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I

INTRODUCTION

1. The subject-matter

It is the threefold purpose of this essay, first to give a coherent and

fairly inclusive account of the well-known and generally accepted

portions of Einstein’s theory of relativity, second to treat the exten-

sion of thermodynamics to special and then to general relativity, and

third to consider the applications both of relativistic mechanics and

relativistic thermodynamics in the construction and interpretation of

cosmological models.

The special theory of relativity will first be developed in the next

three chapters, which are devoted respectively to the kinematioal,

mechanical, and electromagnetic consequences of the two postulates

of special relativity. In Chapter 11, under the general heading ‘The

Special Theory of Relativity’, the two postulates of the theory will be

presented, together with a brief statement of the confirmatory empiri-

cal evidence in their favour; their kinematioal consequences will then

be developed, firstly using the ordinary languagewhichrefers kinemati-

cal occun-ences to some selected set of three Cartesian axes and the

set of cloclcs that can be pictured as moving therewith, and secondly

using the moro powerful quasi-geometrical language provided by the

concept of a four-dimonsional space-time continuum. In Chapter III,

Special Relativity and Mechanics, we shall develop first the mechanics

of a particle and then those of a mechanical continuum from a postu-

latory basis which is obtained by adding the ideas of the conservation

of mass and of tlic equality of action iind reaction to the kinematics

of sixjcial relativity. No appeal to analogies with electromagnetic

results will be needed to obtain the complete treatment, and the con-

siderations will 1)0 nuiintaincd on a macroscopic level throughout.

Finally, in Chajiter IV, Special Relativity and Electrodynamics, we
shall (?oni])leto our treatment of the moro familiar subject-matter of

the speeial tlu^ory, by developing the close relationships between

special relativity and electromagnetic theory. The first part of this

chapter will ho devoted to the incorporation of the Lorentz electron

theory in tlio framework of special relativity, a procedure which

tacitly assumes a respectable amount of validity still inherent in

classical microscopic considerations in spite of the evident necessity
aD06.11 B



2 INTRODUCTION § 1

for a successful quantum electrodynamics; and the second part of the

chapter Trill be given to the development of Minkowski’s maoroscopio

theory of moving electromagnetic media based on the extension to

special relativity of Maxwell’s original treatment of stationary

matter.

In Chapter V, Special Eelativity and Thermod3mamics, we then

turn to less familiar consequences of the special theory. In the first

part of the chapter we consider the effect of relativity, even on the

classical theonnodynamics of stationary systems, in providing

—

through the relativistic relation between mass and energy—a natural

starting-point for the energy content of thermod3aiamic systems,

and a method for computing the energy changes accomi)anying

physical-chemical processes from a knowledge of changes in mass.

This makes it feasible to consider such problems as the thermo-

dynamic equilibrium between hydrogen and helium, and that between
matter and radiation—^assuming the possibility of their intorconver-

sion—and treatments of these questions are given. In the second
part of the chapter we undertake the actual extension of thermo-

dynamics to special relativity in order to obtain a thermodynamic
theory for the treatment of moving systems. Although the results

which are to be derived by such an application of relativity to
thermodynamics were considered by Planck and by Einstein only
two years after the original presentation of the sjiecial theory, Init

little further attention has been paid to them. Indeed, the very
essential difference between the equation

giying the energy of a moving particle E in terms of its proper energy
Eq and velocity u, and the quite different equation

e=<3oVa-«Vc=*) (1.2)

connecting a quantity of heat Q with proper heat and velocity, has
apparently not always been appreciated. The common lack of famili-
arity with this branch of relativity has doubtless been due to the
absence of physical situations where its applications were nocoHsary.
For the later extension of thermodynamics to general relativity,
nev

^

riess, a knowledge of the Planok-Einstein thermodynamios is
effienrial, and at the end of this chapter we introduce a four-dimen-
sional expression for the second law of thermodynamics in special
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relativity on which tho extension to general relativity can later be

based.

In Chapter VI, The General Theory of Relativity, we consider the

fundamental principles of the general theory of relativity together

with some of its more elementary applications. Part I of the chapter

will treat the three corner-stones—^tho principle of covariance, the

principle of equivalence, and the hypothesis of Mach—on which the

theory rests. In agreement with the point of view first stated by
Kretohsmann, the principle of covariance will be regarded as having

a logically formal character which can imply no necessary physical

consequences, but at the same time in agreement with Einstein we
shall emphasize the importance of using oovariont language in search-

ing for the axioms of physics, in order to eliminate the insinuation of

xmrecognized assumptions which might otherwise result from using

the language of particular coordinates. The discussion of the princi-

ple of equivalence will emphasize not only its empirical justification

as an immediate and natural generalization of Galileo’s discovery

that all bodies fall at the same rate, but will also lay stress on the

philosophical desirability of the principle in making it possible to

maintain the general idea of the relativity of all kinds of motion

including accelerations and rotations as well as uniform velocities.

The designation ‘Mach hypothesis’ will be used to denote the general

idea that the geometry of space-time is determined by the distribu-

tion of matter and energy, so that some kind of field equations

connecting the components of the metrical tensor with those of

the energy-momentum tensor are in any case implied. In pre-

senting the field equations actually chosen by Einstein, the cosmo-

logical or A-term will be introduced and retained in many parts of tho

latcT treatment, not because of direct empirical or theoretical evi-

dence for the existence of this term, but rather on account of the

logical i>ossibility of its existence and the necessity for its presence

in the case of certain cosmological models which at least deserve

discussion. Pari 11 of Chapter VI will be given to elementary appli-

cations of general relativity. These will include a discussion of tho

clock })arad(jx which proved so puzzling during the interval between

the developments of the special and general theories of relativity.

Treatment will also bu given to Newton’s theory of gravitation as a
first and very close approximation to Einstein’s theory, and the three

crucial tests of general relativity will be considered.
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Chapter VII, Relativistic Mechanics, will be divided into two parts

on general mechanical principles and on solutions of the field equa-

tions. In Part I, after illustrating the nature of the energy-momen-

tum tensor and of the fundamental equations of mechanics by

application to the behaviour of a perfect fluid, the equations of

mechanics will be re-expressed in the form containing the pseudo-

tensor density of potential gravitational energy and momentum
permitting us then to obtain conservation laws for Einstein’s general-

ized expressions for energy and momentum, to exhibit the relation

between energy and gravitational mass, and to show the reduction

of the energy of a system in the case of weak fields to the usual

Newtonian form including potential gravitational energy. In Part II

of Chapter VII, Einstein’s general solution for the field equations in

the case of weak fields will first be presented. This wiU then be

followed by a discussion of the properties of the solutions that can be

obtained in special cases of spherical symmetry and the like, including

useful explicit expressions for the ChristoflEel symbols and conjponents

of the energy-momentum tensor which then apply.

Chapter VIII, Relativistic Electrodynamics, will present the

further extensions to general relativity both for the Lorentz electron

theory and for the Minkowski macroscopic theory. This wiU be

followed by a number of apphoations including the derivation of an
expression for the relativistic energy-momentum tensor for black-

body radiation, together with discussions of the gravitational inter-

action of light rays and particles, and of the generalized Doppler
effect, these latter being matters of special importance for the inter-

pretation of astronomical findings.

Chapter IX, Relativistic Thermodjmamics, considers the extension

of thermodynamics from special to general relativity together with
its applications. The principles of relativistic mechanics themselves
are taken as furnishing the analogue of the ordinary first law of

classical thermodjnamios; and the analogue of the second law is pro-

vided by the covariant generalization of the four-dimensional form
in which the second law can be expressed in the case of special rela-

tivity. Since the above choice for the analogue of the first law intro-

duces only generally accepted results of relativity, the whole character

of relativistic thermodynamics is determined by the relativistic

second law. The axiom chosen for this law is hence carefully examined
as to meaning; its present status is discussed as being the direct
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covariant re-expression and therefore the most probable generaliza-

tion of the ordinaoy second law; and its future status as a postulate

to be verified or rejected on empirical grounds is emphasized. Follow-

ing this discussion, applications are made to illustrate the character-

istic diflPerences between the results of relativistic thermodynamics,

and those which might at first sight seem probable on the basis of

a superficial extrapolation of conclusions famihar in the classical

thermodynamics. Thus in the case of static systems, although we
shall find the physical-chemical equilibrium between reacting sub-

stances—as measured by a local observer—^unaltered from that which

would be predicted classically, we shall find on the other hand as a

new phenomenon the necessity for a temperature gradient at thermal

equilibrium to prevent the flow of heat from regions of higher to those

of lower gravitational potential, in agreement with the qualitative

idea that all forms of energy have weight as well as mass. Turning to

non-static systems we shall then show the possibihty for a limited

class of thermodynamic processes which can occur both reversibly

and at a finite rate—^in contrast to the classical requirement of an

infinitely slow rate to secure that maximum efficiency which would

permit a return both of the system and its surroundings to their

initial state. Wo shall later find that the principles of relativistic

mechanics themselves provide a justification for this new thermo-

dynamic conclusion, since they permit the construction ofcosmological

models which would expand to an upper limit and then return with

precisely reversed velocities to earlier states. Finally, in the case of

irreversible processes taking place at a finite rate, we shall discover

possibilities for a continuous increase in entropy without ever reach-

ing an unsurpassable value of that quantity—^in contrast to the

classical conclusion of a final quiescent state of maximum entropy.

This new kind of thermodynamic behaviour, which may be regarded

as mainly resulting from the known modification of the principle of

energy conservation by general relativity, will also find later illustra-

tion among the cosmological models predicted as possible by the

principles of relativistic mechanics.

In Chapter X, Application to Cosmological Models, we complete

the text except for some appendices containing useful formulae and

constants. In the first part of this chapter we shall show that the

only possible static homogeneous models for the moiverse are the

original ones of Einstein and de Sitter, and shall discuss some of their
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properties which are important without reference to the adequacy

of the models as pictures of the actual universe. We shall then turn

to the consideration of non-static homogeneous models which can be

constructed so as to exhibit a number of the properties of the actual

universe, including, of course, the red shift in the light from the

extra-galactic nebulae. Special attention will be given to the method

of correlating the properties of such models with the results of

astronomical observations although the details for obtaining the

latter will not be considered. Attention will also be paid to the

theoretically possible properties of such models, without primary

reference to theirimmediate applicability in the correlation of already

observedphenomena, since no models at the present stage of empirical

observation can supply more than very provisional pictures of the

actual universe.

The most important omission in this text, from the subjects usually

included in applications of the special theory of relativity, is the

relativistic treatment of the statistical mechanics of a gas, as deve-

loped byjiittner and to some extent by the present writer,f The

omission is perhaps justified by our desire in the present work to

avoid microscopic considerations as far as possible, and by the

existing absence of many physical situations where the use of this

logically inevitable extension of relativity theory has as yet become

needed.

In the case of the general theory of relativity, the most important

omission lies in neglecting the attempts which have been made to

construct a unified field theory, in which the phenomena of electricity

as well as gravitation would both be treated from a combined ‘geo-

metricar point of view. Up to the present, nevertheless, these

attempts appear either to be equivalent to the usual relativistic

extension of electromagnetic theory as given in the present text, or

to be—although mathematically interesting—of undemonstrated

physical importance. Furthermore, it is hard to escape the feeling

that a successful unified field theory would involve microscopic con-

siderations which are not the primary concern of this book.

The mo^ important inclusions, as compared with older texts on

relativity, consist in the extension of thermodynamics to general

relativity, and the material on non-static models of the universe.

Other additions are provided by the calculations of thermodynamic

t JUttner, Ann. d. Physik, 34, 866 (1911); Tolman, PHI. Mag., 28, 683 (1914).
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equilibria with the help of the maiiss-eiiergy relation of special rela-

tivity, by the demonstration of the reduction of the relativistic

expression for energy in the case of weak fields to the Newtonian

expression indvding potential gravitational energy, by explicit ex-

pressions given for the components of the energy-momentum tensor

in the case of special fields, and by the treatments given to the

energy-momentum tensor for radiation and to the gravitational inter-

action of light rays and particles.

2. The method of presentation

In the presentation of material, the endeavour will be made to

emphasize the physical nature of assumptions and conclusions and the

physical significance of their interconnexion, rather than to lay stress

on mathematical generality or even, indeed, on mathematical rigour.

The exposition will of course make use of the language and methods

of tensor analysis, a table of tensor formulae being given in Appendix

III to assist the reader in this connexion. No brief will be held,

however, for the fallacious position that the possibilities of covariant

expression are exhausted by the use of tensor language; and no

hesitation will be felt in introducing Einstein’s pseudo-tensor density

of j)otential gravitational energy and momentum in order to secure

quantities obeying conservation laws, which can be taken as the

relativistic analogues of energy and momentum.
To make sure that reader and writer are not substituting a satis-

faction in mathematical complications or in geometrical analogies for

the main physical business at hand, the frequent translation of mathe-

matical expressions into physical language will be undertaken. Stress

will be laid on the immediate physical significance of proper quantities

such as proper lengths, times, temperatures, macroscopic densities,

etc.
,
whose values can be determined by a local observer using familiar

methods of measurement. Special attention will be given to the pro-

cedure for relating the coordinate position of nebulae with actual

astronomical estimates of distance.

In presenting the special theory of relativity no particular relation

will bo assumed between the units of length and time, and the

formulae obtained will explicitly contain the velocity of light c. In

going over to the general theory of relativity, however, units will be

assumed which give both the velocity of light and the constant of

gravitation the values unity. This introduces a gain in simplicity of
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mattiematical form which is partially offset by the loss in immediate

physical significahce and applicability. The translation of results

into ordinary physical units will be facilitated, however, by the table

in Appendix IV,

The method of presenting the mechanics of a particle will be

similar to that first developed by Professor Lewis and the present

writer which obtains' a basis for the treatment by combining the

fcinematios of special relativity with the conservation laws for mass

and momentum. The Lane mechanics for a continuous medium will

then be obtained by the further development of these same ideas,

using the transformation equations for force provided by particle

dynamics. This method seems to afford a more direct mechanical

insight than methods based on analogies with electromagnetic rela-

tions, or.on those starting from some variational principle as was used

for example by the present writer in an earlier book-t

To turn to more general features of the method of presentation,

the ideal treatment for such a highly developed subject as the theory

of relativity would perhaps be a strictly deductive one. In such a

method we should start with a set of indefinables, definitions, and
postulates and then construct a logical universe of discourse. The
indefinables and definitions would provide the subject-matter in this

universe of discourse, and the postulates together with the theorems,

derived from them, with the help of logic or other discipline more
fundamental than that of the field of interest, would provide the

significant assertions that could be made concerning the subject-

matter. The usefulness of this logical cons-truct in explaining the

phenomena of the actual world would then depend on the success

with which we could set up a one-to-one correspondence between the

subject-matter and assertions in our universe of discourse and the

elements and regularities observed in actual experience, in other

words, on the success with which we could use the construct as a

representative map for finding our way around in the external world.

Although the attempt will not be made in this book to construct such

a logical universe of discoui’se, and no attention will be paid to

matters so pleasant to the logician as the search for the smallest

number of mutually independent and compatible postulates, it is

nevertheless hoped that the method of exposition will benefit from
a recognition of this ideal.

t Th6 Theory of ihe RelaUviiy of Motiont University of California Press, 1917.
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3. The point of view

Throughout the essay a macroscopic and phenomenological point

of view will be adopted as far as feasible. This is made possible in the

case of relativistic mechanics by a treatment of mechanical media

which defines the energy-momentum tensor in terms of such quanti-

ties as the proper macroscopic density of matter and the proper

pressure p^ which could be directly measured by a local observer. The

use of the proper microscopic density of matter p^ will be avoided.

In the case of relativistic thermodynamics the treatment is, of

course, naturally macroscopic on account of the essential nature of

that science when we do not undertake any statistical mechanical

interpretations. Thus the quantity <j>Q will be taken as the entropy

density of the thermodynamic fluid or working substance as deter-

mined by a local observer at the point and time of interest, using

ordinary thermodynamic methods and introducing no conceptual

division of the fluid into such elements as atoms and light quanta. In

the case of electrodynamics, however, the macroscopic point of view

cannot be entirely maintained, since, in spite of the use that can bo

made of the Minkowski phenomenological electrodynamics of moving

media, we have to be interested in the propagation pf electromagnetic

waves of such high frequency that some form of quantum electro-

dynamics will ultimately be necessary for their satisfactory treatment.

We of course accept Einstein’s theory of relativity as a valid basis

on which to build. In the case of the special theory of relativity the

observational verification of the foundations provided by the

Michelson-Morley experiment, by Kennedy’s time transformation

experiment, and by de Sitter’s analysis of the orbits of double stars,

and in the case of the general theory the observational verification of

predictions provided by the motion of the perihelion of Mercury, by

the bending of light in passing the sun, and by the effect of differences

in gravitational potential on the wave-length of light are sufficient

to justify such an acceptance. Future changes in the structure of

theoretical physics are of course inevitable. Nevertheless, the variety

of the tests to which the theory of relativity has been subjected,

combined with its inner logicality, are sufficient to make us believe

that further advances must incorporate enough of the present theory

of relativity to make it a safe provisional foundation for macroscopic

considerations.

In the present stage of physios it appears probable that the most
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serious future modifications in the theory of relativity will occur in the

treatment of microscopic phenomena involving the electric and

gravitational fields in the neighbourhood of individual elementary

particles. Here some fusion of the points of view of the present

theory of relativity and of the quantum mechanics will be necessary,

which might be brought about, as Einstein is inclined to believe, by an

explanation of quantum phenomena as the statistical result to be

expected on the basis of a successful unified field theory, or, as the

proponents of the quantum mechanics are more inclined to believe,

by some unified extension of quantum mechanics and quantum

electrodynamics. In any case it seems certain that the present form

of the theory of relativity is not suitable for the treatment of micro-

scopic phenomena. Fortunately for the consideration of problems in

celestial mechanics and cosmology, we do not need to consider the

difficultieB that might thus arise since the scale of our interest is so

large that the phenomena are iu any case most naturally treated

from a macroscopic point of view.

As a further remark concerning the point of view adopted it may be

well to emphasize at this point the highly abstract and idealized

character of the conceptual models of the universe which we shall

study in the last chapter. The models will always be much simpler

than our actual surroundings, neglecting for example local details in

the known structure of the universe and replacing the actual disposi-

tion of the material therein by a continuous distribution of fluid. The
reason for such idealization lies, of course, in the simpMoation which

it introduces into the mathematical treatment. The procedure is

analogous to the introduction, for example, of rigid weightless levers

into the considerations of the older mechanics, or perfectly elastic

spherical molecules into the simple kinetic theory, and is justified in

so far as our physical intuition is successful in retaining in the

simplified picture the essential elements of the actual situation.

In addition to the introduction of fairly obvious simplifications in

constructing cosmological models, it will also be necessary to intro-

duce assumptions concerning features which are as yet unknown in

the actual universe. Thus, since the distribution of the extra-galactic

nebulae has been found to be roughly uniform out to some 10® light-

years, we shall usually assume a homogeneous distribution of material

throughout the whole of our models, even though we shall emphasize

that this may not be true for the actual universe. Furthermore, we



§3 POINT OF VIEW 11

shall investigate the effect of a variety of assumptions as to spatial

curvature and cosmological constant since their actual values are

not yet known.

Finally, in our search for the conceivable properties which the

universe might have in accordance with acceptable theory, we shall

not hesitate to study cosmological models which are known to diflfer

from the actual universe in important features. Thus the study of

models filled solely with radiation, or fQled with an equilibrium

mixture of perfect gas and radiation, can lead to results of interest.

Our general point of view will be, that the possibility of constructing

cosmological models which exhibit a considerable number of features

of the actual universe should lead to a sense of intellectual comfort

and security, and that the construction of cosmological models

which exhibit features of special interest, even thoiigh they diflfer in

some ways from the actual universe, should lead to an increased

insight into observational possibilities. In any case, models must,

of course, be constructed in accordance with acceptable physical

theory since the values which distinguish the cosmological specula-

tions of the scientist from those of the crank arise from the attempt

of the former to make his work logical and coherent with the rest of

physics.
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THE SPECIAL THEORY OF RELATIVITY

Pari I. THE TWO POSTULATES AND THE LORENTZ TRANSFORMATION

4. Introduction

In the present chapter we shall briefly treat the underlying

principles and kinematical consequences of Einstein’s special or

restricted theory of relativity. This branch of the theory of the

relativity of motion has a restricted range of application since it deals

only with the interoomparison of measurements made by observers

who are specially assumed to be in unaccelerated relative motion, and

in a region of space and time where the action of gravitation can be

neglected. The treatment of observers with more complicated rela-

tive motion and in regions where gravitation cannot be neglected

forms the subject-matter of the general theory of relativity.

The special theory, of relativity may be regarded as based on two
postulates to which we now turn.

5. The first postulate of relativity

The first postulate of relativity states that it is impossible to measure

or detect the unaccderaUd trauslatory motion of a system through free

space or through any eth&r-lihe medium which might be assumed to

pervade it. In accordance with this postulate we can speak of the

relative velocity of two systems, but it is meaningless to speak of the

absolute velocity of a single system through free space. As a conse-

quence of the postulate, it is evident that the general laws of physics

for the description of phenomena in free space must be independent

of the velocity of the particuldr system of coordinates used in their

statement, since otherwise we could ascribe some absolute significance

to different velocities. This latter form of statement is often the most
immediately applicable for the purposes of drawing conclusions from
the postulate.

The first postulate is evidently one which recommends itself on the

grounds of simplicity and reasonableness, and formed a natural part

of the Newtonian system of ideas which regarded free space as empty.
With the rise of the ether theory of light, however, it seemed possible

that some special significance would have to be ascribed to different

velocities of motion through the ether, and that the laws of physics
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would assume a specially simple form when described with the help

of a system of coordinates at rest in the ether.

In the light of the ether theory the necessity thus arises for an

experimental verification of the postulate or the conclusions that

can be drawn from it. The usefulness of a deductive branch of physics

depends on the success with which it can be used as a representative

map for correlating the phenomena of the external world. Hence a

direct experimental test of the postulates is not necessary provided

the conclusions can be verified. Nevertheless, a feeling of greater

intellectual satisfaction is obtainedwhen the postulates themselves are

chosen in such away as to permit reasonably direct experimental tests

.

Fortunately the direct experimental verification of this postulate

of the special theory of relativity may now be regarded as extremely

satisfactory. In the first place we must put the well known Miohelson-

Morley experiment, which on the basis of the theory of a fixed ether

should have led to a detection of the velocity of the earth’s motion

through that medium. The null effect obtained in the original per-

formance of this experiment and in all the fairly numerous repeti-

tions, except those of Miller,f leave little doubt that no velocity

through the ether can thus be detected, even of the magnitude of the

30 km. per sec. which should certainly arise from the earth’s known
rotation in its orbit. Among recent repetitions, that of Kennedy:];

appears extremely satisfactory and has reduced the observational

error of the null effect to the order of ±2 Ion. per sec. or less.

As is well known, the result thus obtained in the Michelson-Morley

experiment could be explained by itself alone, without giving up the

notion of a fixed ether, by assuming that bodies moving through

this medium suffer the so-called Lorentz-Fitzgerald contraction in

the direction of their motion, which would produce just the necessary

distortion in a moving Michelson interferometer to lead to a null

effect. For this reason it is specially satisfebctory that we can now put

in the second place as a part of the direct verification of our postulate

t For a summary up to 1926, see Miller, Science, 63 , 433 (1926). This work also

shows no effect of other drift as great as would be expected to accompany the full

velocity of the earth’s motion in its orbit. An effect corresponding to a velocity of

about i0 km. per sec. along an axis with its apex in the constellation Draco is reported,

however, and interpreted as possibly due to a velocity through the ether of 200 km.
per sec. or more, whose effects are partially compensated by the Iiorentz-Fitzgerald

contraction. A still later account of Miller’s work has just been published in Heviews

of Modem Physics, 6, 203 (1933).

X Kennedy, Proo» Nai. Acad. 12, 621 (1926). Illingworth, Phys. Rev* 30, 692 (1927).
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an experiment devised by Kennedy, which on the basis of a fixed

ether and a real Lorentz-Eitzgerald contraction should still lead to

a detection of the motion of the earth through that ether. The

apparatus for this experiment consists of a Michelson interferometer

with the two arms as imequal in length as feasible, so that the two

beams which recombine to give interference fringes have a con-

siderable diflferenoe in the time required to pass from the som*ce to

the point of recombination. Assuming a fixed ether, but allowing

for the Lorentz-Ktzgerald contraction associated with motion

through this medium, analysis then shows that the difference in time

of travel for the two beams would depend in a very simple way on the

diflEerenoe in length of the two arms and on the velocity of the

apparatus through the ether. Hence, provided the period of the light

source does not itself depend on this velocity, we should expect a

shift in the fringe pattern to accompany the diurnal changes in the

velocity of the apparatus through the ether produced by the earth's

revolution on its axis, and the annual changes produced by its rota-

tion in its orbit. The experiment was of course a very difficult one to

perform, but the final results of Kennedy and Thomdikef have

satisfactorily demonstrated a null effect to the order of the experi-

mental error, which corresponds to a velocity of only about ±10 km.

per sec.

In addition to the Michelson-Morley and Kennedy-Thomdike

experiments there have been a considerable number of other types

of experiment devised to detect the motion of the earth through the

ether, all of which have led to negative results.^ Some of these are of

considerable interest, but the two tests devised by Michelson and

Kennedy are the most important and the most simply related to the

ideas as to space and time which have been embodied in the special

theory of relativity. To account for these two experiments on the

basis of a fixed ether it would be necessary to introduce ingenious

assumptions as to a change in length or Lorentz-Pitzgerald contrac-

tion just sufficient to give a null effect in the Michelson experiment,

and as to a change in period or time dilation just sufficient to give a

null effect in the Kennedy experiment—all to the end of retaining

a fixed ether so devilishly constructed that its existence could never

t Kennedy and Thorndike, Fhy3, Rev. 42, 400 (1932).

} See J. Laub, *tlber die experiinenteUen Grundlagen des Relativitatsprinzips ’

:

Jahrb, der Radioahtwi^ u. Mektronik, 7, 406 (1910).
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be detected. In the theory of relativity, however, we proceed at the

start from the basis that absolute velocity can have no significance

and hence find nothing to trouble us inthe result of these experiments.

In the course of the development of the theory we shall obtain,

moreover, the simple and unforced counterparts of the assumptions

as to change in length and period, which would have to be introduced

in an artificial and arbitrary manner in order to retain the notion

of a fixed ether.

6. The second postulate of relativity

In addition to the first postulate the special theory of relativity

depends on a second postulate, which states that the velocity of light

in free space is the same for all observers^ ivdepefndent of the relative

velocity of the source of light and the observer. This postulate can be

looked at as the result of combining th© principle familiar to the ether

theory of light, that the velocity of light is independent of the velocity

of its source, with the idea resident in the first postulate which makes
it impossible to assign any significance to the absolute velocity of the

source but does permit us to speak of the relative velocity of the

source and observer.

It is important to note that the essential quality of the second

postulate may thus be regarded as having been provided by a theory

of light which assumed space to be filled with some form of ether,

while the first postulate of relativity may be regarded as the natural

consequence of the Newtonian point of view of the emptiness of free

space. It is not surprising that the combination of principles of such

different character should have led to a modification in our ideas as

to the nature of time and space.

At the time of Einstein’s development of the special theory of

relativity no experimental evidence had been assembled to show that

the velocity of light is independent of the velocity of its source, and

the adoption of the principle was due to its familiarity in the wave

theory of light. At the present time, however, the experimental

evidence is sufficient to exclude very definitely the most natural

alternative proposal namely, that the velocity of light and the

velocity of its source are additive, as assumed in the so-called emission

theories of light.

As the most important evidence against the hypothesis that the

velocity of light and the velocity of its source are additive we must
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iderations of Comstockf and de SitterJ concerning the

ble stars. If the velocity of light did depend additively

city of its source, it is evident in the case of distant

)lets that the time taken for light to reach the earth from a given

iber of the pair would be greatly shortened when this member is

oaohing the earth at the time of emission and greatly lengthened

1 the member is receding. The analysis of de Sitter shows that the

distortion of the observations thus produced would have the effect

of introducing a spurious eccentricity into the calculated orbit; and

jErom the existence of doublets of small observed eccentricity the con-

clusion is drawn that the velocity of light could at the most be changed

by only a small fraction of the velocity of the source.

In addition to this very satisfactory evidence in favour of the

principle of the constancy of the velocity of light, there are a number
of optical experiments which show the untenability of different forms

which have been proposed for the emission theory of light. These

proposed forms of emission theory agree in assuming that the velocity

of light from a moving source is to be taken as the vector sum of the

ordinary velocity of light c and the velocity of the source v but vary

in their assumptions as to the velocity of light after reflection from
a mirror. The three assumptions which have been particularly con-

sidered are (1) that the excited portion of the mirror acts as a new
source and that reflected light has the same velocity c relative to the

mirror as that of light relative to its original source,§ (2) that re-

flected light has the velocity c relative to the mirror image of its

source,
II
and (3) that light retains throughout its whole path the

velocity c with respect to its original source.ft

Optical experiments contradicting the firsttwo of the above possible

assumptions have not been difficult to find.Jt The third of the above
assumptions formed, however, the bsisis of a fairly complete emission

theory which was developed by Ritz, and optical experiments to test

it are difficult to perform since they are dependent on effects of the

second order in vjc. It has been pointed out, however, by La Rosa

t Conofltook, Phya, R&o. 30, 267 (1910).

j de Sitter, Proc. Amaterdam Acad. 15, 1297 (1913); ibid. 16, 396 (1913).

§ Tolmaii, Phya. Rev. 31, 26 (1910).

11
J. J. Thomson, PhU. Mag. 19, 301 (1910). Stewart, Phya. Rev. 32, 418 (1911).

tt Ritz, Ann. de Ohim. et Phya. 13, 146 (1908).

tt Tolman, Phya. Rev. 31,26 (1010); ibid, 35, 136 (1913). Moriorana, Phil. Mag.
36, 163 (1918); ibid. 37, 146 (1919).
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and by the present writerf that a repetition of the Michelaon-Morley

experiment, using light coming originally from the sim rather than

from a terrestrial source, should lead to a fringe shift corresponding

to the earth’s velocity in its orbit around the sun, if the Ritz theory

were correct. In the repetitions of the Miohelson-Morley experiment

which have been made by Miller tests were made using light from the

sun and no effect of the kind predicted was observed.^ In any case,

of course, we have the astronomical evidence of de Sitter against all

forms of the emission theory.

7. Necessity for modifying older ideas as to space and time

Let us now accept the two postidates of special relativity as experi-

mentally justified and inquire into the effect they have on our ideas

a A cc'

Fio. 1

as to the nature of space and time. Since the first postulate is a

natural consequence of the Newtonian point of view that free space

is empty, and the second postulate is a natural outcome of the

opposing idea that space is ever5rwhere filled with a fixed ether, we
can expect the combination of the two postulates to lead to conse-

quences which do not agree with our uninformed intuitions as to the

nature of space and time. We shall illustrate this in the present

section by a simple example.

Consider a source of light S (Fig. 1), and two systems, A moving

towards the source /?, and B moving away from it. Observers on the

two systems mark off some given distance aa' and bb\ say one kilo-

metre, on each of the systems in the direction of the source in order

to measure the velocity of light by determining the time taken for

it to travel from a to a' and from b to b\

In accordance with the first postulate of relativity we cannot

t La Rosa, Phya. Zeila. 13, 1120 (1912). Tolman, PJiya. Rev. 35, 136 (1012).

{ Millor, Proc. Nat. Acad. 11, 306 (1926). Professor Miller informs the writer

that five sots of obsorvations were ma<lo using sunlight at Mount Wilson in 1924:
July 1 at 4.46 p.in.

; July 8 at 2.46 p.m.
;
and at 6.66 p.m. ; July 9 at 0.00 a.m.

;

July 26 at 9.30 a.m. By comparing these observations with those made using an
acetylene lamp just before or after the sunlight experiments, the results obtained were
found to bo substantially the same.

3505.11 r
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assign any signifioance to the absolute Telooities of the two systems,

but can speak of their velocities relative to the source. And in

accordance with the second postulate of relativity the measured

velocity of light must be independent of this relative velocity between

source and observer.

Hence we are led to the conclusion that the time taken for the light

to travel from a to o' shall measure the same as that for the light

to travel from 6 to b', in qiite of the fact that A is moving towards

the source and B away fpom it. This result seems to contradict the

simple conclusions of common sense. Hence if the two postulates

of relativity are true it is evident that our natural intuitions as to

the nature of space and time are not completely correct, presumably

because they are based on a too limited ancestral experience—Shuman

and animal—^with spatial and temporal phenomena.

In view of the experimental verification of the two postulates of

special relativity, the example makes evident the necessity for a

detailed study of the relations connecting the spatial and temporal

measurements made by observers in relative motion. This we shall

undertake in the next section. We shall gain thereby not only correct

methods for the treatment of such measurements, but ultimately

improved spatial and temporal intuitions as well.

8. The Lorentz transformation equations

To study the fundamental problem of the relations coimecting the

^atial and temporal measurements made by observers in relative

motion, let us consider two systems of space-time coordinates jS and
S' (Fig. 2) in relative motion with the velocity which for con-

venience may be taken as in the a:-direction. Each system is pro-

vided with a set of right-angled Cartesian axes, as indicated in the

figure, and with a set of clocks distributed at convenient intervals

throughout the system and moving with it.

The posiiion of any given point in space at which some event occurs

can be specified by giving its spatial coordinates x, y, and % vrith

respect to the axes of system B, or its coordinates a;', 2/', and z' -with

respect to system S'. And the tirm. at which the event occurs can be
specified by giving the clock readings f or t' in the two systems.

Eor convenience the two systems are chosen so that the Cartesian

t We elaall tase the capital letter F to designate the relative velocity of the two
systems of axes, €uid the small letters m, w', etc., to designate the velocity of a point
relative to the coordinate systems.
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axes OX and O'Z' lie along the same line, and for further simplification

the starting-point for time measurements in the two systems is taken

so that t and t' are equal to zero when the two origins 0 and 0' are

in coincidence.

The specific problem that now arises is to obtain a set of trans-

formation equations connecting the variables of the two systems

which will make it possible to transform the description of any given

kinematical occurrence from the variables of the one system to those

of the other. In other words, if some given Idnematical occurrence

has been measured by an observer moving with system S' and

described in terms of the quantities x'^ y', z\ and i', we desire a set

of expressions for these quantities which on substitution will give a

correct description of the same occurrence in terms of the variables

X, y, z, and used by an observer moving with system 8.

The con'ect expressions for this purpose were first obtained by
Lorentz, and hence are usually called the Lorentz transformation

equations, although their full significance from the point of view of

the relativity of motion was first appreciated by Einstein. They may
be written in the form

;/(!- FVc^)’

y' =
2/. (8 - 1 )

z' = z,

, _ t—xVjc^

where V is the relative velocity of the two systems and c the velocity



20 THE SPECIAL THEORY OF RELATIVITY S 8

of light. Or, by solving for the unprimed quantities in terms of the

primed quantities, they may be written in the form

« = x'+Vt'

y = j/',

2 = Z',

_ t'+x'VIc^

V(l-F®/ca)-

A unique derivation of these equations from the first and second

postulated of relativity, maldng use of obvious assumptions as to the

validity of Euclidean geometry, the homogeneity of space and time,

etc., can be obtained. We may content omraelves now, however, with

pointing out that the equations do agree with the two postulates of

relativity.

In accordance with the first postulate of relativity, since absolute

velocity has no significance, the two systems 8 and 8' must be

entirely equivalent for the description of physical occurrences. Hence

the transformation equations for changing from the variables of

system 8 to those of system 8' must have exactly the same form as

those for the revise transformation, except of course for the sign of

the rdative velocity V. This condition, however, is evidently met

since the set of equations (8.2) which are obtained by solving the set

(8.1) are seen to be of unchanged form except for the substitution of

—V in place of +F.
In accordance with the second postulate of relativity, the velocity

of l%ht must measure the same in both systems of coordinates. To
show that this is the case, we first call attention to the important

fact that the Lorentz equations have been so constructed as to make
the quantity

dx^+dy^+dz^-c<^ dfi (8.3)

axL invariant for the transformation. This is evident since on sub-

stituting equations (8.2) in (8.3) we obtain

dx^-^dy^+dz^—c^ dt^

_ / dx'+Ydi' V
Ui-F2/c*)J \

(8.4)

The invariance of this expression, however, immediately shows that
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the velocity of light vdll measure the same in both systems, since, if

we have any impulse travelling with the velocity c with respect to

system S in accordance with the equation

dx^+dy^-\-dz^—c^ dt^ = 0, (8.5)

we shall also have it travelling with the velocity c with respect to

system /S' in accordance with the equation

dx'^+dy*^+dz'^-c^ dt'^ = 0 . (
8 .6)

We thus see that the Lorentz transformation equations are in

accord with the two postulates of relativity. It should also be noted

that they are in accord with our ideas as to the homogeneity of space

and time. Furthermore, when the relative velocity between the

systems V is small compared with that of light they reduce to the

so-called Galilean transformation equations,

a;' =r x—Vt^

z' = z, (8.7)

which we might expect to hold on the basis of an intuition founded

on a past experience limited to low velocities, and which were implicit

in the ideas of Galileo and Newton as to the nature of space and

time.

It should also be remarked that the set of Lorentz transformations

between all systems in unaccelerated uniform motion form a group,

such that the combined result of successive transformations is equi-

valent to a single transformation from the original to the final system

of coordinates. It may also be pointed out that the transformation

becomes imaginary for relative velocity between the systems V
greater than the velocity of light c, a result which is consistent with

that of a following section showing that c is to be regarded as an

upper limit for the possible relative velocities between material

systems.

With the help of simple manipulations we may now obtain from

the Lorentz transformation equations a number of further equations

which will prove useful for transforming the measurements of

geometrical or kincmatical quantities which depend on the coordi-

nates, and which will permit some simple physical interpretations.
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9. Transformation equations for spatial and temporal inter-

vals* Lorentz contraction and time dilation

By tlie simple differentiation of equations (8.1) we obtain

dx—V it,

iy' = dy,
(9.1)

iz' = dzy

_ dt—V dxjc^

where the differential quantities dx, dy, dz, it, and dx ,
dy ,

dz 9
dt

are to be interpreted as giving the measurements in the two systems

of the spatial and temporal intervals which correspond to the
' ^

ence in position and time of some given pair of neighbouring events.

With the help of these equations we can now easily draw conclusions

as to the intercomparison of measuring sticks and clocks in the two

systems.

Consider two measuring sticks held parallel to the aj-axis, one in

each of the two systems, in such a way that their scale divisions can

be compared as the two sticks slide past each other; and consider

as the events to be observed the coming into coincidence of division

marks on one of the measuring sticks with division marks on t e

other.

Let us first determine how a length dx' laid off on the measuring

stick in system will appear when measured in system S, To do

this we must consider coincidences, which appe/xr simultaneous

system S, between the end points of dx* and division marks on the

measuring stick in system S. Since the coincidences are simultaneous

in system S, we shall have .

dt = 0,

and by substitutioi^ in (9.1) obtain

We conclude that a measuring stick travelling with system S' and

measuring dx' in the units of that system will measure the shorter

length dx'^J{l— V^/c^) in the units of system S when the simultaneous

positions of its ends are observed in that system.

liet us next determine how a length dx laid off on the measuring
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stick in system 8 will appear when measured in system S'. To do

this we must now consider coincidences, which appear aimultaneoubs

in system 8\ between the end points of dx and division marks on the

measuring stick in system S'. Since the coincidences are simultaneous

in system 8\ we shall have in accordance with the last equation (9.1)

" V(l-FVc*)
~ (9.4)

and substituting into the first equation (9.1) shall this time obtain

dx' ^ dx^il-V^Jc^). (9.6)

We conclude that a metre stick travelling with system 8 measures

shorter in the same ratio as before when the simultaneous positions

of its ends are observed in the other system 8'.

The two situations are S3nnmetrical and in entire agreement. In

both cases we find that a metre stick measures shorter in the ratio

^(1— F^c^) : 1, when moving with the velocity F past the system in

which the observation of length is being made, than when measured

in a system in which it is at rest.

Accepting the two postulates of relativity, this result, which may
be called the Lorentz contraction, is to be regarded as an entirely

real one which except for experimental difficulties could be verified

by direct observation of the kind just described. The result differs

from the contraction originally postulated by Lorentz and Fitzgerald

to explain the Miohelson-Morley experiment, since the present result

gives a symmetrical relation between two measuring sticks in relative

motion, while the hypothesis of Lorentz and Fitzgerald required a

change in length for a single metro stick depending on its actual

velocity through a real fixed ether.

Turning now to the second and third equations in the set (9.1), we
note at once that there will be no disagreement as to measurements

made in the two systems of coordinates of distances at right angles

to the line of motion. There is thus no change in length for a metre

stick which is moving perpendicular to its length past the system of

coordinates in which it is to be measured. This is in immediate agree-

ment with the possibility for a direct comparison of the lengths of

two metre sticks in relative motion at right angles to their extension,

since in this case the judgement that the two ends of the one metre

stick had passed through coincidence with the two ends of the other

could not depend on the motion of the observer.
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Eq[uations (9.1) oaa also be used to provide conclusions as to the

interoompaiison of clocks in relative motion. Let us first determine

how a time interval dt' measured on a single clock in system S'

between two events, which occur at the same point in S', will

measure with the clocks of system S. Since the two events occur at

the same point in S', we have from the first of equations (9.1)

d*' = = 0, (9.0)
V(l-F7ca)

’ ^

and substituting this into the fourth of the equations we easily obtain

(tt' = d«V(l-F7c*) or (9.7)

We conclude that the time interval between two events which has

the duration di/ when measured with a given clock in system S\ will

have the longer duration d^/-y/(l— F^/c®) when measured by the clocks

in system 8.

Similarly we may determine how a time interval dt which can be

measured on a single clock in system 8 between two events, which

occur at the same point in system /Sf, will measure with the clocks of

system 8\ In this case since the two events occur at the same point

in system 8 we have
dx — ^ (9 8)

and substituting in the fourth of equations (9.1) immediately obtain

dl' = — . (9.9)
V'(l-F2/c*)

'

Again we conclude that the time interval between two events which

has the duration dt when measured with a given clock has a longer

duration when measured by clocks relative to which the first clock is

moving.

The two situations, in the case of the docks as in the case of the

measuring sticks, are symmetrical and in entire agreement. In both
cases the seconds of the single clock appear lengthened in the ratio

1
:
^{1— F^/c^) when it is moving with the velocity F past the clocks

with which it is being compared.

This time dilation and the conclusions as to the setting of clocks

which can be shown to go with it ore to be regarded except for experi-

mental difficulties as an entirely verifiable mutual property of systems

of clocks in relative motion, even as the Lorentz contraction could be
regarded as a verifiable mutual property of metre sticks in relative
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motion. Furthermore just as the Miohelson-Morley experiment can

be regarded as a direct test of the Lorentz contraction, the Kennedy-

Thomdike experiment can be regarded as a direct test of time

dilation.

Before leaving this section it will be well to put the fourth of

ec[uations (9.1) in another form which is often useful. Dividing

through by dt we can write

dt' c® dt c2

dt
~

V(l-F2/c2)
~ (9.10)

which connects the measurements dt' and di of the time interval in the

two systems S' and 8 between neighbouring events which occur at

neighbouring points in space. The spatial interval between the two

events, when measTired in system 8, has as its as-oomponent the

distance which would be travelled with the component velocity x in

the time dt.

10. Transformation equations for velocity

With the help of equations (8.1) and (9.10) we can now easily obtain

expressions for transforming measmements of velocity from the one

system of coordinates to the other. Differentiating the first three of

equations (8.1) with respect to t' and substituting the value for

dt'jdt given by (9. 10) we easily arrive at the results

y‘

x-V_
i—ccF/c“

_ ?/ V(i-JVc^)
“l-iF/c*

u„
l-it„F/c<>

’

^ ~ 1_«;F/c«
’

(
10 . 1 )

where the placing of a dot over a quantity has the significance of

differentiation with respect to the time in the particular system of

coordinates involved, so that wo have for example for the component

velocities in the oi-direction in the two systems the different forms

of expression

u.j. -- X = dxjdt and = ac' = dx'jdt'.

The significance of these transformation equations is as follows:

If for an observer in system S a point is found to be moving with the
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unifonn velocity (», i) its velocity (x', z’) as measured by an

observer in system S' can be oaloulated from the equations (10.1).

Reciprocal equations for transformation in the opposite direction

can of bourse be obtained by solving for the unprimed quantities in

terms of the primed, and in accordance with the first posttilate of

relativity agree with that which results from interchanging primed

and unprimed letters and changing the sign of V. It is often most

convenient to have the transformation equations in the form in which

they are solved for the unprimed quantities since this leads more

readily to final expressions without the primes. For this reason it will

be best to write down the reciprocal equations to (10.1), and from

now on to give our remaining transformation equations in the form

in which they are solved for the unprimed quantities. We obtain

from (10.1) _

Uy =_ <V(1-F7c^)
1+KVic^

•

_ < V(l-7Vc»)
1+u^V/c^

(10 .2)

The foregoing transformation equations immediately indicate that

the velocity of light c may be regarded as an upper limit of possible

velocities. The result is most readily seen if we use the equations in

their second form (10.2) in which the relative velocity of the two
systems ooours with the positive sign. In accordance with the first of

these equations, even if we give the velocity of system S' past S the
limiting value c and take a particle which itself has the limiting

velocity = c in the same direction with respect to system S\ the
measured velocity with respect to system 8 will still be only

c+c _ ^

l+c2/ca
“ (10.3)

the velocity of light.

In addition to this indication that the velocity of light is to be
regarded as an upper limit, we shall find later that it would take an
mfimte amount of energy to give a material particle the velocity of
light with respect to a system in which it was originally at rest.

Furthermore, retaining our ideas as to cause and effect as being
essentially valid for macroscopic considerations, it can be shown that
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causal impulses cannot be transmitted with a velocity greater than

light, since it would then be possible to find systems of coordinates

in which the effect would precede the cause.f

11. Transformation equations for the Lorentz contraction

factor

The quantity which is the Lorentz contraction factor

for an object moving with the velocity u with respect to a given

system of coordinates, is sufficiently important to justify writing

down the transformation equation for it which can be obtained from

(10.2), namely,

(
11 . 1

)

where (
11 . 2

)

12. Transformation equations for acceleration

By the further differentiation of equations (10.2) transformation

equations for acceleration are obtained which can be written in the

form

Whereas it can be seen from equations (10.2) that a constant

velocity in system 8' impUos a constant velocity in system 8, it is

interesting to note from equations (12.1) that a constant acceleration

with respect to system 8' would not in general imply a constant

acceleration in system 8, since the component accelerations in 8
depend not only on the accelerations in 8' but also on the component

velocities in that system which would be changing with the time.

It will be appreciated of course that both the transformation

equations for velocity (10.2) and for acceleration (12.1) must be

applied in general to the motion of a particle at some specific identi-

fiable point on its path.

t See for example, Tolmon, The Theory of the Relativity of Motion, § 62, The
University of California Press, 1917.
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Part XL TREATMENT OE SPECIAL BELATIVITY WITH THE HELP OF A
FOUR.DIMENSIONAL GEOMETRY

13. The space-time continuum
It is evident from the foregoing discussion of the consequences of

the two postulates of relativity that spatial and temporal measure-
ments are linked together in a very intimate manner. This appears
clearlywhenwe contrast the simple Galilean transformation equations
(8,7) with the Lorentz transformation equations (8.1). For example,
the Galilean time transformation equation

V = t (13.1)

would indicate a universal time equally suitable for use by all

observers, while the corresponding Lorentz equation

(13.2)

indicates that there is no single universal time equally suitable for all
observers, but rather that the process of changing from one set of
Cartesian axes to another for making spatial measurements should be
accompanied by a change in the apparatus for time measurement, if
the laws of physics are to have the same expression in the two systems
of coordinates.

An acceptance of the two postulates of relativity thus shows that
the older notion of space and time as two independently existing
continua—a three-dimensional continuum for the spatial location
of events and an independent one-dimensional continuum for the
temporal location of events—^is a conceptual idea which we cannot
now expect wiU be entirely successful for the correlation of spatial
and temporal experiences. The possible alternative concept of space-
tme as a combined four-dimensional continuum, first introduced by
Minkowski, has, however, proved very valuable.
We must now turn to the method of expressing the facts of special

^lativity which can be obtained from this new conceptual apparatus.
The importance of the method, which can hardly be overestimated,
lies in several directions. The method is of great assistance in building
up a set of appropriate space-time intuitions. The method avoids the
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singling out of a particular axis as the direction for the relative motion

of coordinate systems as has been done in the previous parts of this

chapter. The quasi-geometrical language used in treating the mathe-

matics of the four-dimensional continuum is seldom misleading and

often very suggestive and helpful. Finally, without this language

Einstein’s development of the general theory of relativity would have

been seriously hampered.

Although in the remainder of this chapter we shall mainly consider

the mathematics of the so-called ‘flat’ space-time continuum appro-

priate for the facts of special relativity, the results which can be

obtained therefrom are fundamental for the later treatment of the

‘curved’ space-time of general relativity.

14. The three plus one dimensions of space-time

To appreciate the nature of the space-time continuum it is advisable

to introduce at once the language of a conceptual four-dimensional

geometry. With the help of this language we can regard space-time as

itself corresponding to a hyper-space of four dimensions, which could

be provided with mutually perpendicular axes for plotting the values

of the four quantities x, y, z, and t that can be used in describing

spatial-temporal occurrences. In accordance with this language the

position where an event occurs and the instant when it occurs would

both bo represented by the location of a single point in the four-

dimensional continuum.

In using this language it is important to guard against the fallacy of

assuming that all directions in the hyper-space are equivalent, and of

assuming that extension in time is of the same nature as extension in

space merely because it may be convenient to think of them as plotted

along perpendicular axes. A similar fallacy would be to assume that

pressure and volume are the same kind of quantity because they are

plotted at right angles in the diagram on a pv indicator card. That

there must be a difference between the spatial and temporal axes in

our hyper-space is made evident, by contrasting the physical possi-

bility of rotating a metre stick from an orientation where it measures

distances in the .r-dii*ection to one where it measures distances in the

^/-direction, with the impossibility of rotating it into a direction where

it would measure time intervals—in other words the impossibihty of

rotating a metre stick into a clock.

In accordance with this difference, time should in no sense be
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considered as the fourth dimension of speice, but rather as one, and at

that a unique one, of the four dimensions of space-time. This distinc-

tion is often emphasized by speaking of the space-time continuum as

(3+l)-dimenflional rather than merely as four-dimensional. The

(3+l)-dimensional character of the space-time continuum finds ex-

pression at the start in the kind of geometry used, as will be seen in

a later section (§ 16).

15. The geometry corresponding to space-time

The geometry chosen as corresponding tothe space-time continuum,

i.e. the kind of mathematics used, must be appropriate to serve as a

means for expressing the conclusions drawn from the two postulates

of relativity. As an essential and fundamental element in these con-

clusions we shall tahe the invariance with respect to the Lorentz

transformation of the expression

c® dt^ (15.1)

which was proved in (8.4), and shall choose a geometry which is con-

ceptually constructed to correspond to this invariance.

To do thiswe shall characterize our geometry by takingf

ds^ = ^dx^^dy^-dz^+c^ dt^ (15.2)

as the expression for an element of interval in our four-dimensional

hyper-space in terms of a?, y, z, and t. Since a given element of interval

in a space is a conceptual entity which exists independent of any
particular choice of axes it is invariant for all transformations of

coordinates. Hence the choice of equation (16.2) as our starting-point

preserves the desired invariance not only for the group of Lorentz

transformations which will leave the right-hand side unchanged in

form, but for all possible transformations of coordinates as well. This
additional property will be of significance when we come to the con-

sideration of the general theory of relativity.

Since the entire nature of a geometry^ is known to be determined
by the form of its line element, the choice of (16.2) has completely
fixed the oharaoter of the geometry we are to use; and We may now
examine some of its simpler properties and inquire into its actual

usefulness for expressing the conclusions of specif relativity.

t It is of ooiuse a mere matter of convention whether we assign the negative sign
to the spatiBl oomponeats and the positive sign to the temporal components. We have
followed here the more usual practice.

} Except for further possible assumptions as to connectivity and the identification
of points.
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16 . The signature of the line element and the three kinds of

interval

Examining the expression for the line element (16.2) we note that

the quadratic form chosen is characterized by the negative signs of

the spatial components (ir®, and dz^ and the positive sign of the

temporal component dt^. This difference in sign may be regarded

as reflecting the difference in the nature of spatial and temporal

extension already emphasized above.

Since the signature of the quadratic form—minus two—corre-

sponding to the three negative signs and one positive sign, cannot be

changed by any real transformation of coordinates, the distinction

between spatial and temporal coordinates will always be preserved,

and we shall encounter no difficulties in differentiating the time-like

coordinate from the others by examining the signs. If we allow an

iwiugrtMn/transformation of coordinates the signature of the quadratic

form will be changed but the distinction between coordinates can

then be determined if we know their real or imaginary correlation

with the physical process of counting off division points along the

actual axes.

Introducing into (16.2) the imaginaay transformation

X ^ ix y=^iy z = iz ct = Uy (16.1)

we obtain

ds^ = dx^+dy^+dz^+du^ (16.2)

with a change in signature to plus four. In accordance with this

simple form, the geometry used in special relativity is often spoken

of as that of a four-dimensional Euclidean (flat) space. The form

(16.2) has also been used with the idea of simplifying the mathe-

matical treatment. This procedure, however, introduces really but

little simpUfication together with some chance for confusion, and

often necessitates a transformation back to the original coordinates

before making physical applications. We shall not find occasion to

use it in this book.

Returning now to the original form of the line element

ds^ = —dx^—dy^—dz^-\-c^ dt^ (16.3)

we note, in contrast to geometries where the signature is equal to the

number of coordinates, the possibility for more than one kind of

interval, depending on the relative magnitude of the spatial and

temporal components. In the present case we shall call the interval



32 THE SPECIAL THEORY OP RELATIVITY § 16

Space-like^, time-like^ or siTigvlar according as dx^+dy^-]rdz^ is re-

spectively greater thm, less fkan^ or equal to dtK

In the case of a space-like interval, a Loreutz transformation to

so-called proper coordinates can always be foimd (see § 18) which will

reduce the temporal component to zero, so that we can regard the

magnitude of a space-like interval as physically determinable by
comparison with a suitably moving and oriented metre stick.

Similarly, in the case of a time-like intervalwe have the possibility of

determining the magnitude by comparison with a clock. The magni-

tude of singular intervals is in any case zero.

This possibility for a direct and unique determination of the

magnitude of intervals by an appropriate physical measurement is

in agreement with their invariance to coordinate transformations. In

addition it provides means for the physical interpretation of the

geometric results.

17. The Lorentz rotation of axes

In using the geometry corresponding to the space-time continuum,

we are of course not limited to any particular system of coordinates

z, y, z, and t; but can transform at wiU to any other set of four

coordinates whose functional dependence on the original coordinates

is known. Of the various possible transformations, we shall wish to

consider for the purposes of special relativity only those which leave

the expression for the element of interval in terms of the coordinates

ds^ = (17.1)

in the same simple form as a sum of squares without cross products,

and shall leave the consideration of more general kinds of transforma-

tion until it becomes necessary for the purposes of general relativity.

Or in more geometrical language, since the flat space-time considered

in special relativity makes it possible to use rectangular coordinates

in which the expression for the Une element preserves the simple

form (17.1), there will be no advantage in introducing curvilinear

coordinates until we come to the curved space-time of general

relativity.

The changes of coordinates which leave the form (17.1) unchanged
include: the transformations which can be regarded geometrically

as a transfer of origin, such, for example, as would be given by

x' = x+Xq y' ==y z' = z f =:t, (17.2)
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where Xq is a constant; the transformations which can be regarded

as a spatial rotation of axes, such, for example, as would be given by

a:' = a;cos0+ysin6 y' = ycosd—xshxd z' ^ ^ t,

(17.3)

where 6 is the angle of rotation in the xy-^ld^ne; and the Lorentz

transformations, which can be regarded as a change in the velocity

of the spatial axes, of which we have already had the example,

x'
x^Vt

V(i-W z' = 2
,

t—xVIc^

(17.4)

That (17.1) and (17.2) will leave the right-hand side unchanged in

form is evident on inspection, and that the transformation (17.4)

does not change the form has already been shown by (8.4).

The transformation (17.4) can be expressed in the form

a;' = rrcosh^i—cisinh^ y’ ^ y z' ^ %

cV = c^cosh^—a;sinh<^, (17.6)

where <}> = (17.6)

On account of the similarity between (17,3) and (17.6) we could speak

of the latter as an imaginary rotation in the tri-plane, and use the term

Lorentz rotation of axes as descriptive of the Lorentz transformation.

18 . The transformation to proper coordinates

Among the different possible Lorentz transformations we shall

often bo interested in those which will give a change to so-called

^yroper coordinates for the particular interval ds in which we may be

interested, If the interval is space-like in character, the time com-

ponent will then be zero in proper coordinates, and if it is time-like in

character the spatial components will be zero in proper coordinates.

This transforniation to proper coordinates can always be made.

Consider an interval the square of whose magnitude is given in the

original coordinates by the expression

df®, (18.1)

where merely for simplicity a spatial rotation of axes has previously

been made, if necessary, to eliminate the y and z components. And
3590.11 D
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consider the transformation equations (9.1) which give us

dx' =

edt' =

dx—iyjc) cdt

V(l-F»/c«)
’

c dt-’iyic) dx

(18.2)

(18.3)
^{1-V^lc^) •

If the interval (18.1) is spaoe-like in character, the absolute magnitude

of dx will be greater than that ot cdt and we can evidently choose a

value of (F/c), less than the possible upper limit of ±1? which will

make (18.3) eq^ual to zero, so that the expression for the interval will

reduce to ^2 ^ (18.4)

when we transform to the primed coordinates. On the other hand, if

the interval is time-like in character, the absolute magnitude of c dt

willbe greater than that of dx and we can choose a value of (F/c) which

willmake (1 8.2)eq[ualto zero, so that the expression for the interval will

ds* = dt'K (18-6)

In accordance with (18.4) and (18.6) by transforming to proper

coordinates, i.e. changing to axes moving with the appropriate

velocity, we can determine the value of any space-like interval by
direct measurement with a suitably oriented and moving metre stick,

and determine the value of any time-like interval by direct measure-

ment with a suitably moving clock. As remarked above this provides

a means for the physical interpretation of the mathematical results

obtained from the geometry.

19. Use of tensor analysis in the theory of relativity

One of the great advantages of our present quasi-geometrical

methods lies in the readiness with which we may now use the language

of tensor analysis for the treatment of physical problems. A collection

of the formulae of tensor analysis will be found in Appendix HI, and
in the present section it will be sufficient to consider the definitions

from which all the properties of tensors can be derived, and then point
out in the next section certain simplifications which can be introduced
in the case of the flat space-time of special relativity.

In a space or continuum of four dimensions, corresponding to the
four generalized coordinates z®, a;^), a tensor of rank r can be
defined as a collection of 4^ quantities associated with a given point
in the continuum, whose values are transformed in accordance with
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certain definite rules when any new set of coordinates »'*, a:'®, x'*)

are introduced as functions of the otiginal coordinates by the

equations ^ a:* a:4)

a:'® = x'‘(x\x\xO,x*)
^

a;'® = *'*(2:
1
,
a:®, a:®,®*)

i • >

x'* = x'*(x\x^,x^x*).

A tensor of rank zero, or scalar, 8 will be defined as a single quantity

whose value is unaltered by the transformation of coordinates in

accordance with the equation
8' = 8. (19.2)

A cordramriant tensor of rank one, or vector, will be defined as

a collection of four quantities

A“ = {A\ A®, A®, A‘), (19.3)

whose values are changed by the transformation of coordinates in

accordance with the equation

where {dx'i^/dx'^) is the value obtained from (19.1) corresponding to

the given point in the continumn, and the double occurrence of the

‘dummy’ sufiix a will be taken to denote a summation over the values

a = 1, 2, 3, 4. And a covariant tensor of rank one wiU be defined as

a collection of four quantities

(19.6)

whose values are transformed in accordance with

3*“ „
dx'i^

“ (19.6)

A contravariant tensor of rank two will be defined as a collection

of sixteen quantities

JT12

^22

JT32

2742

^(xp ^ yu
y2i

y3i

rp\\

whose values are transformed in accordance with

3x'^ -

yi3

y23

y33

yia

yi4

y24

2734
(19.7)
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And a covariant tensor of the same rank will be defined as a collec-

tion of edxteen quantities which are transformed in accordance with

dxP a
dx'i^ a*'*'

(
19 .9)

mffiv,,,
per... (19 . 10)

Tensors of mixed contravariant and covariant nature or of higher

rank can be similarly definedin accordance with the general expression

dx'f‘ dx'”^ dx^

WPdx'"

The double occurrence of dummy suffixes in a given term of a tensor

expression will always be taken to denote summation over the four

values 1, 2, 3, 4. Scalars are not necessarily to be regarded as located

at emy given point in the continuum, but tensors of higher rank must

in general be thought of as associated with some given point, since

the transformation factors {8x'i^}8x“-) etc. wiU in general be different

at different points in the continuum. Tensor fields may of course be

constructed, in which a value of the field tensor is associated with

each point in the continuum.

In case the continuum has the metrical properties afforded by an
expression = (19.11)

for the scalar measure of the element of interval ds corresponding to

the infinitesimal vector the fundamental metrical tensor will

be of special importance in the analysis. With it are associated the

quantity g (not a scalar) which is defined as the determinant

M (19.12)

and the contravariant tensor which is defined as the normalized

rrnnoToig^^
gt^v — ly/xvl minor

^ (
19 . 13 )

g

With the help of these two fundamental tensors we may now define

the method of raising and lowering indices^ so as to obtain associated

tensors of different degrees of covariance or contravariance, as given
by the equations ^

2":::-;:: = ( 19. i4 )

This completes the definitions necessary as a basis for tensor analysis
and allfurther properties of tensors and rules of analysis can be obtained

therefrom. Thus all the methods given in Appendix III for operating
on tensors to obtain new tensors by addition, multiplication, con-
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traction, covariant differentiation, etc., can all of them be verified by

showing that the result obtained has components which transform

on change of coordinates in accordance with the rules of transforma-

tion by which tensors were defined above.

The great advantages of tensor analysis as a tool for mathematical

physics arise in two ways. In the first place it gives a very con-

densed and convenient language for the expression of physical laws.

Thus the single tensor equation

= 0 (19.16)

is itself a representation of the 256 different equations that are

obtained by assigning the different values 1, 2, 3, 4 to /a, v, o*, and r,

and results may be obtained with the help of tensor analysis which

would be extremely hard to calculate by Tong-hand^ methods. In

the second place the expression of a physical law by a tensor equation

has exactly the same form in all coordinate systems, since it is readily

seen from the general transformation rule (19.10) that any tensor

equation
^ (19.16)

will bo changed into an expression of just the same form

(19.17)

when the coordinates are transformed from to

x'^,x^^). The relations of this very convenient property to the

postulates of the special and general theories of relativity will be more

closely considered in§ 21 and in § 73.

20. Simplification of tensor analysis in the case of special

relativity. Galilean coordinates

In the case of the flat space-time continuum of the special theory

of relativity, certain simplifications in the use of tensor analysis are

possible since hi accordance with (15.2) we can then reduce the general

expression for the element of interval (19.11) to the specially simple

= -{da:^)^-{dx^y^--idxY+{dx^?. (20 . 1
)

provided wo introduce so-called Qalilean coordinates defined in tei’nis

of our previous spatial and temporal variables {x,y,z,t) by the

equations ^ x x^ = y ar* = z = cL (20.2)

In terms of those new coordinates the Lorentz transformation

(17.4) corresponding to the change to a new set of spatial axes moving
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relative to the original ones in the aj-direotion with the velocity V can

be written in the form

*'1 = jc'a == a:* a:'® = ®®

(20.4)

a*'® _
a*®
~ ’

V(l-F®/ca)
~ - - ^(i_pyca)

(20.3)

and the values for the factors {8x'i^ldx“) etc. used in accordance with

(19.10) for the transformation of tensors from the one system of

coordinates to the other reduce for this simple case to

aa;'i a*'® 1

a»i “ a** “ ^{1-v^ic^)

dx’^ dx'* _ F/c

83*~ 8x^~ ^(1-V^lc^)

dx'^

a®®

with aU others zero.

Furthermore, when using the Galilean coordinates (20.2) appro-

priate to special relativity, it should be noted that the Lorentz con-

traction factor .^(1— corresponding to a point moving with

the velocity -w, is given in accordance with (20.1) by the very simple

where the time-like interval cb is an element of the four-dimensional

trajectory of the moving point.

In addition, in the case of special relativity, since the metrical

tensor corresponding to the formula for the interval (20.1) has the

simple Galilean values

ffll = fl^22 = ?88 = “"1
9^44 = 1 (

20 .6)

the raiaing and lowering of suffixes in accordance with (19.14) will, in

the case of the coordinates (20.2), result only m a change of sign for

certain of the components. Thus it will be found on appl3dng the rules

that the associated vectors and are connected by the simple

relations
(t=l,2,3) (20.7)

and the associated tensors and Ti" are coimected by the relations

= T/*” (except for Tn= —T^ and T^^ = — ;
i = 1, 2, 3)

(20 .8 )
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Finally, in the case of special relativity, it should be noted that

several tensor operations are much simplified when the coordinates

(20.2) are used. Thus the process of constructing a new tensor by

covariant differentiation as given by equation (33) in Appendix III

takes a very simple form in these coordinates, and we can write for

example for the covariant derivative of

= (20.9)

Similarly for the divergence or contracted covariant derivative we
can write ^mav

=
(
20 . 10)

instead of the complicated expressions that would be necessary in

more general coordinates.

These simplifications in tensor analysis for special relativity are of

considerable convenience.

21. Correspondence of four-dimensional treatment with the

postulates of special relativity

To complete our consideration of the geometrical four-dimensional

method of treating the special theory of relativity, we must now
point out its correspondence with the two postulates of the special

theory. This is an extremely simple matter.

In accordance with the discussion of § 5 the first postulate of special

relativity will be satisfied if the laws of physics, in the absence of

gi’avitational action, are the same for all observers in uniform relative

motion. This, however, can he achieved with our present methods if

we can state these laws in the form of tensor equations, using therein

tensors whoso components have the same physical significance for

all systems of coordinates that correspond to different sets of Cartesian

axes in uniform relative motion. Since tensor equations if true in one

system of coordinates are true in all systems of coordinates (see

19.10, 17), wo shall then obtain the desired correspondence with the

first i)Ostulato, provided of course that our tensors have the character

stated.

The actual problem of constructing tensors whose components have

the same physical significance in different systems of coordinates,

coiTesponding to sets of axes in imiform relative motion, can be met
in three different ways. In the first method of proceeding we define
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the tensor by stating the physical quantities which are to be taken as

the components of the tensor in question referred to an arbitrary set

of coordinates as given by (20.2), and then show by actually perform"

ing the Lorentz transformation (20.3) that the components are

transformed to the corresponding physical quantities referred to other

systems of coordinates. In the second method of proceeding we
define the tensor by stating the physical quantities which are to be

taken as the components of the tensor in question referred to proper

coordinates with respect to which the material to which the tensor

applies is at rest; on account of the unique position of proper coordi-

nates this will of course assure the same physical significance for the

components in coordinates corresponding to different states of motion.

In the third method of proceeding we construct the tensor of interest

by the rules of tensor manipulation from simpler ones whose physical

significance in different sets of coordinates is already known. As
simple examples of such tensors, which may be used for constructing

further tensors, we have the scalar element of interval ds, the oon-

travariant vector corresponding to a small coordinate displacement

and the contravariant vectors of generalized Velocity’ and ^ac-

celeration* dxi^jde and where ds is the time-like interval which
is an element of the four-dimensional trajectory of a moving point.

The correspondence of our four-dimensional method with the
second postvIcUe of special relativity is even simpler. In accordance
with this postulate the velocity of light in free space must measvire

the same for different observers in uniform relative motion, and this

result is secured by the way in which we originally defined the
oharacter of the space-time continuum for special relativity in § 16.

In accordance with (16.2) the element of interval in this continuum,
using a given system of ordinary spatial and temporal coordinates

iagivenby

ds^ == ^dx^^dy^-dz^+c^ dfi (21.1)

and the four-dimensional trajectory of a light impulse, travelling

with the velocity c, will hence he characterized by taking the value

ds^O
(
21 . 2 )

for any element of the trajectory^ since the substitution of (21.2) in

(21.1) at once leads to the relation

(21.3)



§21 CORRESPONDENCE WITH POSTULATES 41

If, however, we now transform to any other system of coordinates

{x\y\z\t'), corresponding to a new set of axes in uniform motion

relative to original ones, we know that the farm of expression for the

interval will still be the same on account of the nature of the Lorentz

transformation, and that the value of the interval will still be the same
on account of the scalar character of ds. Hence also in these new
coordinates the velocity of light will be given by

(
21 .4)

as is required by the second postulate.

Our four-dimensional geometry has thus provided us with a very

useful language for treating the facts of special relativity, which we
shall not hesitate to use whenever it proves more convenient than the

older language. In addition it is a language which is almost indis-

pensable for the treatment of general relativity.
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SPECIAL RELATIVITY AND MECHANICS

PaHl, THE5 BYNABIICS OF A PARTICLE

22. The principles of the conservation of mass and momentum
We must now consider the effect of the special theory of relativity

in modifying the older Newtonian mechanics. We shall first treat the
meohamcs of particles, sirSioiently for our later needs, and then
consider in Paart II the dynamics of a continuous mechanical medium.
As a postulatory basis for the mechanics of interacting particles we

may take the two principles of the conservation of mass and momen-
tum, in conjunction with the foregoing kinematical results of special
relativity.

In accordance with these two conservation laws, the total mass of a
system of particles must remain constant as the particles act on each
other in agreement with the equation

2wi== const., (22.1)

where the summation is to be taken over the masses m of all the
parboles in the system, and the components of the total momentum
of the system ia the a;, y, and z directions must also remain constant
in agreement with the equations

2 = const.,

^muy = const., (22.2)

2 = const.,

where the Bummationfi aie to be taken over the components of
mommta of all the individual paxtides.t And in accordance with the
principles of relativity these equations must hold true in all sets of
coordinates in uniform relative motion.
Smee the Newtonian system of mechanics also included the ideas

of the relativity of motion and of the conservation of mass and
momentum, equations (22.1) and (22.2) would also hold in Newtonian
theory m all sets of coordinates in uniform motion. There is never-
theless an important difference between Newtonian and relativistic

only bv cdSn^ T systema of particles which could interact
ooncemed with more compUcated ayatema where^ntinuoua dwtnbutwa of m«« and momentum might have to be aligned to the
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mechanics owing to the difference in the transformation equations

which would be applicable in changing from one set of moving coordi-

nates to another. In Newtonian mechanios we should use the simple

Galilean transformation equations (8.7) and should find it possible to

satisfy equations(22.1) and (22.2) in all systems of coordinates on the

assumption that the mass of a particle is a constant independent of

its velocity. In relativistic mechanics, however, we must use the

more compKcated Lorentz transformation equations (8.1), and shall

then find it possible to satisfy equations (22.1) and (22.2) only on the

assumption that the mass of a particle depends on its velocity, as will

be shown in the next section.

23. The mass of a moving particle

In order to show that the mass of a particle must depend on its

velocity, if the conservation laws are to hold in all systems of coordi-

nates, we shall first consider the conservation of mass and momentum,
in two different systems of coordinates /S' and S, for the case of a

very simple head-on collision between two similar elastic particles.

In the first system of coordinates, for convenience the primed

system /S', let the two particles be moving before collision with the

velocities and —w' parallel to the a;-axi8 in such a way that a

head-on encounter can occur. Since by hypothesis the two particles

are perfectly similar and elastic, it is evident that they will first be

brought to rest on collision and then rebound under the action of the

elastic forces developed, moving back over their original paths with

the respective velocities — u' and +u* of the same magnitude as

before but reversed in direction. In this system of coordinates the

collision is obviously such as to satisfy the conservation laws of mass

and momentum.
Let us now change to a second system of coordinates S moving

relative to the first in the cc-direction with the velocity —V, Using

this new system of coordinates, let us denote by and the

velocities 'of the two particles before collision, and allowing for the

possibility that ma ss may depend on velocity let us denote by my and

7^2 the masses of the two particles before collision. Furthermore, let

us denote by M the sum of the masses of the two particles at the

instant in tlxe course of the collision when they have come to relative

rest, and are hence both moving with the velocity +V with respect

to our present system of coordinates, 8,
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In accotdanco with the conservation laws, which must also hold in

this new system of coordinates, the total mass and total momentum

of the two particles must be the same before collision and at the

instant of relative rest, so that we can evidently write

m^+wia == M (23.1)

and (23.2)

In addition, however, using the transformation equation for velocity

given by (10.2) we can write for the velocities and U2 i
in terms of

their values and with respect to the original coordinates 8^

the expressions

and = (23.3)

And by combining these three equations and solving for the ratio of

the two masses, we easily obtain

^ _ l+uT/pa
(23.4)

TOa“l-tt'F/c2’

which with the help of the transformation equation (11.1) gives us

Vh. *= a/(^— (23.6)

In accordance with this result the masses of the two particles, which

by hypothesis have the same value, say mo, when at rest, become

inversely proportional to .^(1—w^/c*) when moving with the velocity

It, so that we may now write

_ "tp

V{1—tt2/c2)

(23.6)

as the desired expression for the mass m of a moving particle in terms

of its velocity u and mass at rest Wq.

Although this derivation! of the expression for the mass of u

moving particle depends on the consideration of a simple type of

head-on collision for the two particles, it can also be shown quite

easily, nevertheless, that the same expression is also directly obtained

from the consideration of a glancing transverse collision,! and in

addition that the expression with u taken as the total velocity is

sufficient to secure the conservation of mass and momentum in all

systems of coordinates for any kind of collision between two particles.§

t Tolman, PhU, Mag, 23, 376 (1912).

X Lewis and Tolman, PMl, Mag* 18, 610 (1900). § Tolman, loc. cit.
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We have, moreover, of course the experimental verification of the

expression in the case of the mass of moving electrons to which we
shall call attention in § 29. We shall hence have no hesitation in

accepting the expression as correct in general for the mass of a moving

particle.

It is of interest to note in accordance with (23.6) that the mass of

a particle would become infinite at the velocity of hght. This is an

agreement with our previous findings in § 10 that the velocity of light

is to be regarded as an upper limit of possible velocities.

It may also be remarked in concluding the present section, that our

discussion already indicates that we shall have to ascribe mass to the

potential energy of elastic deformation, in order to retain the con-

servation laws of mass and momentum. This is evident from the fact

that the foregoing equations for the head-on collision lead to the

2m

which shows that the total mass of the two particles at the instant

during the course of the collision when they have come to relative

rest is greater than would be calculated from their velocity V and

total undcformed rest-mass 2mQ.

24. The transformation equations for mass

In accordance with equation (23.6) the mass of a given particle will

measure differently in different sets of coordinates since the velocity

will bo different. From the transformation equation for the factor

given by (11.1) wo easily obtain for the transformation

of masses the result

(24.1)m Al+KV/c^)
7(1 -FVc*)'

And by differentiating with respect to the time and simplifying we

as a transformation equation for the rate at which the mass of a

particle is changing owing to change in velocity.

25. The definition and transformation equations for force

Since the mass of a moving particle will change with its velocity,

it is no longer possible as in Newtonian mechanics to define force
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boHi as mass tunes acceleration and as rate of change of momentum.

It proves to be most convenient to take the latter definitionj since

the principle of the equality of action and reaction for forces then

becomes identical with the principle of the conservation of momen-

tum which we took as an axiom.

We shall hence write as the equation of definition for the force

F acting on a particle of massm and vdooity u the vector expression!

or in scalar form

F = ^(mu) = ”^0"
\ (26.1)

F, «. -(mi) =

(25.2)

It wOl be noted in accordance with this definition that in general

force and acoeleration •will not be in the same direction as was the

case in Ne’wtonian mechanics. The advantages of the definition are,

however, very great, not only because it preserves the principle of

the equality of action and reaction but because it also can be sho^wn

to simplify the interpretation of electromagnetic phenomena (see

for example § 29).

Since we have already obtained transformation equations (10.2)

(12.1) (24.1) (24.2) for all the quantities occurring on the right-hand

side of (26.2) we can now also readily obtain transformation equations

for the components of force which can be written in the form

Ky

^ _cV{l-FVc2)^,
c^+KV

_ cV(l-F»/c«)
* ca+<F

^ F

(26.3)

These transformation equations have been derived for the particu-

lar case of the forces acting on a particle to change its state of motion.

t Note the incluflion of mo inside the bracket which is to be differentiated. This
makes the expression applicable also in oases where the proper mass of the particle

varies, as it might, for example, from an inflow of heat.
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Nevertheless, it is to be noted that particles can have their state of

motion changed not only by interaction with each other, but by

interaction with other larger mechanical systems or with electro-

magnetic systems as well. Hence, since we shall wish to retain the

equality of action and reaction and thus the conservation of momen-
tum in all branches of physios, it is evident that these same trans-

formation equations must hold for all kinds of forces and all kinds

of systems on which they may act. This conclusion will be of great

importance in extending our system of dynamics to include the

mechanics of a continuous medium.

26. Work and kinetic energy

As in the older mechanics we shall find it convenient to define the

work done on a particle as equal to the force acting multiplied by the

distance through which the particle is displaced in the direction of

the action, as given by the equation

dW = F-dr (26.1)

where r is the radius vector determining the position of the particle.

We shall also define the energy given to a particle by the action of a

force as equal to the work done on it.

In case we do work on a free particle we can easily evaluate its

increase in kinetic energy in terms of change in velocity. Introducing

into (26.1) the expression for force given by (26.1), we can write for

the increase in kinetic energy

dE = m^-dr
dt Cut

== mu • du +u • u dm
= mu du dm. (26.2)

And substituting the expression for mass as a function of velocity

given by (23.6) this becomes

dE m^u
du

mQ u^jc

(l_^a/c2)i

We thus see, just as in Newtonian mechanics, that the kinetic

energy given to a particle is solely a function of its change in velocity

independent of the particular way in which this change is brought

about. Furthermore, in accordance with equation (26.1) and the
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prinoiple of the equality of action and reaction, it is evident when

two particles interact by elastic collision that the increase in Idnetio

energy of the one will be equal to the decrease in kinetic energy of the

other, so that we shall also have in relativistic mechanics an analogue

of the older principle of the conservation of ‘vis-viva for elastic

encounters.

Integrating expression (27.3) from zero to u, we obtain for the total

kinetic energy of a particle of rest-mass moving with the velocity «

jB=: ^ c2 (26.4)

V(l-^4^/c«)
’

which reduces at velocities small compared with that of light, as

would be expected, to the familiar Newtonian expression

E = (26.5)

27. The relations betweenmass , energy, and momentum

We must now consider a very important relation between mass and

energy which was quite unknown to the Newtonian mechanics. In

accordance with §§ 23 and 26, the mass and energy of a particle are

both dependent on the velocity and increase with it. And if we sub-

stitute the expression for mass as a function of velocity given by

(23.6) into the expressions (26.3) and (26.4) for increase in kinetic

energy and total kinetic energy, we easily obtain the remaahably

simple relation (27.1)

for the increase in the kinetic energy of a particle in terms of its

increase in mass, together with

JS = c^(m—Wo) (27,2)

for its total kinetic energy in terms of the increase in mass of the

particle over that which it has at rest. In accordance with these

equations the change in kinetic energy in ergs is equal to the change

in mass in grammes multiplied by the square of the velocity of light in

centimetres per second.

We must now investigate the implied and suggested consequences

of this remarkable proportionality between increased mass and

Idnetio energy. Since we shall take the principle of the conservation

of mass not only as a fundamental postulate for a system of particles

hut for systems in general as well, this proportionality between in-

creased mass and kinetic energy immediately implies in general that
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any isolated system will always retain the same possibility of furnish-

ing kinetic energy, without any alteration as to the theoretical

amount available, although perhaps with some change as to the

readiness of availability. Hence we can rega/rd the principle of the

conservation of mass as itself guaranteeing the principle of the con-

servation of energy.

rurthermore, the proportionality between kinetic energy and
increase in mass, together with the principles of the conservation of

both mass and energy, immediately suggests that energy in any form

always has the corresponding amount of mass immediately associated

with it. Thus, for example, when a moving particle is brought to rest

and hence loses both its increased mass (7n— and kinetic energy

c®(m—

W

q), it seems reasonable to assume that this mass and energy,

which are associated together in the moving particle and which leave

it in association when the particle loses its motion, will stiU remain

always associated together. Indeed if the particle is brought to rest

by elastic transfer of energy to other particles, as in the case of

viscous forces arising from collisions with hypothetical elastic mole-

cules, the considerations of § 26 are sufficient to show that the mass
and energy do pass on in association to other particles. And in

addition we have already seen in § 23 that we must ascribe mass to

the potential energy generated during the course of an elastic collision

(see 23.7). Hence in what follows we shall postulate in general that a

quantity of energy E always has immediately associated with it a inass

m of the amount «
m = (27.3)

In addition as a further consequence of the association of mass with

any given quantity of energy, os given by equation (27,3), it would

also appear natural to assume the reciprocal relation of an association

of energy with any given quantity of moss. This we shall do in what

follows by postulating the relation

E = mc2 (27.4)

for the energy E associated with a mass of any kind m. Tliis relation,

which would imply an enormous store of energy m^ c* still resident in

a particle even when it is brought to rest, appears somewhat more
strained than our previous considerations, but nevertheless logically

plausible.

Finally, as an important consequence of this association of mass
3606.11 K
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and energy, it is evident that the transfer of energy will necessarily

involve l^e presence of momentum. For example, if we have a

quantity of energy E which is being bodily transferred with the

velocity u we can write for the associated momentum

(27.6)E
G = mu = u.

In addition to the transfer of energy by the bodily motion of the

system containing it, we shall also wish to allow, however, for the

transfer of energy when forces do work on a moving system. Thus if

we consider a rod moving parallel to its length with forces acting on

the two ends in such a way that work is done on the rear end and

delivered at the forward end, it is evident that in addition to the

transfer of the energy content of the rod by its forward motion, there

is a furth^ flow of energy down the rod because of the action of these

forces. In order to allow for the momentum associated with allforms of

energy transfer we shall then write

(27,6)

as a general rdaiion between density of momentum g and density of

energy flow s. This expression contains no restrictions as to the

mechanism of the energy transfer and will be fundamental for our

later work.

28, Four-dimensional expression of the mechanics of a

particle

The foregoing discussion contains all the imderlying principles that

are necessary for treating the mechanics of a particle, and we may
now show the simplicity with which they can be expressed with the

help of the four-dimensional language developed at the end of the

preceding chapter.

Returning to our fundamental idea of a four-dimensional space-

time continuum, we can write, m accordance with (20.1),

ds^ ^ (28.1)

as an expression for an infinitesimal line element ds in this continumn

in terms of the rectangular so-called Galilean coordinates

X 0?® = ?/ otfi = ^ =z cty (28.2)

and may then define the four-dimensional ‘momentum’ of a particle



§28 ENERGY AND MOMENTUM 61

as the product of its rest-mass and its four-dimensional ‘velocity’

/ doi^ dx^dxi^ (

ds da

d:x? d:x^\
(28.3)

Working out expressions for the four components of this vector,

however, in terms of our usual coordinates x, y, z, and t as given by

(28.2), we easily obtain

^ dx^ _ tuq dx

m —— ^
® ds c^{l—'a^jc^) dt’

dofl _ ttIq dz

ds c^{l’—u^lc^) dt^

dos^ mo
nyj W

® ds ^{l—u^jc^y

where (28.6)

Hence we see at once that our fundamental principles of the con-

servation of the components of momentum etc., of

mass 7rao/.y(l—M®/c®), and of energy m^c^l>j{\—v?‘jc^) can all of them

be obtained for interacting particles by the simple requirement

2 ~ const., (28.6)

where the summation 2 is bo be taken over all the particles of the

system. This expression is not a tensor equation, since the left-hand

side is a sum of vectors taken at different points in space-time

(see § 19), and the right-hand side is not even a tensor in form. The

equation is valid, however, for the particular kind of coordinates

(28.2), and illustrates, moreover, the condensation which can be

achieved with the help of four-dimensional language.

If, nevertheless, we consider a single particle in free space unacted

on by other bodies we can obtain a very simple and important tensor

equation to describe its motion. For such a particle, it is evident

from (28.6) that the motion will be given by

= const. (28.7)
ds

In the rectangular coordinates (28.2) being used this is, however, the
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eq[tLation for a straight line or geodesic. And this result can now be
expressed in the general form

8 J
* = 0, (28.8)

which is a tensor (scalar) ecjnation, valid in all systems of coordinates.
This^ result that the four-dimensional track of a free particle is a

geodesic will be very important when we come to the general theoiy
of relativity. In the case of a ray of light, we can take the track as
eing not only a geodesic, but with the additional restriction

ds = 0
already discussed in § 21.

Also in the case of a pa/rticle acted on by a force we can make use of
tensor language by considering a oontravariant vector the so-
called [Minkowski force, which can be deiSned by the equation

where is the proper mass of the particle as measured by a local
observer, dxf^lds is its generalized velocity, and the differentiation
d{ )lds with respect to its four-dimensional trajectory is purposely
taken so as to include possible changes in the proper mass ttiq of the
p^ide due, for example, to the generation of heat within it.

he above expression is to be regarded as a tensor equation
e ' g JV* in aJl systems of coordinates. In the particular kind of

coordinates given by (28.2) it is easy to calculate for the individual
components the values

1 J / V
li&O.JLXJ

F^ = ^ ^ \

dt\^[l-u^Jc^)r

1 dj_ \

V(l—wVc®) dt\c^{l~uyc^))’

wiere u is the ordinary velocity of the particle. Hence, remembering
ordinary components of force given by

(^6.2) and the relation between mass and energy given by (27.4) we

L__l/
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can now write for the components of in onr present coordinates

the simple expressions

1 dE\

\V(i~wvc2)’ V(i~^vc2)’ c dtr

(28.12)

The possibility thus demonstrated of using the components of

ordinary force to construct a four-dimensional vector proves to be

quite useful. In accordance with the discussion of § 26, forces of any

origin whatever must all obey the same transformation laws, and will

hence all share in this demonstrated property. The knowledge thus

provided as to the nature of forces can be very helpful, especially

when further information may be lacking. [See § 64 (c),]

29. Applications of the dynamics of a particle

This completes the development of the dynamics of a particle as

far as will bo needed for our later considerations. The results are to

be accepted not only on the basis of the experimental verification

which they have received in those cases where it has been possible

to test differences between the predictions of relativistic and New-

tonian mechanics, but also on the basis of the inner logicality of the

theory which has led to them and the harmony of this theory with

the rest of physics. The achievement of this logicality and harmony

depends on the reconciliation of so many factors that we can feel con-

siderable confidence in accepting results of the theory when necessary

prior to their experimental verification.

To conclude the treatment we may now briefly consider a few

applications of the dynamics of a particle wliich will illustrate both

the contact of the theory with experiment, and the logicality and

harmony mentioned above.

(a) The mass of high-velocity electrons. The increase in the mass

of a particle with increasing velocity, which was obtained in § 23, is

fundamental for relativistic mechanics and forms the basis which

implies or suggests the further development. For this reason it is

specially satisfactory that the expression given by

(23.6) for tho mass of a moving particle has now received good

experimental verification in tho considerable number of measure-

ments which have been made on high-velocity jS and cathode particles,

since the original more or less qualitative discovery by Kaufmann of
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a dependence of mass on velocity, A fairly recent description and

critique of these measurements will be found in the HanMueh der

Phyaik.‘\

{b) The relation between force and acceleration. As already noted

in § 26, ifwe define the force acting on a particle as its rate of change

of momentum as given by the equation

da

dt

dm mo da . d ( Wp
]

“ dt
“

dt

(29.1)

it is evident in relativistic mechanics that the forceF and acceleration

dajdt will in general not be in the same direction, as was the case m
Newtoman mechanics.

The resolution of the force into components parallel to the accelera-

tion and parallel to the velocity, as given by (29.1), makes the reason

for this changed state of affairs immediately apparent. Since the

acceleration itself will in general lead to a change in the mass of the

particle, we must expect a change in momentum in the direction of

the already existing velocity u as well as in the direction of the

acceleration du/di. Hence components of force will be needed in

general both in the direction of the acceleration and of the existing

velocity.

The force may also be resolved into components parallel and per-

pendicular to the acceleration. If, for example, we have a particle

moving in the ajy-plane with the velocity

vL=^uJ+Uyi (29.2)

and desire to accelerate it in the y-direction, it can easily be shown J

that we must apply, in addition to a component of force Fy in the

desired direction, an additional component F^, at right angles which

will he given by the relation

This method of resolving the force is also sometimes useful in giving

an insight into the relations between force and acceleration. The
extra component in the a;-direction is necessary, when the particle

^eady has a component of velocity in that direction, in order to

take care of changes in momentum in that direction, arising from

t See report by Qerlach, Han^Rnich der Phyaik, xxii, Berlin, 1926.

t Tolman, PAil. Mag, 22, 468 (1911).
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changes in mass even when the velocity in that direction remains

constant.

In accordance with (29.1) or (29.3) it will be seen that force and

acceleration will be in the same direction for the two special cases of

a transverse acceleration in which the force is applied at right angles to

the existing velocity, and of a longitvdinal acceleration in which the

force is applied in the same direction as the existing velocity. For a

transverse acceleration equation (29.1) reduces to

mp dvi

V(l-«^Vc*) dt ’

and for a longitudinal acceleration it reduces to

F = ^0 dn

dt

'

(29.4)

(29.5)

An examination of these equations shows the reason why

has sometimes been called the transverse mass of a particle and

the longitudinal mass. It should be emphasized, how-

ever, that it is only the first of these quantities which

can be regarded as a fundamental expression for the mass of a

particle, since this is the quantity which will give the momentum
when multiplied by the velocity of the particle, and is the quantity

which is conserved when particles interact by collision.

(c) Applications in electromagnetic theory. Although a funda-

mental discussion is necessary for a complete development of the

principles of electromagnetic theory, it is interesting to point out in

passing that certain special electrical problems can be advantageously

treated with the help of the dynamics of a pai^ticle.

As a typical problem of this kind we may consider the calculation

of the force with which a charge e moving with the miiform velocity

y, for simplicity taken in the a:-direction, would act on a second

charge in its neighbourhood. To treat this problem with the help

of the dynamics of a particle, we may first take a system of coordinates

in which the charge e is at rest so that it may then be regarded as

surrounded by a simple electrostatic field. In this original system of

coordinates the force on can be calculated very simply with the

help of Coulomb’s inverse square law of electrostatic repulsion, and

by maldng use of the transformation equations for force (25.3) wo
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oau then change to the desired system of coordinates in which the

charge e is in motion.

For the case in hand if the charge e is taken as at the origin of

coordinates at the instant of interest and as moving along the aj-axis

with the tmiform velocity F, the force on Cj can readily be shownf by

this method to be given by

(29.6)

where a:,y,i8, and u^,Uy,Ug denote the coordinates and components of

vdocity of with respect to this system of axes, and $ is an abbre-

vifttioii for ^ /r-2 I /T 1 (29,7)5

The result is the same as can be obtained by the more usual method

of first computing the electric and magnetic fields produced by the

moving charge e and then determining the force which they exert on

the charge which is itself moving through them. The present

treatment shows that the somewhat complicated action of these

electric and magnetic fields on the charge can be regarded as a

simple electrostatic action by a suitable choice of coordinates. The

general relations between electric and magnetic field strengths in

different sjistems of coordinates will be treated in the following

chapter on electromagnetio theory.

A further illustration of the methods of applying the dynamics of

a particle to electromagnetic problems can be obtamed if we again

consider the charge e as constrained to move along the cc-axis with

the uniform velocity V, and take the charge as located at the instant

of interest on the j/-axis at i/ = y and moving in the rr-direction with

the same velocity = y as the charge e itself, and having any

desired component of velocity in the y-direction. Under these

circumstances it is evident from the simple qualitative considerations

placed at our disposal by the theory of relativity, that the charge

should merely receive an acceleration in the y-direction and retain

unchanged its component of velocity in the a?-direction, since from

t ToUnan, PM. Mag. 25, 150 (1913).
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the point of view of an observer moving along with e the phenomenon

is merely one of ordinary electrostatic repulsion. It is interesting to

see in detail, however, how this comes about.

Substituting the values given above for the coordinates and com-

ponents of velocity of into (29.6), we obtain for the components of

force acting on
x, _ eei

/
Vu^

c*)
' '

(29.8)

and
" 53 \ C2 /

and at first sight are surprised to find any component of force in the

cc-direction, since we expect the acceleration to be solely in the

^-direction. In accordance with the preceding section we remember,

however, that in general force and acceleration are not in the same

direction, and by combining the two equations above we easily

obtain
F = jF (29.9)

which, with = F, is the relation (29.3) between the components

of force that we have aheady obtained as the necessary condition for

acceleration solely in the ^v-dhection.

Other applications of particle djmamics to electromagnetic

problems will suggest themselves to the reader.

{d) Tests of the interrelation of mass, energy, and momentum. The

relations between mass, energy, and momentum obtained in § 27 are

among the most impoHant conclusions that have been drawn from

the Einstein theory of relativity. There are several points of contact

between these relations and experiment which we may now consider.

The first of these relations was that connecting increase in kinetic

energy with increase in mass as given by equation (27.1). From a

qualitative point of view since increase in velocity will certainly load

to increase in kinetic energy, it is evident that all of the experiments

on the increase of mass with increase in velocity are in agreement

with the general idea that increase in energy and increase in mass go

hand in hand. Among these experiments on the relation between

mass and velocity, however, wore those of Hupkaf in which the

particles received their velocity by acceleration through a measured

potential drop, the velocity then being calculated by equating the

relativistic exi^ression for kinetic energy (26.4) to the work done by

•f
Hupka, Ann, der Physih, 31, 109 (1910).
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e eleotrio forces that produced the acceleration. Hence theseper experiments can also be regarded as a quantitative veri-
ca of the relation between increased mass and kinetic energy,

®ocept the simplest principles of electrical theory.

f97
^ more general ideas, embodied in equations

VI i ^ binds of energy have the associated mass

+ii + ^ mass the associated energy it is evident
o vious macroscopic tests, such for example as would be given

y measurements of heat content and inertia, hold little promise
owing to the great size of the conversion factor c®.

In^ field of atomic physics, however, the range of validity for
sue 1 eas has recently been strikingly extended. Thus, the qualita-
ve B^g^tion,J that the energy of the incoming cosmic rays might

^
^^^^®^*®”^®^^®®*'®iMsesofthepairsofpositiveandnegative

electrons observed by Andersonf and by Blackett and Occhialini,$
now een supplemented by the results obtained with y-rays by

^cl6rsou amiNedd6rmeyer§ which give quantitative indication that
e owa eimrgy of ^e y-rays is sufficient to account for the rest-

^ ^ binetic energies of the pairs of positive and negative

fnT’i
8'Ppear. Purthermore, the long entertained possibility

•moD •

processes accompanied by a transformation of rest-

®“6rgy. has now received excellent quanti-
by the measurements of Oliphant, Kinsey and

ian+/^T>
^O't the decreases in mass, when the two

of

^ ^ combine respectively with the isotopes

*11
energy of the pairs of ooparficles formed.

trar^Fw^
y> moreover, to the relation of momentum with

of an t>n^'
'vrhioh was itself based on the assumption

tive and
t^een mass and eneigy, we have the quantita-

mentsof
®^erimental verificatiou provided by measure-

we have iii

show with considerable exactness that

(27 61 bfitnrpo
radiation the theoretically expected relation

(27.6) between density of momentum and density of Sergy flow.
t M<Wn. Science. 76, 238 (1932).
% Blackett and OcohiaUni, Pr/in P/mi o a «

§ Anderson and itTeddermo^r
^ 139, 69 (1933).

^©ory see Oppenheimer and BleMA+ (1933). For more complete
II OlipbimtV^^^LdBntW (1933),

Bainbridge, Phya. ^ ’22 (1933). See also
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Part II. THE DYNAMICS OF A CONTINUOUS MECHANICAL MEDIUM

30. The principles postulated

In the classical Newtonian mechanics after treating the dynamics

of particles it was customary to proceed to a development of the

dynamics of rigid bodies whose state could be specified by the six

coordinates which would give the position and orientation of the body

and the six corresponding momenta. In relativistic mechanics, how-

ever, it is evident as soon as we consider bodies of a finite size that

in general an infinite number of variables will be necessary to

determine their state, since disturbances set up in one part of the

body can only be transmitted to other parts with a velocity less than

that of light. In relativistic mechanics the most nearly rigid body we
can think of would be one in which disturbances are propagated with

the limiting velocity of light, and the older idea of a completely rigid

body whose parts would act together as a whole is no longer a legiti-

mate abstraction. Wo may hence proceed at once to a development

of the mechanics of a continuous medium, the resulting theory being

due originally to the work of Laue.

As the postulatory basis for this development we shall take the

principles of the special theory of relativity and the two principles of

the conservation of mass and momentum in all systems of coordinates

used in developing the mechanics of a particle, and in addition shall

combine these with the conclusions as to the transformation equations

for forces and the relations between mass and energy which were

provided by the mechanics of a particle.

In accordance with this basis the theory of the mechanics of an

elastic continuum can bo regarded as a natural extension of the

mechanics of a particle. The theory cannot, however, be regarded

in any sense as deduced from the mechanics of particles, since we
shall make no attempt to derive the properties of a continuum from

the relativistic behaviour of the particles or molecules out of which

the continuum might be thought of as composed. Even in the older

Newtonian mechanics the attempt to obtain a rigorous derivation of

the mechanics of an elastic continuum from that for particles was

perhaps not entirely satisfactory, and at the present time such an
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attempt would be oompKoated not only by the facts of relativity, but

also by the necessity of applying quantum mechanics to the behaviour

of the ultimate particles. For these reasons it has seemed best to

obtain the mechanics of a ooutinuum from its own postulatory basis

as ^ven above—with the help of a macroscopic treatment that avoids

the necessity for quantum mechanics. This we proceed to do.

31. The conservation of momentum and the components of

stress

The first item in our postulatory basis to which we shall wish to

pay attention is the principle of the conservation of momentum. To

secure the validity of this principle we shall again regard force as

equal to rate of change of momentum and require an equality between

action and reaction in the interior of our elastic medium. Let us now

see in detail how this is to be done.

Considering a given set of Cartesian axes x, y, z, let us first detoe

the components of stress at any point in our medium as the nine

quantities * * * i" ”
(
31 . 1)

^yx '

^zy

which give the normal and tangential components of force exerted by

the medium on unit surfaces at the point in question, in accordance

with the usual understanding, that the symbol denotes the com-

ponent of force parallel to the i-axis exerted on unit surface normal

to the j-axis by the material lying on the side of this surface corre-

sponding to smaller values of the coordinate x^.

With this definition of the components of stress the principle of

the equality of action and reaction can then be maintained by taking

as the component of force parallel to the i-axis exerted on unit

surface normal to thej-axis, by the material on the side of the surface

corresponding to larger values of the coordinate x^. And this will be

done in what follows as will be seen in the next section.

32, The equations of motion in terms of the stresses

With the help of the foregoing we may now obtain an expression

for the equations of motion of the medium in terms of the stress 1^^.

On the one hand, we may calculate the net force acting on a unit

cube of the medium by considering the difference m the stress acting

on the parallel surfaces by which the cube is bounded. For example.
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if we are considering the component of force in the a;-direotioii and

fix our attention on the pair of faces perpendicular to the y-axis, we
can take as the force exerted on the lower of these two surfaces

and in accordance with the postulated equality of action and reaction

can take as the force exerted on the upper surface.

Hence for the net contribution of this pair of surfaces to the com-

ponent of force in the rr-direction we shallhave andsumming

for all three pairs of parallel surfaces can write

^ _ ^xx ^xy ^^xss

dx by dz
(32.1)

for the total force in the a;-direction acting on a unit cube of the

material. Or generalizing, we can write

j<~-%

for the component of force acting in the ith direction on unit volume,

where the double occurrence of the dummy suffix j indicates summa-

tion for the three coordinates x, y, z.

On the other hand, since is the component of force on unit volume

we can take fi 8v as the force on a small element of the material of

volume 8?;, and equate this to the rate of change of the momentum of

the element in accordance with the expression

(32.3)

where is the density of momentum at the point in question parallel

to the i-axis.

Combining (32.2) and (32.3), we can then write the equations of

motion for the element 8v in the form

Si; =: iiOi Sz;)

dxj
^

(32.4)

This expression can be simplified, however, since we can evidently

write for tho rate of change in the momentum density of the element

dgt _ ^5(71
, ^ ^ I „

di - 8z

dt
(32.6)
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where the first term arises from the rate of change at the point in

question and the second term from the motion of the element with

the components of velocity Uj. And for the rate of change of volume

we can write d

di ^ dy^ dz]
8«

du.

dx.

SSw. (32.0)

Substituting (32.6) and (32.6) in (32.4) and simplifying, we then

obtain the equations of motion for our medium in the simple form

desired

dx, ^ ^dt ’dx.

dUj

dx.

The result is a general representation for the three separate equationfl

that correspond to takitig the subscript i as x,y, or a, and sumnamg

for the three axes in the case of the dummy subscriptJ.

33. The equation of continuity

The foregoing three equations were obtained as the outcome of our

postulate as to the conservation of momentum, and we may now

supplement them with the help of the principle of the conservation of

mass by the equation of continuity

(33.1)
dx'^ dy"^ dz dt

or (33.2)
dxf dt’

where p is the density of mass at the point in question. Since the

density of momentum g is by definition equal to the density of naass

flow, this equation is an evident expression of our postulate as to the

conservation of mass.

34. The transformation equations for the stresses %
With thehelp ofthe two conservation laws of mass andmomentum,

we have thus obtained the equations of motion (32.7) and the

equation of continuity (33.2) for a continuous medium, and in

accordance with the first postulate of relativity, equations of this

same form will apply to the behaviour of the medium in all systems
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of coordinates in uniform relative motion. In order, however, to

make any use of these relations conneotmg the quantities—stress

density of momentum g, and density of massp—^we must now show
how the values of these quantities referred to any given system of

coordinates are to be determined. To accomplish this, we shall obtain

in the present section transformation equations which will permit

a calculation of the components of stress in terms of the com-

ponents ^ as they would be directly measuredby an observer moving
along with the medimn at the point of interest; and in the next

section we shall obtain transformation equations which wiE similarly

permit the calculation of the other quantities g and p in terms of

quantities which could be directly measured by ordinary methods.

These transformation equations for tij, g, and p will themselves be

based of course on our previous study of the Lorentz transformation

and the conclusions drawn therefrom. And it should perhaps be

emphasized that it is this introduction of the Lorentz transformation

which determines the essential character of the relativistic mechanics

of a continuum, since the equations of motion (32.7) and continuity

(33.2) would also be true in Newtonian mechanics in aU systems of

coordinates if we should use the Galilean transformation instead of the

Lorentz transformation.

Let us now consider the transformation for the components of the

stress tij from one system of coordinates to another. Since these

components of stress have themselves been defined in terms of forces

and the areas on which they act, we are already well prepared to

calculate the transformation equations for these quantities. In

transforming the expressions for the areas we shall merely have to

allow for the Lorentz contraction (§ 9), which was an immediate result

of the fundamental transformation equations for spatial and temporal

measurements. And in transforming the expressions for components

of force we can use the results of § 26, since as already pointed out in

that section the transformation equations for forces of any origin

must be the same if we are to retain the conservation of momentum
in general and in all systems of coordinates.

For simplicity let us assume that our original system of coordinates

S has been oriented so that the material, at the point of mterest in

the medium, will be moving with respeot to this system with the

velocity u, parallel to the a;-axis without components of velocity in

the y~ and z-direotions. And let us take as oursecond system, so-called
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proper coordinates /S®, also moving in the a;-direction with respect to

S with the velocity = 7 (34 1)

so that the material at the point and time of interest will be at rest

in system in accordance with the equations

= 2^0 = wg = 0. (34.2)

We may now easily secure expressions for the components of stress

with respect to 5 in terms of the components with respect to /S®.

Substituting the expressions for velocity (34.1) and (34.2) into the

transformation equations for force (25.3), we at once obtain

F* = K = (34.3)

as transformation equations connecting measurements of force in the

two systems; and noting that the Lorentz contraction (9.3) will

affect the transformation of areas normal to the y- and 2-axes but not

those normal to the ir-axis, we can write

^A% Ay^ Al^[\-u^jc^) A^ = (34.4)

for the transformation of areas normal to the directions indicated by

the subscripts. Returning then to our original definition of the com-

ponents of stress (31.1) in terms of force per unit area, we easily see

that the transformation equations will bef

^xy ~

^yx
—

^zx =
^yy

''ey
'

^yy iy. = C
= it

tL.

(34.5)

specialized, of course, by the simplification that the direction of axes

in system S has been chosen so as to make the velocity u of the

material at the point of interest parallel to the a;-axis.

Owing to the circumstance that the velocity of the material is

zero at the point of interest with respect to the proper coordinates

the ordinary principles of Newtonian mechanics can be applied

in that system, which lead, as is well known, to the symmetry of the

stress tensor ^ so that we have

(34.6)
/O — /O
^xy ^ux ^Vz

t These equations for the transformation of stresses differ from those given by
Tolman, The Theory of the Relativity of Motion^ § 122, since the stresses wore there do-

ffned with reference to unit proper volume of the material. The present definition in

terms of force per unit area as measured in either system of coordinates is chosen to

agree with the usage of Laue, Daa Relativiicitsprinzip, second edition, Braunschweig,
1G13.
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in system We note then in accordance with (34.6) the important

conclusion that the components of the stress in system S will not give

a symmetrical array. So that in general when the point of interest

is moving with respect to the coordinate system we can expect to find

% 9^ (34:.7
)

The great importance of the transformation equations for the com-

ponents of stress (34.6) lies in the possibility which they provide for

correlating the stress in rapidly moving material with the known
behaviour of stress in stationary material.

35. The transformation equations for the densities of mass
and momentum
In addition to the above equations (34.6) which permit us to calcu-

late the stress at any point in our medium in terms of the stress as

measured by an observer moving with the material at that point, we
shall also desire—as pointed out at the beginning of the last section

—

equations which will permit us to calculate the densities of mass

p and momentum in terms of quantities which could bo measured

by an observer moving with the material. To obtain these relations

will be a somewhat long and comi^licated task, and in carrying out

the deduction wo shall have to make use of the relativistic relations

between mass, energy, and momentum which is the remaining part

of the postulatory basis stated in § 30, which has not yet been

employed.

With the help of those relations between moss, energy, and momen-
tum we shall first obtain an expression for the momentum of a moving

portion of our modiiini in terms of its mass (or energy), velocity, and

state of stress. This expression for momentum will then permit us to

calculate the force acting on a stressed portion of the medium when
its momentum and velocity are changed, and henco to calculate the

work done and increase in energy when the material is brought from

zero velocity up to the actual velocity of interest. Wo shall then be

in a position to compute the mass, energy, and momentum of the

moving material in terms of its velocity and its mass, energy, and

state of stress as they appear to an observer moving with it. We
now turn to the derivation which can be obtained along these lines.

In accordance with our ideas os to the connexion between density

of momentum and density of energy flow as given by (27.6), it is

evident that the momentum of a moving portion of material when
at\06.ii
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subjected to stress 'will be due not only to the bodily motion of the

mass which it contains but also to the density of energy flow arising

from the work done by the forces of stress that act on its moving
faces. Thus, if we have material of density p moving with the velocity

u which we take for simplicity as parallel to the r-axis, we can write

for its density of momentum in the as-, y-, and ^-directions

i

‘'a®
‘

Oy —
C*

’ (36.1)

since and are evidently the densities of energy flow in

the directions indicated due to the action of the forces of stress, and

division by c® will be necessary omng to the difference in units for the

measurement of mass and energy. It is an important and interesting

result of relativistio mechanics that there will be in general com-

ponents of momentum in a stressed body at right angles to the

direction of motion.

For the total momentum of a small portion of the medium of

volume V we can then •write in accordance with (36.1) the expressions

a, _ 5+fe*’u,

a, =

e. = -^V

(36.2)

where for later convenience we have expressed the total mass in terms

of the energy E di-vided by And from the definition of force as

equal to the rate of change of momentum we can write

—

(V-)

(36.3)

-i

for the components of force which would have to be applied to the
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material in the volume v in order to change its velocity u parallel to

the a;-axis.

We are now ready to calculate the work done and energy input

necessary to bring a given portion of our stressed material from zero

velocity up to the velocity of interest. Let us start with material

having the volume t?®, energy content JS?®, and stress and bring it

from zero velocity to that of interest by an adiabatic acceleration

parallel to the rr-axis which leaves the condition of the material

(i.e. -y®, and unchanged when measured by an observer moving
with the material. In accordance with the Lorentz contraction (9.3)

we can write for the volume at the velocity u

V = (35.4)

and in accordance with the transformation equations for stress

(34.5) shall have ^ ^35 5^

throughout the course of the acceleration. For the rate of energy

increase we can then evidently write

dE jpdx^ dv

It
^ (35.6)

where the first term is the rate at which work is done by the action

of tile force which produces the acceleration, and the second term is

the rate at wiiich worlc is done by the forces of stress which act on

a volume which is decreasing in its length parallel to the aj-axis owing

to the Lorentz contraction.

Writing u in place of dxjdt, and substituting the expression for

given i)y (35.3) we can then re-express (35,6) in the form

iU^

dt

(lEn^

dt

jjf u du u* dv

c** dt
+ ^;r:

u du ^ dv

where 1^.^. has been treated as a constant in accordance with (35.5).

Tins can easily be rewritten in the form

w du
7^11

which can n^adily be intc^grated between zero velocity and u to give

us the final result

^{1-uVc^y
(35.7)

where the superscript ® indicates the values of the quantities involved

as measured by an observer at rest with respect to the medium.
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Thie last equation, however, now permits us to write the desired

expressions for the densities of mass and momentum. Dividing

(36.7) by the volume v, noting the relation between v and v® given by

(36.4) introducing the equality of #^,3,
and given by (36.6), and

changing from the density of energy to that of mass with the help of

the factor c*, we can easily obtain for the density of mass

(36.8)
1—

where pjo i® proper density of the material as measured by an

observer moving with it. And combining this result with (36.1) and

(34.6) we obtain for the densities of momentum parallel to the three

axes

^*Poo~4~^Sa!

6®

9v —
It

V(l-«®/c®) C®’
(36.9)

u

These are the desired expressions which will permit us to calculate

the densities of mass p and momentum g^, at a point in a medium
moving with the velocity u, in terms of this velocity and the density

Pqq and stress as measured by an observer moving with the material.

The equations are specialized for simplicity by a choice of coordinates

such that the direction of motion is parallel to the a;-axis, but are

otherwise general.

It should be specially noted that these equations have been derived

without any reference to the microscopic behaviour of the ultimate

particles of which the material might be thought of as composed, and

the quantities occurring therein, such as density, velocity, and stress,

are to he regarded as macroscopically measured. To emphasize this

we have used the symbol p^^ to designate the proper macroscopic

density of the material as measured by a local observer, since the

symbol Pq with a single subscript is usually used to designate a

.hypothetical microscopic density. As mentioned in § 30, by adopt-

ing a macroscopic treatment, we have avoided the necessity for a

quantum-mechanical treatment of the behaviour of the ultimate

particles.
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36. Restatement of results in terms of the (absolute) stress

The foregoing transformation equations for the components of

stress and the densities of mass and momentum, together with the

equations of motion and continuity, evidently provide a complete

apparatus for treating the mechanics of a continuous medium.

Nevertheless this apparatus may be put in a specially simple form,

as will be shown below, if we now define a new array of quantities

byth«eq™a<»B = (98.1)

where axe the components of stress at the point in question as

previously defined, and gt and are the indioated components of

momentum density and velocity at that point.

In accordance with this definition, together with the relation (34.6),

we have in the special case of proper coordinates, which are moving

with the point of interest, the simple relations

= = (36.2)

and making use of this result, together with the transformation

equations for stress (34.6) and momentum density (36.9), we easily

calculate for more general coordinates, in which the material at the

point of interest is moving with the velocity u in the a;-direction, the

transformation equations

Pxx n -
"^(1—«Vc®)

Pyx
_ .

Pvx_

V(l-'a®/c*)
Pyy = Plv Pye = P%s (36.3)

Pzx
P%c II

Pzx = Piz-

Furthermore, the transformation equations for density of mass and
momentum (36.8, 9) may now be re-expressed in the form

p == (36.4)

and

c* ' ^(i-uyc^) c2 c®'

(36.6)

Finally, with the help of the definition (36.1), the equations of

motion (32.7) can be expressed in the new language in the extremely
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simple form . „

== 0
dt

and the equation of continuity (33.2) may again be written

(36.6)

Since the equations (36.2, 3, 4, 6) permit us to compute all the
quantities occurring in the equations of motion and continuity

(36.6, 7), in terms of quantities measurable by ordinary methods by
a local observer moving with the material, we now have in a compact
and convenient form all that is needed for treating the mechanics of

a continuous medium. The transformation equations (36.3, 4, 5) are

specialized for simplicity to the slight extent that we have chosen our
axes in such a way that the velocity u of the medium at the point in

question is parallel to the cc-axis, but are otherwise general.

It is of interest to note that although the stress as originally

defined in terms of the forces exerted by the medium on unit area did
not give a symmetrical array of quantities (34,6) except in the case
of proper coordinates, nevertheless the new quantities do give a
symmetrical array in all coordinates as shown by (36.2, 3).

Since the forces corresponding to the are those which one portion
of the medium exerts on another, the surfaces on which the act
are at rest relative to the medium. For this reason the quantities
ore sometimes called the components of relative stress. On the other
hand, the new quantities determine in accordance with (36.6) the
rate of change of momentum density at a given point fixed in space as
referred to the coordinate system. For this reason the quantities
are sometimes called the components of absolute stress, as was done
in the heading of this section.

The introduction of the new quantities p^^ is of great advantage in
now permitting a further re-expression of the apparatus for treating
the mechanics of a continuous mediumin very simple four-dimensional
language with the help of a generalized symmetrical four-dimensional
tensor, a matter to which we now turn in the following section.

37. Four-dimensional expression of the mechanics of a con-
tinuous medium
To obtain an apparatus for treating the mechanics of a continuous

medium in four-dimensional language we shall now return to our
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fundamental idea of a four-dimensional space-time continuum with

the system of Galilean coordinates which are related to

our previous spatial and temporal coordinates by the expressions

==x x^ a;® = (37.1)
-b

and introduce a symmetrical four-dimensional tensor 1’#“'—^the so-

caUed energy-momentum tensor—^for describing the condition of the

mechanical medium at any given point in space and time. The ten

independent components of this symmetrical tensor Ti^'’ will be tsiken

in such a way as to be very simply related to the ten quantities

g^, and p, used above m treating the mechanics of a continuum, and
so as to lead to a single very simple tensor equation which will be
equivalent to the three equations of motion and the equation of con-

tinuity necessary for the previous treatment.

To define the energy-momentum tensor Ti^'' in terms of our previous

quantities, we shall first consider proper coordinates (a:J, a;g, a;g, ajJ)

such that the medium at the point and time of interest has zero

spatial velocities with respect to these particular coordinates

^0 =^ ^ = 0
ds ds ds

‘ (37.2)

and then state that in these coordinates the tensor reduces so that its

components have the simple values

Tf = P%, 0

jPw P% Pya ®

Pec P^ P%s

0 0 0 eVoo- (37.3)

It is evident that this statement completely defines the components
of the tensor at the point in question in all systems of coordinates,

since we can write in accordance with our general equation (19.8)

dx^ dx^
^ ® (37.4)

as an expression for obtaining the components of this tensor in any
desired new system of coordinates (a;^, a;®, a;®, x^), from their values in

proper coordinates as given by (37.3).

We are now ready to investigate the usefulness of this newly

defined four-dimensional tensor. If we transform from the original

coordinates (a;J,a;J,a;g,a;J) in which the material was at rest at the



SPECIAL BELATIVITY AND MECHANICS § 37

nterest to a new set (x^,x%z^,x*) in which the material is

j
parallel to the x-axis with the velocity u, we must set

3.1 3.2 3.2 3^ _ 3.3 34 ^37 5\

in accordance with the Lorentz transformation equations (20.3) with

V put equal to —u. We then obtain in agreement with (20.4) for the

differential coefficients that occur in the transformation equation

(37.4) as the only non-vanishing values

aaji ae* 1

8x1 dx*

8x^ 8a^

8x* dxi

ujc
(37.6)

dx^
j

BXq Bxq

Substituting these into (37.4) with the as given by (37.3) we can

then readily obtain for the components of the tensor in the new
coordinates the values

pIu viz cVoO+i5?* “

V(i-«Vc2) ^{1-u‘lc^) 1—V^jc^ 0

Pv<t
Pwf Plz

P%v **

c

A
P%V p%

p%> “
c

cV00+P2x« Plu « Plz «
1—

c

^(1—tt®/c*) c .^(1—tt*/c*) c 1—w^/c*

(37.7)

and comparing these values with those given by the transformation

equations (36.3, 4, 6) in the previous section, we see that this reduces

to the simple symmetrical array

p^ cg^

Pyx Pyy Pyz

Pzx Pzy Pez (37.8)

the components of the tensor thus having the same physical signi-

ficance in all systems of Galilean coordinates.

The usefulness of this energy-momentum tensor becomes at once
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apparent since our earlier equations of motion and continuity can

now be written in the extremely simple combined form

= 0. (37.9)

Noting the values of the coordinates given by (37.1), it is easily seen

that the four equations, obtainable from (37.9) by assigning to (jl the

different values 1, 2, 3, 4 and summing over the dummy suffix v, are

as a matter of fact identical with our previous equations of motion and

continuity (36.6, 7).

Since is the expression in our present simple coordinates

for the contracted covariant derivative of this final equation

can be regarded as expressing a tensor relation, and in accordance

with the discussion of § 21 this property is sufficient to secure agree-

ment with the postulates of relativity. Hence this equation, together

with the definition of given by (37.3), may now itself be taken as

a very satisfactory postulatory basis for the mechanics of a con-

tinuous medium. This starting-point will be of special value when we
come to the general theory of relativity.

38. Applications of the mechanics of a continuous medium
It is evident that the system of mechanics, whose development we

have now completed, differs in important respects from Newtonian

mechanics. These differences can be most clearly seen with the help

of equations (36.4, 6) which show not only that the mass of a moving

body would depend on its velocity as already found in the case of

particles, but in addition that the mass and momentum would depend

on the state of stress, and that there would in general be components

of momentum in a stressed body at right angles to the direction of

motion.

A direct experimental test of these additional differences between

Newtonian and relativistic mechanics would be very important,

especially as much of the mechanics of general relativity will have to

be founded on our present results. It will be noted, moreover, in

accordance with the equations mentioned that these new differences

from Newtonian mechanics would exist even at low velocities pro-

vided the stresses p^j = i^j were great enough. Nevertheless, there

are at present no simple mechanical examples known in which these

stresses are large enough to produce appreciable deviations from

Newtonian mechanics. This is unfortunate from the point of view of

obtaining a direct experimental verification of the new mechanics,
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but of course, on the other hand, signifies that there are no known
mechanical phenomena which disagree with the new mechanics.

Since simple direct tests of the mechanics under discussion are

not feasible, our trust in its conclusions must be dependent on the

coherence of the theory with the rest of physics and on its own mtemal
coherence. The presence of such coherence has—^it is believed—been

made evident in the method of development which we have chosen

to obtain the theory. The feeling that such coherence exists will,

however, be further strengthened if we now develop some of the conse-

quences of the theory, and show as far as possible their rational nature

and relation to other fields of physios.

(a) The mass and momentum of a finite system. Starting with the

equations of motion and continuity in the differential form in which

they have been derived, let us first consider the results that can then

be obtained by integrating over a finite volume.

Considering first the equation of continuity (33.1) and carrying out

an integration over a definite fixed volume in space, we can write for

the rate of change in the mass inside that volume

or by performing a part of the integration we can write this in the

form

IgJ^dydz-jj \gXdxdz-^j \gX dxdy,

(38,2)

where the limits of integration at the boundary of the volume con-

sidered have been denoted by x, x\ etc. We have thus related the rate

of change of the mass inside the spatial volume considered to the

density of flow across the boundary. For an isolated system this will

give us the principle of the conservation of mass and also the prin-

ciple of the conservation of energy on account of the interrelation of

those two quantities.

In a similar way starting with the equations of motion in their

original form we can obtain information by integration as to the rate

of change in the momentum of a finite system. Here, however, we
have two possibilities of procedure corresponding to the two different

forms in which the equations of motion have been expressed

—

originally in terms of the stresses t^^ and later in terms of the
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Let US first consider the equations of motion in their later rather

simpler form (36 .6). We can then again integrate over a definite

fixed volume in apace, and obtain for the rate of change of the ith

component of momentum inside this volume

or by iJerforming a part of the integration we can write this in the

form

dt

= J§ - JJ iPixlt - JJ \Piv\t - JJ
(38.4)

where the limits of integration at the boundary of the volume con-

sidered have been denoted by x, x\ etc. We have thus related the

I’ate of change of the momentum inside the spatial volume considered

to the values of at the boundary. For an isolated system this will

of course give us the principle of the conservation of momentum.
We may also consider the equations of motion in their earlier form

d et
= (38.6)

which gives the rate of change in the momentum of the element of

material lying at the time in question in the volume St;, instead of the

rate of change in the density of momentum at the point of location.

We can then integrate, this time over the material located at the instant

under consideration inside a given boundary instead of over a fixed

volume in space, and obtain for the rate of change in the momentum
of this material

dt

or by performing a part of the integration we can write this in the

form

dt

= \hx\t dydz - JJ \tiX dxdz~jj dxdy,

(38.7)
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where the limits of integration at the boundary have been denoted

by etc., and we used the symbol \Gi\ to denote the momentum
of a given amount of the material as distinct from the momentum Qi

inside a given spatial volume. Equation (38.7) relates the rate of

change in the momentum of a given amount of the material to the

forces acting on its surface, and reduces again to the principle of the

conservation of momentum for an isolated system.

To conclude the present section it may also be pointed out that the

results given by the equations (38.2) and (38.4) for the rate of change

in the ma^s and the three components of momentum inside a given

volume of space can be expressed with the help of our four-dimen-

sional tensor language by a single generalized equation. For this

purpose ive start with the equations of motion and continuity in the

very simple form given by (37.9)

02’/'’'/^'’ = 0, (38.8)

where Tf**" is the energy-momentum tensor as defined in § 37. By
integrating over the spatial coordinates for the spatial

volume of interest we obtain

dTi^\

\ 0*1
^^ 0*2 ^^ 0*s ^ dx^dxHa? = 0. (38.9)

and by performing a part of the integration and rearranging we can

then write

d^dx^dx^
JiJ
= - JJ

dxHa?

dTi^

dx^dx? —
JJ

dx^dx^,

(38.10)

where the limits of integration at the boundary have been denoted
by etc.

This result may be called the energy-momentum principle as

applied to a finite region. Noting the values of as given by
(37.8), we see that with fi taken as 1, 2, or 3 it relates the rate of

change with the time of a component of momentum within the
region with conditions at the boundary, and is equivalent to the three

equations given by (38.4). And with /a taken as 4 it relates the rate

of change of mass or energy with conditions at the boundary and is

equivalent to (38.2). The equation thus agrees with the idea that
changes in the mass, energy, and momentum within a given region

are due to flow across the boundary, and in the case of an isolated
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system is seen to reduce to the principles of the conservation of mass,

energy, and momentum.

(6) The angular momentum of a finite system. In the case of

angular momentum we shall be primarily interested in the amount of

momentum associated with a finite system rather than that located

in a fixed region in space. For such a system we may then define

the component of angular momentum, taken for specificity around

the 2;-axis, in the usual way as given by the integral

= J {^y—y9x) (38.11)

taken over the material composing the system in which we are inter-

ested; where x and y are coordinates of the element of the material

dv and gr^. and g^ are the indicated components of density of momen-
tum at that point. And differentiating this with respect to the time,

using (38.6) for the rate of change of the momentum of the element

dv, we easily obtain

(38.12)

as an expression for the rate of change with time of this component

of the total angular momentum of the system.

This relation can be re-expressed to advantage, however, to show

the effect of forces external to the system in changing its angular

momentum with the help of a somewhat complicated transformation.

Considering the two first terms, we can obtain with the help of a

partial integration

= f f f (— + + dxdydz
JJJ\ dx dy dz ^ dx ^ By ^ 8z

)

= JJ
\-xty^+ytxx\^ + JJ \-^vu+y^:cv\t +

+ J

J

I
-xty^+ytj^, dxdy + IIJ

(iyx-txy) dxdydz, (38.13)

where the limits of integration at the boundary of the system have

been denoted by x, x\ etc. In addition we can write with the help

of (36.1)

^yx ^xv — Pyx Pxy'^Qx^y (38.14)
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on account of the Bymmetry of Substituting (38.13) and (38.14)

into (38.12) we then obtain the desired result

dMJdt = ~ // \^tyz-y*xX dydz -

— JJ
\xtyy—yt.^f^ dxdz —

JJ
(38.16)

In accordance with this expression, we see that the rate of change of

the angularmomentum of the system is equal to the turning moment
of the exterior forces which act on it from the outside. Furthermore,

for an isolated system in which these forces vanish, the equation

evidently reduces to the principle of the conservation of angular

momentum
dMJdt = 0. (38.16)

To complete our consideration of angular momentum we must now
point out an important difference between relativistic and Newtonian

mechanics. Returning to our original expression for angular momen-

tum (38,11), let us consider a system in a steady state of uniform

motion in a straight line, the momentum gdv of each element of

volume being a constant independent of the time. Under these

circumstances it might be expected that the angular momentum of

the system would also be a constant independent of the time. Nevei*-

thelesa, differentiating (38.1 1) with respect to the time, allowing for the

constancy of g dv for each element, we obtain for the rate of change

of the angular momentum with the time the actual result

dMJdt =
J
{u^gy—UygJ dv. (38.17)

In Newtonian mechanics, since velocity u and density of momen-
tum g were in the same direction this result would have been equal

to zero. In fact we could have written in that case gy == pUy and

9x = P^x> which leads at once to the cancellation of the two terras in

the bracket. In relativistic mechanics, nevertheless, we have already

seen in equations (36.1) and (36.2) that we can have momentum at

right angles to the direction of motion in the case of a stressed medium.

Indeed, in relativistic mechanics the relation of the stress to the

integrand in (38.17) is given by equation (38.14) already obtained

Hence in relativistic mechanics, owing to the lack of symmetry of the

components of stress we must conclude that the angular momen-
tum of a stressed body can in general be changing with the time, even
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when it is in a steady state of motion in a straight line; and an
external turning moment can be necessary in order to produce this

change in angular momentum and maintain the body in its steady
state of motion.

(c) The right-angled lever as an example. The apparently paradoxi-
cal case of the stressed right-angled lever afiPords an interesting

^ /7

Fig. 3

example of the above conclusion that a turning moment may be
necessary to maintain a stressed body in a uniform state of trans-

latory motion.t Consider a right-angled lever as shown in Figure 3,

with a pivot at the comer B and opposing forces and at the two
ends A and G, Let the lever be stationary with respect to a system

of proper coordinates the two lever arms being equal in this

system of coordinates

and the two forces also being equal

F? = F?,.

Let us now consider the lever as it appears using a new system of

coordinates S with respect to which the lever is moving in the a;-direc-

tion with the velocity F. Eeferred to this new system of coordinates

t Lauo, Vcrh. d. DctUach. Pivya. Qes, 13, 618 (1911).
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the length of the arm which lies parallel to the y-axis will evidently

be the same as in system S°

but the other arm which lies parallel to the direction of motion will

have the shorter length in accordance with the Lorentz contraction

Furthermore, in accordance with our transformation equations for

force (26.3), we shall have for the forces acting at the two ends

and

With the help of these values for the forces and lever anns we can

now calculate for the turning moment acting on the lever around the

pivot B

Since the lever is obviously not rotating about the pivot B when
looked at either from the point of view of system or S, we are thus

led to a simple example of a stressed body in uniform translatory

motion which nevertheless needs a turning moment to maintain this

state of motion.

This result is, however, in entire agreement with the conclusions

reached in the preceding section, since we can easily show that the

angular momentum of the system is indeed actually being increased

. by a flow of energy into it at exactly the rate demanded by this turn-

ing moment. Since the force F^ is doing the work V per second at

the point A, a stream of energy of this amount is evidently continu-

ously entering the system at A and flowing out through the pivot

at where an equal and opposite force is acting. In accordance then

with our ideas as to the relation of mass and energy, we hence have

the mass F^ Vjc^ per second entering the system at A and are thus

increasing its angular momentum at the rate

F2

This, however, is the very result which was found above for the

turning moment acting on the lever and we thus have the entire

resolution of any apparent paradox.

{d) The complete static system. The complications, which can arise

in the case of the uniform translatory motion of a stressed body, as
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just illustrated by the right-angled lever which was acted on by a

turning moment and yet did not turn, are much reduced if we con-

sider the complete static system involved. In the above example

this would mean the consideration of the stressed lever together with

the housing which carries its pivot and carries the supports for the

springs that can be thought of as exerting the forces and on
its two ends. And in general we shall understand by a complete

static system, an entire structure which can remain in a permanent
state of rest with respect to a set of proper coordinates /S®, without

the necessity for any forces from the outside.

In the first place, since such systems will evidently remain in a

state of uniform translatory motion with respect to any system of

Lorentz coordinates S, without the application of forces from outside,

it is evident that no turning moment is necessary for their steady

motion and in accordance with (38.16) that their angular momentum
as a whole is not changing with the time.

In the second place, we con demonstrate with the help of a certain

amount of calculation that the expressions for the mass and momen-
tum of such complete systems reduce to a very simple form. This we
shall now show.

With respect to a set of proper coordinates /S®, we can write the

equations of motion (36.6) for the system in the form

0 (38.18)

and since the velocity of all parts of the system is zero in these

coordinates, the densities of momentum g2 will everywhere have the

constant value zero in accordance with (36.6), so that we can rewrite

this in the form

^ Cl- (38.19)

Let us now integrate this expression over a volume which is bounded
on one side by a plane perpendicular to the is-axis, that cuts through

the system at some arbitrary point, say x', and is completed by any
surface whatever which lies entirely outside the system . We then have

= Jj \P%\t dydz + JJ
dxdz + jj \plf^ d^dy

= 0, (38.20)

a
35ft6.U
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where the limits of that part of the iategration which has been per-

formed are denoted by x, x', etc. Since, however, all these limits

except He outside the system itself, the ‘stresses’ will all be

zero at the limits except for on the surface x = x', and (38.20)

will then reduce to ,

,

== 0 (38.21)

over a plane which cuts through the system at any arbitrary point

perpendicular to the ar-axis. Multiplying this by dx and integratiog

over the whole system we then obtain the useful result

or in general
JIJ

dxdydz == 0,

JJJ p^
dxdydz — 0, (38.22)

since the plane cutting the system can be taken perpendicular to

any one of the three axes.

This result now permits us to obtain the desired simple expressions

for the mass and momentum of the system as a whole when referred

to any set of coordinates S. For simpUoity let us take the system as

moving with respect to ;Sf in the a:-direotion with the velocity u. We
can then arrive at its total mass by mtegratmg the expression for the

density given by (36.4) over the whole volume. We obtain

j
pdv = j

M (38-23)

where we have substituted for the element of volume dv in terms of

the element of proper volume with the help of the Lorentz con-

traction. Noting (38.22) this evidently gives us the simple result

j V(i-«®/c»)

where is the rest-mass of the system. And carrying out similar

integrations, using the expressions for momentum density given by
(36.6), we at once obtain for the total momentum of the system the

components

Hence for a complete static system the expressions for mass and
momentum reduce to the same simple form that we originally foimd
for a particle, and there are no complexities which would result from
components of momentum not parallel to the velocity. Moreover, if

we act on such systems with external forces which exert no turning

win
u G,. a = o. (38.26)
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moment, but merely produce what may be called a quasi-stationary

adiabatic acceleration that leaves the internal condition unchanged
from the point of view of a local observer travelling with the system,

we can then apply the previous dynamics of a particle to the pheno-

mena.

Vice versa this last result now permits us to regard the mechanics

of a particle acted on by external forces as a special case of the

mechanics of a continuous medium, if we treat the particle as a
complete static system too small to be acted on by a turning moment
and with an internal state which remains unchanged from the point

of view of a local observer. This conclusion is satisfying as an indica-

tion of the logical coherence of our whole system of mechanics.

It may also be noted in closing that an extension of the conclusions

as to the behaviour of a complete static system to include electrical

as well as mechanical phenomena may be regarded as explaining

the result obtained in the well-known Trouton-Noblo experiments,

which demonstrated that there is no tendency for a charged con-

denser ^moving with the earth to turn about its axis. Calculation

shows that the field of a charged condenser which is in motion
should exert a tuming moment on the material parts of which the
system is constructed, and a somewhat lengthy and complicated
computation is necessary to show that this turning moment is

just sufiieicnt to account for an increase in the angular momentum
of those stressed material parts which is ocouning, even when the
condenser is not turning, on account of a transverse energy flow.

If, liowcvcr, wo regard the field and the material parts of the con-
denser taken together as forming n complete static system we can at
once conclude, in accordance with the previous discussion, that the
system as a whole can be in uniform translatory motion without
exhibiting any tendency to turn about its axis. This conclusion and
the experimental findings are of course both what would bo directly
demanded by the first postulate of the special theory of relativity.
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SPECIAL RELATIVITY AND ELECTRODYNAMICS

PaH X. ELECTRON THEORY

39. The Maxwell-Lorentz field equations

In the present chapter we shall consider the relations between

special relativity and electrodynamics, basing the treatment in Part I

on the point of view of the Lorentz electron theory and in Part II on

a macroscopic point of view.

Since the classical Newtonian mechanics was developed on the

tacit basis of the simple Galilean transformation equations (8.7) for

space and time, while the relativistic mechanics of Einstein, on the

other hand, was explicitly developed on the basis of the Lorentz

transformation (8.1), there are very conspicuous differences in the

nature of the two resulting theories, as has been shown in the pre-

ceding chapter. In the case of electrodynamics, however, the intro-

duction of special relativity produced a much smaller change in

theory, since the development of electrodynamics in the hands of

Lorentz had already actually led the way to the transformation

equations now associated with his name.

On account of this small divergence between classical and rela-

tivistic electromagnetic theory, we can now take as a postulatory

starting-point for relativistic electrodynamics the well-known Max-

well-Lorentz field equations which we write in the vector form

div E = p, (39.1)

div H = 0, (39.2)

irr (39.3)

curlH = - —
c dt^^c

(39.4)

where E and H are the electric and magnetic field strengths, p is the

density of electric charge, u the velocity with which it is moving, and
c the velocity of light.

These equations were proposed by Lorentz as a basis for electro-

dynamics long before the modem development of quantum mechanics,

and assume possibilities of attaching significance to microscopic
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quantities not in accord with present inodes of thought. Thus the

quantities p and u occuring in these equations were regarded as giving

the microscopic density of charge and velocity, specified when

necessary even for points within the electron, and E and H were taken

as the forces on unit charge and unit pole even under conditions

where no actual experiments with existing test charges and poles

could be conceived for measuring their values.

This difficulty with the Lorentz axioms, arising from the classical

microscopic point of view adopted in their development, is unfortu-

nate. Nevertheless, at the time of writing no completely satisfactory

quantum electrod3mamics appears to have been developed, and in

anycase we can be sure that the conclusions drawn from the Lorentz

starting-point will have much in common with later developments.

Furthermore in Part II of the present chapter we shall give attention

to a phenomenological treatment of the electrodynamics of ponder-

able bodies, which will be more closely analogous to the entirely

macroscopic treatment which we were able to give to mechanics in

the preceding chapter.

Several well-known conclusions that are customarily drawn directly

from the Lorentz field equations may be mentioned before pro-

ceeding.

If we take the divergence of (39.4) and introduce (39.1) we at once

obtain
^
^+div(pu) 0, (39.5)

since div curl H is of course equal to zero. This equation of continuity

for the density of electric charge is an expression of the fact of the

conservation of total charge.

Secondly, if wo consider the field equations (39.1-4) for the case of

free space with p = 0, we can etisily transform them with the help

of equation (13) in Appendix II into the form

and

dm am am
(39.6)

ax^ ' ai/ ' 8z^ 8(»

am am a^H

9*2 02/2 9*2 c*
(39.7)

which are the well-known wave equations for the propagation of

electromagnetic disturbances in free space with the velocity c.

Finally, if wo introduce the so-called scalar potential ^ and vector
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poteatial A mth the help of the equatioiis

E = -grad^-l^ (39.8)

and H = curlA, (39.9)

it can be shown that these new quantities can be taken so as to satisfy

the differential equations

1 8^ _
8x'^'^ 8y^'^ 8^ c^8fi~~ ^ (39.10)

a^d ^ a%_ 1 _ u
8x^^ 8z^ dt^ ^c'

(39,11)

These then have the well-known solutions

477 J r
(39.12)

and A = — f dvy
4f7TC J r

(39.13)

where the integration is to be carried out over the whole of sp&oe, r is

the distance from the point of interest to the element of volume dv,

and the square brackets signify that the value of the quantity inside

is to be taken at a time r/c earlier than that of the instant of interest.

These results taken with (39,8, 9) thus provide a complete solution

for the field in terms of the distribution of charge and cuiTent.

40. The transformation equations for E, H, and p

The postulatory basis for electrodynamics provided by the field

equations (39,1-4), which apply in the first instance to some particular

set of coordinates, must now be extended in such a way as to include

the essential ideas of the special theory of relativity. To do this we
must require in accordance with the two postulates of relativity firstly

that equations of exactly the same form as the above shall correctly

describe electromagnetic phenomena in all sets of coordinates in

uniform relative motion, secondly that the transformation equations

for the kinematical quantities occurring in the above equations shall

be those already provided by the Lorentz transformation, and thirdly

that the equations for transforming the newly introduced electro-

magnetic quantities E, H, and p from one set of coordinates to a
second set, moving relative thereto, shall be entirely S3anmetrical

with those for the reverse transformation except for the sign of the
relative velocity between the two sets of coordinates.
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Considering the transformation from an original set of coordinates

/S to a second set 8' moving relative thereto vrith the velocity F,

taken for simplicity in the a-direotion, the foregoing conditions can,

as a matter of fact, aU be satisfied by taking the Lorentz transforma-

tion equations (8.1) for the coordinates x,y,z,aadi, together with(10.1)

for the components Uy, and of the velocity u, and by
taking for the transformation of the electromagnetic quantities the

equations proposed by Einstein

H',+^E'y

~ ^(i-v^jc^y

(40.1)

(40.2)

(40.3)_ p'(l-l-«iF/c*)
p

By substituting these transformation equations together with those

for coordinates and velocities, the field equations (39.1-4) are indeed

found by a somewhat lengthy calculation to bo xmchanged in form

when expressed in the primed instead of in the unprimed variables.

Furthermore, on solving the above equations for the primed in

terms of iinpriitiod quantities, the equations for the reverse trans-

formation are also found to bo of the same form except for the sign

of V. Hence these equations do satisfy the requirements of relativity.

As a result of the combined appearance of components of E' and

H' in the transformation equations (40.1, 2) for both E and H, it is to

bo noted that the separation of an electromagnetic field into electric

and magnetic ])ortions is dependent on the state of motion of the set

of coordinates which is being used. A field which would be regarded
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electrostatic in system 8' would have magnetic components

iS.

aould also be noted that the transformation equation for

eiectno density (40.3) is such as to make total electric charge an

invariant, since by the introduction of (11.1) this equation can be

rewritten in the form
P

P'

This shows that the measurements of electric density in the two

systems are inversely proportional to the factors which determine the

Lorentz contraction, and hence that the measurements of a total

charge e will agree giving us
e = c'. (40.6)

This is in accordance with the idea that electric charge is essentially

a quantity having discrete magnitude to be determined by counting

numbers of electrons and protons, and hence necessarily invariant

for different observers. Conversely, of course, this invariance could

be used to establish (40.3).

41 . The force on a moving charge

In addition to the four field equations, the Lorentz electromagnetic

theory as originally developed contained as part of its postulatory

basis a fifth equation for the force acting on a moving charge of

electricity. It is, however, a gratifying result of the present method
of development that this fifth fundamental equation can be derived

with the help of the transformation equations for force obtained from

the mechanics of a particle, and hence does not have to be taken as

a separate axiom.*]*

Consider a charge e moving with respect to system S with any given

velocity V, and for simplicity choose the direction of axes in 8 in such

a way that the motion ib in the cr-direction, giving us

Uy=^0 Ug—0, (^ 1 - 1 )

To calculate the force in system 8 acting on this moving charge, let

us now first consider the force acting on it in a second system of

coordinates S\ which is itself moving relative to 8 with the same
velocity V as the charge e. Since the charge is at rest in this new
system 8* the force acting on it in these coordinates will be imme-
diately given as the product of charge by electric field strength,

t Tolmon, Phil. Mag. 21, 296 (1911).

(40.4)
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owing to the definition of this quantity as the force aoting on unit

stationary charge, so that we can write at onoe

F', = e'E',

K = (41-2)

F; = e'E',.

Introducing the transformation equations for force (26.3), for the

invariance of electric charge (40.6), and for the components of electric

field strength (40,1) and noting the values for u^, %, and Ug given by

(41.1) we then immediately obtain

F^ = eE^

= (41.3)

Removing now the specialization involved in choosing the rc-axis

parallel to the motion, we can then wite in general for the force

acting on a charge e moving with the velocity u the vector expression

F = e^E+

or for the force per unit charge

F = E+-[uXH],
c

i[uxH]], (41.4)

(41.6)

which is the deshed fifth fundamental equation of the Maxwell-

Lorentz theory of electromagnetism.

42. The energy and momentum of the electromagnetic field

With the help of the above equation and the four field equations,

expressions can be obtained by well-known methods for the energy

and momentum resident in an electromagnetic field. The results are

so important for the theory of relativity as to warrant the presenta-

tion of the calculations by which they are obtained.

In accordance with equation (41.6) the component of force acting

on a moving cliarge due to the magnetic field lies at right angles to

the direction of motion. It hence does no work on the charge, and

we can write, for the total rate at which the electromagnetic field is

doing work on th(^ charged material inside a given boundary, the

expression dW/dt ==
j

{pu- E) dv, (42.1)
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where p is the density of electric charge, and we shall regard the

integration as taken over a deSmtefixed volume in space.

This result can be changed, however, for our present purposes with

the help of the field equations, by substituting for pu the value given

by (39.4), and byadding to the integrand a quantity which is evidently

zero in accordance with (39.3). We can then rewrite (42. 1) in the form

^ = - J j

dv -e
J
(H-curlE-E-curlH) dv, (42.2)

and by well-known relations of vector analysis (equation 17, Appendix
n) this can be rewritten in the form

where the last term is integrated over the surface surrounding the

volume under consideration and the subscript n denotes the outward
normal component of the vector in question.

This last equation has a simple interpretation if we include the idea

of the conservation of energy os part of our postulatory basis. We
must then regard the rate at which work is being done on the material

within the. boundary as equal to the rate at which energy is being

abstracted from the electromagnetic field. The first term on the

right-hand side of (42.3) can hence be interpreted as the rate of change
in the energy of the electromagnetic field lying inside the volume
under consideration, and the second term can be interpreted as the
rate of flow of electromagnetic energy across the boundary of that

volume. For the density of electromagnetic energy we can then
evidently take the well-known expression

i?2 I

(42.4)

and for the density of energy flow, or Poynting vector.

s = c[ExH]. (42.5)

Or, making use of the relations between mass, energy, and momentum
discussed in § 27, we can write for the density of electromagnetic
mass

P
1

c® 2
(42.6)

and for the density of momentum

g = i[ExH]. (42.7)
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43. The electromagnetic stresses

With the help of our fundamental equations we can in addition

obtain the known expressions of Maxwell for the stresses in the field,

which will also be important for the theory of relativity. To do this

we consider the effect of the electromagnetic field in changing the
momentum of electrically charged matter instead of its energy as

was done in the last section.

In accordance with equation (41.5) we can write for the rate at

which the electromagnetic field is changing the momentum of the

charged material inside a given boundary, the expression

^ = Jp(E+^[uXH])du, (43.1)

where we shall again regard the integration as taken over a definite

fixed volume in space. And substituting for p and pu/c the values

given by the field equations (39.1) and (39.4), this can be rewritten as

J
^EdivE+(curlH)xH— XElj dw

I*
(EdivE+(curlH)xH+-Ex^— -^[ExHjWi;

J \ c ot c ct I

which by (39.3) and (42.7) becomes

(It J
|E(livE+(curlH)xH-h(curlE)xE— dv, (43.2)

where g is the density of electromagnetic momentum in the field. Or
considering for specificity the component of momentum in the

a:-direction, and writing out in detail the values for the a:~components

of the vectors involved, this will give us after a somewhat long but

straightforward transformation

dO,

(it j
1 d

2 dx
.Hi)+ -L(E^E„+IW+

81
dv. (43.3)

This result has a simple interpretation, however, if we now define the

stresses in the field as given in general by the symmetrical expressions

Pii =

(43.4)
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which will permit tis to rewrite (43,3) in the general form

§+/§*-- JJ/ {w+^+Vj
or, by performing a part of the integration, in the form

dGi

dt !

§43

(43.5)

~ ~ JJ ~ JJ /J
where the limits of integration are denoted by a;, x\ etc. These equa-
tions show that the change in the total momentum, mechanical plus

that of the electromagnetic field, inside the boundary may be
calculated from the electromagnetic stresses at the surface as defined

by (43.4). Furthermore the appropriateness of the name electro-

magnetic stresses for the quantities py is now evident from the form
of these equations.

44. Transformation equations for electromagnetic densities
and stresses

We have thus obtained expressions in the last two sections for

quantities which may be fittingly regarded as the density of electro-

magnetio mass, density of electromagnetic momentum, and the com-
ponents of electromagnetic stress. And since these quantities are all

defined with the help of equations (42.6), (42,7), and (43.4) in terms
of the electromagnetic field strengths E and H, we can evidently
obtain transformation equations from one set of coordinates to
another with the help of the transformations (40.1) and (40.2) for the
components of these two vectors. The calculations for doing this are

somewhat tedious but perfectly straightforward. We obtain for the
transformation from a set of coordinates 5^ to a new set S' moving
with the relative velocity V parallel to the a;-axis the expressions

„ _ P'+p;.FVc«+28r;F/c2
^

l-FVc® (44.1)

. _ {cY+p’^^)Vlc^+(i+VW)g'r.

l-F*/c2 ^(r-F2/c*)
(44.2)

^ _ l>;;*+pT*+26r;F
Pvv ~ Pyyl_F»/c*

-

« _ P'xu+g’yy 11 (44.3)
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and the transformation equations for the remaining components can

be obtained from the above on account of the symmetry in y and z

and of pij.

It should be specially noted that these equations reduce to the same
form as equations (36.3“6) for the analogous mechanical quantities

if the new set of coordinates 8* are specially chosen with a velocity

V and the components of momentum and are set equal

to zero, as was the case for the proper coordinates used in the

mechanical case, and can be shown to be of exactly the same form as

the mechanical equations for the more general transformation here

considered.

45. Combined result of mechanical and electromagnetic

actions

In the preceding chapter we obtained in § 38 expressions for the

effect of mechanical actions in changing the mass (or energy) and
momentum inside a given fixed spatial volume, and in the present

chapter have obtained in §§ 42, 43 analogous expressions for the effect

of electromagnetic actions in changing these same quantities. We
may now consider the comparison and combination of the two kinds

of effects. In doing so we shall distinguish between mechanical and

electromagnetic quantities with the help of brackets carrying the

subscripts (me) and (em) respectively, and for brevity we shall let

the double occurrence of a subscript (j) in a given term denote

as previously a summation over the three spatial coordinates x, y,

and^.

We can then write in accordance with equations (38,1) and (38.3)

as expressions for the effects of mechanical action on the mass and

momentum in a given spatial volume

ri[„] dv==~[^\g,'\ dv (46,1)

and

J dv=^~f dv. (46.2)

On the other hand, noting that the rate at which work is being done

on matter is times the rate at which its mass is being increased, we
can write with the help of the equations given in §§ 42, 43 as expres-

sions for the effects of electromagnetic auction again on the mechanical
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mass and momentum in a given spatial volume

/ |W»*
= - / {IW.,.+4[^A»)

*
and

J
*• <«.4)

Since in general there will be a simultaneous mechanical and

electromagnetic action on mass and momentum, we are now tempted

to combine these equations by addition to obtain the total rate of

change of these quantities. Before doing this, however, we must

emphasize the very different character of the considerations by which

we wore led to the mechanical and to the electromagnetic equations.

The mechanical equations were obtained from a macroscopic

phenomenological point of view. The quantities p, g, and occxuTing

in them are.aU macroscopic in character and are defined with the help

of equations (36.3-5) in terms of macroscopic quantities which could

be directly nieasured by a local observer moving with the material

under consideration. Furthermore, the theoretical treatment for

obtaining the equations of mechanics included no microscopic con-

siderations, but depended on natural, although perhaps not always

inevitable, extensions of conclusions drawn from actual macroscopic

experiments on the conservation of mass and momentum, on the

postulates of relativity and on the phenomenological behaviour of

elastic bodies when at rest. Hence we can expect the treatment to bo

relatively unaffected by the development of quantum mechanics.

On the other hand, our development of electromagnetic theory has

so far been based on the microscopic point of view adopted in the

classical electron theory of Lorentz. The quantities

Mem’ (45.3, 4) are microscopic in character

and are regarded as referring to an exact point in s])acc and instant

in time even under conditions when no conceptual experiment can be
devised for determining their values. Hence wo must expect the

treatment that we have given to be altered by the development of

a satisfactory quantum electrodynamics, although many of the
results when applied to macroscopic phenomena will certainly bo
unchanged.

The macroscopic character of the quantities in (45.1, 2) and the
microscopic character of those in (46.3, 4) makes the immediate
addition of the two kinds of action on mechanical density and
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momentum logically unsound. If, however, we assume that a correct

process of averaging to obtain macroscopic instead of microscopic den-

sities would leave the electromagnetic equations (45.3, 4) unaltered

in form, we should then feel justified in adding the two binds of action.

With some change in order we should thus obtain

(46.6)

and

j\
(5[i'0„+||><L+|-[3>«]«+^,!>«]-) * = » (46.6)

Or, combining mechanical and electromagnetic quantities which are

of the same nature, and changing to the differential form, we could

write

dt^dxf
(46.7)

and

dt^ dx.
(46.8)

for the dependence of the total densities of mass and momentum on

the time. These expressions are of exactly the same form as our

original equations of continuity and motion (36.6, 7) for the purely

mechanical case.

46. Four-dimensional expression of the electron theory

(a) The field equations. The field equations (39.1-4) on which the

electron theory is based can readily be expressed in the four-dimen-

sional language which we have previously used for the space-time

continuum. This is often very advantageous.

To obtain such an expression we shall again make use of the

Galilean coordinates originally given by (20.2)

= X x^ — y z xf^ = ct, (46.1)

corresponding to the simple formula for interval

ds^ =. (46.2)

which is always possible in the flat space-time of special relativity,

and shall introduce two vectors on which the analysis will be made
to depend.

The first of these is the so-called current vector which can be

defined in general for any system of coordinates by the expression

J/* = pQ dxi^Jds, (46.3)
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where pQ is the proper density of electric charge at the point of interest

as meaanied by a local observer and da^jda is its generalized velocity.

In the special coordinates (46,1), the components of the onrrent

vector evidently become

/ dx^ dx^ d3^\

/ doc^ dx^ da^dafi d** dr®
Po-

dx*\

p).
(46.4)

since dajdoc^ = (46.6)

is the factor for the Loreutz contraction of the moving charge.

The second vector to be introduced is the so-called genercdized

potential which can be defined by taking its components in the

coordinates (46.1) as given by

(46.6)

in terms of the ordinary vector potential A and scalar potential

^ previously introduced by equations (39.8-11). By applying the

Lorentz transformation to the components of this vector as given by

(39.12, 13), it can be shown that will depend on A and ^ in the way
given in all systems of coordinates of the type (46.1).

With the help of the covariant associate of this generalized

potential we may also define the so-called electromagnelic tensor

by the tensor equation

F —“ 0*-' Sr#*’
(46.7)

In the special coordinates (46.1), the covariant expression for the

potential will have, in accordance with (20.7) the components

= (46.8)

and the components of in terms’ of the electric and magnetic

field strengths E and H are easily calculated from (39.8, 9) and found

to have the values

0 H. -By

-He 0 Hx

-Hx 0 K
-B, -K 0,

(46.9)
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while in accordance with (20.8) its contraTajiant associate has the

components

0 ~Hy
-H* 0

0 -K
K 0.

(46.10)

With the help of the quantities which we hare thus defined, the

content of the Lorentz field equations can now be expressed in very

simple form by the two equations

I _ Q
daf dxi* aajv

(46.11)

and = JA*. (46.12)

The first of these equations is easily seen from the definition of

given by (46.7) to be an identity. It is a tensor equation true in all

systems of coordinates if true in one [see equation (41), Appendix III].

The second equation must be regarded as an independent postulate

and, since dF>^'’jdx'' is the form assumed in our present simple coordi-

nates by the contracted covaxiant derivative of J’a*", may also be

regarded as expressing a tensor relation.

Assigning to fi, v, and a the different values 1, 2, 3, 4, and introduc-

ing the components of Jf‘, and J’a*’' which are given above by

(46.4, 9, 10), it is readily shown that the first of these equations

(46.11) is equivalent to the set of equations

dx by dz

dy dz c dt
’

_ia^
dz dx c dt

’

(46.13)

(46.14)

-1!^.
dx dy c dt

’

while the second equation (46.12) is equivalent to

1 ^ I ^ _
dx'^ dy'^ dz ^ (46.16)

369S.11 H
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By dz c dt c *

dHg^ dHg^ 1 dEy Uy

dz dx c dt c*

dx dy c dt c
'

These equations are, however—^in scalar form—^the four field equa-

tions (39.1—4) on which the Lorentz electron theory is founded. The

two equations (46,11, 12) thus furnish an extremely satisfactory start-

ing-point for eleotromagnetio investigations.

(6) Four-dimensional expression of force on moving charge. In

addition to this possibility of expressing the Lorentz field equations

in four-dimensional language, it should also be noted that the

expression for force (41.4), given by the fifth fundamental equation

of the Lorentz theory, also has the correct four-dimensional character.

This is most easily made evident by considering the possibility of

constructing a oontravariant vector with components which are

related to the ordinary components of force and rate of energy change

in accordance with the scheme

VV' = / ^

^(i^u^jc^y

(46.17)

As a matter of fact, substitutmg from the fifth fundamental
equation (41.4), the values for the components of force F^, Fy, and F^

acting on a charge c moving with the velocity u, and for dEjdt the

work done by them, it is easily found with the help of our trans-

formation equations (40.1, 2) and (40.6), that the quantities given by

(46.17)

do transform as the components of a contravariant vector.

In accordance with our previous discussion of equation (28.12)

this agrees, however, with a necessary property of forces of any
origin.

Furthermore, substituting these values for the components of

Fi^ into our previous equation (28. 10) for the force acting on a moving
particle

(46.18)
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we can readily obtain the expected results

d I OTqU

d

dt
and

.)

_ e(E+l[»xH])

(46.19)

(c) Four-dimensional expression of electromagnetic energy-momen-

tum tensor. Finally, it should be noted that we can evidently

construct from the electromagnetic stresses and the densities of

electromagnetic mass p and of momentum gi, an dec^omagnetic

energy-momentum tensor entirely similar in form to our

previous mechanical tensor [2’'*"]^, since the transformation equa-

tions (44.1-3) for the electromagnetic quantities are of exaoldy the

same form as those for the corresponding mechanical quantities.

This electromagnetic energy momentum tensor will then have

the form

Pxx Pxy Pxz 1—1w X

Pyx Pyy Pyz [EXH]^

Pzx Pey Pzz [ExH]^

[ExH]^ [EXH]^ [EXH]^
js?2-f-jy2

2

(46.20)

where the Maxwell stresses have the values previously given by the

formulae ^ (46.21)

And if we permit the possibility discussed in § 46 of combining the

corresponding mechanical and electrical quantities, it is evident

that the equations of motion and continuity (46.7, 8) for a combined

mechanical and electrical system could then be expressed by the

four-dimensional equation

aa:*’ dx'’'-'-

= 0 . (46.22)

47. Applications of the electron theory

The foregoing completes the discussion of the relations between

special relativity and electrodynamics from the point of view of the
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electron theoiy, in so far as will be necessary for our further work.

The treatment shows that the Lorentz electron theory can be taken

over into special relativity with almost no alteration, beyond the

very agreeable one that the fundamental equations can now be taken

as valid with respect to all sets of axes in uniform motion, and not

merely with respect to axes at rest in a suppositious ether. This

makes it possible to continue to use most previous applications of the

Lorentz theory, in so far as they are not modified by quantum theory,

and we shall not give special consideration to them here.

One of the most important applications of the Lorentz theory lies

in the possibility of deriving Maxwell’s electromagnetic field equa-

tions for ponderable matter from a consideration of the average

behaviour of the electrons which such matter may be assumed to

contain. The essential point of the treatment consists in relating the

‘macroscopic’ quantities E, D, H, B, J, and p of the Maxwell theory to

the appropriate averages which can be obtained from the ‘micro-

scopic’ quantities E, H, u, and p of the electron theory, and then

showing that the ‘macroscopic’ quantities do satisfy Maxwell’s

equations for matter. This was successfully carried out by Lorentz

himself for the case considered by Maxwell of matter at rest, while

for the case of matter in motion treatments agreeing with the special

theory of relativity have been given by Bornf and by Dallenbach.J
For the purposes of this book, however, we shall omit any detailed

consideration of this possibility of basing the electromagnetic equa-
tions for ponderable matter on those of the electron theory, and
shall now turn to Part II of the present chapter in which these equa-
tions are treated from a more strictly phenomenological point of

view. Such a treatment will be more in keeping with that which we
were able to give to the mechanics of ponderable matter, and will

avoid the uncertainties which still obscure the applications of rela-

tivity in the microscopic field of quantum mechanics and quantum
electrodynamics.

t Bom, Math, Ann. 68, 626 (1910).

i D&lienbach, Ann. derPhysih, 68, 623 (1919).
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Pan II. MACROSCOPIC THEORY

48. The field equations for stationary matter

In order to treat the gross electromagnetic behaviour of ponder-

able matter we shall follow the method of Minkowski,f by first assum-

ing in accordance with available experimental information that the

behaviour in the case of stationary matter is correctly described by

Maxwell’s theory, and then drawing conclusions as to the behaviour

of moving matter with the help of the theory of relativity. Since the

results of any electromagnetic experiment made on stationary matter

should be describable in terms of the spatial and temporal behaviour

of identifiable objects, and the special theory of relativity has pro-

vided a unique method for translating the description of such

behaviour to a new system of coordinates in which the matter would

have any desired uniform velocity, the proposed method of attack

should lead unambiguously to an electromagnetic theory applicable

to any body in a state of uniform motion. In addition we shall find

that the theory we obtain would also be rigorously applicable to

a system of bodies with different uniform velocities provided they

are separated by free space. For more complicated kinds of motion

the theory is presumably at least a first approximation.

In accordance with Maxwell’s theory, the field equations for

stationary matter connecting the electric field strength E, electric

displacement D, magnetic field strength H, and magnetic induction

B, with the densities of charge p and conduction current J are given

by the vector expressions

div^D® = (48.1)

div°B° = 0, (48.2)

-If’ (48.3)

””’'’“’=1(^+4 (48.4)

where we have attached the superscript ® to the quantities involved

t Minkowski, Math. Ann. 68, 472 (1910).
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in order to indicate that they are measured with respect to a proper
system of coordinates 3^ in which the matter is at rest.

The quantities occurring in these equations are to be regarded as

niaoroscopically determinable. Thus E®, D®, H®, and are the forces
per unit of electric charge and per unit of magnetic pole strength as
they would be determined by considering the limit approached in
ideal but nevertheless conceivable macroscopic experiments to be
earned out with obtainable test charges and poles inserted at the
point of interest into prescribed longitudinal or transverse crevasses
cut in the matter, and p® and are to be regarded as the moorosoopic
densities of charge and current for volume elements that can be
treated as mfimtesimais although laige compared with rntermoleoular
distances. Hence in so far as we restrict ourselves to problems which
do not involve too small intervals of space or time our present treat-
ment will be unaffected by the quantum-mechanical considerations
which should be introduced into a correct microscopic treatment.

49. The constitutive equations for stationary matter
The above field equations are not sufficient in number to give a

complete determination of electromagnetic phenomena but must he
®^PP^®^6nted by fuirther relations connecting the quantities em-
ployed with the constitution of the material involved. In order not
to introduce too great complication, we shall take these further
relations as given by the familiar simple equations of Maxwell

DO ==€£<>
J0 = crEO, (4=9.1)

where the dielectric constant c, the magnetic permeability p, and the
electrical conductivity o* are to be regarded as known functions of the
position and time.

Although the field equations (48,1-4) are regarded as holding in
g^eral for inhomogeneous and anisotropic bodies, the further results
w 'ch depend on these particular constitutive equations will be

ted to isotropic matter in the absence of so-called impressed
6 ectrical forces of an extraneous— or example thermal or chemical

—

nature.

50. The field equations in four-dimensional language
In our previous applications of the special theory of relativity to

mechanics and to electron theory, we have first developed the treat-
ment m terms of the coordinates (», y, z) and {t) corresponding to
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three-dimensional space and a separate one-dimensional time, and
then followed this by a translation or parallel treatment in terms of

the coordinates (x\x^,x^,x*) corresponding to a four-dimensional

space-time continuum. The simplicity and appropriateness of the

four-dimensional method has thereby been made evident. In our

present apphoation to the comphoated electrodynamics of ponderable

matter, we shall from the start take advantage of this powerful

method, by first formulating the fundamental equations in four-

dimensional language, and then translating results hack into the

older language when desirable.

To carry this out we now return to our earlier space-time coordi-

imtes(20.2)
^ _a;® = 25 =

(60 . 1 )

corresponding to the simple form (20,1) for the element of interval

ds^ = —
(60 .2)

and introduce for treating the electrodynamics of ponderable matter
two anti-symmetric dectromagnetic tensors and which we
define by stating that their components in proper coordinates

{xl, x^), with respect to which the material is at rest, are given
in terms of the quantities appearing in the Maxwell field equations

(§ 48) by the expressions

and

J^tlV = 0 -E%
—^>-

V

0 BS -K
-^x 0 -E%

ijo 0

= 0 in -Hi -Hi
—> V -m 0 H% -Hi

HI 0 -DO

HI 0

(60 .3)

(60 .4
)

together with the current vector whose components in proper coor-

dinates are given by

£§, s, 4\c C 0 j
(60 .6)

With the help of the tensors, which we have thus defined, we can
now express the content of the originally postulated Maxwell field
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equations by the simple tensor equations

= 0 (50.8>
ex<' dx’'

and d&'>lex'’ = «//*. (50.7)

Since these are tensor equations, in the form corresponding to any set

of rectangular coordinates of the type (60.1), they will bo true in all

such sets of coordinates if true in one. In proper coordinutes, how-
ever, their identity with Maxwell’s equations can readily bo verified
from the defimtions we have given for the tensors involved, (50.0)
being equivalent to (48.2) and (48.3), and (60.7) to (48.1) anti (4H.4).
Hence we have thus obtained a simple expression for tho firld
equations in a form valid for matter in imiforzn motion as well as for
matter at rest.

These equations can also be regarded as applying to the case of
Mveral bodies moving with different uniform velocities and scpnrntfd
yfi«e space, since the tensors i?’/**', and can bo taktsn inaido^h of these bodies as reducing to the forms (60.3-C) when referred

+»,

cwrdmates moving with the material, thus guaranttuung
ttatJHaxweU’sequationsfor stationarymatter willhold for each body.

equations in four-dimensional languajle
(49.1) coimecting disj3lactun<*nt,

i the properties of tho material can
dimensional language with the htdp

4.110 consutunve equations
magnetization, and current witi
also easily be expressed in four-

db:“ da:“

(51.1)

r ‘ VO

ja j- (&« 0 j Band

where. .

and conductivity “magnetic permeability,

^ovingwithit,If^5;^“S^ - “e-ured by a local observe;
the matter at Ihe point
Noting that in proper coordinates (fo:«/de will k

t Weyi, Baum, Ztit Mattrij, u v
^ ^ be Unity when

^
edition. 1021. p. 174.
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a = 4 and otherwise zero, it is easy to verify for proper coordinates

the equivalence of (51J-8) to the original constitutive equations

(49.1). Hence these new expressions for the constitutive equations,

being valid in one set of coordinates, are valid in all sets of co-

ordinates owing to their tensor character. They too can be applied in

the case of several bodies in uniform motion separated by free space.

52. The field equations for moving matter in ordinary vector

language

We have thus obtained, in the two preceding sections, expressions

both for the field equations and for
,
the constitutive equations in

a four-dimensional form which can be used for matter in a state of

uniform motion as well as for matter at rest. We have hence provided

a complete basis for the macroscopic electrodynamics of moving

matter, and no new content can be added to this basis by re-express-

ing it in other forms. Nevertheless, we can perhaps gain some further

insight into the physical nature of the theory if we now translate the

results obtained back into ordinary vector language.

To do this, let us now return to the tensors and

defined above by their components in proper coordinates, and <Z8 a

matter of convention use the same symbols without the superscript ° to

designate their components in any system of coordinates of the

type (60.1). In agreement with the possibility of expressing the

original Maxwell equations in the form (60.6, 7), we can then evi-

dently write the field equations in general, for matter moving with

a uniform velocity as well as for stationary matter, in the original

Maxwellian form (48.1-4):

divD = p, (52.1)

divB = 0, (62.2)

CUXIE = -i 2, (52.3)

(62.4)

Furthermore, making use of the rules of tensor transformation

(19.10), and the convention above by which the quantities occurring

in these equations were defined, we can readily obtain as the equations

for the transformation of these quantities from a given system of

coordinates S (x, y, z,t) to a, new system S' {x', y\ z\ /'), corresponding



106 SPECIAL RELATIVITY AND ELECTRODYNAMICS §62
to new axes moving in the a;-direction with the velocity V relative
to the old, the expressions

e'^+Ib',

VCl-T'"/'*)

k-Ik
» ^(l_F2/c*)’

(62.5)

y

(62.6)

" ^{l-V^lc^)

V

n “

(62.7)

h; - _ c
(62.8)

’ V(l-F^/c®)’

,r —
* V(l--y2/c2)

(62.9)

. _ p'+.^iF/c*

V{l~F*/c*)-
(62.10)

and
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Several points of interest with respect to these results may be

mentioned.

In the case of free space, it should be noted that we shall have

D = E, B = H, J = 0, and p = 0 and the above field eq[uations and
transformation equations will then reduce to the same form (§§ 39

and 40) as the corresponding equations for the electron theory

in the absence of matter. This result is of course satisfactory

from the point of view of the consistency of the two methods of

attack.

With regard to the physical significance of the quantities occurring

in our new formulation of the field equations (62.1-4), we can assign

them no immediate meaning beyond what is determined by their

definition as names for the components of certain tensors as pro-

vided by a previous paragraph. With the help of the transformation

equations (62.6) to (62.10), however, we can relate the values of

these quantities in any desired system of coordinates /S with the

values of the corresponding quantities as directly measured by a

local observer, using proper coordinates >5® in which the material is

at rest.

Making use of this possibility together with the transformation

equations for force (26.3), it can readily be shown that the forces E®

and H® which would be found by a local observer to act on unit

charge and \mit pole moving with the matter, would lead to the

relations

E* = E-f-

Xd] (62.12)

as expressions in terms of the variables of system S for the forces

acting on unit charge and unit pole which are moving with the matter

with the velocity u. These expressions will perhaps give a feehng for

the physical nature of the quantities involved.

It is also of physical interest to consider the separation of the total

current J into conduction current C and convection current pu, in

accordance with the equation of definition

J = C+/3U. (62.13)

Making this separation, we can readily obtain from the transforma-

tion equations (62.9, 10) the following expressions for the conduction

current and charge in matter moving parallel to the x-axis with the

and H* =H-rH
c

(62.11)
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velocity F :

and

0^ = 0%^{l-V^!o^)

Po

(52.14)

(52.16)

In the case of a charged insulator moving with the velocity V in the

a;-direotion, this would give for the total value of J to be substituted

into the field equation (62.4), the purely convective term

PoVJ = pF = (52.16)

in agreement with Rowland*s celebrated discovery of the existence

of a convection current.

In more general eases the separation of total current into conduc-

tion and convection current is dependent on the system of coordinates

being used. Even when the charge density is zero in proper coordi-

nates, charge density and convection current can appear in other

coordinates, in accordance with (52.16), provided the conduction

current is not zero in proper coordinates. Looked at from a micro-

scopic point of view, this possibility—^that different observers may
disagree as to the relative number of positive and negative electrons

in a given volume element of the material—can be shown in detail

to arise only when there is relative motion between the two kinds of

electrons and to depend in an entirely expected manner on the lack

of agreement as to simultaneity provided by the theory of relativity.f

53. The constitutive equations for moving matter in ordinary
vector language

The constitutive equations connecting displacement, magnetiza-

tion, and current with the properties of the material, which were given

for proper coordinates in § 49 and in tensor form in § 61, can also

easily be found with the help of the equations in the preceding section

to be expressible in terms of the vectors that we are now using.

Defining in analogy with (52.11) and (62.12) two new vectors by
the equations

D* = D+

and B* = B- X sj
, (63.2)

t See Lana, Das Rela^viidtspriiviip, Braunschweig, second edition, 1913, p. 145.

(63.1)



§ B3 conservation OE charge 109

the first two of the constitutive equations can be written in the simple

D* = 6E* and B* = (63.3)

and using the expressions for conduction current given by (62.14)

the third constitutive equation can be written in the form

fi ^ w»|5
(63.4)

n ' ^ w*
* ~ V0r=¥vc>“)

where the velocity u of the moving material is taken as parallel to the

jc-axis. This latter result may be regarded as the analogue of Ohm’s
law for moving material.

54. Applications of the macroscopic theory

The foregoing has given a complete statement of the underlying

basis for macroscopic eleotrod5mamics, expressed both in four-

dimensional language and in the language of ordinary vector theory.

It will be seen that this basis is but little altered from that which
has usually been employed in electromagnetic considerations and we
shall now merely wish to consider certain consequences of the theory

which are specially illuminating or of importance for our later work,

(a) The conservation of electric charge. Making use of the equation

dHi^^jdx'' = (64.1)

which is the second of our two fundamental equations (60.6, 7) for

the macroscopic theory, we can immediately obtain the principle of

the conservation of electric charge. Differentiating (64.1) with respect

to a;/* we can evidently write

3J/* _~
aa^ac'

(64.2)

where the value zero arises owing to the antisymmetry of iff**'.

Writing out the expression for the first term in (64.2) in full, how-
ever, this gives

dJ^ dJ^

dx^'^dx^^dx^'^dx>‘
(64.3)

or in terms of our usual coordinates as given by (60.1), and the ex-

pressions for the components of Jf* in terms of ordinary vector

language set up by the conventions introduced in § 62, we can write
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this in the form

== 0
dx^ 8y^ 8z^ dt

§£4

(64.4)

Siace J is to be regarded as the sum of the convection and con-

duction currents, this can be taken as an equation of continuity

guaranteeing the conservation of total electric charge.

(6) Boundary conditions. Boundary conditions at the surfaces

between media of different properties, quite similar to those familiar

in Maxwell’s theory for stationary matter, can be derivedf from the

field equations given in § 62. In the case of moving matter we en-

counter a certain complication, however, since the field equations

contain the expressions dBJdt and dDjdt, for the rate of change of the

vectors involved at a given point in space, and these vectors will in

general be changing discontinuously at a point which is momentarily

coincident with the moving boundary. If, nevertheless, we consider

the rate of change with time at a point moving with the same velocity

u as the material itself, as given by the operator

5=a+(„v) («•'»

we may expect to obtain finite rates of change even within the

boundary layer.

With this in mind we may now rewrite our field equation (62.4) in

(64.6)

and conclude that the quantity on the left-hand side of this equation

will everywhere be finite on account of the form of the right-hand side.

Or, writing out in full the three components corresponding to the

left-hand side and expressing the current J as the sum of the conduc-

tion current C and convection current pu, we can conclude that the

following three quantities are finite

sy'

8z

dHy dP^ dP^ % dP^

dz cdx'^cdy’^cdz ^ c

dx c dx c dy c

'v

~dz ^ c

c

Oy

dx dy ^ c dx'^ c c dz ^ c c'

(64.7)

t Einstein and Laub, Ann. derJPhyaik, 28, 446 (1909).
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To make use of these results let us now for simplicity choose coor-

dinates such that the boundary surface between the two media will

be parallel to the ya-plane at the point of interest. Since differentia-

tion with respect to y and z will then evidently lead to finite results,

and since the conduction current C may be taken as finite by hypo-

thesis, we can evidently discard some of the terms occiuring in (64.7),

and take as finite the simpler quantities

c

~ BE U^ dPy Uy

dx c 8x ^ c
’ (64.8)

dx c dx c

The first of these expressions gives ns

dx
-P finite (54.9)

or A2)^ = CO, (64.10)

where A-Dj, is the discontinuous change in the normal component of

electric displacement on passing through the boundary due to any
charge of surface density w which may be present. The remaining

two expressions may be combined with (64.9) to give

dx \c dx C dx)

dx \c dx c dx)

as finite quantities, or since the components of the velocity u are

constant we can conclude that

and (64.11)

will vary continuously in passing across the boundary. These latter

quantities, however, are the tangential components of the vector

H* = H

as previously defined by (62.12).
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Applying similar methods to the field equation (62.3), we may now
state in general

AD^ = CO AB,, = AEf = AHf = 0 (64.12)

as expressions for the presence or absence of any discontinuous change

that would take place in the normal or tangential components of the

vectors indicated on passing across the boundary between two media.

The expressions also apply at the boundary between matter and free

space where the velocity of the matter u is to be substituted into the

expressions for E* and H*.

(c) The Joule heating effect. If we consider the alteration which

win be produced in the energy content of a small element of matter

due to the action of an electromagnetic field in which it is immersed,

it is evident that this can result either from the mechanical work done

by the ponderomotive forces arising from the field or from the (Joule)

heat generated within the element by electromagnetic action. Hence

we can write for a small increment BE in the energy of the element, in

terms of work done SW and heat generated BQ, the expression

BE^8W+SQ. (54.13)

And if we restrict ourselves for simplicity to cases, where the only

work done is that corresponding to the motion of the element as

a whole in the field of force, we can then write for the Joule heat

developed

dQ = -STf

= -F^ 8® -

j

; Sy -F, 8t, (64. 14)

where JfJ,, and Fg, are the components of force of electromagnetic

origin acting on the element as a whole.

In accordance with the discussion of Chapter III, however, all

forces of whatever origin must obey the same transformation laws,

and hence in agreement with (28.12) we can take the quantities

F _( -Fy -K __1 d^\
c

(64.15)

where u is the ordinary velocity of the element, as being the com-

ponents of a covariant vector in the space-time coordinates

= X a:* = y 3? ~z — (64.16)
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By combining (64.14) and (64.16) we can now write

8(2 ^ ^(I^tt2/c2)j; (64.17)

as an expression for the increment of heat.

By the rules of tensor analysis, however, Sxf^ must be a scalar

invariant, having the same value in all systems of coordinates, so

that we now obtain

8Q ^ ^{l^u^]c^)hQo (^4 - 18
)

as a general expression connecting the increment of heat &Q and

velocity of the element of matter w, as measured in any given system

of coordinates, with the increment of heat S§q as measured in proper

coordinates by a local observer. The result is of special interest

because of its agreement with the transformation equation for heat

which we shall obtain in our development of rdativietic thermo-

dynamics*

{d) Electromagnetic energy and momentum. With the help of the

field equations we can readily obtain expressions which will permit

a calculation of the rates at which the energy and momentum are

changing inside a boundary which lies in the free space surrounding

a material body acted on by electromagnetic force.

Taking the inner product of the field equation (62.3) with H and

subtracting the inner product of (62.4) with E, we obtain the result

E-^+H-5+ E-J+c(H'CurlE-E-curlH) = 0. (64.19)
ct ot

Integrating this over the region inside a stationary bormdary which

encloses the system of interest we obtain with the help of a well-

known relation of vector analysis [equation (17), Appendix II]

j
|E-^+H-^+ E-jjdt;= -c J[ExH]„da, (64.20)

where the right-hand term is integrated over the surface surrounding

the volume under consideration and the subscript n denotes the

outward normal component of the vector in question.

For a volume containing no ponderable matter this evidently

reduces to the familiar equation

/ J
where the left-hand side gives the known expression for the rate at

3606.11
,
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mergy is increasing, and the right-hand side must then give

j of energy flow through the boundary.

ice returning to the more general equation, the left-hand side

4.20) must be an expression for the rate of energy increase even

when ponderable matter is present, since the boundary was by
hypothesis located in the free space surrounding the matter. Equa-

tion (64.20) can hence be used to calculate the rate at which the

energy is changing inside a jSxed boundary located in the free space

surrounding a material system by an integration extending over the

volume involved. The equation is analogous to (42.3) in the electron

theory but does not furnish unique expressions for the densities of

electromagnetic energy and momentum inside of matter.

Similarly, we can obtain an expression for the rate at which the

momentum inside the boundary is changing with time from the

field equations. Taking the product of the field equation (62.1)

with E and adding the outer product of (62.4) with B we obtain the

result

EdivD—Ep+(curlH)xB— —

-

XB = 0. (64.22)

Changing signs, separating J into convection current pu and con-

duction current C, and making use of the field equation (62.3) this

can be written in the form

,(E+5xB)+|xB+||[DxB]-EdivD-

— (curlH) XB— (curlE) xD = 0. (64.23)

Or, introduoing the electric and magnetic polarizations defined by

P = D—E (64.24)

and M = B—H, (64.26)

we can •write

/)[e4-— X Bj-f—

X

B—EdivP+PxcurlE+MxcurlH+ i ^[DXB]
\ C J c c ot

= EdivE+(cnrlE)xE+(ciirlH)xH. (64.26)

Considering for specificity the x-cotnponent and integrating o'ver the

region inside a fixed boundary located in the free space surrounding

the system of interest, this •wiU give us with help of a some'what long
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but straightforward trajasformation

j{,(E+HxB)+5xB-

—EdivP4-PXcurlE4-MxcurlH+ i-|-rDxB]| dv

+ <to. (54.27)

This equation is analogous to equation (43.3) of the electron theory

and the quantities whose partial differentials appear on the right-

hand side give the known expressions for the Maxwell electromagnetic

stresses and p^. In case the boundary encloses no matter the

equation reduces to the familiar form

(54.28)

where the left-hand side gives the known expression for the rate at

which the a;-component of momentum is increasing, and the right-

hand side which can evidently be replaced by a surface integral must
then give the rate of momentum flow through the boundary.

Hence, returning to the more general equation, the left-hand side

of (54.27) must be an expression for the rate of momentum increase

even when ponderable matter is present, since the boundary was by
hypothesis located in the free space surrounding the matter. The
equation can hence bo used for calculating the rate of momentum
increase by integrating over the volume involved but does not

furnish unique expressions for the electromagnetic stresses irmde,

of mailer.

(fi) The energy-momentum tensor. Since the macroscopic theory

has not led to unique expressions for the densities of electromagnetic

energy and momentum and for the electromagnetic sircssos inside of

matter, the construction of an electromagnetic eneigy-momentum

tensor cannot be cairied out in an unambiguous manner, and

several different proposals for such a tensor have actually been con-

sidered without the attainment of univei'sal agreement.!

In accordance with om general ideas as to the relation between

f Seo Pauli, ‘RolativitHtathoorio’, Encyclopddie der inatti. Wisa,^ Band v. 2, Heft 4,

Leipzig, 1921, § 35.
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denaitieB ofmomentum and energy flow as discussed in § 27, it appears

that such a tensor should he symmetrioal with respect to the com-
ponents and Ti^, and presumably in the other components since

the microscopic treatment of the electron theory led to a completely

symmetrical tensor. With no matter present the macroscopic theory

leads unambiguously to an energy-momentum tensor of the same
form as that obtained in the Lorentz theory.

Even in the absence of unambiguous values for the components of

such a tensor in terms of the variable in the field equations, it seems

reasonable to assume the possibility of using a combined equation

of the form

*«

for treating the macroscopic behaviour of a combined mechanical and
electromagnetic system, where is presumably a symmetrical

tensor.

(/) Applications to experimental observations. As mentioned at the

beginning of this section (§ 64), the macroscopic electromagnetic

theory which has been developed with the help of special relativity

does not differ greatly from those usually employed in electromagnetic
considerations; indeed, for the cases of free space and of stationary

bodies it is identical with that of Maxwell. For this reason we can be
assured of its agreement with a great mass of experimental fact.

In the case of moving bodies, the agreement of the present electro-

dynamics with Rowland’s discovery of the convection current has
already been pointed out in connexion with equation (62.16), and the

result that the conduction current as given by (63.4) is proportional

—except for terms of the order —to the vector E* = E+ [u/c X B]
is in satisfactory agreement with experiment.

The theory can also be shown to give satisfactory explanations of

the Roentgen-Eichenwald experiment on the magnetic field produced
by the rotation of a dielectric in an electric field, and of the H. A.
Wilson experiment on the surface charge produced by the rotation

of a dielectric in a magnetic field. These experiments were not satis-

factorily explained by the Hertz theory of moving dielectrics, although
the results were accounted for by the Lorentz theory. In addition,

special attention should be called to the later experiments of M.
Wilson and H. A. Wilson,f who repeated the original Wilson experi-

t M. Wilaon and H. A. Wilson, Froc. Roy. Soc. (A) 89, 99 (1914).
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ment with an artificially constructed dielectric which had an appreci-

able magnetic permeability. In this case there is a disagreement

between the prediction to which the Lorentz theory had seemed to

lead, and that obtained without ambiguity from the macroscopic

electrodynamics developed in this chapter. The experimental results

agreed with the latter.



V
SPECIAL RELATIVITY AND THERMODYNAMICS
Pan I. THE THERMODYNAMICS OF STATIONARY SYSTEMS

55. Introduction

In the present chapter we shall discuss the relations of special

relativity to thermodynanucs. These relations are found to be of two
diJBferent sorts.

On the one hand, the special theory of relativity has provided us
with a simple equation connecting mass and energy which permits us

to calculate the change in the energy content of a thermodynamic
system from its change in mass. This new relation proves to be of

thermodynamic importance—^without reference to the state of motion
of the system considered—since it permits the calculation of thermo-

dynamic equilibria for certain conceivable processes where our only

possibility of knowing the energy changes that would accompany
the process must at present be based on a knowledge of the changes

in mass that would take place.

On the other hand, the special theory of relativity has provided us,

through the Lorentz transformation, with a possible method of

translating the experimental findings obtained by a local observer,

who is stationary with respect to a thermodynamic system, into

terms which would express the results for an observer with respect to

whom the system is in motion. This hence leads, as first shown by
Planck and by Einstein, to a thermodynamic theory for moving
systems.

In Part I of the present chapter we shall consider the thermo-
dynamics of stationary systems, first developing some well-known
portions of the classical theory which will be specially useful to us
later, and then exhibiting the application of the mass-energy relation

of special relativity to thermodjnamics by calculations of the

equihbria between hydrogen and helium and between matter and
radiation, assuming the possibility of their interconversion.

in Part II we shall consider the Lorentz transformation for thermo-
d3mamio quantities and the thermod

3niamics of moving systems. The
work will include a four-dimensional formulation of thermodynamic
principles which will be of particular interest when we later undertake
the extension of thermodynainics to general relativity.
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Before proceeding to these teisks, it is important to emphasize the

macroscopic and phenomenological character of thermodynamic con-

siderations. The principles of thermodynamics can, to be sure, be

based with a certain degree of success on the microscopic considera-

tions of statistical mechanics. Nevertheless, both on account of their

historical origin and essential content, it is most satisfactory to regard

the two laws of classical thermodynamics as a generalized formula-

tion of observations made in the actual performance of num^ous
macroscopic experiments. Even the so-called third law of thermo-

dynamics, although its content is greatly illuminated by the statistical

mechanical interpretation of entropy, was originally formulated

without the aid of this interpretation, and is now justified as a satis-

factory principle by its dependence on a great mass of actual experi-

mental data. The phenomenological character of thermodynamic

considerations and the extended basis of experimental verification

give us great confidence in thermodynamic predictions even when

applied to quite new situations.

Since the considerations of the theory of relativity are also—^for the

present at least—^primarily macroscopic in character, the construction

of a relativistic thermodynamics seems a natural and evident exten-

sion to undertake. The construction of a fundamentally satisfactory

relativistic statistical mechanics would be in any case a complicated

business and at present a somewhat dubious undertaking. Nevertheless,

some progress in this direction has already been made using classical

rather than quantum-mechanical statistics as a starting-point.

f

In connexion with the phenomenological character of thermo-

dynamics it is also of interest to emphasize once more the pheno-

menological character of relativistic considerations. Indeed, the

formulation of the first postulate of relativity, as a generalization of

failures to detect the motion of the earth through a suppositious ether,

has an interesting parallelism with the formulation of the second law of

thermodynamics as a generalization of failures to construct perpetual

motion machines of the so-called second kind. And the formulation of

the second postulate of relativity as expressing the results of measure-

ments on the velocity of light from moving sources, has something

in common with the formulation of the first law of thermodynamics

as expressing the results obtained in measurements such as those on

the mechanical equivalent of heat.

t Jiittner, Ann. d. Phyaik, 34, 866 (1911). Tolman, Ph/U, Mag, 28, 683 (1914).
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The experimental basis for the special theory of relativity is perhaps

less extended than that for thermodynamics. In addition, there is

often a more complicated chain of deductive reasoning involved in

obtaining conclusions from the theory of relativity and more intro-

duction of subsidiary hypotheses. Nevertheless, it does not appear

that the mere process of combining the two theories should of itself

involve any increase in uncertainty, and the main principles of rela-

tivistic thermodynamics can certainly be accepted with considerable

confidence. Those applications which involve most in the way of

subsidiary hypotheses must of course be regarded with the most

suspicion. It is, however, one of the main functions of theoretical

science, not merely to describe in complicated fashion those facts that

are alreadyknown, but to extrapolate as wisely as may be into regions

yet unexplored but pregnant with human interest.

56, The first law of thermodynamics and the zero point of

energy content

In accordance with the ideas underlying the science of thermo-

dynamics, the energy contained m a system is a definite function of

its state and can only be changed when the state of the system is

itself altered. When such a change in state takes place, it is important

for the purposes of thermodynamics to distinguish two different

modes of transfer by which the energy content may be affected,

namely the flow of heat and the performance of work.

Recognizing these two possibilities, the first law of thermodynamics
then states the principle of the conservation of energy in the form

(56,1)

where ts.E is the increase in energy content corresponding to some
given change in state, and Q and W are respectively the heat flow

into the system from the surroundings and the work done by the

system on the surroundings when a particular process takes place

that leads to the given change in state. The equation may be regarded
as an expression of the principle of the conservation of energy, since

it excludes the possibility of creation or destruction of energy within

any region by equating the change in its energy content to a transfer

through the boundary in the form of heat or work.
The special theory of relativity has in no way destroyed our ideas

as to the conservation and localization of energy,!' nor modified our
*1* Indeed the relativistic aaaociation of mass with energy fortified our concepts

as to the localization of energy.
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ideas as to the possibility of distinguishing between heat and work.

Hence in the extension of thermodynamics to special relativitythe first

law can evidently be taken over unaltered in the form given by (66. 1),

The theory of relativity has, however, provided an important

supplement to the above equation by giving us the additional relation

connecting energy with mass as discussed in §§ 27 and 29 (d). In
accordance with this new relation we can also express the increase in

the energy of a system LE in terms of its increase in mass Am, by
the equation, AE = c^Am, (66.2)

where c is the velocity of light. And this equation will make it possible

to apply the calculations of thermodynamics to processes where a
change in mass furnishes the only information as to energy content.

Fm'thermore, although the first law equation (66.1) gives informa-

tion only as to changes in energy content and provides no umque zero

point of energy content, it may be noted that our previous g^eraliza-

tion of the relativistic relation (56.2) to the form

E^chn
(66 .3 )

suggests that the absence of all mass can rationally be taken as the

zero point of energy content.

57. The second law of thermodynamics and the starting-point

for entropy content

In addition to its energy i?, thermodynamics also recognizes the

entropy iS of a system as a definite function of its state. iTurthermore,

just as the first law relates the energy change in a system to the heat

absorbed and work done when some process occurs which changes the

state of the system, so too the second law of thermodynamics relates

the change in entropy content of the system to the character of the

process by which the change in state is brought about.

In order to obtain a definition of entropy and a statement of the

second law it is first necessary to distinguish between irreversible and
reversible processes, the former being actual processes by which the

state of a system may be changed without presenting the possibility

of restoring both the system and its suiToundings to their original

condition, and tho latter being ideal processes—approached as a limit

by actual processes as they are made more efficient—of such a nature

that tho system and its smTOundings could both be returned to their

original condition.
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With the help of this distinction, we can now define the change in

the entropy content of a system, which accompanies a change in its

state, by the equation

A8 =
rev

where T is the temperature for each element of heat dQ transferred

across the boundary from the surroundings into the system, and the

integration—as indicated by the subscript [rev]—is to be t,n.Trf>n for

the case of an ideal reversible process by which the given change in

state could be thought of as brought about. Moreover, in the hght
of this definition, we can then state the second law of thermodynamics
in the general form -

is > Jf, (5„)

where the integral can now be taken for any process under considera-

tion by which the system goes from its initial to its final state, and the

sign 'is greater than’ is to be used unless the process actually is

reversible.

In accordance with these expressions, and our previous statement

that the entropy content of a system is a definite function of its state,

it is evident that the quantity J dQ/T will have the same maximum
value for all reversible processes that result in a given change in the

state of a system and a smaller value for all irreversible processes that

result in the same change of state. We are thus provided by the

second law with a criterion for distinguishing between reversible and
irreversible processes and at least a partial description of their

character which will bo found to lead to specific conclusions of interest

and importance.

To complete our consideration as to the nature of entropy we must

also inquire as to the total entropy content of a system. Just as the

statement of the first law fumished no unique zero point for energy

contents, so the above two expressions which give the substance of

the second law, are merely statements as to changes in entropy con-

tent and furnish no unique zero point for entropy contents. In the

case of energy we have seen that a rational zero point of energy could

bo provided by the mass-energy relationship of the theory of relativity.

In the case of entropy a zero point—or more strictly a useful starting-

point—is provided by the so-called third law of thermodynamics as

discovered and formulated by Nemst and Planck.

J
(67 . 1 )
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In accordance with the third law of thermodynamics, there is no

change in entropy content

= 0 (67.3)

for any change—at the absolute zero of temperature—^in the state

of a system which is composed both initially and finally of pure

orystalline substances. As a result of this principle it becomes

specially convenient to take the value zero

= 0, (67.4)

for the entropy of all pure crystalline substances at the absolute zero,

and with this as a starting-point then take as their entropy under

other conditions the increase which occurs in changing the substance

to the particular condition of interest. With this convention it is

evident that the entropy increase accompanying any change of state

can then be obtained by subtracting the sum of the entropies assigned

to the initial substances under the conditions in question from that

for the final substances.

As mentioned above in § 65, a deeper insight into the nature of the

third law of thermodynamics can be obtained with the help of the

statistical-mechanical interpretation of entropy, which shows

—

speaking somewhat loosely—that the assignment of zero entropy

to a pure crystal at the absolute zero corresponds to the complete

lack of disorder in the atomic arrangement of such a crystal. Con-

siderations of this microscopic kind can be specially important in

criticizing the application of the third law in coses which involve

intemuclear reactions or the complete transformation of matter into

radiation as will be undertaken in §§ 66 and 67. IProm our present

point of view, however, since we desire to remain as far as possible on

the macroscopic phenomenological level, it is perhaps most important

to emphasize that the third law of thermodynamics can now bo

regarded—at least for the case of ordinary chemical reactions—^as

an empirical principle which is well supported by a mass of data

obtained particularly under the direction and leadership of Nemst
and of Lewis.

58. Heat content, free energy, and thermodynamic potential

In addition to the fundamental thermodynamic quantities energy

and entropy, it also proves useful to introduce three further defined

quantities H, A, and F which may be called for convenience by the
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usual but somewhat misleading names—^heat content, free energy,

and thermodynamic potential.

Restricting ourselves to systems which have the same pressure and
temperature in all parts, these quantities may then be defined by the

equations H == E+pv, (58.1)

A = E-T8, (58.2)

F = E-T8-\-po==H-TS, (68.3)

where B,8,T,p, and v are respectively the enei^y, entropy, tem-
perature, pressure, and volume of the system under consideration.

It will be noted from the above expressions that H, A, and F are

respectively the ®‘nd ^ of Gibbs.f Furthermore, A is the free

energy as originally defined by Helmholtz,J and F is the quantity

usually called free energy by ohemists.§ The natm-o of the three new
quantities and reasons for the names by which they are denoted can

be seen from the following considerations.

If we consider a system which is kept under constant pressure in

such a manner that the only work it can do on the surroundings will

be due to change in volume against this pressure, we can write from
equation (68.1) AH =

= AE+W,
or in accordance with the first law equation (66.1)

A£r = C. (58.4)

Hence for such processes the heat absorbed is equal to the increase

in the quantity called heat-content. The derignation heat-content

is, nevertheless, not a happy one since the above simple relation is not

true for processes in general. In addition, the designation heat-con-

tent unfortunately suggests—^in agreement with the abandoned
caloric theory—^the incorrect use of the term heat to characterize a

portion of the energy actually contained within a system, instead of

its correct use to characterize a portion of the energy being transferred

across the boundary separating the system from its surroundings.

Turning next to a system which is kept at constant temperature^ we
can write from equation (68.2)

t Gibbs, ‘On the Equilibrium of Heterogeneous Substances’, Collected Worha^
vol. i, p, 87, New York, 1928. J Helmlioltz, Berl, JBer. 1, 22 (1882).

§ Lewis, Joum. Amer, Chem. Soc. 35, 14 (1913).
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and, making use of the first and second laws (66.1) and (67.2), we can

substitute
/\ Hi = I*/—— V¥

(68 .6
)

A£7 =
TLS ^ <2 ,

Q-W

which leads to the result ^ ^ — A-4 (68 6)

In accordance with this relation, the work which can be done on its

surroundings by a system maintained at constant temperature cannot

be greater than the decrease in the quantity which has been called its

free energy. This makes the reason for the name obvious, although

it must be emphasized that tho result obtained applies, of course,

only to isothermal processes.

Finally considering a system which is kept both at constant tern-

perature and under constant pressure, we can write from equation

LF = ^E-T^8+p^v,
and again substituting the results of the first and second laws as given

by (68.6) we obtain the expression

IF—pAv < — AjP. (68.7)

Li accordance witli this relation, for a system maintained under the

conditions specified, tho total work which can be done by the system

on its suiToundings diminished by that done against the pressure

under which it is maintainod cannot be gi^eater than the decrease in

its thermodynamic i)otential F. Since the excess work, over and

above tliat which must be expended in any case against the external

pressure, is often tho portion of special interest on account of its

availability for accomplishing dcsimd results, the thermodynamio

potential F is also often called—in particular by chemists—the

free energy of tho system. The relation given by (68.7) applies of

course only to isothermal isopiestic processes.

59. General conditions for thermodynamic change and
equilibrium

With tho help of the foregoing we can now investigate the condi-

tions which are necessary if a thermodynamic system is to undergo

change or to be in a state of equilibrium. This we shall do first for

isolated systems which caimot interact with the surroundings, then

for systems which are maintained at constant volume and tempera-

ture, and finally for systems maintained at constant pressure and

temperature.
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In the case of an isolated system, the heat Q absorbed in any change

of state will neoessarily be zero owing to the postulated lack of any

interaction with the surroundings. Hence, substituting into the

secondlaw expression (57.2) we obtain

A/S > 0 (69.1)

as a necessary condition for any change that takes place in the state

of an isolated system. In accordance with this result the entropy of

an isolated system cannot decrease but will increase with the time if

irreversible processes take place, or at the limit remain constant if

reversible processes take place. Moreover, if the system is in a state

of maximum possible entropy, such that variations in its condition

cannot lead to further increase in entropy, as denoted by the formu-

8S = 0, (59.2)

the system will evidently be in a condition of thermodynamic equili-

brium where further changes will be impossible. In applying this

condition to simple homogeneous systems, it is to be noted that

holding the energy and volume constant wiU be suiSScient to secure

the necessary lack of interaction with the surroundings.

Turning next to the case of systems subject to external constraints

which maintain constant volume and temperature^ we can evidently

in accordance with the first law equation (66.1), since the external

work will be zero on account of the constancy of volume. Combining

this result with the second law expression (67.2), and making use of

the constancy of temperature, we then obtain

TLS >
or introducing the definition of free energy (68.2)

— > 0 (69.3)

as a necessary condition for any change of state at constant volume

and temperature. In accordance with this result, the free energy of

a system maintained under these conditions can only decrease or

remain constant with the time, and the condition for thermodynamic

equilibrium will be that for a minimum value of the free energy, as

denoted by the formulation

8^ = 0. (69.4)

Similarly, in the case of systems subject to external constraints
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which maiatain constant pressure ani temperature, we can write

= Q—pt^v

in accordance with the first law, and combining with the second law

obtain a decrease in thermodynamic potential

> 0 (69.6)

as a necessary condition for any change in state, and a minimnin of

thermodynamic potential as denoted by

hF^O (69.6)

as the condition for thermodynamic equilibrium.

The foregoing conditions for thermodynamic change and equili-

brium prove very useful in predicting the behaviour of ph3rsioal-

chemical systems. The first pair of conditions as given by (69.1) and

(69.2), for the case of an isolated system subject to no external con-

straints, seem perhaps the most fundamental, since by the inclusion

of a sufficient region within the boundary of the system to be con-

sidered—or indeed if allowable by considering the universe as

a whole—^we can undertake the treatment of any situation of interest.

The third pair of conditions as given by (69.6) and (69.6), for the case

of a system mamtained at constant pressure and temperature, is

often the most useful on account of our frequent interest in the equili-

brium of a system at some specified pressure and temperature—for

example atmospheric pressure and room temperature.

60. Conditions for change and equilibrium in homogeneous

systems

In order to apply the foregoing conditions for thermodynamic

change and equilibrium to determine the behaviour of any given

system, we should have to know the dependence of its entropy, free

energy, or thermodynamic potential on the variables used for the

description of its state. The form of this dependence must, of course,

be worked out for the particular system under cCnsideration, and in

the present section we shall investigate this form for the case of

simple homogeneous systems. This can be done with the help of an

Consider a simple system—shaving uniform pressure, temperature,

and composition throughout—whose state can he completely specified

by the energy E, volume v, and number of mols 7^2,-***

different substances which it contains. Since the entropy aS of a
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system is a definite fnnction of its state, we can then evidently write

in accordance with the principles of the differential calculus

jd JJTH \ j I ^ I s J /ac\
(60.1)

as an expression for the dependence of the entropy of this system on

the variahles determining its state.

For an infinitesimal reyersible change solely in energy and volume

we can evidently write, however, in accordance with the first and

second laws
= (60.2)T T

which gives us for the partial dijfferentials with respect to energy and

volume the well-known expressions

=i
BE T

and
dS p
'dv~T'

(60.3)

where p and T are the pressure and temperature. Substituting these

expressions, equation (60.1) can now be written in the more useful

form
I Q Q Q Q

d8 = -^dE dv dn^

With the help of this equation and our previous definitions of free

energy and thermodynamic potential, it is also possible to derive

useful expressions for the dependence of these latter quantities on the

variables which determine the state of a system. To carry this out

we have only to diflferentiate the equations (58.2, 3) by which free

energy and thermodynamic potential were defined, which will give us

dA = dE^S dT-TdS (60.6)

and dF = dE—S dT —T dS dp dv, (60.6)

and then substitute the expression for dS given by (6b.4).

Doing this we can then write the three parallel expressions for the

dependence of entropy, free energy, and thermodynamic potential

on the state of the system

dS = ^dE+^dv + {^] dn^ (60.7)
I 1 \^n/E,v

dA = -S dT -p dv dn, -...-t(^] dn^ (60.8)
\^^Ie,v \^n/E,v

dF = -SdT +vdp-T(^] dn^ -...-t(~] dn^, (60.9)
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where subscripts have been introduced to prevent mistake as to the

variables held constant when differentiating the entropy with respect

to the variables determining the composition.

These equations are of such a form that in using them it is evident

that we are to treat entropy as a function of energy, volume, and com-

position—^free energy as a function of temperature, volume, and com-

position—and thermodynamic potential as a function of temperature,

pressure, and composition. Doing so, we can now write for the partial

derivatives with respect to composition the useful relations

(
60 . 10)

where the subscripts indicate the variables in addition to those giving

the composition which are taken as regarded as determining the

quantities A, and F.

With the help of the above considerations, we may now easily

investigate the possibilities for change in the composition of a homo-

geneous system by chemical reactions involving the substances

present. To do this let us consider any possible chemical reaction

which might be written down for those substances, and denote by
the changes that would occur in composition

if this reaction should proceed to an infinitesimal extent. We can

then wi’ito for the infinitesimal changes in entropy, free energy, or

thermodynamic ]iotcntial that would accompanysuch an infinitesimal

reaction proceeding under the respective conditions of constant

E and v, constant T and v, or constant T and the expressions

(60.11)

where the summation is to be taken over all the substances involved

in tlio reaction.

In accordaiico with the preceding section (§ 59), however, we can

take the occurrenco of a maximum of entroi)y, a minimum of free

energy, or a minimum of thennodyiiamic potential, under the

respective conditions specified, as a criterion of thermodynamic
30D0.U
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equilibrium. Hence, noting the relation given by (60.10), we can now
use as tbe criterion of chemical stability any one of the three following

expressions which proves most convenient for the particular problem

(60,12)

(60.13)

(60.14)

and these expressions will hold for each reaction which has no thermo-

dynamic tendency to proceed.

In case the system is not in a state of chemical equilibrium, the

quantities given above will not be equal to zero for all possible

reactions that might occur. Thus if we have a homogeneous isolated

system of constant energy and volmne, “and there is a reaction for

which the quantity given in (60.12) is greater than zero, the progress

of this reaction would lead to an increase in entropy, and we can

expect it to take place and continue until the values of the coefficients

{dS/dNi) become such that equilibrium is reached (see § 63).

Although the criteria for chemical stability given above have been

obtained from a consideration of the possibility of chemical reaction

in a finite homogeneous system subject to specified external restraints,

they can be applied in general since the tendency for a chemical

reaction to take place is determined solely by conditions at the point

of interest. Thus if 0 is the density of entropy at any particular point,

there will be no tendency for chemical reaction at that point, provided

we have in agreement with (60.l2) the relation

2 3.-0, (ao.i5)

where the quantities denote rates of change in entropy

density with concentration at constant energy density p and specific

volume «>, and the quantities 8c^ denote the infinitesimal changes in

concentration of the different reacting substances which would

accompany the progress of the reaction under those conditions.

61. Uniformity of temperature at thermal equilibrium

We have now developed sufficient apparatus for thermodynamic

considerations so that we can proceed to develop consequences of
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interest. In the present section and the two following ones we shall

consider three well-known principles, commonly employed in the

classical thermodynamics, in accordance with which (i) a state of

thermal equilibrium would necessarily be characterized by uniformity

of temperature
;

(ii) thermod3mamio processes talcing place at a finite

rate would necessarily be irreversible; and (iii) the final state of an

isolated system would necessarily be one of maximum entropy where

further change would be impossible.

These three principles have been obtained in the past with the help

of the ideas of the classical thermodynamics by such simple and direct

methods as to seem inescapable, and have frequently been made
the basis for philosophic reflection on the nature of the universe as

a whole. Nevertheless, when we consider the extension of thermo-

dynamics to general relativity in the later parts of this book we shall

find that all three of these principles must be regarded as subject to

exception.

To investigate the distribution of temperature at thermal equili-

brium, let us consider the transfer of a email amount of heat dQ
from one part of an isolated system at temperature to a second

part at the lower temperature Tg. In accordance with the expres-

sion of the second law of thermodynamics given by (67.2), we can

evidently write for the increase in the entropies of the two parts of

dS, ^

and hence by addition for the change in entropy of the whole system

(
61 . 1

)

the value being greater than zero since is gi’eator than by

hypothesis.

In accordance with this result, an isolated system having parts at

dilferont temperatures would not bo in a state of thermodynamic

equilibrium since a process could occur which would lead to an

increase in entropy, in contradiction to tlio criterion for equilibrium

given by (69.2). In the classical thermodynamics we are thus led to

the general conclusion that there is a tendency for heat to flow from

regions of higher to those of lower temperature, and that uniform tem-

perature throughout is a necessary condition for thermal equilibrium.
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In OUT later development of relativistio thermodynamics, however,

we shall find a necessity for modifying this conclusion when different

portions of the system under consideration are at different gravita-

tional potentials (see § 129). Roughly speaking, the reason for the

modification can be said to lie in the fact that heat must be regarded

as having weight. Hence on the transfer of heat from a place of

higher to a place of lower gravitational potential, the quantity

abstracted at the upper level is less than that added at the lower level

and the analysis that led to (61.1) is no longer valid. Defining

temperature as that which would be measured by a local observer

using proper coordinates, the result obtained in the relativistio treat-

ment will actually show the necessity for a definite temperature

gradient at thermal equilibrium to prevent the flow of heat from

places ofhigher to those of lower gravitational potential.

62. Irreversibility and rate of change

The second famih
'

ar principle used in the classical thermodynamics,

to which we wish to draw attention, is the conclusion that thermo-

d3mamio processes which take place at a finite rate are necessarily

itreversible. The common reason for belief in this principle lies in the

general idea that thermodynamic processes would necessarily have to

be carried out at an infinitesimally slow rate in order to secure that

maximum efficiency which would be needed for reversibility. A
detailed analysis of the application of this idea to a specific typical

example will make the reasons for the principle clearer, and will

indicate the possibility for later modification when we treat the

extension of thermodynamics to general relativity.

As a thermodynamic system sufficiently typical to illustrate the

different kinds of processes that must be considered, let us take a

mixtme of gases, enclosed in a cylinder provided with a movable
piston. Any change in the thermodynamic state of this system must
involve either the transfer of heat^ or of work, between the system
and its surroundings, or be due solely to a change in internal con-

ditions. We may consider these three possibilities seriatim.

jFirst of all, it is evident from our knowledge of the phenomena of

heat conduction that the transfer of heat between the system and its

surroimdings at a finite rate could only occur as the accompaniment
of a finite temperature gradient. It would thus involve the transfer of

heat from regions of higher to those of lower temperature, and hence
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in accordance with (61.1) of the preceding section there would be an

increase in entropy for the system and its surronndtngs taken as a

whole. Since this whole, however, could itself be regarded as an

isolated system, such an increase in entropy would involve irreversi-

bihty in accordance with our treatment of isolated systems in § 69,

and hence we can allow no transfer of heat into the system at a finite

rate if the process is to be reversible.

Turning next to the exchange of energy between the system and its

stuTOundings by the performance of work, this could be accomplished

in the case of the system mentioned by an expansion of the gases

which would force the piston out in such a way as to do work on some
suitable external mechanism for storing potential energy. In order

to carry this out reversibly, however, it is evident that the force

exerted on the external mechanism during the expansion could not

be less than the force necessary to recompress the gases on reversal

of the direction of motion. It is evident, nevertheless, that this could

not be accomplished with a finite rate of expansion—^in the first place

because of the friction that would accompany a finite velocity of the

piston, and in the second place because the flow of gases necessary to

fill in the space left by the moving piston would not take place rapidly

enough to maintain as great a gas pressure on the piston during

expansion as would bo present during compression. Since similar

considerations could be applied to other modes of doing work, we are

led to the general conclusion that the system con do no work on its

surroundings at a finite rate and still maintain reversibility.

Since the system cannot interact reversibly with its surroundings

either by the transfer of heat or work at a finite rate, we must now
inquire into the possibility of internal processes. ITurthermore, since

the system can have no interaction with its surroundings it may now
be treated as isolated, and these internal processes in accordance with

(59.1) must lead to no increase in entropy if we are to maintain rever-

sibility.

For the system considered, the possible internal processes could be

the transfer of heat from one portion of the gases to another inside

the cylinder, the performance of work by one portion of the gases on

another on account of pressure differences, the diffusion of one of the

component gases from a place of higher to one of lower concentration,

or the chemical reaction of the gases among themselves. None of these

processes, however, could take place at a finite rate without iuorease
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in entropy and hence irreversibility. The transfer of heat and work

inside the system at a finite rate would of course be just as irre-

versible as the transfer between system and surroundings considered

above, and we must conclude that the temperature and pressure

would have to be uniform throughout the contents of the cylinder.

Furthermore, the diffusion of a mol of gas from concentration to O2

at constant temperature would be accompanied by the increase in

entropy jKln(Ci/c2), without reference to the rate at which it took

place. And finally, in accordance with our knowledge of chemical

kinetics and the criterion for change in an isolated system given by

(59.1), if any chemical reaction were possible which did not lead to

increase in entropy it would on the average take place as often m the

forward and reverse directions without resulting change in com-

position.

Hence for the simple system considered we are led to the conclusion

that no processes, with or without interaction between system and

surroundings, could take place both reversibly and at a finite rate.

Furthermore, the system treated is sufficiently typical to illustrate

the line of thought by which this result has come to be regarded as

a general principle for use in connexion with the classical thermo-

dynamics.

It remains to point out a reason for exceptions to this principle

which we shall later find resident in the extension of thermodynamics

to general relativity. This will be found to lie in the possibility for

changes in the proper volume of an element of matter—as measured

by a local observer—due to changes in gravitational potentials which

are neglected in the classical theory. We were led above to the con-

clusion that a reversible increase in the volume of the gas could not

take place at a finite rate because of friction that would develop and

because of a falling off in outward pressure that would accompany

the flow of gas to fill in the space left by the moving piston. In rela-

tivistic mechanics, however, we shall find possibilities for a change in

proper volume without friction and with a complete balance between

internal and external pressures, and hence shall be led to different

thermodynamic conclusions.

63. Final state of an isolated system

The third principle of the classical thermodynamics which we wish

to consider is the conclusion that the final state of an isolated system
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would necessarily be one of maximum entropy where further change

would be impossible. The justification for this prinpiple in the

classical thermodynamics is found to depend on the first and second

laws in a relatively simple manner.

In accordance with the first law of classical thermodynamics the

energy content of an isolated system must remain constant, and in

accordance with the second law—see §§ 69 and 62—^its entropy must

increase with the time as a result of any actual thermodynamic

changes that take place in it. Hence if there is an upper limit, giving

the maximum possible entropy of the system, this will determine the

final state of the system, where in accordance with (69.2) further

change will be impossible.

The proof that a maximum upper limit of entropy would exist can

be carried out in detail by the methods of the classical thermo-

d3rnamics for any specified isolated system chosen as typical, More

generally it is evident that the entropy of a system can be regarded as

a function of its energy, volume, and sufficient further variables to

determine its internal configuration and constitution, and since the

energy of an isolated system will be constant we need only to consider

the dependence of entropy on the volume and internal variables. In

the case of unconfinod gases, however, this dependence is such that

with constant energy content a final state of infinite dilution and com-

plete dissociation into atoms would be one of maximum entropy. And
in the case of systems held together by their own coherence a final

state of niaximura entropy would be obtained when the internal

variables have adjusted themselves to the most favourable values

possible in the restricted range permitted by the fixed value of the

energy.

Tor example, in tlie case of a homogeneous system of constant

energy and volume, the considerations of § 60 have shown that the

condition for a given chemical reaction to take place would be given

by the expression (see 00.12)

2 (4 ,

where denote the changes in the number of mols of

the difleront interacting substances which would occur if the reaction

in question should proceed to an infinitesimal extent. And since the

value of any individual differential coefficient {dSjdni) is actually
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found to decrease with increasing values of % it is evident that

continued reaction would ultimately lead to a condition of maximum

entropy.

By considerations such as these the classical thermodynamics has

been led to the belief that isolated systems would approach a final

state of maximum possible entropy where further change would not

take place. In our later extension of thermodynamics to general

relativity, however, this conclusion will be modified by the fact that

relativistic mechanics does not require a constant value for what may

be called the total proper energy of an isolated system, and this

removes the restriction on the adjustment of variables to secure

increased entropy imposed in the classical thermodynamics by the

principle of the conservation of energy.

64. Energy and entropy of a perfect monatomic gas

As a preparation for later applications w© may now treat several

matters of a more specific nature. In the present section we shall give

expressions for the energy and entropy of a perfect monatomic gas.

Eor the relation between the pressure, volume, and temperature of

such a gas we can take the perfect gas laws in the form

pv=^NkT, (64.1)

where N is the number of molecules present, and Boltzmann’s con-

stant k is the ordinary gas law constant It for one mol of the gas

divided by the number of molecules in a mol (Avogadro’s number A)

h = RIA. (64.2)

Furthermore, in accordance with experiment and the simplest con-

siderations of the kinetic theory, we can write

G^^lNh and C^;^\Nk (64.3)

for the heat capacities of such a gas at constant volume and constant

pressure respectively, and in addition can takef

= INkT (64.4)

as an expression for the translational kinetic energy of the molecules

at temperature T.

t Eor Bufiftciently light molecules at sufficiently high temperatures the expression

B = iNkT.
See Jiittner and Tolman, loo. oit.
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Making use of the fundamental staxting-point for energy content

provided by the mass-energy relationship of EinsteiUj as discussed

in § 56, we can then take for the total energy of such a gas the sum of

the energy due to the rest-mass m of the particles themselves, and the

above value for the kinetio energy, in accordance with the expression

E = (64.6)

This result wiQ be of importance when we desire to consider the

possible transformation of matter into radiation, or the possible

transformation of one kind of atoms into another as in the formation

of hehum out of hydrogen, since the store of internal energy can

then be drawn upon.

For the dependence of the entropy of a perfect gas on temperature

and volume, we can evidently write

(
64.6)

since {G^dT -f-p dv) would be the heat absorbed in a reversible change

of temperature and volume. And substituting the values of G„ and
V given by (64.1) and (64.3) and mtegrating we obtain

/S' = lATilogT—ArAlogp-j-oonst. (64.7)

as an expression for the entropy of N molecules of perfect mona-
tomic gas at temperature T and pressure p. Or introducing the con-

centration of the gas c as given by the gas laws in the form

p = ^IcT = ckT (64.8)

we can also rewrite the above expression for entropy in the eq[uivalent

S^imiogT-J^^logc-l-const. (64.9)

The value of the constant of integration ocourring in equation

(64.7) can bo taken proportional to the number of molecules JV, but

is of course otherwise midetormined, until we choose some specific

zero point for entropy contents. Taking the zero of entropy—^in

accordance with the third law of thermodynamics (§ 67)—to be that

for the substance in the form of a pure crystal at the absolute zero,

we can then determine the constant from a knowledge of the reversible

heat of evaporation from the crystalline to the gaseous form. This

can readily be done theoreticallyf and leads to the well-known

t Soe, for example, Tolznon, Statistical MecJumics, New York, 1927*
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Saokiir-Tetrode equation for the entropy of a monatomic gas

8 = I^Alog T—Nklogp+Nklog^^^^^^, (64.10)

or in terms of concentration

8 = INklogT-Nklogc+Nklog^^^^^, (64. 11 )

where the additive constant is seen to depend on the mass m per

molecule for the particular gets in question, and on certain universal

constants, the base of the natural system of logarithms e, Boltzmann^s

constant k, and Planck’s constant h. The actual dependence of the

entropy of monatomic gases on these quantities in the way stated may
now be regarded as a satisfactorily tested empirical fact.

The quantity given by equations (64.10, 11) is often spoken of as

the absolute entropy of the gas. Since such a designation might be

misleading, however, it is well to emphasize that this quantity is in

any case—^both theoretically and experimentally—the increase in

entropy that would accompany a change in state of the substance

considered from the form of a pure crystal at the absolute zero to that

of a perfect monatomic gas under the conditions specified.

Por practical calculations equations (64.10, 11) can be written in

the following forms for the entropy per mol of gas at a given concen-

tration c or at a given pressure p:

S = ijBlog!r~i21ogc+|i21ogJif+/So (64.12)

and /Sf = |2Jlog T-^Blogp+lBlogM+S^ (64.13)

where the logarithms are to the base e, the entropy S and gas constant

B are in calories per mol per degree centigrade, T is in degrees centi-

grade absolute,M is the molecular weight of the gas in grammes, c is

in mols per cubic centimetre, p is in normal atmospheres, and the

constants have the valuesf

-11-0533 (64.14)

and /S' = -2*29852 (64.15)

calories per mol per degree centigrade. The expressions are, of course,

for monatomic gases.

Expressions for the energy and entropy of gases composed of more

complicated molecules, where allowance must be made for the rota-

t Birge, Phys. Bev, Supplement, 1, 1 (1929).
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tion of the molecule as a whole and if necessary also for the oscillation

of the atoms within the molecule, can also be obtained, but will not

be necessary for the apphoations that will be undertaken.

65. Energy and entropy of black-body radiation

In the present section we shall give the well-known expressions

for the energy and entropy of black-body radiation, for use in our

later applications.

As shown by the work of Stefan and Boltzmann, the energy density

u for radiation in equilibrium with the walls of a hollow enclosure at

temperature T is given by the formula

u:=^aT\
(66 . 1 )

where Stefan^ s constant a has the valuef

a = 7*6237 X 10-15 (66.2)

in ergs per cubic centimetre per degree centigi^ade to the fourth power.

Furthermore, the pressure of this radiation is given by

P = (66.3)

In accordance with (65.1) we may then write for the total energy

of the radiation pi'esent at equilibrium in a hollow enclosure of volume

V at temperature T ^ (05.4)

Furthermore, in accordance with the above expressions, we can

evidently write for the heat absorbed when the volume of the

enclosure is increased by a reversible isothermal expansion

dQ = dE+dW
— aT* dv dv

= laT^ dv,

and hence for the increase in the entropy content of the enclosure

d8 = dv.

This expression can now be integrated, however, to give the total

entropy increase con-esponding to an increase in the volume from

zero to V. We thus obtain, for the total entropy of the radiation at

equilibrium in a hollow enclosure of volume v at temperature T, the

expression ^ ^ JauT®. (66,6)

Moreover, this quantity could be strictly spoken of as the absolute

t Birgo, loo. cit.
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entropy of the radiation^ aince it is the total entropy increase accom-

panying the actual introduction of the radiation into the space

created inside the enclosure.

As a further important characteristic of black-body radiation we

may also note that the energy distribution among the different

freq[uencies is given at equilibrium by the Planck law

66. The equilibrium between hydrogen and helium

As an interesting thermodynamic application of the relation be-

tween mass and energy provided by the theory of relativity, we may
now consider the possible formation of helium out of hydrogen in

accordance with a quasi-chemical reaction which we can write in the

4H: = He. (66.1)

If the hydrogen atom does consist of one proton and one electron and

the helium atom of a nucleus containing four protons and two

electrons surrounded by two external electrons—as it seems reason-

able to beheve—such an intemuolear reaction should be entirely

possible. Furthermore, since the mass of the helium atom is con-

siderably less than that of four hydrogen atoms there should be a

great evolution of heat accompanying this process and hence in

accordance with the qualitatively correct principle of Berthelot a

great tendency for the reaction to occur. In the present section we
shall calculate the conditions of equilibrium for this postulated

process-t

To do this it will be most convenient to take the criterion for

chemical equilibrium in the form given by our previous equation

(
60 . 14:)

8% = 0
, (

66 .2 )

where the quantities are the changes in number of mols of the

different substances present which would occur if the reaction under

test should proceed to an infinitesimal extent, and the quantities

(dFldn^) are the rates of change in the thermodynamic potential of

the system at constant temperature and pressure per mol of the

substance indicated. Applying this criterion to the reaction between

t Tolman, Amer. Ohem, jSoo. 44, 1902 (1922).
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hydrogen and helium as given by (66.1), and using ihe subscripts

1 and 2 to refer to hydrogen and helium req)eotively we can write

the requirement for equilibrium in the form

or since we shall necessarily have four hydrogen atoms used for each

helium atom formed we can substitute

.ndobtain + = 0 (66.3)

as a relation which must hold at equilibrium.

To use this equation in our present problem, we may assume the

hydrogen and helium both sufficiently dilute, so that they can be

treated as perfect monatomic gases at their partial pressures and the

temperature of the mixture. The thermodynamic potential per mol
of hydrogen or helium produced in the mixture can then be taken as

equal to the actual thermodynamic potential for one mol of that gas

in a pum state at the temperature and pressure thus given. And since

these thermodynamic potentials will themselves be calculable in

terms of the energy E, pressure p, volume v, and temperature T of

the gas in question from the equation of definition (68.3)

F = E-\-:pv--TS

the condition of equilibrium (60.3) can now be rewritten in the form

{E^^-p^,v^TS^)^4.{E^+p^v^TS = 0, (66.4)

where the subscripts 1 and 2 again refer to hydrogen and helium,

El and being the energies and 8^ and 82 the entropies of a mol of

pure hydrogen or helium at the temperature T and the pressures

Pi and P2 respectively, which are the partial pressures in the equili-

brium mixture.

For the energy difTcrcnce between a mol of helium and 4 mols of

hydrogen, allowing for the relativistic relation between mass and

energy, wo may write i]i accordance with (64.6)

(M2-mi)c^-^^RT,
(
66 . 6

)

where Mi andM2 are the molecular weights of hydrogen and helium,

thus placing the energy change equal to the change in internal energy

plus the change in the Idnetio energy of the molecules. Furthermore,
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for the pressure-volume products we may write in accordance' with
the gas laws

Pi‘o—^PiV=—ZRT.
Finally, for the entropies we can use the values provided by iho
Sackur-Tetrode equation in the form (64.13), which will give ti.s

'

-T8^+4n'S^

= ^RT\ogT~RT\og^+lRT\os^+ ZT8l,. (Otl.71
jP2

Substituting these expressions into the equilibritnu condition
( .4) and solving, we then obtain as an expression for tho enuilibriuiu
constant for the reaction

*’ ^"fflbrium pressures ot hy,In,p.n nml

To ^uumerioal results witk the help of this oqueti.,,,, wo niuy

2n e“- ‘h™ .••KloolinK tlu.

2reoeuaydiaooyere<j*fctt'* th
approximiito ivoiclit

<? a>ge,t for the vdooiiy of T'T"He gas oomtol JJ-MlseoC im i ^
c.I.deg.-u.ol-.,.„dteT-
spondingtota]dn(ytJ,«T,

“ ~ ^ mol- i corre-

TaJu^dokaug4tolS^“L“r7*'‘‘“”' «"•»,

suffleieut aeourwy for om presentpJ^JT ’

W£2_ 1-371 xlQii
„ ,

Pi T 7.51og!rH-5-048,
(««.„)

in ^^pW^oTdrowIheTt? "reaenotmg the total pressure of tho mixture by
p = Pj^+Pj^ , ^

'

into hy^eltuq^brimwf oaf

T

in the form
can also easily rewrite this equation

Tnf> _ 2B6pia*

(l--a)(l+3Q,)8
’

1-371 X 10«
-y + 7-6 log Z'— 5.648 ((50.11)

t Birge, loc. cit.
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In accordance with these results, we see that there would be an

extremely great thermodynamic tendency for hydrogen to change

over into helium imless we shotdd go to extremely high temperatures

and low pressures. This tendency arises because of the great evolu-

tion of energy accompanying the formation of helium from hydrogen

corresponding to a loss in mass which is not large in grammes per mol

formed, but very large in ergs on account of the appearance of the

sq[uare of the velocity of light as the conversion factor. Thus in

accordance with (66.9) we should have

at ^’ci2xlO»®C. (66.12)
i^i

and hence should need a temperature over 10® degrees absolute in

order to have monatomic hydrogen at one atmosphere in equilibrium

with helium at that same pressure. And in accordance with (66.11),

even at a temperature of a million degrees and a pressure os low as

10-100 atmospheres, the fraction of helium a dissociated into mona-

tomic hydrogen would only be

QL 0-00,000
10»°C.
10-100 atm.

(66.13)

These calculations have been made for the equilibrium between

unionized helium and unionized monatomic hydrogen. Nevertheless,

the free energy changes, accompanying such processes as ionization

or ordinary chemical reaction, are so small compared with that for

the internuclear reaction as not to change the general conclusion that

hydrogen would in any case bo almost completely transformed into

helium at equilibrium under all but the most oxtreino conditions of

high temperature and low pressui’o.

This result must now be compared with the knowm facts conooniing

the presence of hydrogen and helium on the oai*th, and in the sim and
other stars. On the earth it is well known that hydrogen shows as

yet no discovered tendency to go over into helium. Hydrogen at

terrestrial temi)eratures and pressurcB is of coiu^ao largely in the

diatomic form or combined with oxygen to form w'atcr. As noted

above, however, this would not ai^preciably diminish the thermo-

dynamic tendency to form helium. Furthermore, it is well known
from specti'al data that liydrogen in the unionized monatomic form

and unionized helium are both found in appreciable amounts in

the chromosphere of the sun and in stars of a muubor of classes at
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temperatures ranging say from 6,000 to 20,000 degrees absolute

and at pressures enormously greater than the 10~“° atmospheres men-

tioued above. We must hence conclude in general that the observed

concentrations of hydrogen and hehum in the universe are very far

from correspondence with the amounts calculated for equilibrium.

Similar conclusions, as to a discrepancy between relative amounts

calculated for thermodynamic equilibrium and actually observed,

have been obtained by Urey and Bradleyf for the case of a consider-

able number of isotopes which could be conceivably transformed into

each other by intemudear reactions, of the type given by the example

= C18
-I-

018
.

The method of calculation is similar to that employed above for the

equilibrium between hydrogen and helium. The calculations have

the advantage that the effect of deviations from the perfect gas laws

—^whioh might arise under the actual conditions obtaining when

equilibrium is established—^woxild tend to caneel out by affecting

both reactants and products in the same way. The calculations have

the disadvantage, however, of smaller and at least in some cases less

certain mass changes, and of less general information as to the

relative abundance in the universe as a whole of the substances

involved. The actual relative abundances of the isotopes in terrestrial

material was found not to be in agreement with the relative abun-

dances that would be calculated for equilibrium conditions at any

assigned temperature.

To account for the discrepancy, between the observed concentra-

tion of hydrogen on the earth or in the sun and stars and that

calculated for equilibriiun, three general t3^es of explanation present

themselves. !First, it is possible that heUizm cannot -be formed out of

the constituents of hydrogen as assumed; secondly, the theoretical

basis for the calculations may not be justified at some point; and

thirdly, hydrogen may actually have a thermodynamic tendency to

go over into helium but the reaction be so slow that equilibrium has

not been attained.

The reasons for believing in the possible formation of helium and

the other higher elements from the constituents of hydrogen lie in the

approximate whole number relations between atomic weights, m the

observed emission of electrons and protons where certain nuclei are

decomposed either artificially or by radioactive disintegration, and

t Diey and Bradley, Phyt. Bev. 38, 718 (1931).
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in the general simplification and reduction in number of necessary

independent assumptions obtained with the help of this hypothesis.

These reasons are strong but certainly not conclusive evidence that

helium can be formed from hydrogen, since our present knowledge

as to the number and nature of fundamental particles, such as posi-

tive and negative electrons, protons, and neutrons, is not complete.

K helium cannot be produced solely from the constituents of hydro-

gen the treatment given is of course not applicable.

The theoretical basis for the calculations might be wrong either

on account of the expression used for the energy change that would

accompany the reaction, or on account of the expression used for the

entropy change. The energy change was calculated with the help of

Einstein’s mass-energy relationship. This principle forms such

a simple and integral part of the theory of relativity that we should

be loth to abandon it. The entropy change was calculated with the

help of the Sackur-Tetrode expression for the entropy of monatomic

gases. This expression undoubtedly gives correctly that part of the

entropy which is associated with the unordered spatial arrangement

and motion of the atoms as a whole, but neglects any possible

disorder within the nucleus. Neveiiiheless, we should have to assume

an enormous increase in the internal disorder within protons or

electrons themselves in going from helium to hydrogen in order to

change the nature of the conclusions in the direction of higher con-

centrations of hydrogen.

The most probable explanation for the high concentration of

hydrogen in the observable portion of the universe appears to lie,

hence, in the assumption of an exceedingly slow rate for the reaction

by which hydrogen would go over into helium, coupled with the

h3rpothesis that even larger amounts of hydrogen were present in

the universe in the past.

The assumption of great slowness for the reaction is in itself entirely

reasonable. If the reaction took place in accordance with the simple

mechanism 4H->He

it would be of a very high order—^the fourth—and in addition the

nuclei of the hydrogen atoms would then be hindered in coming into

intimate contact by the presence of the valency electrons. And if the

reaction took place in accordance with the mechanism

He++
35M.U
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after ionization of the valency electrons, it would be of even higher

order, and intimate contact would in this case be hindered by a net

electrostatic repulsion. Hence, except under extreme conditions of

pressure and temperature, we should in any case expect the reaction

to be very slow.

On the other hand, the assumption of even larger amounts of

hydrogen present in the universe in the past, at once introduces us to

difficulties of the well-known kind, always encountered in the applica-

tion of the second law over long time-intervals. In the case at hand,

even if one assume a very small rate of reaction, we can still ask why
the equilibrium concentration of hydrogen has not been reached in

the infinite past time presumably available for transformation into

helium. The consideration of such difficulties will form an important

part of our later work. For the time being we may content ourselves

with pointing out that the high concentration of hydrogen, the lack

of equilibrium ratios for the relative amounts of the isotopes, and the

presence of still undisintegrated radioactive substances are all pheno-

mena of a similar kind, which indicate the possibility that the present

composition of the matter in this portion of the universe results from

a past history that involved exceedingly high temperatures.

67. The equilibrium between matter and radiation

As a second thermodynamic application of the relativistic relation

between mass and energy, we may now consider the possible trans-

formation of matter into radiation. This process, which is often called

the annihilation of matter, would occur if negative electrons and

protons or negative and positive electrons should be able to combine,

with a resulting mutual neutralization of electric charge, and a

change of the energy corresponding to their total mass into the form

of electromagnetic radiation. We have, of course, at the present time

no direct evidence that such a process ever does occur, although at

least in the case of negative and positive electrons it seems highly

probable. Nevertheless the annihilation of matter, together with

the transformation of hydrogen into helium, have both of them

seemed attractive hypotheses to astrophysicists in order to account

for the long life during which energy emission has taken place from

the sun and other stars.

Assuming for the time being the possibility of such a transforma-

tion, we shall investigate in the present section the conditions for
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thermodynamio equilibrium between matter and radiation. Such an

investigation was first made by Stem,t and later with a somewhat

altered point of view by the present writer.J

To carry out the investigation we shall find it most convenient to

employ the criterion for equilibrium given by equation (69.2)

= 0, (67.1)

in accordance with, which the entropy of a system maintained at

constant energy and volume would be at a maximum. In order to

use this criterion we shall need expressions both for the energy and
entropy of a system containing an interacting mixture of matter and
radiation. To obtain these expressions, we shall take the matter as

being in the form of a perfect monatomic gas, and shall assume matter

and radiation both sufiSciently dilute so that we shall be justified in

neglecting interaction and regarding the total energy and entropy as

the sum of the usual expressions for the energies and entropies of the

two constituents.

For the total energy of a system containingN molecules of mass ni

in volume v and at temperature T, we may then write in accordance
with equations (64.5) and (66.4)

E = Nmc^-\-lNlcT+avT*‘, (07.2)

where the first term allows for the internal energy associated with
the mass of the molecules, as is necessary if we are to contemplate
the transformation of matter into radiation, and the other two terms
give the kinetic energy of the monatomic molecules and the energy
of the radiation.

For the entropy of the gas contained in the system we shall find it

most convenient to use the expression in terms of concentration os
given by (64.9)

/Sf = ghTiilog?'—iVAlogc+const., (07.3)

and for the entropy of the radiation we can use tho expression given
by (66.5)

f^avT^. (07.4)

The additive constant in (67.3) must be taken proportional to the
number of molecules N, but will otherwise bo determined by tho
choice of starting-point for entropy values, and in combining tho two
expressions for entropy we must use the same starting-point for tho
entropy of matter and radiation if their inter-conversion is to be

t Stem, Zeits, Elektrocimn, 31, 448 (1025).

t Tolnian, Proc, Nat, Acad, 12, 670 (1020).
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considered, order to do this let us TOite Nk log he* as an expression

for the constant, where the particular form is taken merely in the

interests of simplicity in the final formula, and 6 is a quantity whose

value by hypothesis shall be such as to secure the necessary identity

of starting-point. Adding the two ejqxressions we can then write for

the total entropy of our mixture

S = I^V^ilog T-Nklog{N/v)+Nklogbei-{rlavT’‘. (67.6)

In accordance with our criterion for equilibrium, this quantity is

to be a maximum at constant enei^y and volume. Taking the

variation with respect to N and T, keeping v constant, we can then

write

hS — {|I;log jT—

A

log(JV/ii)—A-f-Aloghe*} BN -f-

+(^NklT+iavT^) ST = 0, (67.6)

together with the subsidiary equation for the constancy of the energy

SE = (mc^+^T) SN 8T = 0 (67.7)

as the necessary conditions for equilibrium. And by combining these

two equations and solving, we easily obtain as the desired expression

for the concentration of monatomic gas in equilibrium with radiation

at temperature T the simple expression

N/v = (67.8)

which shows that the equilibrium concentration of matter would

increase with rise in temperature.

In order to obtain specific values from this equation for the equUi-

brixun concentration of matter at any given temperature we need to

have a value for the constant 6. Empirically we have of course no

direct knowledge as to what this value should be. Theoretically,

however, we know that its value must be such as to give the same

starting-point to the entropy of matter and radiation, and the treat-

ment given to the problem by Stem was equivalent to assuming that

the entropies of a hollow enclosure containing radiation, and of

matter in the form of a pure crystal, would both approach zero on

cooling down to the absolute zero of temperature. The justification

for the first part of this assumption seems reasonable, since there

would be no radiation at all left in the enclosure at absolute zero. The

justification for the second part of the assumption seems less certain,

however, since it takes for the total entropy of matter only that part

which would be connected with the disordered positions and motions
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of the component atoms and neglects other possibilities. Nevertheless,

this assumption is probably the best that we can make at present.

Assuming that we are justified in taking as the total entropy of

matter that which it has over and above the entropy of a pure crystal

at the absolute zero, we can easily proceed since it is evident that the

term in (67.6), containing the constant 6, can then be set equal to the

last term in our previous expression (64.11) for the entropy increase

in going from a crystal at the absolute zero to the form of gas. This

will give us

2fklogbei =
tv

and on solving for h and substituting into (67.8), we obtam Stem’s

expression for the concentration of monatomic gas in equilibrium

with radiation at the temperature T

N _ (^k\i.^,k^
v~\h^''l

(67.9)

For the purposes of practical calculation, by substituting values for

the universal constants, this can be rewritten in the form

c = 3-143X (67.10)

where c is the concentration in mols per cubic centimetre and M is

the molecular weight in grams.

In accordance with these expressions it is immediately evident that

the calculated equilibrium concentration of matter would be exceed-

ingly low except at enormously high temperatures on account of

the great effect of the negative exponent —rnc^lIcT. Thus for a gas of

molecular weight one composed of simple neutral particles (neutron

gas) whose mass could be directly transformed into radiation, the

calculated equilibrium concentration even at 10® degrees centigrade

would only be

c =
cm.®

ov N = G-06 X . (67. 1 1

)

ora.

Instead of considering the equilibrium between radiation and a gas

composed of simple neutral particles, it might seem more in corre-

spondence with actuality to consider the equilibrium between radia-

tion and a mixture of negative electrons and protons of masses

nil negative and positive electrons, produced from

radiation in equal numbers in order to maintain electrical neutrality.

The treatment of this case can also easily be carried out by tlie
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methods employed above and leads in place of (07.9) to the t'Xjiro.ssion

/2v +7»j)C*/2ft7'

I /

(07.12)

for the equal concentrationsNjv of the two kinds of jiarticle, whero the

average mass of the two particles now appoar-s in the

negative exponent. The result still leads, of course, to oxetwively

low equilihrium concentrations of matter.

To account for the enormous discrepancy between the observed

concentrations of matter and radiation in the univei'ae, and what
would be calculated for thermodynamic equilibx’iuni, similar con-

siderations present themselves as in the previous case of the ])«s.Mihle

transformation of hydrogen into helium. Thus it is possible, lirat

that matter and radiation are not interconvertible as uHSiuned,
secondly that the theoretical basis for the calculations is not jastilied

at some point, and thirdly that matter does have a groat tendency to
go over into radiation, but that the change is so alow that equilibrium
has not been attained.

In the case of the present problem, it is felt that the actual occur"
rence of combinations between negative and positive el<*ctron.a to
form radiation is highly probable,| but the general que.stion of the
possible transformation of all kinds of matter, including ntuitroiis
tod protons, into radiation is less certain. To justify such a.n n.sHumi>-

have little to go on except the fact that matter anrl radiation
0 ave mass, and hence—accepting the principle of the conserva-

tion of mass-we can teU how much radiation would bo formed from
a^^ven amoimt of matter. It seems entirely possible, howovi-r, that

changed into

ernnhasi^mT^
'^asis for the calculatioiiH. sjjcciul

value for Sr uncertainties involved in obtaining a

maLl entroi.jrof

starting-point.
al^solute zero as the correct

sidering the transtn

^ a y an appropriate procednr<» in con-

ordw matter into another by

whichTouHactoUri^^T’ ff if
proc(‘SHc^H

ueglects the possxbihty of entropy resident witWn tliei;
t See Oppe^eimer and Pleaeet, PAys. Pev. 44, S3 (1933).
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structure. It is to be noted, nevertbeless, that we have no theory of

such entropy inside the particles, and perfectly enormous stores of

such entropy would be necessary to overcome the great effect of the

negative exponent —mc^IkT in leading to low concentrations of

matter.

With regard to the rate of reaction by which radiation might be

formed from matter, theoretical computation has indicated a very

high rate for the mutual annihilation of positive and negative

electrons,! and this is perhaps in agreement with the apparent lack

of accumulation of the positive electrons which we now know to be

continuously driven out from terrestrial matter by the bombardment

of cosmic rays. In the case of other processes we have no informa-

tion. The mutual annihilation of one proton and one electron would

be a complicated process involving the production of two light quanta

under just the necessary conditions to satisfy the conservation laws

and might well have a low aprim probability of occurrence. Never-

theless, it is possible that the rate of annihilation would have to be

exceedingly small if we should desire to account both for the total

concentration of matter and the relative concentrations of its differ-

ent forms by assuming general equilibrium at a very high temperature

at some time in the past.

In spite of the uncertainties which attend the foregoing treatment

of the equilibrium between matter and radiation, and to a lesser

extent that for the equilibrium between hydrogen and helium, it is

believed that the methods of calculation employed are instructive,

and the results obtained are at least of some interest in our present

state of knowledge. It is perhaps specially interesting to note that

thermodynamic calculations can be made which are logical and conse-

quent, even at a time when our ignorance of necessary facts precludes

a definite assertion as to their actual applicability to the physical

situation proposed. Such an experimentation with ‘if’ ‘then’ con-

siderations can be of great importance both to the intellect and the

imagination.

t Oppenheimer, Phya. Pev. 35, 939 (1930).
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dPBCIAL RELATIVITY AND THERMODYNAMICS (contd.)

Part II. THE THERMODYNAMIOS OF MOVING SYSTEMS

68* The two laws of thermodynamics for a moving system

In Part I of this chapter we have considered the classical thermo-

dynamics of stationary systems, and have investigated the effect of

the theory of relativity only in so far as it has provided a new means
for determining the energy content of a system. We must now turn

to the more far-reaching effects of relativity in providing, as first

shown by Planckf and by Einstein,J a satisfactory theory for the

treatment of thermodynamic systems which are in motion relative

to the set of axes which are being used by the observer.

As a basis for the theory we shall find it possible to use the two laws

of thermodynamics written in exactly their previous forms:

AjB= (68.1)

for the energy change of a system in terms of heat absorbed and work
done, and «

(
68 .2 )

for the entropy change in terms of heat absorbed and temperature.

In applying these expressions, however, it will now be understood that

the quantities, energy, entropy, heat, work, and temperature which

appear therein are to be assigned the values which are appropriate to

the particular set of axes which is being used, with reference to which

the thermodynamic system under consideration is not necessarily at

rest but may be in a state of uniform translatory motion.

The justification for using the above expressions (68.1) and (68.2),

as giving the content of the first and second laws of thermodynamics
when applied to systems in a state of uniform motion, will depend
on the fact that the transformation equations for the quantities

involved will be such as to make the validity of these expressions, in

a set of coordinates with respect to which a thermodynamic system
is in motion, equivalent to their validity in proper coordinates with

respect to which the system is at rest. In these latter coordinates,

t Planck, Berl. Ber. 1907, p. 642 ; Ann. der Phyaik, 26, 1 (1908).

j Einfitem, Jahrb. der Badioaktivitdt und Elektroniky 4, 411 (1907).
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however, these expressions are merely a statement of the olassipal

first and second laws for which we assume that there is adequate

empirical justification.

We may now turn to a consideration of the Lorentz transformation

equations for the quantities involved.

69. The Lorentz transformationfor thermodynamic quantities

For most of our purposes it will be sufficient if we limit our treat-

ment to simple systems containing a thermodynamic fludd which can

exert an equal pressure in all directions but cannot withstand shear,

and whose state can be specified by two variables such as energy and

volume or temperature and pressure. Such a limitation is familiar

in thermodynamic discussions and its introduction will make it

sufficient for the present to consider the Lorentz transformation only

for the quantities—volume, pressure, energy, work, heat, entropy,

and temperature.

The first four of these quantities are of a mechanical nature, and

the equations for their transformation have already been given or

impUed in what has preceded and will not bo subject to alteration on

account of thermodynamic considerations. Nevertheless, in order to

unify our treatment we shall also give here, on the basis of earlier prin-

ciples, a discussion of the Lorentz transformation of these quantities,

especially as some simplification is introduced by the limitation which

we have placed on the Idnd of stress which the fluid can withstand.

The transformation equations for the new quantities heat, entropy,

and temperature must be—in accordance with our previous remarks

—

such as to make the validity of the two laws of thermodynamics

(68.1) and (68.2) in any given set of coordinates equivalent to their

validity in proper coordinates, with respect to which the thermodyna-

mic system is at rest. This requirement with one acceptable addition,

which will appear in obtaining the transformation equation for

entropy, is sufficient to lead to a unique solution.

It will prove most convenient to have our transformation equations

in a form which relates the quantity of interest in a given set of

coordinates S with quantities as measured in proper coordinates by

a local observer moving with the thermodynamic system in question.

We now proceed to obtain such equations.

(a) Volume and pressure. For the volume of a thermodynamic

system moving with the uniform velocity u we can immediately write
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in aooordauoe with our previous consideration of the Lorentz con-

traotion
^ ^ (69.1)

where Vq is the volume aa measured in proper coordinates.

For the pressiire p we can base the Lorentz transformation on the

definition of pressure as force per unit area and on the known trans-

formation equations for force. To do this let us temporarily use for

simplicity axes chosen in such a way that the velocity u of the system

of interest will be parallel to the aj-axis. For the forces and Fg

acting on surfaces of the system which lie perpendicular to the

indicated axes we can then evidently write in accordance with the

transformation equations for force (26.3)

where F®, FJ, and FJ are the forces acting on these same surfaces as

measured in proper coordinates 8^, Hence, since an area perpendicular

to the a;-axis will not be affected by the Lorentz contraction, while

areas perpendicular to the other two axes will be contracted in the

ratio of -^(1—

:

1, we at once obtain the simple result

p = Po»

as the transformation equation for pressure. This result will be seen

to be merely a specialization of the general transformation equations

for the components of stress (34.6), for the case now being considered,

in which the stresses reduce to a hydrostatic pressure

P = (i#j). (69.4)

(6) Energy. To obtain an expression for the energy of our moving

system we shall start with the system in a state of rest, in the internal

condition which is to be considered, and then determine the work
necessary to bring it to the velocity of interest by a quasi^stationary

adiabatic acceleration which will not disturb that internal condition

—

as measured by a local observer—^which we desire to consider. To
carry this out we shall first need to obtain an expression for the force

acting during the process of acceleration.

In accordance with our previous discussions of the relation between

density of momentum and density of energy flow, see §§ 27 and 36, it
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is evident that we can write, in the case of a fluid of density p and
pressure p, moving with the velocity u,

g = pu+
pn

(69.6)

as an expression for the density of momentum, where the first term is

the density of momentum associated with the mass motion of the
fluid, and the second term allows for the additional momentum that

is associated with the flow of energy resulting from work done on the

moving fluid by the pressure acting on it. And introducing the rela-

tion between mass and energy we can then write

(69.6)

(69.7)

as an expression for the total momentum of the fluid in volume v, in

entire agreement with our previous more general equations (36.2).

This then gives us ^ ^ /E+pv

as the desired expression for the external force that will accompany
the acceleration of the system.

We are now ready to calculate the work done and energy increase

associated with a change in velocity. This will evidently be the sum
of the work done by the external force F, and by the action of the

pressure p on the changing volume v of the system, so that we can
put for the rate of change in energy

dv

dt
^

dt
' (69.8)

In appl5ring this result to the process to be considered we can take in

accordance with (69.1) and (69.3),

P —Po and V = (69.9)

where Pq and Vq will be constants, since we desire to carry out the

acceleration in such a way as to leave Pq and for the state of the

system as measured by a local observer with the unchanged values

which are of interest to us. Making use of the constancy of p thus

provided, and substituting (69.7) for F, we can then write

dE _ dE dv

dt dt ^ dt

E+pv du dv

or by trahsposing,
>

/, d

,

. E-{-pv du



(60.11)
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which can easily be integrated to give us

_ OOl^.

V(i—
Evaluating the constant by considering the value of E+pv atu^ 0,
we can then write _

E-j-pV = fgg iQ\^
V(i-“7c")

(oa.io)

or in accordance with (69.9)

E — -^0+^0

V(i-«7c2y~
as ae desired transformation equations for energy. The result will
readily be seen to be a specialization of our previous equation (36.7)
fer tile that the stress reduces to a simple hydrostatic pressure.

expression for the work done when the
temal state of^e system is changed, heepiv^ the. velocity u constant,

mLSJTri.®"
“ the principles of i-olativistic

stant vpI -Jl •#

of a system can change even at con-

which t
^ changes, and hence an extomal force

For th«r ^ necessary to maintain the constant velocity.

dW = p dv ~u-dG,
(69.12)

the second pressure and

force necessarv to mfl- +
•

associated with the external

dW = pdv~‘^diE+pv).

lotaduring (6M). (69.3), ,,, ^

dW = dWo— Jl7c® „
“ V(l-t42/c2)‘^(^0+Po“o)

(0D.13)

or

(09.14)
as an expression for the work dTV m + x
measured in proper coordinates

quantities which are
iA) Heat Tlitt Aj

just been Mmidera
*fmriormation equationii have1 weK oj a meobimical nature and no now
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principles beyond those of our previous mechanics were introduced
into their treatment. Turning now to the first of the non-meoharuoal
quantities heat, we can obtain its transformation equation from the

reqxdrement that the first law of thermodynamics as given by (68.1)

is to hold both in the set of coordinates S that are being employed
and in proper coordinates (S®.

In accordance with (68.1) we can write

dQ = dE-\-dW (69.16)

for a small element of heat absorbed; and substituting for dE and
dW from (69.11) and (69.14), we obtain for the case of a change in

internal state without change in velocity

^ V(l-7tW
‘«‘lc)dW,

or dQ = V(l-«Vc®)(d£?o+dTfo)-

Since the first law of thermodynamics, however, must certainly hold
in proper coordinates we may put

dQo = dE^+dW^, (69.16)

and are thus uniquely led to the transformation equation for heat

dQ ^ dQ^ (69.17)

or (2 - ^(l-u^/c^)Q,,

With this transformation equation for heat, the validity of the first

law in any given coordinate system S is then seen to be equivalent to

its validity in proper coordinates S^, which agrees with the justifica-

tion proposed in § 68 for our choice of fundamental principles. The
transformation equation (69.17) will also be seen to be in complete
agreement with equation (64.18) obtained in our previous investiga-

tion of the Joule heating effect.

(e) Entropy. In order to obtain the transformation equation for

entropy we shall add to our thermodynamic requirements for systems
in a state of rest or uniform motion, the requirement that the entropy
of a system would be unaltered by a reversible adiabatic change in

velocity without absorption of heat. This addition is evidently in

acceptable agreement with our ideas as to reversible processes and
as to the significance of entropy.

Considering now a thermodynamic system in some internal state

of interest and originally at rest with the entropy Sq, we can then
accelerate it to the velocity u reversibly and adiabatically without
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change in its internal state, and hence without change either in its

proper entropy or entropy 8 with respect to the coordinate system

actually being used. We are thus led to the simple transformation

equation for entropy ^ ^
In further justification it may also be noted that this result is in

agreement with the statistical mechanical interpretation of entropy

in terms of probability, since the probabihty of finding a system in a

given state should evidently be independent of the velocity of the

observer relative to it.

if) Temperature. Finally with the help of the second law of thermo-

dynamics (08.2), and the transformation equations for heat and
entropy just obtained, the transformation for temperature becomes
immediately evident. In accordance with the second law we have

J 2”

and substituting (69.17) and (69.18) we obtain

A8^

a£iq ^ j*

In proper coordinates, however, the second law must certainly hold

in the simple classical form

SO that we can at once take

T ^ (69.19)

as the transfonnation equation for temperature.

The transformation equations for all three of the non-mechanical
quantities Q, 8, and T have thus been taken so that the validity of

the two laws of thermodynamics in a given coordinate system 8 is

equivalent to their validity in proper coordinates 8^, which was the

justification proposed in § 68 for our choice of fundamental principles.

To conclude the section we may now collect into one place the trans-
formation equations for thermodynamic quantities, for convenience
of future reference.

P^Po>
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dQ — V(l—ttVc®) dQ^,

S=8„
T = V(l—“7c®)2Ic

70. Thermodynamic applications

From the foregoing equations it is immediately evident that the

thermodynamic equations for moving systems differ jErom those for

stationary systems only in terms of the second order or higher in ujc.

Hence the direct empirical verification of the applications of this

extension of thermodynanaios is hardly to be expected. There are,

however, two simple conceptual applications, which we may now
develop as illustrating the internal consistency of the theory.

(a) Carnot cycle involving change in velocity. Our first application

will be the consideration of a simple reversible cycle involving the

transfer of heat from a stationary to a moving heat reservoir. The

process may be regarded as analogous to the Carnot cycle of ordinary

thermodynamics, and the result obtained will illustrate the con-

sistency of our transformation equation for temperature.

Consider a simple system S (the engine), containing a fluid which

will be kept at the constant pressure p ^ throughout the cycle,

and two heat reservoirs being at temperature and at rest, and

i?2 being at temperature and moving with the velocity u. In the

initial state (a) of the system let it be at rest with the same tempera-

ture the reservoir J?i, and having the energy content and

volume and and let first step of the cycle consist in a change

to state (6) by the reversible isopiestio absorption of heat from the

reservoir Rx, For the heat Qx absorbed from the reservoir and the

work Wx done by the system we cah evidently write

= E,-E^+p{v^-v^) (70.1)

and = p{v^—Va). (70.2)

In the second step of the cycle let us change to state (c) by a re-

versible adiabatic acceleration to the same velocity u as that of the

reservoir R^, keeping the internal condition of the system unaltered

as measured by a local observer moving therewith. There will be no

heat change in this process and the work done will be

= E,-E,.

169

(69.20)

(70.3)
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By hypothesis let the temperature of the system in state (c) be the

same as that of the reservoir jBj, and let the third step of the cycle

consist in the reversible transfer to the reservoir of a certain amount
of heat — whose value will be determined later. The work done

by thei system during this process will be in part due to a change in

volufne under the constant pressure p, and in part due to a change in

momentum even at the constant velocity u as previously discussed.

Making use of equation (69.13) we can ^en evidently write for the

heat absorbed and work done during this step

Qi = (70.4)

and W^==p{va-v„)-{uyc^){Ea-E^+p(va-v^)}. (70.6)

Finally, by hypothesis let the heat transferred in the above step

be just sufficient so that the system can be returned to its original

state (a) by a reversible deceleration which leaves the internal con-

dition unaltered as measured by a local observer. There will be no
heat change in this process and the work done wiU be

(70.6)

We have now completed the cycle and are ready to apply the two
laws of thermodynamics.

In accordance with the first law of thermodynamics, the total heat

absorbed by the system in this cycle must be equal to the total work
done, since the system finally arrives in its initial state with its

original energy content. Hence we can evidently write

Q1+Q2 = yi{+W,+W^+W„ (70.7)

and on solving for and substituting the above values for the other

quantities, this is found to lead to the result

<32 = {{•®d+i>«<i)-(4+i’«c)}{l-«i"M- (70-8)

In accordance with (69.10), however, we can evidently put

since the cycle was carried out in such a way that the internal con-

dition of the system as measured by a local observer moving there-

with was the same in states {d) and (a), and in states (c) and (6).

Substituting in (70.8) this then gives us

Qi = {^a--®6+i5(«a-«6)}V(l-«Vc“).

or in aooordonoe with (70.1)

©a = (70.9)
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On the other hand, in accordance with the second law of thermo-

dynamics, we can evidently write

1+^;
= 0, (70.10)

since the total entropy change of the system will be zero for the cycle.

And substituting (70.9) in (70.10) we obtain the result

= C^O.ll)

In accordance with the process described, the quantity occurring

in this expression is the temperature of the system 8 (the engine)

when at rest and the quantity is the temperature to which it falls

when its velocity is raised to « by a process which does not change its

internal condition as measured by a local observer moving therewith.

The result is in complete agreement with.the transformation equa-

tion for temperature (69.19) obtained above by somewhat different

considerations.

(t) The dynamics of thermal radiation. As a second applicatipn

of the considerations developed in this chapter we may consider the

d3Tiamics of a hollow enclosure filled with black-body radiation, and

moving with the velocity u.

In accordance with (66.3) and (65.4) the energy and pressure for

such a system will have the values

JSJ, = avoT* (70.12)

and Pf)
= (70.13)

when measured by a local observer who is moving with the same
velocity as the enclosure. Hence, making use of (69.11), we can write

for the energy with reference to coordinates such that the system has

tt. velocity « _
1

_ jji l+^TtVc®

and ir. accordance with (69.6) and (69. 10) we can write for the momen-
tum of the system

3 ^{l—u^jc^) c*'
(70.16)
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These expressions for the energy and momentum of a moving
‘Hohlraum’ are of interest because of their agreement with the con-

olusions obtained by Mosengeilf directly from the electromagnetic

theory of radiation without the explicit use of relativity.

71. Use of four-dimensional language in thermodynamics
In our development of the dynamics of a mechanical medium it

was found possible to express the content of the laws for the con-

servation of mass, energy, and momentum in four-dimensional

language by a single equation (37.9) having the simple form

dTy-^jdx^ = 0, (71.1)

where the components of the energy-momentum tensor T/**' are

related to densities of mass, energy,, and momentum and to the

stresses in the manner given by the table of components (37.8).

And this equation can be employed to investigate the energy changes
within a mechanical medium for use in connexion with the first law
of thermod5uiamics.

In the present section we shall show the possibility of expressing
the second law of thermodynamics in a four-dimensional form. This
will be important for our later extension of thermodynamics to

general relativity.

To obtain the desired result let us start with the second law of

thermodynamics in its original form (68.2), and consider a small
element of any given thermodynamic fluid or medium as the system
to which we apply it. If is the volume of this element and cj) is the
density of entropy at the point where the element is located, the
entropy content of the element will be and we can evidently
wnte in accordance with the second law

(71.2)

as an expression which relates the change in this entropy content in

the infinitesimal time 8^ with the heat SQ which flows into the element
during that time interval and the temperature T at the point in

question.

Expanding the left-hand side of this expression we obtain

t MosengeU, Ann, der Physih, 22, 867 (1907).
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ajid, substituting evident expressions in tenns of pnirtial derivatives
for the two total derivatives with respect to the time, this becomes

Sv8t > 2̂T»

where u^, Uy, and are the components of the velocity of the fluid
at the point under consideration. Combining terms this result can be
written in the simpler form

or, introducing expressions for u^, Uy, u^, and 8v in terms of the
coordinates x, y, z, and t, in the form

In order to re-express this result in four-dimensional language, let

us now return to our fundamental idea of a four-dimensional space-
time continuum characterized by the formula for interval (20. 1)

da* = -{dxy-(dx^)^-{dx^)^-^{dx*)» (71.6)

in terms of the space-time coordinates (aj*’, x^, a;*, a^) where

a:* = a: a:® = y jc® = z x* — ct. (71.6)

Introducing these new coordinates we can then evidently rewrite
(71.4) in the form

or, by an obvious substitution, in the form

(71.7)

In accordance with the formula for interval (71.6), however, it is

evident that dajdx^ is equal to the factor which gives the Lorentz
contraction ,

dsjdx* = ^{l—u^jc^) (71.8)

for matter moving with the velocity at the point in question. Further-
more, since entropy in accordance with (69.18) is an invariant for the
Lorentz transformation, we can evidently write as the transformation
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equation for entropy density

6 = _—
. .

Hence by combining (71.8) and (71.9) we shall be able to put

§71

(71.9)

(71.10)

In addition, in accordance with the transformation equations for

heat and temperatme (69.17) and (69.19) we can put

(71.11)
T To’

where To and 8^o 8^ I'h® temperature and the heat that enters the

element as measured by a local observer moving therewith.

Substituting (71.10) and (71.11), our expression (71.7) for the re-

quirements of the second law can then be written in the symmetrical

form

° da / Sa:®

4- (71.12)

Introducing the summation convention this can be written in the

shorter form „ ,

8a:i8a:®Sa;88x« > -I?._£
8xf* T„

(71.13)

Or defining the entropy vector Si^, in terms of proper entropy density

^0 8iid generalized velocity of the fluid dxi^jds, by the equation

we may finally write the very simple equation

^ 8xiSx®8x®8x^ > (71.15)
JL Q

The foregoing equations (71.12), (71.13), and (71.16) express the

requirements of the second law of thermodynamics in the desired

four-dimensional form which will be valid for any space-time coor-

dinates of the type (71.6). They are of the form assumed by tensor

equations of rank zero in ‘rectangular’ coordinates of this typo, and
can be written by a alight modification in a general tensor form valid

in ‘curvilinear’ coordinates as well. This latter form will provide the

basis for our later extension of thermodynamics to general relativity.
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THE GENERAL THEORY OE RELATIVITY

PartL THE FUNDAMENTAL PRINCIPLES OP GBNERAJCi RELATIVITY

72. Introduction

Einstein’s theory of relativity may bd regarded as based on the

fundamental idea of the relativity of all motion. In accordance with

this idea we can detect and measure the motion of a given body

relative to other bodies, but oaimot assign any meaning to its

absolute motion.

The special theory of relativity makes only a restricted use of

this general idea, since it merely assumes the relativity of uniform

translatory motion in a region of free space where gravitational effects

can be neglected. As a result of this assumption we are led to the

conclusion that the laws of physics for the description of phenomena
in free space must be independent of the velocity of the particular

observer who makes measurements for their determination, and must

hence have the same form and content when referred to different sets

of Cartesian axes which are in uniform relative translatory motion.

Making use of this conclusion, the special theory of relativity then

guides us in determining the necessary form of the laws of physios

when expressed in the coordinates corresponding to any desired set

of unaccelerated Cartesian axes, assuming that the effects of gravi-

tation can be neglected. The special theory of relativity, however,

makes no hypothesis as to the relativity of all kinds of motion, gives

no discussion of the form of the laws of physics when referred to more

general coordinates corresponding, for example, to spatial axes in

non-uniform motion, and provides no treatment of gravitational

action.

The general theory of relativity, to which we now turn, attempts,

on the other hand, to make full use of the general idea of the relativity

of all kinds of motion. In the first place, this immediately leads to

a consideration of the laws of physics when referred to any kind of

space-time coordinates, and to the conclusion that these laws must
be expressible in a form which is independent of the particular

space-time coordinates chosen, since otherwise the difference in form

could provide a criterion for judging the absolute motion of the

spatial framework used in the construction of different systems of
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coordinates. In the second place the programme thus initiated is also

found to involve a consideration of the effects of gravitational action.

This arisesfrom the factthat the expression of the equations of physios

in a form which is independent of the coordinate system does not in

general prevent a change in their riumerical cordent when we change

from one system of coordinates to another, and it is only by relating

such changes in numerical content to conceivable changes in gravita-

tional field that we are able to eliminate criteria for absolute motion

and to preserve the idea of the relativity of all kinds of motion. This,

however, is found to lead to a complete theory of gravitational action.

Hence by a natural extension of the fundamental basis, the general

theory of relativity leads to a satisfactory solution of the two obvious

problems which were left untouched by the special theory ofrelativity.

The assumption that the laws of physics can be expressed in a

form which is independent of the coordinate system is called the

pririciple of cmcuritmce^ and the actual hypothesis by which gravita-

tional considerations are introduced into the development has been

named the principle of equivalence^ for reasons which will appear

later. We may now undertake the detailed consideration of these two

principles and their more immediate consequences.

73. The principle of covariance

In accordance with the principle of covariance the general laws of

physics can be expressed in a form which is independent of the choice

of space-time coordinates. In the present section we shall first discuss

the justification for the introduction of this hypothesis, the theoretical

and practical nature of the consequences that could follow its

adoption, and the methods by which it is to be used. We shall then

consider two simple and important examples of the employment of

the principle, which are furnished by the covariant expression of the

formula for space-time interval and by the oovariant expression for

the equations of motion for free particles and light rays.

(a) Justification for the principle of covariance. As already indicated

in the preceding section, our primary motive in introducing the prin-

ciple of covariance can be regarded as residing in our desire to make

full use ofthe idea of the relativity of allkinds of motion. If the general

laws of physics could not be expressed in a form which is the same for

all space-time coordinate systems we could take the differences in

form for different coordinate systems as an evidence of differences in
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the absolute motion of the spatial lErameworks used in setting up the
space-time coordinate systems. This we avoid by the introduction
of the principle of covariance, even though we shall later find—as

already mentioned—^that invariance of form alone is still not sufficient

to preserve the relativity of all kinds of motion.

Although our original motive for introducing the principle of

covariance may thus be thought of as furnished by the idea of the
relativity of motion, there is on even more immediate justification for

believing in its validity. As emphasized by Einstein the laws of

physics ore to be regarded as a codification of the results of experi-

mental observations, and these consist in the last analysis in the
determination of space-time eomcidences.f The recording of such
space-time coincidences is, of course, conveniently carried out with
the help of some system of space-time coordinates. Nevertheless, the
actual physical behaviour can be in no way affected by the coordinate
system used, which may be introduced by the experimenter in any
arbitrary way which suits his convenience or fancy. As a result of
this independence of physical reality and coordinate system, we are
then led to the conviction that the laws of physios—^whatever they
may be—can be expressed in a form which makes no reference to any
particular coordinate system, and we are further strengthened in this

conviction by the great success which the mathematician has already
had in devising language—^in particular that of the tensor calculus

—

for the covariant expression of geometrical and physical relations.

We thus come to regard the principle of covariance as in any case an
inescapable axiom, and to regard it as merely a task—possibly
difficult but theoretically possible—^for the mathematician to find
a form, invariant to coordinate transformation, for the expression
of any desired physical law.

(b) Consequences of the principle of covariance. The full apprecia-
tion of this inescapable character of the principle of covariance has
an immediate effect on our estimate of the theoretical consequences
that could follow from the adoption of the principle. If the laws of
physics—whatever they might be—could in any case be expressed
in invariant form, given sufficient ingenuity on the part of the
investigator, it becomes at once evident that the adoption of the
principle imposes no necessary restriction on the nature of these
laws. Hence the very reasoning that leads to our certainty of belief

t As elsewhere in the book, we are considering macroscopic phenomena.
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in the validity of the principle of covariance, has at the same time

robbed the principle of any absolutely necessary consequences, a

conolusiou first presented by Ejetsohmannf and concurred in by

Einstein. :|;

Nevertheless, as further emphasized by Einstein, the explicit use

of the principle of covariance does have important actual conse-

quences in our investigation of the axioms of physics. In searching

for the appropriate axioms, we shall wish to eliminate imsuspeoted

assumptions that could arise from the use of any particular coordinate

system. Hence from the very start we shall desire to express our

axioms by covariant equations that make no use of a particular

coordinate system. This, however, has important actual conse-

quences, since we are then led to adopt as axioms, not such principles

as appear simple when we use some special coordinate system, but

such principles as can be simply expressed by covariant equations

that are independent of the coordinates. There is, moreover, a certain

theoretical justification for this mode of procedure, since even without

any belief in the necessary simplicity of nature it is evident that our

progress in understanding must lie in a process of successive approxi-

mation that starts'with the provisional use of simple expressions, and

M stated above to ehminate unsuspected assumptions these must be

stated in covariant language. Hence the adoption and use of the

principle does have great hexuistio value, as illustrated, for example,

by the fact that it would certainly be practically impossible to take

the Newtonian law of gravitation as an appropriate axiom, since its

expression in oovariant language would undoubtedly be too com-

plicated either for comprehension or use.

(c) Method of obtaining covariant expressions. In the actual em-

ployment of the principle of covariance, we are enormously assisted

in our task of expressing the fundamental axioms or principles of

physics in covariant form by the use of the tensor calculus, developed

by Biooi and Levi-Civita, since as we have already seen in § 19

the expression of a physical law by a tensor equation has exactly

the same form in all systems of space-time coordinates. Hence in the

development of general relativity we are at once led to seek expres-

sions for the fundamental postulates of physics in the form of tensor

equations, and are greatly helped in fibia task by the fact that we have

t Kieiaohmaim, Ann. derPhytik, 53, S76 (1917).

t Einsteiii, ibid. 65, 241 (1918).
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already found tensor equations for many of the principles of the

special theory of relativity.

Although the tensor analysis is thus of the greatest importance for

the development of general relativity, it would be wrong to assume,

as has sometimes been done with unfortunate results in the past, that

we must limit ourselves to the use of tensor equations in investigating

the fundamental principles of physics. The fact that all tensor

equations are necessarily covariant equations does not, of course,

eliminate the possibility of covariant equations which are not tensor

equations. Indeed the frequent use of covariant equations connecting

tensor densities—^instead of tensors—^is a specially simple and familiar

example to the contrary. In addition Einstein’s development of the

equations of relativistic mechanics in a covariant form containing the

pseudo-tensor density of potential energy and momentum has been

of great importance in obtaining an insight into mechanics, and we
shall not hesitate to employ it in this book.

{d) Covariant expression for interval. In the development of the

special theory of relativity we have found that the principles of

physios can be treated with great effectiveness with the help of a four-

dimensional space-time geometry, characterized by the formula for

the element of interval

dt^y (73.1)

where Xy i/, z, and t are our usual spatial and temporal variables. In

the development of the general theory of relativity we shall find the

use of the idea of a four-dimensional space-time continuum even more
necessary, and in accordance with the principle of covariance shall

need a covariant expression for the formula for interval by which the

geometry can be characterized. As a preliminary step in this direc-

tion let us first examine the possibility of re-expressing this special

relativity formula for interval in covariant form.

The expression for interval given by (73.1) is not a completely

covariant one, since it retains unaltered form only for the limited

class of transformations discussed in § 17. These include the Lorentz

transformation to a new set of variables x\y\z\t\ corresponding to

new Cartesian axes moving with uniform velocity relative to the old,

but with more general transformations, corresponding, for example,

to a change to accelerated axes or even to the mere change to spatial

polar coordinates, the form will not be unaltered.
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It is easily possible, however, to re~express the fomaxila for interval
in covariant language, since we immediately recognize (73.1) as the
simplified expression in ‘rectangular’ coordinates for the general
tensor relation ^ « t , .** =

fffiv
dx^dx^, (73.2)

which is valid in any coordinates, using the appropriate values for the
components of the metrical tensor and summing as indicated over
all values of v := 1, 2, 3, 4.

To demonstrate the existence of this possibility in detail, we have
merely to note in the first place that our covariant expression (73,2)
is indeed equivalent to the original expression for interval (73.1) with
the specially simple values for the components of the metrical tensor

011 = 0Si2 == ^33 = —1 9^44
=

== 0 (/i p), (73.3)

and then to show in the second place that by any arbitrary trans-
formation to new coordinates the formula for interval will still be
left in the form (73.2).

To prove this, let us consider an arbitrary change to any desired
new set of general (curvilinear) coordinates which are
related to the original (rectangular) coordinates a:, y,z,tm any way

^ xf^{x,y,zj), (73.4)

which is consistent with the necessary conditions of continuity and
unambigmty. Making use of the relations between the two systems
of coordinates we can then write

dt at dt

8x^ da? 8a?

(73.6)

for the differentials of the old variables in terms of the new. By-
squaring these and introducing into (73.1) we then obtain

(da;!)* +
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dy dy dz dz

171

[ {^1

^
I dx^ dx^&c* dx^ 8x^ dx^ ftc®

+ 6‘

8x^ dx^\
dx^dx^+

(73.6)

which is seen to be still in the form (73.2), as was to be proved.

It should be noted from the form of (73.6), that the wUl always

be symmetrical in /* and v. It should also be remarked that the tensor

character of g^y is immediately evident, since in accordance with the

postulated invariance of interval we can write for any pair of coor-

dinate systems x> and xi* the equivalent expressions

ds* =
g'l^y

dx't^dx'" = g^ daf^dxP,

which will evidently give us

, _^^
(73.7)

(73.8)

as the transformation equation for the and this is in agreement

with the general equation (19.10) that we have given for the definition

of tensors.

The generally covariant tensor expression (73.2) which we have

thus obtained for the element of interval now makes it possible to

treat the facts of special relativity using not only our usual coor-

dinates Xy yy Zy ty but also using any set of general coordinates

x^yX^yX^yOc^ which we may desire to introduce. At the present stage

of the argument we have only demonstrated the justice of using this

covariant formula in the absence of gravitational action when the

principles of the special theory are actually vahd. Nevertheless, we
shall show in the next section [(§ 74 (e)] with the help of the principle

of equivalence that we shall also have a measure of justification for

using this same formula in the more general case when gravitational

action is involved, when no coordinates can be foimd which would

make it possible to express the formula for interval throughout the

whole of space-time in the original simple form (73.1).

(c) Covariant expression for the trajectories of free particles and

light rays. As a second example of the introduction of the idea of

covariance we may now consider the covariant expression of the

equations governing the motion of free particles and light rays. The
possibility of obtaining such a covariant expression has already been
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shown in § 28 in our discussion of the four-dimensional treatment of

the mechanics of a particle as given by the special theory of relativity.

A somewhat more complete treatment from our present point of view
will, however, be useful.

In accordance with the special theory of relativity the behaviour
of a free particle would be governed by Newton’s first law of motion,
so that the particle would move in a straight line with constant com-
ponents of velocity

dx

dt

dy dz
““ = (73.9)

where x, y, z, and t are our usual spatial and temporal variables. And
by combining these expressions with the formula for space-time

interval (73.1), we can.re-express them in the foxir-dimensional form

dx %
da ~ ^{c^—v?)

% _
da

^
da .^(c*—u®)

(73.10)

1

da .^/(c®— tt®)'

Interpreting this result, we ?ee that the four-dimensional ‘velocity’

of a free particle would be a vector with constant components,
and that its four-dimensional trajectory would hence be a straight

line.

By differentiatmg these expressions a second time with respect to
the element of interval, we can re-express the conditions for the four-
dimensional trajectory in the form

ds® d8^~ da^~da^~^'
(73.11)

Furthermore, these conditions can also be expressed in. accordance
with the known properties of the straight line by the single equation

8|cb = 0, (73.12)

whioh states that the total interval along the trajectory shall be an
extremum for small variations which vanish at the two limits of
integration. This final form of expression is, however, a tensor
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(scalar) equation which makes no reference to any particular coor-

dinates and would lead to the same results in all sy^ms of coor-

dinates.

We thus have no difficulty in finding a covariant expression for the

motion which could be assumed by a free particle in accordance with
the special theory of relativity. Moreover, just as in the case of

the covariant expression for interval, it is to he emphasized that we
shall later find (§ 74 e) a certain justification, with the help of the

principle of equivalence, for taking our covariant expression (73.12)

for the trajectory as also valid in the presence of gravitational fields

when no coordinates are possible such that the formula for interval

could be written throughout in the simple form (73.1). In this case

equation (73.12) is the general condition for a geodesic, of which the

straight line is a special case.

In making practical use of the condition for a geodesic it is usually

convement to replace (73.12) by the equivalent equations

<7}

^ da?

da da
(73.13)

which can easily be obtained from (73.12) by familiar methods by
substituting the general formula for interval (73.2). The Christoffel

three-index symbols with ‘curly’ brackets occurring in (73.13) are

defined by /a o o \

(73.14)

while three-index symbols with ‘square* brackets are defined by

[(«'..] = (73.16)

neither of these quantities being tensors. It will be immediately

seen from (73,13) that the general conditions for a geodesic do

reduce in the case of the ‘flat* space-time of special relativity to

the simple form (73.11), since for the coordinates x, y, z, t the

components of the metrical tensor will then be constants and

the three-index symbols will vanish.

Titming to the case of light rays, the equations of motion will be

the same as for the case of particles with the additional restriction

& = 0 (73.16)

already discussed in § 21, corresponding to the fixed value for the

velocity of light in free space.



174 THE GENERAL THEORY OF RELATIVITY 5 7S

The foregoing diecusisions of the covariant expression for interval
and of the oovanant expressions for the motion of particles and light

rays give typical examples of the possibility of re-expressing the
principles of the special theory of relativity in a covariant form which
permits the use of any desired ‘curvilinear^ coordinates ir®, it?*

instead of the usual ‘rectilinear* coordinates rr, y, z, t. In both oases
we shall later obtain with the help of the principle of equivalence

(§ 74 a) a measure of justification for taking these oovariant expres-
sions as valid not only in the case of the ‘flat* space-time of special

relativity, but also in the case of the ‘curved* space-time which we
shall find to be associated with the presence of permanent gravita-
tional fields.

74. The principle of equivalence

Wemaynow turn to an examination of the principle of equivalence,
which furnishes the second main element in the general theory of
relativity and the one which leads to the necessary introduction of

gravitational fields and ‘curved* space-time into the considerations.
We must first discuss the method of formulating this principle which
is a somewhat more involved matter than in the case of the principle
of covariance.

{a) Formulation of the principle of equivalence. Metric and
gravitation. The principle of equivalence gives specific expression to
the correspondence between the results which would be obtained by
an observer who makes measurements in a gravitational field using
a frame of reference which is held stationary, and the results obtained
by a second observer who makes measurements in the absence of
gravitational field but using an accelerated frame of reference. In
a qualitative way it is immediately evident that some measure of
correspondence between the two sets of measurements should exist,

since both observers would find an acceleration with respect to their
frames of reference for all free particles left to their own motion.
To obtain a precise expression of the principle, we may first consider

the hypothetical limiting case of a non-accelerated observer in a per-
fectly uniform gravitational field, as contrasted with a uniformly
accelerated observer in a region of free space where the gravitational
field can be neglected. In this case the principle of equivalence makes
the definite assertion that the results obtained by the two observers
in performing any given physical experiment will be precisely
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identical, provided of course that the observer in free space is given

an acceleration, relative to the non-acoelerated axes of the special

theory of relativity, •which is equal and opposite to the gravitational

acceleration found by the other observer.

An alternative expression of the principle of equivalence can also

be given which is often more convenient for use. Having asserted the

complete equivalence between the two observers, we appreciate that

the equivalence will have to persist when we make analogous changes

in their states of motion. Thus if the observer in the field is himself

allowed to fall freely 'with the natural aoceleratipn due to gra'Tity, and

the forced acceleration given to the observer in free space is reduced

to zero, they must still obtain identical results in any given experi-

ment that they may perform. In other words, for a freely falling

observer in a uniform gravitational field the effects of gravitation

would be abolished. Hence the principle of equivalence can also be

taken as the assertion that it is always possible in the case of a uniform

gravitational field to transform to space-time coordinates such that

the effects of gravity will not appear.

In the general case of non-uniform fields, the statement of the

principle of equivalence has to be modified since the natural accelera-

tion due to gra'vity would be different in different parts of the field.

Nevertheless, we may still maintain for a sufficiently small region

that the effects of gravitation could be removed by the use of freely

falling axes, having the natural acceleration due to gra-vity for that

region. This is illustrated, for example, by the temporary and limited

abolition of gravitational action which would be obtained inside a

freely falling lift at the surface of the earth. Hence the principle

of equivalence may be finally formulated by the statement that it is

always possible at any space-time point of interest to transform to

coordinates such that the effects of gra'vity •will disappear over a

differential region in the neighbourhood of that point, which is taken

small enough so that the spatial and temporal variation of gra'vity

within the region may be neglected.

The recognition, which the principle of equivalence thus gives to

the possibility of permanent gravitational fields which cannot be

completely transformed away by choice of coordinate system, leads at

once to an intimate relation between metrio and gra'vitation. In

accordance with the special theory of relati-vity, coordinates x, y,

z, t can be chosen such that throughout space-time the formula for
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interval can be written in the simple form

da^ = -dx^-dy^-dz^+d^ dt^, (74.1)

where the metrical tensor has the constant values

ffll ~ 922 — 9a3~ — ^ ff44
“

== 0 v). (74.2)

In accordance with the above, however, it will not be possible in the

case of permanent gravitational fields to find coordinates such that

the components of the metrical tensor assume these values except iu

the neighbourhood of some selected point, and we shall find it neces-

sary to use the more general formula for interval

= 9^v (74.3)

where the components of the metrical tensor may be any function of

the coordinates
.4)

There is thus an intimate relation between metric and gravitation

to be more precisely investigated as we proceed. Using the language

of our four-dimensional geometry, however, we can already say that

the absence of gravitational field corresponds to the metric for a ‘flat’

space-time and the presence of any given permanent gravitational

field corresponds to the metric for some particular kind of ‘curved’

space-time.

(
6 ) Principle of equivalence and relativity of motion. We may next

consider the relation of the principle of equivalence to the funda-

mental idea of the relativity of all kinds of motion.

The first step towards the preservation of this idea lay in the intro-

duction of the principle of covariance, in accordance with which

the equations of physics can be expressed in a form the same for all

coordinate systems, thus removing the possibility of using essential

diflferences in form as a criterion of absolute differences in motion.

As already mentioned, nevertheless, this alone is not necessarily

sufficient to preserve the idea of the relativity of all kinds of motion,

since equations of the same form can exhibit essential differences in

numerical content which could be used as possible criteria of absolute

motion. At this point, however, the introduction of the principle of

equivalence can be regarded as the second step in preserving the idea

of the relativity of all kinds of motion, since with the help of this

principle it proves possible, if so desired, to interpret the essential

changes in numerical content which are actually found to accompany
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changes in coordinate system as due to changes in gravitational field

rather than to changes in the absolute state of motion of the axes of

reference.

To illustrate this by a specific example we may concentrate our

attention on the simple case of two observers in free space, the first

being regarded as in a state of rest or uniform motion and the second
as accelerated. In spite of the principle of covariance which allows

the two observers to treat, for example, the motion of free particles by
equations of exactly the same form, it is evident that they must find

essential differences in numerical content, since the first observer

would find no motion relative to himself for a free pagrtiole which he
places in his immediate neighbourhood and the second observer would
find a definite motion for such a test particle owing to his own state

of acceleration. And this difference could be interpreted by the

second observer as a definite criterion for the absolute character of

his acceleration, if the principle of equivalence did not enter at this

point and permit him—^as we have seen above—^to ascribe the

acceleration of free particles with equal justice as being due to the

presence of a gravitational field.

To treat this same example somewhat more mathematically, let -us

consider that the unaccelerated observer uses a coordinate system

corresponding to our usual spatial and temporal variables x, y, z, and t

and to the formula for interval

da^ = —dx^—dy^—dz^~{-e^ dt*. (74.6)

On the other hand, let us assume that the second observer, who can

be taken as moving relative to the first with the acceleration a in the

£ij-direction, uses the coordinates x', y', z', and i' as given by

x’ = x—\al^ y' = y z' = z t' = t (74.6)

in accordance with the usual transformation to accelerated axes,

which we may certainly regard as a reasonable change at least at low

velocities. Substituting from (74.6) into (74.6) we then find as the

formula for interval for the second observer the expression

= ^dx'^-dy'^-dz'^+ {c^-aH'^)dt’^- 2at' dx'dy’. (74.7)

Examining the two formulae for interval (74.6) and (74.7), we
immediately appreciate their essential difference in content, in spite

of the fact that both formulae are in agreement with the generally
asts.u »
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covaiiant expression for interval

=
?jnv da^dx'’,

since in the one case the components of the metrical tensor have

the simple constant values — l,.c®, 0, and in the other case are con-

siderably more complicated. This difference, moreover, is imme-
diately reflectedm a difference in the experimental results which the

two observers obtain. Thus although both observers can use the

same eovariant equations (73.13) previously given

ds^
^{jlVyOr}

da^dx'’

da da
= 0

to describe the motion of free particles, the first observer will find

that the appHcation of this equation leads to the general result

dh: dH dH
ds^ ds^ ds^

(74.8)

while the second observer will obtain a more complicated result which

reduces for the case of particles having negligible velocity to

= 0 f74.m
ds^ da^ da^ ds^

In accordance with the principle of equivalence, nevertheless, the

second observer is permitted to interpret this difference in experi-

mental results—arisiilg from the changed values of the components

of the metrical tensor—as due to the presence of a gi^avitational field

rather than to any absolute quality in his state of motion.

As a result of the foregoing discussion, we now appreciate in general

that the principle of equivalence will permit us, if we so desire, to

interpret the change in the content of the equations of physios when
we change to a new coordinate system as due to a change in gravita-

tional field rather than to a change in the absolute motion of the

spatial framework. This, however, is sufficient to preserve the idea

of the relativity of all motion. Thus the changed results, that we
ordinarily describe as being due to a change in our reference frame-

work from a state of rest to a state of accelerated motion, can also be
described as due to the changed gravitational field which results

when the reference system is left at rest and the remainder of the

universe is accelerated in the opposite direction. Acceleration as

well as velocity thus partakes in the quality of relativity. Similarly

tile effects accompanying the change, ordinarily described as that
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from stationary to rotating axes, can only be regarded as due to the

relative rotation of the axes and the gravitating bodies in the rest of

the universe.

We shall later have further examples of the validity of the idea of

the relativity of all kinds of motion, a very instructive one being given

by the discussion in § 79 (c) of the so-called clock paradox. In general,

the possibility of contradictions to this idea may now be regarded

as satisfactorily removed by the introduction of the principle of

equivalence.

(c) Justification for the principle of equivalence. Although the

general idea of the relativity of all kinds of motion thus provides a

strong motive for the acceptance of the principle of equivalence, our

justification for the introduction of this principle can also be based

on more immediate grounds. Unlike the principle of covariance, the

principle of equivalence cannot be regarded as a necessarily ines-

capable axiom of physics, since it makes perfectly definite statements

as to the interrelated character of coordinate systems and gravita-

tional fields which might or might not be true. Hence it is also unlike

the principle of covariance in demanding necessary physical conse-

quences, and our final justification for the introduction of the

principle must depend on the comparison of these predicted conse-

quences with the resultsnf observation and experiment.

The simplest of these consequences is the conclusion that the

gravitational acceleration of all bodies would have to be the same

when tested in the same gravitational field, since the presence and

amount of this acceleration would be solely a function of the coor-

dinate system used. Hence the far-reaching discovery of Galileo that

all bodieii fall at the same rate, and the precise tests of this law

furnished in the case of ordinary materials by the exhaustive investi-

gations of EotvOs and in the case of radioactive material by the

work of Southerns, can be regarded as furnishing immediate support

for the principle of eqtdvalenco.

In addition to this simple, but nevertheless very general and well

tested, consequence of the principle of equivalence, we shall see in

§ 80 that the general theory of relativity leads to the Newtonian

theory of gravitation as a first and very close approximation. Hence

the accurately confirmed laws of celestial mechanics can also be

regarded as furnishing support for the building-stones upon which the

theory is based.
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Finally, moreover, our belief in the principles of the general theory
of relativity receives the compelling sanction provided by the three

so-called crucial tests, § 83, which distinguish between the predictions

of the approximate Newtonian theory and those of the more precise

Einstein theory. So that we must regard all the postulates of the
theory els being very satisfactorily chosen.

In addition to these observational verifications, which justify the

introduction of the principle of equivalence, we must also assign a
high importance to our intuitive appreciation of the rationality of

assuming the abolition of gravitational effects for a freely falling

observer, and to our intellectual appreciation of the simplicity, clarity,

and eflEectiveness of the postulate that we thus obtain. These qualities

of intuitive rationality and of intellectual simplicity, clarity, and
eflEectiveness, which bespeak so unmistakably the insight and genius

of Einstein, furnish of themselves of course no evidence of corre-

spondence with experimental and observational fact. They are, never-

theless, necessary qualities for those principles which the human
mind is willing to use as the fundamental postulates for science, and
their presence must hence be regarded as also furnishing important
justification for the acceptance of the principle of equivalence.

{d) Use of the principle of equivalence in generalizing the principles

of special relativity. Na^ral and proper coordinates. In accordance
with the principle of equivalence we can always choose coordinates

so as to make the effects of gravity disappear in the immediate
neighbourhood of any space-time point of interest, over a differential

region taken small enough so that we can neglect the spatial and
temporal variations of gravity for the range involved. In the absence
of gravity, however, the principles of the special theory of relativity

can be regarded as being valid. Hence the principle of equivalence
can also be understood as requiring the possibility of choosing coor-

dinates such that the general statements of the laws of physics "will

reduce in the immediate neighbourhood of any desired point to forms
previously given by the special theory of relativity in terms of our
usual spatial and temporal variables a;, z, and or more simply in
terms of the so-called Galilean coordinates introduced in § 20

:

= a;, x^=:y, a;® = z, — cL

Such coordinates may be called naiurcd coordinates for the point
in question. In these coordinates, in accordance with the special
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relativity formula for interval, the components of the metrical tensor

vpiU assume, at the chosen point of interest, their previous simple

values — 1, +1, and 0, and the first difiEerential coefficients of the

with respect to these coordinates will be zero at that point. In

general, however, the second differential coefficients will not be zero

except for the special case of space-time that actually is flat. It will

thus be seen that the assumption of approximate correctness for the

special theory of relativity in the immediate neighbourhood of any

desired space-time point is analogous to the approximate replace-

ment of a curved surface by its tangent plane at a given point of

interest, made use of in geometrical considerations.

For any given space-time point there will be an infinite number
of different possible systems of natural coordinates, which can be

obtained by rotating the spatial axes to different orientations, and by

making the Lorentz transformation to different velocities of the

origin. Among these different systems we shall often be specially

interested in coordinates which are so chosen that some particular

observer with his measuring instruments or some particular thing

such as a given particle of matter will be at least momentarily at rest

with respect to the spatial axes. Such systems may be called proper

coordinates for the observer or thing in question, and by § 18 a trans-

formation to such coordinates can of course always be made.

The possibility thus furnished by the principle of equivalence of

using natmal coordinates gives us a powerful instrument for use in

determining the general laws of physics, since we now require that

they must in any case be of such form, when expressed in natural

coordinates, that they will reduce at the selected point to their

previously obtained special relativity forms. This provides a pro-

cedure for testing covariant expressions which may be proposed as

general laws of physics, and eliminating those which do not agree

with the principle of equivalence. The method of course does not lead

to necessarily unique results, since more than one generalization of the

principles of special relativity having the required property can be

possible. Nevertheless, in many cases the simplest possible generaliza-

tions which present themselves are found to provide satisfactory

principles.

(e) Interval and trajectory in the presence of gravitational fields. In

our discussion of the principle of covariance [see §§ 73 (d) and 73 (c)],

it has already been intimated that we shall adopt the covariant forms.



182 THE GENEBAL THEORY OP RELATIVITY §74

in wfaioh. the special relativity formulae for the element of interval and
for the trajectories of free particles and light rays can be expressed,
as also valid in the ‘curved* space-time associated with permanent
gravitational fields. We must now show that this does agree with the
req[ujrements of the principle of equivalence as just discussed above.
To show this in the case of the formula for interval

ds^ = (74.10)

we must first prove that a transformation of coordinates is alwa3rs
possible such that the first diflferential coefficients of the components
of the metrical tensor will become zero at any selected point. This,

however, is a well-known theorem of differential geometry which
demonstrates that it is always possible to reduce to such ‘geodesic

coordinates*. To do this we first transfer the origin of coordinates to

the point of interest and then change from unprimed to primed
variables by the substitution

€}o (74.11)

where is the value of the three-index symbol at the origin. It
is then readily proved that we shall have the relationsf

^ = 0 (74.12)

holding at the origin in the new coordinates. Having secured the
desired constancy at the origin for the components of the metrical
tensor, the further transformation to coordinates such that the
components

g^^, will assume at that point the prescribed values
— 1, c^, 0 or il> 0 can then be secured by familiar methods. Hence
the choice of the covariant expression (74.10) as the general relativity

formula for interval, in the presence as well as in the absence of

gravitational fields, is in agreement with the requirements of the
principle of equivalence.

Turning next to the covariant expression

r X dx^
== 0 (74.13)

as given by the special theory of relativity (73,13) for the trajectory
of a free particle or light ray, we see at once that this is also suitable
to take as a postulate which will be applicable in general relativity in

the presence of gravitational fields, since in natural coordinates the

t See for example Eddington, The McUhematical Theory of Relativity, Cambridge,
1928, p. 77.

.tf y 6 »
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Christoffel three-index symbols (73.14) wall evidently vanish at the

point of interest in accordance with (74.12), and the general formula

(74.13) will reduce to the special relativity form (73.11)

d11 (74.14)

Furthermore, the additional limitation

ds = 0 (74.16)

which must be used in the case of light rays can evidently be appro-

priately taken as a general condition also in the presence of gravita-

tional fields. The conditions for a geodesic as given by (74.13) can

thus be postulated as also applying to the motion of particles or light

rays in a gravitational field. This gives an enormous step forward in

the direction of securing a complete theory of gravitation, a step

which of coui'se must be justified, when the time comes, by com-

parison with the observational data of astronomy.

The fundamental tensor occurs both in the formula for interval

(74.10) and in the formula for trajectory (74.13). In the formula for

interval it appears as a set of metrical quantities which determine

the nature of the space-time geometry by relating the measured

values of different intervals to the corresponding coordinate differ-

ences. In the formula for trajectory the fibrst derivatives of the

with respect to the coordinates appear in the Christoffel three-index

symbol in a certain analogy with the appearance of the derivatives

of the Newtonian gravitational potential in the older expressions for

trajectory. This dual character of the fundamental tensor may be

recognized by referring to the ten independent quantities either

as the components of the metrical tensor or as the gravitational

potentials in the Einstein theory of gravitation. The dependence of

the geometry of space-time and hence also of space itself on gravita-

tion, arising from this dual character of the fundamental tensor, is

a noteworthy result of the general theory of relativity.

.

The rather abstract quality of the formula for interval (74.10) must

not be allowed to obscure the fact of its reference to matters which

are completely observational in character. Any interval expressed by

the formula (74.10) wfil be either space-like, time-like, or singular

in character according as ds‘ is negative, positive, or zero. By
transformation to suitably chosen proper coordinates x, y, z, t, the
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expression for any space-like interval can be thrown into the form

—efoa ^ dx^+dy^+dt\ (74.16)

and the expression for any time-like interval into the form

d8^:=^c^dt\ (74.17)

which makes the corresponding proper length or proper time imme-
diately determinable from the readings of suitably taken metre sticks
or clocks.

Similarly the formula for trajectory (74.13) refers to observational
situations, since the time-like interval ds is then the proper time for
a local observer moving with the particle in question, and the rate of
change of the coordinates of the particle with this quantity can be
observationally determined.

75. The dependence of gravitational field and metric on the
distribution of matter and energy. Principle of Mach
111 addition to the principles of covariance and equivalence we

must evidently introduce some further element into the theory of
gravitation. With the help of the two foregoing principles we have
learned to interpret the fundamental tensor in its metrical aspect
as determining the nature of space-time geometry and in its gravita-
tional aspect as determining the motion of particles and light rays.
We have so far, nevertheless, no laws for the actual dependence of the
values of the g^^ on the coordinates, beyond that provided by the
vory general notion that ‘flat^ space-time corresponds to the absence
of intrinsio gravitational action and that 'cmved* space-time corre-
sponds to the presence of permanent gravitational fields. Hence we
must now seek, as the third element in the relativistic theory of
gravitation, a precise statement of the laws giving the dependence
of the metrical and gravitational field on space-time position, which
will permit the calculation of gravitational effects in the presence of
fl-Ry given (^tribution of matter and energy.
In accordance with the Newtonian theory of gravitation the action

of gravity at any point in space at a given instant is determined by the
location of the surrounding matter, and this general idea with suitable
modifications must evidently be taken over into the relativistic theory
ofgravitation since the Newtonian theory is in any case an exceedingly
close first approximation. In Newtonian theory the dependence of the
gravitational potential ^ on the distribution of matter of density p is
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dh^i d^ifi dhft . ,

^+^+5 - (75.1)

where k is the gravitational constant. In the relativistic iheory of

gravitation modifications will be necessary, in the first place since

we shall need to calculate the ten components of the metrical tensor

or gravitational potentials instead of the single gravitational

potential ift of the Newtonian theory, and in the second place because

the special theory of relativity has provided us with relations between
mass, energy, and momentum which indicate that oovariant expres-

sions are to be obtained by making use of all ten components of the

energy-momentum tensor rather than by singling out some single

quantity which we could call the density of matter.

Our general aim, hence, wiU be to obtain a covariant equation

connecting the with the which wfil be the analogue of Poisson’s

equation, and which will lead to the same results as the Newtonian
theory to a first approximation. Before proceeding to the complete

solution of this task, however, it will first be profitable to consider

two special cases, that of the field corresponding to the special theory

of relativity, and that of a field in empty space but in the neigh-

bourhood of gravitating bodies.

The general hypothesis that the metrical fileld is determined by
the distribution of matter and energy may be called the principle of

Mach.f

76. The field corresponding to the special theory of relativity.

The Riemann-GhristofFel tensor

The special theory of relativity can be regarded as developedon the

assumption of a ‘fiat’ space-time, which neglects the presence of

intrinsic gravitational fields, and the results obtained may be re-

garded as approximately correct in what may be called the/ree space

at great distances from gravitating bodies. We may now inquire into

the covariant expression of the conditions necessary for the ‘flat’

space-time corresponding to the special theory.

t This hypothesis was designated €is the principle of Maoh by Einstoin, Ann. der
Phyaik, 55, 241 (1918), since he took it to be a generalization of Maoh’s requirement
that inertia must be regarded as based on the interaction of bodies. At the time
Einstein believed that the Maoh principle necessitated the introduction of the oosmo-
logical A-term into the field equations. This term, however, no longer appears
necesseury.
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To obtain this we must first consider the Hiemaun-Christofiel

tensor, which can be expressed in terms of the Christoffel three-index

symbols by the equation

B 3= {w aK®*', r}—{iiv, t}+~{ij.(t, r}——{y,v, t}. (76.1)

The tensor character of this expression can be readily demonstrated.

In accordance with the form given and the definition of the three-

index symbols (73.14), it- will be seen that the tensor is constructed

solely from the components of the metrical tensor and their first

and second derivatives with respect to the coordinates. It can be

shown, moreover, that the only tensors which can be thus constructed

solely from the fundamental tensor without going beyond the second

derivatives are themselves functions of the and
The conditions for ‘flat’ space-time can now be expressed by setting

the Biemann-Ohristoffel tensor equal to zero, giving us the covariant

= (76.2)

This equation is evidently a necessary condition, since in the case of

'flat* space-time we know that it is possible to choose coordinates

which will make the components of constants, and thus give all

the Christoffel three-index symbols the value zero. The proof can

also be given that the vanishing of the Eiemann-Christoffel tensor is

a sufficient condition for the possibility of choosing coordinates which
will make all the components of g^^ constants, as first shown by
Lipschitz.f

The tensor equation (76.2) thus expresses the conditions necessary

for the validity of the special theory of relativity and for the absence

of permanent gravitational fields, which cannot be transformed away
by a suitable choice of coordinates. In the actual universe the den-

sity of matter is found to be approximately uniform as far as the

Mount Wilson 100-inch telescope can penetrate, at leeist to over
10® light years; and there is no reason to believe that there is any
region in the universe where the gravitational field could actually

be completely transformed away. Indeed the mere presence of

physical measuring instruments would be accompanied by an irre-

ducible gravitational field. In other words, that which we have
hitherto designated as the free space in which the special theory of

t Lipaohitz, Orelle'e Joum., 70, 71 (1869).
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relativity would be exactly true presumably does not exist in the

actual universe except as an idealization. Nevertheless, it is evident

that the principles of the special theory of relativity are approxi-

mately true even in the permanent gravitational field at the surface

of the earth, and would be valid to an extremely high degree of

approximation in intemebular space. The use of the special theory of

relativity as an abstract idealization thus seems entirely legitimate.

77. The gravitational field in empty space. The contracted

Riemann-Christoffel tensor

Since the equation obtained by setting the Riemann-Christoffel

tensor equal to zero would eliminate the possibility of permanent

gravitational fields, it is evident that we must seek some less stringent

relation for the gravitational field in the empty space in the neigh-

bourhood of gravitating bodies.

We can arrive at such a less stringent relation with the help of the

contracted Riemann-Christoffel tensor which is obtained by setting

o- = T in (76.1) and summing. This gives us the tensor

3 3= W. O’}— O**'- ‘^}'

which, with the help of equation (37) in Appendix III and aphange in

order and in dummy suffixes, can also be written in the simplified

form

a}^logV^.

(77.2)

As the field equations in empty space but nevertheless in the

neighbourhood of gravitating masses, Einstein has proposed the

relation
(77.3)

which would evidently be true when the condition for ‘fiat’ space-

time (76.2) is satisfied, but could also be true under less stringent

conditions.

The theoretical justification for the choice of this equation will

become apparent in the next section, where it will be possible to

regard it as a limiting case of the more general equation for gravita-

tional field in the presence of matter; and the very exact observational
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justifioatioii provided by the observed motions of the planets will be
oonsidered in § 83.

78. The gravitational field in the presence of matter and
energy

We must now turn to the complete solution of the fundamental
problem outlined in § 76, of obtaining a covaxiant relation between
the gravitational potentials and components of the energy-
momentum tensor which wiU be the appropriate relativistic

analogue of Poisson’s equation

. I. (78.1)

which, in the Newtonian theory of gravitation connects the single

gravitational potential ifs with the density of matter p and the

gravitational constant k.

In obtaining a solution of this fundamental problem Einstein had
several kinds of consideration to assist him. In the JBLrst place, in

agreement with the preliminary outline of the problem given in

§76, we may expect that the relativistic analogue of Poisson’s eq^ua-

tion will be a relation connecting all ten gravitational potentials
with the distribution of matter and energy as given by the ten com^
ponents of the energy-momentum tensor In the second place, in

accordance with the principle of covariance, we shall desire to express
this result in covariant form, which will suggest the search for a
tensor of the second rank, constructed from the and their deri-

vatives with respect to the coordinates, which can be equated to the
energy-momentum tensor In the third place, since Poisson’s
equation does not involve higher derivatives of the Newtonian
potential than the second, it will be natural to assume that it will

not be necessary—at least in first approximation—^to use a tensor
containing higher derivatives of the than the second. Finally, in
accordance with the principle of equivalence, we know that the
energy-momentum tensor is a quantity whose ordinary divergence
can be made to vanish at any selected point by the use of natural
coordinates, since in the special theory of relativity we have already
obtained, in Galilean coordinates, the relation (37.9)

0 (78.2)
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in the treatment given in § 37 to the meohanioB of a oontumona

medium.

These considerations were sufficient to suggest as the relativistic

analogue of Poisson’s equation, the tensor equation first proposed by

Einstein
S., (78.3)

•JLIV yLV~^^9fiv
~

where is the contracted Riemann-Christoffel tensor, R is the

invariant obtained by the further contraction of this tensor, A is a

constant, the so-called cosmological constant whose significance will

be considered in more detail later, /c is a oonstant which is related to

the ordinary constant of gravitation by a factor to be obtained in

§ 80 when Poisson’s equation is obtained as a first approximation,

and is the energy-momentum tensor which is defined for the

purpose of general relativity by assigning to its components in proper

coordinates—and hence in any set of natural coordinates—^the values

which it would have in accordance with the special theory of

relativity.

This relation satisfactorily fulfils all the conditions mentioned

above. It reduces in the case of weak gravitational fields to Poisson’s

equation as a first approximation as will be shown in § 80. It con-

nects the ten gravitational potentials and their derivatives with

the components of the energy-momentum tensor T^y, It satisfies

the principle of covariance by being a tensor equation valid in all

systems of coordinates if valid in one. And it contains no derivatives

of the g^y higher than the second.

Furthermore, it is to be noted that it secures the validity of (78,2)

in natural coordinates in a very fundamental manner, since it can

readily be shown from the definition of the Riemann-Christoffel

tensor that the relation

{Rt^^—\Rg^^+Agi^^)y = 0 (78.4)

is a necessary identity with any constant value for A; and this will

give as the fundamental equation of mechanics in any system of

coordinates

or
8xy

= 0,

(78.6)

(78.6)

in the special case of natural coordinates where the Chriatoffel three-

index symbols vanish. Moreover, it is to be emphasized in this
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connexion, in the first place that withA an arbi-

trary constant, can be shown to be the most general tensor of the second

rank constructed solely from the and their first and second deriva-

tives whose contracted covariant derivative (78.4) would be identically

equal to zero, and in the second place that four identical relations

must necessarily be present since otherwise the solution of the ten

field equations (78.3) for the ten g^^^
would not permit the four-fold

transformation of coordinates which must necessarily be possible.

We are thus impelled with considerable force at least to the tenta-

tive acceptance of Einstein’s relation (78.3) as the appropriate field

equations for the relativistic theory of gravitation. The complete

justification for accepting this relation must of course depend on the

correspondence between the predictions which it provides and the

results of observation. To test this correspondence we can make
use of the field equations (78.3) with any given distribution of

matter and energy to predict the dependence of the tensor

on the coordinates used, and then compare the predicted values

of the g^^ with observed values of the Theoretically, these

observed values could of course be obtained from the direct measure-

ment of space-like and time-like intervals with the help of the

formula for interval ds^ = g^^, dx^dx^. Practically, however, such

direct measurements cannot be carried out with sufficient accuracy

even to distinguish between ‘flat’ and ‘curved’ space-time, and our

accurate determinations of the
g^^^ depend on the measurement of

astronomical motions, followed by the calculation of the g^^ with the

help of the formula for trajectory

. f
.dxi^dx^ .

(78.7)

By raising indices, the field equations (78.3) can be written in the

different forms
(78.8)

= B';,-lBg’'^+A^^ (78.9)

= Bi^^—^Bgf^''+Agi^'', (78.10)

and by the contraction of (78.9) we can evidently write

kT = JI-4A. (78.11)

In empty space with ail the components of the energy-momentum
tensor equal to zero we see, by combining (78.8) and (78.11), that the
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field equations will then reduce to the simple form

(78 . 12)

Nevertheless, as already stated in the preceding section § 77, we shall

actually find in empty space that the motions of the planets corre-

spond with great precision to the even simpler field equations

== 0. (78.13)

Therefore, since we shall find later [see, for example, equation (82.10)]

that the effects of the A-term would increase with the size of the

region considered, we may conclude that the unspecified constant A,

introduced above in order to obtain the most general expression with

a vanishing covaoriant derivative (78.4), is either actually equal to

zero or in any case small enough so that its effects are inappreciable

within a region of the size of the solar system. Hence, in many of our

consid^ations at the very least, we shall be justified in settingA equal

to zero, and taking the field equations in the simpler form

~kT^^ = (78.14)

together with kT = B (78.16)

as the result of contraction.

For regions of great size, on the other hand, it can be shown that

effects could result even from a very small value of A. Hence for

cosmological considerations we shall retain the possibility that the

quantity A, customarily known as the cosmological constant, may not

necessarily be exactly equal to zero.

We are now ready to consider a number of the simpler applications

of general relativity, some of which will be specially important in

illustrating the correspondence between theory and observation.
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THE GENERAL THEORY OF RELATIVITY (contd.)

Part 11. ELEMBNTAKY APPLICATIONS OF GENERAL RELATIVITY

79. Simple consequences of the principle of equivalence

Afl already noted, iinlike the principle of covariance, the principle

of equivalence cannot be regarded as a necessarily inesoapablo axiom

of physios, but must be considered as a definite postulate whose

consequences are to be tested by comparison with observation and

experiment. We may now consider certain simple qualitative and

semi-quantitative consequences that can be drawn directly from this

principle without the full apparatus of the general theory of relativity,

() The proportionality of weight and mass. The most important

of these simple consequences of the principle of equivalence is the

conclusion, already mentioned in § 74(c), that the gravitational

acceleration of all bodies would have to be the same when tested in

the same gravitational field, since the presence and amount of this

acceleration would by this principle be solely a function of the coor-

dinate system used. The result is in immediate agreement with the

fundamental discovery of Galileo that different bodies do fall at the

same rate in the earth’s gravitational field.

Since the gravitational acceleration of a body at the sui-faoo of

the earth is connected, in the language of Newton’s second law of

motion, with its mass m and the gravitational force acting on it or

weight W by the equation

W = mg, (79.1)

the above result can also be stated as requiring a constant i^ropor-

tionality between weight and mass for different bodies. The precise

and exhaustive tests of this proportionality made on ordinary
materials by Ectv6s,f and the similar experiments on radioactive
materials made by Southerns^ are in complete agreement with the
theoretical conclusion.

() Effect of gravitational potential on the rate of a clock. In
accordance with the principle of equivalence there should be an
agreement between the results obtained by a uniformly accelerated

t Edtvda, Ma£h, uindNaturw. Ber. aua Ungam, 8, 66 (1890).
t Southerns, Proc. Boy. Soo. 84a, 326 (1910).
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observer who makes measurements in the absence of any intiinsio

gravitational field, and those obtained in similar experiments by a

stationary observer in the presence of a miiform gravitational field.

Since we can easily make approximate oalculations as to the nature

of the results obtained by the accelerated observer, this provides a

simple method for investigating certain of the eflfeots of gravity.

This method can be readily applied to determine the effect of

differences in gravitational potential on the observed rate of clocks.

Let us first consider an observer in the absence of any intrinsic

gravitational field who is subject to the constant acceleration g, and

is provided with two identically constructed clocks placed one akead

of the other on a line parallel to the direction of acceleration at a

distance apart h. Let the clocks have the natural period tq, and let

light signals be sent at the end of each period from one clock to the

other to permit a comparison of their observed rates.

Since the time necessary for a signal to pass between the two clocks

wiU be approximately ^

where c is the velocity of light, the forward clock will acquire the

added velocity in the direction of motion

v = gt = g-

in the interval necessary for light to pass from the rear to the forward

clock. Hence by the ordinary Doppler effect when the rates of the

clocks are compared, the period of the rear clock, when measured in

terms of that of the forward clock with the help of the arriving light

signals, will be found to be approximately

t = t„(h-^) = to|i+§). (79.2)

With the help of the principle of equivalence, however, this result

can be at once reinterpreted as also applying to the analogous situa-

tion of two stationary clocks separated by a distance h in the direction

of a uniform gravitational field of intensity p, so that we may imme-
diately write as a consequence of (79.2)

for the relation connecting the periods and of the two identically
3695.11
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constructed clocks with their difference in gravitational potential

the clock at the lower potential having the longer observed
period.

Furthermore, since time measurements could be made with the

help of the period of light corresponding to any given spectral line,

we can evidently regard different atoms of the same substance as

furnishing the identically constructed clocks necessary for the validity

of the above relation. Hence, making use of (79.3) together with the

relation between the period and wave-length of light, we are at once
led to the conclusion that there should be an observed shift 8A of the

approximate amount . .

8A = (79.4)

in the wave-length A of light which passes through a difference in

gravitational potential of amount A^, in travelling from the point of

origin to that where the observation is made. The obseirvational

verification of this result will be more particularly mentioned in

§ 83 (c), in connexion with the three so-called crucial tests of

relativity.

(c) The clock paradox. The foregoing relation between the rate of

a clock and its gravitational potential has also been found to furnish

the solution for a well-known paradox, which can arise when the

behaviour of clocks is treated in accordance with the principles of

special relativity without making due allowance for the principles

of the general theory.

Consider two identically constructed clocks A and 5, originally

together and at rest, and let a force be then applied for a short

time to clock B giving it the velocity u with which it then travels

away from ul at a constant rate for a time which is long compared
with that necessary for the acceleration. At the end of this time
let a second force F^ be applied in the reverse direction which brings
B to rest and starts it back towardsA with the reversed velocity —
And finally, when it has returned to the neighbourhood of A, let the
clock B be brought once more to rest by the action of a third

force Fg.

Since by hypothesis the time intervals necessary for the accelera-

tion and deceleration of clock B are made negligibly short compared
with the time of travel at the constant velocity u, wo can then write,

in accordance with the decreased rate of a moving clock given by the
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special theory of relativity (see § 9),

AijI
Ai. = (79.6)

as an expression connecting the measurements A^^ and Mg—on the

two different clocks—of the elapsed time necessary for the doqk B to

move out from A and return. In accordance with this expression we
are thus led to the definite conclusion that clock B would register a
smaller number of divisions than dock A at the end of the indicated

experiment.

At first sight, nevertheless, this conclusion—obtained quite

correctly from the special theory of relativity—^appears incompatible

vith the idea of the relativity of all motion, since it should then be

equally as acceptable to regard B as the clock which remains at rest

and consider A as moving away with the velocity —

u

and returning

with the velocity +«. And takingA as the moving dock, it then seems

as if A should be the clock that registers the smaller number of divi-

sions.

The apparent paradox is, however, readily solved with the help

of the general theory of relativity, if we do not neglect the actual lack

of symmetry between the treatment given to the dock A which was

at no time subjected to any force, and that given to the dock B which

was subjected to the successive forces and when the

relative motion of the clocks was changed. To preserve this same

state of affairs in a valid description of the experiment, taking A as

the moving clock and B as the one which remains at rest, we may
assume that the changes in the relative motion of the two docks are

produced by the temporary introduction of homogeneous gravita-

tional fields, which are allowed tp act freely on A in such a way as to

produce the desired changes in velocity without A experiencing any

force, and in such a way as to necessitate the action of the same forces

on .S as before in order to maintain it at rest. This then gives us a

valid description of the identical experiment in the new language, and

we can easily calculate the rdation which would now be expected

between the two time measurements A(^ and Mg.
To do this, let us first put

A<4 =
Mg =and

(79.6)

(79.7)
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where and are the time measurements referred to the two clocks

during which the clock A is now regarded as having the uniform

velocity «, and and are the times needed for the

three changes in the velocity of A widch are brought about at the

beginniug, middle, and end of the experiment by the temporary intro-

duction of an appropriate gravitational held as mentioned above.

And let us take these latter intervals as very short compared with

the time during whichA is in uniform motion, in correspondence with

the previous description of the experiment.

Since the clock A is now the one which moves, we can in the first

place write in accordance with the special theorj' of relativity to the

desired order of precision

in contrast to the pi^evious relation (79.5) where B was taken as the

moving clock. Furthermore, since the two clocks will be at practically

the same potential when the gravitational fields are introduced at the

beginning and end of the experiment, we can evidently write with

sufficient precision

and (79.9)

On the other hand, when the gravitational field is introduced at the

middle of the experiment to produce the necessary reversal in the

motion of A, the two clocks will be at a great distance from each other,

and we must evidently write in accordance with our previous treat-

ment . .

= (79.10)

where is their difference in gravitational potential at that time.

This difference in potential, however, is given in terms of the

distance between the two clocks % and the gravitational acceleration

g by the simple expression

= hg.

Furthermore, we can evidently put

h =
since 2A is the total distance travelled at the speed 74, .and can write

since 2u is the total change in velocity in the time t^. Substituting
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these three expressions we can then write (79.10) in the more useful

form ^

«

rl==T;+r“. (79.11)

and combining this equation with the previous equations (79.6-9) we
obtain

/ 1 m* \ v?= T^(l-i^+...)+ri+r^+T5^+ r^

or to our order of approximation, since the pirimed quantities are

very short compared with r^,

= (79.12)

Comparing this result with the earlier equation (79.6), we now see

that whether we consider or jS to be the clock which moves we
obtain the same expression for the relative readings of the two docks,

to the order of approximation that has been employed. The treat-

ment of the problem without approximation would involve the full

apparatus of the general theory of relativity.

The solution thus provided for the well-known clock paradox of

the special theory gives a specially illuminating example of the

justification for regarding all kinds of motion as relative, that has
been made possible by the adoption of the general theory of relativity.

A similar treatment can also be given with entire success to the
difference in rate between a clock placed at the centre of a rotating

platform and a second clock fixed to the periphery of the platform.

If the platform is taken as rotating, the peripheral clock will be re-

garded as having a slower rate than the central clock because of its

velocity of motion. On the other hand, if the platform is taken as at

rest and the remainder of the universe as rotating in the opposite

direction, the slower rate of the peripheral clock will be ascribed to
its position of lower gravitational potential corresponding to the

gravitational interpretation which would then be given to centrifugal

action. The general idea of the relativity of all kinds of motion will

thus again be preserved, since we can with equal success treat

the platform or the remainder of the universe as subject to the
rotation.
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80. Newton’s theory as a first approximation

Aj3 otir next application of the general theory, we may now show
that Newton’s theory of gravitation can be regarded as giving a first

approximation to the more rigorous results 6f the general theory of

relativity, with the quantity of the general theory closely related

to the gravitational potential ift of the Newtonian theory. To demon-
strate this, we must show in the first place that the Newtonian motion

of a free particle would agree in first approximation with that

predicted from the relativistic equations of motion, and in the second

place that the field equation of Poisson can be regarded as a first

approxhnation to the more general field equations of Einstein. In

doing so,we may restrict our consideratiohs to very weak static fields

and to test particles having very small velocities compared with that

of light, since the Newtonian theory was only developed to cover such

oases. Hence we may take the line element as differing only slightly

from the special relativity form, as expressed in Galilean coordinates,

ds^ ==
(
80 , 1 )

with components of which have very closely the special relativity

values
?33 -1 9u ^ 1 (

80 .2)

9nv — 0

aad which are independent of the time

= 0.
ar*

(80.3)

Furthermore, we may take the components for the generalized

velocity of our test particles as having the approximate values

dx^ dx^ da;® dx*

ds da da da
~ 1 . (80.4)

(a) Motion of free particle in a weak gravitational field. We are

now ready to consider the motion of a free teat particle in such a

weak field.

In accordance with the theory of relativity [see § 74(e)], the tra-

jectory of a free particle will be given in general by the equations for

a geodesic (74.13)

d^af
, ( ^dxt^dx'’ ,

de*

and in the present simplified case these will reduce for a = 1, 2, 3 as
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a result of equations (80.4), to the approximate form

"I" (44, O’)" — 0.

199

(80.6)

Furthermore, in accordance with the definition for the three-index

symbols (73.14) and the approximate values for the gy,y given by

(80.2), we can write

where the summation convention is suspended; and on account of the

static .nature of the field expressed by (80.3), this leads to the simpli-

fied result , o_

which on substitution into (80.6) gives

dV _ 1

dip^f
~

2 ac"
(80.7)

This result, however, can easily be rewritten in a form familiar in

the Newtonian theory of gravitation if we introduce our usual spatial

and temporal variables by their relation with Galilean coordinates •

= X x^ — y a? = z = ct (80.8)

and define the Newtonian potential ^ in terms of by the expression

i- z= %-t- const,
c* 2 '

or
2

9iA - I+^f. (80.9)

where the additive constant has been so chosen as to maJke the

potential 0 approach the value zero in the free space at great dis-

tances from gravitating bodies where 5^44 approaches its special

relativity value unity. Substituting (80,8) and (80.9) in (80.7), we
can then write our result in the well-known Newtonian form

d^x dijj

dfi dx dfi

Bijs

dy

dH dip

dt^ ^ dz‘
(80.10)

(
6

)
Poisson equation as an approximation for Einstein's field

equations. To complete the justification for this interpretation of

the Newtonian potential we must also show that Einstein’s rela-

tivistic field equations will give us as a fii’st approximation the same
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dependence of ^ on the distrib7ition of matter as Poisson^s eq^nation

in the Newtonian theory of gravitation.

To do this we note, in accordance with the expression for the

energy-momentum tensor (37.8) given by the special theory of rela-

tivity in the coordinates that the components of the
energy-momentum tensor will in the present case all be approximately
zero except for the component

= cV,

provided we do have a weak static field as has been assumed, and
provided the mechanical stresses are negligible compared with the
density of energy as is true in ordinary applications. Hence on account
of the specially simple values for the components of the metrical
tensor given by (80.2) which will be involved in the raising and
lowering of suffixes, we can write for the application in hand

^44 ^ ^4 ^ ^ cV, (80.11)

with all other components of the energy-momentum tensor T^y, equal
to zero.

Combining (80.11), moreover, with equations (78.14) and (78.16) we
see for the case in hand that the relativistic field equations will now
provide the simple result

—/ccV = R^—\K0^pg^

or = ^!5£!£.
(80.12)

^
2 ’

And examining the expression for given by (77.1)—since pro-
ducts of the Christofiel three-index symbols can be neglected on
account of the weakness of the field and derivatives with respect to
the time are zero in a static field—we can rewrite this in the form

dx^

or finally by the introduction of (80.6) in the form of the desired

This equation, however, is in complete agreement with Poisson's
equation (76.1) in the Newtonian theory of gravitation, provided we
again take

,
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as in (80.9), and assign to the constant k the value

8irh
(80.14)

where k is the ordinary constant of gravitation and c is the velocity

of light.

We thus complete the demonstration that Newton’s theory of

gravitation can be regarded as a first approximation for the more

complete theory of gravitation furnished by the general theory of

relativity. Furthermore, since it can be shown to be an exceedingly

close approximation—for fields of the strength encountered in the

more usual applications of gravitational theory—^we can now regard

all the well-tested results of celestial mechanics as furnishing impor-

tant support for the rdativistic theory of gravitation.

81 . Units to be used in relativistic calculations

Equation (80.14) provides a definite value, in terms of the usual

constant of gravity k and the velocity of light c, for the constant k in

Einstein’s field equations (78.3), and this makes it possible to obtain

numerical conclusions from these equations for comparison with

observational results. Substituting the valuesf

c = 2-99796x10’^® cm. sec.-^ and i = 6-664X 10-® cm.® gm.-’ sec.-*

(81.1)

we obtain o .

K = = 2-073 X 10-“ cm.~’gm.“’ sec.® (81.2)
c*

This value of k is dependent in the first place on the fact that we
are using the centimetre-gramme-second system of units, and in the

second place on the fact that we have taken the components of the

energy-momentum tensor when referred to Galilean coordinates

(37.8) as having the dimensions of energy density instead of mass

density as is sometimes done.

By changing at this point, however, to a new system of units, some

simplification can be introduced into the writing of relativistic

equations and the effect of any arbitrary convention as to the dimen-

sions of r#*” can be eliminated. To do this we may retain the centi-

metre as the unit of length and then choose the units of time and mass

so as to give the velocity of light in free space c, and the constant of

t Bijrge, PJiya. Rev, Supplement, 1 (1929).
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graTitAtioii Tc the values unity

Ttr- V . .

^ * = 1. (81.3)

^11 ^
choice of units, the energy and mass of a given system

’(nil havem accordance with (27.4) the same numerical value

^ = m,
(82.4)

hat the two different proposals mentioned above for setting up the
teMor »ill fead to tie »ame oumericol r^t.

IWiomiore. tlw ooDstMit a will now hono the simple Tsluo

><=8it, (81,6)
an the relativistic field equations (78,8) can be written in the form

— 87r2],„ = (81,6)

shall assume the use of these

tranni t i-

^ Computations, however, can easily be

^ foUowing relations

unite
L,T, Min c.g.B.

units with their values 1, <, m in the new units.

L = l cm.

ir = j= 3-336X 10-11 « see. (81.7)2-998 XlQi®

„•_ (2-998x1010)8

6-M4X10-0
~ 1'349x 1088?ngm.

82. The SchwarzschUd line element

^ important application of the general theory of rela

for the lio.
problem of obtaining an expresaiol

this nrohlem*T^^^rf™n
Particle. The complete solntion o

was obtained by Scbwamsobildt mid is of grea

snrronnd^X^
* trsatment of the graritational fish

tte snn for use in dlaonsslng tbs throe erueial tertn, tint,bstow tie predictions of tbs Newtonian tho.ir o

5“T" “a*"
oi the theory of relatirtty'

be sufficieotfor n
problem ate so well bnown that it wil

“*’‘‘^3' symmetrical nature of the bold wbiclwould snrromid an atemiting point psrtiolo, it can bo shown
t Sohwarzsohad. Seri Ser. 1816, p. 189.
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necessarily possible (see § 96) to choose coordinates r, 0, tf), and t such

that the line element will be of the simple form

da* = _e^ dr^-ra dJd^-r^^^d d^^a+e*' (82.1)

where A and v are functions of r alone. Furthermore, the components

of the energy-momentum tensor TJi corresponding to this formula for

interval [see the later equations (96.3)] are known to have the values

^nTl ~ inTl
./a v'-A'

2r -)

(82.2)

87r!Z^ = 0 (/* # v),

where the primes indicate difierentiatiCn with respect to r, and the

cosmological constant A has been taken as zero.

In the empty space surrounding our particle, nevertheless, all the

components of the energy-momentum tensor will evidently be equal

to zero. Combining the first and third of these equations, this then

leads to the result
A' = (82.3)

and, combining with the second of the above equations, we obtain

2v'
0

,
(82.4)

which is easily seen to have the solution

(82.6)

where a and b are constants of integration.

At great distances from the particle, however, where r approaches

infinity, we must expect the line element to approach the special

relativity form

ds* = —dr*— r*sm®dd^*-i-<ii* (82.6)

with = e*' = 1, in the units adopted in the preceding section. As
a result, equation (82.6) can then be rewritten in the form

e” = (82.7)

where the constant a has been set equal to unity and the constant b

has been called —2m to correspond to the later physical interpretation
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ofm as the mass of the paxticle. And as a further result, in aooord-

anoe with (82.3), we must also evidently have

e-A (82.8)

aad these expressions when introduced into the first and third of

e(][uationa (82.2) will also secure the values zero for T\ and T\.

Hence, substituting (82.7) and (82.8) into the general expression
(82.1)

, we can now write, for the line element in the neighbourhood

of an attracting point particle, the SchwarzschUd solution

daz = _ d6^-rHyo?d (82.9)

Since this result has been obtained with the help of expressions

(82.2) for the components of the energy-momentum tensor in

which the cosmological constant A has been set equal to zero, the

solution corresponds, in accordance vrith (78.12) and (78.13), to

Einstein’s original field equations for the case of empty space

^liv —
It is also easily possible, however, to employ the complete expressions

for the energy-momentum tensor (see 96.3) without omitting the

cosmological term, and this is found to lead to the result

r® dfl* -r^ern^ -h/i - dt\

r 3 (82.10)

which corresponds to the more general possibility for the field equa-

tions in empty space p __ a

Comparing the two expressions for the line element (82.9) and (82.10),

we now see as already remarked in § 78 that the effect of the A term

on the field surrounding an attracting point particle would increase

with the size of the region considered. Hence, since the motions of the

planets are actually given with great accuracy by (82.9), we can con-

clude that A is in any case small enough not to produce appreciable

effects within a region of the order of size of the solar system.

The particular form for the Schwarzschild line element given by
(82.9) is of course dependent on the coordinate system which is being

used, and the forms which it assumes in other coordinate systems are
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sometimes more useful. Substitatmg f in plsioo of t 'with the help of

the relation

(
82 , 11 )

we readily obtain the Schwaizsohild line element in the form

+ (
82 .12)

and by substituting ‘rectangular coordinates*

a: = fsin0cos^ y=5fsin0sin^ js = fcos0, (82.13)

this can be written in the form

where we now have r == ^Jix^+y^+z^),

These new coordinates may be called isotropic, since the formula

for interval is s3nQnnetrical in x, y, and z. At great distances from the

central particle where terms of the order of {mjrY a«nd higher can be

neglected in comparison with unity, this expression for the Schwarz-

schild line element reduces to the approximate form

, = _|i+ -^j((fa,24.dy»+d2a)+|l (82 . 16)

with * r ==

83. The three crucial tests of relativity

We must now turn to the actual correspondence between the

Sohwarzschild expression for the line element surrounding an attract-

ing point particle and the observational facts of astronomy. The

methods of investigating this correspondence are so well known that

it will be sufficient for our purposes merely to indicate the treatment,f

We may first consider the motion of the planets in the gravitational

field of the sun. Since the planets can be regarded as free particles,

their space-time trajectories will be given in accordance with the

theory of relativity [see § 74 (e)] by the equations for a geodesic

(74.13)
. .dxf^dx^ »

(83,1)

Since the field surrounding the sun can be regarded as that due to an

attracting point particle, the values of the Christoffel three-index

t We follow the treatment of Sddingfcon, The McUh&matioal Theory of Belativityt

Cambridge, 1923.
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symbols to be xised in (83.1) will be those for the Sohwaxzschild line

element, which we shall use in the form in which it was derived (82.9)

and these—^in so far as they do not vanish—^are known to be given

(see 96.2) by the expressions

{«. 1) - Ig {21, 2)
- 1 {31. 8}

= i {41, 4}
- i^

{12. 2}
= - (22. 1}

= -re-^ (32. 3} = cot 6 {44. 1} = ^

{13, 3}
= i {23, 3} = cot e {33, 1}

= -r sin*^ e"^

provided we substitute for A and v the values for the Sohwarzsohild

line element given by (82.7) and (82.8).

Introducing these expressions for the Christoffel s3rmbol8 into

(83.1), we then obtain for the four possible cases cr
~

1, 2, 3,

4

2dr\d8j yds/ \dsj ^ 2 dr\ds/
’

da^

d̂a^^r da da

cP<f>

.

2^
da® r da da

^

2 dr dd . . JdSy ^+ --r j— sm8cosffj^| == 0,I - j. j.

u.-n> * wr Ujm
,

- , - Ww .
I

dd

da da

dH dv dr dt^

(83.3)

(83.4)

(83.6)

(83.6)

as the equations which would govern the motion of a planet. These

equations can be readily simplified, however, by choosing coordinates

such that the planet is originally moving in the plane 6 = This

will mahe dBjda and cos 6 both initially equal to zero and hence in

accordance with (83.4) permanently equal to zero, so that the equa-

tions will reduce to the simpler form

ds® 2dr\d8) \d«/ ' 2 dr\d«)
’

^<j>,2 drd<j>

W^rd8d8~-
dH dv dt

d^'^^d8~'^‘

(83.8)

(83.9)
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These equations can now easily be handled since the oaciginal

expression (82.1) for the line element itself provides one integral and
two of the equations, (83.8) and (83.9), can readily be inflated by
inspection. We thus obtain

d<j> _h
da
~

f

as the first integrals of the above equationB, where h and k are con-

stants of integration. And by combining the first and third of these

equations, and substituting the values for A and v given by (82.7) and

(82.8), we obtain as the relativistio equations for the motion of a

_
da
= h, (83.11)

where r and ^ are the spatial coordinates originally introduced,

m and h are constants, and da is an element of proper time as measured

by a local clock moving with the planet.

This puts the relativistio equations for the orbit of a planet in a

form suitable for comparison with the two Newtonian equations,

resulting from the application of the ordinary laws for the conserva-

tion of energy and of angular momentum,

/dr\ *
I

J
.2 _

\d#j ^ \^) r
~ const. (83.12)

dt
= const.. (83.13)

where m is the mass of the sun expressed in the units of § 81, and

where we must now regard r and ^ as ordinary polar coordinates and

df as an ordinary time interval as used in prerelativistio considera-

tions which neglected the possibility of effects of motion and of

curvature on spatial and temporal measurements.

Since these effects of motion and of curvature would be extremely

small for the slow velocities of the planets and in the nearly ‘flat’
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space-tiine surroimdiag the sim,t aoid sinoe the added term r^d<f>^/da^

ocomring in (83.10) would be very small compared with unity, being
as it is the square of the transverse velocity of the planet divided
by the square of the velocity of light, the reasons can now be appre-
ciated for the high order of accuracy obtained in the application of the

Newtonian theory of gravitation to the field of celestial mechanics.

There are, nevertheless, three consequences which can be obtained
from the Schwarzschild line element which can be used to distinguish

between the relativistic and Newtonian theories of gravitation. To
these we must now turn our attention.

(a) The advance of perihelion. The first of these three crucial tests

of relativity is made possible by the fact that the added term in the

relativistic equation (83.10), as compared with the analogous New-
tonian equation (83.12), leads to planetary orbits with a slow rotation

of perihelion instead of to the perfectly closed elliptical orbits of the
older theory.

Substituting (83.11) into (83.10), differentiating with respect to
and for simplicity putting

(83,14)

we can easily obtain

= (83.16)

t In. accordance with the Schwarzschild line element, the spatial geometry around
the sun would be characterized by the formula for interval

instead of by the usual formula for flat space

du* == d[r*-|-r*

E'^n at the surface of the sun, however, the term 2mjr would be only about 4x 10’*
and at the distance of the earth would drop to about 2 x 10~®. Hence the space around
the sim is sufficiently flat so that the coordinates r, 6, and ^ for the position of a planet
could not be distinguished from the values assigned on the basis of considerations that
neglect spatial curvature.

^

Furthermore, in accordance with the form of the line element, the relation between
mcrem^ts in proper time ds as measured on the planet and in coordinate time dt
would be given by

<U*

/ 1

\l— 2mjrdt* dt*

2m\

r r
T^ere second term would be very small compared with unity, being for example
about 3x10 in the case of the earth. Hence the two kinds of time could also not be
distmguished in describing the orbit of a planet.
Our present considerations give a concrete illustration of the fact that deviations of

wo from their Galilean values, which are small from the metrical point of view, can
be very important from the gravitational point of view.
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as a relativistic equation for a planetary orbit, to be oompared with

the analogous Newtonian equation

dhi
,

m
3p+“ = i5i-

Since the added term 3~mu‘on theright-hand side of (83.16) is easily

seen with the help of (83.11) to be very small compared with mjh^, th6

difference between the relativistic and Newtonian equations is only

slight. Hence in solving the relativistic equation (83.16) we may
take as a first approximation the weU-known solution of the New-
tonian equation (83.16)

u = g{l-f600s(^-a>)}, (83.17)

where e is the eccentricity of the orbit and w the longitude of peri-

helion. By substituting this solution back into (83. 16) it then becomes

possible to obtain

« = p|l+fioos(^— to— (83.18)

as a satisfactory second approximation. This result can then be

interpreted by assigning per revolution of the planet an advance in the

longitude of its perihelion of the amount

hca s=
67jm^

(83.19)

Mercury is the only one of the solar planets for which the predicted

advance is sufficient to be observationally determinable with cer-

tainty. The predicted advance in the longitude of perihelion amounts

in the case of Mercury to 42*9 seconds of arc per century and the

observational advance to 43-5 seoonds.f The agreement must be

regarded as satisfactory.

(6) The gravitational deflexion of light. The second of the three

crucial tests of relativity is furnished by the deflexion of light in

passing through the gravitational field in the neighbourhood of

the sun.

In accordance with the general theory of relativity [see § 74 (c)], the

trajectory of a light ray as well as that of a free particle should be

governed by the equations for a geodesic, with the added condition

efe = 0 for the interval associated with the motion. Hence, by

t Chazy, Oomptea BmdicSt 182, 1134 (192C).
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introducing this farther condition, our previous equation for the

orbit of a planet (83.16) should also be apphoable to the path of light

rays in the field of an attracting point particle. In accordance with

(83.11), it is evident, moreover, that the effect of this further condi-

tion can be obtained by setting A = oo in (83.16) and writing

= 37»m* (83.20)

d<f>^

with It = i (83.21)
r

as an equation for the path of a ray of light in the neighbourhood of

an attracting point particle of mass m.

In the absence of the disturbing term 3mu^, the solution for (83.20)

could be taken as the equation

rcos^ = JJ (83.22)

for a straight line which passes the attracting point at the distance JJ

.

And by substituting (83.22) back into (83.20) it is possible to obtain

rcos^= J2— ^(rcos®^-t-2rsinV)
Jtt

(83.23)

as a satisfactory second approximation. Changing to Cartesian coor-

dinates, which can be taken as approximately valid in the nearly

Euclidean space surrounding the sun, this can be rewritten in the

form
x = R-

R^[x^+y^y

Eor large values of y this gives us

(88.24)

* = R-!l(±2y),

where the upper sign is to be used for y positive and the lower sign

for y negative. Hence for the angle between the asymptotic directions

of the ray we obtain .

e = (83.26)
It

For a ray of light which grazes the sun’s limb this leads to an angle

of deflexion of 1*75 seconds of axe. This prediction can be tested by

observations made at times of total eclipse on the apparent positions

of stars whose light has passed close to the limb of the sun. The

results must be regarded as in exceedingly satisfactory correspon-

dence with theory. The first and quite good checks on the relativistic
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theory were obtained by the British eclipse expeditions of 1919, and

the most satisfactory data at present are presumably those of

Campbell and Trumplerf who obtained the results I'TS'^O-ll* and
1-82"±0'16'' with two different sizes of cameras in the 1922 expedi-

tion of the Lick Observatory.

It is interesting to point out that the relativistic expression for the

deflexion of light passing a mass m, as given by (83.26), is twice as

great as would be calculated from the simple Newtonian theory for

a particle travelling with the velocity of light.

To obtain the Newtonian result we may consider the particle to be

travelling approximately parallel to the jz-axis and to pass the mass

m at the distance x — B. For the acceleration in the ic-direotion we
can then write dH

dt^

mx
{x^+yY

or with sufBcient approximation for our present purposes

dh: _ mB

solving and choosing the constants of integration so as to make
dxjdy = 0 and a: = at y = 0, we easily obtain as the approximate

trajectory for large values of y

giving for the angle between the asymptotic directions

2m
9 =

it ’

which is half the previous result (83.26).

This large difference between the relativistic and quasi-Newtonian

results makes the observational check of the former aU the more

significant.

(c) Gravitational shift in spectral lines. As the third crucial test of

the general theory of relativity, we have the dependence of the wave-

length of light on the gravitational potential of its source, already

approximately treated in § 79(6) with the help of the principle of

equivalence. Making use of the Schwarzschild line element, we may
now investigate somewhat more in detail the shift that would be

t Campbell and Trumpler, Lick Observatory BvIL 11* 41 (1923); 13* 130 (1928).
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expected in the period of spectral lines originating at the surface of

the sun or other star. This can be done very easily.

On the one hand, in accordance with the Schwarzschild line element

(82.9) and the relation cfo = 0 for the trajectory of light, we note that

the velocity of light originating at the surface of the star would be

given in terms of the coordinates r and t by the expression

| = <8«,
which is seen to be independent of the coordinate L We may hence

conclude that successive light impulses which are separated by the

coordinate period 8t when they originate at the surface of the star

would still be separated by this coordinate period on reaching a

stationary observer.

On the other hand, we note in accordance with the Schwarzschild

line element that the proper period Ss for a stationary atom and its

coordinate period 8^ would be connected by the relation

(83.27)

Hence since the proper period of an atom should be independent of

its location, and since we have seen above that the coordinate period

of light is in the present case unaltered by transmission, we can now

5A _ 1 — 1 I f83.28)
A Ss ^{1— {2mlr)} r

for the ratio of the observed wave-lengths of light corresponding to

a given spectral line which originates in the one case at the surface

of the star at r and in the other case at a great distance from the star

where the obseiver himself is located.

In the case of light originating on the surface of the sun this should
lead to a very small shift towards the red to the extent

2-12 XlO-®. (83.29)

In the ease of the very dense companion to Sirius, however, the shift

should be about thirty times as great. In both eases the agreement
between theory and observation is now satisfactory as a result of the
work of St. Johnt of Adams, j:

t St. John, AstrophysicalJoum. 67, 196 (1928).

t Adams, Proc, Nat. Acad. 11, 382 (1926).
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The satisfactory verification of the general theory of relativity

provided by these three crucial tests may well be emphasized. The
verification is all the more significant, since the advance in the peri-

helion of Mercury was the only one of the three phenomena in

question which was actually known at the time when Elinstein’s

theory was developed, and the effects of gravitation both in deter-

mining the path and wave-length of light had not even been observed

as qualitative phenomena prior to their prediction by the theory of

relativity.

It is also remarkable that Einstein’s development of relativity was
in no sense the result of a mere attempt to account for a small Ibnown

difference between the observed orbit of Mercury and that predicted

by Newtonian theory, but was the full flowering of a complicated

theoretical structure, growing from fundamental principles whose

main justification seemed to lie in their inherent qualities of reason-

ableness and generality. The extraordinary success of a theory,

obtained by those methods of intellectuahstio approach, whose
dangers have been so evident since the time of Galileo, well bespeaks

the genius of the founder.

The observational verification which the theory of relativity has

already received must make us regard it as a distinct advance over

Newtonian theory, and can encourage us to proceed now to the con-

sideration of further developments where the possibilities for observa-

tional verification are not always immediately present.
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EELATTVISTIO MECHANICS

Part I. SOME GENERAL MECHANICAL PRINCIPLES

84. The fundamental equations of relativistic mechanics

In the present chapter we shall undertake a somewhat detailed

development of cert^ consequences of relativistic mechanics that

are needed for our further work or that appear to be especially illu-

minating. These consequences are all implicitly contained in the field

equation of Einstein

— SttT/*” = (84.1)

which connects the distribution of matter and energy with the

geometry of space-time, by relatmg the energy-momentum tensor

Tp_y to the fundamental metrical tensor and its derivatives. And
it is the business of relativistic mechanics to investigate with the

help of this equation the principles which govern the energy-momen-

tum tensor, and hence determine the behaviour of matter and energy.

Eor many purposes the full import of the above equation will not

be necessary. The right-hand side of (84.1) gives a quantity whose

tensor divergence is known to be identically equal to zero. Hence,

we may write as an immediate consequence of (84.1)

= 0, (84.2)

and from this simple equation alone we can then draw many impor-

tant conduaions as to the behaviour of matter and energy. Indeed,

since this equation reduces in natural coordinates to the form

gg<iiv

8x''
0,

(84.3)

which we took in § 37 as an expression for the fundamental equations

of mechanics in special relativity, it will now be natural to refer to

(84.2) as the general relativity expression for the fundamental equa-

tions of mechanics.

Expanding this expression in accordance with the rules for covariant

differentiation, the fundamental equations of mechanics can also be

written in the form

—+{av,,*}T«'+{(w.v}T/^ = 0, (84.4)
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and by lowering the suffix [m in the form

0 .

21S

(84.6)

Purthermore, by introducing in place of the energy-momentum tensor

the corresponding tensor-density

^ == r;iV^ (84.6)

this can be rewritten in accordance with well-known transformations

(equation (47), Appendix III) iu the simpler forms

and

ac” * 0a:/*

= 0 .

(84.7)

(84.8)

85. The nature of the energy-momentum tensor. General

expression in the case of a perfect fluid

In order to obtain physical conclusions from these fundamental

equations of mechanics, we must of course apply them to some

particular kind of physical medium for which we actually know the

dependence of the energy-momentum tensor on observable properties

of the medium. We shall hence desire explicit expressions for the

energy-momentum tensor in terms of quantities which can be

determined by ordinary methods of measurement. In accordance

with the principle of equivalence, we can obtain such expressions by

the covariant generalization of expressions for the energy-momentum

tensor which have already been provided in the special theory of

relativity.

In the case of a purely mechanical medium, whose state at any

point can be specified by the mechanical stresses p^j and density pqq

as measured by a local observer, wo have already found in the special

theory of relativity that the energy-momentum tensor can be

defined, by takingf

P% Pxz 0

Pyx Pyy Pyu 8 (86 1)

PL Ply yS. 0

0 0 0 Poo

as the components of the energy-momentum tensor in a special set

t Seo § 37. Nolo that wo liavo sot c* = 1 in agrooinont witli tho units adopted
in §81.
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of Galilean coordinates so chosen that the material is at rest in these

coordinates at the position and time of interest. Turning to the

genial theory of relativity, however, it is evident from the principle

of equivalence that the energy-momentum tensor would also have to

reduce to this same array in proper coordinates (ojJ, x^, trj) for any
given point of interest. Hence the same array also gives us a defini-

tion of the energy-momentum tensor for a mechanical medium in

general relativity by stating its components in a chosen system of

proper coordinates. To obtain its components in any other coordinate
system we have then merely to employ the ride for

tensor transformation

/pfiv ^ ^ motB
(
86 .2 )

which allows us to compute the desired components—^with the help
of the derivatives connecting the new system of coordinates with the
original proper system—^in terms of the proper density pqq and stresses

as measured by a local observer using ordinary physical methods.
Vice versa, if we know the components of the energy-momentum in
a given set of coordinates, the possibility is presented of calculating
the proper stresses and density with the help of the reverse trans-
formation.

Although the foregoing equation (86.2) gives us a general expression
for the energy-momentum tensor of a mechanical medium in any
desired system of coordinates, its actual content will be dependent
on the derivatives connecting these coordinates wdth some set of
proper coordinates. In the case of a perfect fluid, however, it is

leadfiy possible to introduce substitutions which will eliminate the
explicit appearance of the proper coordinates, and give an expression
which depends in a clearer way on the actual coordinate system which
is being employed.

In the case of a perfect fluids which we define as a mechanical
medium incapable of exerting transverse stresses, the only com-
ponents of stress for a local observer will be those corresponding to
the proper hydrostatic pressure p^y so that the energy-momentiun
tensor will then have in proper coordinates the simple set of com-
PO-t*

Pi-

=0 (a ^ (86.3)

and substituting these values into the general expression for the
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energy-momentum tensor given by (85.2), we can then write as an

expression for it

dxi^dx'’ ,8xi^dx^ ,8x1* dz'’ ,8x1* dx'’

where (a:o,*S»®o>®o) proper coordinates for the point under con-

sideration and {x^,x^,a?,x^) are the coordinates of actual interest.

To simplify this expression for the energy-momentum tensor, we
can write in the first place for the contravariant components of the

metrical tensor in the desired coordinates in terms of their values in

proper coordinates
8x1* dx'’ c

03!“^^

whioh on substituting the simple valuesm proper coordinates gives us

l*» = (gBR\
^ 8x1 ^*0 ^*0 ^ 3a;J

"

And in the second place, we can evidently write for the macroscopic

velocity of the fluid with respect to the desired coordinates

dxi*

da

whioh reduces to

8xf* dxl 8x1* dxl 8x1* dxl 8xi*da^

8x^ da '8x1 da'' 8ot^ da 8x^ da’

dxi*

da

8x1*

ex*’
(
86 .6)

owing to the value zero for the spatial components of velocity and the

value unity for its temporal component in proper coordinates.

Substituting (86.6) and (86.6) in (86.4), we can then express the

energy-momentum tensor for a perfect fluid in the very useful and

general form
dxi* da:''

T!*'’ = (Poo+yo)-^% (86.7)

where poo Po the proper macroscopic density and pressure of

the fluid and the quantities dxf^jda are the components of the macro-

scopic velocity of the fluid with respect to the actual coordinate

system that is being used.

Since a disordered distribution of radiation can be regarded as

a perfect fluid characterized by its density and pressure, with the

specially simple relation

/^oo ^jPo (85,8)

connecting tliese two quantities, see § 65, it also proves possible to

use the above equation (85.7) together with this additional restriction
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as the expression for the energy-momentum tensor for such a dis-

tribution of radiation, provided we now take dxf^jds as the velocity

—

with respect to the coordinate system that is being used—of an
observer who himself finds on the average no net flow of energy (see

the later work of § 109).

We shall find the expression for the energy-momentum tensor of

a perfect fluid given by (85.7) extremely useful in our later work. For

more complicated mechanical media which exert transverse stresses,

and for fluids in which heat flow is taking place it is not applicable.

Furthermore, for electromagnetic fields which are more complicated

than a disordered distribution of radiation we should have to use

the more general expression for the energy-momentum tensor, which

will be developed in the next chapter. Nevertheless, many important

problems can be investigated with the help of models composed of

a perfect fluid.

86. The mechanical behaviour of a perfect fluid

To illustrate the physical significance of the fundamental equations

of mechanics which were discussed in § 84, we may now apply them to

the case of a perfect fluid with the help of the expression for its

energy-momentum tensor which we have just obtained. For sim-

plicity and to obtain insight into the physical nature of the results

we shall express them in terms of proper coordinates for some
particular point of interest.

Using proper coordinates, it is evident that the general equations

of mechanics (84.4) will reduce to the form

QTf^V - 0, (
86 . 1 )

owing to the null value for the Christoffel three-index symbols in

proper coordinates. Furthermore, in proper coordinates the com-
ponents of the metrical tensor will assume their Galilean values and
their first differential ooefi6.cients will vanish at the point of interest

so that we can write

ff = = ± 1,

0

^ = 0 . (
86.2)

0a:“ Sa:“

In addition, the spatial and temporal components of the velocity of

the fluid will have the values

—=^=^=0 —
ds ds da da

(86.3)
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at the point of interest. Finally, sinoe we can write as a result of the

general form of the formula for interval

, da dx
, c, , ,

dl dl

it is evident that we must have as a consequenoe of differentiating

both sides of this .expression the relation

a

0a;“
= 0 (86.4)

at the point of interest, since the differentiation of all terms in the

above expression except the last, followed by substitution of (86.2)

and (86.3), would evidently lead to null results. Hence in proper

coordinates at the point of interest the derivatives of the temporal

component of velocity will vanish, although the derivatives of the

spatial components will not in general be zero even at that point.

The foregoing equations together with our expression forthe energy-

momentum tensor of a perfect fluid

= (Poo+i’o)^ ^-^'‘’'^0

are all that is necessary for the investigation.

Substituting into (86.1) for the case ii= 1
, we easily obtain

^"+(Poo+Po)|(^) = 0

as the only terms that survive, and in accordance with (86.3) and

(86.4) this can be rewritten in the form

|»+(p«+j>.)^* = 0. (86.6)

where dujdt is the acceleration of the fluid parallel to the rc-axis.

Remembering, however, the contribution to momentum to be

expected from the work done by mechanical forces such as the

pressure, as discussed in § 36, and not forgetting that the velocity

of the fluid is zero at the point of interest in the coordinates which

we are using, it is at once evident that this result is what would

be expected as a consequence of the usual relation between force

and rate of change of momentum. Similar equations will of course

be obtained for the cases ja = 2 and 3.

For the case /x = 4, we obtain by substitution into (86.1) as the
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only surviving terms

I] +|;[(/'oo+J’o)§ I]dx\
+

+

-

\8x ' dzjr)-"

and in accordance vrith (86.3) and (86.4), this can be rewritten in the

wbiob on multiplication by

Bvq — BxSyBz, (86.7)

where Svq is the proper volume of an element of the fluid, gives us

^(PooH)+i’o^(H) = 0.

which states that for proper coordinates the rate of change in the

energy of an element of the fluid can be calculated in the expected

way from the rate at which work is being done against the external

pressure.

Usiag proper coordinates, the application of the equations of rela-

tivistic mechanics to a perfect fluid thus leads to expressions which

have an immediate interpretation in terms of physical measure-

ments. [Furthermore, for a local observer at rest in the fluid, who

examines an element of the fluid small enough so that gravitational

curvature can be neglected, we find the same laws of mechanical

behaviour as we should predict from our previous knowledge of the

energy-momentum principle. In addition, using natural coordinates

in which the fluid is not at rest at the point of interest, results can

readily be obtained which are in agreement with what would be

expected from the more complicated expressions for the energy,

momentum, and stress of a moving fluid which were developed for

the special theory of relativity in Chapter III. In more general

coordinates, however, the physical interpretation of the equations

of mechanics will be less direct as we shall see in later sections.

As we have shown above, a local observer at rest in a fluid, who
examines an element of the surrounding medium small enough so

that gravitational curvature can be neglected, will find the same

mecTianicdl behaviour as we should have been inclined to predict
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from our previous knowledge of the energy-momentum principle.

Furthermore, it may be emphasized that we can expect, as a result

of the principle of equivalence, some similar familiar findings in the

case of a local observer who measures the elecl^odyTUxmic or thermo-

dynamic behaviour of a small element of the fluid in his immediate

neighbourhood. Nevertheless, it must not be forgotten, in the general

theory of relativity, that proper coordinates can be expected to lead

to simple relations only in the immediate neighbourhood of a selected

point. The mistake must not be made, for example, of supposing

that the energy-momentum principle in its special relativity form

would hold in general relativity over a region of finite size.

This can be well illustrated with the help of the equation

^ (86,9)

which we have just derived, connecting the rate of energy change

which a local observer would find for a small element of fluid in his

neighbourhood with the rate at which work is being done on the

surroundings. The result for the individual element agrees with what

we might expect from our usual ideas as to the conservation and

transfer of energy. It should be noted, however, that this same

equation can evidently be applied to each one of all the elements into

which the total fluid of a finite system could be divided. And, with

positive pressure throughout, we shall later find that this leads to

possibilities for isolated systems in which the proper energy (poo^^o)

every element of the fluid is decreasing when the system is expanding

or increasing when the system is contracting.

This fact that the sum total of the proper energies of the elements

of a fluid which make up an isolated system is not necessarily constant

seems at first sight quite strange. It corresponds, however, in

Newtonian gravitational theory to the necessity of ascribing potential

energy to the gravitational field in order to preserve the principle of

the conservation of energy. And in the next two sections we shall see

how the analogous treatment of potential gravitational energy arid

momentum is to be carried out in the general theory of relativity.

The result that the sum total of the proper energies of the elements

of a fluid is not necessarily conserved proves to be of great importance

for relativistic thermodynamics. We shall later see (§ 131) that this

removes restrictions on the possibilities for entropy increase in an
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isolated system whidi were imposed in the olassioal thermodynamics

by the ordinary principle of the conservation of energy.

In oonolnsion, it should be speciallynoted in accordance with (86.8)

that perfect fluids have been defined in such a way as to behave

adiabatioally when examined by a local observer—^tihe proper energy

of an element of the fluid being subject to change as a result of exter-

nal work but not as the result of heat-flow. This circumstance should

be kept in mind in using perfect fluids for the construction of con-

ceptual models.

87. Re-expression of the equations of naechanics in the form of

an ordinary divergence

Although mechanical principles can often be applied most readily

with the help of the forms in which we have already expressed the

fundamental equations of relativistic mechanics in § 84, it will be

necessary to re-express these equations in the form of an ordinary

divergence in order to obtain for finite systems the analogues of the

olassioal principles for the conservation of energy and momentum.

This can be done with the help of a somewhat lengthy but weU-known

consideration which we may now consider in outline.!

We first define the so-called Lagrangian function fl in terms of the

ChristofiEel three-index symbols by the equation

£ == (87.1)

Since the combination of Christoffel symbols appearing inside the

square brackets is not itself a tensor, the quantity fi is not a scalar

density. Nevertheless, since equation (87.1) is taken as defining 2 in

all systems of coordinates, we shall be able to find its value in any
coordinates and can construct non-tensor but nevertheless covariant

equations in which it occurs.

Taking a small variation in 2 with respect to the quantities on
which it depends, it is found possible after considerable simplification

to write this in the form

-t-[-K (?W^))- (87.2)

Hence if we now regard £ as a function of the two new quantities

t The treatment of this section follows Eddington, The Mathem(U%c<U Theory of
BelaUvity, Cambridge, 1923, §§ 68 and 69.
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defined by g
and gg” = (87.3)

we can write gp_= —{fia, a}+0i»', oiXa^, (87.4)

and = -{;av, i8}. (87.6)

With the help of these two expressions for the dependence of fl on

the variables g#**' and gg”, we can now obtain several useful equations

containing £ which will be needed in the present section or later.

Comparing (87.4) and (87.6) with the expression for the contracted

Riemann-Christoffel tensor given by (77.1), it will be seen on examina-

tion that we can write this in the form

d 8S. 82.

0®“ agg’' agf*"
(87.6)

This result shows a formal resemblance to the equations of motion in

the classical Lagrangian form in agreement with the name that we

have given to the function 2. Furthermore, multipl3dng (87.4) and

(87.6) by g/“’ and gg" it can be shown after some simplification that

we can write
(87.7)

and 22. (87.8)

For the scalar density 91 we can then obtain the expresson

SR =

= gf**'—— —g/t*'—
“ a®“agg>' “ agf*”

a®“\^ agg7 ““
agg*- “ agf‘''

= ±.U^)-2.
a®“\“ agg--/

(87.9)

We are now ready to undertake the re-expression of the funda-

mental equations of mechanics in the form of an ordinary divergence.

To do this we shall wish to transform the second term in the previous

form for the equations of mechanics given by (84.8). In accordance
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with the original field equations (84.1), we can write

~ —

9

dg>"’-\-R d\l—g—2A d/^—g
= d^g-2A c?V-7
= -Bp. d{gy-y^-g)-2A d^-g, (87.10)

where we have made use of equation (39) in Appendix in, in going
from the second to the third of the above expressions. Substituting
the value for in terms of the Xiagrangian function given by
(87.6), and the value of gg*’ corresponding to the equation of defini-
tiou (87.3) we then obtain

-87ra:„„^ = flr/— —-~\-2A^ \dz« agg” agM-'j ^ 8xP

8 „„ afi 82 aV-9
aggvj

=± (g»vii\_ A np.
a aV^

= -1 /
aa:“V

=—

r

aa;“['

jfl \ as

''igV Bafi

afi

aV—
aa^

(87.11)

To make use of this result, let us now define a new quantity, which
may be called the pseudo-tensor density of gravitational energy and
momentum, by the equation

AV-?] . (87.12)

In accordance with this definition together with (87.11) we shall
evidently have

(87.13)

And substituting in (84.8), we may now write the equations of
mechanics in the desired form of an ordinary divergence

= (87.14)

This equation is not a tensor equation, both because the quantity
is not a true tensor density and because the expression is that for
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an ordinary divergence instead of a tensor divei^ence. Nevertheless,

is a qiiantity which is defined in all systems of coordinates by

(87.12), and the equation is a covariant one valid in all systems of

coordinates. Hence we may have no hesitation in using this very

beautiful result of Einstein.

In accordance with the definition of tji given by (87.12) and the

values for the quantities occurring therein as given by previous equa-

tions of this section, it will be noted that the value of tjl at any point

will be determined by the values for the components of the metrical

tensor and their &st derivatives Bg^fdaiy at that point. Further-

more, if we use natural coordvnalea for the particular point of interest

it is seen that the expression for will then reduce to

8wl;i = (87.16)

which by combining with the expression for the energy-momentum

tensor (84.1) will also give us in these coordinates

-8v(3;;n-ip = (87.16)

Since tj; is not a true tensor density, however, we shall not have these

simple results in all coordinate systems.

88. The energy-momentum principle for finite systems

With the help of our new expression for the principles of mechanics,

we may now obtain an important result which may be regarded as

the relativistic analogue of the ordinary laws of the conservation of

energy and momentum.

To do this, let us take x^, a:®, and a? as being space-like coordinates

and a:* the time-like coordinate, and apply equation (87.14) to a given

finite system of interest by multiplying by dx^dac^da? and integrating

at some given ‘time’ over the spatial region in question. Carrying

this out, we at once obtain with some rearrangement of terms

III

" "111
(88 . 1 )

and taking the limits of integration corresponding to the region as

being constants x^ to x'^, to a;'®, etc. independent of the ‘time’

3S»S.U 0
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this can be re-written in the form

-
JJ

|*;‘ cfcrw-
JJ

\Z%+iX’

by performing the indicated integrations on the right-hand side of

(88 . 1 ).

Equation (88.2) as written is true in all sets of coordinates, owing

to its immediate dependence on the covariant equation (87.14). The

interpretation and use of the equation are often simplified, however,

if we choose coordinates in such a way that the liimts of integration

etc., which must be taken in order to include the region in

question, actually lie on the boundary surface which separates the

system from its surroundings. Thus, for example, quasi-Cartesian

coordinates x, y, z with the limits of integration x to x\ y to y', and

z to 2', lying on the actual boundary of the system, are preferable for

our present purposes to polar coordinates r, 6, and </> with the limits

of integration 0 to r, 0 to tt, and 0 to 27r, in which case r would be the

only limit actually lying on the boundary. The increased simplicity

of the properly chosen coordinates arises from the fact that the right-

hand side of (88.2) is then determined solely by the values assumed

by tjj, etc. at the boundary of the system and is not dependent on

their values within the system. Having chosen coordinates in the

way suggested, equation (88.2) then states that the rate of change

with the ‘time* x^ of the volume integral on the left-hand side is

equal to the sum of the surface integrals on the right side, which has

a value that is entirely determined by conditions prevailing at the

boundary separating the system from its surroundings.

Equation (88,2) is thus of the proper form to be considered as the

expression of a conservation law provided we regard the right-hand

side as defining a flux through the boundary. Furthermore, if we
consider the limiting case of ‘flat* space-time where the special theory

of relativity would be valid, equation (88.2) could then be rewritten

using Galilean coordinates in the form

^ III

= - jj JJ
\T%fJdxH:x^- dx^das^,

(88.3)
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since would then be zero, in accordance with (87.16) and the value

A = 0 for the case of ‘flat’ space-time, and 3^ would equal owing

to the value unity for V—9 iu these coordiiaates. Bieferring, how-

ever, to our previous equation (38.10) we see that (88.3) is entirely

equivalent with ft = 1, 2, 3 to the special relativity expression result-

ing from the law of the conservation of the three components of

linear momentum, and with /* = 4 to the result of the law of the

conservation of energy,f

Hence we may now take (88.2) as the analogue in general relativity

of the usual energy-momentum principle if we define

== /// (88.4)

with /^ = 1, 2, 3 as the expressions for the components of momenta of

the region, and with /* = 4 as the expression for its energy. And in

accordance with this definition wo may now regard the quantities

I* as the densities of material energy and momentiun and the t*

as densities of potential gravitational energy and momentiun. This

necessity of including potential energy and momentum in order to

secure the analogue of the usual energy-momentum principle is in

agreement with the possibilities for the sum total of the proper energy

of an isolated system not to remain constant which were mentioned

at the end of § 86.

As a result of our definition (88.4), the quantities which we may
regard as representing the energy and momenta of a finite system

are not the components of a true covariant vector. They are, how-

ever, defined by (88.4) for all systems of coordinates and the equations

in which they appear are covariant equations true in all systems of

coordinates.

The physical significance of the quantities can be most easily

grasped in the case of an isolated system. Consider an isolated system

enclosed by a boundary located in the surrounding empty space at

a sufficient distance so that wo are justified in neglecting the curva-

ture of spacc-timo for points on the boundary and beyond. The

spatial region inside this boundary ctm then bo regarded as generating

a tube in a surrounding ‘Hat’ space-timo, and wo can choose coor-

dinates in such a way that they will go continuously over into some

t The loworod position of p in (88.3) os compared with (38.10) is not important,

sinoo (Tmo), = 0 implies T“'% = (Tp^ = 0 owing to tho relation (p«^), = 0. See

Appendix III, oquaiion (36).
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particular set of special relativity Galilean coordinates in the region

outside this tube.

Using these coordinates it is then evident that the general energy-

momentum principle (88.2) will reduce for such an isolated system

to the simple principles of the conservation of energy and momentum

S = 0,
(88-6)

diXr

since the right-hand side of (88.2) will now be zero in accordance with

(87.16), if we take the curvature of space-time as negligible at the

boundary of the tube as assumed.

Furthermore, it may be shown that the quantities are inde-

pendent of any changes that we may make in the coordinate system

inside the tube, provided the changed coordinate system still coin-

cides with the original Galilean system in regions outside the tube.

To see this we merely have to note that a third auxiliary coordinate

system could be introduced coinciding with the common Galilean

coordinate system in regions outside the tube, and coinciding inside

the tube for one value of the ‘time’ (as given outside the tube)

with the original coordinate system and at a later ‘time’ with the

changed coordinate system. Then, since in accordance with (88.6)

the values of would be independent of in all three coordinate

systems, we can conclude that the values would have to be identical

for the three coordinate systems.

In addition, it can be shown that the quantities would transform

like the components of a four-dimensional vector for the linear

transformations which could be introduced to change to any desired

new set of Galilean coordinates for the region outside the tube. The

rigorous proof of this, nevertheless, is somewhat complicated and we

need not include it here.f

As a result of the foregoing, we then see that the physical signifi-

cance of the quantities in the case of an isolated system can be

appreciated from the four properties of reducing at the limit to the

quantities which we have already taken as energy and momenta in

the special theory of relativity, of obeying a conservation law when

we use coordinates that are Galilean in the flat space-time outside the

system, of beiag independent of the choice of coordinates within the

t See Pauli, *Eelativit&taiheorie’, Snoydopddie der math. WUa. Band Vj, Heft 4,

Leipzig, 1921. § 21.
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i«gion of appreciable space-time ourvatore, and of depending on
different Galilean systems of coordinates in the surrounding ‘flat’

space-time in an analogous manner to the quantities dxf^/da which

can be regarded (see 28.4) as determining the momenta and energy of

a single particle in special relativity. This should assist in giving us

a feeling for the physical nature of these quantities.

89. The densities of energy and momentum expressed as
divergences

For some of our further applications of the energy-momentum

principle, it will now be desirable to re-express the quantities

which we regard as giving the densities of energy and
momentmn, themselves in the form of divergences. To do this, we
may first combine the expressions for Sj; and given by (84.1) and

(87.12) and write

whei'e it is interesting to note that the A-term cancels out even if the

cosmological constant is not exactly equal to zero. Substituting

from (87.6) and (87.9) we obtain
'

8?r(3i’'-f-t*’l = .gy ^ ^^1 0“’’
I

Iff’'
^

io“^

and this can evidently be rewritten in the form

(89.2)
afi

From the definitions which we have given for the quantities entering
into this expression, it can bo shown, nevertheless, by a rather lengthy

but straightforward computationf that the sum of the last three

terms of the expression will be identically equal to zero. This then

permits us to write the divergence

as a useful relation for calculating the relativistic densities of energy

and momentum.

t Tolman, Phys. Rev, 35, 876 (1930).
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90. Limiting values for certain quantities at a large distance
from an isolated system

In the foUoTOng section we shall wish to use equation (89.3) to
obtain eicpressions for the total energy and momentum of an isolated

material system. As a preliminary, we shall first calculate the limit-

mg values which would be approached at large distances from the
system by certain of the quantities which can occur on the right-

hand side of this expression.

In carrying out the computations, we shall use a system of quasi-

Gahlean coordinates (a?, y, z, t) which are chosen so that the material
system of interest is permanently located in the neighbourhood of

the origin x = y = 2; = 0, and so chosen that the line element will

approach the Galilean form at very great distances from this origin.

As a consequence we can then assign to the line element at sufiScient

distances from the origin the approximate Schwarzschild form given
by (82.15)

+ df» (90.1)

with r = ^lix^+y^+z^) and m = constant, (90.2)

since at sufficient distances the field will be spherically symmetrical
owing to the location of the material system, and will be static owing
to the isolation, which we shall regard as requiring the metric at these

system itself.

Neglecting terms of the order of (m/r) compared with unityj it is

easily found that the Christoffel three-index symbols corresponding
to this Une element will be of the forms

m dr

f
-y m dr

{p.v, (t) = 0,

1^ = 4

(90.3)

where n, v, and o represent different indices. In using these expres-
sions it will be noted in accordance with (90.2) that certain of these
quantities will be zero owing to the independence of r and jb* = t.

With the help of these expressions for the Christoffel symbols, and
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the expression for given by (87.5), we can now obtain explicit

expressions for quantities which can occur on the right-hand side of

(89.3) which will be needed in the next section. We calculate to the

same order of approximation as the expressions for the Christoffel

symbols

' 091“ 09i*

-{14, 1}+H4e,6} = 0

agr agr

= -{14, 2} = 0

= -{44,1}
TO dr

dx

^gd2 ^ ^ ^
‘ ag“^“ ag» agf agw+agfi

= +{11. 1}-J{1^.€}-H1^,«}+{22, 1}+{33. 1}-{44, 1}

mj dr ! dr dr 0^
,
0^\ . 0^

,

0>‘ dr\

r®[ ax y a* a* a* dxj dx'dx dxf

2m dr

r* ax*

Extending these results with the help of the symmetry in x, y, andx,

and replacing the derivatives of r with respect to the coordinates by
the direction cosines for the radius vector, we can then write

0g}“ 091“
r= 0

091“
(90.4)

0£
“ ag}«

0S
a“*

—

“ 091“

«4 0fi

“ 091“

-^cos(»x)
r

-5 008(^2/)

-^C0S(71Z)

dZ 2m

02 2to
,

.

2to , .

^O08(nx),

(90.6)

(90.6)
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as a list which gives the limitiag values at large distances from the
material system for those quantities which we shall need in the
next section,

91. The mass, energy, and momentum of an isolated system
With the help of the foregoing values, we may now obtain expres-

sions for the energy and components of momentum of an isolated

system. In accordance with (88.4) and (89.3), we can write for the
energy of the system

^ = *^4 = JJJ dxdydz

provided we take the integration over a sufficient volume surrounding
the system of interest. Taking this volume as a sphere of radius r
around the origin^ noting the summation implied by the double
occurence of the dummy y, using Gausses theorem to transform the
first three terms of the summation to a surface integral^ and noting
the values given by (90.5, 6) which will be assumed by quantities on
the right-hand side of (91.1) at sufficient values of r, we then obtain

^ JJ + co8*(«y) + coa^m)} da -f

The first term in this expression is immediately seen to have the value
The second term in the expression cannot be explicitly computed,

however, since it involves an integration over the whole volume of the
sphere which includes regions in the neighbourhood of the origin
where we know nothing about the nature of the line element. Never-
theless, since E7 is a constant in accordance with the conservation of
energy for an isolated system expressed by (88.5), and since m is
a constant as by hypothesis it determines the static field at large
d^ances, it is evident that the second term on the right-hand aide
o (91,2) must also be a constant; and hence indeed have the value
zero owing to the impossibility for the integral involved to change
pennanently at a constant finite rate. We thus obtain for the energy
of our isolated system Einstein’s very satisfactory result

U^m. (91.3)
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The momentum of the system with respect to the coordinates

being used can be similarly determined. In accordance with (88.4)

and (89.3) we can write for the component of momentum in the

flj«direction

and treating this in the same way as we did (91.1), noting the zero

values for terms in the integrand which will arise from (90.4), we

(91.4)

where the value zero rises from reasoning similar to that given in the

immediately preceding paragraph.

Summarizing, we may now write for the three components of

momentum J^, and and for the energy = i!7 of an isolated

material system permanently located at the origin of a system of

quasi-Galilean coordinates of the kind used

(0,0,0, m). (91.5)

The value zero for the three components of momentum arises of

course from our particular choice of coordinates, having the system of

interest at rest so to speak at the origin. The value m obtained for

the energy of the system seems very appropriate, since it shows that

the total energy of an isolated object is also the quantity, occurring

in the approximate Schwarzschild expression, which determines the

gravitational field at large distances from that object.

Making use of the possibility, already mentioned at the end of

§ 88, of showing that the components of would transform like

those of a covariant vector, for linear transformations which change

from one system of Galilean coordinates to another in the surroimding

‘flat’ space-time, wo could also write in agreement with (91.5) the

more general contravariant expression

JH' = (91.6)
as

where d^jda may be regarded as corresponding roughly to the velocity

of the system as a whole with respect to the particular set of coordi-

nates in use.
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92. The energjrof a quasi-static isolated system expressed by
an integral extending only over the occupied space

Por certain purposes both of the expressions for the energy of an

isolated system

t; = JJI
dardydz and U = m (92.1)

may be unsatisfactory. The first of these expressions suflEers from the

fact that the indicated integration will in general have to be carried

out over a volume which is large compared with the actual system of

interest, since ij is not in general equal to zero in empty space. And
the second expression suffers from the fact that it gives no method

of computing the energy from the actual distribution of matter and

radiation within the system. For a particular class of systems, which

may be called quasi-static, another expression can be obtained that

is Bometimea more usable.

Substituting into the first of the two expressions (92.1) the value

for the density of potential gravitational energy tj given by (87.12),

we obtain ... p ^ ao \

where the cosmological term, has been omitted since the application

will be to small systems which can be regarded as surrounded by

‘flat’ space-time. Introducing the expression for fi given by (87.9)

this becomes

Furthermore, substituting for SR, in agreement with (78.11), the well-

known expression

5R = SttI S7r{Z\+Zl+Zl+Zt),

expanding the third term of the integrand, and then combining with

the fourth term, the expression for U can be rewritten in the form

^ ~ 11J
3^1—3^1—3:1) dxdydz +

+ i

(92.2)
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To proceed, let us now introduce the definite requirement that the

coordinates (x, y, z, t) be chosen so as to be of the quasi-Galilean type

used in the two preceding sections, with the physical system of inter-

est permanently located at the origin. The second integral on the

right-hand side of (92.2) can then be readily evaluated with the help

of Gauss’s theorem, by taking the region of integration as a sphere

and introducing the values given by (90.6) at the distant boundary.

We thus obtain for the second integral the value^ which in accord-

ance with (91.3) is also equal to ^U. Substituting in (92.2) we then

obtain

U ==
JJJ

{Zl—X\—Zl—%l)dxdydz-\-

Finally let us define a qua-si-static system as one in which changes

are taking place with the ‘time ’

t

slowly enough so that the second

term on the right-hand side of (92.3) is negligible compared with the

first. This will, of course, be strictly true when wo are interested in

quiescent states of temporary or j>ormanent equilibrium. For such

systems we can then use the simple expression for the energyf

C7 = JJJ (Il-^J-TI-IJ)
dxdydz. (92.4)

And this expression has the great advantage that it can be evaluated

by integrating only over the region actually occupied by matter or

electromagnetic energy, since the values of will bo zero in empty

space.

t Tolman, Phytt. Rev, 36, 875 (1930).
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RELATIVISTIC MECHANICS {contd.)

Part II. SOLUTIONS OF THE FIELD EQUATIONS

93. Einstein’s general solution of the field equations In the case

of weak fields

As mentioned at the beginning of this chapter, the principles of

relativistic mechanics are all implicitly contained in Einstein’s field

equations
-SnT’;, = (93.1)

which connects the energy-momentum tensor with the geometry of

space-time. In the preceding part of the chapter we have investigated

those mechanical conclusions which arise from the fact that the

tensor divergence of the energy-momentum tensor must be equal

to zero, since the tensor divergence of the right-hand side of (93.1) is

known to be identically equally to zero. In what follows we shall be

interested in the more complete problem of obtaining solutions for

the ten differential equations denoted by (93.1), which will permit

us to correlate the components of the energy-momentum tensor as

directly as may be with the components of the metrical tensor

In the case of weak enough fields this problem has been completely

solved by Einstein’s approximate solution of these field equations.

In the case of strong fields we can obtain no general solution of the

equations, but by introducing special assumptions as to the physical

, nature of the system under consideration, can obtain a number of

simplified expressions relating the components of 2^ to the com-

ponents of and its derivatives which prove to be useful in solving

the equations in particular cases.

We may first consider Einstein’s general approximate solution. To
obtain this solution we shall assume the gravitational field so weak
that we can employ coordinateswhich are nearly Galilean in character,

and can hence represent the components of the metrical tensor by the

expression ^
where the are the constant Galilean values for the g^y, ±1 and 0,

and the are small correction terms. The quantities and their

derivatives with respect to the coordinates will be regarded as terms

of the first order whose squares may be neglected. We shall also find



$ 93 WEAK FIELDS 237

it oonvenient to introduce the quantities

h = K = (fl3-3)

where the S'*” are the Galilean values of the gi^.

Turning now to the expression for the oontraoted Riemann-

ChristolTel tensor given by (77.1), it is evident by neglecting higher

order terms that we can write correct to the first order

3 3

3x^^

=s.K('
.!5e?n

,8x^^ dxi* a»»j)

e
(**°*{

1

[8x'' 3a^ f

Igox/ d%x
^ [dx/^dx” dx’’8x^ dxf’dx^ dx°8x^,

i

Rearranging, introducing the quantities defined by (03.3), and chang-

ing dummy sufifixes, this can be rewritten as

\

B,
dx^dx^

(93.4)
\dzi*dx'' dx^dx^ dxi^dx'^l

We shall now show the possibility of satisfying this relation by the

two equations

'/ii' ^ dxf’dx^

and = 0.

(93.6)

(93.6)
dxl^dx'’ 8x''dx°‘ dxl^dx^

In accordance with (93.6), and our original expression for the

energy-momentum tensor (93.1), omitting the cosmological term, we
can evidently write

This ‘wave equation’ has the well-known solution familiar in the

theory of retarded potentials

[- 16nJ%]
{K-Wah) = J.fl

4fl-

J

dxdydz, (93.8)
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whete the integration is to be earned out over the whole spatial

volume, f is the distance from the point of interest where the value

of (Ajl— is desired to the particular element of volume dxdj/dz

under consideration, and the square brackets indicate that we are

to use the value of at a time earlier than that of interest by the

interval needed for a signal to pass with imit velocity from the

element dxdydz under consideration to the point of interest.

To complete our justification for this solution we must show that

it also secures the validity of (93.6). Erom the differentiation of

(93.8), we can write

J
In accordance with (93.7), nevertheless, T® is a quantity of the first

order, and hence in accordance with the fimdamental relation for

the divergence of the energy-momentum tensor (84.5), its divergence

will be a quantity of the second order, and we can write to our order

of approximation
^

Substituting this, however, together with the analogous expression

in V, we immediately see that this will secure the necessary validity

of (93.6).

The approximate solution of Einstein’s field equations which we
have thus justified

= -4
J^ dxdydz (»3.9)

proves to be very useful in permitting for the case of weak fields a

straightforward calculation of the small deviations from the

Galilean values for the metrical tensor, whenever the energy-

momentum tensor is given as a function of the coordinates. Although

the method of treatment provided by this solution is limited to weak
fields, it should be specially noted that there is no limitation as to the

velocity of the matter producing the field; and this provides a gi’eat

step forward from the Newtonian level of treatment where there was

great uncertainty as to the mechanism and velocity with which

gravitational effects would be propagated.

In accordance with the interpretation which we have for the right-

hand side of (93.9), it is evident that we must now think of gravita-

tional effects as propagated in the present coordinates with unit



1 93 WEAK FIELDS 239

velocity, that is, with the same velocity as light. Furthermore, in

accordance with the ‘wave equation’ (93.7), it is evident that we may
expect gravitational waves carrying energy and propagated with this

velocity. The emission and absorption of such waves, which to be

sme may be expected to carry only extremely small amounts of

energy, have been investigated by Einstein.'f

The solution (93.9) has been used by Thirring and Lense| to discuss

the effect of the rotation of a central astronomical body on the

surrounding gravitational field and hence on the motion of satellites.

The effects of such rotations are too small to be of practical astro-

nomical interest. The solution has also been used by Thirring§ to

investigate the theoretical problem of the gravitational field inside

a thin rotating shell of matter, with the interesting and clarifying

result that the rotation of the shell leads as might be expected to

analogues of the centrifugal and coriolis forces of ordinary mechanics.

In the next chapter the solution will be used in investigating the

gravitational field produced by pencils and pulses of light.

94. Line elements for systems with spherical symmetry
Although wo have no general solution for Einstein’s field equations,

except in the above case of weak fiekls, we can nevertheless often

proceed by assuming a form for the solution which corresponds to

the nature of the physical problem under consideration, and then

investigating the properties of this proposed form. Thus, for example,

if the physical system of interest is such that wo know that its

structure is spatially spherically symmetrical, wo can fi^el sure that

coordinates can be chosen in such a way that the liiu; (dement for the

system will exhibit this symmetry.

As the most general form of line (dement exhibiting spherical

synlmetry we may evidently write

(fs3 _ _gA _eA4(r2 dO^ +r‘^sm^0 (f<j6®) df.’^ -f-2a drdt, (94.1)

where A, fx, v, and a are functions of r and i alone and the coellicients

— e^, —el'', and -f-c*' have been chosen in the. exponential form in order

to distinguish clearly between the a[)acc-Iikc coordinates r, 6, and ^
and the time-hko coordinate t.

This general form of spherically symmetrical lino element can,

tEinstoin, Berl. Ber. 1018, p. 164.

t Thirring and Loiwo, F/»i/s. Eflito. 19, 160(1018).
S Thirring, Phya. ZeiU. 19, 33 (1918) j ibid. 22, 29 (1921).
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however, be subjected to simplifying transformations. To do this we
may first introduce a new variable r' in accordance with the equation

/2 _
(
94 . 2)

Making this substitution, and dropping primes, it is easily seen that

the line element is then expressible in the form

dt^ +2a drdt^ (94.3)

where A, v, and a are now new functions of the new r and of t.

A further simplification which will eliminate the cross product can

now be made by substituting a new time variable in accordance

with the equation ^ ^94 4)

where is an integrating factor which will make the right-hand side

a perfect differential. In accordance with (94.4) we shall have

a*
e” di* -f 2a drdt = ~—— dr®, (94.6)

so that on substitution into (94.3), and dropping primes, we can then

express the line element in the simple standard form

ds® = — dr® —r® dd® —r®sin®^ d(^® -j-e” di®

A = A(r,0 v = v(r,t), (9^-6)

where A and v are functions of the present r and t alone.

f

The possibility of eliminating a single cross product by the use of

an integrating factor as in (94.4) greatly simplides the treatment of

problems exhibiting spherical symmetry.

For some purposes a somewhat different form of the line element for

cases of spherical 83mmetry is more convenient. This may be obtained

from (94,6) by introducing a new variable r' in accordance with the

equation
^ = el^-.
r' r ’

(94.7)

Making this substitution, and dropping primes, the line element can

then be expressed in the form

tfaa ^ -eM(dr2 +7-2 dd^ d<l>^)+e^ dfi

/x = /x(r,«) v==v(r,0> (94,8)

where ft and v are now functions of the present r and t. And by an

t Lemaitre, Monthly NoticeSt 91, 490 (1931).
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obvious further substitution this can also be rewritten in the form

ds® = _ef*(da:®4-d2/*+cfo*)+e’’ dt^

H = li(r,t) v — v(r,t) r = ^(x^+y^+z^). (94.9)

These two latter systems of coordinates may be called isotropic.

95. Static line element with spherical symmetry

We must now turn to a more detailed examination of the foregoing

proposed forms of solution for the field equations. To assist in

obtaining actual solutions from them, we shall desire explicit expres-

sions for the Christoffel three-index symbols and for the components

of the energy-momentum tensor in terms of the quantities used in

expressing these proposed line elements.

We may first consider physical systems which are static as well as

spherically symmetrical. In accordance with (94.6) we can then

write our line element in the standard form

dr^ — r* d6^ — r®sin*^ dgi® -i-e’’ dfi

X = X(r) V = v{r). (96.1)

The Christoffel three-index symbols corresponding to this form of

line element can easily be evaluated from the definition given by
(73.14) and are well known to have the values

{11,1}- iA'

{12,2}- 1/r

{13,3}- 1/r

{14,4}= Jv'

{31,3}= 1/r

{32, 3} = cote

{33,1} - -rsin^fle-'

{33,2} — —sine cose

{21,2} = 1/r

{22, 1}
— -re-^

{23,3} = cote

{41,4}= K
{44, 1} — ie»’-V,

(96.2)

where accents denote differentiation with respect to r, and all further

three-index symbols vanish.

Using these values of the three-index symbols the components
of the contracted Riemann-Christoffel tensor can then be

computed with the help of (77.2), and the components of the

energy-momentum tensor obtained from (81.6). It is simplest to

express these in the form of the mixed tensor. The only ones which do
3695.11 „
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not vanish are found to be

§95

8,3» = -e-A(^+^)+^-A

(96.8)

Instead of taking the line element in the form (94.6), we could of

course also uae it in the isotropic form (94.8)

ds* = —e**(dr*+r® dfl® +r®sin®d dfi

ft = /t(r) V = v(r). (96.4)

The Ohristofiel S3rmbols corresponding to this form in the case of

a statio system are

{11,1} = ^/
{l2,2}=l|r+i^i’

{13.3}=l/r+|/

{14,4} = ^v'

{21,2}= 1/r+i^'

{22,1}= -(r+4rV)

{23,3} = cot0

(96.6)

{31,3}=l/r+4;.' {41,4} =iv'

{32, 3} = cot 6 {44, 1}
=

{33, 1}
= —(r+^V)s™-®^

{33, 2}
= —sin 5 cos 0

where accents again denote difierentiation with respect to r, and all

further three-index symbols vanish.

The non-vanishing components of the energy-momentum tensor

corresponding to this form of line element are

8,rT| = 8,rT| = (96.6)

STrTi =

In applying either of the above forms of line element to a system

which consists of a perfect fluid, we shall have in accordance with
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(85.7) for the energy-momeBtum tensor

Ti^'’ = (Poo+l>o) (96-7)

or lowering the index ju

^ ~ ipW)~^!P^9ant~^ (96.8)

Since we are dealing with a static problem, however, we can evidently

write, in the case of both of the above line elements, for the com-

ponents of fluid ‘velocity’

d/r dd ^ _ Q
d8~ d8~ da

~ (95.9)

Introducing these values into (95.8) we then obtain for the com-

ponents of the energy-momentum tensor

(Tj = Ti = = -Po Ti = p^, (96.10)

which may be substituted in the case of a perfect fluid into (96.3) and

(96.6).

Furthermore, in the case of a perfect fluid, the equality between

the radial stress T\ and the transverse stresses T\ ~ T% makes it

possible to derive a very simple expression for pressure gradient.

Thus equating the two expressions for T\ and T\ given by (95.3) we

obtain

^ 4 ^ 2r
= 0.

And multiplying through by 2/r and rearranging terms, this can be

rewritten in the form

which on comparison with (95.3) and (96.10) is seen to be equivalent to

^+ (Poo+Po)^ - O' (96.11)

This is the relativistic analogue of the Newtonian expression for the

dependence of pressure on gravitational potential

dr^'^dr
= 0 .

A result of exactly the same form as (96.11) can also be obtained in

the case of isotropic coordinates by equating the two expressions for
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T\ and T\ given by (96.6), and again multiplying by 2/r and reairang-

ing terms.

Hence in the case of a static system having spherical s3nmmet(ry and

consisting of a perfect fluid we can take the line element in the

standard form

ds* = — dr*—r® d0® —r*sin®0

A = A(r) V = v(r)

with ft I \ I

„ Jv" AV V'* V'-A'\ . .=
^ (2-T'+T+^)+^

8vpoo = e-^(^-i)+i-A

^ _ (Poo+yp)'^' .

dr ~ 2
’

or in the isotropic form

ds^ = — +r2 +r%in®0

p = /i(r) V = y(r)

with

8^o = e-.(4V'^'+^-:^')+A

8’^Poo
= —

A

%
dr

(/^oo+Po)^'

2

(96.12)

(96.13)

(96.14)

(96.16)

It should be noted, moreover, is using equations (96.13) or (95.16) to

determine the form of line element in terms of the distribution of

density and pressure that they only express three original con-

ditions. In solving the equations, this then permits us when desired

to substitute, in place of the more complicated of the two eicpressions

for pressure, the much simpler and physically more illiiminating

expression for pressure gradient.
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96. Schwarzschild’s exterior and interior solutions

Before proceeding to more complicated line elements, we may now
illustrate the method of using the relations given in the preceding

section in order to obtain aetual solutions for the form of line element.

In § 82 we have already used the relations (96.3) to obtain the line

element surrounding an attracting point particle. The solution

obtained, however, is equally applicable to the empty space surroimd-

ing a finite static system having spherical symmetry, and we may call

the result Schwarzschild’s exterior aohMon.

To obtain this exterior solution, we may take the line element as

being in the form (95.1) already discussed

= —e^ dr^ dd^ — r^sin^fl d(ffi dt^ (96.1)

and then set all the components of the energy-momentum tensor

which are given by (96.3) as equal to zero in theempty space surround-

ing the sphere of matter. This will provide us with the three differen-

tial equations

j—A = 0 (96.2)

which are readily found to be satisfied by the solution previously

given, corresponding to the line element

ds^= -r^ tie^ -rW0 d<f>^ +/l_ dt\

"r 3 (96.3)

where 2m is a constant.

This form of solution is to bo taken as valid everywhere in the

empty space outside the sphere of matter, and must be continued

inside the sphere by another form of solution which will depend on the

properties of the matter composing the sphere. To obtain such an

interior solution for a particular case, we may assume with Schwarz-

sohildf that the material composing the sphere consists of an incom-

pressible perfect fluid of constant proper density In accordance

'li
,/2

+1-+-2T

t Schwarzechild, Berl, Ber, 1916, p. 424,
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with (96.13) we can then write

8«3>o = «^(74-^a)-^*+A

8^/>oo = e-A^
7-^)+ 72

-A

^ = (poQ+Poy
dr 2

as equations for the interior of the sphere, which are to be solved

under the conditions that the pressure be zero at the boundary of the

sphere, and that the density pqq be constant inside this boundary.

As a result of the constancy of poo immediately inte-

grate the second of these equations (96.5) and obtain

c-A_i A-|-877poo^a
I

g
3 ' r

§96

(96.4)

(96.6)

(96.6)

as can readily be verified by redifferentiation, C being a constant of

integration; and to remove singularities at the origin, we shall assign

the value zero to this constant and write the desired solution for

A in the form

with
3

A+87r/)ofl‘

(96.7)

To obtain a solution for v we may first integrate equation (96.6),

which on account of the constancy of p^, will give us the simple result

(/’oo+iPo) = «“*”•

Combining this with the expressions for Po Poo given by (96.4)

and (96.6) we obtain

_ const.,

and, substituting the value for e-^ given by (96.7), this becomes

which will be seen to have the solution

where A and B are the two constants of integration.

In accordance with (96.7) and (96.8) we can then write Schwarz-

schild’s interior solution for a fluid sphere of constant density poo ^
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the form

== - -r%in20d^2 dt^

(96.9)

or substituting sinx = -n (96,10)
It

we can also write it in the form

da^ — —i2®(dx®+sm®x dd^ +3in**xsin*ff <i^®)+(j4—.Boosx)“£K®,

(96.11)

which shows that the spatial geometry inside the fluid is that for the

‘surface’ of a sphere in four dimensions.

The pressure corresponding to the line element (96.9) is found with
the help of (96.4) to be given by

35V(l-r*/iZ*)-J_/35V(
A~ gr-)+A. (96.12)

Neglecting terms containing A which can in any case only be of im-

portance at great distances from the origin, we can then make the

pressure equal to zero at the boundary of the sphere and make
the interior solution (96.9) agree at this radius with the exterior

solution (96.3) by assigning the following values to the constants in

the expressions

which completes the solution of the problem.

In order for the solution to bo real wo must have

8

(96,13)

r\ < R^, r\ < , 2m < r^, (96,14)
oTrpoQ

which puts an ux>per limit on the possible size of a sphere of given

density, and on the mass of a sphere of given radius. These limits are

very generous, however, and have so far led to no conflict with

astrophysical observation.

97. The energy of a sphere of perfect fluid

Before leaving the discussion of spheres of fluid, it will also bo of

interest to show the xiossibility of obtaining a very simple expression

for their total energy when in a quasi-static state.

t

t Tolinun, Phi/R. Rev. 35, 876 (1930).
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To do this it will be simplest to consider the line element in the

isotropic form
ds* = dt^

fi — fi{r) V = v{r) r = ^/{x^+y‘+z*)^ (97.1)

Since the coordinates y, z, t for this form of line element are evi-

dently of the quasi-Galilean type, which become Galilean at great

distances from the origin, we can then write in accordance with. (92,4)

u = JJI (a:i-a;i-2i-a|) dxd/ydz

= JJJ
(2’*-Ti-T|-^T|)c*<8/*+>'5 dxdydz, (97.2)

as an expression in these coordinates for the energy of a sphere of

fluid having the above line element. We can substitute, moreover,

for the component of the energy-momentum tensor the expressions

in terms of density and pressure given by (95.10), and remite

the energy in the form

U = JJJ (poo+3po)e«®'‘+’'> (®'='-3)

Or finally, noting that the proper spatial volume, corresponding to

a coordinate range dxdydz, will be

dxdydz, (97.4)

we can re-express the energy for a static sphere of perfect fluid in the

simple and physically understandable form

= J
(/’oo+3p„)ei’' (97.6)

where the integration is to be taken over the whole proper volume of

the sphere.

In the case of weak enough fields, i.e. small enough spheres so that

the Newtonian theory of gravitation can be regarded as a satisfactory

approximation, it is interesting to show that the above expression

for energy would reduce to what might be expected on the basis of

Newtonian ideas.

In weak fields, in accordance with (80.9), we can take the ordinary

Newtonian potential ift as given by the expressionf

*!> = i(?44~l) = J(«*'— 1) hv,

t Where c in (80.9) has been set equal to one to correspond to our present units.
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and hence can make the approximate substitution

in the formula for the energy of the sphere given by (97.5), This then

gives us

^7 = J (Poo+3i’o)(l+0)^
= J Poo^ + J Poo0^ +3 Jpo^ +3 J jPo^ (97.7)

This expression can be changed, however, into a more recognizable

form. Since for weak fields ifs will be small compared with unity, and

Pq for ordinary matter small compared with pqq, we can neglect the

last term in (97.7) in comparison with the other terms, and can drop

the subscripts (q) in the second and third terms which specify a

proper system of coordinates for the measurement of quantities. We
then have r r r

U = fpoodf^o + jf^dV+sjpdV. (97.8)

On the basis of Newtonian theory, moreover, we can make a further

substitution. Integrating over the total volume of the sphere con-

tained within its radius r^, we can write

9 j
pdV — ^ j

477r^ dr

0

= |47Tr®^|^'—
J

4777^ dp
0

= —
J

477r®d!p,

0

since the pressure will fall to zero on the boundary of the sphere at r^.

And since dp is the total radial force acting outward on the

spherical shell of material dM^ lying between the radii r and r+dr, we

can equate this to the gravitational attraction acting on this shell

and write ,.

3 J
J) dF = J^ dM^.

0

Or finally, since the right-hand side of this expression is evidently the

work which would bo necessary to remove the total material of the
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shell to infinity, we can substitute the usual exi)res8ion for potential

energy and write

ajpdV=- j^P>pdV. (97.9)

Substituting (97.9) in (97.8), we then have for the total energy of the

sphere
U = j

dF^ + j ifnj, dV. (97.10)

We thus see, at the Newtonian level of approximation, that the

relativistic formula for the total energy of a fluid sphere would reduce

to the Slim of the total proper energy and the usual Newtonian ex-

pression for potential gravitational energy. This satisfactory result

can serve to increase our confidence in the practical advantages of

Einstein’s procedure in introducing the pseudo-tensor densities of

potential gravitational energy and momentum

98. Non-static line elements with spherical symmetry

We must now turn to the more complicated case of non-stcUic line

elements with spherical symmetry. In accordance with (94.6), we
can then assume the solution to be of the standard form

A = A(r,^) V = v(r,t), (98.1)

The ChristoflEel symbols corresponding to this form of line element

ore found to be

{11, l} = iA'

{11,4} =
{12,2}= 1/r

{13,3}=l/r

{14,1} = iX

{14,4} = K

{21,2} = 1/r

{22 , 1}
= —re-^

{23, 3} = cot $

(98.2)

{31,3} = 1/r

{32, 3} = cot 6

{33, 1}
= —rsin^fle-^

{33,2} = —sindoostf

{41, 1} = iA

{41,4} = K
{44, 1}

=
{44,4} = H

where the accents indicate differentiation with respect to r and the

dots with respect to t, and all further three-index symbols vanish.
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Using these values of the three-index symbols, the components of

the energy-momentum tensor which do not vanish are then found to

have the valuesf

It is interesting to compare these expressions for the components of

the energy-momentum tensor with the corresponding ones (96.S) for

the static case. As has been pointed out by Lemaltre it will be noted

that the difference lies only in the added term in the components of

transverse stress and jTJ and the appearance of the new components

T\ and T\, Roughly speaking, we can then say that the change from

the static to the non-static case corresponds to the appearance of

a transverse wave coupled with a radial flow of energy.

We could, of course, also use isotropic coordinates m the case of

spherical symmetry, and assume the solution in accordance with

(94.8) to be of the form

IL == jLt(r, t) 1
/ == v{r, t), (98.4)

The Christoffel symbols corresponding to this form of line element

are found to be

{11,1} = ^/ {21,2}= l/r+l/

(11 ,
4} = (22,

1}
= -(r+^Y)

{12, 2} = 1/r+i/x' {22, 4}
=

t Tho above values for the Christoffel three-index symbols and for the components
of the energy-momentum tensor were oaloulated by Dr. Boris Podolsky and the

present writer. The values of the agree with those obtained for this stole line

element by Lemaltre, Montfdy Noticed, 91, 490 (1931).
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{13,3} = 1/r+iM' {23,3} = oot0

{I4.l} = iia {24.2} = iA6

{14,4} = y (98.6)

{31,3} = l/r+J|a' {41,l} = iA

{32,3} = oot3 {41,4} = iv'

(33, 1} = — {42,2} = iA

{33,2} = —sin 0008 0 {43,3} = 4A

{33,4} = ^*sin*0cM->'/i {44, 1} =
{34,3} = J/i {44,4} = i.>,

where acoents again denote differentiation with respect to r and dots

with respect to and all further three-index symbols vanish.

The non-vanishing components of the energy-momentum tensor

corresponding to this form of line element are!

8.11 = 8.2^ =

A (98.6)

^T\ =

8.!rj =

99. Birkhoff’s theorem

The expressions (98.S) for the energy-momentum tensor corre-

sponding to the standard form of line element (98.1) make it easy to

derive an interesting theorem originally due to Birkhoft.J

Consider a spherically symmetrical mass of material smrounded by

empty space free from matter or radiation. Since all the components

t The above values for the Christoffel three-index symbols and for the components

of the energy-momentum tensor were calculated by Dr. Boris Podolsky and have been

checked by Dr. Dingle with the help of the more general results given in § 100.

J Birkboff, activity and Modem Physics, Harvard University Press, 1923. See

p. 263, § 7.
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of the energy-momentum tensor will have to be zero in this empty

space, we shall have to have

A = 0 (99.1)

in the space surrounding the sphere of material, as a result of the

appearance of A in the expressions for T\ and T{ in (98.3).

With X = 0, however, it will be seen that the expressions for -the

energy-momentum tensor (98.3) become identical in form with those

for the static case given by (96.3), and hence in the empty space

surrounding the sphere will again give SohwarzscMld’s exterior

solution (see § 96)

e“^ = e'' = (99.2)

where m will again have to be a constant independent of the time to

preserve the truth of (99.1).

Hence the condition of spherical symmetry alone is sufficient to

secure Schwarzschild’s static exterior solution for the empty space

surrounding a sphere of material. And spherically symmetrical

pulsations could take place in the sphere without any loss of mass or

energy due to gravitational waves. For an actual loss of energy we
should have to give up the requirement of empty space surrounding

the sphere, and permit an actual flow of matter or radiation.

100. A more general line element

To conclude the present chapter, we may finally give the Christoffel

symbols and components of the energy-momentum tensor correspond-

ing to a very general form of line element, which have been computed

by Dingle,t

For the line element we shall write

da^ = -A((fo:i)2-j5(tto2)2-C'((fa:»)®-|-D(da^)*, (100.1)

where A, B, C, and B can be any functions of the coordinates, all

four of them being regarded as essentially positive quantities so that

*1, a:®, will be space-like coordinates and time-like. This line

element is more general than any of the previous ones which we have

considered. It assumes the possibility of eliminating cross products,

but does not require spherical symmetry.

f Dingle, Froc. NtU, Acad. 19, 661) (1933).
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The ChxistQSel symbols oorref^onding to this liae element aie

{21,1} = +^ ^ ^iAdx* {31, 1} = +JLM
24a*»

{41,1}=
241 dx^

{21,2} = +——' ^ ^253*1 {31,2} = 0 {41,2} = 0

{21,3} = 0 {41, 3} =: 0

{21,4}= 0 {31,4} = 0

{22, 1} = —^ 243*1
{32, 1} = 0 {42,1} = 0

{12,2} = -f--Lf5' ^ ^2153*1 '“•^'-+AS
{12,8} = 0 -AS {42,3} = 0

{12,4} = 0 {22,4} = -t-JL£®^ ^2Ddx* {32,4} = 0 fAo t
^ BD{42,4}=4.__

{13,1}= -f-J-H^
^2Aa!B»

{23,1}= 0 {43,1} = 0

{13,2} = 0
'“•^>-+AS {43,2}= 0

<'"•«-+AS AS {43,3} = -
1
-4;
—

^ 2C7e**

{13,4} =3 0 {23,4} = 0 //4.Q t
^ BJ^{43,4}=-|-__

{14,1} = +-L?A’
^2AS®« {24,1} = 0 {34, 1} = 0

{14,2} = 0 {24,2} = -1--L^
^2Ba*i

{34,2} = 0

{14, 3} = 0 {24, 3} = 0 - +AS
{14,4}= -(—L£5

21)5*1
{24,4} = -]--L£5

^
^2£)S*>

{34,4} = -}- JL£^^ "
^2Z)a*=

and the components of the energy-momentum tensor 2^ are

2[BC\d(pi^)^~^ d(xY) ~BD\d{x^)’^ d{x^)y

(100.2)

ir 1 idB dO

1

CD
/ 32(7

^a (
a:«)2 e(a^)VJ

BC BJB

dx^ dx^'^

1 (dDdB /a5\a)

BD»{ex* a** [exy j '^DB^dx^ dx^\^] J

~
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CD^Xda^da* \dafi) i'^DO^[dx^ da? [da?) j

£CD\8x^ 8x^ da? da? da? da?j ABC da? dx^

I dBdD 1 dC dDl .

ABDda?da? AGDda?da?y

^n '

1 fd^A w\
lU(7\0(x®)® ^0(a^)®/

1 ll?A d?D\
AD[d{x*)^ d(a?)y

1 (
d^O d»D \

CB[d{a?)* Spipj

4[AC^[da?da?'^\da?) CA^[da? dx^^[da?} )

1 (dAdD (dD^X 1 (dDdA (8^y\_
AD^[da?da? \dx>] ]'^DA^^^ 1

1 \dO ^_ tdj^x J_/^ ££_ /?£V\_
CD^da? da? ^a*®/ j '^DcAps? da? \a»*j

)

1 tdC dD dA dD 8A dG\ 1 dA dC
AGD\dx^ dx^'^da? da? da? da?j ABC dx^ da?

1 dAdD 1 dC 0D] .

ABD 0*® 0a:® BCD dx^ 0a:®J

dmT\ = r 1 / 0®4 0®5\ 1 / d^A a®D\

iUj5\a(x®)®"^a(x®)®) AD[d(a?)‘~ 0(x®)®j

1 IS?B a®2)\]

BD[d(a?Y a(x®)»/J

ir 1
, W®\ 1 f^AjL.(A.\^

4cYAB^\dx^ aa:®"^\0xV |^^^®^0a:l da?'^\dx^) f

1 fdA^^_ /^\®\ JL/£5^_ /£dVl-
AD^da? da? [da?] ]

*"i>^®(0a:i dx^ [da?] j

1 (dBdD (dD^X 1 (dDdB /0£\®]

BD^\da? da? \0a:®j j '^DB^\dx'‘ 0a:® [da?] /

1 (dB dD dA dD dA dBX 1 dA dB
~ABD\da? ax®

*
0x* 0x® ax* 0a:*) ABC da? da?'

\ dAdD 1 dB 02)] . .

ACDda?^ da? BOD da? da?\
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d»A . d^C• 1 / 0®^ 0®5 i

45\0(®®)®^
^
0(®®)*;

l I d^A \

{100

1 l^B
'^BG\d{a^)^

1 (dB dC dA 80 8A dB\ 1 dAdB
ABO\dx^ dx^^dx^ dx^'^dx^ dx^j '^ABB dx* dx*'^

1 8A 80 1 8B80'\ .

'^AOD 8x* da^'^BOD 8x^ 3®*]“^

—SttATI = —SirBTl

iri 8^0 1 S^D '\ If \ 80 80 I 8D 8D
2Y08x^8x^'^D 8x^8x^y 4\_C^ 8x^ 8x^^ 8x^ 3

®*"^

'^AOdx^ Sx^'^AD 0®* 8x^'^ BO 8x^ 8x^^ BD 8aP^ dx^J

-SnAT\ = -SttOTI

__ iri 02£ 1 0*D
1 ,

iri 8B8B 1 8D8D~
2[b 0®10®3 D 0®10®»J 4[b^ 0®i 0®®"^D® a®i 0

®*'*'

'^AB 0®3 dx^'^AD 0®s 0®!'*' 0®i dsc^'^OD 8x^ 0®»J

—87r531 = —SttOTI

= Ifl ,1 0».D
]

ir 1 0^ ^ . JL ^4-
21A Sx^dx^'D 0®*0®*J 0®2 0®®~^Z)® 0®® 0®®

1 I dD8B I 8D 0(71

0®® 0®8+ JL(7 0®» 0®a'"/)£ 0®® 0®3'^DO 0®® 0®®J

-SitAT{ = +S7tDT\

_ iri 0®5 1 0®C7 I iri 05 05 I 80 80
~~

£[5 0®i0®*‘^ 0 0®10®*J 4[5® 0®*"^ O'®
0®i 0®*

“*^5 0®* 8x^'^AO 0®* 0®i'*‘55 0®1 da*^DO 0®® 0®*J
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+ S7rDTt

ir 1 d^A 1 d^c 1 iri dAdA idOdC
2[a dx^ex*'^ O dx^dx^l'^ 4iA^ a** a®*"*" O* dx* aa^"^

4_JL^ ?^_uJL ^ g-B
,

I 8.P g<71

^^J5 a®* a** aa?*’’" OB ex^ a** a**]

+8ffI>!Z’|

iri d'^A 1 a»jg 1 ir 1 ajL a^ 1 a.B ajB

2[^ da^dx^"^B dx*8x*‘\
'

4[j4® dafl doc*'^ jB® aa:® aa;*

_i__L !£4.J_ 8-P
,

1 a.g ao i a^ aj?]

AO aa:® aa:*"^ J.X) aa:® da?"^BG da^ Ba^'BD dx^ dafl]

(
100 .3)
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REIATIVISTIO ELECTRODYNAMICS

Por^J. THE COVAEIAOT GBNEBALIZATION OP ELECTBIOAL THBOBY

101. Introduction

In the present chapter we shall give a brief account of the exten-

sion of electrodynamics to general relativity which is customarily

made and which can be based on the electrodynamics of special

relativity already considered in Chapter IV. We shall also consider

some applications which are of interest for omr further work.

We shall first consider the relativistic generalization of the Lorentz

electron theory in spite of the difficulties, which we have previously

emphasized, that arise from the fact that the Lorentz theory is

developed from a microscopic point of view and yet ignores those

restrictions on a correct microscopic treatment which must eventually

he introduced in accordance with the more recent development of

quantum theory. We shall then give some attention to the generaliza-

tion of the macroscopic theory developed in the second part of

Chapter IV.

102. The generalized Lorentz electron theory. The field equa-

tions

In the special theory of relativity it was found in § 46 that the

Maxwell-Lorentz field equations could be expressed in Galilean coor-

dinates with the help of two vectors, the generalized potential

whose components are given in terms of the ordinary vector potential

A and scalar potential by the expression

(102. 1 )

and the generalized cwrerU density Jt^, -whose components can be

given in terms of proper charge density po and coordinate velocity

da^jda, or in terms of densities of charge p and current pu referred to

the coordinates being used, hy the expressions

With the help of these vectors, the full content of the Maxwell-

Lorentz field equations, using the Galilean coordinates permitted in
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the special theory

equations

THE FIELD EQUATIONS 250

of relativity, can then be expressed by the two

F
a*’' d3^

(102.3)

and
ai'A“’

(102.4)

where the first equation defines the antisymmetric eleoi^omagnetic

field tensor in terms of the potential, and the second equation

relates the field tensor to the current vector.

The foregoing equations are to be taken as valid in the ‘flat’ space-

time of special relativity and are expressed in the Galilean coordinates

which may then be used. In accordance with the principle of

equivalence, however, the analogous general relativity equations must
also reduce to this same form when expressed in natural coordinates

for the particular point of interest. Hence it is reasonable to assume
that the completely relativistic field equations can be taken as being
merely the covariant re-expression of the above equations of the
special theory.

The covariant re-expression of the above equations is very simple.

The equations of definition for the generalized potential and current

(102.1) and (102.2) will need no modification, since by defining these

vectors in one system of coordinates they have then been defined

—

with the help of the rules for tensor transformation—^in all systems
of coordinates. To obtain the covariant re-expression for the two
remaining equations, we shall have only to substitute covariant

differentiation for ordinary differentiation and write as the electro-

magnetic field equations in general relativity

= (102.5)

and (102.6)

where the first of these equations is not even changed in form, owing
to the mutual cancellation of the two terms containing Christoffel

symbols which arise from the indicated covariant differentiation.

103* The motion of a charged particle

In addition to the field equations we shall also need to include in

the theory an expression describing the motion of charged particles.

This must of course be a covariant generalization of the fifth funda-

mental equation of the Maxwell-Lorentz equation (41.4) for the force
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acting on a moving particle. The desired expression can be taken as

'Vfliere ejm^ is the ratio of the charge of the particle to its rest mass and

•^a =* is the electromagnetic field tensor already introduced*
It will be seen that the equation gives expression to the com-
bined action of the gravitational and electromagnetic fields on the
particle.

To show that the above equation is a satisfactory generalization
of the usual law of force for a charged particle, we must show in the
first place that it is a covariant expression true in all coordinate
systems if true in one, and in the second place that it reduces in

natural coordinates to the usual equation for the force on a moving
particle.

To show that it is a covariant expression, it is most convenient to
note that it can evidently he rewritten in the form

(103.2)

which is seen to be a tensor equation of rank one.

^

To show that it reduces in natural coordinates to the usual expres-
don for electromagnetic force, we note that the Christoffel three-
index symbols will then be zero, corresponding to the disappearance
of gravitational effects with respect to freely falling axes. Making
use of the expressions for the field tensor in natural coordinates
given by (46.9), and remembering in accordance with (20.5) that we
can take dajdt as the Lorentz factor of contraction aJ[\

—u^) where u is

the ordinary velocity of the particle in our present units, it will then
be found that the four equations corresponding to (103.1) can be
written in the familiar form

(103.3)
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which—^in our present ixaits—are seen to be the usual equations for

the action of the electromagnetic field in changing tbe momentum
and energy of the particle.

104. The energy-momentum tensor

To complete the translation of the Lorentz electrodynamics into

relativistic form we must also have a oovariant expression for the

electromagnetic energy-momentmn tensor. This is found to be given

in terms of the field tensor ij,, by the formula

This expression is easily seen to satisfy the necessary requirements.

The expression is evidently oovariant since it is a tensor equation of

rank two. And substituting the values given by (46.9) for the com-

ponents of the field tensor in natural coordinates, we find that the

above expression does reduce in such coordinates to the special

relativity expression for the electromagnetic energy-momentum,

tensor as previously given by (46.20) and (46.21). Thus typical

examples for the components of found, as would be

expected in oxu present units which make c = 1, to be given by

T^^ = (E^H-E,H^)

= UEl+El+EI+m+Sl+m)-
Assuming the possibility already discussed in § 45 of combining

analogous mechanical and electrical quantities, we could now state

the energy-momentum principle for a combined mechanical and

electrical system in the covariant form

= 0, (104.3)

corresponding to the previous special relativity form (46.22).

This completes all that is necessary for the covariant re-expression

of the Lorentz electron theory in a form consonant with general

relativity.

105. The generalized macroscopic theory

As already discussed and emphasized the Lorentz electron theory

has a somewhat imsatisfactory status, owing to its noicrosoopic

character. It is hence interesting to find that the macroscopic theory.
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developed in the second part of Chapter IV, can also easily be xe-

expressed in a covariant form suitable for incorporation in general

relativity.

The macroscopic theory in special relativity was based on two anti-

symmetric fidd tensors and and on the current vector

These three tensors were defined in § 50 by giving their oomponente

in a system of Galilean coordinates so chosen that the electromagnetic

medium under consideration would be macroscopically at rest. In

these coordinates the field tensors have components which are

directly given by the components of Maxwell’s four famihax vectors

of electric field strength E, electric displacement D, magnetic field

strength H, and magnetic induction B, as they would be determmed

by an observer at rest in the medium. And the components of the

current vector are given by the densities of current flow and of

electric charge also as measured by such a special observer.

In building thQ macroscopic theory in general relativity, xt is

evident that we may at once take over these same tensors

and Jy* into the general theory, since we can now define them in an

entirely similar manner by reference to the measurements of a local

observer tiaing proper coordinates for the particular point of interest,

and having defined the components in these proper coordinates we

have then defined them by the rules of tensor transformation in all

coordinates.

To proceed with the generalization of the macroscopic theory we

must then make sure that our previous field equations given in § 50

are expressed in covariant form. This is already true for the first

of the two equations

(106.1)

owing to a mutual cancellation of three-index symbols, which arises

when the corresponding covariant derivatives are taken on account

of the antisymmetrio character of the tensor F^^. To make the

second of the field equations covariant it is only necessary to replace

ordinary differentiation by covariant differentiation and write

= Jy. (106.2)

Knally as a possible set of equations to complete the macroscopic

theory, we may take the constitutive equations in the covariant form
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in which they have already been written in § 61

rr Tt da?*

(?aP-^8+?oiy^8)5H'fl'«8-^^).)^ = MS'aj3-^^8+ffay^SjS+fl'oi8-HjSy)^«

j
dafidx0‘ 0- wv<t^

-•'ts S = (106.3)

where e, fx, and a are dielectric constant, magnetic permeability, and
conductivity of the material as measured by a local observer, and
dz'^jda and d/x^jda refer to the macroscopic velocity of the medium at

the point of interest. These constitutive equations oontain of course

the usual approximations involved in assuming that the matter can

be characterized at each point by the three scalars c, /x, and a.

The extension of the macroscopic theory to general relativity is thus

straightforward. The equations obtained, however, are by no means
simple, and have as yet been little applied.
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Part II. SOME APPLICATIONS OF BELATIVISTIC ELECTROD'SfTTAMIOS

106. The conservatioii of electric charge

We may now tom to certain applications of relativistic electro-

dynamics which will be of interest. The results obtained will suffer

to some extent from the unsatisfactory character of the Lorente
electron theory which we have already emphasized.
We may first consider the relativistic analogue of the classical

expression for the conservation of electric charge.

Introducing tensor densities, the second of our two field equations

(102.6) can be written in the form (see Appendix IH, equation 48),

- y, (Ii)«.i)

and owing to the antisymmetry of this leads to the result

dxi^dx^ dxf^
(106.2)

In place of the current density, however, we may introduce the
expression by which J was defined (102.2), and rewrite this equation
in the form o / ^ a. v

(ioe.3)

where. pQ is the proper density of charge as it appears to a local

observer and is the Velocity’ of the charge.
To show that this result implies the conservation of electricity, we

may most conveniently examine its implications in a system ofnatural
coordinates for the point of interest a?, y, 25, t. In agreement with the
Galilean values which we shall then have for the and with the
disappearance of their first derivatives with respect to the coordinates,
we can then substitute

V=^=1
and rewrite (106.3) in the form

0,
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or sinoe dijda is the factor of Lorentz oontraotion this can again be

rewritten in the form

+ ^(/>»»)+ |(P«.)

where p is the density of chaise and u^, and u, the ordinary oom*

ponents of velocity with respect to the present coordinates.

The result is, however, the usual equation of continuity for the

‘substance’ whose density is p, and the conservation of electricity

has been demonstrated as desired.

107. The gravitational field of a charged particle

Ab a second application of rdativistio electrodynamics, it will be

interesting to consider the gravitational field of a charged particle.

Taking the particle as being at rest at the origin of our system of

coordinates, we can evidently write the line element in the standard

spherically symmetrical form

da^ = -e^ dr® -r® <W® -f®sin®l9 d^® +& dt*. (107.1)

where A and v are functions of r alone which approach zero at very

large values of r. To solve for A and v we must first consider the

electric field surrounding the particle.

Taking the potentials as functions of r alone, and substituting

into the expression (102.6) which defines the field tensor in terms

of these potentials, we then see that the only components which

could at the very most survive would be

Jji = —.^2 Fgi = ~Fia = Fn.

It is easily shown, moreover, that the first two of these components

would also vanish, sinoe on substitutLng into the second of the two

field equations in the form (106.1) we should have in the space

surrounding the particle

^ = |;(J'„e-KA-v)sinfl) = 0,

or F^ = const,

together with a similar expression for jP,i. At large distances from

the particle, however, where A and v approach zero and the ordinary

equations for the electromagnetic field become valid, we know that

would be zero from its relation to magnetic field strength and

must hence conclude that the constant has the value zero, so that

Fn and similarly F^^ are zero throughout.
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To obtain an expression for the sole remaining component of the

field tensor, we have by again applying (106,1)

^ = |(-i’«r®6-i(^+>')sine) = 0.

or -Fa = F,, = lei<^+y\Pl4 (107.2)

where e is a constant of integration such that 4^e can be identified

with the charge on the particle in our present (Heaviside, relativistic)

units, owing to the known relation of F^ to the electric field strength

at sufiicient distances from the particle.

Having obtained this result for the surviving component of the

field tensor, we can now substitute into the expression for the

energy-momentum tensor (104.1) and readily obtain as the only

components
j

(107.3)

These expressions for the energy-momentum tensor may now be

eq[nated to the expressions for this tensor in terms of A and v as

furnished by (96.3) to give us the differential equations:

(107.4)

where the cosmological constant A has been taken as equal to zero

as not of present interest. And these equations are readily seen to

have a solution corresponding to the line element

(fo* r® d6^ —r*sin*0 + (l——+
,

2to
,

4v6® r I

y y y

r
'"7*-

(107 .6)

This result is interesting in showing the contribution of the energy

of the electric field surrounding the charge to the curvature of space-

time. For any actual charged particle the gravitational effect of the

electrical energy woidd be negligible compared with that of the

intrinsic mass m at reasonable distance from the particle. Thus, if

we considered a particle with the mass and charge oustomarily
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assigned to the negative electron, we find, paying due regard to

units, that the two terms contributing to the curvature would stand

in the ratio
_ 2ire®

2TO/r
~~ mr

1-6x10-“

where r is in centimetres. Hence we see that deviations from flat

space-time due to the charge would be negligible compared with

those due to the mass, except at exceedingly small distances from the

particle.

108. The propagation of electromagnetic waves

We may next investigate the propagation of eleotromagnetio dis-

turbances in space. In doing this we ^all be interested in the

propagation of the components of the field tensor which have a

fairly immediate physical significance, rather than in the propaga-

tion of the components of the potential which are less directly

interpretable.

Following a method due to Eddington,! wemay write in accordance

with the two field equations (102.6, 6), after differentiating with

respect to v, J = F°‘ = a'^PF a
"/tv — y.att> o ‘/itpav

and by a known theorem of the tensor analysis [see Appendix III,

equation (43)] this can be re-expressed by introducing the Riemann-

Christoifel tensor in the form

= ^)3pv)a ^t/t)

Hence subtracting the analogous expression for we obtain

^Kj8/x—^j5pv+^^i-p)a—

and making use of the symmetry properties of the tensors involved,

and applying equation (42) in Appendix III, this then becomes

^fiv *^vii
~ ^p/i^€)a

t Eddington, The Maihemaiical Theory of RelcUivity, Cambridge, 1923, § 74.
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whioh, in ooooidance 'frith the cyoHoal property for the Riemaam*
Christofid tensor j_»« . jm a

gives ns the desired result

(108.1)

The operator p“^( oconrring on the left-heind side of this

egression is a generalization of the dalembertian of the non-rela-
tivistio theory

a* a* a*
,

a®

and the result (108.1) may be regarded as the analogue of the wave
eq^uation of the ordinary electromagnetic theory.

Adoptmg naturcU coordinates at the point of interest, ahd noting
that in such coordinates the derivatives of the Christoffel three-
index symbols will not vanish, while the symbols themselves become
zero, it will be found that we can rewrite (108.1) in the form

=“ (108.2)

natural coordinates, however, the components of F^y have the
immediate interpretation in terms of field strength originally given
by Tables (46.9, 10), Hence in the absence of current and at the
limit of zero field strength, the wave equation reduces in natural
coorduiatss to the familiar form

0*® 0y® 02® dfi
= 0 , (108.3)

which corresponds to the propaigatiou of electromaguetio distur-
bances 'with umt Velocity. It is iuterestiiig 'to note, however, 'diat this
result has been demonstrated only for vanishing field strengths and
hence indeed for vanishing in'tensities of the electromagne'tio dis-
turbance itself.

With the help of (108.3), we may now give a new justification for
our earlier procedure in taking the path of a ray of light as a space-
time geodesic with ds = O. As a solution of (108.3), corresponding to
a plane wave, we find

J),. = A 008
Â
(Ix-l-my-f-nz— ^) (108.4)
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provided -we take the amplitude A, wave-length A, and direction

cosmes I, m, and n as quantities whose first and second derivatives

vanish. This wave corresponds in geometrical optics to a ray

travelling with unit velocity

—da:®—dy®—

0

under the condition

d®* _ «

when described in the natural coordinates, x, y, z, t being used. This

result, however, can be re-expressed in a form valid for all systems of

coordinates by stating that the path of the ray can be taken as a

space-time geodesic vrith ds = 0. Thus our original principle receives

the desired added justification.

109. The energy-momentum tensor for disordered radiation

We may next consider some problems connected v?ith the energy-

momentum tensor corresponding to different distributions of electro-

magnetic radiation.

Since a disordered distribution of electromagnetio radiation can be

regarded as having the mechanical properties of a perfect fluid, we
have already suggested in § 85 that we could assign to suoh radiation

the usual expression for the energy-momentum tensor of a perfect

fluid

(109.1)

where the density and pressure of the radiation—as measured by a

local observer who finds no net flow of energy—^would be connected by

the specially simple relation

Poo ^ (109.2)

and the quantities dxl^jda would be the components of velocity of

suoh a local observer with respect to the coordinates actually being

employed.

This method of deciding on the correct expression for the energy-

naomentum tensor of a disordered distribution of radiation, by treat-

ing it as a perfect fluid, is logically not unsatisfactory owing to the

macroscopic character of the considerations involved. Nevertheless,

it will be interesting to showf that we should also be led to the same

I Tolman and Ehrenfeat, Phya* Pev* 36, 1791 (1930).
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result by taking the appropriate average of the miorosoopio expres-

sions for the electromagnetic energy-momentum tensor which was
considered in § 104.

To do this let us first take a system of proper coordinates in which

there is on the average no net flow of energy at the point and time of

interest. With respect to such a system of coordinates the com-
ponents of the energy-momentmu tensor looked at from a microscopic

point of view will assume their classical values in terms of electric

and magnetic field strengths as already given in § 104 by the typical

examples ^ ^

= \{Ei+El-^El+Hl+Hl+Hl).

In using these expressions to obtain the corresponding macroscopic

quantities, it is evident that we shall have the following relations

holding on the average:

= ^ and (109.4)

since for disordered radiation the averaged field strengths will be
independent of direction;

and == ^ = 0,

(109.6)

since for disordered radiation the lack of phase relations will make the
instantaneous values of the above products positive or negative with
equal probability; and

E,H,-E,H^ = E,H^-E^H, = E^H^-E^ H, = 0, (109.6)

since the coordinates now in use have been chosen so that there would
be no net flow of energy.

Combining the foregoing results of the process of averaging with
the expressions for the energy-momentum tensor (109.3), we then see
that the only surviving components of the macroscopic averaged
energy-momentum tensor can be written as

yii = y22 ^ 3733 ^ 2T44 ^ (109.7)

Poo=3po, (109.8)
where the proper macroscopic density of energy at the point of
interest, is the average of the usual expression for the density of
electromagnetic energy in the absence of matter, and the three sur-
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-viving oomponeuts of the Maxwell stresses are each equal to one-

third of this amount, that is to the radiation pressure

Having obtained the expressions (109.7) for the components of the

energy-momentum tensor in a particular ^stem of coordinates, we
can of course then obtain them m any system of coordinates by the

rules of tensor transformation. And indeed, applying the same treat-

ment as previously used, in § 86, to obtain in the case of an ordinary

perfect fluid a general expression for the energy-momentum tensor

from a knowledge of its components in proper coordinates, we are at

once led to the expected expression

2’'“' = (poo+2>o)^ (109.9)

Poo =
for the energy-momentum tensor of a disordered distribution of

radiation, where the Velocities’ da^lda are now to be interpreted as

being those for a local observer who himself finds on the average no
net flow of energy, and hence may be regarded as moving along with

the radiation as a whole.

110. The gravitational mass of disordered radiation

Having shown that we are justified in taking the energy-momentum
tensor for disordered radiation as having the same form as that for

other perfect fluids, we may now draw an interesting conclusion as

to the effectiveness of such radiation in producing a gravitational

field.

If we take the line element for a static sphere-of perfect fluid in the

ds* = —ef*((fa:®-l-dj/*-|-d«®)-|-e’' di®, (110.1)

we may set the mass of the sphere m equal to its energy U in accord-

ance with § 91, and in accordance with § 97 express the latter in the

form of an integral over the total volume of the fluid, giving us,

m = 17 = J (poo+3lJo)el‘' dFo, (110.2)

where dV^ is an element of proper volume of the fluid.

As a result of our considerations this expression should apply not

only to spheres of fluid matter, but also to fluid mixtures of matter

and radiation as well. Furthermore, the quantity m may be regarded

as a measure of the field producing power of the sphere, since it was
defined in § 90 so as to be the constant which would occur in the
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Sohwarzsobild expression for the line element in the empty ^ace
Burroundmg the sphere. Hence, since the pressure Po disordesred

radiation is necessarily equal to one-third its energy density p^, and

the pressure of matter is under ordinary ciroumstances only a

minute fraction of its density, we axe led to the interesting conclusion

that disordered radiation in the interior of a fluid sphere contributes

roughly speaking twice as much to the gravitational field of the sphere

as the same amount of energy in the form of matter.

It is interesting to compare this conclusion with the fact, already

mentioned at the end of § 83 (b), that the gravitational defiezion of

light in passing an attracting mass is ttvice as much as would be

calculated from a direct application of Newtonian theory for a particle

moving with the velocity of light. In following sections we shall see

additional examples of similar difierenoes between the behaviour

of matter and radiation.

111. The energy-momentum tensor corresponding to a
directed flow of radiation

We may now turn from the consideration of disordered radiation to

that of a directed flow of radiation. Using natural coordinates at the

point of interest, we may then again take the components of the

energy-momentum tensor, regarded from a microscopic point of view,

as being given in terms of the electric and magnetic field strengths

by the t3rpical examples shown by (109.3). Lowering indices for later

convenience, these can be written in the form

r} = UEl-El-El+Hl-Hl-Hl),

T\ = -Tt = ^

Considering now for simplicity that the radiation is travelling in

the x-direction and is plane polarized with its electric vector parallel

to the y-direction, we shall have in accordance with the usual electro-

magnetic theory of light

•Ee = -E, = -Hr = = 0, Ey = Hg.

And substituting in the above expressions shall obtain as the only

surviving components of the energy-momentum tensor

( 111 .2)
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all the components being thus numerically eq[ual to the expression

for the density of electromagnetio energy.

The result given by this expression has been obtained for plane

polarized radiation and from a mioroscopio point of view, but should

evidently also hold on the average for incoherent unpolarized radia-

tion. We shall hence take as our general macroscopic expression for

the energy-momentum tensor corresponding to a flow of radiation in

the a:-direotion _ yi ^ ^ 3,1 ^ ^ 3)

where p is the density of radiant energy at the point of interest and
these surviving components axe expressed in naiv/ral coordinates for

that point.

112. The gravitational field corresponding to a directed flow

of radiation

With the help of this expression for the ^ergy-momentum tensor

for a directed flow of radiation, we may now determine the corre-

sponding gravitational field, provided we take the field weak enough

so that we can use Einstein’s approximate solution of the field equa-

tions as developed in § 93.

We can then write the metrical tensor in the form

fffiv = (
112. 1 )

where the are the constant Galilean values of the ±1 and 0,

and the are small correction terms of the first order ; and intro-

ducing the quantities

A = AS = (112.2)

where the 8**” are the Galilean values of the gi*'', we can write the

approximate solutiqn of the field equations in the form

J
dxdydz, (112.3)

where the integration is to be carried out over the whole spatial

volume, r is the distance from the point of interest, where the value

of PjlA) is desired, to the particular element of volume dxdydz

under consideration, and the square brackets indicate that we are to

use the value of at a time earlier than that of interest by the

interval needed for a signal to pass with unit velocity from the

element dxdydz under consideration to the point of interest.

Furthermore, in applying this approximate solution to the case at
3690 .U rp
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liQjid, we can substitute for the the values given above by (111.3)

for natural coordinates^ since the are themselves quantities of the
first order and the coordinates in actual use are approximately
natural coordinates at each point under consideration. We thus
obtain corresponding to a flow of radiation in the a?-direction

=

and with the help of (112.2) can easily solve these equations in the
form

-^= = = = 4
(
112 .6)

with all other components of equal to zero.

This result then gives us a solution for the gravitational field

corresponding to a flow of radiation in the a;-direotion, provided the
field is weak enough to permit the use of Einstein^s approximate
solution. And this latter condition would presumably not be invali-
dated because of too large a contribution to the fieldfrom any ordinary
beam or pulse of radiation that we might encounter in nature or the
laboratory.

113. The gravitational action of a pencil of light

(a) The line element in the neighbourhood of a limited pencil of
light. As an application of the foregoing expression for the gravita-
tional field corresponding to a unidirectional flow of radiation> it
would firstbe natural to try to consider the field in the neighbourhood
of an infinite pencil of light, stretching in the a:-direotion from minus
to plus infimty. This proves to be impossible, nevertheless, by the
method adopted since the values of the then come out infinite
when the integration given in (112.5) is performed, which would
invalidate the approximate solution of the field equations that has
been employed.

Tins difficulty does not arise, however, if we consider a thin
pencil of radiation of limited length Z and constant Unear density p,
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passing steadily along the a;-8bxis between a source at ^ = 0 and an
absorber at a: = i!. In accordance with {112.6), we can then 'write

for the contribution of the radiation to the gravitational potentials

at any point of interest z ixx the neighbourhood of the pencil

= J
K»0

4/0 du
(
113 . 1 )

= 4plog
[{l-xY+y^+Z^]

a?

and with a finite length of pencil I this can be made as small as desired

by taking the density of radiation p small.

It should be noted that this expression has been derived on the

assumption of a steady pencil of radiation, so that no explicit intro-

duction of retarded potentials into the calculation was needed. The

expression would hence of course not be applicable in the neigh-

bourhood of times when the pencil was being started or stopped. It

should also be noted that the treatment assumes a flow of radiation

solely in the x-direction and thus neglects diffraction effects at the

surface of the pencil, Einally, it should be pointed out that the

expression gives only the contribution of the pencil of radiation

to the field, and neglects the contribution of the bodies which act

as source and absorber; and this includes a neglect of any effects

resulting from changes in the motion or internal condition of

these bodies which might themselves be connected with the flow

of radiation.

With these restrictions, however, we may regard the gravitational

field in the neighbourhood of this limited pencil of light as given

by (113.1).

(6) Velocity of a test ray of light in the neighbourhood of the pencil.

In order to appreciate the character of this gravitational field in the

neighbourhood of a pencil of light, we may now consider, first the

motion of test rays of light, and then the motion of test particles in

the neighbourhood of the pencil.

To investigate the motion of the test rays, we may write the

formula for interval in the neighbourhood of the pencil in accordance
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with (113.1) in the form

^ ^2 —2An dxdt^

and, setting this equal to zero in order to correspond to the track of

the test ray of light, we obtain after dividing through by dt^

aa a general expression for the velocity of our test ray in the neigh-

bonrhood of the pencil.

Solving this general expression for velocity, jSrst for the case of

a test ray moving at the instant of interest parallel to the a-axis, and

hence also to the pencil, we obtain the two cases

^ = +1 and (113-3)
dt 1—^11

On the other hand, solving for a test ray moving parallel to the y-axis,

and hence in a plane perpendicular to the pencil, we obtain the two

cases 1

f - ±V(l+»u)-

In accordance with the first of these expressions, we see that a test

ray of light, moving parallel to the pencil and in the same direction as

that for the light in the pencil, would have unit velocity at any point

in the field. On the other hand, for testrays moving in other directions,

we should have a variable velocity depending as might be expected

on the position in the gravitational field of the pencil, since will

depend on position in the way given by (113.1).

We may also inquire into the acceleration which would be experi-

enced by the rays. Differentiating (113.2), we obtain as a general

expression for the accelerations

dH dy dz dH
dt di^'^ dtdt^

and for the special case of a ray which has at the instant of interest

the components of velocity

dx dy dz
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this then leads to the result

g = o. (im)

Thus, such a test ray retains its unit velocity parallel to the pencil,

and hence in accordance with the general expression for velocity

(113.2) must also permanently retain zero components of velocity

perpendicular to the pencil.

This result is of considerable interest, since it means, in the special

ease of parallel rays of light travelling in the same direction, that

there will be no gravitational iateraction between the irays. This

conclusion is satisfactory from the point of view of the stability of

our originally postulated pencil of light, and also from the point of

view of interpreting the behaviour of parallel rays of light coming

from distant astronomical objects.

(c) Acceleration of a test particle in the neighbourhood of the pencil.

We may next consider the effect of the gravitational field of our

pencil of radiation in accelerating stationary test particles placed in

the neighbourhood.

In accordance with (74.13), the acceleration of such a test particle

will be given by the geodesic equation

, f
^dxi* dx'’

0
,

and for stationary particles with

^ — Q
da da da

this will reduce to dH^
da^

+ {44, a} = 0.

1
,

Working out the values of the Christoffel three-index symbols which

correspond to the gravitational field of the pencil as given by (113.1)

we easily find to the order of approximation of our solution of the

field equations

d^x _ 1 6A44 d^ 1 dh^ dH _ 1 ^^44

da^^ 2 dx da^^ 2 Sy cfo® 2 dz
'

Furthermore, substituting the explicit value for in the neigh-

bourhood of the pencil provided by (113.1), we then obtain, with
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some rearrangement, for the acceleration of a staHoruiry particle

parallel to the pencil

^ ^ oJ 1 1

dfi
"

[(i—
(113.8)

and for its acceleration in a plane perpendicular to tiie pencil

_ f

^
1

-4
.

(113.9)
dt^ y^+z^ ^[(i—a:)“+y*+»*Pl

where x, y, z denotes the position of the test particle, and the track of

the pencil lies as will be remembered along the aj-axis from » = 0

to r = 2.

Por the case of a particle placed at a point equally distant from the

two ends of the track, these general expressions reduce, for the case

of acceleration parallel to the track to the simple result

dh:

d?
0,

(113.10)

and, taking * = 0 for the acceleration towards the track, to the

V (113.11)
dt^ ymw]^

These results for the acceleration of a test particle parallel and per-

pendicular to the track of the pencil are oi considerable interest.

In the first place, it will be found that both of the general expi’ea-

sions (113.8) and (113.9) are just twice as great as would be calculated

on the basis of Newtonian theory if we replaced the pencil of radiation

by a material rod of the same density and length. This is another

example (see § 110) of a case where radiation may be regarded as

more effective in producing a gravitational field than a similar dis-

tribution of matter of the same density.

In the second place, it is of interest to emphasize in accordance

with (113.8) and (113.10) that the acceleration parallel to the track of

the pencil would be towards the longer segment of track for a particle

placed at a point nearer one end of the track than the other, but
would be zero for a particle placed equally distant from the two ends

of the track. Hence for a particle, which is not actually situated in

the path of the pencil, there is no preponderant gravitational action

in the direction of motion of the light itself. This is to be contrasted

with the effect of light pressure which would act on a particle actually

placed in the pencil in the direction of radiation flow, and may also
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be contrasted with the Compton effect on an electron placed in

the pencil which would also be preponderatingly in the forward

direction.

114. The gravitational action of a pulse of light

(a) The line element in the neighbourhood of the limited track of

a pulse of light. We may now turn to a consideration of the gravita-

tional field in the neighbourhood of the track of a limited pulse of

radiation. This will be more complicated to treat than the case of

the steady pencil since the field will now be non-static, and we shall

have to make explicit use of the method of retarded potentials in

determining the way in which the gravitational effect spreads out

from the moving pulse.

Let us consider a pulse of radiation, of length A, linear density p,

and negligible cross-section, travelling along the ir-axis from a; = 0

to a; = These may be regarded as the points at which the p\ilse

emerges from the emitter and enters the absorber, or as giving an

arbitrary portion of the track selected for investigation, and we shah

neglect any effects coming from the pulse or parts of it that do not

lie within this range. We shah also neglect as before any gravita-

tional effects due to the absorber and emitter or changes that may
take place within them. Some such restrictions appear to be necessary

in order to secure a determinable problem. In particular we shah

point out later that our method of attack has to be limited to a track

of finite length.

For simplioity we shah choose our time scale so as to make ^ = 0

when the front end of the pulse crosses the point x = 0, Then at

any later time the front end of the pulse will be located at a; = ^ and

the rear end at oj = A since the pulse may be taken as travelling

with unit velocity.

Let us now take some point of interest x, y, z in the neighbourhood

of the track and calculate with the help of equation (112.6) the

gravitational field produced by the pulse at this point at the time t.

Since this equation for the gravitational field has to be applied in

accordance with the method of retarded potentials, let us take

a; = a as giving the position of the front end of the pulse and a; = 6

the position of the rear end of the pulse when they ‘emit’ the gravi-

tational influence which is received at the point x, z at the time

t. In accordance with (112.5) we may then evidently write for the
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gravitational potentials at x, y, z and time t

-All=-*44 = ^4 = A41 = 4jE^

flU

u»>a

f 4/) du

(114.1)

To evaluate this expression, however, we must determine a and b

as functions of the time t. To do this we note with our choice of

starting-point for time measurements that a = x gives not only the

position of the front end of the pulse when it emits the gravitational

influence reaching the point of interest at time f, but also denotes the

time at which this impulse is emitted. Hence (t—a) is the time

available for the gravitational influence to travel from the front end

of the pulse to the point of interest and since this influence is pro-

pagated with unit velocity, we can write

(f—0)2 = (x—a)^+y^+z'^,

and solving for a obtain

o = t^—x^—y^—z^

2{t-x)

Similarly, we obtain for h the expression

. _ (<-A)a-a:2_y2_a2

2(«-A-x)

(114.2)

(114.3)

These values for a and 6 apply of course to the positions of the front

and rear end of the pulse only when they lie within the range of

track from x = 0 to x = 1 that we have selected for investigation.

Since the pulse starts to enter this portion of track at < = 0, and
[x2-j- j/

2"(_ 2(2]i ig evidently the time needed for a gravitational influence

to travel from the point of entrance to the point x, y, z of interest,

we shall disregard the gravitational effect of the pulse completely
until the time t = [a;

8
+j/

2 _^j,2jj

6 = 0
from f = [x2

-|-J/
2^j;2Ji

to t = [x2+y*-fz2]*-j-^.
(114.4)

Similarly, since we are not interested in gravitational influences
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eniitted from portions of the track lying beyond x = I, yre shall take

from t = !+[(?—

to t = Z+[(Z—a!)®+y®+2®]*+A,
(114.6)

and disregard the gravitational effect completely after the latter of

these times.

We may now substitute the foregoing expressions for a and b into

(114.1) and obtain as explicit expressions, for the gravitational

potentials at the point and time of interest x, y, z, t.

— — —^44 — hn — ’41

= 4plog
t—x

= iplog
t—x

t—X—x

(114.6)

from t =
to t = [®a+i/a+2;a]*4-A

from t — [a:®4-J/®+2*]*+A

to t = ?+[(?—»)“+2/®+2i*]*

A i^„[(l—a:)®+y®+z®]*4-(^—®) (from t — 1+[(1—a:)“+y®+«2]*
^ ® t-X-x (to « = Z+[(l-a!)a+ya+a»]*+A.

With the help of these expressions, we can now appreciate why it

is necessary to restrict our present kind of treatment to a finite

portion of track in order to obtain a determinate problem. With an

infinite track the second of the above expressions for the gravita-

tional potentials would evidently be applicable at all times, and this

would then become infinite at the time t = x when the pulse comes

abreast of the point of interest, which would invalidate the approxi-

mate method of solving the field equations that has been employed.

Taking as we do, however, a limited portion of the track this difficulty

is avoided since we consider only those gravitational effects which

arise after the pulse starts to enter the track at Z = 0, and this

corresponds to a time of reception at the point of interest

t = z®]*

so that the infinity no longer arises.

The foregoing expressions are derived on the assumption of a flow

of radiation solely in the a;-direotion and hence neglect diffraction

effects at the boundary of the pulse.

(6) Velocity of a test ray of light in the neighbourhood of the pulse.

To appreciate the nature of the above gravitational field in the

neighbourhood of the pulse, we may first consider the velocity of

a test ray of light in the field of the pulse. The treatment will
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evidently be the same as that ah'eady given in § 1 13 (6) for the case of

the steady pencil and the results Tvjll evidently have exactly the same

form as those obtained in that section, differing in content, neverthe-

less, since we should now have to substitute the expressions for hjx

given by (114.6) instead of by (113.1) in order to get the specific

dependence of velocity on position and time. For the case of a test

ray of light moving in the same direction and parallel to the track of

the pulse we shall, however, again evidently obtain the very satis-

factory result of a velocity which remains permanently unity without

being affected by gravitational interaction with the pulse.

(c) Acceleration of a test particle in the neighbourhood of the pulse.

We may now investigate the gravitational acceleration which would

be experienced by a neighbouring test particle as a result of the

passage of the pulse of light. If we take the test particle as stationary

the accelerations will again evidently be determined as in § 113 (c) by

the equation

ds^
+{44,(7} = 0.

The values of the Christoffel three-index symbols corresponding to

our present non-static case are nevertheless now a little more com-

plicated than before. We easily obtain, however, to the desired order

of approximation

(Px _ 1 /dhii 8/^44)

d8^~2\ 8t ' dt dx
}’

Py 1 ^^44

da^~ 2 dy

^ _ _1^
ds*
- 2 8z

Substituting for the gravitational potentials the values given by

(114.6), we then obtain for the acceleration—^parallel to the track

—

of a stationary test particle placed for simplicity at a point where
z = 0, the expressions

^ L. _JL_\ f
^

dP a:'^[a;*+j/2]i/ (to i — [a;®+J/®]*+A

2 /_1 1 \ {from t — [a:*+y^]i+A

dP ^\t~x t—X—xj (to < = i+[(J—a;)*+?/®]*
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^from

^ O. / 1
,

1 \ « = Z+[(Z-a:)*+j^*]*

dt^ A—a!'^[(Z~a:)*+y*]7 to

Vi = i-f-[(Z_a!)*4-y»]t4-A

(114.7)

and for the acceleration perpendicular to the track

dy —2py
di* [**+y*]*{[a:*+J/*]*—»}

from t = [a:*+y®]*

to t = [a!®+y®]*H-A

from t = [®®4-2/*P+A

to

t = Z+[(?—®)®+2/*P

'’from

t = Z+[(Z—a:)®4-y*P
to

j,= i+[(Z_a:)2+2/2]*+A.

(114.8)

dV _ 2py

d<* ~ [(Z_a:)a+j/S]i{[(Z-a:)a+2/»p+(Z-*)}

In accordance with these expressions, we see that parallel to the

track, the calculated acceleration would first be in the same direction

as the motion of the pulse, and then in the opposite direction. On
the other hand, perpendicular to the motion of the pulse, the accelera-

tion would first be towards the track and later away from it. These

conclusions appear somewhat complicated, and a better idea of the

actual nature of the gravitational interaction will be obtained if we
consider the net integrated effect corresponding to the whole motion

of the pulse over the selected portion of the track from a: = 0 to a: = Z.

Making use of the expressions given by (1 14.7), integrating over the

time intervals given, adding the results together and cancelling out

a considerable number of balancing terms, it can easily be shown that

we obtain for our stationary test particle the net acceloration parallel

to the track

j^dt = (114.9)

and, making use of (114.8), for the net acceleration towards the track

dy^, 2p\
j

X Z—a; \

dt^ y ([a:*-t-^®]*’^[(Z—a:)®-fy®]*/’
(114.10)

in both cases the result being that which corresponds of course only
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to the gravitational influences originating from the selected portion

of the txaok a: = 0 to a: = Z.

For the case of a particle placed at a point equally distant from

the two ends of the track, these general results reduce to the simpler

expressions analogous to (113.10) and (113.11) in the case of the

steady pencil,

and

(114.11)

2pM

ymwr (114.12)

These results for the net acceleration of stationary test particles

parallel and perpendicular to the track of the pulse are of considerable

interest.

In the first place, since these expressions give the total accelerative

action produced by the pulse during the time I needed for it to tra-

verse the selected portion of track, we may obtain expressions for

the average aecelerative action of the pulse (apuise) ^7 dividing

through by 1. Doing so and comparing with our previous expressions

for the instantaneous accelerations (ttpenoii) bi the case of a steady

pencil with the same length of track and the same location of the

test particle, we obtain the general result

^olse _ ^Ppul86 _ ^ pulse (114.13)
pencil ^Pponoll "^pencil

This result seems readily acceptable, moreover, on the basis of our

usual physical notions. Since we have already pointed out that the

gravitational action of the pencil on a test particle would be twice as

great as would be calculated on the basis of Newtonian theory if we
replaced the pencil of radiation by a material rod of the same density

and length, the above result may be regarded as another example of

a case where radiation is more effective in producing gravitational

action than what might be regarded as the equivalent distribution

of stationary matter.

In the second place, it is of interest to emphasize, in accordance

with (114.9) and (114.11), that the net acceleration parallel to the

track of the pulse would be towards the longer segment of the track

for a particle placed at a point nearer one end of the track than the

other, but would be zero for a particle placed equally distant from
the two ends of the track. Again, as in the case of the pencil, a particle

situated outside of the actual track of the pulse and hence not subject
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to such actions as light pressure or the Compton effect, would not
appear liable to a preponderating effect in the direction of motion of

the pulse itself, as a result of the gravitational influence coming from
a definite selected portion of the track.

115. Discussion of the gravitational interaction of light rays
and particles

The foregoing results as to the gravitational field of pencils and
pulses of light have been presented in considerable detailf on account
of the insight which they can give us into the gravitational inter-

action of light rays and particles.

The most characteristic feature of these results lies in the discovery

that the acceleration of a test particle by the gravitational influence

proceeding from a selected portion of light track is—^to the order of

approximation employed—tmice as great as would be calculated on a
simple Newtonian basis if we regarded the track as filled during the

time of interest with matter having the same average density as that

provided by the passage of the light. This conclusion is very satis-

factory since we have already seen in § 83(6) that the gravitational

bending of a ray of light in passing through the field of an attracting

particle is also approximately twice as great as would be calculated

on a simple Newtonian basis, if we regarded the ray of light as having

the Newtonian acceleration of a particle moving through the field in

question.

As a result of this double occurrence of the factor two, we are

hence permitted in thinking about the mutual gravitational inter-

action of particles and light rays to retain to a considerable extent in

first approximation our usual ideas as to the conservation of momen-
tum, without the necessity of resorting to the complete relativistic

treatment in which the conservation laws are exactly preserved by
introducing the pseudo tensor of potential gravitational energy and
momentum.
A simple example will serve to make this approximate conserva-

tion of ordinary momentum clearer. In accordance with equation

(1 14. 12) in the last section, we are provided with an expression for the

net acceleration—due to a selected portion I of the light track of a

pulse—for a particle placed at the distance y from the track at a point

equally distant from the two ends. Multiplying this expression by the

t Tolnmn, Ehrenfest, and Podolsky, Phya. Rev, 37, 602 (1931).
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mass of the particleM and denoting the mass of the pulse by = />A,

we then obtain for the net momentum received by the particle in the

^-direction

J
2mMl

(116.1)

On the other hand, in accordance with §83(6), we can take the

momentiini aoc^nired by the pulse in the y-direction as being twice

what would be calculated on a simple Newtonian basis, and hence,

noting that velocity of light is unity, as given by

0

Since these two expressions are equal in magnitude and opposite m
sign, we thus have an illustration of the approximate conservation

of momentum which obtains without taking into consideration any

potential momentum of the gravitational field.

As a second important characteristic of the results obtained in the

foregoing sections, we have the discovery that a stationary particle

placed equally distant from the two ends of a selected portion of

light track, but outside the actual track, receives therefrom no net

acceleration in the direction of the motion,of the light itself. From the

point of view of the conservation of momentum, this discovery is the

converse of the more familiar conclusion that light would receive no

change in the total momentum in its direction of motion in passing

through the field of a stationary particle between two points equally

distant therefrom. This converse conclusion is sufficiently important

from the point of view of astronomical observations to deserve

separate consideration.

For the gravitational field surrounding a stationary particle, we

can obviously write the line element in a spherically symmetrical

static form

ds^ = +r^sin20 (1 16.3)

See for example (82.12), where and are functions of r alone.

If now we consider a ray of light passing through this field, it is

evident from the static character of the line element that successive

impulses travelling along the ray will take the same time At to travel

from one given point to another Hence if two

successive impulses are separated by an interval Zt at the first point

they will still be separated by the same interval 8^ at the second point.
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Furthermore, if these two points are chosen at positions on the track

at the same radius = rg from the particle, it is evident that this

coordinate time interval St will correspond to the same proper time

interval St^ = St as measured by local observers located at the

two points. Hence the period and frequency of light as measured by
observers at rest in the field will not be altered by the passage of the

light from one point in the field to another of the same gravitational

potential a result which holds, moreover, in general for static

fields. From the relation between frequency and total momentum in

the direction of motion g = Av/c, we now reach, however, the con-

clusion stated above as to the constancy of total momentum in the

direction of motion.

This result has been obtained, of course, for the case of a static

field, and we may legitimately ask whether the motion acquired by

an originally stationary particle as a result of the passage of light

would not in turn affect the field through which the light still has

to pass, and thus by a second-order effect lead to a change in total

momentum in the direction of motion. An exact analysis of such

a second-order effect would appear to be complicated^ Nevertheless,

speaking roughly, since we may regard gravitational impulses and

light as both travelling with the same fundamental velocity, it would

seem difficult for any gravitational effect to emanate from an element

of the oncoming radiation, travel down to the particle, and by

changing the motion of the particle then produce an effect on the

gravitational field through which that same element of radiation still

has to pass. Hence we should in any case be inclined to expect that

such a second-order effect on the total momentum and frequency of

light travelling through the gravitational field of a particle would

have to be exceedingly small compared with the first-order transverse

effect on the direction of the momentum.
As a consequence it is usual to conclude that light giving sharply

defined images of distant astronomical objects has not had its

frequency appreciably affected by passing through the gravitational

fields of particles lying along its path. This conclusion is important in

interpreting the red-shift in the light from the extra-galactic nebulae,

since it has been pointed out by Zwickyj- that a gravitational effect

on frequency, of the kind made improbable by the above considera-

tions, might have offered another explanation for this red-shift

t Zwicky, Proo. NcU. Acad. 15, 773 (1929).
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rather than, the now oonunonly accepted exphuiation based on the

recessional motion of the nebulae.

116. The generalized Doppler effect

To -oonolude the present chapter, we may now give a schematic

outline of the method of treating the general problem of the effect

of gravitational fields and of the motions of source and observer on

the measured wave-lengtts of light.

To treat this problem we must have in the first place a knowledge

of the line element in the region where the transmission of light from

source to observer is taking place. This we may take in the general

da:®+2^i2 dxdy dzdt +?« df^. (116.1)

In the second place we must know the positions of the source

(%, yi, *1) and of the observer (ccj, yj. h) ® function of the time t

=/i(<).
(116.2)

{Xi>yj,,Zz) — U{t). (116.3)

Since the velocity of light is given by setting the expression for the

line element (116.1) eq[ual to zero, and since the position of source and

observer are given by (116.2) and (116.3), we can then calculate the

time of reception by the observer of a light impulse leaving the

source at any desired time as a function of that time <1,
giving us an

expression of the form
^ =f(t) (116.4)

Furthermore, by differentiation we can also obtain an expression for

the time interval between the receipt of two successive wave

crests in terms of and the time interval Sij between their emission,

which will be of the form

= (116.6)
dti

In accordance with the expression for the line element, however,

we may write

K = + (ll«-0)

as an expression for the proper period of the emitting source as

measured by a local observer moving with it, where dxjdt, dyjdt,

and dsjdt are the components of velocity of the source at the time of
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emission. And similarly, we may write

<ua.„

as the observed proper period of the oncoming signal as measured by

the final observer, where dxjdi, etc., are now the velocities of this

observer at the time of reception.

Substituting (116.6) and (116.7) into (116.6), and noting that the

proper period 8<J for the emitting source can be taken as pro-

portional to the usually measured wave-length A for the kind of

luminous material involved, and that the observed proper period

for the oncoming signal can be taken as proportional to the

observed wave-length A-fSA we obtain

A-t-8A

A

8<§ dfih)

1

8i?~
9u^+2yi2§§+.-+9«]

(116 .8 )

as the desired expression for the shift in the observed wave-length of

the light from a distant source.!

This general expression for shift in wave-length can, of course, be

given specific content only when we have a given gravitational field,

corresponding to a specific Mne element (116.1), and have a source

and observer located and moving in a definite manner corresponding

to specific forms for (116.2) and (116.3). It may be well to point out,

however, that the expression implies in any case the same fractional

shift in observed wave-length for all parts of the spectrum. It should

also be noted that the fractional shift in wave-length is a definitely

observable quantity, which will have the same calculated value, for

any specified case, no matter what coordinates we may use in making

the computation. Thus no changes will occur in the result, if we
introduce changes in the form of the line element merely by substi-

tuting new variables os functions of the original ones before making

the computation, a fact which is perhaps not always appreciated.

Knally it may be remarked, that although the expression is forniu-

lated so as to give the value of the shift as a function of the time of

t This derivation has been obtained by taking ds « 0 as giving the velocity of

light, and this expression has boon justified for weak eleotromagnetio disturbances in

§ 108. For a treatment based directly on wave optics, see Laue, BerL Ber. p. 3 (1931).

8B96.U
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emission we oan of course also obtain it as a function of the time

of reception when we know the form of (116.4).

Our firm! expression may be regarded as that for a generalized

Doppler effect, since its value depends not only on the direct effect

of the motions of source and observer in changing the time for light

to travel from one to the other, but also on the indirect effect of these

Tuntinns in determining the relation between coordinate time intervals

and proper time intervals, and furthermore on the effect of the

gravitational potentials in determining the velocity with which the

light travels. We shall have later use for this treatment of generalized

Doppler effect in Chapter X.



IX

RELATIVISTIC THERMODYNAMICS

Pan I. THE EXTENSION OF THERMODYNAMICS TO GENERAL
RELATIVITY

117. Introduction

In the development of the classical thermodynamics, two limita-

tions were actually present. In the first place the thermodynamic

systems considered were tacitly taken as being at rest with respect

to the observer; and in the second place the systems considered were

either taken as unafiected by gravitation, or in any case as affected

by fields weak enough and small enough in extent, so that they could

be treated with the help of the Newtonian theory of gravitation and

the older ideas as to the nature of spade and time. To remove the

first of these limitations and obtain a thermodynamic theory suitable

for moving systems, it is necessary to employ the principles for the

intercomparison of measurements made by observers in relative

motion to each other provided by the special,theory of relativity. To
remove the second of the limitations, and obtain a theory suitable for

investigating the precise thermodynamic effects of gravity in fields

of any magnitude, and suitable for studying the thermodynamic

behaviour of systems large enough so that the curvature of space-

time oaimot be neglected, it is necessary to make use of the more

precise theory of gravitation and more adequate ideas as to the

nature of space and time provided by the general theory of relativity.

In Chapter V we have already considered the extension of thermo-

dynamics to special relativity, first carried out by Planck and by

Einstein. We obtained therefromnot only a thermodynamic theory for

moving systems, but also, with the help of the Lorentz transforma-

tion equations for heat, work, temperature, and entropy, we achieved

a deeper insight into the nature of thermodynamic quantities, and by

the introduction of our four-dimensional formulation of the second

law of thermodynamics we made a preliminary step in the direction

of covariant generalization.

In the present chapter we shall consider the extension of thermo-

dynamics to general relativity, and the applications of the system of

relativistic thermodynamics which we thus obtain. To obtain this

extension it will merely be necessary to genei*alize omr previous special
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rdativistic thermodynamio theory in what appears to be a straight-

forward and natural manner. Hence since this theory was itself

obtained from the olassical thermod3mamio8 in a straightforward

way, we shall have considerable confidence in the outcome. In

ad^tion we shall be able to confirm our confidence in this further

extension with the help of examples which illustrate an agreement

between the conclusions drawn from relativistic thermod3majidc8

and those which can be drawn from relativistic mechanics alone.

Since the steps that must be taken to extend the classical thermo-

dynamics first to special relativity and then to general relativity will

appear to be almost self-evident and trivial, it might be supposed

that the conclusions to be drawn from relativistic thermodynamics

would necessarily have the same quahtative character as those

familiar in the classical theory. As we shall see, nevertheless, on

account of the great difference between classical and relativistic ideas

as to the nature of space and time, conclusions of a qualitatively new

kind can arise when we consider systems of sufficient extent so that

gravitational curvatiire becomes important.

118. The relativistic analogue of the first law of thermo-

dynamics

In the classical thermodynamics it was customary to express the

requirements of the first law of thermodynamics with the help of the

equation AE = Q-W. (118.1)

This equation is to be regarded in the first place as expressing the

principle of the conservation of energy by equating the total energy

change in a system to that which is transferred across the boundary;

and is to be regarded in the second place as introducing a distinction

between the two methods of energy transfer—flow of heat and

performance of work—which becomes especially important for the

later application of the second law of thermodynamics.

In relativistic thermodynamics, in analogy with the classical first

law, we shall in the first place have to satisfy the general principles of

relativistic mechanics, which lead as we have seen in Chapter VII to

the appropriate generalization of the classical laws for the conservBi-

tion of energy and momentum.f

These principles of relativistic mechanics are all implicitly contained

^ Tolman, Proc. Nat. Acad. 14, 268 (1928).
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in Einstein’s field equations

—SttTi*'’ = (118.2)

connecting the energy-momentum tensor 2’/**' with the geometry of

space-time. And since the tensor divergence of the right-hand side

of this expression is found to vanish identically, these field equations

lead at once to the familiar expressions for the equations of mechanics

(Ti^% = 0 (118.3)

and =i 0, (118.4)

or, by the introduction of the pseudo tensor density of potential

energy and momentum i|^, to the expression

ffi±!L) = o
dx'’

(118.6)

which is the form showing the closest resemblance to the classical

energy-momentum principle. By requiring in relativistic thermo-

dynamics that all thermodynamic processes should satisfy these

principles of mechanics, we introduce the analogues of the classical

requirements both for the conservation of energy and forthe conserva-

tion of momentiun, the introduction of the latter not having been

explicitly necessary in the classical thermodjmamios owing to the

tacit restriction to stationary systems.

To complete the analogy with the classical first law of thermo-

dynamics, we shall in the second place also have to introduce in

relativistic thermodynamics a distinction between flow of heat and

performance of work. This, however, must be postponed until the

appropriate nature of the distinction has been made clear from our

considerations of the relativistic extension of the second law of

thermodynamics.

119. The relativistic analogue of the second law of thermo-

dynamics

To assist us in obtaining the relativistic analogue of the usual

second law of thermodynamics, we have in the first place the four-

dimensional expression for the requirements of the second law in

special relativity, as already given in § 71 using Qalilean coordinates

(119.1)



294 RELATIVISTIC THERMODYNAMICS
§ 110

where
<f>Q

is the proper density of entropy at the point and time of

interest as measured by a local observer at rest in the thermodynamic
fluid or working substance, the quantities dxf^/ds are the components
of the macroscopic Velocity’ of the fluid at that point with respect

to the coordinates in use, SQo is the proper heat as measured by a local

observer which flows at the proper temperature Tq into the element

of fluid and during the time denoted by 8a:8i/S«S^, and the two signs

of equality and inequality refer respectively to the cases of reversible

and irreversible processes.

In addition, to guide us in obtaining the desired extension of the

second law, we must also make use of the two fundamental ideas

underlying general relativity which are expressed by the principle

of covariance and by the principle of equivalence. In accordance

with the principle of covariance, the axiom which we choose must be

expressed in a general form which is the same for all coordinate

systems, in order that we may avoid the introduction of unsuspected

assumptions which might otherwise arise from the use of special

coordinates. And in accordance with the principle of equivalence, the

axiom must be chosen so as to agree with the requirements of the

special theory of relativity, provided we use natural coordinates for

the particular point of interest.

As a consequence of the foregoing considerations, we are then at

once led to expect that the correct expression for the second law of

thermodynamics in general relativity will be provided by taking the

immediate covariant re-expression of the special relativity law

(119.1) which can be written in the formf

(<^o-£-) Sx^SxWbx^ > ^1?, (1 19.2)

or defining the entropy vector by

(119.3)

in the even more compact form

SJI Sx^Srr^8a:®8a;^ > (119.4)

The above expression will evidently satisfy the principle of

covariance owing to its character as a tensor expression of rank zero,

being a scalar since it is the contracted covariant

t Tolman, Proc. Nat. Acad. 14, 701 (1928).
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derivative of a vector, V— 8a!^Sa:®8a^8a:* being a scalar smoe it is

the magnitude of a four-dimensional volume expressed in natural

measure, and finally SQJTq also beiug a scalar since it obviously does

not depend on the particular coordinates in use. This expression will

also satisfy the principle of equivalence since in natural coordinates

for any point of interest, it will immediately reduce to the special

relativity law (119.1), the contracted covariant derivative

(^4o da^lds)^

being replaced by the ordinary divergence, and the quantity V—

g

assuming the value unity.

The principle given by (119.2) thus satisfies all the conditions that

we now know how to impose and will be adopted in what follows as

a statement of the relativistic second law of thermodynamics. It

must be noted, however, that we have not been led absolutely

uniquely to this law since other more oomphcated covariant expres-

sions might be proposed which would also reduce in flat space-time

to the special relativity law. Hence the proposed principle must be

regarded as a postulate whose ultimate validity remains to be tested

through comparison with the facts of observation.

It may be emphasized, nevertheless, that we have followed a

sensible course of procedure in adopting the immediate covariant

re-expression of the special relativity second law, since our previous

satisfactory experience with the immediate covariant re-expressions

of the special relativity formulae for space-time interval and geodesic

trajectory have given us confidence that such procedure when feasible

is likely to prove correct. It may also be emphasized that we shall

find the theoretical consequences of the postulated relativistic second

law to be coherent with the rest of relativity, and in particular shall

find examples where the results of relativistic thermodynamics

can be checked by using the methods of relativistic mechanics

alone.

For purposes of practical computation it is often advantageous to

re-express the statement of the relativistic second law given by

(119.2) in the equivalent form

(119.6)

[See equation (46), Appendix HI.]
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120. On the interpretation of the relativistic second law of

thermodynamics

Since we have taken the relativistic first law of thermodynamics

as beingmerely arestatement ofthe principles ofrelativisticmechanics

,

a clear understanding of the relativistic second law is especially

essential, as it is this latter principle which determines the whole

character of relativistic thermodynamics. This understanding we

shall now attempt to assure.

Eirst of all it is to be remarked that the distinction between

reversible and irreversible processes is still preserved in relativistic

thermodynamics owing to the occurrence of the two signs of equality

and inequality in the expression for the second law, the former being

applicable to the case of reversible processes and the latter being

applicable to irreversible processes.

The occurrence of the sign of inequality also implies a distinction

for the case of irreversible processes between the forward and

backward directions of time, similar to that in ordinary thermo-

dynamics, since it is evident that the truth of our expression for the

second law depends on the sign attached to the increment of coordi-

nate time 8a:* ooourring on the left-hand side of the inequality. Hence

neglecting the occurrence of fluctuations, the entropy principle still

indicates the unidirectional character of time in relativistic as in

classical thermod5mamics. This is of interest since the possibility of

illuminating the principles of relativity by regarding time to be

plotted as a fourth dimension perpendicular to space has sometimes

had a tendency to obscure those reasons, whether fundamental or

not, on which we customarily base our ideas as to the unidirectional

quality of time.

Attention should also be drawn to the preservation of the essentially

macroscopic and pJunorneriological character of thermodynamic con-

siderations in the relativistic extension. Indeed, all the quantities

occurring in the relativistic second law (119.2) are to be regarded as

having significance only from a macroscopic point of view, and as

being defined by perfectly definite empirical specifications which can

be given for their determination.

Thus
(f>Q

is the entropy per unit volume of the fluid at the point and

time of interest as measured by a local observer at rest with respect

to the fluid. It is, of course, a macroscopic density owing to the

nature of our concept of entropy, and is to be regarded as character-
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iziug the fluid looked at from a large scale point of Tiew without any
miorosoopio analysis into atoms and radiation.

The quantities da^jda are the components of the macroscopic

‘velocity’ of the fluid at the position and instant of interest. Thus, for

example, the value of dx^jda would be found by observing the motion

of a macroscopically identifiable point of the fluid, and computing

the rate of change of its coordinate with respect to the readings of

a natural clock moving with the point. And dx^jda would be found by
computing the rate of change in the value of the time-like coordinate

x^ for the point with respect to the readings of the same clock.

Similarly the quantity g is the determinant formed from the com-

ponents of the metrical tensor when these are determined maoro-

scopically, an advantageous ciroumstanoe in view of our complete

lack of knowledge even as to the significance of this tensor from an

atomic point of view. Furthermore the coordinate range Sar^Saj^Sa^Sa;:*

is to be regarded as denoting a macroscopically mfinitesimal element

of four-dimensional volume.

Turning finally, moreover, to the right-hand side of our expression,

the quantity 2^ is to be taken as the absolute temperature of the fluid

as measured in the usual manner by a local observer at rest in the

fluid at the position and instant of interest. And 8Qo
measured by this local observer which flows into an element of the

fluid having the instantaneous proper volume Svg during the proper

time SIq, where those quantities are chosen to give the same magnitude

of four-dimensional volume in natural measure as is included in the

coordinate range 8«^8a:®8a:®S®*. These two final quantities 8Qq and

hence retain the macroscopic character of heat and temperature

in the older thermodynamics.

It is important to emphasize the maorosoopio andphenomenological

character of relativistic thermodynamics, since it permits us to avoid

all the complexities and uncertainties which attach to the atomic

point of view, especially at the present time of partial incompleteness

in the development of quantum theory, and allows us to proceed

with the natural confidence belonging to an empmoal approach.

121. On the interpretation of heat in relativistic thermo-

dynamics

In the process of generalizing the second law of thermodynamics

from the form which it assumes in special relativity to that taken in
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general relativity, it ia not easy to follow the precise significance of

the quantity 8Qq appearing on the right-hand side of the expression

and denotuig a quantity of absorbed heat as measured by a local

observer. Hence the specifications which we have given for the deter-

mination of SQo ^ preceding section may not be immediately

evident, and the present section will be devoted to the intei^retation

of this quantity.f

To carry out this interpretation, let us first consider the expression

for the relativistic second law (119.2), in the original form in which it

was 'written . » s/'i

(121 . 1)

Assuming that we understand the significance of all the other

quantities in this eipression, we can then begin by showing with the

help of the principle of covariance that 8Qq is in any case a scalar,

having a value proportional to the range but otherwise

independent of the coordinate system.

To do this we note in the first place that the quantities dx^^jda)^

and Tq are necessarily scalars with numerical values entirely hide-

pendent of the coordinate system—^the first because it is the con-

tracted covariant derivative of a vector and the second from the

unique specifications given for its determination by a local observer.

In the second place we note that the quantity ^l—g 8x^8x^Sx^8os^

is also a scalar, having a numerical value proportional to the in-

finitesimal range 8x^8x^8x^8x\ but otherwise independent of the

coordinate system, since it is an expression for the four-dimensional

volume in natural measure specified by that range. Hence in

accordance with the principle of covariance, it is evident that the

remaining quantity appearing in the postulate 8Qo must also be

scalar with a numerical value proportional to the infinitesimal range

8x^Sx^8x^8a^, but otherwise independent of the coordinate system, in

order that the postulated law may agree with the requirements of

covariance by having the same significance in all coordinate systems.

Having shown then that the quantity 8Qq is necessarily a scalar

with a value intrinsically independent of the coordinate system, we

can now determine its value by making use of any specially con-

venient coordinate system. For this purpose we shall choose natural

coordinates x, 2 ,
t for the particular point of interest. In accordance

t Tolmau and Bobertson, Phys. Rev. 43, 664 (1933).
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with the principle of equivalence, such natural coordinates can

always be found, and their choice will make our previous principles

of thermodynamics—as given for the special theory of relativity

—

valid in the immediate neighbourhood of the selected point.

Using these coordinates, covariant dififerentiation will reduce to

ordinary differentiation and the quantity V— will assume the value

unity, so that the left-hand side of our expression for the second

law (121.1) will assume the form

^l-g Bx^SxWSx*

( 121 .2
)

and by substituting the evident expressions

dx _ dt dy dX dz dX

d8~'^’^ds * ~
'di~ ^‘da'

where Uy, and are the components of the velocity of the fluid

as ordinarily expressed, this can be rewritten as

In accordance with the special theory of relativity, however,

entropy is an invariant for the Lorentz transformation, and hence

entropy density will depend on the Lorentz contraction factor dajdt

in such a manner that we can substitute

<• - •^4 ’

where ^ is the entropy density of the fluid referred to our present

coordinates. Doing so, we then obtain in place of the above expression

which can be rewritten in the form

uj 8a;8y82;8^,

where we now represent by the total derivative d^jdt the rate of

change in entropy density as we follow a point moving with the fluid.
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And denoting by 8v the volume of fluid instantaneously contained

in the coordinate range SxSyBz this becomes

[fs.+4(S.)]8i = |(^8.)8,;

80 that we can finally write

V— (121.3)

as an expression for the left-hand side of the relativistic second law

(121.1), using natural coordinates for the point of interest.

Hence, using natural coordinates, it is evident that the left-hand

side of the relativistic second law becomes the increase, in time 8^,

which takes place in the entropy of the small element of fiuid in-

stantaneously contained in the coordinate range SxSt/8z. In accord-

ance with the principle of equivalence, however, we can apply special

relativistic thermodynamic theory to this small system and connect

its increase in entropy with heat and temperature by the expression

j^(<^Sv)St ^ (121.4)

where 8Q is the heat absorbed by this element of fiuid in time 8t at

temperature T, these quantities also being referred to our present

system of coordinates. Furthermore, since the ratio of heat to

temperature is an invariant for the Lorentz transformation we can

also take
rii^/

(
121 .6

)T %
where SQg and are the absorbed heat and temperature as measured

in proper coordinates by a local observer moving with the element

of fluid. Moreover, in accordance with the Lorentz contraction for

volume elements and the Lorentz time dilation for time intervals we
can write ^
where is the instantaneous volume of the element of fluid as

measured in proper coordinates and S^q is the proper time during

which the heat absorption takes place.

Hence, combining the information given by (121.3, 4, 6, 6), we have

now obtained in natural coordinates an expression

(121.7)
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of the same form as postulated above for the relativistic second law,

together with the desired specific interpretation of the quantity 8Qq
occurring on the right-hand side, as the heat—^measured by a local

observer at rest in the fluid at the point and time of interest—^which

flows into an element of the fluid having the instantaneous proper

volume Svq during the proper time these quantities being so

chosen as to make

8^;o8^o = 8vht = (121.8)

This result has been obtained using natural coordinates. Never-
theless, in accordance with our earlier discussion of the scalar charac-

ter of SQo, the interpretation is valid for any coordinate system. No
specification of the shape of the element of fluid is given, since to the

order of quantities considered, the heat absorbed depends only on
the product of volume and time interval.

Since 8Qo Is the heat absorbed by a definite element of the fluid,

it will be noted as in ordinary thermodynamics that heat flow is to

be regarded as taking place relative to ^e material fluid or working
substance of interest, rather than as relative to some system of spatial

coordinates that happen to be in use.

It must finally be remarked, in order to remove uncertainties which
could arise when we come to the integration of the second law expres-

sion, that in applying the second law each increment of heat entering

a system of interest is to be taken as divided by the temperature at

the location where it crosses the boundary separating the system from
its surroundings, again as in the usual thermodynamics. Hence we
can regard SQq and

7J,
as quantities which are determined by measure-

ments made in the usual manner by observers located on the boundary
of the element of fluid considered.

122. On the use of co-moving coordinates In thermodynamic
considerations

The discussion of the preceding section has shown that heat flow is

in general to be taken as relative to the material fluid of interest

rather than relative to the particular spatial coordinates in use. This
makes it especially convenient in thermodynamic considerations to
select a coordinate system such that the fluid has permanently
everywhere zero components of ‘velocity’

dx^ dx^ dx^
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with respect to the spatial ooordiaates. Such coordinates may be
called co-mofoing and axe presumably always possible, since they nn-Ti

be obtained by tahing the spatial coordinates as given by a network
drawn so as to connect adjacent identifiable points of the fluid and
then allowed to move therewith.

Beferred to such coordinates, the relativistic second law gives

specially simple and understandable results. Starting with the second

form (119.6) in which we have expressed the law

8a:^8®*8a:®8a;^ > 8(2o

T,

8

xjuo
/

we at once obtain, on account of the permanent validity of the

relations (122.1) at all pomts of the fluid, a reduction to the simple

form -5 , ,

iUo^^-9) 8a;i8a;®8x»8a:* ^_L
8a^\

8«o
T’

(122.2
)

(122.3)

Furthermore, siuce the coordinates are mutually independent

can be rewritten in the form

8x*

In this form, however, the relation has very considerable advan-

tages. In the first place, taking elements of four-dimensional volume

at the point of interest which have equal volumes expressed in natural

measure = Svq cis = (122.6)

it is evident that we can rewrite the above relation in the form

dx^
(122,6)

where 8uo will be equal to the proper volume of the element of fluid

permanently located in the coordinate range 8!C^8a:®8x®, as measured

at any instant by a local observer moving with that element. In the

second place, we can evidently re-express this latter relation in the

form „

— (<jio Sdj) 8<q ^
8t

8<3o

T’

where

(122.7)

(
122 .8)

is the increment in proper time which corresponds at any instant to

the increment in coordinate time 8x^.

The form for the second law given by (112.6) proves useful by
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contoming an expression for the rate of change in the proper entropy

of any given element of fluid with respect to the coordinate time x*

which applies throughout aU parts of the system imder consideration.

This is of considerable advantage in the treatment of flnite systems.

The form for the law given by (122.7) is iiseful in again showing the

validity of our previous interpretation of 8Qo- Since the left-hand

side of (122.7) is the increase, as found by a local observer, which

occurs in time 8<o ™ entropy of an element of fluid of volume

8% it is evident from the ordinary principles of thermodynamics

—

which must apply for such a local observer—^that must be the

heat which he flnds to be absorbed by the element in that time. On
the other hand, in accordance with (122.6) and (122.8) we have

— ‘^~9 Sa?^8flj*8a:®8**, (122.9)

which is our previous specification (121.8) for the volume of the

element and time interval that are to be employed by the local

observer in measuring the heat SQ^.

The form for the second law given by (122.7) is also useful in

emphasizing the principle that a local observer examining the thermo-

dynamic behaviour of an element of fluid in his immediate neigh-

bourhood must use the same methods of measuring entropy, heat,

and temperature, and employ the same criteria of reversibility and

irreversibility as have been made familiax by the classical thermo-

dynamics. This principle serves to increase our confidence in the

validity of relativistic thermodynamics, and to explain the fact that

outstanding differences between the conclusions of classical and

relativistic thermodynamics tend to appear only when large portions

of the universe are under consideration.



IX

RELATIVISTIC THERMODYNAMICS {crntd.)

Part II. APPLICATIONS OF RELATIVISTIO THERMODYNAMICS

123. Application of the first law to changes in the static state

of a system

We may now commence our investigation of the consequences of re-

lativistic thermodynamics. Since our first interest will lie in determin-

ing the conditions for static thermodynamic equilibrium, we shallbegin

by examining the restrictions imposed by the principles of relativistic

mechanics on the changes which might take place in a thermodynamic

system from one static state to another without involving any changes

in the surroundings that lie outside the selected region of interest.

Consider a system together with its surroundings which up to some
initial 'time’ are in a given static state such that there are no

changes taking place with respect to and then let a change take

place inside the system without affecting the surroundings to some
new static state at ‘time’ after which there will again be no changes

taking place with respect to the time-like coordinate

Since this change is to take place without involving any effects

on the surroundings, it is evident (a) that there must be no transfer of

energy or momentum between the system and surroundings, and (6)

that the distribution of energy and momentum in the surroundings

must remain unaltered. It is easy to show, however, that these con-

ditions are met if the change inside the system involves no changes in

the values of the gravitational potentials and of their first and
second derivatives dg^Jdx^ and at the boundary of the

system and beyond.

To show that this restriction is sufficient to prevent the transfer of

energy and momentum from the surroundings into the system, we
may return to our previous expression (88.2) for the energy-momen-
tum principle as applied to a finite system

— JJ — jj — JJ
[I*

(123.1)
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where the left-hand side of the equation gives the rate of change in the

three components of momentum and in the energy of the system,

according as we take fi = \,2, 3, 4, and the right-hand side can be

regardedas givingtheflowofmomentum or energy acrossthe boundary

from the surroundings into the S3rstem, provided we choose as usual

coordinates such that the necessary limits of integration actually lie

on the boundary separating the system from its suirormdings.

Up xmtil the initial time when the change in state conamenoes,

the left-hand side of this equation will be zero since by hypothesis

the system is then in some given static state. Hence the right-hand

side of the equation will also be zero at time »'*. The right-hand side,

however, is a constant independent of »*, since the quantities

-sva:;; = (123.2)

and (123.3)

are definitely determined by the
g^^y and their first and second

derivatives, and by hypothesis these do not change at points on the

boundary, corresponding to the limits of integration on the right-

hand side of (123.1). Hence both sides of that equation remain zero

and there is no transfer of energy or momentum between the system

and its surroundings.

To show that the restriction is suficient to prevent any change in

the distribution of energy and momentum in the surroundings, we
merely have to note again in accordance with (1 23.2) that the energy-

momentum tensor is definitely determined by the gravitational

potentials g^^ and their first and second derivatives, and hence if

these quantities remain constant for points outside the boundary the

distribution of energy and momentum will also have to remain un-

changed in the surroundings.

Hence, to sum up the results of this section, we may state, in

accordance with the principles of relativistic mechanics or first law of

relativistic thermodynamics, that a thermodynamic system can
change from one static state to another without involving any
changes in the surroundings, provided we subject the gravitational

potentials and their first and second derivatives at points on the

boundary and beyond to the restriction

^iiv
— 8 (123.4)

3505.11 X
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124. Application of the second law to changes in the static

state of a system

Having thus found restdotions—analogous to those imposed in

classical thermodynamics by the ordinary first law—that are sufficient

to guarantee changes in the static state of a system which could

take place without involving any changes in the surroundings, we
may now inquire into the restrictions which would be imposed by the

second law on the possible changes in static state.

To investigate this it will be best to employ co-moving coordinates

of the kind discussed in § 122. In any case the coordinates would be

oo-moving before and after the internal change takes place since the

system is then by hypothesis in some static state, and by using coor-

dinates which are also co-moving during the change we can then

express the restrictions imposed by the second law on the nature of

the change in the simple form (see 122.3)

In accordance with (122.6), we can regard the left-hand side of this

expression as the increase which takes place in ‘time’ in the proper

entropy as measured by a local observer of the element of fluid per-

manently located in the ‘spatial’ range and in accordance

with (122.7) we can regard the right-hand side of this expression as

given by the heat measured by a local observer which flows into

this element of fluid in the increment of proper time 8^^ which

corresponds to

If we integrate this expression for a given element of the fluid over

the total interval to during which change takes place, we
shall obtain

af* a"*

/ S > J
^0, (124.2)

x"* x'*

where the left-hand side is the total change which the local observer

finds in the entropy of the element, and the right-hand side—in

accordance with the specifications given at the end of § 121—is the

total result obtained by summing all the increments of heat that

enter the element each divided by the temperature of the boimdary

at the time of passage, the measurements being made by observers on

the boundary of the element.
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If we now perform a second integration, this time over aU the

elements of fluid included in the system, it is evident that the right-

hand side of (124.2) will lead to a null result giving

or*

since by hypothesis we shall be interested in changes which involve

no flow of heat at the boundary of the system as a whole, and our

method for the precise speciflcation of 8Qo and will lead to a

cancellation between contiguous elements within the system.

Hence the conditions imposed by the relativistic second law of

thermod3mamios on changes in the interior of a system from one

static state to another without aflecting the surroimdings can he

expressed by the relation

(124.4)

where the subscripts x'* and indicate thatthe values ofthe integrals

are to be taken for the ioitial and final states of the system.

To emphasize the analogy with classical thermodynamics this

result could also be stated as the requirement that the ‘entropy’ S can

only remain constant or increase when the system changes from one

static state to another, provided we define that quantity as the total

integrated proper entropy of the elements of fluid in the system

^ = JJJ ^ V-ff dx^dxHafl. (124.6)

125. The conditions for static thermodynamic equilibrium

With the help of the two foregoing sections we may now express

the conditions for static thermodynamic equilibrium in a finite

system having no interaction with its surroundings in the form of the

variational equation

8 IJJ ^ dx^da^dx^ = 0 (126.1)

under the subsidiary condition to be imposed at the boundary of the

system

(126.2)
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The first of these equations is the condition for a maximuni value

of the integral in. question and is imposed by the second law which as

shown by (124.4) will only permit increases if there is any change at

all in this quantity when the system changes from one static state

to another without interaction with the surroundings. And the

second set of equations provides, as we have seen in § 123, a sufficient

oonditian to prevent any interaction between the system and its

surroundings when the internal change takes place.

126. Static equilibrium in the case of a spherical distribution

of fluid

In the ease of a fluid sj^tem held together by gravitational attrac-

tion, a state of static equilibrium will necessarily be one of spherical

symmetry; and we may give q>ecial attention to the form assumed

in that case by the above conditions for equilibrium. In accordance

with (94.9) we may then write the line element to start with in the

(fos = _eM(da:a+dy2+d»a)+e’' dt^ (126.1)

where = [i{r) v = v{r) r = ^j{x^+y^+z^) (126.2)

and the isotropic coordinates x, y, z, t are such that the hmits of

integration necessary to include any given region of interest wiU fall

on the actual boundary separating that region from its siuroundings,

and hence are of the variety assumed m § 123 in obtaining the

subsidiary conditions expressed by (126.2).

With the above form of line element we shall evidently have

and ^ = c”*”, (126.3)
as

the latter since the ^atial components of fluid Velocity’ will be

zero. Substituting in (125.1) and noting the implications of (126.2)

and (126.2), we can then write the requirements for static thermo-

dynamic equilibrium in the form

8 IJJ
dxdydz = 0, (126.4)

under the subsidiary conditions at the boundary of the region of

integration ^ ^ g^, = Sv = 8v' = Sv" = 0, (126.6)

where the accents denote differentiation with respect to

r =
To obtain these conditions we have employed the coordinates
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x,y,z,t since as remarked above they are of the kind used in § 123

in obtaining the relations (126.2). It will now be convenient for our

later work, however, to transform to polar coordinates r, 6, <f>,
t.

We can then write the line element in the form

(fea = _eM(dr24-r2 dff^ +r2sin*d d<f,^)+e'' dt^ (126.6)

M = /*{») >' = *'(»)

and, taking the region of integration as a spherical shell lying between

and rewrite the requirements for static equilibrium for a spherical

distribution of fluid in the form

S
J

dr = 0 (126.7)

n
under the subsidiary conditions

8/* = 8/ = 8/ = 8v = 8/ = 8v* = 0 (at rj and r^). (128.8)

In order to apply (126.7), however, we can introduce a more imme-

diate and useful dependence on the form of the line element and on

the composition of the fluid.

In the first place we recall in accordance with (96.16), that the

expressions for the proper pressure Po and proper macroscopic density

/jqj of the fluid corresponding to the above form of line element are

given by
8773)0 =

>'2

,4*2 r 1

8773)0

1/2

2r -)

Sttpoo =
(126.9)

^Po f^OO+Po /

dr 2

In the second place, since we can evidently take [see equation (51),

Appendix ni]
Wo = 47re*/*ra dr (126.10)

as an expression for the infinitesimal proper spatial volume of the

fluid lying between r and r+dr, and we can also take

So = dr (126.11)

as an expression for the proper entropy of this spherical shell of fluid

as it would be determined by local observers, both of these quantities

being of course infinitesimals. The proper entropy of an element of
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fluid, however, will depend on its proper energy, volume, and com-

position in the same way as in the classical thermodynamics [see

equation (60.4)], Hence when we come to introduce the variation of

the expression given by (126.11) into the condition for equilibrium

(126.7) we can write

a..

»

where is the proper temperature of the shell of fluid as measured

by a local observer, £Jq is its proper energy and etc. are the

number of mols of the different substances which determine its com-

position. Furthermore, in using this relation we can take in accord-

ance with (126.9)

= 8(47rpooC^/V^ dr)

— [¥i
itjr® dr

- --glfs,i'+^ 8,.' +j V'j+a'PcoSll-sJj* dr. (126.13)

and in accordance with (126.10)

8vq = 8{4^e^hr^ dr)

= QTre^^SjjL r^ dr,

and finally in accordance with (126.11)

(126.14)

(126.16)

where {d<l>Q/dc^)^ is the partial derivative of proper entropy density

with the concentration of the ith component, taken at constant

energy density and constant specific volume, this latter being indi-

cated by the subscript p since energy density and specific volume are

determined by this quantity and its derivatives.*

Substituting these relations, we can now rewrite our earlier con-

dition for equilibrium (126.7) in the form

ri

This expression can be further simplified, however, in the usual
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majiner by performing partial integrations and dropping terms whioh

become zero on account of bonndary conditions. Substituting

V- = |(V) V = |(V).

and, using from the boundary conditions (126.8), the relations

Sjn' = S/* = 0 (at and r^.

We thus readily obtain after some simplification

+ 8c?e»f*r2dr = 0 (126.16)

as our final expression for the condition of thermodynamic equilibrium

in a fluid sphere.

In accordance with the method by whioh this expression was

obtained, it will be seen that the variations in proper energy SjE/q a-nd

proper volume S?;©, originally occurring in (126.12), have both con-

tributed to the variation in the metrical variable /a, while the varia-

tions hrii in the number of mols of the different constituents in the

shell of fluid between r and r-fdr have directly led to the variations

8cJ in the concentrations which determine the composition at each

value of r. Since Eq and Vq originally entered our considerations as

variables which were independent of those determining the com-

position n^, it is evident that we can regard the variation indicated

by SfM in equation (126.16) as independent of that indicated by the ScJ.

127. Chemical equilibrium in a gravitating sphere of fluid

We may now use the general condition for equilibrium obtained in

the last section to investigate the chemical equilibrium between

reacting substances in the interior of a gravitating sphere of fluid.

Since the variations indicated by S/a and ScJ in (126.16) are to bo

treated as independent, it is evident that wo can take the second

integral in this expression as itself equal to zero, and this can only

be satisfied provided we have

holding at each value of r, whei'e the subscript /x indicates constancy
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of energy density and specific volume. Comparing this with (60.15),

however, we see that this relation is the same as the classical condi-

tion for chemical equilibrium provided we use entropy densities and

concentrations as measured by a local observer at rest in the fluid.

Hence the chemical equilibria between reacting substances at any

point in a gravitating sphere of fluid will be characterized by the same

conditions—^measured by a local observer—as would be calculated

on a classical basis.

This is anexample of the tendency alreadymentionedfor relativistic

considerations often to lead to the same conclusions, for the results of

measurements by a local observer, as wouldbe obtained from classical

considerations. This tendency arises of course as a consequence of

the original introduction of the principle of equivalence as a part of the

axiomatic basis for the general theory of relativity, and a knowledge

of this tendency can be used as a fairly safe intuitive guide in drawing

conclusions when we feel sure that the phenomena under considera-

tion do not depend on higher derivatives of the g^y than the first.

The definite demonstration of the principle that the conditions for

chemical equilibrium are not directly affected by mere position in a

gravitational field is very important, since this is tacitly assumed to

be true in our usual consideration of stellar models. As a consequence

of the principle, it should be noted that the results of our previous

discussion of the equilibria between hydrogen and helium and that

between matter and radiation would be applicable at any level in

a star. Hence our previous difficulties as to their relative concentra-

tions remain. In the last chapter we shall see that a similar principle

holds for chemical equilibria in static cosmological models.

128. Thermal equilibrium in a gravitating sphere of fluid

We may also use the general condition for thermodynamic equili-

brium obtained in § 126 to investigate the distribution of temperature

in a fluid sphere which has come to thermal equilibrium. Again

making use of the consideration that the variations indicated by 8fi

and 8cJ in (126.16) are to be treated as independent, we may this time

conclude that the first integral in that expression is itself equal to zero

.

This, however, can evidently be true orJy if we have the relation

(
128. 1 )

liolding within the sphere at all values of r.
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To put this equation in a form suitable for integration, we may
re-express the right-hand side by substituting for {poo+^Po) from

(126.9), using the expression given there for /Oq^, plus the first expres-

sion for po, plus twice the second expression for Pq. Doing so we
obtain

*l *\3jj r„\2+4+4+rj

X dr\

As a first integral of this equation we evidently have

(128.2)

dr

d

~x ^ (e‘'')+5.

where B is the constant of integration, and this may he rewritten

in the form
dlogjTj 1 ^

dr ~ 2 dr
(128.3)

By substituting from (126.9), however, this latter can be re-ex-

pressed as
dlogTf, _ 1 dp^ Be-ii^-i'’T^

"'/’oo+Po

Hence if we assume on physical grounds that at the centre of the

sphere, r = 0, we have dTJdr and dpjdr equal to zero, not equal

to zero, and the other functions of r finite, it is evident that the

constant B must be equal to zero. We may then write our final ex-

pression for the dependence of proper temperature on position in

a static sphere of fiuid at thermal equilibrium in the equivalent

diogy, idv

dr 2 dr-
(128.4)

dlog^o _ 1 dpo

dr Poo+JPo dr ’

or by a second integration in the form

== 2oV(fl^«)
=

where (7 is a new constant of integration.

It would of course bo interesting also to investigate the possibility

for solutions of physical interest in which the constant of integration

B was not taken equal to zero. Nevertheless for ordinary continuous

distributions of fluid it seems clear that the simple equations just

given must bo regarded as the correct ones to use.

(128.6)

(128.6)
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The first point to emphasize in connexion with the above results

is the significant conclusion that the proper temperature of a fluid

as measured by local observers using ordinary thermometrio methods

would not be constant throughout a fluid sphere which has come to

thermal eq[uilibrium, but would vary with gravitational potential,

increasing with depth as we go toward the centre of the sphere. This

conclusion is of course very different in character from the classical

conclusion, as previously discussed in § 61, that uniform temperature

throughout is a necessary condition for thermal equilibrium. Never-

theless, from the point of view of relativity, since all forms of energy

must be expected to have weight as well as mass, the conclusion that

a temperature gradient is necessary to prevent the flow of heat from

regions of higher to those of lower gravitational potential seems a

natural and appropriate result.f

A second important aspect of the new result which should be noted

is the fact that the actual effect of gravitational potential on equili-

brium temperature would be extremely small except in very strong

fields. Thus in a fieldhaving the intensity of that at the earth’s surface

the change in temperature with radial position would have only the

very small value dlogT
d/r

(128.7)

This result is of course in agreement with the fact that we have as

yet no observational evidence of any effect of gravitational field on

thermal flow.

It is indeed questionable whether the new effect would even bo

large enough to have importance for theories of stellar structure,

since as will he seen from the form of the principle given by (128.6)

the percentage rate of increase in temperature as we proceed inward

in a sphere which has come to thermal equilibrium would in any case

be smaller than the percentage rate of increase in pressure, and

indeed very much smaller for ordinary matter with large compared

with Pq, It is, however, conceivable that the new criteria for thermal

flow might sometime be of interest in connexion with non-homo-

geneous cosmological models, having thermal flow from one portion

of the model to another.

As a third point in connexion with the results of this section, it is

interesting to note that the new relation between temperature and

t Tolman, l^hys, Rev. 35, 904 (1930),
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gravitational potential is anyhow that which would be demanded in

the case of a distribution of pure black-body radiation by the direct

application of mechanical principles alone. Thus in the case of a
spherical distribution of pure black-body radiation, such as might
be thought of as surrounding a gravitating sphere of denser matter,

we could conclude from the mechanical equations given by (126.9)

that the pressure of the radiation would have to increase as we go
inward, in order to support the weight of radiation above, at the rate

_ PoQ+ffo dv

dr 2 dr'
(128.8)

For black-body radiation, however, we have the direct relations of

Boltzmann and Stefan (see § 66) connecting the mechanical quantities,

density and pressure, with the thermodynamic quantity, temperature

Poo
=

and = (128.9)

where a is Stefan’s constant. And substituting these expressions

above we at once obtain our previous relation between temperature
and gravitational potential

dlog^^o Idv

dr ~ 2 dr'
(128.10)

This direct verification, in a particular case, of a result previously

obtained by taking the full apparatus of relativistic thermodynamics
as a starting-point, can serve to increase our confidence in the valid-

ity of our extension of thermodynamics to relativity.

In concluding this section it should not be forgotten that the results

here considered have been derived for the special case of a static

distribution of fluid having spherical symmetry. It should also be

noted that the quantity v, appearing in the condition for thermal

equilibrium (128.10), is to be taken as the p which occurs in the

special form (96.14) which can then be given to the line element, or

could also be taken as the v in the expression for the line element

(96.12), since as shown in § 94 this quantity is not affected by the

transformation between the two forms.

129. Thermal equilibrium in a general static field

We may now examine the conditions for theimal equilibrium in

a more general static field, corresponding, for example, to a solid
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structure where spherical symmetry would not be a necessary

characteristic of the final state of stability,I To investigate tempera-
ture equihbriiim in such a case, we shall assume that the parts of the
system whose temperatures are to be compared are in thermal contact
with a small connecting tube containing black body radiation, or

could be put into such contact without introducing any essential

change in the nature of the system. Such a tube might be called a
radiation thermometer, and by calculating the change in radiation

pressure as we go from one portion of the tube to another we shall

be able to determine the temperature distribution at equilibrium.

We shall take the line element for the system as having the very
general static form

da^ = (129.1)

where we adopt the convention of using Latin indices to correspond
to spatial coordinates and save Greek indices to indicate any coor-

dinate. In accordance with the usual definition of a static system we
take the potentials ^^4 , and g^^ equal to zero, and take the other

potentials
g^^ and as dependent in any arbitrary way desired on

the spatial coordinates and but as independent of the time
coordinate t. For the potential it will be noted from the form of

the line element that we have the specially simple relation

0f« = — .
(129.2)

^44

As an expression to use for the energy^momentum tensor of black-
body radiation in the field deiSned by the above line element, we can
take in accordance with § 109 the formula

= iPoo+Po)^ (129.3)

with
Poo (129.4)

Furthermore, noting in the case of a static system that the overall

macroscopic velocity of radiation flow would be equal to zero, we
can write

_ dx^

ds ^ da
1,2,3). (129.6)

And, taking account of the form of the line element, can also write

t TolmanandEhrenfest, Phya. Rev, 36, 1791 (1930).
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for- the fourth oomponent of ‘velocity’

5 =S =
Substituting these two expressions into (129.3), we then find that

the energy-momentum tensor has as its only surviving components

Tii = y" = fir«*poo- (129.7)

And on lowering sufihxes, we have

T\ = = -QjccS^'^o = -9iPo^

^4 = 9u ~ 94i9**PM ~ Poo»

so that we obtain as the only surviving components of the energy-

momentum tensor in its mixed form

Tl = n = Tl^-Po n = Pi»- (129.8)

We are now ready to use the principles of relativistio mechanics

in the familiar form

to investigate the pressure in our postulated radiation thermometer.

Taking the case /x = 1 and substituting equations (129.7) and

(129.8) we obtain

^{-Po^/--9)-U-9^%^/-9)^~U9**Poo^-9f^ = 0,

and this ban evidently be rewritten in the form

d4—g
dx^

+

+i(Poo+JPo)V— = 0-

This can be easily simplified, however, by substituting, in accordance

with Appendix III, equation (39),

0a^

iiff
gdx^’

which is seen to lead to a cancellation of the second and third terms

above, giving us « ««® 8P0
I

P00+3>0o4d^44 _ A
0*1 2t ^ esP

And by making use of (129.2) and (129.4), this provides the final

simple relation for the dependence of .the pressure in the radiation
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thenaometer on the coordinate

= am
Siace similar relations will hold for the dependence of pressure on

the other spatial coordinates, we can now integrate and express the
general dependence of radiation pressure on position in the re-
markably compact form

= const.

and by substituting the relation between pressure and temperature
given by the Boltzmann-Stefan relation

Po =
this leads at once to the desired expression for the dependence of
proper temperature on position in a general static field

(129.10)
where C is the same in all parts of the system.

Several remarks may be made concerning this final simple result.
In the tot place, comparing with (128.6) it will be noticed that

t e conditions for thermal equilibrium in a fluid sphere can now be
regarded as a special case of this general result for any static field.

Smoe the tot result was obtained from the principles of relativistic
t ermodynanucs and the second from mechanical principles alone,
Mcept for the final introduction of the Boltzmann-Stefan relation
etwe^ pressure and temperature, we may regard the agreement

as again furnishing justification for confidence in the new thermo-
dynamics, similar to that pointed out at the end of the preceding
section.

^

As a second point, it should be noted from the method of deriva-
tion that the oonatanoy of has been proved in the first
iMtance solely for points within the radiation thermometer. Never-
*

.

s™-ce Tq and axe certainly oontinuons functions of position
wi *

themaoineter itself the result would also apply to the
system itself where it comes in thermal contact with the thermometer.
As a f^er consideration, it should be noted that the derivationWM carried out on the assumption that the system could be provided

with a radiation thermometer, connecting the parts whose tempera-
tures were to be compared, without disturbing the essential character
of the system itself. Hence some discussion of the probable validity
of this assumption would be desirable. For example, if we had a
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gravitating system oontaining solid parts it would be necessary to

make a hole into the solid and insert a radiation thermometer if we
wished to obtain information as to the temperature of the interior

by the method we have suggested, and this procedure would certainly

have some effect on the gravitational potentials which are them-

selves directly related to the distribution of matter and energy in the

system. Nevertheless, since the equation of connexion

is a differential one giving the distribution of matter and energy in

terms of the and their first and second derivatives, it seems correct

to assmne that the insertion of a thermometer of small dimensions

could be made without seriously altering the values of the them-

selves. This question might be further investigated, however, since

exceptional cases of interest might be found.

Finally, it is interesting to note that although the proper tempera-

ture Tg varies from point to point in a gravitational system which has

come to thermal equilibrium, nevertheless the constancy of the com-

bined quantity To >/(?«) provide some of the advantages of

the classical principle of constant temperature as the criterion of

thermal equilibrium. In this connexion it will be recalled that

Einstein himself was led in his early speculations on the nature

of gravitation to distinguish between a quantity, called ‘wahre

Temperatur’, which would be constant throughout a system at

thermal equilibrium and a second quantity, called at the suggestion

of Ehrenfest ‘Tasohentemperatur’, which would vary with gravita-

tional potential. The considerations were of only a limited applica-

biUty since this was done at a time before the complete development

of general relativity; the quantities mentioned, however, were re-

spectively analogous to our present and T^. Nevertheless,

since the proper temperature has an immediate physical signifi-

cance from its direct relation to the measurements of a local observer,

it will perhaps he best not to multiply the different kinds of tempera-

ture to which we might give names, and to regard Tj as being funda-

mentally the thing that we mean by the temperature at a point.

130. On the increased possibility in relativistic thermo-

dynamics for reversible processes at a finite rate

We must now consider the possibility in relativistic thermodjma-

mios for certain kinds of thermodynamic processes to take place both
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reversibly and at a finite rate. This provides a second example of

the differences between the conclusions of relativistic thermodynamics

and those which seemed inevitable from the classical point of view.

We have already discussed in § 62 the general line of argument by

which the dassicaJ thermodynamics was led to the conclusion that

reversible thermodynamic processes would always have to be earned

out at an infinitesimally slow rate in order to secure that maximum

efficiency which would be necessary to permit a return both of the

system and its surroimdings to their original states. In the present

section we shall use the expansion of a perfect monatomic gas an

example to illustrate the differences which can arise between classical

and rdativistio points of view as to reversibility and rate.

Fig. 4

Let us first consider the expansion of a sample of perfect mona-

tomic gas by plaoiog it in a cylinder provided with a movable piston

as shown in Fig. 4. To begin with, it is evident in order to secure

reversibility that we can allow no heat flow between the cylinder and

its surroundings to take place at a finite rate, since this would involve

a finite temperature gradient and hence the irreversible transfer of

heat from regions of higher to those of lower temperature. Therefore

the expansion would in any case have to be carried out adiabatically

.

Even then, however, it is evident that the expansion could not be

carried out reversibly at a finite rate, in the first place because this

would involve friction between the piston and the walls, and in the

second place since the fluid in flowing in behind the moving piston

would not be able to maintain as high a pressure at the expanding

boundary as at an infinitesimal rate of expansion. Both of these

effects would prevent the piston from doing as much work as would

be necessary to reoompress the gas.

Hence we may conclude that such an expansion of gas in an enclosed
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container with movable walls could not be carried out both reversibly

and at a finite rate, since the expansion would not deliver sufficient

work to the surroundings to secure reversibility. Furthermore, the

argument would appear to be essentially the same and the con-

clusion valid whether we use classical thermodynamics or adopt

a relativistic point of view.

Since this failure to secure reversibility in the case of an enclosed

sample of gas, expanding at a finite rate, results from the inability of

the expanding system to deliver the necessary work to its surround-

ings, let us next turn to the expansion of an unenclosed perfect gas

without any other surroundings at all, the gas itself being the only

thing in the universe that we consider. Here we find greater differ-

ences between classical and relativistic considerations, due principally

to the fact that classical ideas did not provide a complete theory of

gravitation.

Three remarks may be made which perhaps give a fair idea as

to the classical point of view with regard to the expansion of an

unenclosed gas. In the first place, classical thought was so strongly

impressed by the frequent dependence of irreversibility on finite

rate—as illustrated above by the expansion of gas in a cylinder

—

that the existence of reversible processes occurring at a finite rate

was for the most part not even seriously entertained as a possibility

for any process. In the second place, in accordance with the usual

classical ideas of a three-dimensional Euclidean space having infinite

extent, it seemed most natural to consider that the only important

possibility for the expansion of an unenclosed gas would be its diffu-

sion into the surrounding empty space. And this would be a process

which would take place—to be sme at a finite rate—but with an

irreversible increase in entropy owing in the last analysis to the

entropy change
AS = iJlog^ (130.1)

Pz

when a mol of gas drops from pressure to pressure without the

performance of external work. Finally, the alternative possibility of

a universe or cosmological model completely filled with an expanding

gas was not considered from the classical point of view. It is this latter

possibility that proves to be important for relativity. Classically,

however, such models were not investigated, perhaps partly because

it was known that the unmodified Newtonian theory of gravitation
3696 .u Y
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was inoompatible with an infinite homogeneous distribution of gas

in a static state,f and partly because the iN'ewtonian theory—having

provided no definite principles as to the velocity of propagation of

gravitational action—was unable to carry through any unique

treatment for such a non-static cosmological model.

Turning, however, to a lelativistio consideration of the possibilities

for the expansion of an unenclosed gas, we find that relativistic

mechanics, with its definite theory as to the interrelated geometrical

and gravitational aspect of the potentials has been able to provide

a perfectly unambiguous treatment for non-static cosmolo^cal

models filled throughout their entire extent with any homogeneous

distribution of e:^andmg or contracting fluid. And it is these models

—when filled with a sufficiently simple fluid such as a perfect mona-

tomic gas—^which furnish illustrations of the relativistic possibiliiy

for reversible processes to take place at a finite rate.

To obtain an understanding of this new possibility, we may antici-

pate the results to be derived in the next chapter by writing the line

element for a non-static homogeneous model of the universe in the

form ^
** = m+dt^ (

130 .2)

where r, 6, and
<f>
are ^atial coordinates, t is the time-like coordinate,

JBq is a constant and the dependence of the hue element on time is

determined by the functional form of the exponent g(t). This formula

for interval can be shown to correspond to a cosmological model

which is filled throughout its entire spatial extent with a homogeneous

distribution of fluid. The coordmates used are of the oo-moving

variety discussed in § 122 so that an element of the fluid located in

any given coordinate range 8r808^ remains permanently therein. The
proper volume of such an element of fluid

will, however, in general he changing with the time owing to its

dependence on When g is increasing with t all the elements of the

fluid in the whole model will be expanding at a rate which is pro-

portionally the same in all parts of the model, and with g decreasiag

there will be a similar contraction throughout the model, and in

t Neuraann, Abh. d. KgL SSeha. Oes. d. Wi»8, zu Leipzig, ma(h.~nat. Kl. 26, 97

{187«) : Seeliger, Aetr. Naahr. 137, 126 (1896).
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general these changes in proper volume would take place at a finite

rate.

We must now inquire whether such an expansion or contraction

could take place reversibly as well as at a finite rate. Kg. 6 gives a

symbolic two-dimensional representation of the space-like coordinates

correspondingto the line element (130.2) which will assist in visualizing

the differences between the expansion of gas in our present model and

iu the previous classical cylinder.

Applying the relativistic first law of thermodynamics— the

principles of relativistic mechanics

—to the model, it is easily found

(see § 161) that the energy rela-

tions for each element of the fluid

would be described by the fami-

liar equation for an adiabatio ex-

pansion

|(PooH)+J>o|(H) = 0. (130.4)

the change in proper energy for

each element of fluid being ac-

counted for by the work which it

does on its surroundings. Hence

each element of the fluid would

expand or contract adiabatically,

without flow of heat from one portion of the model to another, as

indeed would perhaps be intuitively evident from the homogeneity

of conditions throughout the model.

Having ascertained the adiabatio q^uality of the process, we can

then apply the relativistic second law (119.6) to our system after

setting the right-hand side of the expression—^which is proportional

to heat absorbed—equal to zero. Doing so, the second law, for the

model that we are considering and in the co-moving coordinates that

we are using, then takes the simple form

or, in accordance with (130.3),

(130.6)
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Henoe the application of the relativistic second law of thermo-

dynamics to such cosmological models shows that the proper entropy

of each element of fluid as measured by a local observer can in any

case only increase or remain constant. Since the equality sign applies

to reversible processes, constant proper entropy for each element of

fluid then becomes the necessary requirement for the reversible

expansion of these models at a finite rate.

This requirement, however, can apparently be met provided the

fluid filling the model is taken as sufficiently simple.

To show this, we first note that the nature of the model is such as

to eliminate possibilities for entropy increase which might otherwise

result from meficient interaction between the elements of fluid and

their surroundings. Thus there is no increase in entropy due to

irreversible heat flow into any element of fluid owing to the entire

absence of heat flow throughout the model; there is no entropy in-

crease due to the friction of moving pistons or the like since no con-

tainers for the elements of fluid are now involved; and there is no

entropy increase due to an inability of the fluid to keep up its full

pressure at the expanding boundary of an element owing to the

uniform pressure throughout the whole model. There henoe appears

to be no irreversibility directly due to poor coupling of any element

of fluid with its surroundings.

The remaining possibilities for entropy increase then lie in irre-

versible changes takirig place inside the elements of fluid in the actual

material of which the fluid is composed. In the ca»se of complicated

fluids subjected to a finite rate of volume change such irreversible

processes would certainly occur to an important extent. Thus if we
took a bimoleoular gas which tended to dissociate on expansion into

its elements, it is evident that this chemical change could not com-
pletely keep up with a finite rate of expansion and that the actual

dissociation would take place under non-equilibrium conditions and
henoe be accompanied by increase in entropy. Indeed, with a finite

rate of volume change, even the lag in such processes as the

transfer of energy from the rotational to the translational degrees of

freedom of a bimoleoular gas would involve some irreversibility. In
the case of simple enough fluids, however, such possibilities for inter-

nal entropy increase would be almost or completely lacking. Thus
if we took a perfect monatomic gas, as suggested for the fluid at the
beginning of the section, there would be no possibility for internal
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irreversible processes, provided we neglect the small energy transfers

that would take place between the gas and the slight amount , of

thermal radiation that would also actually be present. And in the

case of a fluid composed of dust particles having negligible thermal

pressure, or of one composed solely of black-body radiation itself, there

would appear to be no possibilities for internal irreversibility at all.

The relativistic discovery of cosmological models, filled with

material throughout their entire extent, thus provides possibilities

for the expansion of an unenclosed fluid without its dissipation into

empty space and without Motion, irreversible heat flow, or pressure

drop at the walls of any container, of a kind hitherto unknown.

Analysed from the pomt of view of relativistic thermodynamics, this

then leads to an increased possibility for processes to take place at

a finite rate and yet also either with complete reversibility, or in any

case with the elimination of sources of irreversibility that seemed

classically inevitable.

Kelativistio mechanics and relativistic thermodjnamics have both

contributed to the new result. Relativistic mechanics makes it

possible to study the behaviour of cosmological models as a whole,

and then from the relations of the fundamental tensor to density,

pressure, and proper volume to determine the behaviour of the

individual elements of fluid in the model. With the help of the

second law of relativistic thermodynamics we can then see if each

of these elements of fluid behaves reversibly or irreversibly. Increased

possibilities for reversible behaviour have thus been found for homo-

geneous systems, having uniform temperature and pressure through-

out, and the investigation of non-homogeneous models from the same

point of view would be interesting.

The main importance of the new result lies in its demonstration of

the necessity of using relativistic rather than classical thermo-

dynamics in any attempt to imderstand the behaviour of the universe

as a whole. In the next chapter the result will be found applicable

to an important class of cosmological models. It will there be shown

in §§ 170 and 171, that the thermodynamic condition for reversi-

bility, which we have obtained by taking the equality sign in the

relativistic expression for the second law, actually agrees with the

requirements for a real reversal in the motions of cosmological models;

and it will be shown in § 173, that an observer in a reversibly expand-

ing universe would be led to quite erroneous conclusions if he should
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try to interpret the behaviour of his surroundings by the use of

classical rather than relativistic thermodynamics.

131, On the possibility for irreversible processes without

reaching a final state of maximum entropy

It was shown in the last section that the theory of relativity as

compared with classical theory provides an increased possibility for

reversible thermodynamic processes. It was also evident from the

discussion, however, that irreversible processes could in no way he

elimmated from the considerations of relativistic thermodynamics,

and indeed some degree of irreversibility would still appear to be the

usual characteristic of the actual thermodynamic processes that take

place in nature.

In the case of irreversible processes important differences between

the conclusions of classical and relativistic thermodynamics can

nevertheless arise. The classical thermodynamics, as shown in § 63,

appeared to lead inevitably to the conclusion that the end result of

irreversible processes would necessarily be a final state of maximum

entropy where further thermodynamic change would be impossible.

In the present section we shall discuss a relativistic possibility for

.irreversible processes to occur without ever reaching any unsur-

passable maximum value of that quantity.

This new possibility for continuous irreversible change is also pro-

vided by the cosmological models, considered in the preceding section

and discussed more completely in the next chapter. For our present

purposes it is sufficient to note that there is an important class of

these models, see § 163, such that expansion from any given finite

proper volume would necessarily be followed by reversal in the

direction of motion at some upper limit and return to smaller volumes.

This behaviour can be deduced solely from the principles of relativistic

mechanics alone, and does not depend on the nature or complexity

of the fluid which we take as filling the model but only on its assumed

homogeneity of distribution. Hence on purely mechanical grounds

we are led to the consideration of a class of cosmological models

which would undergo a continued succession of alternate expansions

and contractions, without reference to the thermodynamic character

of the processes taking place within the elements of fluid filling the

model.

In the case of a fluid simple enough so that these internal processes
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would ooour without inorease in proper entropy, we have the con-

ditions for perfect reversibility discussed in the last section, and we
shall find in the next chapter that the model would continue to

repeat a succession of identical expaoisions and contractions.

In the case of more complicated fluids, however, it is evident that

entropy increases would occur within the elements of fluid com-

posing the model as they expanded and contracted. Thus in the case

of a diatomic gas capable of reacting to form its elements, dissocia-

tion would tend to take place during expansion and reassooiation

during compression, and with a finite rate of volume change there

would be a lag so that these reactions would actually take place under

non-equilibrium conditions and hence with increase in entropy.

We must now inquire whether such irreversible behaviour would

necessarily lead to a cessation in the succession of expansions and

contractions.

IVom the classical point of view a gradual decay in the motions of

expansion and contraction would have seemed inevitable, since the

continued occurrence of irreversible processes in an isolated system

would have ultimately led to a condition of maximum entropy where

further change would be impossible. In the classical thermodynamics

the entropy of a homogeneous fluid could be determined with the

help of the familiar equation (60.4), previously developed in § 60,

dS = ^dE +1 dv +^ dn,, (131.1)

where the energy E, volume v, and number of mols of the

different chemical components present are the independent variables

chosen to determine the state of the system. In applying this equa-

tion to an isolated system undergoing a succession of expansions and

contractions, the energy change dE would have to be taken as zero

owing to the classical principle of the conservation of energy, and

the work pdv would have to be taken as zero owing to the isolation

of the system. Hence in the long run the only possibility for inorease

in entropy in such a S3ratem would lie in the readjustment of composi-

tion, and this could not continue indefinitely since with a given value

of energy and volume there is a maximum possible value for the

entropy of a homogeneous fluid corresponding to the attainment of

chemical equilibrium between its components. Thus the classical

thermodynamics would have concluded that the irreversible increase
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in entropy could not permanently continue and that further change

would cease at the condition of maximum entropy.

From the point of view of relativity theory, however, the foregoing

reasoning has to be modified in an important manner owing to the

changed status of the energy principle in relativistic mechanics. In

accordance with relativistic thermodynamics, we can still apply an

equation of the same form as (131.1)

(131.2)

to determine the proper entropy (^o^^o) element of fluid

in the model in terms of its proper energy (poo^^o)> volume 8i;o> and

the number of mols of the different chemical components

which it contains. In accordance with the principles of relativistic

mechanics, nevertheless, we can no longer conclude that the total

proper energy associated with the fluid would be a constant, owing to

the well-known failure of the principle of energy conservation to hold

in the theory of relativity, unless allowance is made for potential

gravitational energy associated with the field as well as for the proper

energy directly, associated with matter and radiation. Indeed, in

accordance with the equation (130.4), already cited as applying to

these cosmological models,

|(PooSt;o)+i)o|(8t;,) = 0, (131.3)

it is evident that the proper energy of every element of fluid in the

model wiU be decreasing when the model is expanding and increasing

when it is contracting. Furthermore, there will be a general tendency
for pressure to be too low to correspond to equilibrium on expansion
and too high to correspond therewith on contraction. Thus instead
of constant proper energy for each element of fluid in the model, we
can expect in the long run a tendency for this energy to increase, thus
removing the restrictions previously imposed by the classical principle

of energy conservation on possible increases in entropy.
Hence in relativistic thermodynamics we can no longer assume that

there would be an unsurpassable maximum value for the entropy of

our system, which would limit the continuance of irreversible pro--

cesses in the fluid and thus necessitate a final stagnant state. Indeed,
as a result of the more detailed analysis of the next chapter we shall
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find in certain oases, instead of a decay in the amplitude of the

successive irreversible expansions and contractions of these cosmo-

logical models, an actual tendency for gradual increase in the upper

limit to which the model expands, always followed, however, by

renewed contraction.

In order to appreciate the reasons for this new conclusion, it is

well to emphasize as the most important step in the argument the

removal of the classical requirement for a constant value of the

energy directly associated with the fluid composing the system. Even
in the classical thermodynamics, the removal of this restriction—^by

taking a system having interaction with its surroundings instead of

an isolated one—is sufficient also to remove the restriction on possible

entropy increase. Thus consider, for example, a sample of diatomic

gas, capable of dissociating into its elements, and enclosed in an

ordinary cylinder provided with non-conducting walls and a movable

piston. On moving this piston in and out so as to secure an alter-

nate expansion and compression, the gas will tend to dissociate on

expansion and to recombine on compression. If this is carried out at

a finite rate, however, equilibrium will not be maintained and the

average pressure on expansion will be less than that necessary to

secure recompression, so that a net amount of work will be necessary

and the energy of the system will increase as the process is con-

tinued. As a further result of the failure to maintain equilibrium,

moreover, the two reactions of dissociation and recombination will

not take place reversibly, so that the entropy of the system will also

increase as the process is continued. Thus as long as sufficient external

energy is available to continue the succession of expansions and com-

pressions, both the energy and entropy of the system will increase

and there will be no unsurpassable maximum of the latter quantity.

Hence from the classical point of view it would be the ultimate

failure in the external energy supply, rather than the internal increase

in entropy of the fluid in the cylinder, that would bring the proposed

process to an end. Prom the relativistic point of view, on the other

hand, since cosmological models can be constructed which have no
limitation on totoX proper energy and hence also no limitation on total

entropy, we must retain the possibility for irreversible processes which
may continue without end.

The main importance of the new result again lies in its demon-
stration of the necessity of using relativistic rather than classical
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APPLICATIONS TO COSMOLOGY

Ptm J. STATIC COSMOLOGICAL MODELS

133. Introduction

In this final chapter, we must now investigate the applications of

relativistic mechanics and relativistic thermodynamics to cosmology.

This is an ambitious field of study characterized by danger as well

as by interest.

The most fundamental although not the most pressing danger that

threatens the validity of the study lies in the possibility that the

relativistic theory of gravitation might not really be applicable to the

universe as a whole, or even to that portion out to some hundred
million light years, which can be observed with the help of the Mount
Wilson 100-inch telescope. The three so-called crucial tests make us

indeed confident that relativity provides a real advance over the

Newtonian theory of gravitation, and that it furnishes an acceptable

treatment for the field in the empty space surrounding a star out to

distances of the order of the dimensions of the solar system. Never-
theless, the apphcation of this same theory to the universe as a whole,

fiiUed with a distribution of matter and radiation rather than empty,
involves an extension which cannot of course be made with certainty.

To justify the extrapolation we can only depend in the first place

on the remarkable rationality and inner logicality of the theory

of relativity, which makes a wide range of applicability seem prob-

able, and in the second place on the observed tendency for stars

to cluster together in nebulae and for the nebulae themselves to

occur with some clustering, which at least indicates for very great

ranges of distance gravitational action of the general kind that would
be predicted from relativistic theory. Furthermore, relativity cer-

tainly provides at the present time the only possible theory of gravita-

tion that could be applied to the behaviour of large portions of the

universe, and hence we are forced to make use of this theory if we
are to carry out cosmological speculations at all.

Another source of difficulty for any kind of cosmological theory
lies in the very real limitations in our observational knowledge as to

the actual nature of the universe and its contents. Within the range
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of about 3x10® light years which can be reached with the lOO-moll

telescope, the investigations of Hubble have shown the presence td

about 10® nebulae, which are individually roughly of the saia#

character as our own galaxy of stai'S. Theso nebulae are to a certain

extent gathered into clusters, but on the whole are distributed with

a fair u^ormity ofabout one nebula per 10^® cubic light years. IVom

the red-shift in the spectra of these nebulae we can infer that they

have a motion ofmutual recession, and from their apparent dianaetera,

liuninosity, and oolour we can get some limit as to the presence of

intervening obscuring material. We thushave considerable knowledge

as to the contents of the universe out to 3 X 10® light years

,

and indeed

also some indication as to its probable behaviour within a past time

span of 3 X 10® years.

There are, nevertheless, serious gaps in the information which we
could desire. In the first place, although we can presumably make
some extrapolation of the conditions observed in our immediate
neighbourhood to greater distances, we have no real justification for

assuming that the whole universe has the same properties as that
portion which we have already seen. Hence, although we shall

actually make great use of homogeneous models in our studies, we
shall have to realize that we do this primarily in order to secure a
defimte and relatively simple mathematical problem, rather than to
secure a correspondence with known reality. In the second place,
although we have good information concerning the density of nebulae
in oiff surroundings, we have very little information as to the density
of other forms of matter or of radiation in the enormous extragalactic
spaces lying between the observed nebulae. Indeed it seems possible
from the work of Hubble that the density of matter in the form of
extragalactic dust might be thousands of times as great ns the
averaged-out density of the nebulae, without giving riso to offecte
that woidd have so far been found. This is a very serious limitation
on om knowledge, since it prevents any precise determination of
gravi 0 curvature. As a result we do not know whether thew ua umvei^ is spatially closed or open, and can choose between

V
finite and infinite in spatial extent only on the

bams of dubious metaphysical predilections.

our
uncertainties in observational knowledge, much of

moijds eon^
necessarily consist in a study of cosmological

tnodcls, constructed m accordance with the theory of relativity, but
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not necessarily agreeing in all partioulars with the real nniverse.

Indeed we shall feel justified in studying some models, which are

known to differ from the real universe in important ways, provided

the results can filuminate our thinking by indicating the kind of

phenomena that might actually occur without controverting estab-

lished theory. With the help of such studies, however, we shall

certainly make progress in understanding the behaviour of nature

on the largest possible scale, and this presents a task as interesting

as the human mind can set, and provides a goal as noble as the

human spirit can conceive.

In Part I of the present chapter we shall consider static cosmo-

logical models. We shall first show that the only possibilities for a

homogeneous static model are those provided by the original Einstein

universe filled with a uniform distribution of material, by the de Sitter

empty universe, and by the empty flat space-time of the special

theory of relativity. We shall then give a brief discussion of these

different possibilities, sufficient to show the reasons for abandoning

them as providing satisfactory models for the actual universe. In

Part II we shall then make use of the principles of relativistic

mechanics to derive the line element for non-statlo homogeneous

cosmological models, and to study their mechanical properties and

behaviour. In Part III we shall apply the principles of relativistic

thermodynamics to this behaviour. Einally, in Part IV, we shall

compare the properties of such models with the phenomena of the

actual universe.

134. The three possibilities for a honaogeneous static universe

We now undertake the specific task of showing that the only

possibilities for a static homogeneous universe are exhausted by the

line elements of Einstein, and of de Sitter, and that corresponding

to the special theory of relativity.

In obtaining any form of cosmological line element, we shall look

at the imiverse from a large-scale point of view and neglect those

local irregularities in gravitational field and in space-time curvature,

which would occur in the immediate neighbourhood of individual

stars or stellar systems. We can then treat the universe as filled with

a continuous distribution of fluid of proper macroscopic density poo

and pressure po» shall feel justified in making this simplification

since our interest lies in obtaining a general framework for the



334 APPLICATIONS TO COSMOLOGY § 1^4

behaviour of the universe as a whole, on which the details of local

occurrences could later be superposed

.

In the case of a static homogeneous universe it is evident that

coordinates can certainly be chosen such that the line element will

exhibit spherical symmetry around any desired origin, since all parts

of the universe are intrinsically permanently alike. Hence we may

evidently take the line element in the general spherically symmetrica

static form +6" (184.1)

•with A and v functions of r alone as given by (96.12), and 'take the

pressure and density in accordance with (96.13) as determined by t e

Svpoo —

Poo+^>o„^

dr

(134.3)

(134.4)

where the accents signify differentiation with respect to r, and A is

the cosmological constant.

I'roin t.liia simple starting-point we can now easily ob'tain the only

possibilities for a static homogeneous model. To do so we have merely

to investigate the consequence of imposing three necessary conditions

on 'the foregoing equa'tions. These are
:
first that the pressure Po

measured by a local observer shall everywhere be the same, owing to

the assumed homogeneity of model ;
secondly that the proper maoro-

scopio density shall everywhere be the same, again owing to the

homogeneity of the model ; and thirdly that the line element shall re-

duce for small values of r to the special relativity form for flat spaw-

time with A = v = 0, owing to the known validity of the special

theory of relativity for a limited space-time region, when we neglect

local graidtational fields as postulated above.

In accordance with the first of these conditions, it is evident

since p^ is to have the same value in all parts of the model ^that

equation (134.4) can only be satisfied by taking

Poo+Po ,.> ^ 0 (134.6)
2 ’

and this can itself in turn only be satisfied by the three possibilities of

setting v', or (poo+l'o)* Oof'll equal to zero.
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These three possibilities
y' = q (I34 gj

or Poo+Po = 0. (134.7)

or both v' = 0 and Pm+Po = 0> (134.8)

lead respectively to the Einstein, to the de Sitter, and to the special

relativity line elements for the luiiverse as we may now show in

detail.

135. The Einstein line element

We may first consider the Einstein line element which arises from
the first of the above three possibilities

v' = 0. (136.1)

Integrating this equation, and remembering that the line element
is to reduce to the special relativity form, with v = 0 for aTnfl.11 values

of r. we at once obtain
^ ^ 2^

as the only possible solution.

On the other hand, substituting this result in the expression for

the pressure given by (134.2) and solving, we obtain

e-^= 1-(A-87i3>o)?-^ (136.3)

Hence, defining for convenience a new constant R by the equation

A— 877^>o
= (135.4)

we can then write as an expression for the resulting line element

ds^ = ~ d<lfi (136.6)

This is one of the well-known forms for the original Einstein line

element for a static universe,f and we shall return later to a discussion

of some of its properties.

136. The de Sitter line element

We may next consider the de Sitter line element which arises from
the second of the possibilities given above

A>oo+^>o = 0. (136.1)

t Einfltein, BerL Ber. 1917, p. 142,
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Adding the individual expressions for and given by (134.2)

and (134.3) we must then set

8ff(poo+Po) = ^^(7+7)
=

or A' = —v',

and since A and v must both become zero at r = 0, in order for the

line element to reduce to the special relativity form at the origin, this

can only be satisfied by
^ ^ (136 2)

On the other hand, since poo is to be a constant independent of

position we can immediately integrate (134.3), and obtain as a solu-

tion, which may be readily verified by redifferentiation,

c _ 1 - ,

where A is the constant of integration. And, again making use of the

reduction of the line element to the special relativity form with

A = V == 0 at r = 0, we see that we must take this constant A equal

to zero. Hence, noting (136.2), we at once have

e-A e- =
3

'

00 , (136.3)

as a complete solution for the form of the line element. Hence, now
defining for convenience a new constant E by the equation

A-|-8ffpflo 1

3
~

we can write as the complete expression for the line element

dr*

(136.4)

ia* =
l-r*7B*

This, however, is one of the well-known forms for the original de

Sitter line element,t and we shall later return to a disoussion of some
of its properties.

137. The special relativity line element

Finally, we may turn to the third possibility for a static homo-
geneous universe in which we require in accordance with (134.8) both

v' = 0 and Poo+Po “ (137.1)

•f
de Sitter, Froc, Ahad, Wetenach, Amaterdamt 19, 1217 (1917).
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Under these oiroumBtances, however, we can take both the equa-

tions (136.2) from the Einstein case and (136.2) from the de Sitter

case as valid, and hence can write as a complete solution the ample

A = V = 0, (137.2)

corresponding to the special relativity form of line element

ds® == —dr® —r® dtf® —r®sin®0 d^® -|-dt®, (137.3)

which applies to the perfectly empty and ‘flat’ space-time of the

special tibeory of relativity.

In accordance with the discussion of § 134, this now exhausts all

the possibilities for a static homogeneous universe;t and hence when
we And that none of these three possibilities gives a satisfactory

representation of i^e actual universe, we shall then have to turn to

the consideration of some less restricted class of models.

We may now undertake a brief survey of some of the more im-

portant properties of the Einstein and de Sitter line elements, both of

which include the special relativity line element as a particular case

when the constant B assumes the value infinity. The survey will be

of interest not only for historical reasons, but for the insight which

it can give into the more adequate models which we shall later

study.

138. The geometry of the Einstein universe

By the transformation of coordinates the Einstein line element

ds® = _r® de® -r®sin®e di® -|-d«® (138.1)
1—r^it®

can be written in several different forms which are sometimes con-

venient or can be of assistance in imderstanding the implied geometry.

By the substitution

we obtain an isotropic form

1
d5®= -

[l-hp®/4E®]'
:(d/5®+p® de® -fp®8in®e d4^)+dt’>, (138.3)

t This proof that tho Einatoin, de Sitter, and speoial relativity line elements
exhaust tho possibilities for a atcUic solution follows the treatment of Tolman, Ptoc.

Nat. Acad. 15, 297 (1020). Eor an earlier proof, see Friedmann, Zeita.f. Phyaik, 10,

377 (1922); and for a proof that there are no additional stationary soliUionSt in tho
sense of § 142, soc Robertson, Proc. Nat. Acad, 15, 822 (1929).

3605,11 7
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which by am obvious further tramsformation can also be written as

= ~ [l4:p^4)p]a
(138.4)

By the substitution r = .Bsinx (138.6)

we obtain

(foa== -B®((fx*+sin*x^®+8inaxsin*d<i^*)+*®. (138.6)

PinaJly, by introducing a larger number of variables, with the help

of the equations

=VK) Z. =

sfj = rsintfsin^

where

the line element assumes the form

(138.7)

(138.8)

= -d7^^d4^d7^^dz\+d(^, (138.9)

which permits us to regaxd our original space-time as embedded in

a Euclidean space of higher dimensions.

The kind of geometiy corresponding to these different expressions

for the line element is not completely determined, since different

hypotheses as to connectivity and as to the identification of points

can in general be made for a given differential formula for interval.

It win be simplest, however, as suggested by the last form in which
we have written the line element, to regard the spatial extent of the

Einstein universe as being the whole three-dimensional spherical

surface embedded in the four-dimensional Eucli-

dean space {zxi 24). The geometry corresponding to the space-like

variables in the Einstein line element would then be that for so-called

spherical space of radius J2. By the identification of antipodalpoints

of the sphere and the introduction of suitable connectivity the spatial

geometry could also be taken as of the so-called dliptical kind.

Taking the spatial geometry as spherical, the total proper spatial

volume of the Einstein universe would be given in accordance with

(138.6) by

»0 = J J J
JZWxsinfl dxidd<f> = (138.10)

0 0 0

and the total proper distance around the universe would be

Iq = 2nlt, (138.11)

Taking the geometry as elliptioal, the corresponding G[uantities would
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be one-half as great, and this difference could provide in principle a

method for distinguishing between the two possibilities of spherical

and elHptical space.

Introdacmg the time-like as well as the space-like variables, the

complete space-time geometry corresponding to the Einstein universe

could be regarded as that for a four-dimensional cyliadrical surface

embedded in five-dimensional space.

Perhaps the chief importance of this investigation into the nature

of the geometry implied by the Einstein fine element lies in the

assistance thereby provided to our intuitional appreciation of the

homogeneity of the model. In accordance with the symmetrical form

given to the line element by (138.9) it is immediately evident that on
transforming back to r, d,

<f>,
and t the origin of spatial coordinates and

the zero point for the time coordinate could be taken at will, in agree-

ment of course with our original assumptions as to the static and
spatially homogeneous character of the model. It may, nevertheless,

be emphasized in conclusion that for most problems of immediate

interest there is no necessity to go beyond the results which can

be obtained by usual analytical methods directly from the differ-

ential formula for interval, and no necessity to attempt to visualize

the geometry as a whole.

139. Density and pressure of material in Einstein universe

We maynow turn to more physical aspects of the Einstein universe,

by investigating the relations which would govern the density and

pressure of the material in the model.

Betuming to the general form (134.1) for the line element

da^ — —6^ dr® —r® dfl® —r*sin®0 d^t® -fc’' di® (139.1)

and introducing the values

e-^ = 1—-^ and v = 0, (139.2)

found in § 136, into the expressions for pressure and density (96.13)

which correspond to this general form of line element, we easily obtain

-;|5+A, (139.3)

= Ja—Aand (139.4)
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as expressions for the proper pressure and proper density of the

material filling the model in terms of the two constants A and J2.

Alternatively, these equations may he solved for the two constants

mtheform A = Mp..+3ft) (1M.6)

and ^ = ^(Poo+iJo)- (139.6)

Hence, since the density of the fluid taken as filling the model could

on physical grounds only he a positive q[uantity, and the pressure

could only be positive or—assuming the possibility of reasonable

cohesive forces—could only he negative to a very limited extent, we
may conclude at once thatA and would both be essentially positive

quantities.

If we regard A and 5® as in the natiue of adjustable parameters

the model could be takeu as flUed with a fluid having any desired

values for its pressure and density.

Thus if we assumed the fluid to be composed of incoherent

matter exerting no pressure, for example free particles (stars)

having negligible relative motions, as originally considered by
Einstein, we should have from the above

A = (139.7)

and (139.8)

and in accordance with (138.10) the total mass of the universe

would he
•31 — Poo^o — (139.9)

On the other hand, if we took the model as flUed solely with radia-

tion, which has the highest known ratio of pressure to density for any
possible fluid, -

Poo
—

we should have A. =— (139.10)

and = (139.11)

Compaxmg (139.8) with. (139,11), we again see an example of the
tendency first mentioned in § 110 for radiation to produce greater
gravitational curvature than the same density of ordinary matter.
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Finally, if we took the model as completely empty with and po,

both equal to zero, we should have

A = A = 0 (139.12)

and the Einstein universe would degenerate into the flat space-time

of the special theory of relativity.

Several important conclusions may be drawn from the results of

this section. In the first place, it is to be noted that the discussion

does demonstrate in accordance with the principles of relativity at

least the conceptual possibility for cosmological models which would
agree to some extent with the actual universe by containing a uni-

form distribution of material of finite concentration. In the second

place, since we have seen above that would be positive and finite

except in the degenerate case of a completely empty universe, it is

to be noted that the radius R of the Einstein model would have to be

real corresponding to an unbounded but nevertheless closed universe

with a finite spatial volume. Einally, it may be emphasized, as seen

above, that the cosmological constant A would have to be a positive

quantity greater than zero if the model is to contain any matter at

all. This necessity was perhaps the strongest argument which led to

Einstein’s addition of the logically possible but otherwise surprising

cosmological term to his original field equations. If we later find

models which could contain a finite concentration of matter without

the A-term, wo can look with favour on the possibility of taking

A equal to zero.

140. Behaviour of particles and light rays in the Einstein

universe

We may now turn to a further discussion of the physical properties

of the original Einstein universe by investigating the behaviour of

particles and light rays in such a model.

In accordance with (74.13), the motion of a free particle in the

gravitational field corresponding to the Einstein line element

7.2^02 —r%in20cZi2-|-cii2 (140.1)
l—r^jR^

would be given by the equations for a geodesic
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We shall be specially interested in the case of particles which are at

least temporarily at rest with reflect to the spatial coordinates. This

geodesic equation would then reduce to

= 0,
(140.3)

sinoe the spatial components of the Velocity’ of the particle drjda,

dd/da, and d<f>lde would be zero. Comparing the expression for the

Einstein line element (140.1), however, with the expressions for the

Ohristoffel three-index symbols given by (96.2) for this general form

of line element, we see that all S3mibols of the form {44, a} would

vanish, and we axe thus led at once to the conclusion that particles

at rest with respect to the spatial coordinates would also have zero

acceleration jo..

= = 0 (140.4,

and hence would remain permanently at rest.

This conclusion is of importance, sinoe the Einstein model could

not be expected to persist at all in the assumed static state, if the free

particles contained in it could not remain at rest. The result is,

nevertheless, not a sufficient criterion for complete stability as wa
shall see later. '

The velocity of light in the Einstein imiverse can be obtained by
setting the expression for the interval (140.1) equal to zero. Doing so

and focusing attention on the case of light travelling in the radial

direction we obtain for the velocity of light from or towards the

(140.6)

where it is to be specially noted, as a result of the form of the line

element (104.1), that the time-like variable t agrees with proper time

as it would be measured by a local observer at rest in the model with

respect to the ^atial coordinates.

In accordance with this result, the time necessary for light to travel

from the origin around the universe and back would be
R

0

if we assumed spherical space, or one-haU this amount if we assumed
elliptical space. The amusing theoretical possibility thus provided,
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for the light issuing from a star to travel around the universe and by

refocusing lead to the appearance of a ‘ghost’ star in the neighbour-

hood should not be taken very seriously in view of the idealization

and inadequacy of the origiaal Einstein model as a representation of

the actual universe.

The most important application of the expression for the velocity

of light given by (140.6) lies in its use in showing that we could expect

no systematic shift in the wave-length of light from distant objects

in the static Einstein universe. Consider an observer for convenience

at the origin of coordinates r = 0 and a luminous source (nebula) at

r = r, both being taken as permanently at rest with respect to the

spatial coordinates in agreement with the zero acceleration for

stationary particles demonstrated above, and in agreement with the

static character ascribed to the model. In accordance with (140.6) the

‘time’ for the reception by the observer of light leaving the source

at ‘time’ ^ would be
r

0

Hence, since r is a constant, the interval between the receipt of two

successive wave crests would be equal to the interval 8^^ between their

emission
8^2 = 8^1 (140.7)

On the other hand, however, in accordance with the form of the line

element (140.1) the time-hke variable t agrees with the proper time

as measured by local observers at rest with respect to the spatial

coordinates. Hence the equality (140.7) also implies an equality

between the proper periods of the emitted and received light as they

would be determined by observers at rest with respect to the original

source and at rest at the origin. As a result, the light on reception

would be observed to have the same period and wave-length as is

found for the particular luminous material involved when it is used

in the laboratory to provide a stationary source of light for a

spectroscope.

The method of obtaining this result gives a particularly simple

illustration of the general method for treating the generalized Doppler

effect, schematically outlined at the end of Chapter VIII. In accor-

dance with the result we can conclude in the case of the original

Einstein model of the universe that there would be no systematic
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connexion between observed wave-length and distance from observer

to luminous sources such as the nebulae. There could of course be

small Doppler effects due to the individual motions of the nebulae,

but as a result of the general static character of the model we should

expect these effects to be positive and negative with equal frequency

and with no great spread from a mean of zero.

141. Comparison of Einstein model with actual universe

To conclude our brief consideration of the properties of the Einstein

universe we must now make some comparison with the properties of

the actual universe.

The most satisfactory feature of the Einstein model is its corre-

spondence as shown in § 139 with a universe which could actually

contain a finite concentration of uniformly distributed matter. In

this respect it gives us a cosmology which is superior to that provided

by the de Sitter model which as we shall see in § 143 would have to

be regarded as empty. It may again be emphasized, nevertheless,

that this advantage is gained only at the expense of introducing the

extra cosmological term into Emstem’s original field equations,

which is a device similar to the modification in Poisson’s equation

proposed in the pastf in order to permit a uniform static distribution

of matter in the flat space of the Newtonian theory.

In accordance with the estimate of Hubble (see § 177) the density

of matter in the actual universe in the form of visible nebulae would

have a value of about

p = (1-3 to 1-6) X 10-80 gm./cm.8 (141.1)

if averaged out over the whole of intergalactic space, as of course must
be done in replacing the actual universe by a model fiUed with a con-

tinuous distribution of fluid. On the other hand, in accordance with

§ 139, we have found that the density p^ in an Einstein universe

filled with incoherent matter exerting negligible pressure would be

related to radius R and cosmological constant A by the equation

4^Poo =

Hence, neglecting the density of unseen matter and neglecting the

pressure and density of the radiation in intergalactic space, and

t See Neumann, AUgem&vne Untersuchungen ilher das Newtonschs Prinzip der

Femwirkungmt Leipzig; 1896.
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introducing the factor for the conversion of grammes to gravita-

tional imits given by (81.7) we obtain

A- ^ 4^xl0-»° a

222“ 1-349x10“
’

or 9-3x10-“ cm.-*, (141.3)

J? c=; 3-3 X 10“cm ci 3-6 x 10^“ light years. (141.4)

In obtaining these values of A and JJ we have taken the density of

matter as 10-“ gm./cm.®, and this is presumably a lower limit for

that quantity since it neglects dust and gas in the enormous reaches

of intemebular space. Hence the value for A must be regarded as a

lower limit and that for JR as an upper limit.

The value for A is small enough to be compatible with known

planetary motions in the solar system, since if we write the Schwarz-

sohild line element in the complete form

da^ = r® -rWe d<l>^ +(I- dfi,

r 3

the ratio of the previously neglected term Ar®/3 to the main term

2m/r at the distance of Neptune’s orbit would only be

ArV3 _ Ar» 9-3x 10-“x(4-5x 10“)» ^
dm- 6X1-6X10»

“

where we have taken the gravitational mass of the sun as 1-6 x 10®.

With regard to the value obtained for the radius R (3-5 X 10^® light

years), there is also no trouble since os yet our telescopes have only

penetrated to about 3x10® light years.

The most unsatisfactory feature of the Einstein model as a basis

for the cosmology of the actual universe is the finding discussed at

the end of the last section, that it provides no reason to expect any

systematic shift in the wave-length of light from distant objects. In

the actual universe, however, the work of Hubble and Humason

shows a definite red-shift in the light from the nebulae which increases

at least very closely in linear proportion to the distance. This is of

course the main consideration which will lead us to prefer non-static

to static models of the universe as a basis for actual cosmology.

Closely connected with this unsatisfactory feature of the static

Einstein model will be our later finding that the Einstein universe

would not be stable. To be sure as we have seen in connexion with
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(140.4), free particles at rest in the model would not be subject to

acceleration. NererthelesB, w:e shall later find, for example, that a

static Einstein universe would start contract^ as a whole if the

matter in it should commence to be transformed into radiation, or

vice Versa start expanding if the radiation in it should commence
a condensation into matter. And we shall find in general the possi-

bility for a wide variety of models that could expand or contract, as

compared with very severe restrictions necessary fpr the permanence

of a static model.

142. The geometry of the de Sitter universe

Having found the original Einstein universe, although very im-

portant for an understanding of relativistic cosmology, not entirely

satisfactory as a model for the actual universe, we may now turn to

a consideration of the other static possibility provided by the de

Sitter universe.

By the transformation of coordinates we can change the original

form in which we obtained the de Sitter line element

<i8* = dr^
(142.1)

into other forms which are sometimes convenient or geometrically

illuminating.

By the substitution
r = B^x (1<12.2)

we obtain

i2®sin®x iZ®sin®x sin®0 i^®+oos®x (142.3)

which is a form that has often been employed in discussing the de

Sitter universe.

A more interesting result may be obtained, however, by introducing

five variables and transforming in accordance with the equations

a = rsinflcosijt j8 = rsin^sin^ y = roos0

8+6 = (
142 .4)

This leads to the form

And by the further transformation

—— %oc 1Z2 i'jS ^ € (142.6)

we obtain the result

da^ == dzl’^-dzl+dzl+dzl+dzl, (142.6)
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where as a consequence of (142.4) we have the relation

2i+z|+*l+2i+2| = (t-B)® (142.7)

as the equation which determiues that four-dimensional surface in the

five-dimensional manifold that corresponds to space-time. In accord-

ance with this result we can regard the geometry of the de Sitter

universe as that holding on the surface of a sphere embedded in five-

dimensional Euclidean space. And, as in the case of the Einstein

universe, we gain an added intuitional appreciation of the homo-

geneity of the de Sitter model. It may be emphasized, nevertheless,

that the formal simplicity in the expression for the line element given

by (142.6) is achieved at the expense of losing track of the physical

distinction between space-like intervals which are to be measured

in principle by the use of metre sticks and time-like intervals which

are measurable with the help of clocks.

Einally, we may examine an interesting and important transforma-

tion of coordinates discovered independently by Lemaitret and by
Eobertson,f and specially employed by the latter. The transforma-

tion is obtainable by iutroducing the new variables

This leads to the expression

^2 -e^lR^df^ d^2 +fi20in20

which by dropping the bars over r and t, and also introducing for

simplicity ,

k = 1, (142.9)

can be written in the form

(foa —e^{dr^ +r* d$^ -fr*sin*5 d<f>^)+dfi, (142. 10)

or by an obvious further substitution in the form

ds* == _e^^dx^j^dy^+dz^)+dt'^. (142.11)

In this form for the line element the gravitational potentials are

no longer independent of the time-like coordinate t, which is now
being employed. This, however, need occasion no surprise since it

is obvious that any static form of line element can be changed into

a non-static form by a suitable substitution of new coordinates which

are functionally dependent on the original coordinates of both space-

t Lemaltre, J. McUfi, and Phya. (M.I.T.), 4, 188 (1925),

X Robertson, Phil. Mag. 5, 836 (1028).
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like and time-like oharacter.f Moreover, as shown by Bobertson, in

the present case the properties of the manifold defined by (142.10)

may be regarded to a certain extent as intrinsically independent of

the new since a transformation to the variables

r =: t =
which may be considered as a change in spatial scale combined with

change to a new zero point for the time-like variable, leaves the form

of the line element unaltered.

The line elements (142.10) and (142.11) may be designated in the

language proposed by Robertson as stationary rather than static. This

designation must not be confused, however, with another usagej in

which the term stationary is used to denote line elements in which the

potentials are all independent of with some of the components

924,9 ?84 present, and the term static is reserved for line elements

in which these cross terms are missing. We shall find later use for the

Robertson form of expression for the de Sitter line element [see

§§ 144(d), 183, and 184].

143. Absence of matter and radiation from de Sitter universe

We must now turn to more physical aspects of the de Sitter universe

by investigating the possibility for matter and radiation in the model.

In accordance with the general treatment of the requirements for

a static homogeneous model discussed in § 134, the de Sitter line

element was obtained in § 136 by assuming that the necessary condi-

tions for such a model were to be met by taking the proper density

and pressure in the model as connected by the relation

Poo’^Po = (143.1)

The proper density of material pqq is, nevertheless, from its physical

nature a quantity which could only be zero or positive. Furthermore,

even if we permitted the idealized fluid filling the model to exhibit

cohesive forces, it is evident that a negative pressure equal to the

density in our present units could not be even remotely approached

by any known material. Hence the above condition is evidently

to be met only by taking the density and pressure each individually

equal to zero
/>oo
= 0 and Po = ^ (143.2)

t I’or another non-static form for the de Sitter line element, see Lanczos, Phyaik,

Zeita, 23, 639 (1922).

t See Weyl, Baum, Zeitf Materie, Berlin (1921), p. 244.



349
$ 143 THE DE SITTEB STATIC MODEL
corresponding to a completely empty tmiverse, containing no appre-

ciable amount either of matter or radiation.

As a consequence of taking Pqq = 0, we obtain a simpMcation in

our previous equation (136.4) connecting cosmological constant and

radius of the universe, so that the de Sitter line element can now be

written as

da^= --- -r“ dd^ —r*sin®0 d<f>^1— ^ Toiti--’ (143.3)

together with the simple expression for the constant JZ in terms of the

cosmological constant , *

In accordance with this result, the de Sitter model can be regarded

as spatially closed if the cosmological constant is positive, as de-

generating into the open ‘flat’ space-time of the special theory of

relativity if the cosmological constant is equal to zero, and as

spatially open but ‘curved’ if the cosmological constant should be

a negative quantity. In what follows we shall regard A as positive

and R as real corresponding to a closed model.

It is also interesting to note in accoi’dance with (143.4) that

Schwarzschild’s exterior solution (96.3)

= de^ -r^Bin^d d<t>^ +U-—-^A dt^
1— (2ni/r)— (Ar®/3) \ r 3 /

(143.6)

for the static field in the empty space surrounding a spherical mass

of matter, goes over into the de Sitter line element for a completely

empty universe if we let the mass m of the sphere of matter at the

origin go to zero. The expression given by (143.6) is interesting as

being an actual if not very important example of a cosmological line

element corresponding to a non-homogeneous model.

144. Behaviour of test particles and light rays in the de Sitter

universe

(a) The geodesic equations. Since the de Sitter line element corre-

sponds to a model which must strictly be taken as completely empty,

the presence of matter and radiation in the actual miiverse would

necessarily produce some distortion away from the de Sitter model,

a question to which we shall later return in § 183. The introduction of
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test particles and test light rays into the model to study the gravita-

tional field therein can, however, of cbiurse be considered.

The motion of test particles and light rays will be governed by the

equations for a geodesic

Taking the de Sitter line element in the general form

da2 = ir* -r® dfl® -»-*sm®e dt® (144.2)

where ' e-^ = e" = 1— (144.3)

and substituting into this geodesic equation the values for -jjav.or}

given by (96.2), we obtain the four following cases for a == 1,2, 3, 4.

\a
= 0 ,

0,

d®d
,
2drd0 . „ „

y-5H— 3-
T-— sm d cos 0

ds® r da da

d^
d«®

2 dr d<l>

r dada+5iS+ 2«<,t9|| = 0.

dH dvdrdi

ds®”^dr da da

Without loss of generality, however, these equations can be readily

simplified by choosing coordinates such that the motion of interest

is initially in the plane 0 = |ir. In accordance with the second of the

above equations the motion will then remain permanently in that

plane and the equations will reduce to

^ l^/^\®_ ,/^\®

d8®‘^2dr\ds/ \da)
+ic'

dr
= 0

,

d^<f> 2 dr d<f> _
ds^^r da da ‘

dH dvdt

da^^da da

The first integrals corresponding to these equations can be easily

obtained, since the form of the line element (144.2) itself provides one

integral and the second and third equations can be readily integrated
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by inspection. We thus obtain

where h and h are constants of integration. Finally, substituting the

last two of these equations into the first and introducing the values

for A and v given by (144.3) we obtain the equations of motion in the

dr
, //„ , ,

r* »•
,

d<l> hf

* (144.4)

dt ^ k

da 1—

In accordance with these equations it will be noted that A is a para-

meter which can assume either positive or negative values depending

on the direction of motion. It should be noted, however, that for aU

values of r < JS the parameter h must be a positive quantity, since

we shall take mcreases in coordinate time t as directly correlated with

increases in proper time In the case of light rays the parameters

h and h will assume infinite values, owing to the relation efe = 0 then

obtaining.

(6) Orbits of particles. We may now use the foregoing integrals of

the geodesic equations to secure information as to the motion of

particles in a de Sitter universe.

We may first investigate the ahape of orbit. Combining the first of

the above equations with the second and rearranging we easily obtain

hdr
(144.5)

This equation can be readily integrated to give an analytical expres-

sion for the shape of the orbits taken by particles in the de Sitter

universe. An immediate intuitive appreciation of these shapes can

be obtained, however, by noting that (144.6) is well known in
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Newtonian meohanicsf as applying to the shape of orbit taken hy a

particle with a central repulsive force proportional to the radius r.

Hence in the de Sitter model, the orbits of free particles, plotted in

the present coordinates r, 0, would be in general curved away from

the origin as though the particles were repelled by it.

We may next investigate the velocity of motion in the orbit. This

will, of course, not be the same as in the Newtonian analogue men-

tioned above. In terms of increments of proper time ds for the particle

itself, the two components of orbital velocity are already given by the

foregoing first integrals of the geodesic eq[uations. It will be noted,

however, in accordance with the form (144.2, 3) in which we have

taken the line element, that the coordinate time t is the proper time

as it would be measured by an observer at rest at the origin. Hence,

since it will be convenient in making comparisons with the actual

universe to regard ourselves as located at the origin of coordinates,

it will be advantageous to express the velocities for different particles

in terms of t. To do this we have merely to eliminate ds from equa-

tions (144.4), which gives us

and

it ^ k

dx}> ^
dt At*

(144.6)

(144.7)

for the two components of orbital velocity in terms of ordinary time

as measured at the origin.

As a result of these equations the radial velocity of the particle

would be zero when

(144.8)

and both components of velocity would be zero at

r = i?. (144.9)

The first of these equations determines the value of r at perihelion when
the particle most closely approaches the origin. And in accordance

with the second equation all particle motion ceases at the radius iJ,

which we shall later designate as the apparent horizon of the universe.

For the particular case of purely radial motion with A = 0, the

t See, e.g., Boltzmann, Vorlesungen mber die Principe der Mechanik, Teil I, 20,

equation (40).
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oonditioii for closest approach (144.8) reduces to

r = J2V(l-il!*) (144.10)

perihelion only occurring when the parameter h is less than unity, the

particle passing through the origin for larger -values of h.

Differentiating (144.6) and (144.7), we can also obtain expressions

for the aecderation of a particle iu its orbit. With some rearrange-

ment of terms these become

^ = 2r/Jg« /dry

and
2h dor

dt*
~

di
(144.12)

In accordance -with (144.11) we see that the radial acceleration of

a particle which has zero radial velocity is necessarily positive at any

point between r = 0 and r = B, Hence a free particle which once

reaches perihelion and starts to move away from the origin -w;ould

never again return. It -will also be noted that for a particle at rest

at the origin, with r = 0 and A = 0, the acoelaration woxjld vanish.

Hence such a particle would remain permanentlylocated at the origin,

thus remo-ving any conflict with our previous statement as to the

convenience of regarding ourselves as located at the origin of the

coordmates which we are using.

(c) Behaviour of light rays in the de Sitter universe. We may now
turn to the beha-viour of light rays in the model. In accordance with

the remarks made in connexion with the integrals of the geodesic

equations (144.4), the parameters A and k would have to be inflnite

to correspond to the path of hght in Our present coordinates. Intro-

ducing this condition into the equation for the shape of orbit (144.6)

we then obtain

# = -

r

for the path of light in the de Sitter model. This will be recognized as

corresponding in Newtonian mechanicsf to the orbit of a particle in

the limiting case where the central force becomes zero. Furthermore,

the equation can be integrated in the form r cos <^-1-arsing = b,

where a and h are constants. Hence the trajectories of light rays

in the coordinates chosen would correspond to straight lines. This

t See, e.g., Boltzmann, loo. cit»

A n

dr

V\ A“ r^J

(144.13)

3596.11
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provides an. advantage for these coordinates in interpreting astro-

nomical measurements of distance.

To determine the velocity of light in the model we may return to

the expression for the line element itself (144.2, 3), and set = 0.

Doing BO we obtain the general result

and for the case of purely radial motion this reduces to

(144.16)

Integrating this result from r = 0tor=jB, itis foimd that an

infinite length of time as measured by an observer at the origin would

be necessary for light to travel between the origin and r = B. Hence

an observer at the origin could never have any information of events

happening at iZ or beyond and could speak of a Aonzon to the universe

at this distance. It should be remarked, however, that another

observer located at a different origin would locate his horizon differ-

ently, and hence the spatially closed character of the model, men-

tioned in connexion with (143.4), is to be regarded as applying to the

findings of a particular observer.

(d) Doppler effect in the de Sitter universe. With the help of our

knowledge as to the behaviour of particles and light rays in a de

Sitter universe we can now investigate the wave-length—as measured

at the origin—of light coming from freely moving particles in the

model.

In accordance with the expression for the velocity of light given by
(144.16), light leaving a particle located at the radius r at ‘time’ fj

would arrive at the origin at the later ‘time’ given by

0

And hence by differentiation the 'time’ interval between the

reception of two successive wave crests would be related to the ‘time*

interval between their emission by the equation

where drfdt is the radial velocity of the particle at the time of

emission.
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On the other hand, the proper time interval for an observer on
the moving particle corresponding to the ooordinate interval 8^,
assuming motion in the plane 6 = would evidently be

8«o = (144.17)

in aocordaxLoe with the third of equations (144.4), while the proper

time interval between orests as mestsured at the origin would be

8^2 = 8^2- (144.18)

Hence combining the three foregoing equations we obtain—by the

method of § 116—^for the shift 8A in wave-length measured at the

,, 1 dr

A+8A 8<g_ '^l-r^/E^dt

A 8<?
” 1-r^lB^

h

or
A’|-8A ^1 k dr

~T~
~

l^r2/iJa+[l-rVi2*P
(144.19)

where the first term depends on the parameter k for the orbit and
the radial position r of the particle at the time of emission, while the

second term depends also on the radial velocity of the particle at the

time of emission.

Since the parameter k as mentioned above would necessarily be a

positive quantity, we see that the shift can be either towards the

red or the violet according to the sign and magnitude of the velocity

of the particle dr/dt at the time of emission. When this velocity is

positive the shift is necessarily in the direction of longer wave-lengths,

but when it is negative the shift will be in the opposite direction only

if the second term is great enough to overweigh the first. Tor example,
for the case of a particle at perihelion with no component of radial

motion at all we find, by introducing the condition for perihelion

given by (144.8), a red-shift of the amount

A+SA
A

B?)
(144.20)

where r is now the radius at which perihelion occurs.

In the de Sitter universe, we thus find the possibility both for red- or

violet-shifts in the light coming from distant particles, but never-

theless some tendency to favour the occurrence of red- over violet-
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shifts. This leads to the suggestion that the de Sitter model might

account for the great preponderance of red-shifts over violet-shifts

in the case of the nearer spiral nebulae discovered by Slipher, and

the linear relation between red-shift and distance as we go to the more

distant nebulae discovered by the extensive work of Hubble and

Humason.

To examine this suggestion it is evident that we cannot proceed

solely on the basis of the expression for the generalized Doppler

ejffeet given by (144.19). This formula tells us, to be sure, what the

observed wave-length of light from a given particle would be, provided

we know its orbit and its position therein at the time of emission.

But this information would have to be supplemented by some hypo-

thesis as to the orbits and positions for the particles actually present,

in order to make predictions as to phenomena in the real universe.

At jSrst sight, the most natural hypothesis to introduce in this con-

nexion might appear to be one which would maintain conditions in our

immediate neighbourhood permanently in an approximately steady

state. To secure this result we should have to assume an approxi-

mate equality between the number of particles (nebulae) which are

entering our range of vision at any given time and the number which

are leaving after having passed perihelion within that range.

This hypothesis of continuous entry has been examined in some

detail, however, by the present writer| and found to show little

promise as furnishing an account of the actual universe. In accord-

ance with (144.19) and (144.20) there would indeed be some excess of

red-shifts over violet-shifts in the observed light from the moving

particles, since the red-shift would commence prior to the passage

of perihelion and continue permanently thereafter. Nevertheless, it

would be hard to account for the complete absence of violet-shifts

actually found for all but a very few of the nearest nebulae, or to

account for the fairly precise, observational, linear relation between

red-shift and distance on the proposed basis.

An alternative hypothesis suggested by Weyl and investigated by
himselft and by Robertson§ has shown more immediate promise

of possibly furnishing an account of the observed relation between

red-shift and distance. In accordance with this hypothesis the

•f
Tolman, Astrophys. Jour. 69, 246 (1029),

t Weyl, Phys, Zeita. 24, 230 (1923); PhU. Mag. 9, 936 (1930).

§ Kobertson, PhU. Mag. 5, 836 (1928).
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nebulae in the actual universe are to be regarded as lying on a

coherent pencil of geodesics which diverge from a common point in

the past.

To investigate the detailed nature of the Weyl hypothesis it is

most convenient to use the coordinates of Robertson, which were

found in § 142 to lead to the very simple expression for the Une

element,
da^ = -e^{dr^+r^ dd^+rWB d<l>>)i-dtK (144.21)

Using these coordinates and applying the geodesic equation

cPaf’
, ( .dxi^da?’ _

to the case of particles having no spatial components of ‘velocity’

{dr/ds = dd/ds == dcfy/ds = 0), it is at once seen from the expressions

for the ChristofiEel symbols provided by (98.6), that the

accelerations would vanish and that such particles would remain

permanently at rest with respect to r, 0, and 0.

The Weyl hypothesis then consists in assuming that the nebulae

in the actual universe are to be treated as a uniformly distributed

set of free particles, which—except for small peculiar motions

—

remain at rest with respect to the spatial coordinates now being

employed. It will be noted from the form of the line element that the

present coordinate t is now the proper time not only for a particle

at rest at the origin but also for any of these other particles which are

at rest with respect to r, 6, and It will also be seen that any one of

these particles could be taken as at the origin of coordinates without

change in form of the line element. Hence all these particles may be

regarded as equivalent, in the sense that observers thereon would all

find approximately the same phenomena occurring in the universe.

Although these particles are chosen so as to remain at rest with

respect to our present spatial coordinates, it is evident that the

proper distance between them as measured by rigid scales laid end

to end would be changing with the time t, owing to the occurrence of

this quantity in the components of Hence we should expect a

Doppler shift in the light peissing from one such particle to another.

In accordance with the form of the line element the radial velocity

of light in terms of our present coordinates would be
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Hence, considenug a particle permanently located at the radius r,

the times and <2 for the emission of radiation from the particle and
its reception at the origin would be connected by the equation

U r

J
e~** dt = j

dr = r = const.,

it 0

which on differentiation gives

as the relation connecting the time interval between the reception

of two successive wave crests with the time interval between'thdr

emission. Since t, however, is the proper time for observers both at the

particle and origin, this now gives as a general expression for the

Doppler shift observed at the origin

==^ = (144.22)

or as an approximation for values of r which are not too great

^ cii ai kr. (144.23)

It is evident, moreover, as will be discussed for the general case of

non^statio homogeneous models in detail in § 179, that the coordinate

distance r would in first approximation be proportional to astro-

nomical determinations of distance. Hence, with the help of the

Weyl hypothesis, we have obtained a distribution of nebulae in the

de Sitter model which would exhibit an approximately linear relation

between red-shift and distance as is found in the actual universe.

It should perhaps be emphasized, nevertheless, that this result is

due fully as much to the assumption we have made concerning the

distribution of the nebulae in space-time as to the inherent properties

of the de Sitter model. It may also be pointed out that a reversal in

the signs of the terms —ijR and (i2/2)log,>/{l— (r^/iZ^)} in the trans-

formation equations (142.8), by which we obtained the Robertson

expression for the de Sitter line element, would give us a set of coor-

dinates equally appropriate for discussing the reverse case of a system

of approaching particles which would exhibit a Doppler shift towards

the violet instead of towards the red. It should also be emphasized,

however, that the Weyl hjrpothesis has the very attractive feature of

putting all the particles (nebulae) in the model on the same footing,
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SO that there would be nothing unique about the phenomena observed

from any particular nebula.

145. Comparison of de Sitter model with actual universe

The most satisfactory feature of the de Sitter model is the possi-

bility which we have just discussed for it to contain a distribution of

moving particles so chosen as to imitate the linear relation between

red-shbft and distance discovered by Hubble and Humason for the

light from the nebulae in the actual universe.

In accordance with (144.23) we have as the expression for this rela-

tion
(146.1)

and as a result of the astronomical measurements, see § 177 (i), we

may give to k the approximate numerical value

ifc ci 6*0 X 10““ cm.-^ ci 6-7 x 10-“ (light years)-^. (146.2)

On the other hand, in accordance with (142.9) and (143.4) we may

write for k in the case of the de Sitter model the theoretical expressions

And this gives us

jB Cni 1-66 X 10^7 cm. Cri. 1-76 X 10® light years (145.4)

and A = 1-08 x 10*®^ (145.6)

These results may be compared with the previous case of the

Einstein universe as given by (141.3) and (141.4). It will be noted

that the cosmological constant A comes out very considerably

greater in the case of the de Sitter universe than in that of the

Einstein universe. Nevertheless, comparing with the result given by

(141.6), it will be seen that A is not large enough to affect known

planetary orbits. It wdll also be noted that the distance JB to the

horizon in the de Sitter universe comes out appreciably less than the

radius B of the Einstein universe, and perhaps dangerously close to

the distances of the order 3 X 10® light years which have already been

penetrated by the telescope.

The most unsatisfactory feature of the de Sitter model, as a basis

for the cosmology of the actual universe, is the finding discussed in

§ 143 that the line element when strictly taken corresponds to a

completely empty universe containing neither matter nor radiation.
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Hence the actual presence of matter and radiation in the real universe

must be regarded as producing a distortion away from the proposed

line element. And we shall later be able to show in § 183 that this

distortion might be serious.

It is interesting to note the contrast in the successM and unsuc-

cessful features.of the two original static models. The Einstein model

permits a finite concentration of matter in the universe, but does not

allow for any red-shift in the observed light coming from the nebulae.

The de Sitter model permits, with the introduction of the Weyl hypo-

thesis, a red-shift in the light from distant particles, but does not

allow for the observed finite concentration of matter in the actual

universe. The non-static models, to which we now turn in Part 11 of

this Chapter, will be found to permit the successful features of both

the older models.



X
APPLICATIONS TO COSMOLOGY {ccmid)

Pan II. THE APPLICATION OF RELATIVISTIC MECHANICS TO NON-
STATIC HOMOGENEOUS COSMOLOGICAL MODELS

146. Reasons for changing to non-static models

The original static universes of Einstein and of de Sitter are

certainly very important in furnishing examples of the kind of cosmo-

logical model that can be constructed within the theoretical frame-

work of general relativity. Moreover, as we shall see later, it is possible,

although not necessarily probable, that these models might really

correspond to a considerable extent with the initial and final states

of the actual universe. Nevertheless, it is evident that neither of

these models gives a satisfactory description of the present state of

the actual universe, the one because it permits no shift in the wave-

length of light from the nebulae, and the other because it permits

no matter or radiation to be present in space.

We must hence turn to some less restricted class of models in our

attempts to describe the behaviour of the actual universe, and may
begin by investigating the effects of dropping our previous require-

ment that the line element for the universe should be expressible in

a static form independent of the time-like coordinate

There are several reasons which make it natural to abandon this

assumption that our cosmological models should necessarily be static

in character. In the fii'st place, it is of course eAudent that any increase

in generality which can be brought about by the removal of previous

restrictions will be of advantage in increasing the range of possible

applicability. The non-static models which we shall now study are,

to be sure, mathematically more complicated than our previous

static ones; nevertheless, the history of hmnan endeavours to under-

stand the universe would certainly indicate no a priori right to

demand mathematical simplicity of nature. In the second place,

although there was some observational evidence for ascribing a

reasonably stationary character to our surroundings at a time when
our knowledge of the universe was practically limited to the stars in

our own galaxy, this evidence must now be regarded as completely

replaced by the observed red-shift in the light from the extra-galactic

nebulae which at least leads to the presumption that these objects are
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not static but are moving away from each other. Li the third place,

even if some successful alternative hypothesis should be proposed

for explaining this red-shift, it should be emphasized that processes

are certainly observed in the universe, such as the emission of radia-

tion from the stars at the presumable expense of their mass, which

—

unless compensated in some unknown and ingenious maimer—cer-

tainly lead to changes in gravitational field with the time and hence

necessarily to a non-static universe,f Knally, as we shall see later,

we shall find that an originally static Einstein universe would in any
case not be stable but would start to expand or contract as a result of

disturbances.J

By dropping the previous restnotion to static models, we are at

once led to the study of a considerable group of non-static homo-

geneous models,§ which were first theoretically investigated by
Eriedmann,|| and first considered in connexion with the phenomena

of the actual universe by Lemaitre-tt

147. Assumptionemployed In deiiving non-static line element

We shall commence our investigation by considering the deriva-

tion of the form of line element which appUes to the proposed models.

The first completely satisfactory derivation of this line element was
given by Kobertson,|t who based his deduction on two simple geo-

metrical assumptions—^first, that space-time from a large-scale point

of view should be separable into space and a ‘cosmic’ time orthogonal

thereto in such a way that the line element could be written at the

start in the form cte* = g^jdal^dx^+dt^ [i,j = 1,2,3), and secondly,

that space-time should be spatially homogeneous and isotropic when
looked at from a large-scale point of view. This was followed by a
derivation by the present writer§§ based on a set of assumptions,

selected on grounds of their immediate physical character, but not
chosen as simply and critically as is possible. The somewhat similar

derivation to be given below will be baaed essentially on a single

t Tolman, Proc, Nat, Acad, 16^ 320 (1930).

} Eddington, Monthly NoHoea, 90, 668 (1930).

§ For an excellent summary of the work on static and non-static models up until
the end of 1932, see Bobertson, Reviews of Modem Physics, 5, 62 (1933).

II
Friedmann, Zeits. f, Physikt 10, 377 (1922).

ft liemaltre, Ann, Soc. Sci. Brux^Ues, 47 A, 49 (1927).

it Robertson, Proc. Nat, Acad. 15, 822 (1929). The earlier deduction of Friedmann
was not entirely satisfactory.

§§ See loo. oit., § 146.
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assumption as to spatial isotropy, having an immediate observational

significance which will be evident from the beginning.

In accordance with the results of Hubble, the large-scale properties

of the universe do not appear to depend in any significant way on the

direction of observation as far out as the 100-mch Mount Wilson

telescope is able to penetrate. Thus with respect to our own loca-

tion, on a particular one of the galaxies or nebulae which constitute

the observed portion of the universe, we actually find the universe

to be spatially isotropic. Generaliziog this observed fact, we shall

then take as our only essential hypothesis—^necessary in addition

to the principles of relativistic mechanics for deriving the desired

line element—^the assumption that an observer, located anywhere in

the universe and at rest with respect to the mean motion of the

matter in his neighbourhood, would also obtain observations showing

a similar large-scale independence of direction. In other words, we
shall assume spatial isotropy for the ph3rsical findings of any such

observer.

This assumption is a natural one to mtroduce, since it avoids the

anthropocentric assignment of a unique importance to our own
location in the universe, and proceeds as best we may by regarding

the observations that we obtain as fairly representing the character

of those which would be obtained from similar locations in other

portions of the universe. Before investigating the consequences of

this assumption, nevertheless, several critical remarks may be made
oonceming it.

In the first place, it should be emphasized that the assumption is

in any case meant to be only a rough principle applying on the

average to regions large enough to contain many nebulae. In the

second place, it should be noted that the requirement of spatial

isotropy is to apply, of course, only as stated, to the findings of

observers who are at rest with respect to the matter in their part of

the universe, since observers moving through this matter would cer-

tainly obtain findings which were dependent on the direction of the

relative motion.

Most important of all, however, it is to be emphasized that the

assumption is to be regarded merely as a working hypothesis,

suggested by the present state of observational knowledge, but

necessarily subject to some modification if we desire to allow for the

finer details of the observed irregularities in nebular distribution, and
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perhaps subject to far-reaching modificaition if more powerful tele-

scopes should reveal a systematic lack of uniformity in different parts

of the universe. The assumption is not in the least intended to be
taken as a fundamental law of nature, on the same footing as the

principle of relativity, but should be regarded more nearly as a mere
statement defining the kind of cosmological model we shall next

discuss.I Furthermore, it is specially important to realize the possi-

bility that this assumption of spatial isotropy might not agree with

the facts in the actual universe, since even if the model we obtain

does prove successful in correlating a certain number of cosmological

phenomena, we must always keep an open mind as to changes and
improvements which could make a better or more extended theory

possible. To this we shall return later.

148. Derivation of line element from assumption of spatial

isotropy

We must now turn to the details of deriviag the general form of line

element for the class of models that we are to discuss. As a result of

our assumption of spatial isotropy, it is evident that we may at the

start require our coordinate system to be such that the line element

will explicitly exhibit spherical symmetry around the origin of co-

ordinates, which can be taken at any deshed point in the model
which remains at rest with respect to the matter in its neighbourhood.

Furthermore, it is evident that we can at the same time employ—as

will prove most convenient—a co-moving coordinate system obtained

by taking the spatial components as determined by a network of

meshes which is drawn so as to connect adjacent material particles

(nebulae) in the model and is allowed to move therewith. Hence as

a starting-point, we shall assert the possibility of expressing the line

element in co-moving coordinates in the most general possible form
exhibiting spatial spherical symmetry.

ds^ = dr^ dB^ +r^mW d^^)+e^ dt^ +2a drdt (148.1)

We take this most general form as a starting-point, rather than

either of the simpler forms exhibiting spherical symmetry previously

discussed in §§ 94 and 98, on account of the assertion that we are to

use co-moving coordinates, which necessitates a special investigation

t The procedure ia very different from that of Milne, Zeita.f, Aatrophys., 6, 1 (1933),

who would regard the homogeneity of the utiiverse as a fundamental principle from
which even the laws of gravitation might be deduced.
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to see if simpMcations can be introduced without disturbing this

desired character of the coordinate system. It is easy to demonstrate,

however, that a reduction to the second of the two previous simplified

forms can be made, still maintaining the co-moving character of the

coordinates.

In order to obtain simplifications, we may obviously consider any

transformations of coordinates which do not upset the relations of

= (148..,—
da da da

which must hold for the spatial components of the ‘velocity’ of

particles in the model, if our coordinates are to be co-moving as

desired.

Without disturbing these relations we can evidently substitute

a new time-like variable {' defined by the equation

=P ri(a dr+e' dt), (148.3)

where is an integrating factor which makes the right-hand side of

(148.3) a perfect differential. In accordance with (148.3) we shall have

e” dt^+ 2a drdt = ^ drK (148.4)
7
^
6 6

So that on substitution into (148.1), and dropping primes the line

element can be written in the simpler form

ds® = — dr'^ — e'*(r® dd* -l-r*sin®0 d^)-\-e'' d<®, (148.6)

where A, fi, and v arc now functions of r and the present t, and the

relations (148.2) have not been upset since r, 6, and are still the

same variables as before. We have now reduced the line element to

the general form studied by Dingle as discussed in § 100.

To proceed farther in the simplification, we may next consider the

components of gravitational acceleration for a free teat particle in the

model. These would be determined by the equations for a geodesic

(74.13), and for the case of a particle at rest with respect to r, 6, and

<l>
this would give us

(148.6)

Since this test particle is spatially at rest with respect to our present

system of co-moving coordinates, it is also at rest with respect to a
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local observer moving with the matter in the neighbourhood. In

accordance with our assumption of spatial isotropy, however, such

a local observer must obtain physical results which are independent

of direction. Hence these accelerations can only have the value zero,t

and we axe led to the conclusion that the three Christoffel symbols

appearing in (148.6) must themselves be zero. And from Dingle’s

values for these quantities as given by (100.2) we then obtain

dv dv dv

as a condition on the quantity v occurring in the expression for the

line element (148.6). This shows that v is a function of t alone, and
peonnits us to introduce a new time variable defined by the expression

f = j^ydt (148.7)

without disturbing the oo-moving character of the coordinates. Doing
so and dropping primes, we then obtain the further reduction to the

fonn ^a dd^ +r^8mW d4^)+itK (148.8)

We thus obtain a separation of space-time into space and a universal

time t orthogonal thereto, without the necessity of introducing any
further hypothesis.

In accordance with this foirm of line element

would now be the proper time as it would be measured by a local

observer at rest with respect to the matter in his neighbourhood, and

8^1 = 8r hl^ = e^hr Sd 8Z3 = e^^rsin^ 8^
would be the proper distances as measured by this observer between
particles belonging in the model which would permanently retain

the above differences in coordinate position. For the fractional rate
of change in these proper distances with proper time, we then obtain

^ ^ 2 dtdt Otn

d . I dfJL

iw-dt.

and, by our hypothesis of spatial isotropy for the findings of the local

observer, are led to the useful relation

dX d(i
(148.9)

t We cannot in general use the co-moving character of coordinates as necessary
justihcation for the requirement that the ciooeleration of such a particle must be zero,
since gravitational action might be balanced by a pr^sure gradient.
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This result now shows the possibility of a further simplifioation in

the line element by the substitution

^ or logr^ = f —
.

(148.10)
r' r Jr

This substitution will not disturb the co-moving character of the

coordinates, since we can evidently ’write for the radial velocity

dr'/ds of a particle in our new coordinates

rjda^dtyj r\ds

dt

dk’

and in accordance with (148.9) this will be zero for any particle which

is at rest, with drjda equal to zero, in our original coordinates. Intro-

ducing (148.10) in (148.8) and dropping primes, we shall then be able

to write the line element in the second of the forms considered in

§ = _cM(dr2+r* -l-rasin«e d4^)-^rdt\ (148.ll)

where is now a function of the present r and t.

To continue with the derivation, we may again consider the proper

distance
Uq — e*/* Sr

between neighbouring particles belonging to the model which are

permanently separated by the coordinate distance Sr. For the frac-

tional rate of change of such a measured distance with the time we

can’tvrite oi st laaiogSZo

% 2 0(’

and from our assumption of spatial isotropy it is evident that this

quantity could not be found by the local observer either to increase

or decrease with r. Hence we are led to the conclusion

I aiogSZo ^ 1 _ 0
0r 2 drdt

and must take ju. as the sum of a function of r and t

l^{r,t) =f{r)+g{t).

(148.12)

(148.13)



APPLICATIONS TO COSMOLOGY § 148

Introduoing (148,13) into (148.11), wemaynow write the line element
in the still more explicit form

d9^ H-r^sin^^ d<f>^)+dt^, (148.14)

To proceed from this point, we could now make use of a known
principle of Riemannian geometry (Schur’s theorem) in accordance
with which the spatial isotropy at every point of the sub-space
(r, <!>) with t constant would necessitate its spatial homogeneity,
and thus permit us to write for a known form of solution. In
accordance, nevertheless, with our desire to emphasiize the physical
character of our considerations, we shall actually proceed in a
different manner.

Comparing the form for the line element (148.14) with the expres-
sions for the energy-momentum tensor given for this general form by
(98.6), we can now write as expressions for the only surviving com-
ponents of the energy-momentum tensor

SnTl = (148.16)

87rTi =

where = f{r)+g{t),

and accents denote differentiation with respect to r and dots with
respect to t

These expressions give, of course, the components of the energy-
momentum tensor referred to our present system of coordinates
(r, At any point of interest, however, we may evidently
introduce proper coordinates (aj^, Zq, for a local observer at rest
with respect to r, 0, and <j>, in such a way that we shall have the
relations

dxQ = dr dy^ = dd dz^ = sin 6 d<j> dt^ = dt

holding in the neighbourhood of that point. And in accordance with
the general rules for the transformation of tensors, it is then seen
that the above expressions would also give the analogous components
of the energy-momentum tensor referred to these proper coordinates.
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Thus, for example, we should have

Tjj = ^ Tg = == T\.
ao!" dx\ P ^

Hence the above expressions (14:8.16) may also be taken as giving

the components of the energy-momentum tensor referred to proper

coordinates as used by a local observer at rest with respect to the

matter in the model. And from the assiuned spatial isotropy in

the findings of such an observer, we can then conclude that his

measurements of stress will have to lead to a symmetry between the

X, y, and 2 directions, such that we shall have

Tl = Tl=Tl. (148.16)

Making use of this result, we then see from (148.16), that we obtain

the relation ^,2

or
dr^ 2[drJ r dr

0 , (14:8.17)

as an equation for determining the form of /(r). As a first integral

of this equation we have

I =».”'.

where is the constant of integration. And as the second integral

we then obtain ,

,

2

e/(r) — (148.18)
[l-c,rV4c2?’

where Cg is the second constant of integration.

This now completes the derivation. Returning to otir previous

expression for the line element (148.14), absorbing the constant

factor l/c| in eP^^\ and to agree with familiar forms of expression

putting
^ j3 —

, (148.19)

where JSg is a constant which can be positive, negative, or infinite, we
can then write the line element in the final form

ds^ = ^{dr^+r^ dd^ +r2sin2S d4!^)+dt^, (148.20)
[l+r74iJ§p'

where g{t) is still an undetermined function of the time t.

We have been interested in presenting this long derivation in order
3595 .u

HI)



370 APPLICATIONS TO COSMOLOGY § W8

to show, by a line of reasoning each step of which has an immediate

physical interpretation, that the assumption of spatial isotropy for

the large-scale physical findings obtained by observers at rest with

respect to the matter in their neighbourhood, combined with the

principles of rdativistic mechanics, does inevitably lead to the pro-

posed line element. Hence, if we should later be dissatisfied on

observational or pMlosophioal grounds with the results to be obtained

from the proposed model, we must modify either the principles of

rdativistio mechanics, or the assumption tha,t aU observers in the

universe must be expected to obtain large-scale results which are

independent of the direction of observation.

149. General properties of the line element

(a) Different forms of expression for the line element. By the trans-

formation of coordinates the line element for our present non-statio

models
— ~ri T^ii de^ -l-r*sin®0 d<l>‘^)+dt^ (149. 1)

can be written in several different forms which are sometimes con-

venient or can be of assistance in understanding the implied geometry.

By the obvious substitutions

a; = rsin0cos^ y = rsm08in^ z = roosd (149.2)

we obtain the form

“ ~ [i+^4Jisy

with r = V(®*+^®4-2*)>

which makes the spatial isotropy at any point perhaps more obvious.

By the substitution

f= It— (149.4)
l-l-r®/4i^

the line element assumes the form

ds* = dfl® -t-f®sin®d (149.6)

which has the advantage of showing the relation, of this non-statio

line element to one of the most familiar forms for the static Einstein

line element.f

f Obmpaxing the 't^ransformation equation (149.4) with the previous transformation
equation (188.2) used in connexion with the Einstein universe, it is to be noted tliat
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By the further substitution

f = iJoSmx (149.6)

we can now write the line element in the form

ds^ = — sin^x + sin^XS^^® (149.7)

Finally, by introducing a larger number of dimensions, with the

help of the equations

= jBoV(1—f7-Ro)» H == f sin 6 cos

253 = fsin0sm^, j2!4 = fcos0, (149.8)

where = -Ko> (144.9)

the line element assumes the form

ds^ = -^€P^^{jdz\-\-dz\-{-dz\-^dzXj^^ (149.10)

which at any given time t permits us to regard our original space as

embedded in a Euclidean space of a larger number of dimensions.

(6) Geometry corresponding to line element. As in the case of the

static Einstein universe, the kind of geometry corresponding to these

different expressions for the line element is not completely determined

since different h3rpotheses as to connectivity and as to the identiQoa-

tion of points could be made.

It will be simplest, however, as suggested by the last form in which

we have written the line element, to regard the spatial extent of this

non-static universe at any given time t as the whole three-dimen-

sional spherical surface defined by

z\+zl+z\+zl^St, (149.11)

embedded in the four-dimensional Euclidean space («i, Z3, z^. Since

the proper distance at time t corresponding to the coordinate interval

dzj, would from the form of the hne element (149.10) evidently be

(149.12)

with similar expressions for the other spatial coordinates, it is evident

that the radius of this spherical surface would be

iZ- (149.13)

Hence this quantity is often spoken of as the radius of the non-static

universe, and the geometry is spoken of as being that for the surffitce

of a sphere in four dimensions whose radius is a function of the time.

our present r is analogous to the previous p, and our present r is analogous to the

previous r.
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It should be noted, however, in aooordanoe with the equation (148.19)

by which was introduced, that this radius could be real, imaginary,

or infinite.

If we assume the radius real, the total integrated proper spatial

volume of the model at any selected time t would be given in accord-

ance with (149.7) by
27r TT ff

== J J J
JJ§ei^0ain*xsin6dx^®<^ — (149.14)

0 0 0

and the total integrated proper distance around the universe would

Zo==2iriZoC»‘«0. (149.16)

Taking the spatial geometry as dliptical rather than spherical, the

corresponding quantities would be half as great.

If we assume the radius infinite or imaginary, the model would be

spatially open rather than closed and the total proper volume could

be most conveniently calculated, in accordance with the form (149.6)

for the line element, from the expression

217 77 00

0 0 0

where is a positive quantity which can assume the value infinity,

and the upper limit for r can be taken as infinity without disturbing

the possibility for a physical interpretation of the line element by
changing its signature. Evaluating the integral we then obtain aji

infinite total proper volume for open models.

The symmetrical form (149.10), which we have been able to give

to the line element by the device of considering a larger number of

dimensions, is valuable in clearly showing the spatial homogeneity of

the model already mentioned in connexion with (148.14). It is an
interesting extension of Schur’s theorem of Biemannian geometry,

that the spatial isotropy which we have assumed for observers at

aU points in space-time should lead to an orthogonal separation into

space and time and to homogeneity for the sub-manifold of space.

It is in accordance with this result that our present models of the
universe have been designated as non-static homogeneous cosmological

models.

(c) Result of transfer of origin of coordinates. The spatial homo-
geneity of the model makes it evident that the origin for the spatial
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coordinates can be sdected at 17111 at any desired point in the model

ipithout affectingthe forms inwhich the line element canbe expressed.

Furthermore, on transfening the origin of coordinates from one

point ia the model to another, it can be shown not only that the

line element can be written in an unaltered form, but also that the

coordinates of the new origin in the old system of coordinates will

be related in the expected way to the coordinates of the old origin

in the new system of coordinates. We may now demonstrate this

principle.f

To agree with our later use of the result, we shall employ a system

of coordinates corresponding to the third form (149.6) in

which we have written the line element

da® =
l-P/Bl

dd^ (149.16)

and shall consider a neJnda as being at rest at the origin of these

coordinates, and an obseroer permanently located at f = a as provid-

ing the new origin of the coordinates to which we wish to transform.

In this original system of coordinates S we may then tabulate the

spatial coordinates for the nebula and observer in the form

System S e i>

Nebula 0 . . . .

Observer a 0 0

(149.17)

where the angular coordinates for the nebula at the origin are of

course mdeterminate, and for simplicity we have given the observer

the polar and equatorial angles 6 = ^ = 0, since the starting-points

for measuring these angles can evidently be chosen in any arbitrary

way that proves convenient.

We now desire to jBnd the result of transforming to a new system

of coordinates /S' of the same type as S but with the origin of coor-

dinates located at the observer. To carry out this transformation it

will be simplest to introduce intermediate steps in which we employ

coordinates of the type given by the expression for the line element

(149.10), corresponding to a treatment of our original space as em-

bedded in a Euclidean space of one more dimension. Making use of

the transformation equations (149.8), we shall then first transform to

a new system of coordinates /S^j, in which the spatial coordinates for

t Tolman, Proc. Not. Acad. 16, 611 (1930).
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nebula and observer will be seen to have the values

§ 149

System 5, ^4

Nebula ®o 0 0 0

Observer N,V(l-aViJ3) 0 0 a

(149.18)

We may now consider a further change of coordinates to a new
system jSg, which may be regarded as a rotation in the Zx *4 plane, and

which we define by the transformation equations

*1 = Zjoos 0+2:4 sin a, Zg = *2 ,

Z4 = —a^sina+ZjOOSa, Zg — Zg, (149.19)

where we take

sin a =
-I-

COS « = (149.20)

Applying these transformation equations we then easily obtain as

our new coordinates for the nebula and observer

System zi

Nebula 0 0 — a
1

Observer
j Bo 0 0 0

(149.21)

This last transformation of coordinates, however, will be seen to

have been such as to leave the line element in the form (149.10) and
to preserve the form of the relation (149.9) which determines the

three-dimensional surface in the four-dimensional manifold which

corresponds to physical space. Hence we may now employ trans-

formation equations of the form (149.8) to go back to a coordinate

system S' in which the line element will again have the form (149.16)

with which we started. Doing so we then easily obtain for the

coordinates of nebula and observer.

System S' i f' O'

Nebula a TT . .

Observer
1

0

(149.22)

where the values for all but one of the angular coordinates are un-

determined.

Comparing the tables (149.17) and (149.22), we now see that we
have actually carried out a transformation from an original system

of coordinates with the nebula at the origin f = 0 and the observer

at f = a, to a new system of coordinates having the same form of line

element (149.16) but with the observer at the origin of coordinates
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f' = 0 and the nebula at f' = a. That this simple relation should

hold for such a transfonjaation of coordinates was indeed to be

expected. Nevertheless, the result will be of sufi&oient importance

for our later considerations to justify the explicit proof which we
have given here.

(d) Physical interpretation of line element. In accordance with our

general principles for the physical interpretation of formulae for

interval, we can of course relate any of the foregoing expressions for

the line element, in a non-static homogeneous universe, with the

results that would be obtained by suitable measurements made in

the ordinary manner with metre sticks or clocks. Thus if we write

the line element in its original form

(149.23)

we see that measurements of proper distance dl^ made by a local

observer at rest with respect to r, 6, and would be connected with

coordinate differences by the equation

^ (149.24)

Furthermore, we see that his measurements of proper time dt^ made
with his local clock would be connected with differences in coor-

dinate time by the very simple relation

dtQ = dt, (149.26)

Similarly, of course, in the case of observers who are not at rest with

respect to r, 0, and ^ we could find the somewhat more complicated

relations between measurements of proper distance or time and
coordinate differences.

As a result of the simple relation (149.26), we see that the coordi-

nate time ty in all of the expressions which we have given for our

non-static line element, would agree with proper time as measured

on his own clock by any local observer at rest with respect to the

mean motion of matter in his part of the universe. It is important

to emphasize this result, since it means that we can identify the

coordinate t with our own measurements and estimates of past and
future time. Hence any estimates of the time scale needed for astro-

nomical changes are appropriately expressed in terms of the coor-

dinate t, and no real changes in time scale are brought about by the

mere substitution of a new time-like coordinate in place of t.



§150376 APPLIOATIONjS TO COSMOLOaY
150* Density and pressure In non-static universe

Up to the present stage in our consideration of these homogeneous
non-static models, we have made no hypothesis as to the nature of

the material filling the niodel, beyond the assumption that we could

neglect local irregularities from the large-scale point of view employed
in cosmology, and the assumption that the material could then be
taken as obeying Einstein's field equations

where, in accordance with the large-scale point of view, the com-
ponents of the energy-momentum tensor would have to be assigned

values which could be regarded as appropriate averages for the posi-

tion and instant of interest.

We may now, however, introduce a more specific hypothesis by
assuming that the material filling the model can be treated as a perfect

fluid. It was advantageous to delay the introduction of this assump-
tion until the spatial homogeneity of the model had been demon-
strated. With a non-homogeneous distribution we should expect

to encoimter phenomena, such as the net outward flow of radiation

from a region contamiog a greater concentration of luminous matter
than its surroundings, which could not be appropriately represented

by replacing the actual material by a perfect fluid, owing to the
circumstance noted in § 86 that the expression for the energy-momen-
tum tensor of a perfect fluid restricts the behaviour of the fluid to
adiabatic processes withoutflow of heat,andhence providesno analogy
for a transfer of energy by radiation flow from one portion of matter
to another. Having found homogeneity, however, for the class of
models under consideration we may now regard the radiation derived
from the nebulae in any given large region as suffering no net increase
or decrease by exchange with the surroundings, and introduce the
defimte hypothesis that the material in the actual universe, consisting
of nebulae together with dispersed intergalaotic matter and radiation,
can be treated for the purposes of the model as a perfect fluid.

As a consequence of this h3q)othesis, we can now apply, to the
material filling the model, the specific expression obtained in § 85 for
the energy-momentum tensor of a perfect fluid

3'" - (160.1)

where Pqq and Pq arei the proper macroscopic density and pressure as
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they would be measured by a local observer at rest in the fluid, and

the quantities dxf^jda are the components of the macroscopic ‘velocity’

of this fluid with respect to the coordinates in use.

Employing our original coordinate system (r, 0, in which the

line element (149.1) assumes the form

d8^=- +»“ m+dfi (160.2)

the spatial components of the ‘velocity’ of the fluid would be zero

^ — d<f> _ Q
da~ d8~ da

(150.3)

owing to the fact that these coordinates have been chosen so as to be

oo-moving. And the temporal component would be

1=1, (150.4)

owing to the form of the line element. This introduces considerable

simpliflcation when combined with (160.1), and we then And as the

only surviving components of the energy-momentum tensor

T«‘=-g^P, = (160.5)

or, on lowering indices,

T\ = Tl=Tl= -Po J’l = />oo- (160-6)

The line element (150.2) is written, however, in a standard form,

and expressions for the components of the energy-momentum tensor

corresponding to this form have already been given by (98.6).

Applying these expressions to the case of the present line element and

introducing the pressure and density as given by (160.6), we then

readily obtain i

(150.7)

and Sttpoo = (160.8)

as simple expressions for the local pressure and density of the fluid in

the model, where the dots indicate differentiation with respect to

the time.

Several remarks may be made concerning these expressions. In

the first place, it will be noticed that the pressure and density

are fimctions of the time t alone, and at a given value of t would be
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independent of position in the tinirerse, in agreement with the spatial

homogeneity of the model which we have already discussed. In the

second place, it will be seen that by taking g{t) as a constant inde-

pendent of t the expressions for pressure and density would reduce

to those given for the static Einstein universe by (130.3) and (139.4)

with B = Bf^e^o as the constant value of the radius. Perhaps most

important of all, however, in contrast to the case of the original

static Einstein universe, it will be seen—^when g{t) does vary with t—
that it is no longer essential for the constant to be real and the

cosmological constant A to be positive in order to obtain a positive

density of energy pjo in the model and a pressure po which is not

negative. This is especially significant since it removes the older

a priori arguments for a necessarily closed universe and for the

necessary introduction of a cosmological term, and leaves these

questions still open for observational decision.

In interpreting the expressions for density and pressure jpo

given by (160.7) and (160.8), it must be remembered that these

quantities apply to the idealized fluid in the model, which we have

substituted in place of the matter and radiation actually present

in the real universe. In making this substitution, it would appear

reasonable to take as the averaged-out density of energy, corre-

sponding to the nebulae and the intemebular matter and inter-

nebular radiation present in a sufficiently large region of the universe

to be representative, including of course as an important item, and
at the moment as the best known item, the energy me® corresponding

to the mass of the nebulae. For the pressme Pq of the fluid, it would
appear reasonable to take the sum of the partial pressures, corre-

sponding firstly to the random motions of the nebulae themselves,

secondly to the random motions of dust or other particles of matter

present in intemebular space, and thirdly to the density of inter-

nebular radiation.

With the help of this picture ofthe factors responsible for the values

of total energy density and pressiue pj, we can also obtain a rough,

expression for that part of the energy density p^ which directly

corresponds to the mass of die nebulae and other particles of matter
present in the universe. In the case of the nebulae the pressure corre-

sponding to die random motion of these enormous particles would be
equal to two-thirds of their kinetic energy per unit volume

= §Pfc
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from ordinary kinetic theory considerations. This of oonrse would be

very small. In the case of pmiicUa of dust or other matter present

in internebular space, the pressure would vary from two-thirds the

density of their kinetic energy

for slow random motions, down to one-third this quantity

for particles with velocities approaching that of light. ^Finally, for the

case of radiation the pressure would in general be one-third the energy

For the nebulae and slow moving particles, however, it is evident that

the density of kmetic energy would be negligible compared with the

density corresponding directly to the mass of the particles. Hence

we may roughly take » ,,

Pm = Poo— 3jPo (160.9)

as that part of the total energy density which corresponds directly

to the mass of the nebulae and whatever internebular matter may be

present; and this expression becomes exact when the pressure due to

matter can be completely neglected.

Combining with equations (150.7) and (160.8) we can then write

for the density of matter in the universe the approximate expression

® e-<«fl+33-f-3p«-4A. (160.10)
"o

151. Change in energy with time

By substituting the values for the components of

momentum tensor (160.6) and (160.6) into the general

relativistic mechanics

— = 0 ,

dx'' * 8x1^

the energy-

equation of

(161.1)

for the case ja = 4, we at once obtain

since has the constant value imity. And introducing the values

for the components of the meti’ical tensor coCTesponding to the line

element (160.2) which we are employing

[l+r^l4Elf
(dr^-f r® (161.2)
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we easily find that this reduces to

0f\[l+r2/4J2i

§151

d{ rHhxee*iKf>\ .

This result, however, can be given an immediate physical inter-

pretatibn. In accordance with the form of the line element (161.2), it

will be seen that the proper volume as measured by a local observer

corresponding to a small coordinate range Sr8$S<f> would be given at

any time t by the expression

Moreover, since the coordinates in use are co-moving, this is the

voliime as it would appear to a local observer of an element of the

fluid which would remain permanently in that range. Hence com-

bining (151,3) and (151.4), we can now write

|{PooK)+i»o|(K) = 0
,

(151.5)

and interpret this as relating the changes, which a local observer

would find in the energy {pqq Svq) of any element of the fluid, with the

work done on the surroundings in the way to be expected for adiabatic

changes in volume.

As a consequence of (161.4) and (151.6), we now see that the volume

of every element of fluid in the model would be increasing with the

time if gf(i) is increasing with and decreasing when g{t) is decreasing,

and furthermore, it the pressure is a positive quantity greater

than zero, that the proper energy of every element of fluid in the

model would be decreasing when gif) is increasing, and increasing

when g(t) is decreasing. Hence, except for the special case of zero

pressure, the total proper energy of the fluid will not in general be a
constant; and the principle of energy conservation can only be made
to apply by introducing a quantity to represent the potential energy

of the gravitational field in the way already discussed in § 87.

For some purposes it will be more convenient to write (151.3) in

the form v ,

= 0, (161.6)

which can evidently be done owing to the mutual independenoe of the
ooordmates r, 0, and

This latter form of expression can be readily verified with the help
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of the explicit expressions for density and pressure given by
(150.7) and (160.8), a necessary result since the fundamental equa-

tion for the components of the energy-momentum tensor

must provide—as we have seen—^all the information which can be

obtained from the equation of mechanics,

whidi can be derived&om it.

In what follows we shall often find it convenient to take (161.6)

together with (160.8) as being the two equations which relate the

pressure and density of the fluid to the line element for the model,

thus replacing the second-order equation (160.7) by the first-order

equation (161,6).

152. Change in matter with time

With the help of our rough expression (160.9) for that part of the

toWen«gyd»Bity
(152 . 1 )

which corresponds directly to the mass of the nebulae and whatever

intergalactio matter may be present, we can also investigate the

dependence of the matter in the model on the time.f Combining

(162.1) with (151.6) we can put

|(p„.8ro)+3|(p„ = 0, (152.2)

and regarding M = (162.3)

as the total proper mass of the nebulae and other particles of matter

in a given coordinate range, we can rewrite this with the help of

(161.4) in a form
dM __ 6;^ dgf 3 dp^

M dt ^ dt'pj^ di'

which gives the fractional rate of change in the proper mass of the

matter present in the model.

For the special case in which we take the pressure as permanently

equal to zero, this rate would become equal to zero and we should

have conservation of mass, as well as the conservation of total proper

energy already noted for this special case in connexion with equation

(151.5).
t Tolman, Proc. Nat. Acad. 16 , 409 (1930).
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Also for the special case determined by the condition

^o|+3^» = 0, (162.6)

which can also be expressed in the form

3^(Po8vo)+JJo^(H) = 0, (162.6)

we ^onld have conservation of mass. And this will be seen to be the

condition which would apply to the case of a model containing a con-

stant aihount of matter exerting negligible pressure, and containing

radiation which exerts the pressure p, = which will later be

treated in § 160.

In general, howevCT, we should desire to allow some change in the

proper mass associated with the matter in the model, since changes

of this kind are presumably occurring in the actual universe. Thus,

in accordance with the Einsteiu relation between mass and energy,

the emission of radiation from the nebulae would be accompanied

by a decrease ia their mass, irrespective of the possibilities that the

ultimate source of this radiation might lie in destructive processes

such as the mutual annihilation of electrons and protons, or might

lie in synthetic processes such as the formation of helium from

,
hydrogen with an accompanying decrease in mass.f Similarly, if the

source of the cosmic rays should lie in the annihilation of intemebular

particles of matter or in the synthesis of more complicated atoms from

hydrogen, there would also be a decrease in the mass of the matter

in the universe.

Eor some purposes, see ^ 166 and 184, it is more useful to re-express

equation (152.4) in a form which shows the direct dependence of the

rate of loss of mass on the rate of change in g{t). Making use of our

previous expressions for poo i’o (160.7) and (160>8), we readily

obtain after some rearrangement

1 ^Fpoo-f-fpo
M di~ 21

(162.7)

where the dots indicate differentiation with respect to time. This
expression for the fractional rate of decrease in the mass of matter in

the model shows that the annihilation of matter would in any case

t This oonohision would have to be modified if the radiation from the stars should
prove to be due to a failure of the principle of energy conservation in their interiors^ aa
has been suggested by Bohr.
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necessanly lead to a non-statio modd. with g{t) not a oonstant. This

result provides the specific justification for one of the general reasons

given in § 146 for changing to non-statio models.

153. Behaviour of particles in the model

We may next consider the behaviour of free particles in the non^

statio model corresponding to our line element

da* = +rWd d^^)+dtK (163.1)
[l+r74ZigJ

In accordance with the principles of relati'vistio mechanics, the motion

of free particles in the model would be determined by the equations

for a geodesic
d*a;<'

,
, .da^dx^ „

ds*

And smoe the line element (153.1) is -written in a standard form, we

can employ our pre-vious expressions for the Ohristoffel symbols

\fiv, <y} as given by (98.6), in using these equations.

We may first investiga'te the case of a particle which is at rest -with

respect to the spatial coordinates r, 9, and ^ which will give us

dr dd d(f>

ds da ds
= 0,

^ — 1

da~
(163.3)

The equations for a geodesic then reduce to

dh^
Is*

+{44,0-} = 0 ,

and since all values of {44, a] are seen from (98.6) to be zero for our

present line element, we jGbnd that all components of acceleration for

such a particle would vanish

dV __ d^d _
ds^ ds^

_^ = o
“da* ’

(163.4)

and the particle would remain permanently at rest with respect to

the spatial coordinates, and increments ds in proper time as measured

by a local observer on the particle would permanently agree with in-

crements dt in the coordinate time which we are using.

The conclusion that particles at rest with respect to our spatial

coordinates would experience no gravitational acceleration, tending

to set them in motion, is of course in agreement with the fact that we

have chosen co-moving coordinates such that the fluid filling the

model remains permanently at rest with respect to r, 6, and The
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result applies oiily to the gravitational acceleration, but owing to the
homogeneity of the model, it is evident that other hinds of accelera-
tion arising from collisions or radiation pressure would also be zero on
the average for particles at rest relative to our spatial coordinates.
The conclusion that particles of matter in the model would remain
permanently at rest with respect to the coordinates r, 0, and (f>

must
not be confused with the fact that the proper distance between two
such particles as determined by fitting metre sticks from one to the
other would be changing with the time if g{t) is so changing.
To investigate the more general ease of particles having any

arbitrary initial velocity with respect to the coordinates, it will prove
most expeditious to start with the equation for a geodesic (153.2) for
the case <r = 4, which will give us

_ 0 . (153.5)

Substituting from (98.6) the values of (juv, 4} which correspond to
our line element (163.1), we then obtain

where
[l+rV4i2a]*?

and from the form of the line element itself, it is evident that the
above result can be rewritten as

or

^ 1^W_
1 _ 0,

2
dt d /

ds dt \ds/ dg^
''dt'

da^

which can be integrated to give us

— 1 = (153.6)

where A is the constant of integration.

To interpret this result, we may now again return to the line ele-
ment (153.1) and note that this can be written in the form

dfi [1+r
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whioh caai then be applied to the motion of particles in the form

(163.7)

where c is the velocity of light, and u is the velocity of the particle as

measured in the ordinary manner by an observer in its neighbourhood

who is at rest with respect to r, 0, and and who uses his own deter-

minations of increments in proper time and proper distance

(Uq = dt, dlQ = |-j_|_^2y4jg2j
(163.8)

Substituting (163.7) in (163.6) we then obtain

(163.9)

as an expression for the time dependence of the velocity u with which

a free particle would be found to be moving by local observers along

its path, who themselves remain at rest with respect to the average

motion of matter in their neighbourhood.

In accordance with (163.9), if g{t) is increasing with time, and the

proper volumes of elements of the fluid in the model hence expanding,

the velocities of such free particles will be decreasing with time, and

vice versa if the model is contracting these velocitieswiM be increasing.

If we apply this result to particles which are themselves regarded as

constituents of the fluid in the model, and correlate the random
velocities of such particles with the contributions they make to the

energy density and pressure of this fluid, it can readily be shown that

the dependence of velocity on time given by (163.9) is in entire agree-

ment with the relation between energy density and pressure for the

fluid previously given by (161.6).

With the help of (163.9) we can also discuss the energy of free

particles in the model as a function of time. This can be of interest

in connexion with the energies of the cosmic rays in the actual uni-

verse, since at least a portion of these rays may be due to fast-moving

particles. By solving (153.9) we can easily obtain the result

^ ^ ^os/(l+Ae-<Xf>), (163.10)

where E is the expression given by the special theory of relativity for

the total energy of a particle, including its proper energy Eq =
corresponding to its mass. In accordance with this result, we see that

3686 .n
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the enetgy of such parfcioles as measured by local obserrers at rest

with respect to the mean motion of matter in their neighbourhood

would be decreasing with the time if g{t) is increasing and the model
expanding.

To procure a better idea as to the rate at which the energy of such

particles would be changing with time^ we can obtain by the difiPeren-

tiation and rearrangement of (163.10)

as an expression for the fractional rate of decrease in the kinetic

energy of the partiolea which in the case of the cosmic rays

would be that portion of the energy available for producing ionizatLon.

This formula has the advantage of expressing the rate of energy

change in terms of the quantity g = dgjdt, which as we shall later

find is closely related to the red-shift in the light, from the nebulae

that would correspond to our model. In accordance with (163.11),

the fractional rate of decrease in the kinetic energy of free particles

in the model would vary from g for slow moving particles with
E c::i Eq, down to gl2 for particles having velocities approaching that

of light with E ^ JSq. As will be shown in § 166, the limiting case of

particles having zero rest mass and moving with the precise velocity

of light, would correspond to the behaviour of light quanta or photons.

With the help of the equations for a geodesic, we can also investi-

gate the form of the trajectories for free particles as well as their

velocities. For our later purposes it will be sufiS.cient to consider a
particle which is originally moving in the radial direction with

^ =^ = 0. (163.12)
08 ds

In accordance with the geodesic equations (163.2), we should then

g+(ll,2)|)V2{14,2}||+{4*,2)(|)* = 0.

^+{1M}(|)’+2{14,4|+{44,3)(|‘ = 0.

and since the Christoffel symbols are all six found from (98.6) to be
zero, we obtain the result

have

and

d^e dU
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We may hence conclude that free particles having their originfl-l

motion directed to or from the origiu of coordinates 'will continue to

move in a radial direction. It is evident that this result is a direct

consequence of the spatial isotropy of the model, and that it would
also hold on transforming the line element to the form (149.6) ninnA

the coordinates 0 and
<f>
are not affected by the transformation.

154. Behaviour of light rays in the model

We may now turn to the behaviour of light rays in our present

model, still making use of the line element in the form

d<l>^)+dt^. (164.1)

In accordance with the principles of relativistic mechanics, the equa-

tions for a geodesic (153.2) wotold apply to the motion of light rays

as well as particles provided we consider the limiting case with = 0.

Setting ds = 0 in the expression for the line element, we can at

once write as a general expression for the velocity of light in our
model, except when it is actually passing through matter.

(dr^
,

^dd^. 2 .

"Wj
~ *•

And noting our previous expressions for increments in proper time
and proper distance (153.8), we see that the velocity of light in empty
space at any point in the model will be found to have the normal

«, .. /-IKA 0\u = c, (154.3)

when measured in the ordinary manner by any observer at rest with
respect to the mean motion of matter in his neighbourhood.

Eor the special case of a ray of light moving in the radial direction,

we have in accordance with (154.2) the coordinate velocity

Furthermore, in agreement -with the treatment given to the radial

motion of a particle, see (153.13), it is evident that a ray, travelling to

or from the origin of coordinates, would permanently maintain its

motion on a radial path.

Integrating (154.4) over the time interval to needed for a ray
of light to travel between the origin and any desired coordinate
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position, we obtain the expression

f = r e-WO dt
J l+rV4iJg J
0 U

U

or 25otan“^-j^ == f
2ito J

<x

where the integral on the right-hand side can be evaluated only on

the basis of some specific information or assumption as to’ the form

of g{t).

If we assume that gr(<) can be taken as linear with respect to i

g = 2kt. (164.7)

over the time interval of interest, we can then easily compute the

right-hand side of (154.6) and obtain

r = 2J?otaji
^ — . (164.8)

This formula for the time to #2 necessary for light to travel in either

direction between the origin r = 0 and the coordinate distance r — r

can be applied, when the time interval is short enough so that the

efiFect of the derivatives of g with respect to t higher than the first

can be neglected. The result can find a possible application in inter-

preting the reception of cosmic rays from intergalactic space.

In the case of a closed ever-expanding model of the universe, the

relation (154.6) between r and to ca-n lead to interesting restric-

tions on the coordinate distance which light could travel in a finite

time. Let us assume—^merely for purposes of illustration—a model

having the exact linear dependence of ^ on ^ (154.7) for all times from

minus to plus infinity, and having the real radius J? = i?o which

would increase from zero to infinity between t = —oo and = H-oo.

In the first place, it is then evident from (154.8) that light could be

received at the origin at any given finite time coming from any-

desired coordinate distance r, provided one chooses the time of start-

ing ^1—which can go to minus infinity—early enough. On the other

hand, for light which leaves the origin at time it is evident that

there would be a maximum coordinate distance

(164.6)

(164.6)
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which could be reached even at f = oo. According to the values of

1e and Bq, there would hence be a specific starting-tune after which

light could no longer travel completely around the model. Thus,

under the assumptions taken, an observer at rest in the fluid filling

the model could theoretically obtain information concerning suffici-

ently early states of all parts of the universe, but even by waiting an

infinite length of time could not obtain information as to their be-

haviour later than a certain epoch. The discussion applies of course

only to a particular assumed model, but is perhaps valuable in

widening our views as to conceptual possibilities.

155. The Doppler effect in the model

We may next examine the Doppler effect on the observed wave-

length of light, coming from distant objects in the model which

corresponds to our line element

(166.1)
[1+^ /4-KoJ

Since we shall be interested in comparing the wave-lengths of light

from different objects as observed at a single location, it will be

simplest to take the observer as permanently located at the origin

of coordinates, and the luminous source as at any desired coordinate

distance r which, however, may be varying with the time. We can

then readily obtain an expression for the generalized Doppler effect

followiag the schematic method outlined in § 116.

In accordance with our expression for the radial velocity of light

in the model, see (164.4) and (164.6), we can write

/ I
dr

l+r^/i&o
(156.2)

as an equation, connecting the ‘time’ at which light leaves a source

located at r, with the ‘time’ <2 at which it arrives at the origin. Hence,

differentiating this expression with respect to the time of departure

h> we can obtain

1

l+rV4ii5§

as an equation connecting the ‘time* interval between the de-

parture of two wave crests from the source with the ‘time* interval

S^a between their arrival at the origin, where and gfa denote the
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values of 0). at and and (drjdt) is the radial component of the

‘coordinate velo6ity’ of the source at the time of emission. And,

noting the expressions for proper distances and times which would

correspond to the form of the line element, we can evidently rewrite

this in the form
(166.3)

c

where c is the velocity of light and Uj, is now the radial component of

the velocity of the source, as it would be measured in the ordinary

manner by an observer at rest with respect to r, 0, and </>,
'

In accordance with the form of the line element, however, the

proper time interval SiJ between the emission of these wave crests,

as measured by a local observer moving with the source, would be
related to the coordinate interval by the expression

Idr^

[l+rV4iJ§]2\S2
8^1 .

And noting again the implications of the line element, this can

evidently be rewritten as

where u is the total velocity of the source at the time of emission as

measured in the ordinary manner by a local observer who is at rest

with respect to r, 0, and Furthermore, for the proper time interval

8]^ between the reception of the wave crests by an observer at rest at

the origin we shall evidently have

Sq = 8^2. (166.6)

Substituting (166.4) and (166.6) in (165.3), and equating the ratio

of the proper periods of the emitted and received light to the ratio

of the corresponding wave-lengths, we then finally obtain as the
complete expression for the generalized Doppler effect

A+8A
,

u,\

A sq c)^
(156.6)

where A+8A can evidently be taken as the wave-length of the light as
ultimately observed at the origin, while A is the wave-length of the
same light as measured by an observer who is located at the source
and moves along therewith.

The most important term in this expression for the generalized
Doppler effect is which is due to the general motion of
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particles (nebulae) in the model conneoted with changes in the value

of g{t). The next most important term is (l+it^/c) which is due to any
peculiar radial velocity which the source in questionmay have relative

to the mean motion of the matter in its neighbourhood. The least

important term is which may be regarded as due to the

effect of velocity on the rate of a moving clock. (Transverse Doppler

effect.)

In studying with the help of the model the red-shift in the light

from the extra-galactic nebulae, it is usually sufficient to regard the

nebulae as having the mean motion of matter appropriate to their

neighbourhood and hence as at rest with respect to r, 0, and We
then have to consider only the most important term, connected with

the general expansion of the model, and can write

(166.7)

or for the fractional change in wave-length,

ettot-fi-*)-!. (166.8)
A

This result can also be writtenm other forms which prove illuminating.

Introducing the radius of the model

jB = Roeio,

the result takes the form
8A jBj—Ri

(
166 .9 )

(
166 .10)

where R^ is the radius of the model at the time the light leaves the

source and JZj is the radius at the time it arrives at the observer.

This makes it clear that a red-shift in the light from distant objects

would be correlated on the basis of this model with a general expan-

sion of the model, and the consequent recession of the source from

the observer.

This dependence of red-shift on recession can be made even clearer

if we introduce, in accordance with the form of the line element, the

total proper distances from observer to source

r

Zj = J
dr

l+r742Zg
and L

as they would be determined at times and by noting the number
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of metre sticks necessary to reach from the origin to the coordinate

distance r. Introducing these expressions into (155.7), we can then

write
A+8A I2 , , (166.12)

where is the increase in proper distance from source to observer

that takes place during the time taken by the light to travel from the

one to the other. Since this time of travel in first approximation will

equal in relativistic units the proper distance Z^, we can also write the

last result in the approximate form

A-(-SA

“T"
(156.13)

where u may be roughly regarded as the velocity of recession of the

source.

In accordance with these different expressions, it will be seen on
the basis of the present model that the red-shift in the light from the

extragalactio nebulae is to be interpreted as due to a real motion of

recession, and is to be assigned approximately the amount which
would be calculated from the usual expression for the ordinary

Doppler effect. It is to be emphasized, however, as a consequence of

the homogeneity of the model, that there is nothing unique about the

recession of the nebulae away from any particular (our own) location,

and that similar red-shifts would be obtained by observers at rest

with respect to the matter in other portions of the model.

156, Change in Doppler effect with distance

To investigate the change in the Doppler effect as we go to more
distant sources (nebulae), we may differentiate our previous
expression

^ = (166.1)

with respect to the coordinate distance to the source r. In doing so
we may regard as a constant, since this is the value of g{t) at the
time light is received at the origia, and we are actually interested in
comparing the Doppler effects for different sources, which are all

seen at the origin at the same given time which we can take as the
present. On the other hand, g-^ must be regarded as a variable, since

by going to greater coordinate distances r we shall have to go to
earlier times of emission in order for the light to reach the origin
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at <2 - Hence on the differentiation of (166.1), we must write

I(t)
=

where dt will be the change in time of emission corresponding to the

change in position dr.

Noting, however, the expression for the radial velocity of light that

would correspond to the line element

cffif)

~ +r®sin®0 (166.3)

which we are using, it is evident that dt and dr will be so conneoted

that we can rewrite our expression (166.2) for the change in Doppler

effect with distance in the form

d /8A\ _ e*®* Qi

dJ^\Tj ~ l+ra/4J2§ 2’ (166.4)

where is the rate of change in g{t) at the time the light is emitted.

"Far our later purposes, it will also be convenient to have this result

in the form which it assumes when we use the alternative expression

(149.6) for the line element

ds^ = - + fa dfla +fasina^ d^aj (166.6)

obtained in § 149 by transforming from r to f with the help of (149.4).

With this form for the line element it is evident that the change in

Doppler effect with coordinate distance will be given by

d /SA\ _
^W ~ 2' (166.6)

Since we shall later find both r and f in first approximation to be

proportional to astronomically measured distances, these formulae

indicate an approximately linear relation between red-shift and

distance, imtil we go out to distances where the change in becomes

important. A more complete discussion of the change in Doppler

effect with distance will be made possible in Part IV of the present

chapter where we shall express ^(t) as a series in t.

To conclude this somewhat lengthy consideration of the Doppler

effect in expanding or contracting cosmological models, it wiU also

be useful for some purposes to show that the wave-length or frequency

associated with any individual light quantum or photon as measured

by observers lying along its path would be changing in a definite
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manner with the time, provided these observers are at rest with re-

spect to our coordinates r, 6, and To see this we may return to our

exact formula (165.6) for the wave-length of light (A-f-SA) leaving a

source at time ^ having any arbitrary position and motion, as finally

measured at time by an observer at rest in the coordinate system.

If now we consider different such observers lying along the path of

the photon, it is evident that the only quantity which will be changed

in this formula as later and later observers examine the photon will

be the quantity (/g, which is the value of g{p) at the time of observa-

tion. Hence taking a logarithmic differentiation of (165.6) with

respect to the time we can write for such observers

dlog(A-i-8A) ^1^
dt 2 dt*

(166.7)

which by changing to frequencies can be expressed in the more con-

venient form , , , j
= (166.8)

V dt 2 dt

where v is the frequency of any photon as measured by observers at

rest with respect to the coordinate system r, 6, and and g is the

value of g{t) for the model as a whole at the time of interest.

157. General discussion of dependence on time for closed

models

Our derivation of the non-static line element

for homogeneous cosmological models placed no immediate restric-

tions on the behaviour of these models as a function of the time, and
we must now turn to the discussion of the form of the hitherto

undetermined function This we shall undertake by several

different lines of attack.

In accordance with equations (160.7) and (150.8), the pressure and
density of the fluid taken as filling the model are definite functions

of gf(t) and its derivatives. Hence the time behaviour of the model
can be regarded as determined by the properties of this fluid. In the
present section on closed models of the universe with Sq real, and in
the next section on open models with Bq infinite or imaginary, we
shall give a general discussion of the different possible types of time
behaviour that could occur if we impose only very general restrictions
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on the properties of the fluid, such as the requirement that its

pressure and density could never assume negative values. In the

following sections of this part of the present chapter, we shall then

discuss the time behaviour, makuig more speciflo assumptions as to

the nature of the model or the fluid filling it. In Part III of the present

chapter, we shall turn to the thermodynamic aspects of the changes

that could take place in cosmological models with time. And finally

in Part IV, m connexion with the correlation of actual observational

data, we shall have occasion to treat the time dependence by the more
phenomenological method of expressing g{t) as a power series in

with coefficients which are to be determined as far as possible from
actual knowledge as to red-shift and as to pressure and density in the

universe.

(a) General features of time dependence, B real, ^ 0, Pq > 0.

We shall commence our discussion of time dependenoef by assuming

a closed model with Bq real, and by assuming a fluid filling the model
which cannot withstand tension, so that the density and pressure

Pq can on physical grotmds only be zero or positive.

As the two equations which relate the density and pressure of this

fluid to g{t), it will be most convenient to take (161.6) and (160.8)

4(Pooe«^>)+Po4(e‘<^>) = 0,

Mid

these being equivalent to the information originally given as to and

Poo by (150,7, 8). Also for simplicity of expression, it willbe convenient

if we re-express these equations by introducing the radius of the model

B - (167.2)

Doing so, the first of these two expressions—^the energy equation

—

can be rewritten in the form

-0, (157.3)

which gives (157.4)

and ^Poo ^(Poo+Po)

dB B (157.5)

t The trec^tment given in this and the next section closely follows that of Robertson,
Reviews of Modem Physics^ 5, 62 (1933).
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Thtis in accordance with our assumptious as to B, poQ, and the

quantities (poo-®®) p^o could only decrease or remain constant as

22 increases. Furthermore, in accordance with (167.6) 'it is evident

that the density of the fluid would go to zero if the radius goes to

inflxdty, and hence all ever-expanding models would finally have the

properties of the original de Sitter model.

Introducing (167.2) into the second of our original equations(167.1),

this reduces to a form

(dB\^ _B7rpooB\ AB^
,

\dtj
~

3 + 3' ’

which conveniently expresses the rate of change of the radius of the

model with time.

Since the quantity xmder the radical sign must necessarily be

positive or zero, we are then led for any given value of the cosmo-

logical constant A, to the expression

— Sttpoo ^ A (157.7)

as a necessary restriction on i? if the behaviour of the model is to be
real, and to o

|i-8^Poo = A (157.8)

as the condition that the change in the radius R with time shall cease

or reverse its direction.

(6) Curve for the critical function of JS. In order to examine the

behaviour of the critical quantity

SypogB!^

}

(167.9)

as a fuuotioii of the radius 22, as this latter changes with the time in
the case of any given model, it will be convenient to try to construct
as nearly as possible a rough plot of ^(22) against 22.

Diflerentiating Q with respect to B and setting the result equal to
zero we obtain jn a j

dB 223 djji
5,

or iutroduciug (167,6)

iQ 5 24ff(poo-|-pi)) _
<222 ~ 22

®''"
22

~ ’
(167.10)
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as a necessary condition for a maximum, minininTn, or point of in-

flexion on the curve. And combining with (167.9), this gives

<3 = ^+87i3Jo (>0) (167.11)

as an equation for the value of Q itself when such a change in the

curve takes place.

Differentiating a second time, we then obtain

d^Q __ 18 247r(poo+i>o)
,

24ar dp^
f
^

^
B^ B dB’^^B dr “

> 0
or introducing (167.10) and (167.6)

f _ ^oo4"Po

di?
I ^ J

" B ’
(167.12)

with the respective signs (<), (=), and (>), as the further conditions,

sufficient to distinguish the three cases of a maximum, point of in-

flexion, or minimum. This result shows that the curve can have no
points of inflexion or minima unless we are willing to assume that

the pressure of the fluid could be increasing during expansion.

With the help of these results, we can now make a rough plot as

shown in Pig. 6, for Q{B) as a function of B as this increases with

the time.

The features of this plot, concerning which we have sufficient in-

formation to be sure, are shown by the full lines at A, B, and C. They
can be justified as follows. (-4) Inaocordancewith(167.4)thequantity

(poo -S®) decrease or remain constant as B mcreases. Hence,

omitting the case of a completely empty model as not of present

interest, it is evident from (167.9) that Q rises asymptotically from

minus infinity at JS = 0, and continues to increase as long as B
increases without reaching any maximum or passing through any
point of inflexion until after crossing the axis 0 = 0, smoe by
(167.11) such points can only occur for positive values of that quan-

tity. ( J5) If B continues to increase, the curve must ultimately exhibit

at least one maximum, since by (167.9) the quantity Q would ulti-

mately have to decrease with JJ, {C) Finally, if 22 still continues to

increase, the curve must ultimately approach 0 = 0, asymptotically

as 3/22^, as B goes to infinity.

The features of the plot, concerning which we do not have sufficient
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information to be sure, are shown by the dotted lines at a, 6, and c.

They consist in the possibility for points of inflexion as shown at a,

and minima followed by later maxima as shown at b and c. In accord-

ance with (157.11) such features could exist only in the range between

Q = 0 and Q = where ©max the highest maximum on the

curve as shown at B, And in accordance with (157.12), they could

exist then, only if the pressure of the fluid should be able at certain

points to rise during expansion.

With the help of this plot we can now make some predictions as to

the possible types of time behaviour for models, assuming different

values for the cosmological constant A. During the course of an
expansion, A, which has the same dimensions as the critical quantity

Q, will stay constant as indicated by the horizontal lines in the figure.
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Purthermore, in accordance with (167.7), the critical quantity

Q =

must be smaller than A during expansion, and the motion must
cease or reverse rtrhen Q becomes equal to A. Hence the different

types of motion, to the discussion of which we now turn, will corre-

spond to horizontal lines A = const, lying above the critical curve

and the nature of the motion will be determined by the points

where these horizontals intersect the critical curve.

(c) Monotonic universes of type for A > A^. We shall denote

the value of Q at the highest maximiun on the curve as shown at B by

Ajsi, since as we shall see later this would be the value of A for a con-

ceivable static Einstein universe.

If the actual value of A is grea'ber than A^, the time beha'viour

can be qualitatively described without ambiguity. Since the line

A = const, then makes no intersections with the critical curve, the

model woidd be of an ever-expanding type which proceeds from some

singular state at ^ 0 to the final state of an empty de Sitter

universe as J? oo. If we consider the behaviour of the model at

times earlier than that of the singular state, the motion would con-

sist in a contraction from larger radii down to JS = 12,. The present

equations are not sufficient to describe the mechanism of passage

through the singular state, and this may be regarded as occurring

at a point at or in the neighbourhood of 12 = 0, where the idealiza-

tions involved in setting up the model are not suited for the treatment

of that mechanism.

In accordance with the expression for rate of expansion given by

(167.6), and the condition on (poo-®*) given by (167.4), it -will be seen

that such a model would leave a singular state at i2 = 0 with an
infinite velocity. And by considering the integration of the above

expression for rate of expansion, it will be seen that any finite value

of B would then be reached in a finite time, but that an infinite time

would elapse during the passage from J2 finite to B infinite.

Such a model, which expands without reversal from a singular

state in the past to infinity in the future, we designate as a mono-
tonic universe of the first kind, type Mj^. As a model for the actual

universe, it has the disadvantage of spending only an infinitesimal

fraction of its total existence in a condition wMch differs appreciably

from that of a completely empty de Sitter universe. Hence, if we
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are 'willing to take our observations on the actual universe as giving

a fair sample of the kmd of conditions that would be found anywhere

and at any time, we should then rule out this model.

(d) Asymptotic universe of types and A 2,
for A = A^. We next

turn to cases in which the cosmological constant is just equal to the

value of Q at the maximum point of the curve as shown at J? in

Kg. 6. This value we have denoted as A^. In accordance -with

(167.11), we thenhave ,

8«y;, = A^-^, (167.13)

where pjg> and Jl^ are the pressure and radius at this point. And in

accordance "with (167.8), if we consider a static tmiverse {dJRfdt — 0)

with the above radius and cosmological constant, we should also have

Vx = 4— Ai^. (167.14)

These, however, are the conditions for pressure and density for a static

Einstein universe of radius and cosmological constant A^, as

given hy (139.3) and (139.4). Hence a static Einstein universe

could exist under the conditions corresponding to the maximum,
point of the curve. It would, nevertheless, be unstable as we shall

later see.

With A = A^, two types of behaviour for a non-static model

would be possible.

The first type would be given by a model which starts expanding

from a singular state at R^ < R^^ and asymptotically approaches the

condition of a static Einstein universe at i? = R^y where in accord-

ance with (167.13, 14) combined with (160.7, 8) the quantities dBJdt

and d^Rjdt^ would both become zero. Considering the behaviour of

the model at times earlier than that of the singular state the behaviour

would consist in a contraction from larger radii down to JK =
Such a model which expands from a singular state to a final static

Einstein state, we designate as an asymptotic universe of the first

kind, type

The second type of behaviour with A = Ajp, would be given by a
model which can be regarded as having asymptotically started from
the static Einstein state at JS = Rj^ at an infinite time in the past and
as expanding permanently in the future iuto the condition of an
empty de Sitter universe. Such a modelwe designate as an asymptotic
universe of the second kind, type A^,
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As models for the actual universe, both of these types have the

same disadvantage as type ilfi of presumably spending only an

inappreoiable fraction of their total existence in a condition com-

parable to that which we find in the actual universe. Type A^,

however, has the advantage of apparently originating from a non-

singular state of finite volume at an infinite time in the past. This

will be discussed more fully in § 169 on the stability of the static

lEinstein universe, and in § 161 specially devoted to these models.

(e) Monotonic universes of type and oscillating universes of

types Ox and 0^, for 0 < A < A^. We next consider cases in which

A lies between zero and A^. Here two different types of behaviour

are definitely possible, and further types possible if the critical curve

does have more than one maximtun as indioated at b and c in Mg. 6.

As the first type of behaviour, we have those models which expand

continuously into the future from some point on the critical curve at

.Kj > jB^ past the maximum, where a reversal in the direction of

motion from a preceding contracting phase tates place. Such a

model, which has a true minimum finite radius and then expands

without reversal to the state of an empty de Sitter universe, we

designate as a monotonic universe of the second kind, type Afa* As

a model for the actual universe, it again has the disadvantage of

spending all but an infinitesimal fraction of its total existence in a

condition unlike that which we observe.

As the second type of behaviour, we have models which expand

from a aingnlnT state at to a maximum radius which lies

on the critical curve where the direction of motion will reverse. The

contraction thus initiated then continues, until expansion would

again start at a singular state, which from physical considerations

must at least be located at a radius which is not less than i2 = 0.

Such a model we designate as an oscillating universe of the first kind,

type Ox- As a model for the actual universe, it has the advantage of

spending all its fife in a condition where there is a finite density of

matter, provided irreversible processes do not take place which alter

the conditions for successive maxima (see § 176). It has, of course,

the disadvantage of a singular state at the lower limit of contraction,

through which the mechanism of passage is not described by the

present equations.

In case we allow a second maximum on the critical curve lower

than the highest maximum at with an intervening minimum as
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shown in Kg. 6 at 6 and c, a veiy interesting new type of behaviour

would be conceivable. This would arise with a value of A between

the values of the critical quantity Q at this maximum and minimum,
which would evidently permit an oscillation between a true minimum
and maximum radius, where JR assumes the critical values given by
the curve for Q as a function of J?. In the case of reversible behaviour

this would give a strictly periodic motion without singular states.

Such a model we designate as an osoiUatmg universe of the second

kind, type Og. As a model for the actual universe it might at first

sight semn to have great advantages, hut as pointed out in connexion

with (167.12), the necessary minimum on the critical curve could

only occur if the pressure in the model could increase during expan-

sion. We shall return later to the discussion of this matter in § 172,

and shall have to conclude that such models would not be of great

importance.

If a second maximum of the critical curve should exist, we should

also evidently have possibilities for asymptotic universes of types Ax
and Ag, in the range 0 < A < Ajgr, but these would be similar to those

already discussed above in § 167 (d).

(/) Oscillating universe of type for A < 0. Knally, for the case

of closed homogeneous models with the radius It real, we must con-

sider the possibilities if the cosmological constant should lie in the

range A ^ 0. Here it is immediately evident from Kg. 6, that the

only possible kind of behaviour would be an oscillation of type Ox
back and forth between singular states at the lower limit which the

radius reaches, and.maxima of the radius which lie on the critical

curve. As a model for the actual universe, this behaviour would have
the advantages and disadvantages already mentioned above for

*yp® Ox-

hi conclusion it should be specially emphasized that such an oscil-

latory behaviour of type 0^ is the only possibility for a closed homo-
geneous model with the cosmological constant A equal to zero. This
is important, since A = 0 certainly seems the most reasonable

assumption to make at the present time. In the first place the
original argument, as discussed in § 139, for Einstein’s addition of the
logically permissible but otherwise surprising cosmological term to
his original field equations in order to obtain a universe with a fiLoite

density of matter, now no longer exists in view of the wider possi-

bilities presented by non-static models. In the second place, we have
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at the present time no accepted theory for any value at all for the

cosmological constant, although interestiag considerations conoem-
ing this matter have been presented by Eddington.t And in the third

place, from the observational point of view we can at least say that

the value of A must be small in order not to upset the application of

relativistic theory to the orbits of the planets. Hence in what follows

we shall lay special stress on the behaviour of models with the cosmo-

logical term omitted.

158 . General discussion of dependence on timefor open models

To complete our discussion we must also consider the behaviour in

time for open models of the universe with JRq imaginary or infboite.

Here the possibilities for dbSerent kinds of behaviour are quite

restricted.

We may again start with our previous equations for the dependence

of density and pressure on the time (151.6) and (160.8)

0, (168.1)

but now since the radius B = Bq would be an infinite orimagiuary

quantity without direct appeal to our phydoal intidtion, there will

be no advantage in introducing the radius of the model.

For our further purposes, the first of these equations may be re-

expressed in the forms

(158.3)

and ^ = -i(poo+2>o). (168.4)

which show that poo®*" and poo are both quantities which could only

decrease or remain constant as g increases, if we again introduce the

assumption that the fluid in the model cannot withstand tension.

The second of our original equations (168.2) can be written in the

form
l^Y-
[dtj

-

and since by the hypothesis of an open model B^ is either infinite or

f Eddington, The Expandmg Univeraef Cambridge, 1933.
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imaginary this can be re-expressed as

where ^ is a real q[uantity which would assume the value zero if

J2q is infinite.

Since the quantity imder the radical sign must necessarily be

positive or zero, we are then led to the expression

-3^®e-«'-87rpoo< A, (168.6)

as a necessary restriction on p if the behaviour of the model is to be

real, and to = 0, (168.7)

as the condition for a reversal in the direction of the rate of change

of g with t.

We can also easily construct a plot of the critical quantity

Q = -3.4*c-<'-8^Poo = -i[3^*+^—
]

(168.8)

as a function of as shoTOi in Fig. 7. In accordance with (168.8)

Q is always negative, asymptotically approaching the value Q = —co
as goes to zero as a result of (168.3), and asymptotically approach-

ing the value Q = 0 as goes to infinity, without any maxima,

minima, or points of inflexion.

With the help of this plot of the critical curve, we then readily see

that only two kinds of behaviour would now be possible. The first

would occur with A ^ 0, and would consist in the monotonio increase

of from a singular state to infinity, giving us a universe of the

type previously labelled which ultimately goes over into an empty
de Sitter world, including the possibility of a Euclidean space with

A = 0. The second type of behaviour would occur with A < 0, and
would consist in the oscillation of from a singular state to a maxi-

mum and return, giving us a universe of the type previously

labelled O^.

In treating the previous case of closed universes, it simplified the

form of statement to describe the behaviour of the radius of the

universe Ji = J2q In the present case of open universes, however,

it seemed simpler to speak of the behaviour of itself, since iZo

would be infinite or imaginary. In both cases, nevertheless, it should

be noted that the proper volume of any given element of fluid in the

homogeneous model—as measured by a local observer—^would always
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be proportional to Hence the changes, which we found to take

place in the above quantities with time, can be immediately inter-

preted in terms of the expansion and contraction of the fluid filling

the model, both for the case of closed models having a finite total

proper volume and for the case of open models having an infinite

total proper volume.

159. On the Instability of the Einstein static universe

We may now turn to a number of'specific treatments which have

been given to the behaviour of homogeneous cosmological models

with time. It will first be of interest to investigate the stability of

the original Einstein static model with the help of our present know-

ledge of the behaviour of non-static models.

We may first look at the stability of the Einstein universe from the
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point of view of the plot which we have given in Fig. 6 for the critical

quantity Q(Ji) as a function of the radius Ji. In accordance with the

consideration which we have given to this critical curve, it is evident

that the conditions for a static Einstein universe would correspond to

a maximuni, TninininTn
,
or point of inflexion on this curve, the radius

of the universe being equal to the value of Jl at that point and the

cosmological constant being equal to the value of Q(It) at the point.

This is immediately seen from equations (167.11) for the value of

(Q at such a point, and (167.8) for the condition that the radius shall

not be changing with time, which give us our previous conditions

8"l’o=-;^+A

for the pressure and density in a static Einstein universe.

With the help of Fig. 6, we then immediately see that a static

Einstein universe corresponding to a Tnaximum point on the critical

curve would be unstable, since the radius would continue to change in

the same direction if the model once started to expand or contract.

Also for a model corresponding to a point of inflexion, we should

have instability, since there would be one direction in which the

radius could change without crossing the critical curve.

On the other hand, for a static Einstein universe corresponding to

a minimuTn on the critical curve, we should evidently have stability,

since the radius could not change at all without crossing the critical

curve. This latter possibility could not be realized, however, as

shown by (167.12) unless the pressure of the fluid in the model should

increase with expansion. And on physical grounds we should not

expect to find this for any actual fluid in an equilibrium condition.

Hence we may conclude in general that a static Emstein universe

would be in unstable equilibrium against changes in radius, and if it

once started to expand or contract it would continue in such

motion.

We may also inquire into what change might occur in a static

Einstein model that would initiate an expansion or contraction away
from the state of rest. In the case of a fluid filling the model whose

pressure would be decreased by expansion and increased by contrac-

tion, this can easily be found with the help of our general expression
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for the pressure in a homogeneous non-statio model,

(169.1)

Assuming the model originally in the state of a static Einstein

universe, this expression must reduce at that time to the usual eq[ua-

tion for the pressure in suoh a model

8^0 = (169.2)

with fif
= 0 and

ff
= 0 (169.3)

and iJoS*® equal -to the prescribed radius for the static Einstein

model. Hence if vre should now suppose some process to take place

in this momentarily non-expanding and non-contracting model which

led bo a change in pressure with the time, we could write in accordance

with (169.1) and (169.3),

as an expression for the effect of the changing pressure on £r(0>

As a consequence of this equation, we now see that the initiation

of any process in such a model involving decrease in pressure would

also initiate an expansion which would then continue, since by hypo-

thesis the expansion itself would lead to still further decreases in

pressure. Vice versa, an increase in pressure would initiate a con-

traction.

Hence, if we had a static Einstein universe, and free radiation in it

should commence to condense into matter, or freely moving particles

in it should be captured by condensation, the model would start to

expand.! Or, on the other hand, if the matter in it should commence
to transform into radiation the model would start to contract. We
may thus conclude, not only that a static Einstein universe would be

in unstable equilibrium, but that processes are easily conceivable

which would initiate a change away from the equilibrium value of

its radius.

160. Models in which the amount of matter is constant

We may now consider in some detail the time behaviour of certain

specific models which will be selected so as to illustrate different

possibilities.

t The nature of suoh processes hasbeen specially investigated byLemattre, Mondiiy
Notices, 91, 490 (1931).
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In the case of closed models, containing a mixtuxe composed of

a constant amotmt of incoherent matter (nebulae, dust) exerting

negligible pressure, together with radiation exerting the pressure

that corresponds to its density, a general expression for the radius as

a function of time was first obtained by Lemaitre.f

Since the pressure exerted by radiation is one-third its energy

density, we can evidently write the energy equation (167.3) for these

models in the form

J^^(Prn+^Pom+Po^m = 0, (160.1)

where is the density of matter. Since matter, however, is itself to

be conserved this gives us

JE® = const, and H* = const.,

and employing the symbols used by Lemaltre we can then write

8npo =^ (160.2)

Snpoo = 87r(p^+3po) —
where a and jS axe constants.

Introducing these expressions into our general equation (167.6),

we then obtain

as an explicit expression for the radius as a function of time. This

result applies to models in which matter exerts negligible pressure

and is conserved in amount. Putting j3 == 0, we obtain the special

case originally investigated by Friedmann, inwhich the total pressure

is zero and energy as well as matter is conserved.

The integration or quadrature of the above expression has been

specially studied by de Sitter. J And a slightly more general expres-

sion, in which the pressure of matter is not neglected, and in which

explicit allowance is made for the case of open as weU as closed models

has been studied by Heokmann.§

•f
Lemaitre, Ann, Soc, Sci. Bruxelles, 47 A, 49 (1927).

i de Sitter, BuU, Astron. Inst. Netherlands, 5, 211 (1930) ; ibid., 6, 141 (1931).

§ Heokmann, Nachr. Oes. Wias. Qdttingen, 1932, p. 97.
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161. Models which expand from an original static state

In the case of models which can be regarded as expanding from the

original state of a static Einstein universe, a direct integration of the

foregoing expression for the change in radius with time can be

obtained.

Combining the expressions for pressure and density given by (160.2)

with the original expressions for pressure and density (139.3, 4) as

found for a static Einstein universe, we can write for the special case

of such models o
I= ~;^+A (161.1)

•«4 = (161.2)

where jBjg» is the radius in the original static state. Substituting these

expressions into (160.3), we can obtain after considerable rearrange-

ment the simple form

where and jS are the only parameters.

To prepare this expression for integration it is simplest to express

JR in terms of its increase over the onginal value Rjg; by substituting

B = ®
B—B^
B (161.4)
•s

Doing so we can then rewrite (161.3) in a form suitable for evaluation

V3J?b

7(i+W)
where we shall use as abbreviations

{ dt = f

J 7(i+W) J

(a:+l) dx

a;VX
’ (161.5)

VX = ^{x^+ix+0») (161.6)

Integrating (161.6), we then obtain

(161.8)

as a definite expression for x and hence also for the radius B = Bq

as a function of the time.

Since the second term in this expression becomes minus infinity
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when x =• 0, and the first term becomes plus infinity when a; = oo, it

will be seen that the model would expand from the original static

Einstein state with JB = at t = —oo to the final empty de Sitter

state at i = +oo, both of these states being approached asympto-

tically.

The effect of the pressure of radiation on the rate of expansion is

given by. the appearance of in the above expressions. It can
readily be seen, however, that the effect of pressure must in any case

be small, since we can write in accordance with (161.1) and (161.2),

8|j Pb'^Pe
(161.9)

where oad are the pressure and density in the original static

Einstein state. Hence ™ case only vary between 0 for

a model containing matter without radiation to ^ for a model con-

taining nothing but radiation. And we may conclude from the way
in which this term enters the above expressions, that the course of

the expansion will be primarily determined only by the radius of

the original static state.

This matter was specially investigated by de Sitter (loc. oit) who
compared the time behaviour of the two models given by

^ = 0 Mid (161-10)

for the respective cases of no radiation and no matter present. For
the first of these cEtses equation (161.8) reduces to

,= V3^bg(«+VZ+2)+4log?+§^5'

and for the second to the much simpler form

4-oonst.,

(161.11)

t = ^log4(a:H2a;)H-oonat. = ^log(iia-JS|)-l-oonst.

(161.12)

For a given value of iJjj, however, the two expressions give very
similar histories of expansion as shown by curves I and VII in Fig. 8,

taken from de Sitter’s article. We may hence conclude, that the case

with zero pressure specially studied by Lemaitire in 1927 as a model
for the actual universe is suj£oiently representative of the dass.

Universes which expand from an original static Einstein state have
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sometimes been favoured by oosmologists, sinoe the equations then

lead to no singular states and the models appear to offer an infinite

time soale for past oosmologioal processes. More recently, however,

as emphasized by Eddingtonf and others^ it has been felt that the

logarithmic infinity for past time provided by these models was
likely to have no real physical significance, in view of the unstable

character of the static Einstein state, which we have investigated

in§ 169.

j* Eddington, Monthly Notices^ 90, 668 (1930).

j McCrea and MoVittie, Monthly Notixieat 91, 128 (193Q); ibid. 92, 7 (1931).
Lemaitre, MonUdy Notices, 91, 490 (1931).
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162. Ever-expanding models which do not start from a static

state

Turning next to the case of ever-expanding models which do not
start from an original static state, it is not in general possible to

obtain a simple integral for the relation between radius and time,

given by (160.3) for the case in which matter is conserved. By numeri-
cal quadrature, however, de Sitter has calculated the dependence of

radius on time for a number of such models as shown in Fig. 8.

The curves in this figure may be divided into four groups. Curves I

and Vn are the cases already mentioned for a model containing

matter without radiation and a model containing radiation without

matter, which start from an original static state. Curves II and IV
are for models of type discussed in § 157 (e), which first contract

to a true minimum radius having a value lying on the critical curve,

and then expand monotonicaUy to the empty de Sitter state. Curves
ni and V are for models of type discussed in § 157 (c), which
expand monotonicaUy from a singular state, here taken as located at

J2 = 0. Finally curve VI is calculated for the limiting case of an
entirely empty universe.

From the point of view of a representation for the actual universe,

it will be noted that monotonic universes of the first kind, which
expand from a singular state, might offer some advantages in pro-

viding a reasonably long time scale subsequent to the singular

state. Lemaitref has more recently advocated such models and has

picturesquely described the original singular state as that of a giant

atom.

163. Oscillating models (A = 0)

In view of the rationality already emphasized of taking the value

zero for the unknown cosmological constant A, and entirely omitting

the cosmological term from Einstein’s field equations, we must pay
special attention to osciUating models, which then become the only

possibility for a closed universe. For two such models a simple treat-

ment of the time behaviour can be given.

The first of these models was originaUy considered by Friedmann^
as early as 1922, and has since been advocated by Einstem.§ The

t liemaitre, iSevtte dea questions sdentiflquea, 1931, p. 391,

t Priedmann, Zeits.f. Physik, 10, 377 (1922).

§ Einstein, BerU Ber, 1931, p. 236.
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fluid in the model is taken as being incoherent matter which is

conserved in amount and exerts negligible pressure. Referring to

eq^uations (160.2), we immediately see that the radius for such models
will be given as a function of the time by setting A and jS equal to

zero in (160.3), and writing

f - <>'''>

where a is a constant connected with the density of matter and radius

by the eqwitio. ^ ^ ^^
The integral of this eq[uation is readily seen to be a cycloid in the

i2£-plane given by

= ^(1_ Qoatji) t = sin^), (163.3)

in accordance 'with which the radius oscillates between a singular

state with jB = 0 at i = 0 and a maximum of ii = a/3 at t = 7ra/6.

A second closed model with A = 0, for which the time behaviour

has been calculatedf is obtained by taking the fluid as consisting

solely of black-body radiation. Referring again to equations (160.2)

and (160.3), we see that the radius for such models will be given as

a function of time by

where j8 is a constant connected with the radius and pressure of the

radiation by the equation

8773)0 R* = jS = const. (163.6)

The integral of this equation is readily seen to be

B = V(i3-i®). (163.6)

with the maximum of B falling at < = 0.

As shown in § 157, oscillating models can also be obtained with

values of A other than zero, and a number of plots for the time

behavio'ur of such models are given in Fig. 9, also taken from de

Sitter (loo. oit). Curve IX represents the cycloid for the case A = 0

with the pressure zero. Curve VII is the limiting case A = A^ of

type A

I

which expands asymptotically to a static Emstein state, and

separa'tes the oscillating models of type 0^ from the ever expanding

models of type The diagram also gives 'the 'time behavio'ur for

j" Tolmoiif Phy6, Rev* 38t 1768 (1931).
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several ever-expaading models plotted, however, with somewhat

difEerent imits.

I!rom the point of view of representing the actual universe, the

oscillating models with A = 0 tend to have a short time scale from

the singular state, and further investigations would be necessary to

describe the mechanism of passage through that state.

To investigate the time scale from the singular state, it is most

convenient to start with the equation for pressure in its original form

(160.7) ,

8irpo =

Setting A = 0 this can then be rewiittm as

fir _ 3 1 c-''
(163.7)
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SO that we can in aoiy case put

dt

Integrating over the course of expansion from the singular state

{tg, gg) to the present state (<, g), we obtain

Hence for osciUating models with A = 0, we can in any case write

< 1, (163.8)

where At is the elapsed time since the singular state, and g is the

present value of that quantity, as could be determined for the actual

universe from observations on the red-shift.

164. The open model of Einstein and de Sitter (A= 0, Eg = oo)

Mathematically the simplest of aU models can be obtained by

taking the cosmological constant A equal to zero, and setting the

constant J2gm the fundamental expression for the Une element (149.1)

equal to infinity ^^0 Eo = oo, (164.1)

as has been proposed by Einstein and de Sitter.

f

The line element can then be written in the form

ds® = — -|-r®sin®fl (164.2)

or also as da® = —eP^(dx^-\-dy^-\-dz^)-\-dt^

and space-time becomes spatially fiat and spatially infimte in

extent.

Furthermore, substituting (164.1) into the general expressions for

pressure and density (160.7) and (160.8), these then reduce to the very

simple form _ -g-W^. (164.3)

and 87rpoo = fj®. (164.4)

The first of these equations requires that the acceleration g always

be negative to prevent negative pressures. The second of the equa-

tions provides an immediate relation between density and Doppler

efiiect. For the two limiting oases of a fluid oonsistmg solely of matter

I Emstein and de Sitter, Proc. Nai. Acad, 18, 213 (1932).
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exerting a negligible pressure, or a fluid consisting solely of radiation

exerting the pressure corresponding to its density, these equations

can be immediately integrated.

For the case of matter having zero pressure we can write from

which has the integral ^ 0
)

where a and 6 are constants, and by combining with (164.4) we

a = V(Wooe»'), (164.7)

as the value of the flrst of these constants.

For the case of radiation, having a pressure equal to one-third its

energy density, we obtain by combining (164.3) and (164.4) the

which has the integral ^
where the constant a this time has the value

//327ra= --
’)•

(164.9)

(164.10)

By the method employed at the end of the last section, the elapsed

time from the singular state is also found for models of the Einstein-

de Sitter type to be in any case as small as

At < i. (164.11)

165. Discussion of factors which were neglected in studying

special models

The special models, which we have used in the foregoing sections

to iUustrate the different possibUities of temporal behaviour, were

purposely limited, for the sake of simplicity, by the assumptions that

the pressure due to the particles of matter in the fluid could be

neglected, and that the total mass of this matter should remain con-

stant. It is evident at least in theory, however, that these assump-

tions were not necessary for a solution of the problem of behaviour

in time, provided we have sufficient information as to the properties

of the fluid filling the model.

In general, for the treatment of temporal behaviour, the expressions
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for pressure and density obtained in § 160, written most conveniently

in the form

|(Pooe*')+i>o|(e“') = 0 (166.1)

s<‘->
= ±7(^+x-^-

will give two of the necessary equations for determiDing pog, pg, and gr

as functions of the time, and the third equation will be provided by

the nature of the fluid.

In case the fluid behaves reversibly, so that its pressure is a definite

function of energy and volume, this third relation will be of the nature

of an equation of state of the general form

Po = Po(^y = Po(poo^^^» (166.3)

where as we have seen (161.4), is a quantity which is propor-

tional to the proper volume of any given element of the fluid. In

case the fluid behaves irreversibly, the third equation would have to

contain time derivatives of gr(^) as well as g(t) itself. In any case,

however, with the help of the three equations and assumptions as to

initial conditions and as to the values of the constants A and jBq, the

problem should be theoretically soluble.

The fact that we have neglected in our illustrative examples any

contribution to pressure due to the random motion of particles of

matter in the model can hardly be regarded as immediately serious

for the purposes of cosmology. In the case of the present state of the

actual universe, we should certainly regard the random motions of

the nebulae themselves as properly Correlated with a negligible

pressure for the idealized fluid filling our model, and should pre-

sumably also regard this as legitimate for the random motion of dust

or other particles which may be present in intergalactio space.

The fact, however, that we have taken the total mass of the matter

in the models as constant, deserves a little more attention, since this

means when applied to the real universe that we are neglecting the

actual flow of radiation from the nebulae into intemebular space.

In accordance with equation (162.7) we can write

dM _ 3rpoo+fPo
M dt 2[

(166.4)

as an expression for the fractional rate at which the mass of the
3695.11 Hr
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partiolfis would be changing with time. And writing for simplicity

1)1 (
166.5)

(166.6)

rpoo+ii’o 1

Pm

we can re-express the above equation in the form

M dt
~

where is the density of matter in the model.

Conoeming the present value of y in the actual universe, we do

not have complete information since the cosmic rays have an un-

known origin which may very likely involve a decrease in the mass of

matter. If, however, we assume for all the matter in the universe

a rate of fractional decrease the same as that for the sun we should

obtain as small a value as

y 10-^ (166.7)

and the true value may well be smaller yet. (de Sitter estimates

y crl 2 X
Also concerning the rate of change of y with time we have no know-

ledge. Nevertheless, over a reasonable time interval we may take y as

a constant. Doing so, we can then integrate equation (166.6) and

= (166.8)

as an expression for the density of matter in our model, where is

a constant. Furthermore, for the density of radiation in the model

we can write « /iftK o\
Pr = (166.9)

if we neglect the contribution of random particle motion to the total

pressure jpo-

Substituting these two expressions into the energy equation

(166,1) we shall then have

and by performing the indicated differentiations, resubstituting

from (166.8) and (165.9), and rearranging, we can obtain therefrom

Po dt Pr d,t \ 2 Pri
(166.10)

as an expression for the logarithmic rate of change in the pressure and
in the density of radiation.

This result is of interest in showing, for the case of an expanding
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model with g positive, that the pressure and density oi radiation

would be decreasing with time except for large values of y or p^pf.
Assigning to y the value given by (166.7), the pressure of radiation

would cease to build up as soon as the density of radiation compared

with that of matter reached the value

p, = 2-6xl0-®/)„,. (166.11)

Hence as fbrst pointed out by de Sitter,f the theory of an expanding

universe is capable of accounting for the apparent disappearance of

the radiation which pours from the stars into intemebular spaoe. It

win also be noted, when the pressure does decrease monotonioally

with expansion, that there can be no Tuinima (see 167.12) on the

critical curve. Fig. 6, and hence no chance for an oscillating behaviour

of the second kind, type Oj.

As a final remark concerning the simplifications which were made in

obtaining specific illustrations of the different varieties of temporal

behaviour, it is to be noticed that the fluids fiHiTig the modeb were

so chosen that their changes in density could be assumed to take

place reversibly as the models themselves expanded or contracted,

and the possibilities for irreversible behaviour were neglected. In

Part III of the present chapter, to which we now turn, the differences

between thermodynamically reversible and irreversible expansions

and contractions of cosmological models will be specially considered,

t de Sitter, BuU. Aaron. Inst. NeOterlandf, S, 2II (1930).
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APPLICATIONS TO COSMOLOGY (contd.)

Part III. THE APPLICATION OP RELATIVISTIC THERMODYNAMICS TO
NON-STATIC HOMOQENEOITS COSMOLOGICAL MODELS

166. Application of the relativistic first law

We must now undertake a brief consideration of the thermo-

dynamio behaviour of the homogeneous cosmological models which

correspond to the line dement

d8^==-j^:^^j^,{dr^+r^dd»+rhmd<l>^)+di^ (166.1)

In accordance with the principles of relativistic thermodynamics as

developed in Chapter IX, we may regard the relativistic analogue of

the firstlaw of ordinary thermodynamics as provided by the principles

of relativistio mechanics as expressed in the form of the energy-

momentum equation

ex'"
(166.2)

And in applying this expression to the case of the above line element

we may take the only surviving components of the energy-momentum
tensor, in accordance with (150.5) and (150.6), as given by

T^=-g^P, T^ = Poo>

or, on lowering indices,
' ' '

Tl = n=Tl=-Po Poo.

where poo and p^ are the proper macroscopic density and pressure

of the fltiid as they would be measured by a local observer at rest

therein at the position and instant of interest.

Substituting (166.3) into (166.2), we obtain, for the case p = 1,

= 0,

where the last term in the parenthesis can be added m account of the

constancy of ^44 . As a result of equation (39) in Appendix III, how-
ever, this immediately reduces to
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Aad since similar expressions result from taking ju as 2 or 3, the only

information that we obtain, by applying the energy-momentum

equation to onx present line element for the oases /<. = 1, 2, 3 is the

independence of pressure on position

dr dd d<f>
' '

which is already evident from the known spatial homogeneity of the

model.

Substituting (166.3) in (166.2) for the case ju = 4, however, we
obtain as already seen in § 161, the equation

and by inserting the expressions for the given by the line element,

this reduces to the important result

d{ r®sin0e*®® \

[1-fr2/4i?g]*j ^^®^\[l-t-r*/4iJ*]8j
" (166.5)

Noting that the proper volume of any element of fluid, permanently

located in the case of the present oo-moving coordinates in any desired

range 8rSdB<j>, would be given by

Svn —
[l-t-ra/4J2S]«

SrSeS^, (166.6)

we can also rewrite (166.6) in the form

(166.7)

This equation shows—as previously remarked—that the proper

energy of each element of the fluid in the model as measured by a

local observer would change with the proper volume of the element,

in accordance with the ordinary equation for the adiabatic expansion

or compression of the fluid.

The result is thermodynamically important since it shows that

there vrill be no heat flow into or out of the elements of fluid composing

the model. This conclusion may also be regarded as a consequence

of the spatial homogeneity of the model.

167. Application of the relativistic second lawr

In accordance with the principles of relativistic thermodynamics,

the analogue of the ordinary second law of thermodynamics as
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discussed in § 119 can be taken as given by the expression

(167.1)

where is the proper entropy density of the fluid at the position and
instant of interest, the quantities da^jda are the components of the

macroscopic ‘velocity’ of this fluid referred to the coordinates in use,

2o is the proper temperature, and 8Qq is the heat flowing into the

element of fluid and during the time denoted by as

measured by the local observer. The sign of equality in this expres-

sion refers to reversible processes and the sign of inequality to irre-

versible processes.

In applying this expression to the models under consideration using

coordinates corresponding to the line element in the form (166.1), we

,,87 .2)
da ~ da da da

' ^ '

owing to the co-moving character of the coordinates, and can set

8<2o = 0, (167.3)

omng to the adiabatic character of the changes demonstrated in the

preceding section. Substituting in (167.1), we can then write the

relativistic second law for these models in the form

d f, r^sinffc*®® > 0, (167.4)

and on substituting the expression for proper volume given by

( 166.6), this can be written in the form

(167.6)

which shows that the proper entropy for each element of fluid in

the model can only increase or at best remain constant as time

proceeds.

With the help of the two relations (166.7) and (167.6), we thus

obtain the very satisfactory result that a local observer who examines

an element ^of fluid in his immediate neighbourhood would find

therefor the same behaviour as would be predicted from the classical

principles of thermodynamics for an element of fluid undergoing an

adiabatic expansion or contraction.
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168. The conditions for thermodynamic equilibrium In a
static Einstein universe

Since we have seen that the static Einstein universe canbe regarded

as a special case given by our non-statio models when g[t) becomes

constant, we can now use the foregoing information as to the thermo-

dynamic behaviour of non-statio models to investigate the conditions

for equilibrium in the original Einstein model.

We can investigate the conditions for a state of thermodynamic

equilibrium in the usual manner, by considering the possibilities for

change to a neighbouring state of the model, by varying the radius

of the model R = EoC*®,

and the number of mols

(168.1)

(168.2)

of the different chemical constituents which would give the composi-

tion of any selected element of fluid and hence of the model as awhole.

During the progress of such a variation, the model could be re-

garded as temporarily non-static with the energy and entropy of each

element of the fluid subject to our previous relations (166.7) and

(167.6). Hence since by (167.6) the entropy of each element of the

fluid can only remain constant or increase with time, we can taJke

8(^0 ®o) —

imder the subsidiary condition

(168.3)

(168.4)

as the necessary requirement for thermodynamic equilibrium, where

we have now written

^>0

r®sin^e*<'

[H-r*/4E§]«
(168.6)

as the proper volume of the particular element of the fluid considered.

To use the above conditions for equilibrium, we can evidently

write in accordance with the classical thermodynamics

(168.6)

since the proper entropy Sg = as measured by a local observer

will evidently depend in the classical manner on proper energy.



424 APPLICATIONS TO OOSMOLOOT § 168

volume, and composition. Hence since we have — Poo^o

proper energy, we obtain by combiiiing (168.4) and (168.6)

as a necessary condition for thermodynamic equilibrium in a static

Einstein universe.

This result is of interest since by comparsion with (60.12), we see

that it gives the classical condition for chemical equilibrium between

different substances in the fluid. Hence the relative proportions

between different materials which might be able to change into each

other, for example hydrogen and helium, or indeed matter and

radiation, would have the same values at thermodynamic equUibrimn

in a static Einstein universe as we should calculate for flat space-time.

This is important since any effect of the gravitational curvature m
the models on such ratios could have been very important for

cosmology.f

Although the pair of relations (168.3) and (168.4), or the equivalent

pair (168.4) and (168.7), can be taken as necessary conditions for

thermodynamic equilibrium, it is of course evident that further

investigation is necessary to determine whether they are sufficient

conditions for the equilibrium to be stable. And the investigations

of § 169 have actually shown that the equilibrium state for an

Einstein universe would in general be unstable towards small varia-

tions of the radius, unless indeed we could have a fluid whose pressure

would increase on expansion.

169. The conditions for reversible and irreversible changes in

non-static models

With the hdp of our expression (167.6) for the second law as

applied to homogeneous cosmological models.

|(^oH)>0, (169.1)

we can readily distinguish between the characteristics of reversible

and irreversible changes in such models.

For the case of reversible processes, we shall have to use the equality

sign in this expression, and can thus take constant proper entropy

t Such an efCeot was originally supposed to be present by Lenz, Phya, Zeita, 27,
C42 (1926). See, however, Tolman, Proo. Nca, Acad. 14, 363 (1928) and ibid. 17,
163 (1931).
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for each element of fluid ia the model as the criterion of reversibility.

Hence to investigate the possibility for reversible changes in the

model we must examine the causes which could lead to an increase in

the entropy of an element of the fluid.

In doing so, we note—as already pointed out in § 130—in the first

place that no entropy increases could occur as a result of irreversible

heat flow, smce we have seen, from our application of the first law and
also from the homogeneity of the model, that there is no heat flowm
these models from one portion of the fluid to another. In the second

place, we note that no entropy increase could occur from the friction

of moving members against the walls of any container for the fluid,

as in familiar examples of adiabatic changes in volume, since now no
such parts or container are involved. In the third place, we note that

no entropy increases could result from an inability of the fluid to

maintain the same pressure in the interior and at the boimdary of

any element of fluid, as in ordinary cases of expansion or compression

in a cylinder where a pressure gradient is set up by the motion of the

piston, since as a result of the homogeneity of the model the pressure

(see 166.4) is uniform throughout.

We thus see that the familiar sources for entropy increase, con-

nected in ordinary engineering practice with heat flow at a finite rate

and imperfect interaction of the working fluid with its surroundings,

would be eliminated in the case of the elements of fluid in our cosmo-

logical models. We can hence conclude that the changes in the model

will be reversible, provided the mtemal physical-chemical processes

which occur in the fluid itself as the model expands or contracts

involve no entropy increase.

The actual attainment of reversible behaviour for our non-static

cosmological models will then depend on the possibility of selecting

fluids of a simple enough constitution so that no mtemal irreversible

processes, which would change the proper entropy of anygiven element

of the fluid filling the model, can occur. We have already pointed

out in § 130 of the chapter on relativistic thermodynamics that two

such fluids would be provided by a distribution of particles of inco-

herent matter (dust) exerting zero pressure, and by a distribution of

black-body radiation. And in the next two sections we shall give

special attention to the reversible behaviour of models filled with

these two fluids.

In the case of more complicated fluids, however, it is evident that
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intemal processes would in general accompany a finite rate of change

in the volume of an element of the fluid which would lead to increases

in its entropy. This would then lead to the sign of inequality in the

second law expression (169.1), and hence also to the conditions for

a thermodynamically irreversible behaviour of the model. As a simple

example of such a fltiid, we have already pointed out in § 131 the case

of a diatomic gas, which with a finite rate of expansion or compression

would dissociate into its elements or recombine under non-equili-

brium conditions and hence with increase in entropy. In later sections

of this Part of Chapter X we shall give special attention to the irre-

versible expansion and contraction of cosmological models.

170. Model filled with incoherent matter exerting no pressure

as an example of reversible behaviour

We may now give a little detailed consideration to a model filled

with a distribution of incoherent matter or dust particles exerting

negligible pressure, as furnishing an example of thermodynamically

reversible behaviour at a finite rate. In such a model, the proper

entropy associated with any element of the fluid would always be

merely the sum total of the entropies of its constituent xmchanging

particles. Thus the entropy would have to remain constant, even

with a finite rate of expansion or contraction of the model, and we
should have the conditions for reversibility given by the equality

sign in (169.1).

Hence we should expect the expansion or contraction of such

models to take place reversibly, with nothing to prevent the return

of the model to an earlier state provided the conditions are such that

a reversal in the direction of motion does take place. Indeed, if we
set the oosmologioal constant A equal to zero, and thus obtain the

conditions for closed models with an oscillating behaviour of the first

kind, type Oj, we have already seen in § 163 that the radius would

symmetrically increase and decrease with the time in a manner which

can be described as a cycloid in the i22-plane by the equations

JJ = ^(1— cos^) i = 8in0), (170.1)

where a is a constant.

Thus the behaviour of such models woidd not only be thermo-

dynamically reversible, but within a finite time would be subject to

actual reversal as well if we set A equal to zero. Fmthermore, even
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if we are unoertain as to the meohanism of passage through the

singular state at i2 = 0, we oau at least conclude that the model

would return again from its maximum expansion to states having the

same radius i2 as before, and with exactly the same rate of change

{dBfdt) as before but in the reverse direction.

171. Model filled with black-body radiation as an example of

reversible behaviour

As a second example of reversible behaviour with a finite rate of

change, we may take a model filled solely with black-body radiation.

Heretoo it is perhaps immediately evidentthatthe entropy associated

with the contents of any element having the coordinate range SrSdS^

would be constant, since the absence of irreversibility due to pressure

gradients or faction of moving parts, combined with the absence of

any other material present which could interact irreversibly with the

radiation, means that changes in theproper volume of such anelement

even at a finite rate could be regarded as the reversible adiabatic

expansion or compression of black-body radiation, which from the

point of view of classical thermodynamics leads to no change in

entropy.

Nevertheless, the situation is sufficiently complicated so that it

may be desirable to give a more detailed analysis. We shall first show

that an expansion or contraction of the model would lead to a new
black-body distribution of radiation corresponding to a new tempera-

ture; and show that the change in proper volume and temperature

for any element 8r8dS<f) would then be such as to leave the entropy

imohanged.

As the definition of a black-body distribution of radiation, i.e. a

distribution which is in thermodynamic equilibrium, we have the

Planck distribution law (66.6), which at any desired initial time ^
would give us

SwAv® 1

(-3 ^JhfxZZl
dv^ dv^ (171.1)

for the radiational energy dE^ which a local observer at rest in the

coordinates r, 6, <f>
would find in the frequency range vj to

and in the volume dv^, at the temperature Sj.

At any later time ^2 when the quantity g{t) which determines the

temporal behaviour of the model has changed from to g^, the

frequency as measured by a local observer of the photons originally
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responsible for the above energy -will have become in accordance 'with

vj = (171.2)

and hence, o'wing to the proportionality "with frequency, their energy

will have become
dE^ = dE^. (171.3)

Furthermore, in accordance with the dependence of proper volume on
time given by (161.4), the volume now containing these photons, or

rather their equivalent, will have become

dtij = eltoi-ffi) (ivj. (171.4)

Substituting these thrm equations into (171.1), we then obtain for

the distribution of radiation at time as measured again by a local

observer sis i

provided we take as given by

Tg = (171.6)

This thus gives the desired demonstration that the expansion or con-

traction of the model leads to a new distribution of black-body radia-

tion with the new temperature determined by (171.6).

Hence since the entropy of black-body radiation is given in accord-

ance -with (66.6) in terms of its temperature and volume by the well-

known formula 8 = ^Th} (171.7)

we see that the entropy associated 'with any given element 8r8dS^

would reznain constant, since we can write therefor in accordance

with 'the foregoing equations

S = faTf Suj = const. (171.8)

Thus also in the case of a model filled solely 'with black-body radia-

tion we should have constant entropy for each element SrB68if>, and
hence the condition for expansions or con'tractions at a finite rate

reversibly. Moreover, here too as in the preceding case, by taking the

cosmological constant A as equal to zero, we could obtain closed

models in which -the motion would not only be reversible but actually

reversed as well, the relation between radius and time being given in

accordance with (163.6) by

B = V(i8-<*), (171.9)
where jS is a constant.

This case of reversible behaviour in a model containing black-body
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radiation is perhaps more interesting than the previous one of a

model composed of dust particles exerting no pressure, since now the

processes of expansion and contraction with the accompanying

changes in temperature seem definitely thermodynamic in character,

as compared with the previous expansions and contractions which

seemed purely mechanical in character and hence perhaps quite

naturally reyersible.

Also in the case of models oontaining a mixture of dust particles

and radiation having no appreciable interaction, it is evident that

we should expect reversible behaviour. But as soon as we go to

particles small enough so that their thermal motion cannot be

neglected it is evident that we must expect some sUght irreversibility,

since with a finite rate of volume change there would be a delay in

the transfer of energy between the particles and the accompanying

radiation, which would lead to a lag behind the conditions for true

equilibrium.

In connexion with the foregoing discussion, however, it is perhaps

unnecessary to stress the precise—^in any case hypothetical—con-

ditions under which completely reversible volume changes could

talre place at a finite rate. It is more important to emphasize the

absence from our present cosmological models of the factors of

irreversible heat fiow, friction, and pressure gradients which are such

common sources of irreversibility in ordinary thermodynamic pro-

cesses taking place at a finite rate, that we may not realize tiiat it is

their presence rather than the mere finiteness of the rate itself which

is leading to irreversibility.

f

172. Discussion of failure to obtain periodic motions without

singular states

The foregoing examples of a reversible oscillation m the radius of

a closed model, between values corresponding to a lower singular

state and an upper maximum, suggest an investigation of the possi-

bilities for a strictly periodic behaviour in which the volume of any

element of the fluid would pass continuously back and forth between

a true mininniTn and maximum. This would be a periodic oscillation

of the second kind, type 0^, already mentioned as conceivable in

§ 167 (e). We may now show, nevertheless, assuming reasonable

t This example of reversible behaviour at a finite rate, together with a more
complicated one, will be foxmd in Tolman, Phys, Bev. 37, 1639 (1931); ibid. 38, 797

(1931).
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properties for the fluid in the model, that no such strictly periodic

oscillations wordd be possible,! and that even nou-periodio oscilla-

tions of this kind would not appear important.

Bemembering that the dependence of the line element (166.1) on

time for the models under discussion is given by the quantity g{t),

we shall write the conditions for an oscillation of the model between

a true TniniTmuri and maximum in the form

^2 — ^ ^ (172.1)

where the dote indicate differentiation with respect to time, and the

subscripts 1 and 2 indicate the value of the given quantity at the

miniTmiTn and maximtun respectively. By combining these expres-

sions with our expressions for the proper density and pressure of the

fluid in the model

and

Swpoo =

87ipo=

(172.2)

we can then find what properties the fluid would have to show in

order to pennit the postulated miniTniTm and maximiim. Since we
shall wish to consider both closed and open models, we may distin-

guish the three separate oases > 0, = oo, and < 0, corre-

sponding respectively to closed, open flat, and open curved models.
For {he case Ml > 0, we can readily obtain from the foregoing

Pi > P2

Pi<P2 (172.3)

as relations which must hold for the densities and pressures of the
fluid at the miniTmim and maximum, in order for an oscillation of the
type in question to occur. If such behaviour takes place, the density
of the fluid would then decrease as the volume of each element of
fluid in the model increases in the ratio to in passing from
miniTnum to maximum, but the pressure would have to increase in
passing from minimum to maximum, in agreement with a necessary
condition for osciUations of type 0^ already found for the special
case of closed models with positive pressure in § 167 (e).

For strictly periodic oscillations, nevertheless, between a deflnite
minimum and maximum it is evident that the behaviour of each

t Tolman, Phys. Rev, 38, 1768 (1931).
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element of the fluid would hare to be thermodynamically reversible

trinoe otherwise the s^e state could not be returned to over and over

again. Hence, in connexion with the above, we can rule out such

strictly periodic oscillationB, unless we are willing to assume a flidd

filling the model which has the unusual properties of an vncreaae in

pressure accompanying reveraibh adiabatic expansion.

For oscillations which are not strictly periodic but which might
occur once or more between minima and maxima which do not have
to remain flxed, the req[uirement of thermodynamic reversibility

could be dropped. Hence the above conditions would be compatible

with such an oscillation if, for example, there should be an irreversible

rush in the formation of radiation during expansion so that the

pressure would be sufficiently high at maximum to bring about

reversal. It could hardly be expected, nevertheless, that the pressure

could then decrease again on contraction so as to permit a second

minimum.

For the case = oo, to which we now turn, we obtain from the

combination of (172.1) with (172,2)

Pi = P2> (172,4)

andfor the case ii* < 0, we obtain

Pi < Pi (172.6)

as necessary conditions for oscillatory motion of the type under con-

sideration.

In accordance with the energy equation (161.6), nevertheless, we
can write

4oo = -Upm+Po) ^9, (172.6)

for the change in density with g. Hence the above conditions could

be met only i£ we assumed an unknown kind of fluid which can

support a negative pressure at least equal to its energy density.

As a result of the above discussion, it is evident, at least at the

present stage of the theory, that we may neglect homogeneous models

in which the elements of fluid would undergo either a strictly periodic

expansion and contraction or any kind of successive oscillations in

volume between a true minimum and maximum. This finding, never-

theless, affects of course in no way the possibilities for oscillation

between a lower singular state and a true upper maximum which we
have previously studied.
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173. Interpretation of reversible expansions by an ordinary
observer

In earlier sections we bave studied the possibility for expansions or

contractions to take place in our cosmological models at a finite rate,

and yet thermodynamically either completely reversibly, or at least

with the elimination of sources of irreversibility which commonly
accompany a finite rate of change in small-size systems. This leads

to the possibility that cosmological processes, which might be inter-

preted by an ordinary unsophisticated observer as irreversible merely
on account of their finite rate, could actually be taking place reversi-

bly. Such a possible confusion must be avoided m order to obtain

clear notions as to cosmological phenomena.
To investigate the matter, we shall take to start with the extremely

simple model of § 171, filled solely with black-body radiation, and at

the time of interest undergoing a reversible expansion with the

quantity g{f) in the formula for the line element

poii)

ds^=- +r (173.1)

increasing with L In considering the model we shall carefully dis-

tinguish between the remits, which would be obtained by a local

cbs&rv&r at rest with respect to r, 6, and ^ and hence at rest with re-

spect to the mean flow of energy in the model, and the interpretation,

which he would place on these results from the point of view of

classical thermodynamics, if he were an ordinary observer unfamiliar

with relativistic thermodynamics and uninformed as to the general

expansion taking place in the model.

In determining the results which this ordinary observer would
desire for his interpretation, we shall consider h\m for convenience
as located at the origin of coordinates and let him examine the
contents of the umverse in a small region in hia inomediate neigh-
bourhood. In doing this, in view of his ignorance as to the general
expansion taking place, we shall assume that he marks this region
off, not so as to contain a given element of the fluid in the model,
but by laying measuring rods end to end from the origin so as to
obtain a sphere of constant proper radius

^0 = const. (173.2)

around the origin. Taking this sphere as small enough so that terms
of the order r*/4JJ§ can be neglected in comparison with unity, the
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coordinate r at its boundary Tnll bave the value

r =
which will be varying with the time at the rate

dr

dt
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(173.3)

(173.4)

And the proper volume of the sphere will have the constant value

»o ^ K- (173.6)

Furthermore, in order to ascertain the results obtained by our

observer from the measurements made in this region, we can use the

energy equation (166.7) which can be conveniently written in the

form j »

f^(Pooe*‘’)+i’o|(e*") = 0, (173.6)

together with the relations connecting proper density, pressure, and

temperature

Poo = ®3'o and = (173.7)

which hold in case the fluid is black-body radiation as assumed.

With the help of the foregoing, it is then easily seen, that our

observer will find , » , j_

= (173.8)

for the rate at which energy density and pressure are decreasing in

his neighbourhood; ,

1 (173.9)_ 1 ^
To df 2 di'

for the rate at which the temperature is dropping in hie neighbour-

hood; and
1

na dt

3 ^
'2dt'

(173.10)

for the rate at which the number of photons »o inside his sphere of

constant volume is decreasing with time owing to net flow across the

boundary.

Moreover, it is evident, if our observer stations an assistant on the

boundary of his sphere and directs him to compare the frequency of

photons escaping with those that are entering from outside, that he
will report an average shift towards the red for the entering photons,

since in accordance with (173.4) this assistant would be moving with
3SS5.U I,, f
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respect to a local observer, chosen so as to remain at rest in the

coordinate system r, 0, and (f>,
and hence also so as to obtain isotropic

findings for the frequency of radiation.

Thus our ordinary observer would have at his disposal a continually

dropping temperature in his own neighbourhood, and a flow of energy

away therefrom towards regions of apparently lower temperature in

the depths of space beyond, which he would be inclined to interpret

from the classical point of view as evidences for a general process of

energy degradation. He could hence be led to the erroneous conclu-

sion that the universe was behaving irreversibly, in spite of the fact

that the more legitimate considerations of relativistic thermodynamics

have shown that such a model would actually be behaving reversibly,

and indeed with a suitable value for the cosmological constant A
would pass through a maximum expansion and return again to its

original volume with reversed velocities.

The above model is of course highly idealized, containing as it does

nothing but black-body radiation. By neglecting the interaction

between radiation and matter, however, reversible behaviour could

also be obtained with a model containing a mixture of black-body

radiation and incoherent matter; and the same results would be
found as to the flow of radiation away from any given location during

expansion. Computations have also been madef with a model con-

taining a mixture of black-body retdiation and a perfect monatomic
gas, assuming the possibility of transforming radiation into matter
and vice versa, and assuming—contrary to the presumable possi-

bilities—that the interaction between matter and radiation could

take place rapidly enough to maintain equilibrium conditions. In
such a model, in addition to the outward flow of radiation, it is found
except for extraordinarily high temperatures that a reversible expan-
sion would be accompanied by the annihilation of matter.

The main point to be stressed in connexion with the foregoing is the
feasibility of mimicking with the help of reversibly expanding models
—at least to some extent—^the kind of behaviour, which in the case
of the real universe would naturally be interpreted from older points
of view as irreversible. This of course does not mean that actually

irreversible processes are not taking place in the real universe, but it

does emphasize the necessity of using relativistic rather than classical

thermodynamics in the study of cosmology.

t Tolman, Phys, Bew. 38, 797 (1931).
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174. Analytical treatment of succession of expansions and
contractions for a closed model with A = 0

Since processes which are actually thennodynamically irreversible

appear to take place in the real universe, we may now turn to a con-

sideration of the irreversible behaviour of cosmological models. To
prepare for this we shall devote the present section to an analytical

treatment of the behaviour—^whether reversible or irreversible—of

closed models with the cosmological constant A set equal to zero.

We make this selection partly because this assigns to A what seems

to be—as already emphasized—^the most natural value to take, and

partly because closed models with this value of A provide a good

illustration of the new relativistic features of irreversible processes

which we shall wish to study.

We have already seen in § 167 (/), that models of the above kind

could only undergo an expansion from a lower singular state to an

upper maximum followed by return to smaller volumes. We shall

now investigate this behaviom in more detail.t

For the models under consideration we may take the line element

in the form

(174.1)

and base the treatment on the e:$piessions for proper pressure and

density given by (160.7) and (160.8):

Snpo = (174.2)

(174.3)

where A has been set equal to zero, and where in agreement with our

assumption of a closed model, we must take

> 0. (174.4)

Furthermore, in agreement with physical possibUitieB we must

Poo > 0, (174.6)

Binoe the density of material in the model could not be zero. We shall

also take
Po > <>, (174.6)

since we shall regard the model as filled with a mixture of matter and

t Tolman and Word, Phya. Rev, 39, 886 (1832).
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radiation capable of exerting positiYe pressure, but incapable of

\ntbstanding tension.

(a) Tbe upper boundary of expansion. Assuming that at some
initial time t = 0, the model has a finite volume and a finite rate of

expansion corresponding to

, P = Po 9 — 9o (174.7)

we may first show that there will be a finite upper botmdary beyond

which p(<) cannot increase, without reference to the reversibility or

irreversibility of behaviour.

Combining equation (174.2) with the inequality (174.6), we can

write in general ,

< 0, (174.8)

and, since g will be positive as long as expansion continues, we can

multiply this by the positive quantity and write

2e»'’pp+fe»»ii«+ Aeiffp < o,

or |(etopa)+^^|(eia)^0, (174.9)

as an expression which wiU. hold as long as p continues to increase.

Integrating (174.9) between f = 0 and any later time of interest

t = t, and substituting the initial values of p and p as given by

(174.7), we then obtain

(174.10)
itg Mq

or noting in accordance with (174.4) that iJg is positive

P2
ehf < (174.11)

as an expression which will hold as long as g continues to increase.

Hence, since and gQ are by hypothesis finite, there will be a finite

upper boundary which g cannot surpass. This result may be expressed

(174.12)
where y is a finite quantity.

(6) Time necessary to reach maximum. With the help of the above,

we can now show further that g will reach its maximum value and
start to decrease within a finite time.
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Combiiuiig the two inequalities (174.8) and (174.12), we can evi-

dently write

9 < -

or
dt ^

^0

e-T', (174.13)

and integrating this between t = 0 and any later time of interest, we

obtain ,

9<9o—^^'^t>

where Qq is the initial value of dg/dt. In accordance with this expres-

non, however, we see that at a finite time

(174.14)

g{t) will reach its maximum and start to decrease.

(c) Time necessary to complete contraction. It will also be of interest

to consider the behaviour of the model after passing through the

Tnaximiim and starting to contract. As p wiU then evidently be

negative, we may now multiply (174,8) by the negative quantity

2c*®p, and integrating as was done before in order to obtain (174.10),

write as the result for the present case

where and are the values of the quantities indicated, on passing

through the maximuni at time t = Moreover, since the velocity

will be zero at this maximum, we shall actually have g^ == 0, andmay

rewrite the above result in the form

Furthermore, with g negative and Bq real and positive corresponding

to a closed model, this is equivalent to

< _i-J(ei‘'— ei®). (174.16)
dt Mq

This expression, however, can readily be integrated between the

time at which the maximum was passed and any later time of

interest t, to give

U < (174.16)
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In aooordanoe with this expression, we then see that within a finite

(174.17)

after passing through its maximum, the value of g would decrease to

minus infinity, provided the singular state at the lower limit of the

motion did not occur earlier.

(d) Behaviour at lower limit of contraction. To summarize the

foregoing conclusions, we see that the model starting at a selected

initial time with any finite value of and finite rate of expansion g^,

would then reach a maximum value of g and start contracting within

a finite time later. And furthermore this contraction would proceed

at a Bufilcient rate so that g could decrease to minus infinity again

within a finite time. We must now inquire as to the behaviour of the

model on reaching the lower limit of contraction.

In the first place, since the proper volume of any element of fluid

in the model would always be proportional to we realize on phy-

sical grounds alone that = 0, gr = — oo, would in any case set a

lower limit for possible contraction. In the second place, never-

theless, in accordance with (174.16) when reaches the value zero

we should have

17
==- 00, (174.18)

and hence also in accordance with (174.8)

S = -oo, (174.19)

at this point. Thus the conditions for an analytical minimum are

completely unsatisfied, and the analysis would fail to describe the

passage of the model through the point.

Hence, since on physical grounds the contraction cannot proceed

further than the point = 0, it is evident on mathematical grounds

that we can maintain the validity of the fundamental differential

equations (174,2) and (174.3) which control the behaviour of the

model, only by introducing a renewed expansion which starts from
some singular state at the lower limit of contraction. This singular

state may of course lie near rather than exactly at the point = 0.

It is, to be sure, unfortunate that our differential equations for the

motion of the model are not sufficient to describe the mechanism of

passage through the lower limit of contraction, the existence of which
is physically inevitably necessary. As suggested by Einstein,f it is

t Einstein, £erZ. Ber. 1931, p. 235.
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possible that the ideaUzations—such for example as the complete

homogeneity of the model—on which the analyms has been founded

are to be regarded inthe case of an actual physical system as failing in

the neighbourhood of this lower limit of contraction. The situation

is perhaps similar to that which would be furnished by an attempt to

describe the behaviour of an elastic ball, bounoiog up and down
from the floor, solely with the help of the usual equation for gravita-

tional acceleration

dt^
= -g. (174.20)

This equation would be sufficient to describe the motion of the ball

as it rose to its maximum height and fdl from that point. It would

fail, however, to give a description of the mechanism of reversal when
the ban reached the floor, and further considerations involving the

size and elastic properties of the ball would be neoessaory to describe

the passage through that point.

As the end result of this section, we may then conclude, for the case

A = 0, that the only possible behaviour, for a closed homogeneous

model of the universe filled with a fluid unable to withstand tension,

would be a continued succession of expansions and contractions,

such that g{t) would increase from a singular state at the lower limit

of the previous contraction up to a true maximum, and then return

again to a singular state where renewed expansion would again set in.

furthermore, if at any given initial time the value of g and its rate of

increase g were finite, the upper limit reached by g would be finite and

only a finite time would be necessary to complete the cycle of expan-

sion and contraction. Finally, it is to be emphasized that these con-

ditions have been obtained without any reference to the reversibility

or irreversibility of the behaviour of the model, and would be equally

vaUd for the succession of identical expansions and contractions which

would correspond to reversible behaviour and for the succession of

changing expansions and contractions which would be obtained with

irreversible behaviour.

175. Application of thermodynamics to a succession of irre-

versible expansions and contractions

As already pointed out in Chapter IX, a continued succession of

irreversible expansions and contractions, as found for the models

considered in the preceding section, would seem very strange from the
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point of view of dassioal iiieirmodynaimos, which would predict an

ultimate state ofmaximum entropy and rest as the result of continued

irreTcrsible processes in an isolated system. Hence we must now
examine the beating of relativistio thermodynamics on this finding.f '

In accordance with our general discussion in § 169 of the con-

ditions for reversibility and irreversibility in the behaviour of

homogeneous modds, the succession of irreversible expansions and

contractions, which we are now considering, would be characterized

by a continued increase in the proper entropy of any selected element

of fluid in the model, as given by the sign of inequality in the

expression j

|(^o8«o) >0. (176.1)

Thus, althou^ the model might pass ihrough states in the course of

an expansion or contraction in which the conditions momentarily

correspond to those for physical-chemical equilibrium, it is evident

that the entropy of any element of the fluid would ultimately have to

increase without limit as the irreversible expansions and contractions

continued. Hence we must now show that this can be possible, since

the classical thermodynamics has accustomed us to the idea of a

maximum upper value for the possible entropy of any isolated system.

To investigate this point it is evident that we may take the proper

entropy, measured for any small element of the fluid by a local

observer, as depending on the state in accordance with the classical

equation

= ^d(p„ 8t;o)+|?d(Sf;o)

(176.2)

where the proper energy of the element (poo^Vo)* its proper volume

Svg, and the number of mols of its different chemical con-

stituents are taken as the independent variables which determine its

state.

In applying this equation to the continued increase in the entropy

of the element, which must take place if the irreversible expansions

and contractions continue, we note in accordance with the result

obtained from the first law in § 166

|(Poo8«o)+i>o|(K) = 0, (176.3)

t Tolman, Phya. Rev, 39, 320 (1932).
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that the immediate cause which leads to entropy increase cannot be

due to the presence of the first two terms on the iight-hand side of

(175.2), since their sum will always be equal to zero. Hence the

internal mechanism by which the entropy increase is actually occur-

ring at any time must be due to the presence of the remaming terms

on the right-hand side, which correspond to the irreversible adjust-

ment of cornposition in the direction of equilibrium.

At first sight it might seeni that such an adjustment of concentra-

tions could provide only a limited increase in entropy, since the

classical thermodynamics has made us familiar with the existence of

a maximum possible entropy for a system having a given energy and

volume ; the present case differs, however, from the classioal case of

an isolated system, since the proper energy of any selected element

of fluid in the model does not have to remain constant. Indeed, in

accordance with (176.3), the proper energy of every element of fluid

in the model would be decreasing with time draing expansion and

increasing with time during contraction. Hence if the pressure tends

to be greater during a compressionthan during the previous expansion,

as would be expected with a lag behind equilibrium conditions, an

element of the fluid can return to its original volume with increased

energy and hence also with increased entropy. Thus, although the

inteimal mechanism of entropy increase would always be due at any

instant to the adjustment of concentrations, for example in the

direction of dissociation during the later stages of expansion and in

the direction of recombination duri|ig the later stages of contraction,

the possibility for continued entropy increase would have to be due

in the long run to an increase in the proper energy of the elements of

fluid in the model.

As shown in § 131 of the last chapter, the situation is analogous

to the continued increase in entropy and energy which would occur

in the classical case of a contmued succession of irreversible adiabatic

expansions and compressions for a dissociating gas in a cylinder

with non-conducting walls and a movable piston, so long as external

energy was available to complete the desired compressions; and in

the relativistic case this external energy can be regarded as coming

from the potential energy of the gravitational field associated with

Eiinstein’s pseudo-tensor density Similar considerations could also

be given to the irreversible expansion and contraction of a mixture

of matter and radiation, assuming a delay in their attainment of
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eq^vulibrium which ia the later stages of expansion, might involve both

a lag in the transformation of a portion of the mass of matter into

radiation as well as a lag in the escape of radiation from the matter.

Such possibilities might be of interest for the actual Tmiverse.

Having found that a continued succession of irreversible expansions

and contractions for our cosmological models would involve in the

long run an increase in the proper energy of the elements of fluid

therein when they return to the same volume, we must now examine

the effects of such an increase on the character of later and later

cycles. This can easily be done with the help of our equation for

energy density (174.3), which gives

Swpooc*" = (1-76-4)

as an expression which is proportional to the proper energy of any

selected element of the fluid, having the proper volume

— r^ain 0

[l+rV4B?]»
STS98(f>. (176.6)

In accordance with these expressions we see that the volume of any

element of the fluid will return to an earlier value when g{t) so returns,

and hence that the energy of the element can be greater at a later

return only in case the square of the velocity, g\ has a greater value.

This, however, is sufficient to indicate the general difference between

the character of a given cycle and sufficiently later ones, as shown in

Fig. 10, where the later cycle has larger values of [gj for a given value

of and hence also rises to a higher maximum.
Since the value of the energy density at the point of maximum

expansion would be given by

8vpoo = ||e-^, (176.6)

and the value of g at the maximum would ultimately increase without

limit, we see that the energy density at this point would get smaller

and smaller for later cycles. Hence, too, we may infer that the model
might spend a greater and greater proportion of its period in a condi-

tion of lower density than that observed, for example at present in

the actual universe, even though a return to higher densities would
always occur. The above conclusion as to energy density at the point

of maximum expansion, however, does not apply in general to the
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irreversible oscillations that could be obtained with other assump-

tions as to A and jB§.

In concluding this Part of Chapter X, it should be emphasized, at

our present stage of very incomplete knowledge as to the actual

behaviour of our surroundings over long periods of time, that the

importance of the foregoing applications of thermodynamics to cos-

mological models lies primarily, not so much in providing immediate

explanations for the phenomena of the real universe, as in indicating

the ultimate necessity for the use of relativistic rather than classical

thermodynamics for a successful treatment of the problems of cosmo-

logy. Two considerations which might have a bearing on the problems

of actual cosmology may, nevertheless, be mentioned.

In the first place, the foregoing discussion has suggested the possi-

bility that the present state of the actual universe, or of that portion

which lies within some 10® light years, may perhaps be the result of

an irreversible expansion from an earlier state of exceedingly small

volume, corresponding to the lower singular states that we have

found in the case of some of our homogeneous models. In such a

lower state of very small volume, the density, pressure, and tempera-

ture that we should have to assign to the fluid in the model would,

however, be very high; and the conditions for thermodsmamic equili-

brium very much displaced, in the general direction for endothermic

chemical reaction, as compared with those now prevailing on the
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average in our surroundings. In Chapter V, nevertheless, we have

seen that the relative amounts of hydrogen and helium, of different

isotopes, and perhaps also of matter and radiation, actually fotmd in

the universe, do show a great excess of endothermic substances when

compared with present conditions for equilibrium. Hence it might

be plausible to try to explain existing ratios as the result of slow

irreversible changes which have taken place since an earlier state of

high density and temperature.

In the second place, in connexion with the behaviour of the actual

universe, some stress must be laid on the possibility found for a certain

class of models to expand and contract irreversibly without ever

reaching an unsurpassable state of maximum entropy. It would of

course not be safe to conclude therefrom that the actual universe

win never reach a state of maximum entropy, where further change

would be impossible. Nevertheless, this finding ju the case of certain

kinds of model must be allowed to exert some liberalizing action on

our general thermodynamic thinking. At the very least it would

seem wisest, if we no longer dogmatically assert that the principles

of thermodynamics necessarily require a universe which was created

at a finite time in the past and which is fated for stagnation and
death in the future.
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Part IV. CORRELATION OF PHENOMENA IN THE ACTUAL UNIVERSE
WITH THE HELP OP NON-STATIC HOMOGENEOUS MODELS

176. Introduction

There are three different kinds of justification that can be given

for our extensive consideration of the properties of non-static homo-
geneous cosmological models. In the first place, we have a natural

interest and intellectual pleasure in trying to develop the conse-

quences of any set of mathematioal assumptions without reference

to possible physical applications. Secondly, since we have based our

treatment on acceptable physical theory, we have the right to expect

that the theoretical behaviour of our models voU at least inform and
liberalize our thinking as to conceptual possibilities for the behaviour

ofthe actual universe. In the third place, however, and this is perhaps

most important of all, we have the right to hope that the models can

be so constructed as to assist in the correlation and explanation of

the observed phenomena of the actual universe, and indeedmay even

be sufficiently representative as to permit some cautious extra-

polation forward and backward in time, which will give us not too

faUaoious ideas as to the past and future history of our surroundings.

It is this possibility of using non-static homogeneous models to

correlate the phenomena of the actual universe, which has been only

incidentally mentioned in the foregoing, to which we must now turn.

In doing so, it is to be emphasized that we shall attempt as nearly as

possible a phenomenological point of view. We shall regard the line

element, which we have derived for our models, as an approximate

expression which may cease to be even reasonably satisfactory when
extrapolated to too great distances or over too long time intervals.

Furthermore, we shah attempt to obtain information concerning the

function g{t), which occurs in the expression for the line element and

hence determines the temporal behaviour of the models, not from

h3q>othetioal considerations as to the possible origin or fate of the

universe, but by the more modest method of expanding this function

as a power series in t around the present time, and then learning as

much as we can about the coefficients in this series from actual

observational data.
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In the following rather long section, which is divided into several

parts, we shall first consider the several kinds of observational in-

formation which are now available concerning the contents and

structtire of the real universe. This information has to do with the

magnitudes, distances, spectra, diameters, masses, and distribution of

the extra-galactic nebulae, since these are the only things outside our

own galaxy concerning which we now have any certainty of know-

ledge, Our precise information as to the nature and behaviour of

these objects is largely due to the work of Hubble and of Hubble and

Humason. We shall not concern ourselves with the observational

problems involved in obtaining the raw data, but shall present in

some detail the methods used in the interpretation thereof. In later

sections we shall then consider the correlation of the available in-

formation with the help of our non-static models.

177. The observational data

(a) The absolute magnitudes of the nearer nebulae. Of fundamental

importance for our knowledge of the extra-galactic nebulae are the

determinations of magnitude and distance made by Hubble and

Humaaon.t work divides itself into three parts. In the first

place, we have the determination of the mean absolute magnitude for

a considerable number of the nearer nebulae from direct observations

on individual stars which they contain. In the second place, we have

the observation of a^pparent magnitudes for more distant nebulae

which are associated in groups or clusters. And in the third place,

we then have the use of these results to calculate the distances to the

clusters.

We may first consider the determination of absolute magnitudes

for the nearer nebulae, and leave the apparent magnitudes and dis-

tances of the more distant nebulae to the next two parts of this

section.

Types of stars which have been identified in the nearest extra-

galactic nebulae include Cepheid variables, irregular variables, helium

stars (£q and 0), P Cygni' stars, and novae. With the help of the

observed magnitudes and periods of the Cepheid variables, actually

found therein, Hubble and Humason have determmed the distances

to eightj of the nearest nebulae, using Shapley’s 1930 zero point for

t Hubble and Humason, Aatrophys. Joum, 74, 43 (1931).

X This includes the two companions of M 31 which are assumed to be at the same
distance asM 31 itself.
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the period-luminosity relation for the Oepheids-t This together with

Shapley’s values for the two MageUanio olouds, then gives us at

leaet fairly aoourate values for the distances to ten extra-galactic

nebulae. And these distances, moreover, are confirmed by the

observed magnitudes for the other types of stars which can be

recognized in these objects.

Oombioing this knowledge as to the distances of the ten nebulae,

with their total observed visual magnitude as obtained from Hop-
mann’s:{; correction of Holetsohek’s measures andfrom other sources,

Hubble and Humason then find for the absolute visual magnitude

of these objects—as they would appear at the standard distance of

10 parsecs—the mean value — 14-7, with a total range of about 6*0

magnitudes, and an average residual of 1*5 around this mean.

In addition to these determinations, when the different types of

star present can be distinguished, Hubble and Humason have also

been able to use the luminosity of the brightest stars present to

extend the determination of absolute magnitudes to any case where

stars can be recognized at aU. For eight of the ten objects considered

above,§ the absolute magnitudes of the brightest stars therein were

found to have the mean value —6*1, with a range of only about 1*8

magnitudes, and an average residual of 0*4 around the mean. Since

the scatter in the magnitudes of the brightest stars is considerably

less than the scatter in the magnitudes of the nebulae themselves, it

seems rational to assume that the brightest stars in these objects have

a reasonably constant absolute magnitude independent of the nebula

in which they are located. Furthermore, the validity of this assump-

tion is confirmed by the fact that aU the data available show a scatter

for the differences between the observed magnitudes for the nebulae

as a whole and their brightest stars, which can apparently be ac-

counted for by the scatter to be expected in the absolute magnitudes

of the nebulae alone. Hence it seems justifiable to take —-G-l as a

figure for the absolute magnitude of the brightest stars in any nebula

where they can be seen at all, and then obtain the absolute mag-

nitude of the nebula by adding the diflEerence between the observed

magnitudes of the nebula and of its brightest stars.

Proceeding along these lines, in the ceise of 40 nebulae where stars

t Shapley, Star Ohtetera, 1930, p. 189.

X Hopmann, Astron, Nachr, 214, 426 (1921).

§ This excludes the two oompanions of Jif 31 as separate objeots.
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could be seen, Hubble and Humason have found for the mean differ-

ence between the observed magnitudes of the nebulae as a whole and

their brightest stars the figure —8-88, with a range of 4*9 magnitudes,

and an average residual around the mean of 0'77. The agreement

between the scatter of 6*0 magnitudes for the ten nebulae first con-

sidered and the above scatter of 4.9 magnitudes will be noted.

Combining the figures, —6'1 for the absolute magnitudes of the

brightest stars, and — 8>88 for the mean difference in the magnitudes

of the forty nebulae and such stars, the result — 16‘0 is found for the

mean absolute magnitude of these objects, as compared with — 14*7

for the original ten nebulae. The check is very satisfactory, and

Hubble and Hmnason finally adopt

= (177.1)

for tjhe mean absolute vmud magnitude of extra-galaotio nebulae.

For purposes of comparison with more distant nebulae, it is also

desirable to have a':%ure for mean absolute photographic magnitude.

The photographic magnitudes of nebulae were found to be best

obtainedby using extra-focal images larger than the focal dimensions

of the nebulae. By comparing the photo-visual and photograpluo

magnitudes corresponding to such images for sixty nebulae in the

Virgo cluster, Hubble and Humason obtain the figure

CZ= -|-l-10±0-02,

for the mean colour-index of not too distant nebulae, and this value

Was in reasonable agreement with other data available. Combining

with (177.1), the figijre
(177 2)

is then obtained for the mean absolute photographic magnitude of

extra-galactic nebulae, using extra-focal images.f

(6) The corrected apparent magnitudes for more distant nebulae.

We now turn to the determinations by Hubble and Humason of the

apparent photographic magnitudes of more distant nebulae where

individual stars oamot be seen. The treatment involves several

interesting corrections the nature of which may first be considered.

Since the light from the more distant nebulae is actually fomid to

have sufiEereda shift inwave-lengths towards the red, these corrections

t Some revision in this value may result from the programme of work on photo-
graphio magnitudes now under way at Mount Wilson or from work elsewhere.

Shapley gives the value M^g « —14*6. Proo, NcU. Acad, 19, 691 (1933).
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must be appKed to the immediately observed photographic magni-

tudes in order to make them comparable with the above absolute

photographic magnitudes as determined for the nea/re/r nebulae which

show no appreciable red-shift. The general nature of the corrections

will be seen from the following considerations : first, that the red-shift

implies an actual decrease in the total rate at which energy is being

delivered at the boundary of the earth’s atmosphere ;
secondly, that

the changed distribution of this energy in the spectrum implies a

change in the fraction of it which will be absorbed in passing through

the earth’s atmosphere; thirdly, that the changed distribution of

energy implies a change in the relation of its thermal to its visual

effectiveness ;
and finally, that the changed distribution of energy

also implies a change in the relation of its visual to its photographic

effectiveness.

The detailed treatment of these corrections may be based on an

equation which can be regarded as an empirical relation, connecting

the photographic magnitude of a heavenly object as ordinarily

measured, with its bolometric magnitude as would be determined

from thermal measurements made without absorption by the earth’s

atmosphere. The equation may be written in the form

~ (177,3)

where m^g and are the photographic and bolometric magnitudes,

Am^ is the empirical correction to be added to the bolometric magni-

tude to obtain the radiometric magnitude as measured thermally

after absorption by the earth’s atmosphere, HI is the empirical value

of the so-called heat-index which must be added to the radiometric

magnitude to obtain the visual magnitude, and GI is the empirical

value of the so-called colour-index which must finally be added to

the visual magnitude to obtain the photographic magnitude.

In accordance with this equation, we may then write

^7nJ,g = Ami,+A(Am,)+A(J?/)+A(OJ) (177.4)

as an expression for the effect of the red-shift in increasing the

photogi'aphic magnitude of the more distant nebulae, by producing

changes in their bolometric magnitude and in the three empirically

determined quantities that must be added thereto in order to obtain

the photographic magnitude.

To calculate the direct effect of the red-shift in changing the bolo-

metric magnitude, we must make use of what may be regarded as the
3696.11 Q f?
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equation of definition for magnitudes

m-M = 2-6 log 2-6 log Z, (177.6)

where m and M axe the observed and absolute magnitudes for a

heavenly object, I is the observed liuninosity of the object, and L
the luminosity which it would have at the standard distance of 10

parsecs.

The ejSeot on luminosity of superimposing a red-shift on the radia-

tion from a distant object can be twofold. In the first place, it is

evident that the frequency, and hence energy, associated with each

iadividual photon coming to the observer will be decreased in the

ratio A: (A-|-8A) of the original to the increased wave-length. Ih the

second place, if the red-shift is actually due to a Doppler effect,

therate at which photons arrive at the observer will also be decreased

in this same ratio. Since Hubble and Humason do not wish to assign

any particular cause for the red-shift, they purposely allow for only

the first of these effects, and hence write in accordance with (177.6).

Amj = 2-6log^^, (177.6)
A

as the change in bolometric magnitude due to the red-shift. If we
allow for both effects, the change in bolometric magnitude would be

twice as great. For the Leo cluster, nevertheless, which has the

largest red-shift so far observed the additional correction would be

within the limits of probable error.

To obtain the remaining quantities on the right-hand side of (177.4)

we must consider the effect of red-shift in changing the apparent

temperature of nebulae, since atmospheric absorption, heat-index,

and colour-index are quantities which have been observationally

related to spectral type and hence to apparent temperature. The
spectral type of the nebulae may be taken as approximately dQ^
corresponding to a black-body temperature of the emitting source of

6,760° absolute. Hence if the light suffers a fractional shift in wave-
length it is evident from Planck’s law (66.6), that the new spectral

distribution would correspond to an apparent temperature of emis-

sion given by
(177.7)

Furthermore, as the empirical relations connecting temperature of

emission with spectral type and hence also with atmospheric absorp-
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tion, heat-index, and colour-index, we may take the tabular expres-

sion givenby Hubble andHumason for the known data:—

f

Table I

Temp, ^Aha, Spectral Type Effect of Atm,
Heat-Index

HI
Colour-Indeos

01

6,600 p. 0*44 0-62
6,000 dGo 0>43 0-72
6,000 dO, 0-41 0*83
6,100 dK^ 0-99
4,400 dK„ 0-48 1‘26
3,400 dM 0-53 1*40 1-76

With the help of the foregoing equations, together with graphical

interpolation of the data given by Table I, Hubble and Humason are

then able to obtain the results shown in Table II for the effect of a
given fractional shift in wave-length in producing—^in accordance

with (177,4)—a change in the photographic magnitudes of nebulae.

Table II

Effect of Red-Shift on Photographic Magnit/ude

Vdooiiy
kin.laeo.

Diatcmce
Paraeoa

8A

A

Temp,
^Aha,

Spectral

Type A(A»m-j5rj) A(OI)

0-0000 6,760 dQZO 0-000 0-000 0-000 0-000
1,000 1-8X10‘ 0-0033 6,740 3-3 0-003 0-004 0-008 0-016
4,000 7*2 0-0133 6,686 4-0 0-016 0016 0-02 0-06
8,000 14-4 0-0267 6,616 4-7 0-03 0-03 0-04 0-10
12,000 21-6 0-0400 6,640 6-8 0-04 0-06 0-06 0-16
16,000 28-8 0-0633 6,470 6-6 0-06 0-06 0-08 0-20

20,000 36 0-0667 6,400 7-2 0-07 0-08 0-10 0-26

30,000 64 0-1000 6,236 8-8 0-11 0-13 0-16 0-40

40,000 72 0-133 6,080 diro-2 0-14 0-20 0-21 0-66

60,000 90 0-167 4,940 1-4 0-17 0-32 0-26 0*76

60,000 108 0-200 4,800 2-3 0-20 0-44 0-31 0-96

The third column in this table gives the actual fractional red-shift

considered, while the first two columns give merely for convenience

the velocity of recession which would correspond to this red-shift if

we interpret it as due to an ordinary Doppler effect, together with

the distance to the nebula which we shall later find observationally

associated with that red-shift. The remaining columns give in order

:

the temperature corresponding to the red-shift as calculated from

t Relation of temperature to type from Bussell, Dugan, and Stewart, Aatronomy,
1927. Effect of atmosphere and heat index from Petit and Nicholson, Aatrophya.

Joum. 68, 279 (1928). Colour-index from Seares, Aatrophya. Joum. 56, 166 (1922).
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(177.7); the spectral type corresponding to this temperature as

obtained from Table I ; the change in bolometrio magnitude caused by
the red-shift as calculated from (177.6); the small change in Am^
combined with that in heat-index as obtained from Table I; the

change in colour-index as also obtained from that table; and finally

the total change in photographic magnitude due to the red-

shift as calculated in accordance with (177.4) by combining the

figures in the three preceding columns. By subtracting the appro-

priate value for Am^^, it then becomes possible to correct the

observed photographic magnitude for any nebula to that which

would be expected if the light coining therefrom had suffered no

red-shift.

The actual data of Hubble and Humason for the average photo-

graphic magnitudes and red-shifts found in eight clusters of nebulae,

and for two groups composed of isolated nebulae having a moderate

range in magnitude, are given in Table III, where the red-shifts are

expressed in terms of the corresponding velocity of recession. The

average figure given for the photographic magnitude, is the most

frequent magnitude in the case of the clusters and the mean magni-

tude in the case of the two groups. The next to the last column in the

table gives the correction —Am^^ which, in accordance with the pre-

ceding table, must be appUed to the observed photographic magni-

tude to allow for the effects of the red-shift. It will be seen that this

correction at the present time is actually negligible for all except the

three most distant clusters. The last column in the table gives the

distances to the clusters obtained by the method of calculation to be

discussed below.

Table III

Cluster
Number
Nebulae

Dia-
Tneter

Cluster

Number
Red-shifts

Measured
Mean Shift

kmfsec.

Average Correction
--Ampg

Distance
Parsecs

Virgo (600) 12“ 7 890 12-6 1-8X10»
Pegasus 100 1 6 3,810 16-6 . . 7-26
Pisces 20 0-6 4 4,630 16.4 , ,

• 7
Cancer 160 1*6 2 4,82Q 16-0 9
Perseus 600 20 4 6,230 16-4 11
Coma 800 1-7 3 17-0 -0-10 13-8
Ursa Major 300 0-7 1 1« -016 22
Leo 400 0-6 1 HqiuIiI -0*26 32

Group I 16 16 2,360 13-8

Group II 21 21 630 11-6
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(c) Nebular distances calculated from apparent magnitudes. Taking

the nebulae which appear in a cluster to be actually physically

associated in a relatively restricted region, it now becomes possible

to calculate the distance to the cluster by comparing the average

observed photographic magnitude for the nebulae therein with the

mean absolute photographic magnitude obtainedfrom nearer nebulae.

In a similar manner, it is also possible to calculate an average dis-

tance for the isolated nebulae which have been grouped together for

purposes of treatment.

In order to make such calculations, Hubble and Humason make

use of two interesting assumptions.

In the first place, it is assumed that the absolute- magnitude to

be expected on the average for any nebula is the same as that pre-

viously obtained for the nearer nebulae. Since the distance to the

Leo cluster actually turns out to be a little more than 10® light

years, this involves not only the assumption that nebulae in different

parts of the universe tend to be alike at a given time, but also the

assumption that the luminosity of a nebula would suffer little change

in 10® years.

In the second place, it is assumed that the apparent luminosity of

nebulae, making allowance for the effect of the red-shift, would be

proportional to the inverse square of their distances, in the manner to

be expected for stationary objects in ordinary Euclidean space.

To make use of these assumptions, we have the equation of defini-

tion for magnitude

m-M = 2-51ogL-2-6logZ, (177.8)

where m and M are the observed and absolute magmtudes for a

heavenly object, I is the observed luminosity of the object, and L the

luminosity which it would have at the standard distance of 10

parsecs. And we have the inverse square law for luminosities

where d and D are the actual and standard distances. Combining the

two equations and setting D = 10, we obtain

logd = 0*2(?n-Jkr)+ l, (177.10)

for the distance d in parsecs in terms of apparent and absolute

magnitude.
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This result may be applied to the photographic magnitudes of

Hubble and Humason in the form

logd — (177.11)

where — is the correction for the effect of red-shift already dis-

cussed. Wilii the help of this equation and the figures for absolute

and corrected apparent photographic magnitudes given by (177.2)

and Table lH, the distances to the various clusters may now be

obtained, as already shown in the last column of Table III, where the

estimated reliability of the result is roughly indicated by the number
of significant figures presented.

A treatment of the relation between luminosity and distance, in

which the assumption of fiat space and stationary nebulae is not

made will be given in § 179. It will be shown there that the calculated

nebular distances d are related in a specially simple manner to the

coordinate f which we have used in one of the later forms (149.6) in

which we have expressed the original formula for the non-statio line

element (149.1).

(d) Relation of observed red>shift to magnitude and distance. In

the case of extra-galactic nebulae, the nearly universal occurrence of

spectral shifts towards the red was made evident at least as early as

1922 by the pioneer work of Slipher,‘|’ on the light from nearby

nebulae; and, by employing the methods for determining nebular

distances discussed above, an approximate linearity of red-shift with

calculated distance out to 2x 10® parsecs was established in 1929 by
the work of Hubble.J With the present much more extended data of

Hubble and Humason, it now becomes possible to obtain a very

satisfactory treatment of the dependence of red-shift on observed

magnitude and hence also on calculated distance.

Since the quantities actually observed are red-shift and apparent

magnitude, we may first consider the values for these quantities as

given in Table HI for the case of the eight clusters and the two groups

of isolated nebulae. The relation between the values given is shown
in Kg. 11, taken from Hubble and Humason, where the logarithms of

red-shift—expressed in terms of velocity v—^have been plotted as

ordinates, and the observed magnitudes are taken as abscissae. The
relation is evidently closely linear, and was foimd to be satisfactorily

t See the table g^ven by Eddington, The Mathematieal Theory of Belativity, 1923,
p. 162. t Hubble, Proa. Nat. Acad. 15, 168 (1929).
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expressed by the equation

logv = 0-2m+0-607, (177.12)

mth an average deviation of O'OSl in logv and 0-16 in m over the

range of interest.

10 20 30

Distance in millions oF parsecs

Pio. 12

With the help of the equation connecting magnitude with distance

given by (177.10), we can also examine the relation between red-shift

and calculated distance. This is shown in Pig. 12, where the red-

shift is again expressed in terms of velocity. The dots near the origin

represent the data for nearby individual nebulae, and the circles

represent the data given in Table III.
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The direct relation between red-shift and calculated distance is

seen from this plot to be closely linear, and by combining equations

(177.11) and (177.12) and inserting the value for = — 13*8 can

be expressed in the form

V

d
6-68x10-*

km./sec.

parsec
' (177.13)

For our later purposes, it will be more useful to express the red-shift

in terms of fractional change in the wave-length. We then obtain

^=l-86xl0-»d (177.U)
A

with the distance d in pwraecs^ or

^ = 6-71xl0-w<f (177.16)
A

with d expressed in light years. It is believed that the uncertainty in

the final result is definitely less than 20 per cent, and probably not

more than 10 per cent.

In considering the significance of this remarkable discovery of a

linear relation between red-shift and distance, it is pertinent to in-

C[uire into the constancy of the red-shift found for different nebulae

in the same cluster. The Coma cluster may be taken as an example,

smce it shows a considerably wider range in red-shift than any of the

other (nearer) clusters where more than one measurement has been

made. At the time the data in Table HE were assembled by Hubble

and Humason, the red-shifts for four nebulae in this cluster had been

measured. Three of these nebulae gave the values 6,700, 7,600,

7,900 km./sec., with a mean of 7,600 km./sec. when corrected for

solar motion. The fourth nebula gave the value 6,000 km./sec. and
was excluded from the treatment on the assumption that it was a

superimposed object not belonging to the cluster. Since that time

Humason has obtained the red-shifts, 6,600, 6,900, 6,900, 7,000,

8,600 km./sec. for five additional members of the cluster. The total

range of 1,900 km./sec. may be somewhat exaggerated since each

measurement depends on a single spectrogram with the small dis-

persion of 876 A. per millimetre.

It is also of interest to inquire into the constancy of the fractional

red-shift for different lines in the light from the same nebula. Por
this purpose Dr, Hubble has kindly placed at the writer’s disposal
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data for ten lines in the speotrum of N.G. C. 1276 inthePerseus cluster,

having unshifted values ranging from A = 3,727 to A = 5,007. The

maximum and minimum values for SA/A occur at A = 4,363 and

A = 6,007 and differ by about 14 per cent, of their mean. Both of

these lines, however, are labelled ‘poor’. For the first and last lines

in the speotrum labelled ‘good*, occuning at the much more widely

separated positions A = 3,727 and A = 4,861, the values of SA/A differ

by only about 3 per cent, of their mean. Within the limits of

accuracy of the present data the values of SA/A may be regarded as

independent of A.

(e) Relation of apparent diameter to magnitude and distance.

Assuming ordinary Euclidean space, populated with stationary nebu-

lae all of which have the same actual dimensions, it is evident that the

apparent diameters of these objects as measured by the subtended

angle S0 could be taken inversely proportional to their distance d in

accordance with the equationf
const.

,

(177.16)

and by combining this expression with the relation between distance

and magnitude given by (177.10), we obtain

logSe = -0-2m+c, (177.17)

as a relation connecting the two immediately observable quantities

apparent diameter and apparent magnitude, where c is a constant.

In applying this equation to actual observations, it was found by

HubbleJ that the value of c, although reasonably constant for nebulae

of any given type, had different values as might be expected for

different types of nebulae. Nevertheless, the values do not vary

greatly, arid in the case of regular nebulae show an interesting de-

pendence on the sequence of types of elliptical, spiral, and barred

spiral forms which can be distinguished. By reducing all the nebulae

to a standard type^ it then became possible to correlate all the available

data as shown below in Fig. 13, where the logarithms of apparent

diameter are plotted as abscissae and the total visual magmtudes of

the nebulae as ordinates. The two highest points on the plot are for

the Magellanic clouds. The equation for the representative line is

log 80 = -0*2m+2-6, (177.18)

f For the angles and distances under consideration there is no need to distinguish

between the subtended angle and the corresponding chord,

t Hubble, Aetrophys. Joum, 64, 321 (1926).
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where BO is the maxinium apparent diameter in minutes of arc and

m is the observed visual magnitude. The equation applies of course

only after the reduction to a standard type.

The correlation shown by the above figure is sufficient to confirm

our general idea as to the extra-galactic position of the objects con-

sidered, A treatment of the relation between luminosity and apparent

Pig. 13

diameter where the assumption of flat-space and stationary nebulae

is not made will be given in § 180.

Equation (177.16) provides of course an alternative method for the

determination of nebular distances, using apparent diameters instead

of apparent magnitudes. In practice the method is complicated,

however, not only by the presence of a wide variety in form, but also

by the fact that determinations of apparent diameter are much more

dependent on length of photographic exposure than those of apparent

magnitude, owing to the high luminosity of the central regions of

nebulae.

(/) Actual diameters and masses of nebulae. The actual diameters

of nebulae can be calculated from their apparent diameters and dis-

tances. The figures of Hubble for the mean maximum diameters for

diSerent types of nebulae are given in Table IV.
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Table IV

Type
Diameter
m parsecs Type

Diameter
inparsecs

Elliptical Nebulae
360

Normal Spirals

s. 1,450
430 Sx 1,900

B. 600 s. 2,600
•B* 690 Barred Spirals

B. 700 SB. 1,280
B* 810 SB^ 1,320

B, 960 SB,
Irregular Nebulae

2,260
B, 1,130 1,600

These figures would have to be diminished by about 16 per cent, in

order to allow for the new zero point of the period-luminosity rela-

tion for the Cepheids. It is to be emphasized, however, that the

values obtained are dependent on exposure time and must not be

taken as definite. Present estimates! of the diameter of our own
system as outlined by the globular clusters are of the order of 20,000

to 60,000 parsecs- Objects tentatively identified as globular clusters

have recently been found in the Andromeda nebula by Hubble,! and

it seems probable that our own galaxy and the Andromeda nebula

are of approximately the same size.

Estimates of the masses of nebulae may be made by combining

figures for actual diameter with those for velocity of rotation deter-

mined with the spectroscope, by making the assumption of orbital

rotation around the nucleus. They may also be obtained by Opik’s

method of assuming the same coefficient of emission for the material

in the spirals as in our own galaxy. Using the somewhat meagre

data available, Hubble § estimates

m = (6to 10) X 1080 (177.19)

as a reasonable value for the mean mass of the nebulae, where the

mass of the sun is 0 = 1-983 X 108® grammes. (177.20)

(gr) Distribution of nebulae in space. Assuming ordinary Eucli-

dean space populated with a uniform distribution of stationary

nebulae, it is evident that the number of nebulae JV to be expected

out to any distance d could be taken as proportional to the cube

t See Stebbina, Proc. Nat, Acad, 19, 222 (1933).

t Hubble, AsiropJiya. Joum, 76, 44 (1932).

§ Hubble, Aatrophya, Joum, 79, 8 (1934),
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thereof, in aocordaoice with the equation

N = const, xd®; (177.21)

and by oombining this expression with the relation between distance

and magnitude given by (177.10), we obtain

logi\r = 0-6m+C, (177.22)

where m is the limiting magnitude considered and (7 is a constant.

In applying this equation to actual observations, two interesting

phenomena are encountered.

In the first place, there appears to be a practically complete lack

of any extra-galactic nebulae at all in the plane of the Milky Way, the

‘zone of avoidance’ being somewhat irregular in shape but of the

general order of 16° in width. The explanation of this phenomenon is

doubtless to be found in the presence of a layer of obscuring material

in our own galaxy. This explanation is strengthened by the presence

of known clouds of materialm the MilkyWaywhich are even sufficient

to obscure all but the nearer stars in our own system. The explanation

is still further strengthened by data of Hubblet which show that

nebular counts increase between the zone of avoidance and the

galactic poles in the manner to be expected if the nebulae are actually

seen through a layer of obscuring material.

The second phenomenon of interest is the irregularity in the density

of nebular distribution, which is certainly found, unless sufficiently

large ranges in depth and angular area are chosen for the individual

coimts. This is in any case partly due to the tendency for nebulae to

be found in clusters. Thus, as emphasized by Shapley and Ames, % the

total number of nebulae observed out to magnitude 13 is twice as

great in the northern hemisphere as in the southern hemisphere. This

difference, however, can be entirely ascribed to the presence of the

populous Virgo cluster in the northern hemisphere within that range

of magnitudes. In addition to such effects of clustering, Shapley§
finds out to magnitude 18*2, after correcting to uniform conditions,

an excess for nebular counts m the northern as compared with the

southern hemisphere. Hubblef finds, however, out to magnitude
20 no such difference between the two hemispheres.

Making due allowance for the obscuring effect in the MilkyWay and

t Hubble, Astrophys, Joum, 79, 8 (1934).

X Shapley and Ames, Annals Harvard Observatory, 88, 43 (1932).

§ Shapley, Proc. NaU Acad, 19, 389 (1933).
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the lack of tuaiformity corresponding to insufficient ranges in depth

and area.Hubblet finds that the distribution of extra-galaotio nebulae

can be reasonably represented by an equation of the above form

logi\r = 0*6m-9-12, (177.23)

where N is the number per square degree, and m is title corrected

apparent photographic magnitude.

A treatment of the density of nebular distribution which does not

involve the assumption of flat space and stationary nebulae will be

given in § 181.

(A) Density of matter in space. Making use of the best estimates

now available for the mean mass of the nebulae and their density of

distribution, Hubblef takes

p = (1-3 to 1-6) X 10-50 gm./cm.5 (177.24)

as an estimate for the averaged out density in space of the matter

which composes the extra-galactic nebulae.

This is of course a lower limit for the actual density of matter in

space, since we do not now know how much other matter may be

present in the form of dust, gas, or moving particles associated with

cosmic ray phenomena. Hubble estimates that the density of extra-

galactic dust might be a thousand times the figure given above with-

out having as yet been detected.

In addition to matter there is an unknown amount of radiation

present in intergalactic space, including that which has come from

the nebulae themselves and that which may be associated with cosmic

ray phenomena. A uniform distribution of black-body radiation with

a temperature of about 19° absolute would have a density of IQ-®®

gm./cm.5

In view of the possibilities for other material besides the nebxdae

to be present in space, it is possible that the actual homogeneity of

distribution may be much greater than would be concluded from the

tendency for nebulae to occur in clusters.

For our later purposes, it will be advantageous to re-express

(177.24) in the relativistic units of § 81. Doing so we can write

Q w
1 A—30

= 1^9 >^i0.8
1-88 X 10-« (177.26)

or changing to light years as the unit of distance

Snp cn l-7xl0-*i(yrs.)-®

Hubble, Aslrophys. Joum. 79, 8 (1934).

(177.26)



462 APPLICATIONS TO COSMOLOGY §178

178. The relation between coordinate position and luminosity

We must now turn to the interpretation of the foregoing observa-

tional data with the help of our non-static models. In the next few

sections it will first be necessary to derive a number of relations which

will facilitate a comparison of the properties of such models with the

data available, and a unified presentation of the correspondences

between the behaviour of the model and the observed phenomena in

the actual universe will have to be delayed imtil § 185.

In the present section we shall consider the relation between the

coordinate positions of nebulae and the observed luminosities which

would be expected on the basis of a non-static homogeneous model.

In carrying out the actual treatment, it will prove simplest not to

use the line element in the first form that was obtained

[
1+*

but in the later form

,
d<l>^)+dt^ (178.1)

+P de^ +fhmW cl-dyA (178.2)

which was obtained in § 149 by introducing the transformation

(178.3)

Since this equation of transformation involves none of the coordinates

except r, it is evident that all of our previous expressions, for example

those for density and pressure, which do not depend on r, will be

unchanged.

To obtain the desired relation between coordinate position and

observed luminosity,! it will be simplest at the start to take the nebula

as located at the origin of coordinates and the observer at the given

coordinate distance of interest f, both having no motion relative to

the spatial coordinates in use, and hence in accordance with our

previous considerations both permanently at rest with respect to the

matter in their immediate neighbourhoods. As the definition of the

observed luminosity Z, we may take the rate which the observer finds

for the energy received from the nebula in unit time and per unit

area, using of course his own proper measures, and assuming no

absorption between him and the nebula.

t Tolman, Proc, Nat, Acad. 16, 611 (1930).



§ 178 COORDINATE POSITION AND LUMINOSITY 463

To imdertake the calculation of this luminosity, let ti and be

the respective times for the departure of light from the nebula at the

origin and its arrival at the observer at the coordinate distance r. In

accordance TPith the expression for the velocity of light that corre-

sponds to the line element (178.2), we can relate these two values of

t to the distance travelled by the equation

I

r

=/
ti 0

df

By differentiation—since the limits of integration of the right-hand

side are constant—we then obtain

^ = e^ta^-ox) (178.4)
oil

as an expression which connects the time interval between the

departure of two electromagnetic disturbances from the source and

the time interval 8<2 between their arrival at the observer with the

values of g{t) for the model, and at times and

Applying this result to the time interval between successive wave

crests which leave the nebula, noting that our coordinate time t agrees

with proper time both for the nebula and for the observer, we may
evidently write

= eltot-oJ (178.6)
A v+ov

as an expression which relates the wave-length A and frequency v of

light leaving the nebula with the shifted values (A+SA) and (v+8v)

which it will exhibit to the observer. The expression agrees of course

with our original treatment of the Doppler effect as shown by com-

parison with (155.7).

Furthermore, by applying the result given by (178.4) to the time

interval between successive photons which we can regard as carrying

energy away from the nebula, we obtain

h (178.6)

as a connexion between the total rate Zi at which photons leave the

nebula, and tlieir total observed rate of arrival Z2 at the surface around

the origin defined by the coordinate distance f.

Finally, moreover, it is evident, from the form of the line element
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(178.2), that we may write

Ao = 477fV», (178.7)

as an expression for the total proper area of this bounding surface

defined by r through which the photons pass at time

Hence making use of these last three equations, and taking Jiv^ as

the mean energy of the photons that leave the nebula, it is evident

that we can now write

i7rfV»\A+8A/
(178.8)

as the desired expression for the observed luminosity of the nebula as

defined above.

This result has been derived for simplicity taking the nebula as at

the origin of coordinates and the observer at the coordinate distance

f. It has been shown, however, in § 149 (c) that the transformation to

a new system of coordinates, having the same form of line element as

given by (178.2) but having the observer at the origin, would place

the nebula at the coordinate distance r. Hence we may regard (178,8)

as applying equally well when the observer is at the origin and the

nebula at f

.

This now makes it easy to compare the observed luminosities for

different nebulae which have different coordinate distances r but

which are observed at the same time at the origin. Taking the

intrinsic luminosities and hence and as being the same for the

different nebulae considered, we can immediately wi*ite from (178.8)

V Yi+SA/A)*'*
(178.9)

for the ratio of the observed luminosities of two identical nebulae

located at the coordinate distances r and f', and exhibiting the frac-

tional red-shifts 8A/A and SA'/A' at the origin.

Introducing the transformation equation (178.3), this result can

also be expressed in terms of our earlier coordinate r in the form

Z _ (i+r^/4iZg)^ (l+8A7A-y^

V fMl+r'2/4iZg)2 (^1+8W*
^ ^ ^

It is the increased complexity of this form as compared with (178.9)

which recommends the use of the coordinate system (f, 6, t) for our

present considerations instead of the original system (r, fl,
(f>,

t) which

was used in deriving the line element.
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la obtaining these relations between luminoaity and coordinate

position, itwill be noted thatwe assume, in addition to ahomogeneous

model, a constancy in the mean intrinsic luminosities of nebulae over

the time intervals of the order of 10® years which will be involved in

actual applications.

By solving (178.9) for the coordinate positions of nebulae f in terms

of their luminosities I, we can evidently rewrite the result in the form

const./ A \

179. The relation between coordinate position and astrono-

mically determined distance

With the help of the relation between luminosity and nebular

position given by (178.9), we can now readily determine the relation

between coordinate positions f and the computed distances- d given

by Hubble and Humoson. To do this we must first replace luminosi-

ties by magnitudes, owing to the use of this latter quantity in the

computations made by astronomers. Solving (178.9) for the ratio

f to f' between the coordinate positions of two nebulae and taking

logarithms we can write

logr„o-61og|'+log’.-y^'. (179.1)

and introducing the definition of magnitudes in the form

m—m' ~ 2-5 logy,
V

the above can bo written in the form

log|; = 0-2(mj-mi)H-logW^^/^., (179.2)

where 7rif, and r/i/' are the observed bolometrio magnitudes, in agree-

ment with the definition which we have given for luminosity in the

preceding section.

To compare this expression with that used by Hubble and Huma-
son, wo must now change to photographic magnitudes by introducing

the empirical relation between these two kinds of magnitude given by
(177.3), Doing so, wo obUiin

log^; 0-2{vipg-A7nr-(HJ)-{Cl)-mpg+Aml.+

+(///)'+ (C/)'}-i-log (179.3)

H h3695,11
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Taking f' as the coordinate for a nebula at the standard distance of

10 parsecs, and for convenience choosing the mesh system so that we
can then put f' == 10, it is evident—since the red-shift and its effects

are negligible at that distance—^that the above can be rewritten in

the form

(179.4)

where has been replaced by the absolute photographic magnitude

Noting, however, in accordance with (177.4) and (177.6), the

expression for taken by Hubble and Humason as the effect of

the red-shift on photographic magnitudes, this result can again be

rewritten in the form

logf == 0'2(mp^-Am^—Jf^^)4-1—0-51og (179.6)

which can be immediately compared with the expression (177.11)

logd = 0*2(mp^—Am^^—Jfp^)+1 (179.6)

used in the calculation of distances by Hubble and Humason.

As a consequence we may now write

f (179.7)

as the desired relation between the distances d to the nebulae as com-

puted by Hubble and Humason and the coordinate positions f which

would be assigned to them on the basis of the line element (178.2),

provided we choose the coordinate meshes for convenience so that

f = 10 at the standard distance of 10 parsecs at the time of interest.

The appearance of the factor ^(l+SA/A) in these expressions is due

to the fact, that the expanding model delSnitely assigns a Doppler

effect as the cause of the red-shift and hence allows for a change in the

frequency of arrival as well as in the intrinsic frequency associated

with the photons which reach the observer, while the considerations

of Hubble and Humason purposely allowed only for the latter of

these two effects. The non-appearance of terms in J2§ is due to

the proi)erties of the coordinate system (f
, 0, t) which we have

selected.

Since for the Leo cluster, the farthest yet examined, the difference

between f and d would only be about 3 per cent, we can regard these
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quantities as the same within the observational error until further

data are available.

180; The relation between coordinate position and apparent

diameter

We may next consider the relation between the coordinate positions

of nebulae and their apparent diameters,f again using the line element

in the form

d8^ = — df^ +P de^ d<l>^]+dt^. (180.1)

For the purposes of the discussion we shall take the observer as

permanently located at the origin of coordinates and the nebula at

the coordinate distance f. Furthermore, we shall take and as

the times when the light which is observed leaves the nebula and

arrives at the origin, this light travelling radially inward in accordance

with § 164. Taking the diameter of interest as lying in the direction

of dd, we can then write, in accordance with the form of the line

element,
81q = 86, (180.2)

as an expression for the proper diameter of the nebula at the time

when the light is emitted, where gi is the value of g{t) at that time,

and 88 is the angular diameter for the nebula which will be observed

at the origin.

Assuming 81q actually the same for the different nebulae which are

being observed at the same time at the origin, we can then rewrite

(180.2) in the form
86 =

f
(180.3)

since the value for g(t) at the time of observation will be the same

for these different nebulae. And introducing the expression for the

red-shift (178.6), this can he rewritten in the form

80 = const.

f
(180.4)

By combining (180.4) with the relation (178.11) between observed

luminosities and coordinate position wo can write

Z = const.
Vt

(180,6)

as a relation between observed diameters, luminosities, and red-shift,

t Tolman, Proc. Jfat. Acad. 16, 611 (1930).
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which ooTild provide a direct empirical test of the hypothesis that

the red-shift is due to an actual expansion.

By combining (180.4) with the relation (179.7) between coordinate

position f and astronomically determined distance d, we obtain

80 = const.

~~d~
(180.6)

as compared with the earlier expression (177.16) obtained by assum-

ing stationary nebulae in ordinary Euclidean space.

181 . The relation between coordinate position and counts of

nebular distribution

We now turn to a treatment of the number of nebulae to be ex-

pected, from counts made out to a given coordinate distance f, on
the assumption of a homogeneous expanding model. To obtain this

we may let be the number of nebulae per unit proper volume at

some selected initial time when g{t) for the model has the value

In accordance with the expression for proper volume corresponding

to the form of the line element (180.1), it is then evident that we may
write for the number of nebulae between the coordinate positions

rand f+dr “ = Vd-W' (181.1)

We have shown, however, in § 153 that particles at rest with respect

to the spatial coordinates (r, 0, ^) and hence also with respect to

(f, 0, </>) would remain permanently so. Hence there will be no loss

or gain by a net passage of nebulae past the boundaries f and f+cif,

and (181.1) will give for all times the number of nebulae in the selected

coordinate range. Hence we may now write

as a general expression for the change in nebular counts as we go to

greater and greater coordinate distances r. Furthermore, from the

relation of coordinate position to luminosity and red-shift given by
(178.11), it is evident that this expression could pro'«dde means for a

direct empirical test of the actual homogeneity of nebular dis-

tribution.

Knowing the value of which can be real, infinite, or imaginary,

equation (181.2) can be integrated to give the total count out to any
given value of f. From our later information as to the possible limits
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for i2§, see (183.14), we shall find that f®/i^ could hardly he greater

than 2 per cent, even at the distance of the Leo cluster at some 10®

light years. Hence it will be sufficient for many purposes to take

N = const, f®, (181.3)

as an expression for the expected number of nebulae out to any given

value of f so far considered. By substituting equations (178.11),

(179.7), and (180.4), this result can also be written in the variety of

forms N = const, f®.

N — const, d®/—^—V,
\x+sxj

’

^ _ const. / A \®

\hJx)
’

„ _ con^. /A+8A\®

X )’

(181.4)

for the expected number of nebulae out to a given value of the

coordinate f, astronomically determined distance d, bolometric

luminosity I, or apparent diameter 80, where 8A/A is the observed red-

shift for nebulae at that limit.f The second of these expressions is to

be compared with the earlier expression (177.21) obtained by assum"

ing stationary nebulae in ordinary Euclidean space.

182. The relation between coordinate position and red-shift

We may next consider the relation between coordinate position

and observed red-shift, still using the coordinates (f, 6, t) which
have boon found specially convenient for the correlation of astrono-

mical data, and which correspond to the line element for the homo-
geneous model when written in the form

-t: — d0® -|-f®Bin®0 (182.1)

In accordance with the general treatment of the Doppler effect for

homogeneous models given in § 155 (see equation 155.8), or the inci-

dental treatment given in § 178 (see equation 178.5), we can write

- 1 (182.2)
A

t Tb(» poHHibility of uHiiig hucIi oxprosHioriH for nobiilar ooiinl.s to tost tho Einateirii-

(io Sittor inoilol with /^3 oo uii(i A 0, was prosoiitod in ii locture given by Professor
Kinstoin at tho (California Inatituto of Toohnology in tho winter of 1032.
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as aol expression for the fractional red-shift in the wave-length of

nebular light as observed at the origin, where is the value of g{t)

for the model when the light leaves the nebula at time and gfg is its

value when the light is observed at the origin at time ^2-

In applying this equation to observational data, it is evident that

^2 can be treated as a constant, since we actually observe different

nebulae at our own location, which we take as the origin, all at the

same time. The quantity g^, however, will have to be regarded as a

variable since by going to more and more distant nebulae we go to

earlier and earlier times of emission and hence to changed values of

g^. It is hence evident that the relation between red-shift and nebular

distance will depend on the form of the relation between g and t.

In order to have a definite expression for the form of g{t), we could,

of cotirse, select a model having some one of the various possible

types of time-behaviour discussed in Part II of this chapter, and then

use the corresponding expression for g{t). Such a selection, however,

would have to be made at the present time mainly on the basis of

metaphysical predilections. For our present purposes, it will be

better to adopt a much more phenomenological point of view and

endeavour to obtain what information we can as to an appropriate

form for g{t) by comparison with observational data.

To undertake this it will be most convenient to regard g{t) as

developed into a power series in t around the present time ^3 = 0,

which we take for convenience as the starting-point for temporal

measurements.f This form of development seems reasonable in view

of the obvious rationality of taking g{t) as a continuous function, and
in view of the known approximate linearity of red-shift with distance.

We may then write g{t) a;S the series

g{t) ^ (182.3)

where fc, J, m,..., are constant coefficients, the factor 2 has been intro-

duced to avoid later fractions, and higher terms will for the present be
neglected.

The omission from the series of a constant term in evidently

involves no loss in generality, and by giving g{t) the convenient value

^2 == 0 at the present time ig = 0, makes the line element (182.1)

reduce to the special relativity form in the neighbourhood of the

origin and at the present time, and makes it possible to rewrite the

t Tolman, Proc. Nat. Acad. 16, 409 (1930).
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expression (182.2) for the red-shift observed at the oii^ in the form

— = = e-(Wi+B!+7n«+.0_l^ (182.4)
A

where is the time in the paet when the observed light left the

nebula.

To compare with astronomioal data, however, it will be more con-

venient to have the red-shift expressed, not in terms of the time of

light emission from the nebtda, but as a power series in terms of the

coordinate distance f to the nebula in question. To obtain such an

expansion we shall need the values at f = 0 for the successive

derivatives of 8A/A witii respect to f

.

For the first derivative we can write in accordance with (182,4)

dr dtx df
(182.6)

where dtjdf is the change in the time with change in the coordinate

position of the nebula considered. And in accordance with the expres-

sion for the vdocity of light which corresponds to the fine element

(182.1) we can evidently write therefor

tfli ei"!

df
-

Vli-W)’
(182,6)

which on substitution into (182.6) gives us

d /8A\ _ 1 1 dgrj

\A )

~
2 V(T-j®/^) dtj_

(182.7)

in agreement with our previous equation (166.6).

By similar treatments we may obtain the higher derivatives of 8A/A.

Doing so, introducing the expression for ff(t) given by (182.3), and

tji.lfing the values for the derivatives at r = 0, we then finally obtain

[d/dXV]

WiLo
~

Ml
-44-2Ai+6«i, (182.8)

Ldr»\A/Jp„o ^

where it is specially pleasurable to note that terms depending on th^
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spatial curvature corresponding to do not appear until the third

derivative.

With the help of these expressions we may now express the red-

shift as a function of the coordinate position of the nebula in the form

of the Maclauiin’s series

^ . (182.9)

In applying this result to the observational data for the actual

universe, taking the light year as the unit of distance, we may
evidently put

fe = 6-71 x IQ-i® (yrs.)-i (182. 10)

for the coefficient of the first term in the series, in accordance with the

observations of Hubble and Humason as given by equation (177.16)

where d may be replaced by f within the limits of observational error.

furthermore, since the red-shift is actually found within the limits

of error to increase approximately linearly with f out to the Leo

cluster at about 10® light years, it is evident that we can place some

restriction on the range of permissible values of the coefficients of

the following terms. If we take the plot of observed red-shift against

distance given by Fig. 12, as indicating that the deviations from a

simple linear formula SA/A = hr should not exceed 1 per cent, at 10^

light years, should not greatly exceed 3 per cent, at 3 X 10’ light years,

and should not exceed 1 8 per cent, at 10® light years,we are led to assign

lZl<5xlO--i®(yrs.)-2, (182.11)

and < 5x 10“®’ (yrs.)"® (182.12)

as reasonable upper limits for the values of these coefficients without

reference to sign.

These upper limits would produce the following percentage devia-

tions from the simple formula SA/A = at the various distances given.

Table V

Distance in
light years

1X107 2x107 3x10’ 6X107 10x107

Term in r®

Term in f
0.9% 1-8% 2-6% 6-3% 8-8%

Term in f®

Term in r
0-1% 0-4% 0-8% 3-2% 8-8%
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183. The relation of density to spatial curvature and cosmo-
logical constant

We turn now to a comparison of the estimated density, as given by

(177.26), for the matter in the universe in the form of nebulae

Sttp == 1-7 X 10-2^ (yrs.)-a (p = iQ-ao gm./cm.s), (183.1)

with our expressions for pressure, total density, and density of matter

in the model as given by (160.7), (160.8), and (160.10). In terms of

our series expansion for g{t), as given by (182.3), these expressions can

be written as applying at the present time = 0 in the form

(183.2)

^Poo — (183.3)

and 8’ifm = 4+12Z+12F-4A, (183.4)
'0

where the density of matter is taken as approxi-

mate basis discussed in § 150, which would be entirely valid if we

could regard the pressure in the model as due solely to the radiation

present.

These expressions are a little diflScult to handle owing to our

meagre observational information and to the simultaneous appear-

ance of the two quantities and A concerning which we have as

yet no information. Nevertheless, since the pressure in the model

cannot be less than zero, and the density of matter cannot be less

than that actually seen in the form of nebulae, we may write

and

0 <

1-7X 10-« < 4i+ 12Z+12A3-4A,
Xlo

(183.6)

(183.6)

and by eliminating first A and then J2§ from those inequalities and

combining with our previous knowledge as to the value of k and the

limits imiiosed on I as given in the preceding section, we can readily

obtain as pretty reliable lower limits

-IXlO-'B < *

-2x10-18 < A.and

(183.7)

(183.8)
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The tipper limits for these quaatities are more uncertain. It would

seem reasonable, however, to assume that the total density of matter

and radiation present could hardly be greater than 1,000 times the

value given for the density of matter in the nebulae which would

give us o
< 1-7 X 10-18. (183.9)

ito

And since radiation has the highest possible ratio of pressure to

density we can also evidently write

-4- 12i-9*s+3A < 4+ (183.10)
Mq ICq

and by using these inequalities together with our previous informa-

tion as to ik and I can set the upper hmits

4<2-lxl0-« (183.11)
-Ko

and A <6-7x10-“. (183.12)

Furthermore, Tnaking use of the information 'we now have as to Jc,

I, and (l/22g) in connexion with our previous expression (182.12), we
now find that the limits form itself would be given by

— 6-3 X 10-2’ < TO, < 6-2 X 10-2’. (183.13)

For convenience of reference we may collect the informatiotn

obtained in this and the preceding section as to pernoissible values

in the form ^ ^ jq_io (yrg.)-i

-6X10-“ < I < 6xl0-“(yrs.)-2

—6-3x10-2’ < OT < 6-2xl0-?’(yrs.)-»

-1 X 10-“ < 4 < 2-1 X 10-“ (yrs.)-2

(183.14)

-2xl0-“< A < 6-7x10-“ (yrs.)-2.

It is interesting to note that the range of possible values given by

(183.14) is such that we should not be justified in assuming that the

original de Sitter fine element was necessarily a good approximation

for the behaviour of the actual universe. In accordance with (142.10),

the de Sitter line element is a special case of the line element (182. 1

)

now being used, which can be obtained by taking l/iBg, Z, m, ... equal

to zero. In the expressions for density and pressure, however, terms
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oi the order A and l/JSg occur additively amd it is not evident from

(183.14) that the latter could he neglected in compariBon with the

former.

184. The relation between red -shift and rate of disappearance
of matter

In § 162 we have derived an expression for the fractional rate at

which the mass of matter in a non-static model would be disappearing

as the result of emission of radiation from the nebulae, or of processes

of synthesis or annihilation of matter in intemebular space which

might be leading to the production of a radiational component of the

cosmic rays. The expression obtained (152.7) was an approximate

one to the extent that the density of matter was taken as the total

density /Ogo minus the density of radiation which was assigned the

value 3po, but was otherwise exact.

Using our present series expansion for g{t)

g[t) = 2(*<-f-Z<2-t-mt»-l-...) (184.1)

we can now write the previous expression (162.7), for the rate at which

mass would be disappearing, in the form

}^m
M dt

_ fiTPoo+fyo

Pm
(184.2)

where higher coefficients in the series than k, Z, m would in any case

not occur. It is evident that this result might imply some restriction

on the values of I and m in addition to those already foxmd.

We may first consider the case of a perfectly linear expression for

g{t) with I and m equal to zero. In accordance with (182.9) and the

limits which we have found for (l/J?©) this would also imply a very

closely linear expression for the red-shift as a function of distance.

Under these circumstances with

i m = 0, (184.3)

the rate of decrease in the mass of matter present would at least be as

great as
1 dM _
M di

^ ’ (184.4)

since the numerator of the first term on the right-hand side of

(184.2) can in any case not be less than the denominator.

Giving k its known observational value, however, this would imply

a very rapid rate of decrease in the mass associated with matter.
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This is illustrated by the following tablet in which the value of Zk is

compared with the known rates for the loss of mass by the emission

of radiation from different types of stars.

Table VI

Oeneration of Energy by Typical Stars

Star
Ergs per Gramme

per Second
{Yra

H.D. 1337 A 16,000 5-3 X 10-10

B.D. 6" 1309 A (11,000) 3-9x10-10
V Puppis A 1,100 3-9x10-11
Betelgeux (300) 11 X 10-11

Capella A 48 1-7x10-11
Sirius A 29 1-0 X 10-1*

Sun 1-90 6-6xl0-i«
oL Centauri B 0-90 3-2X10-1*
60 Kruger B 0*02 7-0 X 10-1*

Zk 60,000 17-1 X 10-1®

Hence unless we should be willing to allow the possibility of a

higher average rate for the general transformation of the mass of

matter into radiation, even than that observed in the star H.D. 1337A

which at present has the highest known ratio of luminosity to mass,

we should have to conclude that the dependence of g{t) on t could not

be strictly linear. It is conceivable, nevertheless, that a high rate of

transformation of internebular matter into radiation might be con-

nected with the production of cosmic rays.

It is interesting to note that the above conclusion, that g(t) could

not be an exactly linear function of i, also implies in accordance

with (182.9) that the fractional red-shift 8A/A could not be expected

to be an exactly linear function of the coordinate distance to the

nebuQae f

.

In addition, it is of interest to realize that om’ present considera-

tions might also imply a further complication in regarding the original

de Sitter line element, for an empty model, as providing an approxi-

mately satisfactory representation of the phenomena of the actual

universe. To see this, we note from (142.10), as remarked in the pre-

ceding section, that the de Sitter line element is a special ca,se of the

line element (182.1) now being used, which can be obtained by taking

(l/jRg) as equal to zero and setting g{t) exactly equal to 2kt, With

•f
The first two columns ore from Jeans, Astronomy and Cosmogony.
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linear, however, we should have the exceedingly high rate of

annihilation given by the last line in Table VI for that matter which

must be regarded as actually present, even though we use an empty
model as our first approximation.

Having seen that the values of I and m cannot be taken as exactly

zero unless we are willing to allow an extraordinarily high rate of

transformation, we may now return to (184.2) and examine into the

values of I and m which would be necessary to permit as low a rate

of transformation as might be demanded by observational considera-

tions. Since it is safe to assume that the density of radiation in the

universe could hardly be more than of the same order as the density

of matter, it is evident from (184.2) that we could reduce the rate of

transformation down to the value zero

M dt
= 0,

if we are allowed values of I and m large enough so that we could

(184.6)

Referring to (183.1), however, we should hardly wish to set 87rp„j

greater than a thousand times the observed minimum corresponding

to the mass of the nebulae, which would give us

+^ Ci 1-7 X 10-1®, (184.6)
fC

and in accordance with (183.14) we can take

41 <2x10-18, (184.7)

and ^<6-6x10-1’, (184.8)
iC

OS upper limits without disagreeing with the observed extent to which

the red-shift has been found linear with distance.

Hence, we can coricluclo that the approximate equality (184.6) could

bo satisfied, and as low a rate be assigned to the transformation of the

matter in our model into radiation as may be found empirically

necessary without controverting any observational data so far estab-

lished. The desirability of more precise information as to the actual

values of I and rn is of course evident.
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185. Summary of correspondences between model and actual

universe

This completes the derivation of special relations needed for com-

paring the properties of non-static homogeneous models with the

phenomena of the actual universe, and we may now undertake a

unified presentation of the correspondences which can be established.

In a general way it can be said that there are no essential confiiots

between model and reality, and that the specific correspondences

which can be presented are sufficient to make the model appear quite

helpful in interpreting the behavioru: of the actual universe at least

out to some 10® light years.

To present these correspondences we may write the line element for

the model in the form which we have found convenient

de^ +f^mW (186.1)

where g{t) is expressed by a series expansion around the present

time 1 = 0, and we take ourselves for convenience as located at the

origin f = 0. Furthermore, taking the light year and the year as the

units of distance and time, we may assign in accordance with (183. 14)

as appropriate numerical values to consider in correlating the model

with observational data,
^ ^ ^ jq_io (yrg.)-i

-6xl0-“< I < 6xl0-«(yrs.)-®

—6-3X 10-” < w < 6-2 X 10-2’ (yrs.)-* (186.2)

-1 X 10-1® <i < 2-1 X 10-“ (yrs.)-2
ito

-2 X 10-18 < A < 6-7 X 10-18 (yrs.)'2.

As the first satisfactory feature of the model, we have the spatial

isotropy and homogeneity which it exhibits. This is in agreement

with our present observational findings, which on a large scale show
no outstanding dependence on direction and indicate no preferred

properties for our own location in the universe. With more extensive

information, the change to a non-homogeneous model may become

necessary as will be emphasized in the next section.

As a second feature of the model, we have its agreement with the

findings of Hubble as to the relation between the computed distances

to the nebulae and their apparent diameter and observed density of

distribution. To show this, we have the relation between coordinate
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positioii r in the model and the computed distances d to the nebulae

as obtained by Hubble and Humason

f = dVW(A+SA)}, (186.3)

where 8A/A is the observed red-shift in the light from the nebula under

consideration; and we have—^below at the left and right respectively

—^the theoretical expressions for the observed diameter SO at a given

position and the nebular count N out to a given position, together

with the empirical expressions taken by Hubble as approximately

fitting the observations.

_ const. /A+8A\
~

r \ X J

gg _ const.

d
(185.4)

0

N = const, d®. (186.6)

Owing to the small values of 8A/A and even at 10® light years,

and the approximate character of the observational data, we may
regard the agreement between theory and observation as entirely

satisfactory.

As a third very important feature of the model, we have its un-

strained explanation of the observed red-shift in the light from the

nebulae as due to a mutual recession of these objects. As the theo-

retical expression for this red-shift we have

^ = kr-m+l^^+^kl+my^+... (186.6)

as compared with the empirical expression of Hubble and Humason

^ = M. (186.7)

As shown in § 182, the range in possible numerical values given by

(185.2) for the coefficients of the higher order terms is such, that the

two expressions agree within a reasonable estimate as to the accuracy

of the empmoal formula.

As a fourth feature of the model, we have the conclusion to be

drawn from (186.6) that the fractional rod-shift in the light from any

given nebula should be independent of the particular wave-length

examined. This agrees with the data available as discussed at the

end of § 177 (d).

As a fifth very satisfactory feature, we have the necessary presence
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of matter in the models. The numerical values given by (185.2) are

such that the density of this matter could not be less than the
10”®® gm./om.® which may be estimated as the averaged-out density

of matter actually seen in the form of nebulae, such that the total

density of all matter and radiation could not be greater than 1,000

times this value, and such that the pressure could not be less

than zero.

Finally, as a sixth feature of the model, it has been found that the

numerical values allowed by (185.2) are such, that the rate at which
the mass of matter in the model is decreasing in favour of free radia-

tion could be assigned any value, from zero up to and beyond that for

the star having the highest known ratio of luminosity to mass, as may
be made necessary by further observational information. Thus the

model permits the flow of radiation from the stars, and indeed must
be non-static if this occurs, but prescribes no impossible figure for

the amount of the flow.

In addition to these direct correspondences between the properties

of the model and observed phenomena, it should not be overlooked

that the basis upon which the model has been constructed is furnished

by the relativistic theory of gravitation, which—over smaller distances

than those now involved—^has itself received excellent confirmation.

Furthermore, it may be emphasized again that this theory has in any
case indicated the impossibility of constructing a stable static model
of the universe, so that some red-shift or violet-shift in the light from
distant objects is at least to be expected.

It will be seen from the foregoing, that the degree of correspondence

between the properties of the model and observed phenomena and
the lack of any essential conflict are sufficient to give us con-

siderable confidence in a cautious use of our theory in interpreting

the behaviour of the actual universe.

A number of obvious suggestions present themselves as to further

observational research.

It is of course very desirable to extend the observations as to large-

scale homogeneity as far as possible. The establishment of a signi-

ficant difference between near and far parts of the universe or between
the northern and southern hemispheres, as to density of nebular dis-

tribution, or as to the relation between red-shift and distance would
be very important and if found might provide the empirical basis for

change to a non-homogeneous model.
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A verification of the exact form of the predicted relation (180.6)

between apparent diameters and Inminosities

se
~r, = const.
Vi

(186.8)

would lend strong support to the hypothesis of nebular recession,

since this relation would not necessarily hold with other explanations

of the red-shift. The test would be oompUoated by the difficulties of

handling the data on diameters.

Similarly a verification of the relation between luminosity and
nebular counts provided by the two equations (178.11) and (181.2)

const. / A \ /T oe n\

r

would test both the theory of recession and the hypothesis of homo-
geneous distribution. Both this and the foregoing test might be

complicated when carried to the needed distances by the effect of

intervening obscuration, or by the failure of the hypothesis that

the nebulae have properties which can be regarded as constant over

the time intervals involved. Indeed the main result of the tests might

be to establish the probability of such effects.

Further investigation of the red-shift as a function of distance will

be exceedingly important. At present we do not even know the sign

of the second term in the series expression for SA/A as a function of f

,

and hence cannot say whether the rate of the mutual recession of the

nebulae is increasing or decreasing with time. The answer to this

question might be made possible by the use of the two-hundred inch

reflector now under construction.

More information as to the contents of the universe in addition to

the visible nebulae will also be important. As already indicated, the

presence of intergalactic gas or dust may sometime be detected from

the obscuration that they produce, and increased knowledge concern-

ing the source and nature of the cosmic rays may soon be available.

With more complete information as to the presence of intemebular

material, our limits for the possible values of 1/El ^ might be

considerably narrowed,

(kmeejiiing some of these questions and concerning others now less

9696. U li
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obvious, we can—in the near future—confidently expect increased

observational knowledge. And it is observation rather than hypo-

thesis that must dictate the final nature of our cosmological theory.

186 . Some general remarks concerning cosmological models

In the present section we shall make some general remarks con-

cerning the homogeneity, spatial curvature, and temporal behaviour

t9 be ascribed to cosmological models. In the preceding section we
have emphasized the specific correspondences that can be established

between observational data and the properties of a model appro-

priately constructed in accordance with the principles of relativistic

mechanics. In the present section, on the other hand, we shall be

more impressed by the lack of sufficient observational data to permit

a unique determination of all the characteristics for a reasonably

successful cosmological picture that we might wish to know.

(a) Homogeneity. We may first consider the justification for ascrib-

ing spatial isotropy and hence also—as we have seen in § 148

—

spatial homogeneity to the models that we have investigated, A very

practical justification for this procedure lies in the definiteness and
mathematical tractabihty of the models that we thereby obtain.

And a more real justification lies in the high degree of large-scale

homogeneity actually observed.

On the other hand, from a smaller scale point of view, it is evident

that there is a great tendency for the nebulae to occur in clusters.

Hence the finer details of cosmic behaviour could not in ^y ca«e be
represented by a perfectly homogeneous model. Thus, for example,

it shouldbe clearly appreciated that the lower singular state of exactly

zero radius, which might be thought of as occurring in the case of an
oscillatory time behaviour, must be regarded as the attribute of a
certain class of homogeneous models, and not as a state that would
necessarily accompany an oscillating expansion and contraction of

the whole or parts of the real universe.

Furthermore, even from a large-scale point of view, it is evident

that we have no knowledge as to conditions in the actual universe

beyond some 10® light years. Hence it is entirely possible, that other

densities of distribution, or contraction instead of expansion, may be
present in portions of the universe beyond the reach of our present

telescopes. An investigation of the forces of control which distant

parts of the universe could exert on each other would be very impor-
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taut. It is possible that these forces would not be sufficient to maintain

uniform conditions throughout, a point which has also been empha-

sized in conversation by the writer’s colleague. Professor Zwioky.

The use of homogeneous models must hence be regarded as com-

mendable on grounds of mathematical convenience for obtaining a

suitable &st approximation, as inappropriate, nevertheless, for the

treatment of finer details, and as subject to possible important modi-

fication when data on more distant portions of the universe become

available.!

(6) Spatial curvature. Adopting a homogeneous model as a satis-

factory first approximation, the limits placed on the possible values

of 1/jBg by known observational data are sufficiently wide as shown
by (185.2), so that this quantity might actually be positive, zero, or

negative. Hence we do not now have sufficient information to dis-

tinguish definitely between the three oases of a model which is closed,

open and spatially unourved, or open and spatially curved.

Even if we introduce the special but reasonable assumption that the

cosmological constant A is to be assigned the value zero, we cannot

definitely determine the sign of I/Bq. Making this assumption, the

expression for density could be written in the form

87r/>oo = |5+ 3A2. (186.1)

For SiTpQQ, however, we have felt it necessary to take the range of

possible values from 1*7 x 10“®^ to 1*7 XlO-^®, while 3P has the

approximate value 1x10"^®. It is interesting to see from this,

nevertheless, that I/JJq would have to be negative and the model open,

unless the actual density were considerably larger than that which

can be observed in the form of nebular material.

It is further evident that the known data do not conflict with the

proposal of Einstein and do Sitter to take I/Rq and A both equal to

zero, as discussed in § 164. It is also interesting to note that the

specific Einstein-de Sitter model, which could be obtained by taking

the pressure equal to zero as in equation (164.5), can be shown to

lead to values for g and g such that I and m would lie within the range

given by (185.2) as compatible with the accuracy of the linear relation

between red-shift and distance.

Although wo do not have the necessary observational data to decide

t Compare Tolman, Proo, Nat, Acad. 20, 160 (1934).
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between open and closed models, two remarks of a somewhat meta-

physical character may be made in connexion with the problem. On
the one hand, it might be urged, as has been done at least in con-

versation by Professor Lemaitre, that the hypothesis of a closed and
hence finite model was an ‘optimistic’ one to make, since an infinite

universe could not be regarded in its totality as an object susceptible

to scientific treatment. On the other hand, it might be equally urged,

nevertheless, that there has been nothing in the whole past history

of scientific endeavour to indioate that the field of its investigations

would ever be exhausted. Indeed, the goal of science has always

appeared to present the character of a receding horizon. Hence on

a priori grounds an open model might perhaps seem equally probable.

(c) Temporal behaviour. The observational data as summarized by
(186.2) are also insufficient to make any decision as to the kind of

temporal behaviour that should be ascribed to the model over long

periods of time. We can, to be sure, assert with some confidence that

the universe in our immediate neighbourhood is now undergoing an

expansion. Until we have information as to the sign of the second

derivative of the red-shift as a function of distance, however, we
cannot say whether the rate of expansion is increasing with time as we
might expect for a model which will ultimately arrive in the empty de

Sitter state, or is decreasing with time as we might expect for a model

which is undergoing oscillations.

Indeed, by making the specific hypothesis that the pressure in

the model can be taken as zero, it can be shown that the extreme

cases—of the Lemaitre model (161.11) with A = i?o > 0 which

expands from an original static state, of the Einstein model (163.3)

with A = 0, iZg > 0 which oscillates between a lower singular state

and a maximum, and of the Einstein-de Sitter model (164.6) with

A = 0, jBq == 00 which expands from a singular state—can all three

be adjusted to give a behaviour at the present time which would lie

within the limits which we have assigned as possible for the density

of matter, and for the accuracy of the linear relation of red-shift to

distance. Hence we cannot now distinguish between the various

possible types of time behaviour which were discussed at the end of

Partn of this chapter, and must regard those discussions as present-

ing different conceptual possibilities rather than as immediately

applicable.

We have shown in §§ 163 and 164, for the two cases of the Einstein
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model and the Einstein«de Sitter model, that the elapsed time of the

expansion since the singular state would have to be short, being

given by
. . 4
At <

or (186 .2 )

in terms of our series expansion. Hence for these models the elapsed

time since the singular state could not be much greater than 10® years,

which is of the order of the age of the earth. Furthermore, from the

known value of the red-shift and its approximate linearity, it appears

roughly in general that the major part of the past expansion has quite

probably taken place in a past time of the order of 10® to 10^® years.

In view of the much longer time scale, of the order of 10^® years,

usually regarded as necessary for stdlar evolution, some discussion

of the short time thus probably involved in cosmic expansion is

necessary.

In the first place in connexion with this apparent difficulty as to

time scales,! it is to be emphasized that the highly idealized homo-

geneous models which we have employed can hardly be regarded as

adequate for drawing any exact conclusions as to the precise state of

the actual universe say 10® years ago. Thus, as already mentioned

earlier in this section, it is evident that the unique singular state at

the lower limit of volume from which the expansion would appear

to start in the case of certain models must be regarded as a property

of the homogeneous model rather than a character that could actually

be found in the real universe. Furthermore, since we do not know

the behaviour of the universe at distances beyond our own neigh-

bourhood out to some 10® light years, it is evident that calculations

of the exact time when the expansion for some given model started

cannot be regarded os having a precise application to the real universe,

and wo can merely roughly conclude that the time of expansion for

our own neighbourhood might well be of the general order of 10® to

10^® years.

f It sliould be apprcciatocl that the disagreement as to time scales is not to be

resolved by soino trick of substituting a now time-liko variable in place of our present

coordinate L In acoordonco with § 149 (d), the ooordinato t itself would agreo with

the time inoosuromontH inodo on a natural clock at rest in our own galaxy and hence bo

equally suitable for recording stellar evolution or the approach and recession of other

nebulae.
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In the second place, it is to be emphasized, as has been done parti-

cularly by de Sitter,f that there is no necessity for regarding the

beginning of the expansion as in any sense the beginning of the

universe, and no reason for expecting an identity between the time

scales for stellar evolution and nebular expansion. Indeed de Sitter

would regard the unhomogeneous structure of the nebulae, their high

velocities of rotation, and the apparent date of the birth of our own
planetary system, as all being pieces of evidence in agreement with

a close approach of pre-existing nebulae or galaxies some 10* to 10^®

years ago.

The'difierenoe between the time scales for stdlar evolution and
nebular expansion suggests that no definiteness couldnow be attached

to any idea as to beginning of the physical imiverse. Indeed, it is

difficult to escape the feeling that the time span for the phenomena
of the universe might be most appropriately taken as extending from

minus infinity in the past to plus infinity in the future. The classical

thermodynamic argiunents against such a view must certainly be

somewhat modified in the light of the increased possibilities of be-

haviour provided by relativistic thermodynamics, and would be

subject to even more serious modification if the principle of energy

conservation should fail within the interior of stars as suggested

possible by Bohr.

187. Our neighbourhood as a sample of the universe as a
whole

It is evident from theforegoing that our present data are insufficient

to provide a precise cosmological model which would necessarily

correspond to the actual universe in all regions and over all time

intervals. It is hence best to regard the line element which we have
used for investigating the behaviour of the tmiverse

(foa _ _ea(«+«*+7iiP+...)(
df*

-f*dd*-ff*sin*dd^*)-|-d«*

(
187 .1 )

as a first approximation, suitable for treating events not too far dis-

tant from our own location, at times not too remote from the present.

On the basis of the ideas that we thus gain, it seems reasonable to

oonolude that the expansion of the universe—^for which we find evi-

t de Sitter, Proo. Amsterdam Acad. 35, 696 (1932).
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dence at the present time and in our own neighbourhood—^is a

phenomenon which has progressed during a past time at least of the

order of 10‘ years and which will presumably continue for a com-

parable time in the future. IHirthermore, we are reasonably safe in

believing that the density of nebular distribution and the rate of

expansion will be found to persist, with roughly unchanged values,

perhaps to several tunes the distances of the order of 10^ light years

already investigated.

For the treatment of the whole universe in all its regions and during

all of time we have, nevertheless, no adequate model, and to obtain

ideas as to its complete nature can only rely on the roughest methods

of scientific induction. To apply such methods we must proceed by

regarding that portion of the universe which we have already studied

as a fair sample, but not as an exact sample of the whole at all times

and places.

Having discovered an expanding distribution of nebulae as far as

our telescopes can pmetrate, we may reasonably regard the presence

of matter in relative motion as a typical feature of the universe.

Nevertheless, to ascribe to this matter everywhere the same density

and stage of evolutionary development which we now find in our own
neighbourhood, and to exclude the possibility at all times and places

of motions of contraction which are mechanically as simple as those

of expansion, would be to regard our own present neighbourhood not

only as a fair sample but quite unjustifiably as an exact repUoa of

the whole.

It may seem somewhat ironic to conclude our elaborate treatment

of the properties and temporal behaviour of specific cosmological

models, with words which disparage their applicability to the actual

universe. Their study, however, has certainly informed us as to con-

ceptual possibilities, and has provided a provisional and approximate

theoretical background which has already been successful in corre-

lating a considerable number of the phenomena of the real universe.

As a final remark it is desirable to emphasize the special necessity

in the field of cosmology of avoiding the evils of autistic or wish-

fulfilhng thinking. In the first place, the problems of cosmology are

necessarily extensive and intricate and must be attacked in the light

of very meagre information. Hence, we must be careful not to sub-

stitute the comfortable certainties of some simple mathematical

model in place of the great complexities of the actual universe. In
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the second place, it is evident that the past history of the universe

and the future fate of man are involved in the issue of our studies.

Hence we must be specially careful to keep our judgements unin-

fected by the demands of theology and unswerved by human hopes

and fears. The discovery of models, which start expansion from a

singular state of zero volume, must not be confused with a proof that

the actual universe was created at a finite time in the past. And the

discovery of models, which could expand and contract irreversibly

without ever coming to a final state of maximum entropy and rest,

must not be confused with a proof that the actual universe will always

provide a stage for the future role of man.

It is appropriate to approach the problems of cosmology with

feelings of respect for their importance, of awe for their vastness, and

of exultation for the temerity of the human mind in attempting to

solve them. They must be treated, however, by the detailed, critical,

and dispassionate methods of the scientist.
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SYMBOLS FOR QUALITIES

A subaoript q or superscript ® attached to a s3rmbol usually designates

a proper quantity as measured by a local observer. (Note exception

in case of JB = )

Scalar qvmititiea (Italic type).

a

A
c

d

e

E
F

g(t), 9

h

i

k

I

m
n
N
P
Q
r

R
R^eiixf)^ R

S
t

T
u
U
V

Svq

V
w

X, y,z

Stefan-Boltzmann constant.

Free energy. Number of molecules in a mol.

Velocity of light. Concentration.

Distance as determined astronomically.

Electric charge. Base of natural logarithms.

Energy.

Thermod3naamio potential.

Function giving time dependence of line element for

homogeneous cosmological models.

Planck’s constant.

Boltzmann’s constant. Newton’s constant of gravita-

tion.

Luminosity of heavenly object.

Mass. Magnitude of heavenly object.

Number of mols.

Number of molecules.

Pressure.

Heat.

Radial coordinate.

Gas constant.

Radius of cosmological model.

Entropy.

Time.

Temperature.

Velocity. Density of radiation.

Energy.

Volume. Velocity.

Element of proper spatial volume.

Relative velocity of coordinate axes.

Work.
Spatial coordinates.
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oc Degree of dissociation.

€ Dielectric coiistant.

71 Integrating factor.

6, (f>y X Polar coordinates.

Sfl Apparent diameter of a nebula.

K Gravitational constant connecting energy-momentum tensor

with contracted Riemann-Christoflel tensor.

A Wave-length.

A Cosmological constant.

(i Magnetic permeability.

V Frequency.

p Density.

Poo Proper macroscopic density of energy.

Po Proper density of electric charge.

a Electrical conductivity.

T Period.

^ Scalar potential. Entropy density.

^ Newtonian gravitational potential.

Vector qiiantUies (Clarendon type).

A Vector potential.

B Magnetic induction.

C Density of conduction current,

D Electric displacement.

E Electric field strength,

F Force.

f Force acting on a unit cube,

g Density of momentum.
G Total momentum.
H Magnetic field strength.

J Current density.

M Angular momentum. Magnetic polarization.

P Electric polarization,

s Density of energy flow,

u Velocity,

Teneora (Italic type with indices).

Latin indices i, j, k, etc., assume values 1, 2, 3.

Greek indices od, /i, v,..., etc., assume values 1, 2, 3, 4.

da Invariant interval.

Galilean values of metrical tensor.



jpf*

ffitv

Fi**, Hi*’'

9

Ti'iiv

Ji*

Pa

^Hv
R
til

Ti*”

SYMBOLS FOE QBANTITIBS 401

Minkowski force.

Field tensor, electron theory.

Field tensors, maoroscopio theory.

Fundameatal metrical tensor.

Determinant

Deviations from Galilean values of

Generalized current. Components of momentum and

energy.

Components of (absolute) stress.

Biemann'Christoffel tensor.

Contracted Eiemann-Christofiel tensor.

Invariant obtained from Biemann-ChristofEel tensor.

Components of (relative) stress.

Energy-momentum tensor.

Tensor densities (German type).

gftv

Electric field tensor density.

ac“
(r-'V^).

3/* Current vector density,

fi Lagrangian function (a pseudo scalar).

Pseudo tensor density of potential energy andmomentum.

Tensor density of material energy and mommitum.

APPENDIX H

SOME FORMULAE OF VECTOR ANALYSIS

Unit vectors parallel to axes i, j, k. (1)

Unit vector normal to a surface n. (2)

Resolution of vector into components:

F = FJ+F^i+F,k. (3)

Inner product of vectors:

(A-B) = B^+Ay By+Ag Bg = AB cos (AB). (4)

Outer product of vectors:

[AXB] = {AyBg-AgBy)x+{AgB,~AMi+{^xBy-AyBg,)k. (6)
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Normal component of vector:

= (A-n) = A cos (An).

The vector operator del:

’ = (4+i|+>‘5)-

gr»l^ = V^ = ig+jg+kg.

divA = (V-A) = ^4-^1'+^*.
'

' Bx^ By ^ dz

curlA = [VxA] =
•* \8y Bz ) \Bz Bx)

divourlA = 0.

The Laplacian operator:

(11)

V* = V-V :

‘

I ^

Gauss’s theorem:

\Bx^^ 8z^)'

curl curl F = grad div F—V’^F.

J
(V-A)dt)=

J
A^d^.

\Bx ^ Bz )

Stokes’s theorem:

J
{4xC08(wa:)+.4„cos(n?/)+AgCOs(na:)}(iff. (14)

Urf

r A-ds = f [curl A]„ da. (16)

owjteB 8 Dueorem: r ^

J
A'ds =

J
[curl A]„ da.

line eird

Green’s theorem:

J
(^VV-^Va,^)di;=

J
(^V^-0V^)„da.

vol surf

Another integral theorem:

I
(A-curlB-B-curlA) dv = — \

[AxB]„dcr.
1 *

The Dalembertian operator:

(
18 )
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Solution of ‘wave equation’:

^{x,y,z,t) = —^j^dv, (19)

where [a>] is the value of w at location of volume element dv and

at time t^rlc.

APPENDIX III

SOME FORMULAE OF TENSOR ANALYSIS

(a) General Notation.

Indices oc, jS,..., /i, v,..., etc., assume values 1, 2, 3, 4. (1)

Covariant indices as subscripts; oontravariant indices as super-

scripts.

Coordinate systems, (2)
rytlL ml m2 m3 m4
•O' w

j )
tO

j *0

a:'/* = a'S *'*,«'*,»'*

etc.

where **,«*,«*).

Summation convention for dummy indices. (3)

=“f•^“-Boc = A^B^+A^B^+AW^+A*B^
01-=1

etc. One of a pair of dummies always covariant and the other

contravariant.

Definition of a tensor,

A collection of 4’’ components (with the rank r equal to the total

number of indices a, ^3,..., etc.) which are associated with a

given point in the manifold, and are transformed to new values

on a transformation of coordinates in accordance with the rule

rpfixv.,, _ 7^5- (4^
dx^ dx?

^

Examples,

Tensor of rank zero (scalar invariant):

S' ^8. (5)
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Contrayadant tensor of rank one (vector):

a®'/*

aa:“
(6)

Covariant tensor of rank one:

A> ^ A

aa:'/*^“‘
(7)

Mixed tensor of rank two

:

miv 0® ’’ ma.

dx<^ dx'i^
(8)

Symmetnoal tensor •

Antisymmetrioal tensor:

(0)

J'/tv _ (10)

(b) The Fdndambntal Mbtrioal Tbnsob and rrs Propbetibs

The metrical tensor: __
UlXP VVIA*

The iBfinitesiinal diSerenoe in coordinate position:

The scalar interval ds corresponding to da;/*:

cfoa z= g^^dx^dx^.

The determinant formed from the components

g = \gp.v\-

The normalized minor:

gyi,v ^ [minor

The mixed tensor:

> \Q IL^V.

The Galilean values of the g'.

8;,,= ±1,0.

The Christoffel three-index symbols

ae"/’

Sfl'vA

.da?
^

da^~ dx^l

(11 )

(12)

(13)

(U)

(16)

(16)

(17)

(18)

The Riemann-Christoffel tensor:

a a
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The equation for a geodeeio:

, , . r ^ — n
8 J

ds = 0 is equivalent to +{/*>'. O’!

(c) Tensor MANEPTrLATioNS.

The raising, lowering, and change of indices (examples):

A'' =

Aji —
A- = glA»

Contraction (examples):

T = TJ = PyaT"" = T\+Tl+Tl+Tl

496

(20)

(21 )

(
22)

(23)

0 0

(26)

(24)

;{fxv,a}. (26)
- j u- w V yjjjK - crju^

Addition (example):

A^ = B^+0^ = (5i+Oi), {B^+Oi). (Bs+C'a).

Outer product (example):

A^ = = B^CP- 5iO* B^CP

B^(P BjO* 5aO» J5aO*

B^CP B^CP Bi(P B^a*-

Bi(P B^O^ B^CP BtOK

Tnufir product (example):

A = Al= B, 0- = Bi CP+B^ CP+Ss C^+Bi OK

Covariant differentiation (examples):

(27)

(28)

^,4 ==
dx^

^

{Tt^)g = Tg’' = ^^+{oicr,ii)T'"+{ota,v}Ti^°‘
daf'

on

(29)

(30)

(31)

(32)
{T;)„ = = ^+{«a,v}T“-W,a}n

4.fo» for each contravariant index
..a.Ja “>• * ^ j /qo\

_(n*CT,a}T;;j;;; for each oovaiiant mdex. (W)

(n™;)vDivergence:
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{d)
Misoellanhoxts Fobmxtlab.

{(iv,a} = {v(j,,a}.

{aff.a} = ~log>f^.

T«Pdg^p
=-T^pdg<

j
= g'^^dg^=~9^dg‘^.

(U-».V = gf-^-

provided

4>li.va—^(iov
—

with, = {{i>lt)l>)g
and

<j>ngy
—

= 2 ^...... Bj.cr.

where the summation 2 is for all the origiual indices fi.

(36)

(36)

(37 )

(
38)

(39)

(40)

(41 )

(
42)

(43)

(e) FoBMTTT.A.'Fi iNVOLViiro Tbnsoe Dbnsitibs.

029*
{AI^)J-9 = SIJI = ^(-4'‘V-J/) =

( _ jv _ £^_ iX“^ = ^4- ilotflv-^,*;v'v s* awi “f*
ax"

*'
ace/* 0®*'

provided

provided J’f*’' = — J?’*'#*.

a®**’

(
44)

(46)

(46)

(47 )

(48)

(/) FOTTB-DIMESrSIONAL VOLTJMB. PrOPEB SpATIAL VOLUMB.

When limits of integration correspond to a given four-dimensional

region, we have the invariant

/ = JIJJ
dx'ida:'WW* = JJIJ

dxHxWda*. (49)
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When region is small enough to permit natural coordinates x, y, z, t

or proper coordinates Xq, y^, <o»

8J = JJJJ
dadydzdt =

JJJJ
dx^dyodz^dio

dx^dx'^dxHx*^. (60)

Hence we can take

8/ = 8t;8i = ScqS^o = 8vo8« = 8a:'^8a:®8a:®8a:*, (61)

where 8v and Svq are elements of spatial volume and 8t and
elements of time in natural and in proper coordinates respectively.

APPENDIX IV

USEFUL OONSTAHTS*

Stefan-Boltzmann constant a =
Avogadro’s niimher A =
Velocity of light c =
Charge of electron e =
Specific charge of electron e/m =
Planck’s constant h —
Boltzmann’s constant h =
Newton’s constant (gravita- h —

tion)

Gas constant 22 =

7-

6237X10~^® erg om.~® deg.~*

6-06435X 10® moL-i

2-99796 X 10® cm. seo.“^

4-770X 10~® abs. e.s. units.

6-27941X ®-®- unii® gni.~^

6-647 X 10~® erg sec.

I-37O89X 10-® erg deg.-i

6-664X 10~® dyne cm.® gm.~®

8-

3136oX 10’ erg deg.-^ mol.-^

l-9864g cal. deg.”^ mol.“^

Transformation from relativistic to c.g.s. units;

relativistic units.

L,T,Mm. c.g.B. units.

L = l cm.

T =

M =

^ 1 =
2-998x10®

(2-998x10®)®

6-664 xl0-«
^

3-336 X 10-® t sec.

= 1-349X 10®® m gm.

1 parsec = 3-268 light years = 3-084x 10^® cm.

1 light year = 9-463 X 10^’ cm.

1 sidereal year = 3-1668 X 10’ sec.

* In part from Birge, Fhy9. Rev,^ Supploment, 1| 1 (1929)-
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‘Mass, energy and momentum, relations

between, 48.

Mass: longitudinal, 66; of electron, 63;

of particle, 43; of radiation, 271;

transverse, 66.

Maxwell-Lorentz field equations, 84, 268.

Maxwell’s equations, 101.

Mechanics, 42, 214.

Metric and gravitation, 176.

Miohelson-Morley experiment, 13.

Minkowski force, 62.

Nebulae: actual diameters and masses,

468; distances, 453; distribution in

space, 469; magnitudes, 446, 448;
relation of coordinate position, to

apparent diameter 467, to distance

466, to luminosity 462, to nebular

counts 468, to red-shift 469; rela-

tion of magnitude, to apparent
diameter 467, to distance 453, to

nebular counts 461, to red-shift 464.

Newton’s theory as a first approxima-
tion, 198.

Pencil of light, 274.

Perfect fluid, behaviour of, 218.

Perfect gas, 136.

Perihelion, advance of, 208.

Planck law, 140.

Planetary motion, 206.

Poisson’s equation, 186, 188, 199.

Potential: generalized electromagnetic,

96, 268; gravitational, 183; New-
tonian, 199; scalar, 86; thermo-
dynamic, 123; vector, 86.

Poynting vector, 90.

Principle of covariance, 106.

Principle of equivalence, 174.

Principle of Mach, 184.

Proper coordinates, 33, 180.

Proper quantities, use of, 7.

Proper volume, 496.

Pulse of light, 279,

Hadiation: black body, 139 ; dynamics of
block body, 161 ; energy-momentum
tensor, 217, 269, 272; flow of, 272;
mass, 271.

Bed-shift, see Nebulae.
Relativity, of uniform motion, 12; of all

kinds of motion, 176.

Reversibility and irreversibility, 12 1 , 294.
296, 424.



SUBJECT
Reversibility and rate, 132, 31Q.

Riemann-OhristoSel tensor, 186; con-

tracted 187.

Right-angled lever, 79.

Sakur-Tetrode equation, 138.

Sampling of universe, 486.

Schur’s theorem, 368, 372.

Second law of thermodynamics, 121, 152,

162, 293, 296.

Second postulate of relativity, 15.

Signature of line element, 31.

Space and time, ideas as to, 17.

Space-time continuum, 28.

Spatial contraction, 22.

Spatial isotropy, 362, 364.

Special relativity, 12,

Stresses: electromagnetic 91, 115;

mechanical, 60, 69.

Symbols for quantities, 489.

Tensor analysis, 34, 493.

Tensors: electromagnetic field tensors,

96, 103, 269 ; current vector, 96, 103,

107, 268, 262; energy-momentum
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tensor, for matter 71, 189, 215, for

electricity 99, 116, 261, for perfect

fluid 216, for radiation 217, 269, 273 ;•

entropy vector, 164, 294; metrical

tensor, 36, 183, 494; pseudo-tensor

of potentied energy and momentum,
224; Riemann-Ohristoffel tensor,186.

Thermodynamic potential, 123.

Thermodynamics, 118, 291.

Third law of thermodynamics, 122.

Time dilation, 22.

Time scale, 412, 414, 416, 486.

Trajectories of particles and light rajrs,

171, 182.

Units used in general relativity, 201, 407.

Vector anfidysis, 491.

Waves: eleotromagnetio, 86, 267; gravi-

tational, 239.

Wave-length, gravitational shift in, 211,

286.

Weight and mass, proportionality, 192.

Work, 47, 120, 166.
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Adams, 212.

Ames, 460.

Anderson, 58.

Bainbiidge, 58.

Birge, 138, 139, 142, 201,

497.

Birkhoff, 252.

Blaokett, 58.

Bohr, 382, 486.

Boltzmann, 362, 353.

Bom, 100.

Bradley, 144.

Campbell, 211.

Ohazy, 200.

Comstock, 16.

Dallenbaob, 100.

Dingle, 252, 253.

Dugan, 461.

Eddington, 182, 205, 222,

267, 362, 403, 411, 454.

Ehrenfest, 269, 285, 316,

319.

Eichenwald, 116.

Einstein, 1, 2, 3, 4, 7, 9, 10,

12, 15, 19, 110, 162, 165,

167, 168, 169, 186, 187,

188, 189, 19$, 199, 213,

214, 225, 232, 236, 239,

291, 319, 383, 336, 337,

339, 341, 344, 412, 415,

438, 469.

E6tv5s, 179, 192.

Eitzgerald, 23.

Eriedmonu, 337, 362, 408,

412.

Galileo, 3, 179, 192, 213.

Gerlaoh, 64.

Gibbs, 124.

Heckmann, 408.

Helmholtz, 124.

Holetsohel^ 447.

Hopmann, 447.

Hubble, 332, 344, 345, 356,

359, 363, 446, 447, 448,

450, 451, 462, 453, 464,

456, 467, 458, 459, 460,

461, 465, 466, 472, 479.

Humason, 345, 356, 359,

446, 447, 448, 450, 451,

452, 453, 454, 456, 465,

466, 472, 479.

Hupka, 57.

Illingworth, 13.

Jeans, 476.

JOttner, 6, 119, 136.

Eaufmann, 53.

Kennedy, 9, 13, 14.

Kinsey, 68.

Kretsohmazm, 3, 168.

Lanozos, 348.

La Bosa, 17.

Laub, 14, 110.

Laue, 8, 59, 64, 108, 289.

Lemaitre, 240, 251, 347,

362, 407, 408, 410, 411,

412.

Lense, 239.

Lenz, 424.

Levi-Civita, 168.

Lewis, 8, 44, 123, 124.

Lipsohitz, 186.

Lorentz, 4, 18, 19, 23, 84,

85, 88, 94, 100, 258.

Haoh, 3, 185.

Marjorana, 16.

Maxwell, 84, 91, 100, 101,

268.

McCrea, 411.

MoVittie, 411.

Miohelson, 9, 13.

Miller, 13, 17.

Milne, 364.

Minkowski, 4, 9, 28, 52, 101.

Morley, 9, 13.

Mosengeil, 162.

Neddermeyer, 68.

Nemat, 122, 123.

Neumann, 322, 344.

Newton, 3, 12, 16, 42, 46, 73.

Nicholson, 451.

Noble, 83.

Ooohialini, 58.

Oliphant, 58.

Oppenheinier, 58, 160, 161.

Pauli, 116, 228.

Petit, 461.

Planck, 2, 122, 162, 291.

Plesset, 68, 160.

Podolsky, 261, 252, 286.

Biooi, 168.

Bitz, 16.

Bobertson, 298, 337, 347,

348, 356, 362, 396.

Boentgen, 116.

Bowland, 108, 116.

Bussell, 451.

Butherford, 68.

Sohwarzohild, 202, 245.

Sears, 451.

Seeliger, 322.

Shapley, 446, 447, 448, 460.

de Sitter, 9, 16, 17, 333, 336,

337, 346, 348, 349, 359,

408, 410, 412, 413, 416,

418, 419, 486.

SHpher, 366, 464.

Southerns, 179, 192.

Stebbins, 459.

Stem, 147.

Stewart, J. Q., 451.

Stewart, 0. M., 16.

St. John, 212.

Thirring, 239.

Thomson, J. J., 16.

Thorndike, 14.

Tolman, 6, 8, 16, 17, 27, 44,

54, 57, 64, 88, 119, 136,

137, 140, 147, 229, 236,

247, 269, 286, 292, 294,

298, 314, 316, 337, 356,

362, 373, 381, 413, 424,

429, 430, 434, 435, 440,

462, 467, 470, 483.

Trouton, 83.

Trumpler, 211.

Urey, 144.

Ward, 436.

Weyl, 104, 348, 366.

Wilson, H. A., 116,

Wilson, M., 116.

Zwioky, 287, 483.
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