2 lbs. ; hence the point F
s

is

found by measuring a distance 4" -2 from A, and erecting a per-

pendicular l"-22. Thus, for each of the loads a point is deter-

KT
r.

*i-

56 70

Fig. 103.

mined. The positions of these points should be indicated by

making each of them the centre of a small circle 0" -l diameter.

These circles, besides neatly defining the points, will be useful in

a subsequent part of the process.

It will be found that the points tsv f
2, &c. are very nearly in a

straight line. We assume that, if the apparatus and observations

were perfect, the points would lie exactly in a straight line.

The object of the construction is to determine the straight line,

which on the whole is most close to all the points. If it be true

that the friction is proportioned to the pressure, this line should

pass through the origin A, for then the perpendicular which

represents the friction is proportional to the line cut off from A,

which represents the load. It will be found that a line at can

be drawn through the origin A, so that all the points are in
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the immediate vicinity of this line, if not actually upon it. A
string of fine black silk about 15" long, stretched by a bow of

wire or whalebone, is a convenient straight-edge for finding the

required line. The circles described about the points Tv F
2
, &c.

will facilitate the placing of the silk line as nearly as possible

through all the points. It will not be found possible to draw a

line through A, which shall intersect all the circles ; the best line

passes below but very near to the circles round f
1
,f

j
,f

j)
f

1
, touches

the circle about F^ intersects the circles about F
6
and F,, and

passes above the circle round F
8
. The line should be so placed

that its depth below the point which is most above it, is equal

to the height at which it passes above the point which is most

below it.

.

From A measure as, a length of 10", and erect the perpendicular

ST. We find by measurement that st is 2" -

7. If, then, we sup-

pose that the friction for any load is really represented by the

distance cut off by the line at upon the perpendicular, it

follows that

F : B : :
2""7

: 10".

or F = 027 R.

This is the formula from which Table III. has been con-

structed.

Table IV.

By a careful application of the silk bow-string, x Y Q can be

drawn, which, itself in close proximity to A, passes more nearly

through f , F , &c. than is possible for any line which passes

exactly through A. xtq will be found not only to intersect all

the small circles, but to cut off a considerable arc from each.

Measure off x p a distance of 10", and erect the perpendicular

p q then, if B be the load, and F~Hke corresponding friction,

we must have from similar triangles

—

F~m x llb- pq
B = PX

By measurement it is found that A Y= 0"H, and PQ = 2""53.
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We have, therefore,

F = 14 + 0-253 B.

This is practically the same formula as

F = 1-44+ 0-252 .E,

from which the table has been constructed. In fact, the column

of calculated values of the friction might have been computed

from the formula we have deduced, without appreciably differing

from what is found in the table.

II.

THE METHOD OF LEAST SQUARES.

Table III.
•

Let K be the coefficient of friction. It is impossible to find

any value for K which will satisfy the equation,

F - KB = 0,

for all the "observed pairs of values of F and R. "We have

then to find the value for K, which, upon the whole, best repre-

sents the experiments. F—KB is to be as near zero as possible

for each pair of values of F and B.

It is known to mathematicians that the best value of ^is
that which makes

(F
t
-KB? + (F, - KBJ* + &c. + (Fm -KBmf

a minimum.

In fact, it is easy to see that, if this quantity be small, each of

the essentially positive elements,

(F-KB) 2
,

of which it is composed, must be small also, and that therefore

F-KB
must always be nearly zero.

Differentiating the sum of squares and equating the differ-
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ential coefficient to zero, we have according to the usual

notation,

2R
1
(F

1
-KR

i
) = Q;

whence K = -\-±

The calculation of K becomes simplified when (as is generally

the case in the tables) the loads Rv Rv &c, Rm are of the form,

N, 2N, 3i\
T
, &c. mK

In this case,

2 R* = N2
(l

2 + 2 2 + &c + m2
)

, r2
in (m + 1) (2 m + 1

)

6

^ = (i'+2i; + &c.+m^)
m (m + 1) (2 m + 1) JV.

In the case of Table III.

F
l
±2F

t
+ 3F

t
+ mFm = 770-9

;

whence K = 027.

Thus the formula # = 0'27 -B is deduced both by the method

of least squares, and by the method of graphical construction.

Table IV.

The formula for this table is to be deduced from the following

considerations.

Wo values exist for x and y, so that the equation

F = x + y R

shall be satisfied for all pairs of values of F and R, but the

best values for x and y will make the quantity

(F
1
- x - y Rxf + (F, - x - y R,f + &c. + (Fm - x - y Rmf

a minimum.

Differentiating with respect to x and y, and equating the

differential coefficients to zero, we have

S (*; - a - y 22.) = 0,

2B
l
(F

1
-x-yRJ=0.
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This gives two equations for the determination of x and y.

Suppose, as is usually the case, the loads be of the form,

F,2N,3N,4:N;&c.mW,
and making

B = F
l
+ 2F

i
+ 3F

3
+ &c. + mFm ,

we have the equations

A — mx — m
^

'- Ny = 0,

B _ to (to + 1)
x _ m (to + 1) (2 to + 1) Ny =

2 6
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Air-cane, energy stored in, 544.

Alarm, use of electric, 22.

Angle of friction, 143.

Axes, permanent, 582.

B.

Balance, spring, 25.

Balls, large and small, fall in same
time, 491.

Bar of cast iron, strength of, 453.

Barrel upon axle, 320.

Beam, pressure upon supports, 56 ; de-

flection of, when injurious, 368

;

working strain upon, 369 ; cut on
upper surface, 371 ; condition of fibres

in, when strained transversely, 377
;

effect of length upon strength, 389
;

effect of breadth upon strength, 392;
effect of depth upon strength, 394 ;

expression for strength of, 400 ; uni-

formly loaded, 406 ; laden at two
points, 407 ; secured at each end,

411 ; secured at one end, 415; sus-

tained by tie, 419.

Blow, effect of a, 535.

Bolt and nut, 296.

Bow, energy stored in, 544.

Bridge, with two struts, 423 ; with
four struts, 430 ; with two ties, 432 ;

tubular, 463 ; suspension, 472.

Brunei's trussed bridge, 438.

Capstan, 302.

Catenary, 473.

Cathetometer, use of, 363.

Centre of gravity of an iron plate,

100.

Centre of gravity, property of, 101.

Centre of suspension, 636 ; of oscilla-

tion, ib. ; of percussion, 642.

Centrifugal force, 558 ; illustrated by
silvered balls, 560 ; cause of, 565
laws of, 567 ; action on liquids, 568
application to governor balls, 578
use in sugar-refining, 579.

Chain, centrifugal force upon, 585.
Clamps, use of, 416 ; strength of joint
made by, 417.

Cliff, rule for finding height of, 508.

Clock, principles of, 660.

Coal, energy in, 552.

Coefficient of friction, 131.

Composition of forces, 12 ; of parallel

forces, 69.

Compression, resistance of timber to,

357.

Cork and iron, falling together, 492.
Couple, 73.

Crane, framework of, 39 ; nature of,

332 ; velocity ratio of, 334 ; mecha-
nical efficiency, 335.

Cycloid, 617; property of, 619 ; isochro-

nism of, 622.

D.

Dead-beat escapement, 677.
Decomposition, of one force into a pair

of smaller forces, 26 ; of one force

into a pair of larger forces, 27 ; of
one force into three forces not in the
same plane, 33.

Deflection, of a beam, 363 ; of bridge,

425, 431, 447 ; of suspension bridge,

474.

Differential pulley-block, 209 ; dimen-
sions of, 212 ; velocity, ratio of, ib.

;

mechanical efficiency of, 215 ; table

of experiments on, 216 ; reason of
not overhauling, 221.

Disk, centrifugal force upon, 583.

Dynamics, meaning of, 484.
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E.

Eade's epicycloidal pulley-block, 224.
Earth, attraction of, 87 ; original con-

dition of, 576 ; ellipticity of, ib.

Economy of material, 422.

Electro-magnets, use of, 490.

Energy, meaning of, 173 ; mode of ex-

pressing, 176 ; indestructible, 182
;

storing of, 539 ; stored by water, 546.

Engine, horse-power of, 178.

Epicycloidal pulley-block, 224 ; velo-

city, ratio of, 225 ; mechanical effi-

ciency of, 226 ; table of experiments
on, 227.

Equilibrium of two forces, 7 ; of three

forces, 9 ; of a bar supported by two
spring balances, 52 ; of a bar sup-

ported by a knife-edge, 60 ; stable

and unstable, 104.

Escapement, recoil, 674 ; dead-beat,

677.

Expansion by heat, 667.

Extension, resistance of timber to, 352;

elongation of timber under, 354.

F.

Feet, mode of representing, 9.

Fibres, condition of, in a beam, 370.

Flaw in a beam, 373.

Fly-wheel, store of energy in, 548
;

use in steam-engine, 552.

Force, definition of, 2 ; producing mo-
tion, 3 ; destroying motion, 4 ; mea-
surement of, 5 ; equilibrium of two,

7 ; equilibrium of three, 9 ; small
balancing two larger, 19 ; small

overcoming a greater, 21 ; composi-

tion of parallel in same direction, 67;
composition of parallel in opposite

directions, 71 ; resultant of parallel,

70 ; of friction, 113.

Fracture of fibres in a beam, 375.

Friction, force of, 113; cause of, 115
;

of wood, 117 ; of metals, 125 ; effect

of a start upon, 126 ; coefficient of,

131 ; more accurate law of, 136 ; of

pine upon pine, 138 ; angle of, 143
;

independent of area, 149 ; importance
of, 151 ; between a rope and a bar,

156 ; of the pulley, 160 ; law of, in

pulley wheels, 169 ; upon an axle,

316.

G.

Galileo discovers motion of falling body,

484 ; discovery of pendulum, 595.

Gathering pallet, 692.

Girder, 449 ; cast iron, 452 ; form of

cast iron, 458 ; strength of, 462.

Governor balls, 578.

Gravity, importance of, 82 ; attraction

of the earth, 84 ; contrasted with

magnetism, 86 ;
produces weight, 87;

acts throughout mass, 88 ; specific,

89 ; table of specific, 94 ; centre of,

in a plate of iron, 100 ; makes body
fall 16' in one second, 506 ; indepen-

dent of motion, 509 ; how measured,

517; determination of. 609.

Gunpowder, energy stored in, 543.

H.

Hammer, 530.

Hands of clock, 685.

Heat expands metals, 667.

Horse-power of steam-engine, 178.

Inches, mode of representing, 9.

Inclined plane, without friction, 259
;

with friction, 266.

Inertia, a force, 524 ; stretching spring,

325 ; magnitude of, 528 ; inherent in

matter, 529 ; apparatus for, 531.

Iron and eork fall together, 492.

Iron, specific gravity of cast, 90.

Jib, meaning of, 38 ; and tie, 39 ; strain

along, 46.

K.

Kater pendulum, 638.

Knife-edge, equilibrium of bar upon,
62 ; for scales, 77 ; for pendulum,
626.

L.

Law of friction, 131.

Lever of the first order, 229 ; of the

second order, 242 ; ofthe third order,

251.

Locomotive, friction of, 150.

M.

Magnet, attraction of, contrasted with
gravity, 499.

Marble, experiment with, 511.

Mass, meaning of, 495 ; gravity pro-

portional to, 498.

Masses, equality of, 496.
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Measurement of force, 5.

Mechanical powers, 183.

Menai tubular bridge, 469.

Mercurial pendulum, 672.

Moment of a force about a point, 65.

Moments of forces, 76 ; equality of,

78.

Monkey of pile-driver, 540.

Motion, first law of, 486.

N.

Nail, force upon, 535.

Neutral equilibrium, 106.

0.

Oil, sphere of, 574 ; ring of, ib.

Oscillation of a pendulum, 594 ; centre
of, 634.

P.

Pallet, in clock, 674.

Parabola, a form of the catenary, 473
;

the path of a projectile, 521 ; pro-

duced by centrifugal force in water,

571.

Parallelogram of force, 13 ; verification

of, 15, 17, 19 ; how constructed, 15.

Pendulum, circular, 591 ; motion of,

592 ; amplitude of, 595 ; isochronism
of, 596 ; time of vibration indepen-
dent of weight, 600 ; time of vibra-

tion independent of material, 601

;

law connecting time with length, 603;
expression for time of vibration of,

607 ; length of seconds, 608 ; mea-
surement of length, 611 ; ideal, ib. ;

compound, 624 ; clock, 625 ; on
knife-edges, 626 ; Eater's, 638 ;

conical, 651 ; ellipse described by,

653 ; compensating, 663 ; use of

screw upon, 665 ; steel, 670 ; mer-
curial, 672.

Percussion, centre of, 642.

Piers of suspension bridge, 474.

Pile, pressure upon, 540.

Pile-driving engine, 536.

Pillar, strength of a square, 361.

Pine, piece of, broken by chain, 29
;

friction of, 121 ; strength of, 352.

Pisa, experiment from Tower of, 489.

Plateau's experiment, 574.

Platinum, unit of mass, 496.

Plummet, 96.

Projectile, path of, 521.

Pulley, 152 ; comparison of large and

small, 162; advantage of large, 167;
law of- friction in the, 169 ; single

• moveable, 188.

Pulley-block, three-sheave, 200 ; ex-

periment upon friction of, 208 ; epi-

cycloidal, 224.

Punching, force required for, 556.

Punching machine, 553.

Q.

Quadrilateral, diagonals, ties- or struts,

440—442.
Quarry, raising slates from, 546.

Quinine, property of, 570.

R.

Rack of clock, 690.

Recoil escapement, 674.

Resolution of forces, 24 ; of one force

into two forces, 26 ; of a force of

4 lbs, into two forces of 3 lbs., ib. \^
of a force of 4 lbs. into two forcesof
5 lbs. , 27 ; of one force into three

forces, not in the same plane, 33, 34.

Resultant, meaning of, 12 ; of two
equal forces, 12, 15 ; of two unequal
forces, 16 ; of two forces at right

angles, 17 ; of parallel forces, 69.

Right angle, composition of two forces

at a, 18.

Ring, equilibrium of, 107.

Rule for strength of cast iron, 456.

S.

Sailing against the wind, 32.

Scales, weighing, 77 ; accuracy of, 80.

Screw, 278.

Screw-jack, 289.

Second, space fallen in a, 504.

Shears, 246.

Single moveable pulley, table of experi-

ments on, 195.

Slates, machine for raising, 546.

Snail of clock, 691.

Specific gravity, mode of finding, 91.

Spirit-level, 99.

Spring balance, 25.

Stable equilibrium, 104.

Steel pendulum, 670.

Stop-watch, 508.

Strains along j ib and tie, 41

.

Strength of timber, 378 ; of cast iron,

453.

Striking gear of a clock, 688.

Strut, meaning of, 37.

Sugar-refining, 579.
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Suspension bridge, 472 ; tension of
chains of, 477.

Suspension, centre of gravity 'beneath.

point of, 103.

Suspension, centre of, 636.

Telegraph wire, curve in, 20.

Thread, breaking twine, 28.

Three-sheave pulley-block, table of ex-

periments on, 204.

Tie, meaning of, 37.

Tie-rod, for ten-ton crane, 45.

Timber, uses of, 347 ; rings of, 348 ;

seasoning of, 349 ; steaming of, 350 ;

grain of, 351.

Transverse strain, 362 ; changed into

tension and compression, 420.

Tripod, support of weight by, 34.

Truss, simple form of, 433.

Trussed bridge, 438.

Tubes in nature, 471.

Tubes, strength of, 463.

Twine broken by thread, 28.

U.

Unstable equilibrium, 104.

V.

Vibrations, composition off 657.

Velocity, 485.

W.

Watch, winding of, 544.

Water, weight of cubic inch of, 91

;

surface of horizontal, 98.

Well, rule for finding depth of, 508.

Weston's differential pulley-block, 209.

Wheel, centre of gravity of revolving,

109 ; use of the, 170 ; and axle, 298
;

) and axle, velocity ratio of, 307 ; me-
chanical efficiency of, 308 ; and bar-

rel, 321 ; and barrel, velocity ratio

of, ib. ; mechanical efficiency of, 323
;

and pinion velocity, ratio of, 328 ;

and pinion, mechanical efficiency of,

329.

Wheels, train of, in clocks, 681.

Winch, 303.

Wood, friction of wood upon, 117.

THE END.

iv. CLAY, RONS, AND TAYLOR, PRINTERS, BREAD STREET HILL.


















