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PREFACE. 

IN  the  work,  of  which  the  present  volume  is  an  instalment, 

my  endeavour  has  been  to  lay  before  the  reader  a  connected 

exposition  of  the  theory  of  sound,  which  should  include  the 

more  important  of  the  advances  made  in  modem  times  by  Mathe- 
maticians and  Physicists.  The  importance  of  the  object  which 

I  have  had  in  view  will  not,  I  think,  be  disputed  by  those  com- 
petent to  judge.  At  the  present  time  many  of  the  most  valuable 

contributions  to  science  are  to  be  found  only  in  scattered 

periodicals  and  transactions  of  societies,  published  in  various 

parts  of  the  world  and  in  several  languages,  and  are  often 

practically  inaccessible  to  those  who  do  not  happen  to  live  in 

the  neighbourhood  of  large  public  libraries.  In  such  a  state  of 

things  the  mechanical  impediments  to  study  entail  an  amount 

of  unremunerative  labour  and  consequent  hindrance  to  the 
advancement  of  science  which  it  would  be  difficult  to  over- 
estimate. 

Since  the  well-known  Article  on  Sound  in  the  Encyclopcedia 
MetropolUana,  by  Sir  John  Herschel  (1845),  no  complete  work 

has  been  published  in  which  the  subject  is  treated  mathemati- 
cally. By  the  premature  death  of  Prof.  Donkin  the  scientific 

world  was  deprived  of  one  whose  mathematical  attainments  in 

combination  with  a  practical  knowledge  of  music  qualified  him 

in  a  special  manner  to  write  on  Sound.  The  first  part  of  his 

AcoiLStics  (1870),  though  little  more  than  a  fragment,  is  sufficient 

to  shew  that  my  labours  would  have  been  unnecessary  had  Prof. 

Donkin  lived  to  complete  his  work. 



VI  PREFACE. 

In  the  choice  of  topics  to  be  dealt  with  in  a  work  on  Sound, 

I  have  for  the  most  part  followed  the  example  of  my  predecessors. 

To  a  great  extent  the  theory  of  Sound,  as  commonly  understood, 

covers  the  same  ground  as  the  theory  of  Vibrations  in  general ; 
but,  unless  some  limitation  were  admitted,  the  consideration  of 

such  subjects  as  the  Tides,  not  to  speak  of  Optics,  would  have 

to  be  included.  As  a  general  rule  we  shall  confine  ourselves  to 

those  classes  of  vibrations  for  which  our  ears  afford  a  ready 

made  and  wonderfully  sensitive  instrument  of  investigation. 

Without  ears  we  should  hardly  care  much  more  about  vibrations 

than  without  eyes  we  should  care  about  light. 

The  present  volume  includes  chapters  on  the  vibrations  of 

sjrstems  in  general,  in  which,  I  hope,  will  be  recognised  some 

novelty  of  treatment  and  results,  followed  by  a  more  detailed 

consideration  of  special  systems,  such  as  stretched  strings,  bars, 

membranes,  and  plates.  The  second  volume,  of  which  a  con- 

siderable portion  is  already  written,  will  commence  with  a^'rial 
vibrations. 

My  best  thanks  are  due  to  Mr  H.  M.  Taylor  of  Trinity  College, 

Cambridge,  who  has  been  good  enough  to  read  the  proofs.  By 
his  kind  assistance  several  errors  and  obscurities  have  been 

eliminated,  and  the  volume  generally  has  been  rendered  less  im- 
perfect than  it  would  otherwise  have  been. 

Any  corrections,  or  suggestions  for  improvements,  with  which 

my  readers  may  favour  me  will  be  highly  appreciated. 

Teblimo  Place,  Witham, 

April,  1877. 

IN  this  second  edition  all  corrections  of  importance  are  noted, 

and  new  matter  appears  either  as  fresh  sections,  e.g.  §  32  a, 

or  enclosed  in  square  brackets  [  ].  Two  new  chapters  X  A,  X  B 

are  interpolated,  devoted  to  Curved  Plates  or  Shells,  and  to 
Electrical  Vibrations.  Much  of  the  additional  matter  relates  to 

the  more  difficult  parts  of  the  subject  and  will  be  passed  over 

by  the  reader  on  a  first  perusal. 



PREFACE.  Vll 

In  the  mathematical  investigations  I  have  usually  employed 

such  methods  as  present  themselves  naturally  to  a  physicist. 

The  pure  mathematician  will  complain,  and  (it  must  be  confessed) 

sometimes  with  justice,  of  deficient  rigour.  But  to  this  question 

there  are  two  sides.  For,  however  important  it  may  be  to 

maintain  a  uniformly  high  standard  in  pure  mathematics,  the 

physicist  may  occasionally  do  well  to  rest  content  with  argu- 
ments which  are  fairly  satisfactory  and  conclusive  from  his  point 

of  view.  To  his  mind,  exercised  in  a  diflFerent  order  of  ideas, 

the  more  severe  procedure  of  the  pure  mathematician  may  appear 
not  more  but  less  demonstrative.  And  further,  in  many  cases 

of  difficulty  to  insist  upon  the  highest  standard  would  mean 
the  exclusion  of  the  subject  altogether  in  view  of  the  space 

that  would  be  required. 

In  the  first  edition  much  stress  was  laid  upon  the  establish- 

ment of  general  theorems  by  means  of  Lagi'ange's  method,  and 
I  am  more  than  ever  impressed  with  the  advantages  of  this 

procedure.  It  not  unfrequently  happens  that  a  theorem  can  be 

thus  demonstrated  in  all  its  generality  with  less  mathematical 

apparatus  than  is  required  for  dealing  with  particular  cases  by 

special  methods. 

During  the  revision  of  the  proof-sheets  I  have  again  had  the 
very  great  advantage  of  the  cooperation  of  Mr  H.  M.  Taylor, 

until  he  was  unfortunately  compelled  to  desist.  To  him  and 

to  several  other  friends  my  thanks  are  due  for  valuable  sug- 

gestions. 

Jtdy,  1894. 
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CHAPTER  I. 

INTRODUCTION. 

1.  The  sensation  of  sound  is  a  thing  sui  generis,  not  com- 
parable with  any  of  our  other  sensations.  No  one  can  express 

the  relation  between  a  sound  and  a  colour  or  a  smell.  Directly 
or  indirectly,  all  questions  connected  with  this  subject  must 
come  for  decision  to  the  ear,  as  the  organ  of  hearing;  and 
from  it  there  can  be  no  appeal.  But  we  are  not  therefore  to 
infer  that  all  acoustical  investigations  are  conducted  with  the 
unassisted  ear.  When  once  we  have  discovered  the  physical 

phenomena  which  constitute  the  foundation  of  sound,  our  ex- 
plorations are  in  great  measure  transferred  to  another  field  lying 

within  the  dominion  of  the  principles  of  Mechanics.  Important 
laws  are  in  this  way  arrived  at,  to  which  the  sensations  of  the  ear 
cannot  but  conform. 

2.  Very  cursory  observation  often  suffices  to  shew  that 

sounding  bodies  are  in  a  state  of  vibration,  and  that  the  phe- 
nomena of  sound  and  vibration  are  closely  connected.  When  a 

vibrating  bell  or  string  is  touched  by  the  finger,  the  sound  ceases 
at  the  same  moment  that  the  vibration  is  damped.  But,  in  order 
to  affect  the  sense  of  hearing,  it  is  not  enough  to  have  a  vibrating 
instrument ;  there  must  also  be  an  uninterrupted  communication 
between  the  instrument  and  the  ear.  A  bell  rung  in  vacuo,  with 

proper  precautions  to  prevent  the  communication  of  motion, 
remains  inaudible.  In  the  air  of  the  atmosphere,  however, 
sounds  have  a  universal  vehicle,  capable  of  conveying  them 
without  break  from  the  most  variously  constituted  sources  to 
the  recesses  of  the  ear. 

3.  The  passage  of  sound  is  not  instantaneous.  When  a  gun 
is  fired  at  a  distance,  a  very  perceptible  interval  separates  the 

"       B.  1 
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report  from  the  flash.  This  represents  the  time  occupied  by 
sound  in  travelling  from  the  gun  to  the  observer,  the  retardation 
of  the  flash  due  to  the  finite  velocity  of  light  being  altogether 
negligible.  The  first  accurate  experiments  were  made  by  some 
members  of  the  French  Academy,  in  1738.  Cannons  were  fired, 
and  the  retardation  of  the  reports  at  different  distances  observed. 
The  principal  precaution  necessary  is  to  reverse  alternately  the 
direction  along  which  the  sound  travels,  in  order  to  eliminate  the 
influence  of  the  motion  of  the  air  in  mass.  Down  the  wind,  for 

instance,  sound  travels  relatively  to  the  earth  faster  than  its 
proper  rate,  for  the  velocity  of  the  wind  is  added  to  that  proper 
to  the  propagation  of  sound  in  still  air.  For  still  dry  air  at  a 

temperature  of  O^C,  the  French  observers  found  a  velocity  of  337 
metres  per  second.  Observations  of  the  same  character  were 
made  by  Arago  and  others  in  1822 ;  by  the  Dutch  physicists  Moll, 
van  Beek  and  Kuytenbrouwer  at  Amsterdam;  by  Bravais  and 
Martins  between  the  top  of  the  Faulhom  cmd  a  station  below; 
and  by  others.  The  general  result  has  been  to  give  a  somewhat 

lower  value  for  the  velocity  of  sound — about  332  metres  per 
second.  The  effect  of  alteration  of  temperature  and  pressure  on 
the  propagation  of  sound  will  be  best  considered  in  connection  with 
the  mechanical  theory. 

4.  It  is  a  direct  consequence  of  observation,  that  within  wide 
limits,  the  velocity  of  sound  is  independent,  or  at  least  very  nearly 
independent,  of  its  intensity,  and  also  of  its  pitch.  Were  this 
otherwise,  a  quick  piece  of  music  would  be  heard  at  a  little 

distance  hopelessly  confused  and  discordant.  But  when  the  dis- 
turbances are  very  violent  and  abrupt,  so  that  the  alterations  of 

density  concerned  are  comparable  with  the  whole  density  of  the 
air,  the  simplicity  of  this  law  may  be  departed  from. 

6.  An  elaborate  series  of  experiments  on  the  propagation  of 

sound  in  long  tubes  (water-pipes)  has  been  made  by  Regnault*. 
He  adopted  an  automatic  arrangement  similar  in  principle  to  that 
used  for  measuring  the  speed  of  projectiles.  At  the  moment  when 
a  pistol  is  fired  at  one  end  of  the  tube  a  wire  conveying  an  electric 
current  is  ruptured  by  the  shock.  This  causes  the  withdrawal  of  a 

tracing  point  which  was  previously  marking  a  line  on  a  revolving 
drum.  At  the  further  end  of  the  pipe  is  a  stretched  membrane  so 
arranged  that  when  on  the  arrival  of  the  sound  it  yields  to  the 

1  Mimoiret  de  VAcadimie  de  France^  t.  xxxvn. 
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impulse,  the  circuit,  which  was  ruptured  during  the  passage  of  the 
sound,  is  recompleted.  At  the  same  moment  the  tracing  point 

falls  back  on  the  drum.  The  blank  space  left  unmarked  corre- 
sponds to  the  time  occupied  by  the  sound  in  making  the  journey, 

and,  when  the  motion  of  the  drum  is  known,  gives  the  means  of 

detei-mining  it.  The  length  of  the  journey  between  the  first  wire 
and  the  membrane  is  found  by  direct  measurement.  In  these 

experiments  the  velocity  of  sound  appeared  to  be  not  quite  inde- 

pendent of  the  diameter  of  the  pipe,  which  varied  from  (T'lOS 
to  I^'IOO.  The  discrepancy  is  perhaps  due  to  friction,  whose 
influence  would  be  greater  in  smaller  pipes. 

6.  Although,  in  practice,  air  is  usually  the  vehicle  of  sound, 
other  gases,  liquids  and  solids  are  equally  capable  of  conveying 
it.  In  most  cases,  however,  the  means  of  making  a  direct  measure- 

ment of  the  velocity  of  sound  are  wanting,  and  we  are  not  yet  in 
a  position  to  consider  the  indirect  methods.  But  in  the  case  of 
water  the  same  difficulty  does  not  occur.  In  the  year  1826, 
Colladon  and  Sturm  investigated  the  propagation  of  sound  in  the 
Lake  of  Geneva.  The  striking  of  a  bell  at  one  station  was 
simultaneous  with  a  flash  of  gunpowder.  The  observer  at  a 
second  station  measured  the  interval  between  the  flash  and  the 

arrival  of  the  sound,  applying  his  ear  to  a  tube  carried  beneath 

the  surface.  At  a  temperature  of  8®C.,  the  velocity  of  sound  in 
water  was  thus  found  to  be  1435  metres  per  second. 

7.  The  conveyance  of  sound  by  solids  may  be  illustrated  by  a 
pretty  experiment  due  to  Wheatstone.  One  end  of  a  metallic  wire 

is  connected  with  the  sound-board  of  a  pianoforte,  and  the  other 
taken  through  the  partitions  or  floors  into  another  part  of  the 

building,  where  naturally  nothing  would  be  audible.  If  a  reso- 
nance-board (such  as  a  violin)  be  now  placed  in  contact  with  the 

wire,  a  tune  played  on  the  piano  is  easily  heard,  and  the  sound 

seems  to  emanate  from  the  resonance-board.  [Mechanical  tele- 
phones upon  this  principle  have  been  introduced  into  practical 

use  for  the  conveyance  of  speech.] 

8.  In  an  open  space  the  intensity  of  sound  falls  off*  with  great 
rapidity  as  the  distance  from  the  source  increases.  The  same 
amount  of  motion  has  to  do  duty  over  surfaces  ever  increasing  as 
the  squares  of  the  distance.  Anything  that  confines  the  sound 

will  tend  to  diminish  the  falling  off"  of  intensity.  Thus  over  the 
flat  sur£Btce  of  still  water,  a  sound  carries  further  than  over  broken 

1—2 
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ground;  the  comer  between  a  smooth  pavement  and  a  vertical 
wall  is  still  better ;  but  the  most  effective  of  all  is  a  tube-like 
enclosure,  which  prevents  spreading  altogether.  The  use  of 
speaking  tubes  to  facilitate  communication  between  the  different 
parts  of  a  building  is  well  known.  If  it  were  not  for  certain  effects 
(frictional  and  other)  due  to  the  sides  of  the  tube,  sound  might 
be  thus  conveyed  with  little  loss  to  very  great  distances. 

9.  Before  proceeding  further  we  must  consider  a  distinction, 
which  is  of  great  importance,  though  not  free  from  difficulty. 
Sounds  may  be  classed  as  musical  and  unmusical;  the  former 
for  convenience  may  be  called  notes  and  the  latter  noises.  The 
extreme  cases  will  raise  no  dispute;  every  one  recognises  the 
difference  between  the  note  of  a  pianoforte  and  the  creaking  of  a 
shoe.  But  it  is  not  so  easy  to  draw  the  line  of  separation.  In  the 
first  place  few  notes  are  &ee  from  all  unmusical  accompaniment. 
With  organ  pipes  especially,  the  hissing  of  the  wind  as  it  escapes 
at  the  mouth  may  be  heard  beside  the  proper  note  of  the  pipe. 
And,  secondly,  many  noises  so  far  partake  of  a  musical  character 
as  to  have  a  definite  pitch.  This  is  more  easily  recognised  in  a 
sequence,  giving,  for  example,  the  common  chord,  than  by  continued 
attention  to  an  individual  instance.  The  experiment  may  be  made 
by  drawing  corks  fix)m  bottles,  previously  tuned  by  pouring  water 
into  them,  or  by  throwing  down  on  a  table  sticks  of  wood  of  suitable 
dimensions.  But,  although  noises  are  sometimes  not  entirely 
unmusical,  and  notes  are  usually  not  quite  free  from  noise,  there  is 

no  difficulty  in  recognising  which  of  the  two  is  the  simpler  pheno- 
menon. There  is  a  certain  smoothness  and  continuity  about  the 

musical  note.  Moreover  by  sounding  together  a  variety  of  notes — 
for  example,  by  striking  simultaneously  a  number  of  cousecutive 

keys  on  a  pianoforte — we  obtain  an  approximation  to  a  noise; 
while  no  combination  of  noises  could  ever  blend  into  a  musical 
note. 

10.  We  are  thus  led  to  give  our  attention,  in  the  first  instance^ 
mainly  to  musical  sounds.  These  arrange  themselves  naturally 

in  a  certain  order  according  to  pitch — a  quality  which  all  can 
appreciate  to  some  extent.  Trained  ears  can  recognise  an  enormous 

number  of  gradations — more  than  a  thousand,  probably,  within 
the  compass  of  the  human  voice.  These  gradations  of  pitch  are 
not,  like  the  degrees  of  a  thermometric  scale,  without  special 
mutual  relations.    Taking  any  given  note  as  a  starting  point. 
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musiciaDS  can  single  out  certain  others,  which  bear  a  definite 
relation  to  the  first,  and  are  known  as  its  octave,  fifth,  &c.  The 

corresponding  differences  of  pitch  are  called  intervals,  and  are 
spoken  of  as  always  the  same  for  the  same  relationship.  Thus, 
wherever  they  may  occur  in  the  scale,  a  note  and  its  octave  are 
separated  by  t/ie  interval  of  the  octave.  It  will  be  our  object  later 
to  explain,  so  far  as  it  can  be  done,  the  origin  and  nature  of  the 
consonant  intervals,  but  we  must  now  turn  to  consider  the  physical 
aspect  of  the  question. 

Since  sounds  are  produced  by  vibrations,  it  is  natural  to 
suppose  that  the  simpler  sounds,  viz.  musical  notes,  correspond  to 
periodic  vibrations,  that  is  to  say,  vibrations  which  after  a  certain 
interval  of  time,  called  the  period,  repeat  themselves  with  perfect 
regularity.  And  this,  with  a  limitation  presently  to  be  noticed, 
is  true. 

11.  Many  contrivances  may  be  proposed  to  illustrate  the 
generation  of  a  musical  note.  One  of  the  simplest  is  a  revolving 
wheel  whose  milled  edge  is  pressed  against  a  card.  Each 
projection  as  it  strikes  the  card  gives  a  slight  tap,  whose  regular 
recurrence,  as  the  wheel  turns,  produces  a  note  of  definite  pitch, 
rising  in  the  scale,  as  the  velocity  of  rotation  iivcreases.  But  the 
most  appropriate  instrument  for  the  fundamental  experiments  od 
notes  is  undoubtedly  the  Siren,  invented  by  Cagniard  de  la  Tour. 
It  consists  essentially  of  a  stiff  disc,  capable  of  revolving  about  its 
centre,  and  pierced  with  one  or  more  sets  of  holes,  arranged  at 
equal  intervals  round  the  circumference  of  circles  concentric  with 
the  disc.  A  windpipe  in  connection  with  bellows  is  presented 
perpendicularly  to  the  disc,  its  open  end  being  opposite  to  one  of 
the  circles,  which  contains  a  set  of  holes.  When  the  bellows  are 

worked,  the  stream  of  air  escapes  freely,  if  a  hole  is  opposite  to  the 
end  of  the  pipe;  but  otherwise  it  is  obstructed.  As  the  disc  turns, 
a  succession  of  puffs  of  air  escape  through  it,  until,  when  the 
velocity  is  sufficient,  they  blend  into  a  note,  whose  pitch  rises 
continually  with  the  rapidity  of  the  puffs.  We  shall  have  occasion 
later  to  describe  more  elaborate  forms  of  the  Siren,  but  for  our 

immediate  purpose  the  present  simple  arrangement  will  suffice. 

12.  One  of  the  most  important  facts  in  the  whole  science  is 

exemplified  by  the  Siren — namely,  that  the  pitch  of  a  note  depends 
upon  the  period  of  its  vibration.  The  size  and  shape  of  the  holes, 
the  force  of  the  wind,  and  other  elements  of  the  problem  may  be 
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varied ;  but  if  the  number  of  puffs  in  a  given  time,  such  as  one 
second^  remains  unchanged,  so  also  does  the  pitch.  We  may  even 
dispense  with  wind  altogether,  and  produce  a  note  by  allowing 
the  comer  of  a  card  to  tap  against  the  edges  of  the  holes,  as  they 
revolve;  the  pitch  will  still  be  the  same.  Observation  of  other 

sources  of  sound,  such  as  vibrating  solids,  leads  to  the  same  con- 
clusion, though  the  difficulties  are  often  such  as  to  render 

necessary  rather  refined  experimental  methods. 

But  in  saying  that  pitch  depends  upon  period,  there 
lurks  an  ambiguity,  which  deserves  attentive  consideration* 
as  it  will  lead  us  to  a  point  of  great  importance.  If  a 
variable  quantity  be  periodic  in  any  time  r,  it  is  also  periodic 
in  the  times  2t,  3t,  &c.  Conversely,  a  recurrence  within  a  given 
period  T,  does  not  exclude  a  more  rapid  recurrence  within 
periods  which  are  the  aliqi!iot  parts  of  t.  It  would  appear 
accordingly  that  a  vibration  really  recurring  in  the  time  ̂   (for 
example)  may  be  regarded  as  having  the  period  t,  and  therefore 
by  the  law  just  laid  down  as  producing  a  note  of  the  pitch  defined 
by  T.  The  force  of  this  consideration  cannot  be  entirely  evaded  by 
defining  as  the  period  the  least  time  required  to  bring  about  a 
repetition.  In  the  first  place,  the  necessity  of  such  a  restriction 
is  in  itself  almost  sufficient  to  shew  that  we  have  not  got  to  the 
root  of  the  matter ;  for  although  a  right  to  the  period  t  may  be 
denied  to  a  vibration  repeating  itself  rigorously  within  a  time  ̂ t, 
yet  it  must  be  allowed  to  a  vibration  that  may  differ  indefinitely 

little  therefi*om.  In  the  Siren  experiment,  suppose  that  in  one 
of  the  circles  of  holes  containing  an  even  number,  every  alternate 
hole  is  displaced  along  the  arc  of  the  circle  by  the  same  amount. 
The  displacement  may  be  made  so  small  that  no  change  can  be 
detected  in  the  resulting  note;  but  the  periodic  time  on  which 
the  pitch  depends  has  been  doubled.  And  secondly  it  is  evident 

from  the  nature  of  periodicity,  that  the  superposition  on  a  vibra- 
tion of  period  T,  of  others  having  periods  |t,  Jt...&c.,  does  not 

disturb  the  period  t,  while  yet  it  cannot  be  supposed  that  the 

addition  of  the  new  elements  has  left  the  quality  of  the  sound  un- 
changed. Moreover,  since  the  pitch  is  not  affected  by  their 

presence,  how  do  we  know  that  elements  of  the  shorter  periods 
were  not  there  from  the  beginning? 

13.  These  considerations  lead  us  to  expect  remarkable  rela- 
tions between  the  notes  whose  periods  are  as  the  reciprocals  of  the 
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natural  numbers.  Nothing  can  be  easier  than  to  investigate  the 

question  by  meaus  of  the  Siren.  Imagine  two  circles  of  holes,  the 

inner  containing  any  convenient  number,  and  the  outer  twice  as 
many.  Then  at  whatever  speed  the  disc  may  turn,  the  period  of 
the  vibration  engendered  by  blowing  the  first  set  will  necessarily 
be  the  double  of  that  belonging  to  the  second.  Od  making  the 
experiment  the  two  notes  are  found  to  stand  to  each  other  in 
the  relation  of  octaves ;  and  we  conclude  that  in  passing  from  any 
note  to  its  octave,  the  frequency,  of  vibration  is  doubled.  A  similar 
method  of  experimenting  shews,  that  to  the  ratio  of  periods  3  :  1 
corresponds  the  interval  known  to  musicians  as  the  twelfth,  made 
up  of  an  octave  and  a  fifth;  to  the  ratio  of  4:1,  the  double 
octave ;  and  to  the  ratio  5:1,  the  interval  made  up  of  two  octaves 
and  a  major  third.  In  order  to  obtain  the  intervals  of  the  fifth 
and  third  themselves,  the  ratios  must  be  made  3  :  2  and  5  :  4 

respectively. 

14.  From  these  experiments  it  appears  that  if  two  notes 
stand  to  one  another  in  a  fixed  relation,  then,  no  matter  at  what 

part  of  the  scale  they  may  be  situated,  their  periods  are  in  a 
certain  constant  ratio  characteristic  of  the  relation.  The  same 

may  be  said  of  their  freque7icies\  or  the  number  of  vibrations 
which  they  execute  in  a  given  time.  The  ratio  2  :  1  is  thus 
cliaracteristic  of  the  octave  interval.  If  we  wish  to  combine 

two  intervals, — for  instance,  starting  from  a  given  note,  to  take 
a  step  of  an  octave  and  then  another  of  a  fifth  in  the  same 
direction,  the  coiTesponding  ratios  must  be  compounded : 

2     3_3 

1^2""1- The  twelfth  part  of  an  octave  is  represented  by  the  ratio  v  2  :  1, 
for  this  is  the  step  which  repeated  twelve  times  leads  to  an 
octave  above  the  starting  point.  If  we  wish  to  have  a  measure 

of  intervals  in  the  proper  sense,  we  must  take  not  the  character- 
istic ratio  itself,  but  the  logarithm  of  that  ratio.  Then,  and  then 

only,  will  the  measure  of  a  compound  interval  be  the  suvi  of  the 
measures  of  the  components. 

>  A  single  word  to  denote  the  number  of  vibrations  executed  in  the  unit  of  time 

is  indispensable  :  I  know  no  better  than  *  frequency, '  which  was  used  in  this  sense 
by  Toung.  The  same  word  is  employed  by  Prof.  Everett  in  his  excellent  edition 

of  Deschanel's  Natural  Philotophy, 
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16.  From  the  intervals  of  the  octave,  fifth,  and  third  con- 
sidered above,  others  known  to  musicians  may  be  derived.  The 

diflTerence  of  an  octave  and  a  fifth  is  called  a  fourth^  and  has  the 
3     4. 

ratio  2  ̂  ̂   =  ̂  .     This  process   of  subtracting  an   interval  fi*om 

the  octave  is  called  inverting  it.  By  inverting  the  major  third 
we  obtain  the  minor  sixth.  Again,  by  subtraction  of  a  major 
third  from  a  fifth  we  obtain  the  minor  third ;  and  from  this  by 
inversion  the  major  sixth.  The  following  table  exhibits  side  by 
side  the  names  of  the  intervals  and  the  corresponding  ratios  of 
frequencies : 

Octave     2  :  1 
Fifth    3:2 
Fourth     4:3 

Major  Third    5  :  4 
Minor  Sixth     8:5 
Minor  Third    6:5 

Major  Sixth     5:3 

These  are  all  the  consonant  intervals  comprised  within  the 
limits  of  the  octave.  It  will  be  remarked  that  the  correspouduig 
ratios  are  all  expressed  by  means  of  small  whole  numbers,  and 
that  this  is  more  particularly  the  case  for  the  more  consonant 
intervals. 

The  notes  whose  frequencies  are  multiples  of  that  of  a  given 
one,  are  called  its  harmonics^  and  the  whole  series  constitutes 

a  harmonic  scale.  As  is  well  known  to  violinists,  they  may  all 
be  obtained  from  the  same  string  by  touching  it  lightly  with  the 
finger  at  certain  points,  while  the  bow  is  drawn. 

The  establishment  of  the  connection  between  musical  intervals 

and  definite  ratios  of  frequency — a  fundamental  point  in  Acoustics 
— is  due  to  Mersenne  (1636).  It  was  indeed  known  to  the 
Greeks  in  what  ratios  the  lengths  of  strings  must  be  changed 
in  order  to  obtain  the  octave  and  fifth;  but  Mersenne  demon- 

strated the  law  connecting  the  length  of  a  string  with  the  period 
of  its  vibration,  and  made  the  first  determination  of  the  actual 
rate  of  vibration  of  a  known  musical  note. 

16.  On  any  note  taken  as  a  key-note,  or  toniCy  a  dialonic 
scale  may  be  founded,  whose  derivation  we  now  proceed  to  ex- 

plain. If  the  key-note,  whatever  may  be  its  absolute  pitch,  be 
called  Do,  the  fifth  above  or  dominant  is  Sol,  and  the  fifth  below 
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or  snbdominant  is  Fa.  The  common  chord  on  any  note  is  pro- 
duced by  combining  it  with  its  major  third,  and  fifth,  giving  the 

ratios  of  frequency  1  :  ̂   •  «  or  4:5:6.     Now  if  we   take   the 

common  chord  on  the  tonic,  on  the  dominant,  and  on  the  sub- 
dominant,  and  transpose  them  when  necessary  into  the  octave 

lying  immediately  above  the  tonic,  we  obtain  notes  whose  fre- 
quencies arranged  in  order  of  magnitude  are : 

Do      Re        Mi        Fa        Sol        La  Si         Do 
,  9  5  4  3  5  15 

8'         4'         3'         2'         3'  8  ' 
Here  the  common   chord  on  Do  is  Do^Mi — Sol,  with  the 

5    3 
ratios  1  :  t  •  s ;  ̂^^  chord  on  Sol  is  Sol — Si — Re,  with  the  ratios 4    2 

^:-^:2xr-  =  l:-:^;  and  the  chord  on  Fa  is  Fa — La — Do, 

still  with  the  same  ratios.  The  scale  is  completed  by  repeating 
these  notes  above  and  below  at  intervals  of  octaves. 

If  we  take  as  our  Do,  or  key-note,  the  lower  c  of  a  tenor  voice, 
the  diatonic  scale  will  be 

c        d         e        f        g        a        b        c'. 
Usage  differs  slightly  as  to  the  mode  of  distinguishing  the 

different  octaves ;  in  what  follows  I  adopt  the  notation  of  Helm- 
holtz.  The  octave  below  the  one  just  referred  to  is  written  with 

capital  letters — C,  D,  &c. ;  the  next  below  that  with  a  suffix — 
C^,  D,,  &c. ;  and  the  one  beyond  that  with  a  double  suffix — C^^,  &c. 

On  the  other  side  accents  denote  elevation  by  an  octave — c',  c", 
&c.  The  notes  of  the  four  strings  of  a  violin  are  written  in  this 

notation,  g— d'— a'— e".  The  middle  c  of  the  pianoforte  is  c'. 
[In  French  notation  c'  is  denoted  by  ut,.] 

17.  With  respect  to  an  absolute  standard  of  pitch  there  has 
been  no  uniform  practice.  At  the  Stuttgard  conference  in  1834, 

c'  =  264  complete  vibrations  per  second  was  recommended.  This 
corresponds  to  a' =  440.  The  French  pitch  makes  a' =  435.  In 
Handel's  time  the  pitch  was  much  lower.  If  c'  were  taken  at  256 
or  2*,  all  the  c's  would  have  frequencies  represented  by  powers 
of  2.  This  pitch  is  usually  adopted  by  physicists  and  acoustical 
instrument  makers,  and  has  the  advantage  of  simplicity. 

The  determination  ab  initio  of  the  frequency  of  a  given  note  is 

an  operation  requiring  some  care.     The  simplest  method  in  prin- 
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ciple  is  by  means  of  the  Siren,  which  is  driven  at  such  a  rate  as  to 
give  a  note  in  unison  with  the  given  one.  The  number  of  turns 
effected  by  the  disc  in  one  second  is  given  by  a  counting  apparatus, 
which  can  be  thrown  in  and  out  of  gear  at  the  beginning  and  end 
of  a  measured  interval  of  time.  This  multiplied  by  the  number  of 
effective  holes  gives  the  required  frequency.  The  consideration  of 
other  methods  admitting  of  greater  accuracy  must  be  deferred. 

18.  So  long  as  we  keep  to  the  diatonic  scale  of  c,  the  notes 
above  written  are  all  that  are  required  in  a  musical  composition. 

But  it  is  frequently  desired  to  change  the  key-note.  Under  these 
circumstances  a  singer  with  a  good  natural  ear,  accustomed  to 
perform  without  accompaniment,  takes  an  entirely  fresh  departure, 

coDstructing  a  new  diatonic  scale  on  the  new  key-note.  In  this 
way,  after  a  few  changes  of  key,  the  original  scale  will  be  quite 
departed  from,  and  an  immense  variety  of  notes  be  used.  On  an 
instrument  with  fixed  notes  like  the  piano  and  organ  such  a 
multiplication  is  impracticable,  and  some  compromise  is  necessary 
in  order  to  allow  the  same  note  to  perform  different  functions. 
This  is  not  the  place  to  discuss  the  question  at  any  length;  we 
will  therefore  take  as  an  illustration  the  simplest,  as  well  as  the 

commonest  case — modulation  into  the  key  of  the  dominant. 
By  definition,  the  diatonic  scale  of  c  consists  of  the  common 

chords  founded  on  c,  g  and  f.  In  like  manner  the  scale  of  g  con- 
sists of  the  chords  founded  on  g,  d  and  c.  The  chords  of  c  and  g 

are  then  common  to  the  two  scales ;  but  the  third  and  fifth  of  d 

introduce  new  notes.     The  third  of  d  written  fjf  has  a  frequency 

^  X  7  =  ̂  ,  and  is  far  removed  from  any  note  in  the  scale  of  c. 
9     3     27 

But  the  fifth  of  d,  with  a  frequency  o  ><  3  =  t^  »  differs  but  little 

from  a,  whose  frequency  is  ̂  .    In  ordinary  keyed  instruments  the 
81 

interval  between  the  two,  represented  by  ̂  ,  and  called  a  comma, 

is  neglected,  and  the  two  notes  by  a  suitable  compromise  or 
temperament  are  identified. 

19.  Various  systems  of  temperament  have  been  used;  the 
simplest  and  that  now  most  generally  used,  or  at  least  aimed  at, 
is  the  eqiml  temperament.  On  referring  to  the  table  of  frequencies 
for  the  diatonic  scale,  it  will  be  seen  that  the  intervals  from  Do  to 
Re,  from  Re  to  Mi,  from  Fa  to  Sol,  from  Sol  to  La,  and  from  La 
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9       10 
to  Si,  are  nearly  the  same,  being  represented  by  -  or  -q-  ;  while  the 

1  fi 

intervals  from  Mi  to  Fa  and  from  Si  to  Do,  represented  by  z-r ,  are 

about  half  as  much.  The  equal  temperament  treats  these  ap- 
proximate relations  as  exact,  dividing  the  octave  into  twelve  equal 

parts  called  mean  semitones.  From  these  twelve  notes  the  diatonic 
scale  belonging  to  any  key  may  be  selected  according  to  the 

following  rule.  Taking  the  key-note  as  the  first,  fill  up  the  series 
with  the  third,  fifth,  sixth,  eighth,  tenth,  twelfth  and  thirteenth 
notes,  counting  upwards.  In  this  way  all  diflSculties  of  modulation 
are  avoided,  as  the  twelve  notes  serve  as  well  for  one  key  as  for 
another.  But  this  advantage  is  obtained  at  a  sacrifice  of  true 
intonation.     The  equal  temperament  third,  being  the  third  part  of 

an  octave,  is  represented  by  the  ratio  v^2  :  1,  or  approximately 

1*2599,  while  the  true  third  is  1*25.  The  tempered  third  is  thus 
higher  than  the  true  by  the  interval  126  :  125.  The  ratio  of  the 
tempered  fifth  may  be  obtained  from  the  consideration  that  seven 
semitones  make  a  fifth,  while  twelve  go  to  an  octave.     The  ratio  is 

7 

therefore  2^^  :  1,  which  =  1'4983.  The  tempered  fifth  is  thus  too 
low  in  the  ratio  1-4983  :  1*5,  or  approximately  881  :  882.  This 
error  is  insignificant;  and  even  the  error  of  the  third  is  not  of 

much  consequence  in  quick  music  on  instruments  like  the  piano- 
forte. But  when  the  notes  are  held,  as  in  the  harmonium  and 

organ,  the  consonance  of  chords  is  materially  impaired. 

20.  The  following  Table,  giving  the  twelve  notes  of  the  chro- 
matic scale  according  to  the  system  of  equal  temperament,  will  be 

convenient  for  reference*.     The  standard  employed  is  a' =440;  in 

c. 

c 16-35 
cjf 

17-32 D 18-36 
^ 19-44 
E 20-60 

c. 

c 

F 

I' A 

21-82 
23-12 
24-50 
25-95 
27-60 
29-13 
30-86 

32-70 
34-65 
36-71 
38-89 
41-20 
43-65 

46-25 
49-00 
61-91 
56-00 
58-27 
61-73 

"y 

jt 

jii 

65-41 
69-30 
73-42 
77-79 
82-41 
87-31 
92-50 
98-00 

103-8 
110-0 
116-5 
123-5 

130-8 
138-6 

146-8 
155-6 

164-8 
174-6 
1850 
I960 

207-6 

220-0 
2331 

246-9 

261-7 
277-2 
293-7 

311-2 
329-7 
349-2 
370-0 

392  0 

415-3 

440-0 
466-2 
493-9 

523-3 

544-4 

587-4 
622-3 
659-3 

698-5 
740-0 

784-0 830-6 

880-0 
932-3 987-7 

1046-6 

1108-8 
1174-8 
1244-6 

1318-6 
1397-0 
1480-0 
1568-0 

1661-2 
1760-0 
1864-6 

1975-5 

2093-2 
2217-7 
2349-6 

2489-3 
2637-3 

2794-0 

29601 
31360 

3322-5 
3520-0 

3729-2 
3951-0 1  Zamminer,  Die  Muiik  und  die  mu$ika1i8chen  Instrumente.    Giessen,  1855. 
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order  to  adapt  the  Table  to  any  other  absolute  pitch,  it  is  only 
necessary  to  multiply  throughout  by  the  proper  constant. 

The  ratios  of  the  intervals  of  the  equal  temperament  scale  are 

given  below  (Zamminer) : — 

Note. Freqaenoy. Note. Freqaency. 

c =  1-00000 

f» 

21^  =  1-41421 
c« 

2^^=1-05946 g 
2^^=1.49831 

d 2^=1-12246 

g« 

21^-*  =  1-58740 
d« 

2i-»  =  118921 a 

2^*^=1-68179 

e 2^^=1-25992 

a« 

2ii*  =  1-78180 

f 2^=1-33484 b 
2^^=1-88775 

c'  =  2-000 

21.  Returning  now  for  a  moment  to  the  physical  aspect  of  the 
question,  we  will  assume,  what  we  shall  afterwards  prove  to  be 
true  within  wide  limits, — that,  when  two  or  more  sources  of  sound 
agitate  the  air  simultaneously,  the  resulting  disturbance  at  any 

point  in  the  external  air,  or  in  the  ear-passage,  is  the  simple  sum 
(in  the  extended  geometrical  sense)  of  what  would  b§  caused  by 
each  source  acting  separately.  Let  us  consider  the  disturbance 
due  to  a  simultaneous  sounding  of  a  note  and  any  or  all  of  its 
harmonics.  By  definition,  the  complex  whole  forms  a  note  having 
the  same  period  (and  therefore  pitch)  as  its  gravest  element.  We 
have  at  present  no  criterion  by  which  the  two  can  be  distinguished, 

or  the  presence  of  the  higher  harmonics  recognised.  And  yet— in 
the  case,  at  any  rate,  where  the  component  sounds  have  an  inde- 

pendent origin — it  is  usually  not  difficult  to  detect  them  by  the 
ear,  so  as  to  effect  an  analysis  of  the  mixture.  This  is  as  much  as 

to  say  that  a  strictly  periodic  vibration  may  give  rise  to  a  sensa- 
tion which  is  not  simple,  but  susceptible  of  further  analysis.  In 

point  of  fiskct,  it  has  long  been  known  to  musicians  that  under 
certain  circumstances  the  harmonics  of  a  note  may  be  heard  along 
with  it,  even  when  the  note  is  due  to  a  single  source,  such  as  a 

vibrating  string ;  but  the  significance  of  the  fact  was  not  under- 
stood. Since  attention  has  been  drawn  to  the  subject,  it  has  been 

proved  (mainly  by  the  labours  of  Ohm  and  Helmholtz)  that  almost 
all  musical  notes  are  highly  compound,  consisting  in  fact  of  the 
notes  of  a  harmonic  scale,  from  which  in  particular  cases  one  or 
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more  members  may  be  missing.     The  reason  of  the  uncertainty 
and  difficulty  of  the  analysis  will  be  touched  upon  presently. 

22.  That  kind  of  note  which  the  ear  cannot  further  resolve  is 

called  by  Helmholtz  in  German  a  *  ton,*  Tyndall  and  other  recent 
writers  on  Acoustics  have  adopted  '  tone'  as  an  English  equivalent, 
— a  practice  which  will  be  followed  in  the  present  work.  The 
thing  is  so  important,  that  a  convenient  word  is  almost  a  matter 
of  necessity.  Notes  then  are  in  general  made  up  of  tones,  the 
pitch  of  the  note  being  that  of  the  gravest  tone  which  it  contains. 

23.  In  strictness  the  quality  of  pitch  must  be  attached  in  the 

first  instance  to  simple  tones  only ;  otherwise  the  difficulty  of  dis- 
continuity before  referred  to  presents  itself.  The  slightest  change 

in  the  nature  of  a  note  may  lower  its  pitch  by  a  whole  octave,  as 
was  exemplified  in  the  case  of  the  Siren.  We  should  now  rather 
say  that  the  effect  of  the  slight  displacement  of  the  alternate 
holes  in  that  experiment  was  to  introduce  a  new  feeble  tone  an 
octave  lower  than  any  previously  present.  This  is  suflScient  to 
alter  the  period  of  the  whole,  but  the  great  mass  of  the  sound 
remains  very  nearly  as  before. 

In  most  musical  notes,  however,  the  fundamental  pr  gravest 
tone  is  present  in  sufficient  intensity  to  impress  its  character  on 
the  whole.  The  effect  of  the  harmonic  overtones  is  then  to  modify 

the  quality  or  character^  of  the  note,  independently  of  pitch. 
That  such  a  distinction  exists  is  well  known.  The  notes  of  a  violin, 

tuning  fork,  or  of  the  human  voice  with  its  different  vowel  sounds, 
&C.,  may  all  have  the  same  pitch  and  yet  differ  independently  of 

loudness ;  and  though  a  part  of  this  difference  is  due  to  accom- 
panying noises,  which  are  extraneous  to  their  nature  as  notes,  still 

there  is  a  part  which  is  not  thus  to  be  accounted  for.  Musical 
notes  may  thus  be  classified  as  variable  in  three  ways:  First,  pitch. 
This  we  have  already  sufficiently  considered.  Secondly,  character, 
depending  on  the  proportions  in  which  the  harmonic  overtones  are 
combined  with  the  fundamental :  and  thirdly,  loudness.  This  has 

to  be  taken  last,  because  the  ear  is  not  capable  of  comparing 
(with  any  precision)  the  loudness  of  two  notes  which  differ  much 
in  pitch  or  character.  We  shall  indeed  in  a  future  chapter  give  a 
mechanical  measure  of  the  intensity  of  sound,  including  in  one 
system  all  gradations  of  pitch ;  but  this  is  nothing  to  the  point. 

1  Gennan,  *Klaiigfiarbe* — French,  <  timbre.'    The  word  *  character'  is  used  in 
this  aenae  by  Everett. 
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We  are  here  concerned  with  the  intensity  of  the  sensation  of 
sound,  not  with  a  measure  of  its  physical  cause.  The  difference  of 
loudness  is,  however,  at  once  recognised  as  one  of  more  or  less ;  so 
that  we  have  hardly  any  choice  but  to  regard  it  as  dependent 
coBteria  parilma  on  the  magnitude  of  the  vibrations  concerned. 

24.  We  have  seen  that  a  musical  note,  as  such,  is  due  to  a 

vibration  which  is  necessarily  periodic;  but  the  converse,  it  is 
evident,  cannot  be  true  without  limitation.  A  periodic  repetition 

of  a  noise  at  intervals  of  a  second — for  instance,  the  ticking  of  a 
clock — would  not  result  in  a  musical  note,  be  the  repetition  ever 
so  perfect  In  such  a  case  we  may  say  that  the  fundamental  tone 
lies  outside  the  limits  of  hearing,  and  although  some  of  the 
harmonic  overtones  would  fall  within  them,  these  would  not  give 
rise  to  a  musical  note  or  even  to  a  chord,  but  to  a  noisy  mass  of 
sound  like  that  produced  by  striking  simultaneously  the  twelve 
notes  of  the  chromatic  scale.  The  experiment  may  be  made  with 
the  Siren  by  distributing  the  holes  quite  irregularly  round  the 
circumference  of  a  circle,  and  turning  the  disc  with  a  moderate 
velocity.  By  the  construction  of  the  instrument,  ever3rthing 
recurs  after  each  complete  revolution. 

■ 

26.  The  principal  remaining  difficulty  in  the  theory  of  notes 
and  tones,  is  to  explain  why  notes  are  sometimes  analysed  by  the 
ear  into  tones,  and  sometimes  not.  If  a  note  is  really  complex, 
why  is  not  the  fact  immediately  and  certainly  perceived,  and  the 

components  disentangled  ?  The  feebleness  of  the  harmonic  over- 
tones is  not  the  reason,  for,  as  we  shall  see  at  a  later  stage  of  our 

inquiry,  they  are  often  of  surprising  loudness,  and  play  a  prominent 
part  in  music.  On  the  other  hand,  if  a  note  is  sometimes  perceived 
as  a  whole,  why  does  not  this  happen  always  ?  These  questions 
have  been  carefully  considered  by  HelmholtzS  with  a  tolerably 
satisfactory  result.  The  diflSculty,  such  as  it  is,  is  not  peculiar  to 

Acoustics,  but  may  be  paralleled  in  the  cognate  science  of  Physio- 
logical Optics. 

The  knowledge  of  external  things  which  we  derive  from  the 
indications  of  our  senses,  is  for  the  most  part  the  result  of  inference. 
When  an  object  is  before  us,  certain  nerves  in  our  retinae  are 
excited,  and  certain  sensations  are  produced,  which  we  are 
accustomed  to  associate  with  the  object,  and  we  forthwith  infer  its 
presence.     In  the  case  of  an  unknown  object  the  process  is  much 

^  Tonempjindungent  3rd  edition,  p.  98. 
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the  same.  We  interpret  the  sensations  to  which  we  are  subject  so 
as  to  form  a  pretty  good  idea  of  their  exciting  cause.  From  the 
slightly  different  perspective  views  received  by  the  two  eyes  we 
infer,  often  by  a  highly  elaborate  process,  the  actual  relief  and 
distance  of  the  object,  to  which  we  might  otherwise  have  had  no 
clue.  These  inferences  are  made  with  extreme  rapidity  and  quite 
unconsciously.  The  whole  life  of  each  one  of  us  is  a  continued 
lesson  in  interpreting  the  signs  presented  to  us,  and  in  drawing 
conclusions  as  to  the  actualities  outside.  Only  so  far  as  we  succeed 
in  doing  this,  are  our  sensations  of  any  use  to  us  in  the  ordinary 
affairs  of  life.  This  being  so,  it  is  no  wonder  that  the  study  of  our 
sensations  themselves  falls  into  the  background,  and  that  subjective 
phenomena,  as  they  are  called,  become  exceedingly  diflScult  of 
observation.  As  an  instance  of  this,  it  is  sufficient  to  mention  the 

'blind  spot'  on  the  retina,  which  might  a  priori  have  been 
expected  to  manifest  itself  as  a  conspicuous  phenomenon,  though 
as  a  fact  probably  not  one  person  in  a  hundred  million  would  find 
it  out  for  themselves.  The  application  of  these  remarks  to  the 
question  in  hand  is  tolerably  obvious.  In  the  daily  use  of  our  ears 
our  object  is  to  disentangle  from  the  whole  mass  of  sound  that 
may  reach  us,  the  parts  coming  from  sources  which  may  interest 
us  at  the  moment.  When  we  listen  to  the  conversation  of  a  friend, 

we  fix  our  attention  on  the  sound  proceeding  from  him  and 
endeavour  to  grasp  that  as  a  whole,  while  we  ignore,  as  far  as 
possible,  any  other  sounds,  regarding  them  as  an  interruption. 
There  are  usually  sufficient  indications  to  assist  us  in  making  this 

partial  analysis.  When  a  man  speaks,  the  whole  sound  of  his 
voice  rises  and  falls  together,  and  we  have  no  difficulty  in  recog- 

nising its  unity.  It  would  be  no  advantage,  but  on  the  contrary 
a  great  source  of  confusion,  if  we  were  to  carry  the  analysis  further, 
and  resolve  the  whole  mass  of  sound  present  into  its  component 
tones.  Although,  as  regards  sensation,  a  resolution  into  tones 
might  be  expected,  the  necessities  of  our  position  and  the  practice 
of  our  lives  lead  us  to  stop  the  analysis  at  the  point,  beyond 

which  it  would  cease  to  be  of  service  in  deciphering  our  sensa- 
tions, considered  as  signs  of  external  objects^ 

But  it  may  sometimes  happen  that  however  much  we  may 
wish  to  form  a  judgment,  the  materials  for  doing  so  are  absolutely 

>  Most  probably  the  power  of  attending  to  the  important  and  ignoring  the 

unimportant  part  of  onr  sensations  is  to  a  great  extent  inherited — to  how  great  an 
extent  we  shiJl  perhaps  never  know. 
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wanting.  When  a  note  and  its  octave  are  sounding  close  together 
and  with  perfect  uniformity,  there  is  nothing  in  our  sensations  to 
enable  us  to  distinguish,  whether  the  notes  have  a  double  or  a 

single  origin.  In  the  mixture  stop  of  the  organ,  the  pressing  down 
of  each  key  admits  the  wind  to  a  group  of  pipes,  giving  a  note  and 
its  first  three  or  four  harmonics.  The  pipes  of  each  group  always 
sound  together,  and  the  result  is  usually  perceived  as  a  single 
note,  although  it  does  not  proceed  from  a  single  source. 

26.  The  resolution  of  a  note  into  its  component  tones  is  a 
matter  of  very  different  diflSculty  with  different  individuals.  A 
considerable  effort  of  attention  is  required,  particularly  at  first ; 
and,  imtil  a  habit  has  been  formed,  some  external  aid  in  the  shape 
of  a  suggestion  of  what  is  to  be  listened  for,  is  very  desirable. 

The  diflSculty  is  altogether  very  similar  to  that  of  learning  to 
draw.  From  the  machinery  of  vision  it  might  have  been  expected 
that  nothing  would  be  easier  than  to  make,  on  a  plane  surface,  a 
representation  of  surrounding  solid  objects ;  but  experience  shews 
that  much  practice  is  generally  required. 

We  shall  return  to  the  question  of  the  analysis  of  notes  at  a 
later  stage,  after  we  have  treated  of  the  vibrations  of  strings,  with 
the  aid  of  which  it  is  best  elucidated;  but  a  very  instructive 

experiment,  due  originally  to  Ohm  and  improved  by  Helmholtz, 

may  be  given  here.  Helmholtz^  took  two  bottles  of  the  shape 
represented  in  the  figure,  one  about  twice  as  large  as  the  other. 
These  were  blown  by  streams  of  air  directed 

across  the  mouth  and  issuing  from  gutta-percha 
tubes,  whose  ends  had  been  softened  and  pressed 
flat,  so  as  to  reduce  the  bore  to  the  form  of  a 

narrow  slit,  the  tubes  being  in  connection  with 
the  same  bellows.  By  pouring  in  water  when 
the  note  is  too  low  and  by  partially  obstructing 
the  mouth  when  the  note  is  too  high,  the  bottles 

may  be  made  to  give  notes  with  the  exact 

interval  of  an  octave,  such  as  b  and  b'.  The 
larger  bottle,  blown  alone,  gives  a  somewhat  muflSed  sound  similar 
in  character  to  the  vowel  U;  but,  when  both  bottles  are  blown, 

the  character  of  the  resulting  sound  is  sharper,  resembling  rather 
the  vowel  O.  For  a  short  time  after  the  notes  had  been  heard 

separately  Helmholtz  was  able  to  distinguish  them  in  the  mixture ; 

^  Tonempfindungen^  p.  109. 
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but  as  the  memory  of  their  separate  impressions  &ded,  the  higher 
note  seemed  by  degrees  to  amalgamate  with  the  lower,  which  at 
the  same  time  became  louder  and  acquired  a  sharper  character. 
This  blending  of  the  two  notes  may  take  place  even  when  the  high 
note  is  the  louder. 

27.  Seeing  now  that  notes  are  usually  compound,  and  that 
only  a  particular  sort  called  tones  are  incapable  of  further  analysis, 
we  are  led  to  inquire  what  is  the  physical  characteristic  of  tones, 

to  which  they  owe  their  peculiarity?  What  sort  of  periodic  vibra- 
tion is  it,  which  produces  a  simple  tone?  According  to  what 

mathematical  function  of  the  time  does  the  pressure  vary  in 
the  passage  of  the  ear  ?  No  question  in  Acoustics  can  be  more 
important. 

The  simplest  periodic  functions  with  which,  mathematicians 
are  acquainted  are  the  circular  functions,  expressed  by  a  sine  or 
cosine;  indeed  there  are  no  others  at  all  approaching  them  in 
simplicity.  They  may  be  of  any  period,  and  admitting  of  no 
other  variation  (except  magnitude),  seem  well  adapted  to  produce 
simple  tones.  Moreover  it  has  been  proved  by  Fourier,  that  the 

most  general  single-valued  periodic  function  can  be  resolved  into 
a  series  of  circular  functions,  having  periods  which  are  submultiples 
of  that  of  the  given  function.  Again,  it  is  a  consequence  of  the 
general  theory  of  vibration  that  the  particular  type,  now  suggested 
as  corresponding  to  a  simple  tone,  is  the  only  one  capable  of 
preserving  its  integrity  among  the  vicissitudes  which  it  may 
have  to  undergo.  Any  other  kind  is  liable  to  a  sort  of  physical 
analysis,  one  part  being  differently  affected  from  another.  If  the 
analysis  within  the  ear  proceeded  on  a  different  principle  from  that 
effected  according  to  the  laws  of  dead  matter  outside  the  ear, 
the  consequence  would  be  that  a  sound  originally  simple  might 
become  compound  on  its  way  to  the  observer.  There  is  no  reason 
to  suppose  that  anything  of  this  sort  actually  happens.  When  it 
is  added  that  according  to  all  the  ideas  we  can  form  on  the  subject, 
the  analysis  within  the  ear  must  take  place  by  means  of  a  physical 
machinery,  subject  to  the  same  laws  as  prevail  outside,  it  will  be 
seen  that  a  strong  case  has  been  made  out  for  regarding  tones  as 
due  to  vibrations  expressed  by  circular  functions.  We  are  not 
however  left  entirely  to  the  guidance  of  general  considerations  like 
these.  In  the  chapter  on  the  vibration  of  strings,  we  shall  see 
that  in  many  cases  theory  informs  us  beforehand  of  the  nature  of 
B.  2 
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/. the  vibration  executed  by  a  string,  and  in  particular  whether  any 
specified  simple  vibration  is  a  component  or  not  Here  we  have 
a  decisive  test.  It  is  found  by  experiment  that,  whenever  according 
to  theory  any  simple  vibration  is  present,  the  corresponding  tone 
can  be  heard,  but,  whenever  the  simple  vibration  is  absent,  then 
the  tone  cannot  be  heard.  We  are  therefore  justified  in  asserting 
that  simple  tones  and  vibrations  of  a  circular  type  are  indissolubly 
connected.     This  law  was  discovered  by  Ohm. 



CHAPTER  11. 

HARMONIC   MOTIONS. 

28.  The  vibratioDs  expressed  by  a  circular  function  of  the 
time  and  variously  designated  as  simple,  pendulous,  or  harmonic^ 
are  so  important  in  Acoustics  that  we  cannot  do  better  than  devote 
a  chapter  to  their  consideration,  before  entering  on  the  dynamical 
part  of  our  subject.  The  quantity,  whose  variation  constitutes 

the  '  vibration/  may  be  the  displacement  of  a  particle  measured 
in  a  given  direction,  the  pressure  at  a  fixed  point  in  a  fluid 
medium,  and  so  on.     In  any  case  denoting  it  by  u,  we  have 

tt  =  acos[ —  —  €j   (1), 

in  which  a  denotes  the  amplitude^  or  extreme  value  of  tt ;  r  is 
the  periodic  time,  or  period,  after  the  lapse  of  which  the  values 
of  u  recur;  and  e  determines  the  phase  of  the  vibration  at  the 
moment  from  which  t  is  measured. 

Any  number  of  harmonic  vibrations  of  the  same  period  affect- 
ing a  variable  quantity,  compound  into  another  of  the  same  type, 

whose  elements  are  determined  as  follows : 

li  =s  2a  cos 

i^-') 27rt^  .    27rt^      . 
cos  —  za  cos  €  -h  sm  —  za  sin  e 
T  T 

27rt =  rcos 

i^-")   w. 
if  r={(2acos6)^  +  (2a8ine)^j*   (3), 
and  tan  d  =  2a sin 6 -rSa cose   (4). 

2—2 
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For  example,  let  there  be  two  components, 

u  =  acoai   el  +  a  cosi   el; 

then  r  =  {a»  +  a'»+2aa'co8(e-e')}*   (5), 
a  sin  e  +  a' sin  e'  .Uv 

tang=  ,   :j    (6). a  cos  e  +  a  cos  € 

Particular  cases  may  be  noted.  If  the  phases  of  the  two  com- 
ponents agree, 

.         ,.        f2irt      \ 
u=^{a+a) cos  (   el. 

If  the  phases  differ  by  half  a  period, 

w  =  (a  —  a ) cos  f   el , 

so  that  if  a  ̂ a,u  vanishes.  In  this  case  the  vibrations  are  often 
said  to  inter/ere,  but  the  expression  is  rather  misleading.  Two 
sounds  may  very  properly  be  said  to  interfere,  when  they  together 
cause  silence;  but  the  mere  superposition  of  two  vibrations 
(whether  rest  is  the  consequence,  or  not)  cannot  properly  be  so 
called.  At  least  if  this  be  interference,  it  is  difficult  to  say  what 

non-interference  can  be.  It  will  appear  in  the  course  of  this 
work  that  when  vibrations  exceed  a  certain  intensity  they  no 
longer  compound  by  mere  addition;  this  mutual  action  might 
more  properly  be  called  interference,  but  it  is  a  phenomenon 
of  a  totally  different  nature  from  that  with  which  we  are  now 
dealing. 

Again,  if  the  phases  differ  by  a  quarter  or  by  three-quarters  of 

a  period,  cos  (e  —  e')  =  0,  and 

Harmonic  vibrations  of  given  period  may  be  represented 
by  lines  drawn  from  a  pole,  the  lengths  of  the  lines  being  pro- 

portional to  the  amplitudes,  and  the  inclinations  to  the  phases 
of  the  vibrations.  The  resultant  of  any  number  of  harmonic 
vibrations  is  then  represented  by  the  geometrical  resultant  of 
the  corresponding  lines.  For  example,  if  they  are  disposed 
symmetrically  round  the  pole,  the  resultant  of  the  lines,  or 
vibrations,  is  zero. 

29.  If  we  measure  off  along  an  axis  of  x  distances  pro- 
portional to  the  time,  and  take  u  for  an  ordinate,  we  obtain  the 

harmonic  curve,  or  curve  of  sines, 
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where  X,  called  the  wave-length,  is  written  in  place  of  r,  both 
quantities  denoting  the  range  of  the  independent  variable  corre- 

sponding to  a  complete  recurrence  of  the  function.  The  harmonic 
curve  is  thus  the  locus  of  a  point  subject  at  once  to  a  uniform 

motion,  and  to  a  harmonic  vibration  in  a  perpendicular  direc- 
tion. In  the  next  chapter  we  shall  see  that  the  vibration  of  a 

tuning  fork  is  simple  harmonic;  so  that  if  an  excited  tuning 
fork  be  moved  with  uniform  velocity  parallel  to  the  line  of  its 
handle,  a  tracing  point  attached  to  the  end  of  one  of  its  prongs 
describes  a  harmonic  curve,  which  may  be  obtained  in  a  permanent 
form  by  allowing  the  tracing  point  to  bear  gently  on  a  piece  of 
smoked  paper.  In  Fig.  2  the  continuous  lines  are  two  harmonic 

curves  of  the  same  wave-length  and  amplitude,  but  of  different 

phases;  the  dotted  curve  represents  half  their  resultant,  being 
the  locus  of  points  midway  between  those  in  which  the  two 
curves  are  met  by  any  ordinate. 

30.    If  two  harmonic  vibrations  of  different  periods  coexist, 

/27rt 
iisacosf  — -  €  j  -f-  a  cos  ( — 7 —  el . 

The  resultant  cannot  here  be  represented  as  a  simple  harmonic 

motion  with  other  elements.  If  t  and  t'  be  incommensurable,  the 
value  of  u  never  recurs ;  but,  if  r  and  t'  be  in  the  ratio  of  two 
whole  numbers,  u  recurs  after  the  lapse  of  a  time  equal  to  the 
least  common  multiple  of  r  and  t\  but  the  vibration  is  not 
simple  harmonia  For  example,  when  a  note  and  its  fifth  are 
sounding  together,  the  vibration  recurs  after  a  time  equal  to 
twice  the  period  of  the  graver. 
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One  case  of  the  composition  of  harmonic  vibrations  of  diflferent 
periods  is  worth  special  discussion,  namely,  when  the  diflference 
of  the  periods  is  small.  If  we  fix  our  attention  on  the  course 
of  things  during  an  interval  of  time  including  merely  a  few 
periods,  we  see  that  the  two  vibrations  are  nearly  the  same  as 
if  their  periods  were  absolutely  equal,  in  which  case  they  would, 
as  we  know,  be  equivalent  to  another  simple  harmonic  vibration 
of  the  same  period.  For  a  few  periods  then  the  resultant 

motion  is  approximately  simple  harmonic,  but  the  same  har- 
monic will  not  continue  to  represent  it  for  long.  The  vibration 

having  the  shorter  period  continually  gains  on  its  fellow,  thereby 
altering  the  difference  of  phase  on  which  the  elements  of  the 
resultant  depend.  For  simplicity  of  statement  let  us  suppose 
that  the  two  components  have  equal  amplitudes,  fi^quencies 

represented  by  m  and  n,  where  m  —  n  is  small,  and  that  when 
first  observed  their  phases  agree.  At  this  moment  their  effects 
conspire,  and  the  resultant  has  an  amplitude  double  of  that  of 

the  components.  But  after  a  time  1  -j-  2  (m  —  n)  the  vibration 
m  will  have  gained  half  a  period  relatively  to  the  other;  and 
the  two,  being  now  in  complete  disagreement,  neutralize  each 
other.  After  a  further  interval  of  time  equal  to  that  above 
named,  m  will  have  gained  altogether  a  whole  vibration,  and 

complete  accordance  is  once  more  re-established.  The  resultant 
motion  is  therefore  approximately  simple  harmonic,  with  an 
amplitude  not  constant,  but  varying  from  zero  to  twice  that  of 

the  components,  the  frequency  of  these  alterations  being  m  — w. 
If  two  tuning  forks  with  frequencies  500  and  501  be  equally 

excited,  there  is  every  second  a  rise  and  fall  of  sound  corre- 
sponding to  the  coincidence  or  opposition  of  their  vibrations. 

This  phenomenon  is  called  beats.  We  do  not  here  fully  discuss 
the  question  how  the  ear  behaves  in  the  presence  of  vibrations 
having  nearly  equal  frequencies,  but  it  is  obvious  that  if  the  motion 
in  the  neighbourhood  of  the  ear  almost  cease  for  a  considerable 
fraction  of  a  second,  the  sound  must  appear  to  fall.  For  reasons 

that  will  afterwards  appear,  beats  are  best  heard  when  the  in- 
terfering sounds  are  simple  tones.  Consecutive  notes  of  the 

stopped  diapason  of  the  organ  shew  the  phenomenon  very 
well,  at  least  in  the  lower  parts  of  the  scale.  A  permanent  inter- 

ference of  two  notes  may  be  obtained  by  mounting  two  stopped 
organ  pipes  of  similar  construction  and  identical  pitch  side  by 
side  on  the  same  wind  chest.    The  vibrations  of  the  two  pipes 
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adjust  themselves  to  complete  opposition,  so  that  at  a  little 
distance  nothing  can  be  heard^  except  the  hissing  of  the  wind. 
If  by  a  rigid  wall  between  the  two  pipes  one  sound  could  be 
cut  off,  the  other  would  be  instantly  restored.  Or  the  balance, 
on  which  silence  depends,  may  be  upset  by  connecting  the  ear 
with  a  tube,  whose  other  end  lies  close  to  the  mouth  of  one  of  the 

pipes. 
By  means  of  beats  two  notes  may  be  tuned  to  unison  with 

great  exactness.  The  object  is  to  make  the  beats  as  slow  as 
possible,  since  the  number  of  beats  in  a  second  is  equal  to  the 
difference  of  the  frequencies  of  the  notes.  Under  £Etvourable 

circumstances  beats  so  slow  as  one  in  30  seconds  may  be  recog- 
nised, and  would  indicate  that  the  higher  note  gains  only  two 

vibrations  a  minute  on  the  lower.  Or  it  might  be  desired  merely 
to  ascertain  the  difference  of  the  frequencies  of  two  notes  nearly 
in  unison,  in  which  case  nothing  more  is  necessary  than  to  count 
the  number  of  beats.  It  will  be  remembered  that  the  difference 

of  frequencies  does  not  determine  the  interval  between  the  two 
notes;  that  depends  on  the  ratio  of  frequencies.  Thus  the 
rapidity  of  the  beats  given  by  two  notes  nearly  in  unison  is 
doubled,  when  both  are  taken  an  exact  octave  higher. 

Analytically 

u  =  a  cos  (iirmt  —  e)  +  a'  cos  (2imt  —  e'), 
where  m  —  n  is  small. 

Now  cos {2imt  —  e) may  be  written 

cos  [lirmt  —  2^  (m  —  n)  ̂  —  e'}, and  we  have 
iA  =  rco8(27rm^— tf)   (1), 

where  r^^a^-^-a'^-k-  2<w!  cos  {27r  (m  -  n)  ̂  +  e'  -  c}   (2), 

.      ̂      asinc  +  a'sin  {2'7r(m  — n)^  +  €'}  .^. tan  O  =   ;   ;   r^ — ;   77— — n   W/« 
a  cos  €  +  a  cos  [2'7r  (m  —  n)  ̂  +  e } 

The  resultant  vibration  may  thus  be  considered  as  harmonic 
with  elements  r  and  0,  which  are  not  constant  but  slowly  varying 

functions  of  the  time,  having  the  frequency  m—n.  The  ampli- 
tude r  is  at  its  maximum  when 

cos  {27r  (m  —  n)  ̂  +  e'  —  €}  =  +  1, 
and  at  its  minimum  when 

cos  {2'7r  (m  —  n)  t  +€'  —  €}=—  1, 

the  corresponding  values  being  a-^-a'  and  a^a  respectively. 
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31.  Another  case  of  great  importance  is  the  composition  of 
vibrations  corresponding  to  a  tone  and  its  harmonica  It  is  known 

that  the  most  general  single-valued  finite  periodic  function  can 

be  expressed  by  a  series  of  simple  harmonics — 
/2imt 

U  =  ao  +  2^l  On  cos  f-^j;   €«)   (1), 

a  theorem  usually  quoted  as  Fourier's.  Analytical  proofs  will  be 
found  in  Todhunter's  Integral  Calcvlus  and  Thomson  and  Tait's 
Natural  Philosophy ;  and  a  line  of  argument  almost  if  not  quite 
amounting  to  a  demonstration  will  be  given  later  in  this  work. 
A  few  remarks  are  all  that  will  be  required  here. 

Fourier's  theorem  is  not  obvious.  A  vague  notion  is  not  un- 
common that  the  infinitude  of  arbitrary  constants  in  the  series 

of  necessity  endows  it  with  the  capacity  of  representing  an  arbi- 
trary periodic  function.  That  this  is  an  error  will  be  apparent, 

when  it  is  observed  that  the  same  argument  would  apply  equally, 
if  one  term  of  the  series  were  omitted ;  in  which  case  the  ex- 

pansion would  not  in  general  be  possible. 
Another  point  worth  notice  is  that  simple  harmonics  are  not 

the  only  functions,  in  a  series  of  which  it  is  possible  to  expand 
one  arbitrarily  given.     Instead  of  the  simple  elementary  term 

"""^Vl- — ^V' 
we  might  take 

cos  I   €«  1  +  X  cos  (   €n 

formed  by  adding  a  similar  one  in  the  same  phase  of  half  the 
amplitude  and  period.  It  is  evident  that  these  terms  would 
serve  as  well  as  the  others;  for 

iTTvt       \      f       /2irnt        \     1 2iT7vt       \      f       f^irrd        \     1        fAsimt 
cos  I   6«|  =  -IcOSf   €nl4-T^C0S  f   €n 

1  (       (4nmt        \      1        (Simt 

"  2  P^  V^   «nj  +  2  ̂̂ ^  \;^   ^ 

—   ad  infin., 

so  that  each  term  in  Fourier's  series,  and  therefore  the  sum  of 
the  series,  can  be  expressed  by  means  of  the  double  elementary 
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terms  now  suggested.  This  is  mentioned  here,  because  students, 
not  being  acquainted  with  other  expansions,  may  imagine  that 
simple  harmonic  functions  are  by  nature  the  only  ones  qualified 
to  be  the  elements  in  the  development  of  a  periodic  function. 

The  reason  of  the  preeminent  importance  of  Fourier's  series  in 
Acoustics  is  the  mechanical  one  referred  to  in  the  preceding 

chapter,  and  to  be  explained  more  fully  hei-eafter,  namely,  that, 
in  general,  simple  harmonic  vibrations  are  the  only  kind  that  are 

propagated  through  a  vibrating  system  without  suffering  decom- 
position. 

32.  As  in  other  cases  of  a  similar  character,  e.g.  Taylor's 
theorem,  if  the  possibility  of  the  expansion  be  known,  the  co- 

efficients may  be  determined  by  a  comparatively  simple  process. 
We  may  write  (1)  of  §  81 

w  =  ilo  +  2^i  -4»cos   1-2^1  -DnSin —      (1). T  T 

Multiplying  by  cos  {^mrtjr)  or  sin  (2n7rt/T),  and  integrating 

over  a  complete  period  from  ̂   =  0  to  ̂   =  t,  we  find 

.       2  r^  2n7rt  ,/ 
-^n^-  \    UCO&    at 

T  J  0 

T 

Bn=-  I  usin  — —  at 
r  J  0  r 

(2). An  immediate  integration  gives 

-4o  =  -  rudt   (3), 
T  J  0 

indicating  that  Aq  ia  the  mean  value  of  v  throughout  the  period. 
The  degree  of  convergency  in  the  expansion  of  u  depends  in 

general  on  the  continuity  of  the  function  and  its  derivatives. 
The  series  formed  by  successive  differentiations  of  (1)  converge 
less  and  less  rapidly,  but  still  remain  convergent,  and  arithmetical 
representatives  of  the  differential  coefficients  of  u,  so  long  as 
these  latter  are  everywhere  finite.  Thus  (Thomson  and  Tait, 

§  77),  if  all  the  derivatives  up  to  the  m^  inclusive  be  free 
finom  infinite  values,  the  series  for  u  is  more  convergent  than 
one  with 

for  coefficients. 

1    ̂     ̂     ̂         &c 
2^'   S^'   4"*'       *' 
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32  a.  The  general  explanation  of  the  beats  heard  when  two 
pure  tones  nearly  in  unison  are  sounded  simultaneously  has  been 
discussed  in  §  30.  But  the  occurrence  of  beats  is  not  confined  to 
the  case  of  approximate  unison,  at  least  when  we  have  to  deal 
with  compound  notes.  Suppose  for  example  that  the  interval 
is  an  octava  The  graver  note  then  usually  includes  a  tone 
coincident  in  pitch  with  the  fundamental  tone  of  the  higher  note. 
If  the  interval  be  disturbed,  the  previously  coincident  tones 
sepstrate  from  one  another,  and  give  rise  to  beats  of  the  same 
frequency  as  if  they  existed  alone.  There  is  usually  no  difficulty 
in  observing  these  beats;  but  if  one  or  both  of  the  component 
tones  concerned  be  very  faint,  the  aid  of  a  resonator  may  be 
invoked. 

In  general  we  may  consider  that  each  consonant  interval  is 
characterized  by  the  coincidence  of  certain  component  tones,  and 
if  the  interval  be  disturbed  the  previously  coincident  tones 

give  rise  to  beats.  Of  course  it  may  happen  in  any  particular 
case  that  the  tones  which  would  coincide  in  pitch  are  absent  from 
one  or  other  of  the  notes.  The  disturbance  of  the  interval 

would  then,  according  to  the  above  theory,  not  be  attended 
by  beats.  In  practice  faint  beats  are  usually  heard;  but  the 
discussion  of  this  phenomenon,  as  to  which  authorities  are  not 

entirely 'agreed,  must  be  postponed. 

33.  Another  class  of  compounded  vibrations,  interesting  from 

the  fecility  with  which  they  lend  themselves  to  optical  observa- 
tion, occur  when  two  harmonic  vibrations  affecting  the  same  par- 
ticle are  executed  in  perpendicular  directions,  more  especially 

when  the  periods  are  not  only  commeasurable,  but  in  the  ratio 
of  two  small  whole  numbers.  The  motion  is  then  completely 
periodic,  with  a  period  not  many  times  greater  than  those  of  the 

components,  and  the  curve  described  is  re-entrant.  If  u  and  v 
be  the  co-ordinates,  we  may  take 

w  =  a  cos  (27m^  —  €),    v  =  6cos27m'^   (1). 

First  let  us  suppose  that  the  periods  are  equal,  so  that  n' ̂ n\ 
the  elimination  of  t  gives  for  the  equation  of  the  curve  described, 

^+p-"^'°«^-^^=^   <2>' 
representing  in  general  an  ellipse,  whose  position  and  dimensions 
depend  upon  the  amplitudes  of  the  original  vibrations  and  upon 
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the  difference  of  their  pbasea  If  the  phases  differ  by  a  quarter 

period,  cos  €  «  0,  and  the  equation  becomes 

"i  +  ji  =  1- 

In  this  case  the  axes  of  the  ellipse  coincide  with  those  of 

co-ordinates.  If  further  the  two  components  have  equal  ampli- 
tudes, the  locus  degenerates  into  the  circle 

w*  +  v*  =  a', 

which  is  described  with  uniform  velocity.  This  shews  how  a 
uniform  circular  motion  may  be  analysed  into  two  rectilinear 
harmonic  motions,  whose  directions  are  perpendicular. 

If  the  phases  of  the  components  agree,  €  —  0,  and  the  ellipse 
degenerates  into  the  coincident  straight  lines 

or  if  the  difference  of  phase  amount  to  half  a  period,  into 

(M)"-"- 
When  the  unison  of  the  two  vibrations  is  exact,  the  elliptic 

path  remains  perfectly  steady,  but  in  practice  it  will  almost 
always  happen  that  there  is  a  slight  difference  between  the 
periods.  The  consequence  ia  that  though  a  fixed  ellipse  represents 
the  curve  described  with  sufficient  accuracy  for  a  few  periods, 
the  ellipse  itself  gradually  changes  in  correspondence  with  the 
alteration  in  the  magnitude  of  e.  It  becomes  therefore  a  matter 
of  interest  to  consider  the  system  of  ellipses  represented  by  (2), 
supposing  a  and  b  constants,  but  e  variable. 

Since  the  extreme  values  of  u  and  v  are  ±  a,  ±  6  respectively, 
the  ellipse  is  in  all  cases  inscribed  in  the  rectangle  whose  sides 

are  2a,  26.     Starting  with  the  phases  in  agreement,  or  6  =  0,  we 

have   the  ellipse    coincident   with   the   diagonal  — a"^*     ̂  

€  increases  from  0  to  ̂ tt,  the  ellipse  opens  out  until  its  equation 
becomes 

y}      v* 

i  +  j5  =  1- From  this  point  it  closes  up  again,  ultimately  coinciding  with 

the  other  diagonal  -  +  ̂   =  0,  corresponding  to  the  increase  of  e  from 

^  to  TT.    After  this,  as  e  ranges  ftt)m  v  to  27r,  the  ellipse  retraces 
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its  course  until  it  again  coincides  with  the  first  diagonal.     The 
sequence  of  changes  is  exhibited  in  Fig.  3. 

F/G.3, 

' — 

The  ellipse,  having  already  four  given  tangents,  is  completely 

determined  by  its  point  of  contact  P  (Fig.  4)  with  the  line  v  =  6. 

F/  G.  -4. 

In  order  to  connect  this  with  e,  it  is  sufficient  to  observe  that 

when  V  =  6,  cos  ̂ irvi  =  1 ;  and  therefore  u  =  a  cos  6.  Now  if  the 
elliptic  paths  be  the  result  of  the  superposition  of  two  harmonic 
vibrations  of  nearly  coincident  pitch,  €  varies  uniformly  with  the 

time,  so  that  P  itself  executes  a  harmonic  vibration  along  A  A' 
with  a  frequency  equal  to  the  difference  of  the  two  given  fre- 

quenciea 

34L  Idssajous^  has  shewn  that  this  system  of  ellipses  may  be 
regarded  as  the  different  aspects  of  one  and  the  same  ellipse 
described  on  the  surface  of  a  transparent  cylinder.     In  Fig.  5 

A A 

b'
 

B 

^  Anm 
r/G.  5 

iU$  de  Chitnie  (8)  li.  147, 1S67. 
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AA'BB  represents  the  cylinder,  of  which  AB!  is  a  plane  section. 
Seen  from  an  infinite  distance  in  the  direction  of  the  conunon 

tangent  at  il  to  the  plane  sections,  the  cylinder  is  projected  into  a 
rectangle,  and  the  ellipse  into  its  diagonal.  Suppose  now  that  the 
cylinder  turns  upon  its  axis,  carrying  the  plane  section  with  it. 

Its  own  projection  remains  a  constant  rectangle  in  which  the  pro- 

F/G.  6. 

jection  of  the  ellipse  is  inscribed.  Fig.  6  represents  the  posi- 
tion of  the  cylinder  after  a  rotation  through  a  right  angle.  It 

appears  therefore  that  by  turning  the  cylinder  round  we  obtain  in 
succession  all  the  ellipses  corresponding  to  the  paths  described  by 
a  point  subject  to  two  harmonic  vibrations  of  equal  period  and  fixed 
amplitudes.  Moreover  if  the  cylinder  be  turned  continuously 
with  uniform  velocity,  which  insures  a  harmonic  motion  for  P, 

we  obtain  a  complete  representation  of  the  varpng  orbit  de- 
scribed by  the  point  when  the  periods  of  the  two  components 

differ  slightly,  each  complete  revolution  answering  to  a  gain  or 
loss  of  a  single  vibration^  The  revolutions  of  the  cylinder  are 
thus  synchronous  with  the  beats  which  would  result  from  the 
composition  of  the  two  vibrations,  if  they  were  to  act  in  the  same 
direction. 

36.  Vibrations  of  the  kind  here  considered  are  very  easily 

realized  experimentally.  A  heavy  pendulum-bob,  hung  frx)m  a 
fixed  point  by  a  long  wire  or  string,  describes  ellipses  under  the 
action  of  gravity,  which  may  in  particular  cases,  according  to  the 
circumstances  of  projection,  pass  into  straight  lines  or  circles. 
But  in  order  to  see  the  orbits  to  the  best  advantage,  it  is  necessary 
that  they  should  be  described  so  quickly  that  the  impression 
on  the  retina  made  by  the  moving  point  at  any  part  of  its  course 
has  not  time  to  fade  materially,  before  the  point  comes  round  again 
to  renew  its  action.  This  condition  is  fulfilled  by  the  vibration  of 
a  silvered  bead  (giving  by  reflection  a  luminous  point),  which  is 

^  By  a  vibration  wiU  always  be  meant  in  this  work  a  complete  oyole  of  changes. 
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attached  to  a  straight  metallic  wire  (such  as  a  knitting-needle)* 
firmly  clamped  in  a  vice  at  the  lower  end.  When  the  system  is  set 
into  vibration,  the  luminous  point  describes  ellipses,  which  appear 
as  fine  lines  of  light.  These  ellipses  would  gradually  contract  in 
dimensions  under  the  influence  of  friction  until  they  subsided 
into  a  stationary  bright  point,  without  undergoing  any  other 
change,  were  it  not  that  in  all  probability,  owing  to  some  want 
of  symmetry,  the  wire  has  slightly  differing  periods  according  to 

the  plane  in  which  the  vibration  is  executed.  Under  these  cir- 
cumstances the  orbit  is  seen  to  undergo  the  cycle  of  changes 

already  explained. 

36.  So  far  we  have  supposed  the  periods  of  the  component 
vibrations  to  be  equal,  or  nearly  equal ;  the  next  case  in  order  of 
simplicity  is  when  one  is  the  double  of  the  other.     We  have 

u  =  a  cos  (4nnrt  —  e),     v  =  6  cos  2w7rf . 

The  locus  resulting  firom  the  elimination  of  t  may  be  written 
u -  =  cos  e 
a (2^.-l)  +  2sin.yi-^   (1). 

which  for  all  values  of  e  represents  a  curve  inscribed  in  the  rect- 
angle 2a,  26.     If  6  =  0,  or  tt,  we  have 

-K'^S. 
r/ff.z 
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representing  pstrabolaa    Fig.  7  shews  the  various  curves  for  the 
intervals  of  the  octave,  twelfth,  and  fifth. 

To  all  these  systems  Lissajous'  method  of  representation  by 
the  transparent  cylinder  is  applicable,  and  when  the  relative 
phase  is  altered,  whether  from  the  different  circumstances  of 
projection  in  different  cases,  or  continuously  owing  to  a  slight 
deviation  from  exactness  in  the  ratio  of  the  periods,  the  cylinder 
will  appear  to  turn,  so  as  to  present  to  the  eye  different  aspects  of 
the  same  line  traced  on  its  surface. 

37.  There  is  no  difficulty  in  arranging  a  vibrating  system  so 
that  the  motion  of  a  point  shall  consist  of  two  harmonic  vibrations 
in  perpendicular  planes,  with  their  periods  in  any  assigned  ratio. 

The  simplest  is  that  known  as  Blackburn's  pendulum.  A  wire 
ACB  is  fastened  at  A  and  B,  two  fixed  points  at  the  same  level. 
The  bob  P  is  attached  to  its  middle  point  by  another  wire  CP. 
For  vibrations  in  the  plane  of  the  diagram,  the  point  of  suspension 
is  practically  (7,  provided  that  the  wires  are  sufficiently  stretched ; 
but  for  a  motion  perpendicular  to  this  plane,  the  bob  turns  about 
D,  carrying  the  wire  ACB  with  it.     The  periods  of  vibration  in 

Op 
the  principal  planes  are  in  the  ratio  of  the  square  roots  of  CP  and 

DP.  Thus  if  DC  =  3CP,  the  bob  describes  the  figures  of  the 
octava  To  obtain  the  sequence  of  curves  corresponding  to 
approximate  unison,  ACB  must  be  so  nearly  tight,  that  CD  is 
relatively  small 



32  HARMONIC  MOTIONS.  [38. 

38.  Another  contrivance  called  the  kaleidophone  was  origin- 
ally invented  by  Wheatstone.  A  straight  thin  bw  of  steel  carrying 

a  bead  at  its  upper  end  is  fastened  in  a  vice,  as  explained  in  a 
previous  paragraph.  If  the  section  of  the  bar  is  square,  or  circular, 
the  period  of  vibration  is  independent,  of  the  plane  in  which  it  is 
performed.  But  let  us  suppose  that  the  section  is  a  rectangle 

with  unequal  sides.  The  stifihess  of  the  bar — the  force  with 
which  it  resists  bending — is  then  greater  in  the  plane  of  greater 
thickness,  and  the  vibrations  in  this  plane  have  the  shorter  period. 
By  a  suitable  adjustment  of  the  thicknesses,  the  two  periods  of 

vibration  may  be  brought  into  any  required  ratio,  and  the  cor- 
responding curve  exhibited. 

The  defect  in  this  arrangement  is  that  the  same  bar  will  give 
only  one  set  of  figures.  In  order  to  overcome  this  objection 
the  following  modification  has  been  devised.  A  slip  of  steel  is 
taken  whose  rectangular  section  is  very  elongated,  so  that  as 
regards  bending  in  one  plane  the  stiffness  is  so  great  as  to  amount 
practically  to  rigidity.  The  bar  is  divided  into  two  parts,  and  the 
broken  ends  reunited,  the  two  pieces  being  turned  on  one  another 
through  a  right  angle,  so  that  the  plane,  which  contains  the  small 
thickness  of  one,  contains  the  great  thickness  of  the  other.  When 

the  compound  rod  is  clamped  in  a  vice  at  a  point  below  the  junc- 
tion, the  period  of  the  vibration  in  one  direction,  depending  almost 

entirely  on  the  length  of  the  upper  piece,  is  nearly  constant ;  but 
that  in  the  second  direction  may  be  controlled  by  varjring  the 
point  at  which  the  lower  piece  is  clamped. 

39.  In  this  arrangement  the  luminous  point  itself  executes 

the  vibrations  which  are  to  be  observed ;  but  in  Lissajous'  form  of 
the  experiment,  the  point  of  light  remains  really  fixed,  while  its 
linage  is  thrown  into  apparent  motion  by  means  of  successive 
reflection  from  two  vibrating  mirrors.  A  small  hole  in  an  opaque 
screen  placed  close  to  the  flame  of  a  lamp  gives  a  point  of  light,, 
which  is  observed  after  reflection  in  the  mirrors  by  means  of  a 
small  telescope.  The  mirrors,  usually  of  polished  steel,  are  attached 
to  the  prongs  of  stout  tuning  forks,  and  the  whole  is  so  disposed 
that  when  the  forks  are  thrown  into  vibration  the  luminous  point 
appears  to  describe  harmonic  motions  in  perpendicular  directions, 
owing  to  the  angular  motions  of  the  reflecting  surfaces.  The 
ampUtudes  and  periods  of  these  harmonic  motions  depend  upon 
those  of  the  corresponding  forks,  and  may  be  made  such  as  to  give 
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with  enhanced  brilliancy  any  of  the  figures  possible  with  the 
kaleidophone.  By  a  similar  arrangement  it  is  possible  to  project 
the  figures  on  a  screen.  In  either  case  they  gradually  contract  as 
the  vibrations  of  the  forks  die  away. 

40.  The  principles  of  this  chapter  have  received  an  important 
application  in  the  investigation  of  rectilinear  periodic  motions. 
When  a  point,  for  instance  a  particle  of  a  sounding  string,  is 
vibrating  with  such  a  period  as  to  give  a  note  within  the  limits  of 
hearing,  its  motion  is  much  too  rapid  to  be  followed  by  the  eye ; 
so  that,  if  it  be  required  to  know  the  character  of  the  vibration, 

some  indirect  method  must  be  adopted.  The  simplest,  theo- 
retically, is  to  compound  the  vibration  under  examination  with  a 

uniform  motion  of  translation  in  a  perpendicular  direction,  as  when 

a  tuning-fork  draws  a  harmonic  curve  on  smoked  paper.  Instead 
of  moving  the  vibrating  body  itself,  we  may  make  use  of  a  revolv- 

ing mirror,  which  provides  us  with  an  iiiuige  in  motion.  In  this 
way  we  obtain  a  representation  of  the  function  characteristic  of 
the  vibration,  with  the  abscissa  proportional  to  time. 

But  it  often  happens  that  the  application  of  this  method  would 
be  difficult  or  inconvenient.  In  such  cases  we  may  substitute  for 
the  uniform  motion  a  harmonic  vibration  of  suitable  period  in  the 
S€une  direction.  To  fix  our  ideas,  let  us  suppose  that  the  point, 
whose  motion  we  wish  to  investigate,  vibrates  vertically  with  a 
period  T,  and  let  us  examine  the  result  of  combining  with  this  a 
horizontal  harmonic  motion,  whose  period  is  some  multiple  of  t, 
say,  m.  Take  a  rectangular  piece  of  paper,  and  with  axes  parallel 
to  its  edges  draw  the  curve  representing  the  vertical  motion  (by 
setting  off  abscissae  proportional  to  the  time)  on  such  a  scale  that 
the  paper  just  contains  n  repetitions  or  waves,  and  then  bend  the 

paper  round  so  as  to  form  a  cylinder,  with  a  re-entrant  curve  run- 
ning round  it.  A  point  describing  this  curve  in  such  a  manner 

that  it  revolves  uniformly  about  the  axis  of  the  cylinder  will 
appear  from  a  distance  to  combine  the  given  vertical  motion  of 

period  T,  with  a  horizontal  harmonic  motion  of  period  /it.  Con- 
versely therefore,  in  order  to  obtain  the  representative  curve  of 

the  vertical  vibrations,  the  cylinder  containing  the  apparent  path 
must  be  imagined  to  be  divided  along  a  generating  line,  and 
developed  into  a  plane.  There  is  less  difficulty  in  conceiving  the 

cylinder  and  the  situation  of  the  curve  upon  it,  when  the  adjust- 
ment of  the  periods  is  not  quite  exact,  for  then   the   cylinder 
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appears  to  turn,  and  the  contrary  motions  serve  to  distinguish 
those  parts  of  the  curve  which  lie  on  its  nearer  and  further  face. 

41.  The  auxiliary  harmonic  motion  is  generally  obtained 

optically,  by  means  of  an  instrument  called  a  vibration-microscope 
invented  by  Lissajous.  One  prong  of  a  large  tuning-fork  carries 
a  lens,  whose  axis  is  perpendicular  to  the  direction  of  vibration; 

and  which  may  be  used  either  by  itself,  or  as  the  object-glass  of 
a  compound  microscope  formed  by  the  addition  of  an  eye-piece 

independently  suppoi*ted.  In  either  case  a  stationary  point  is 
thrown  into  apparent  harmonic  motion  along  a  line  parallel  to 

that  of  the  fork's  vibration. 
The  vibration-microscope  may  be  applied  to  test  the  rigour 

and  universality  of  the  law  connecting  pitch  and  period.  Thus 
it  will  be  found  that  any  point  of  a  vibrating  body  which  gives 

a  pure  musical  note  will  appear  to  describe  a  re-entrant  curve, 
when  examined  with  a  vibration-microscope  whose  note  is  in 
strict  unison  with  its  own.  By  the  same  means  the  ratios  of 
frequencies  characteristic  of  the  co^isonant  intervals  may  be 
verified;  though  for  this  latter  purpose  a  more  thoroughly 
acoustical  method,  to  be  described  in  a  future  chapter,  may  be 

preferred. 

42.  Another  method  of  examining  the  motion  of  a  vibrating 
body  depends  upon  the  use  of  intermittent  illumination ^  Suppose, 
for  example,  that  by  means  of  suitable  apparatus  a  series  of 
electric  sparks  are  obtained  at  regular  intervals  t.  A  vibrating 
body,  whose  period  is  also  t,  examined  by  the  light  of  the  sparks 
must  appear  at  rest,  because  it  can  be  seen  only  in  one  position. 
If,  however,  the  period  of  the  vibration  differ  from  t  ever  sa 
little,  the  illuminated  position  varies,  and  the  body  will  appear 
to  vibrate  slowly  with  a  frequency  which  is  the  difference  of  that 
of  the  spark  and  that  of  the  body.  The  type  of  vibration  can 
then  be  observed  with  facility. 

The  series  of  sparks  can  be  obtained  from  an  induction-coil,, 
whose  primary  circuit  is  periodically  broken  by  a  vibrating  fork,, 
or  by  some  other  interrupter  of  sufficient  regularity.  But  a  better 
result  is  afforded  by  sunlight  rendered  intermittent  with  the  aid  of 
a  fork,  whose  prongs  carry  two  small  plates  of  metal,  parallel  to 
the  plane  of  vibration  and  close  together.     In  each  plate  is  a  slit' 

1  Plateau,  Bull,  de  VAcad.  roy,  de  Belgique,  t.  iii,  p.  364,  1836. 
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parallel  to  the  prongs  of  the  fork,  and  so  placed  as  to  afford  a 
free  passage  through  the  plates  when  the  fork  is  at  rest,  or  passing 
through  the  middle  point  of  its  vibrations.  On  the  opening  so 

formed,  a  beam  of  sunlight  is  concentrated  by  means  of  a  burning- 
glass,  and  the  object  under  examination  is  placed  in  the  cone  of 

rays  diverging  on  the  further  side'.  When  the  fork  is  made  to 
vibrate  by  an  electro-magnetic  arrangement,  the  illumination  is  cut 
off  except  when  the  fork  is  passing  through  its  position  of  equi- 

librium, or  nearly  so.  The  flashes  of  light  obtained  by  this  method 
are  not  so  instantaneous  as  electric  sparks  (especially  when  a 
jar  is  connected  with  the  secondary  wire  of  the  coil),  but  in  my 
experience  the  regularity  is  more  perfect.  Care  should  be  taken 
to  cut  off  extraneous  light  as  far  as  possible,  and  the  effect  is  then 
very  striking. 

A  similar  result  may  be  arrived  at  by  lor>king  at  the  vibrating 
body  through  a  series  of  holes  arranged  in  a  circle  on  a  revolving 
disc.  Several  series  of  holes  may  be  provided  on  the  same 

disc,  but  the  observation  is  not  satisfactory  without  some  pro- 
vision for  securing  uniform  rotation. 

Except  with  respect  to  the  sharpness  of  definition,  the  result  is 
the  same  when  the  period  of  the  light  is  any  multiple  of  that  of 
the  vibrating  body.  This  point  must  be  attended  to  when  the 
revolving  wheel  is  used  to  determine  an  unknown  frequency. 

When  the  frequency  of  intermittence  is  an  exact  multiple  of 
that  of  the  vibration,  the  object  is  seen  without  apparent  motion, 
but  generally  in  more  than  one  position.  This  condition  of  things 
is  sometimes  advantageous. 

Similar  effects  arise  when  the  frequencies  of  the  vibrations 
and  of  the  flashes  are  in  the  ratio  of  two  small  whole  numbers. 

If,  for  example,  the  number  of  vibrations  in  a  given  time  be  half 
as  great  again  as  the  number  of  flashes,  the  body  will  appear 
stationary,  and  in  general  double. 

42  a.  We  have  seen  (§  28)  that  the  resultant  of  two  isoperiodic 
vibrations  of  equal  amplitude  is  wholly  dependent  upon  their  phase 
relation,  and  it  is  of  interest  to  inquire  what  we  are  to  expect 
from  the  composition  of  a  large  number  (n)  of  equal  vibrations 
of  amplitude  unity,  of  the  same  period,  and  of  phases  accidentally 
determined.  The  intensity  of  the  resultant,  represented  by  the 
square  of  the  amplitude  §  245,  will  of  course  depend  upon  the 

1  Topler,  Phii.  Mag.  Jan.  1867. 
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precise  manner  in  which  the  phases  are  distributed,  and  may  vary 

from  n*  to  zero.  But  is  there  a  definite  intensity  which  becomes 
more  and  more  probable  when  n  is  increased  without  limit  ? 

The  nature  of  the  question  here  i-aised  is  well  illustrated  by 
the  special  case  in  which  the  possible  phases  are  restricted  to  two 
opposite  phases.  We  may  then  conveniently  discard  the  idea  of 
phase,  and  regard  the  amplitudes  as  at  random  positive  or  negative. 

If  all  the  signs  be  the  same,  the  intensity  is  n* ;  if,  on  the  other 
hand,  there  be  as  many  positive  as  negative,  the  result  is  zero. 
But  although  the  intensity  may  range  from  0  to  n^  the  smaller 
values  are  more  probable  than  the  greater. 

The  simplest  part  of  the  problem  relates  to  what  is  called  in 

the  theory  of  probabilities  the  '*  expectation "  of  intensity,  that 
is,  the  mean  intensity  to  be  expected  after  a  great  number  of 
trials,  in  each  of  which  the  phases  are  taken  at  random.  The 

chance  that  all  the  vibrations  are  positive  is  (J)**,  and  thus  the 
expectation  of  intensity  corresponding  to  this  contingency  is 

(J)**.n'.  In  like  manner  the  expectation  corresponding  to  the 
number  of  positive  vibrations  being  (n—  1)  is 

and  so  on.     The  whole  expectation  of  intensity  is  thus 

^l.n^  +  nin-2y  +  '^^kn-*y 

+  "^"7^,>;^-'>(n-6)'  +  ...}   (1). 
Now  the  sum  of  the  (n  + 1)  terms  of  this  series  is  simply  n,  as 

may  be  proved  by  comparison  of  coefficients  of  a;"  in  the  equivalent 
forms 

(e*  +  e-«)~  =  2~  (1  +  ia;»  +  . . .)« 

The  expectation  of  intensity  is  therefore  n,  and  this  whether  n  be 
great  or  small. 

The  same  conclusion  holds  good  when  the  phases  are  unre- 
stricted.    From  (3)  §  28,  if  Oi  =  Oj  =  . . .  =  1, 

r'  =  (cosei  +COS  €a+  ...)'-l-(sin  ei  +  sin€,-h  ..,y 

=  nH- 2S  cos  (€,  -  6i)   (2), 

where  under  the  sign  of  summation  are  to  be  included  the  cosines 

of  the   iw(n  — 1)  differences  of  phase.     When   the   phases  are 
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accidental,  the  sum  is  as  likely  to  be  positive  as  negative,  and 
thus  the  mean  value  of  r^  is  n. 

The  reader  must  be  on  his  guard  here  against  a  fallacy  which 
has  misled  some  eminent  authors^  We  have  not  proved  that  when 
n  is  large  there  is  any  tendency  for  a  single  combination  to  give 
an  intensity  equal  to  n,  but  the  quite  different  proposition  that  in 

a  large  number  of  trials,  in  each  of  which  the  phases  are  dis- 
tributed at  random,  the  viean  intensity  will  tend  more  and  more 

to  the  value  n.  It  is  true  that  even  in  a  single  combination  there 
is  no  reason  why  any  of  the  cosines  in  (2)  should  be  positive 
rather  than  negative.  From  this  we  may  infer  that  when  n  is 
increased  the  sum  of  the  terms  tends  to  vanish  in  comparison  with 
the  number  of  terms ;  but,  the  number  of  the  terms  being  of  the 

order  n*,  we  can  infer  nothing  as  to  the  value  of  the  sum  of  the 
series  in  comparison  with  n. 

So  fietr  there  is  no  difficulty;  but  a  complete  investigation  of 
this  subject  involves  an  estimate  of  the  relative  probabilities  of 
resultants  lying  within  assigned  limits  of  magnitude.  For  example, 
we  ought  to  be  able  to  say  what  is  the  probability  that  the 
intensity  due  to  a  large  number  (ti)  of  equal  components  is  less 
than  \n.  This  problem  may  conveniently  be  considered  here,  though 
it  is  naturally  beyond  the  reach  of  elementary  methods.  We  will 
commence  by  taking  it  under  the  restriction  that  the  phases  are 
of  two  opposite  kinds  only.. 

Adopting  the  statistical  method  of  statement,  let  us  suppose 
that  there  are  an  immense  number  N  of  independent  combinations, 

each  consisting  of  n  unit  vibrations,  positive  or  negative,  and  com- 
bined accidentally.  When  N  is  sufficiently  large,  the  statistics 

become  regular;  and  the  number  of  combinations  in  which  the 
resultant  amplitude  is  found  equal  to  x  may  be  denoted  by 
N  ,f(n,  x\  where /is  a  definite  function  of  n  and  x.  Now  suppose 
that  each  of  the  N  combinations  receives  another  random  contri- 

bution of  ±  1,  and  inquire  how  many  of  them  will  subsequently 
possess  a  resultant  x.  It  is  clear  that  those  only  can  do  so  which 

originally  had  amplitudes  a?  — 1,  or  a;+l.  if aZ/ of  the  former, 
and  half  of  the  latter  number  will  acquire  the  amplitude  x,  so 
that  the  number  required  is 

ii\r/(n,  a; -l)  +  Ji\r/(r2,^ -hi). 
But  this  must  be  identical  with  the  number  corresponding  to 
n  +  1  and  a?,  so  that 

/(n-h  1,  x)^\f{n,x^\)  +  i/(n,  ̂ +1)   (3). 
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This  equation  of  differences  holds  good  for  all  integral  values 
of  X  and  for  all  positive  integral  values  of  n.  If  /  (n,  a?)  be  given 
for  one  value  of  n,  the  equation  suflSces  to  determine  /  (n,  x)  for 
all  higher  integral  values  of  n.  For  the  present  purpose  the 
initial  value  of  n  is  zero.  In  that  case  we  know  that  /(a?)  =  0  for 
all  values  of  x  other  than  zero,  and  that  when  x  =  0,/(0,  0)  =  1. 

The  problem  proposed  in  the  above  form  is  perfectly  definite ; 
but  for  our  immediate  object  it  suflSces  to  limit  ourselves  to  the 
supposition  that  n  is  great,  regarding  /(n,  ̂ )  as  a  continuous 
function  of  continuous  variables  n  and  x^  much  as  in  the  analogous 
problem  of  §§120,  121.122. 

Writing  (3)  in  the  form 

/(n  + 1,  x)^f(n,  x)  =  i/(n,  X-  1)+  i/*(n,  x+  !)-/(%  x)...(4), 
we  see  that  the  left-hand  member  may  then  be  identified  with 

dfldn,  and  the  right-hand  member  with  ̂ d^fjda^,  so  that  under 
these  circumstances  the  differential  equation  to  which  (3)  reduces 
is  of  the  well-known  form 

dn"  Ida?   ^  ̂' 
The  analogy  with  the  conduction  of  heat  is  indeed  very  close ; 

and  the  methods  developed  by  Fourier  for  the  solution  of  problems 
in  the  latter  subject  are  at  once  applicable.  The  special  condition 

here  is  that  initially,  that  is  when  n  =  0,  /  must  vanish  for  all 
values  of  x  other  than  zero.  As  may  be  verified  by  differentiation, 
the  special  solution  of  (5)  is  then 

f(n,  ̂ )  =  Ae-^/.n   ,   (6), 

in  which  A  is  an  arbitrary  constant  to  be  determined  from  the 
consideration  that  the  whole  number  of  combinations  is  N,  Thus, 

if  dx  be  large  in  comparison  with  unity,  the  number  of  combina- 
tions which  have  amplitudes  between  x  and  x-\-dx\& 

--T-er^f^dx: 

while  ^        e^i^dx=-N, 

so  that  in  virtue  of  the  known  equality 
e"'^  dz  =  V'T, r+oo 

J  —00 

A  .  V2^  =  1. 
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The  final  result  for  the  number  of  combinations  which  have 

Amplitudes  between  x  and  x-\-dx\&  accordingly 

V(27ni) 
The  mean  intensity  is  expressed  by 

1      r"*"* as  before. 

We  will  now  pass  on  to  the  more  important  problem  in  which 
the  phases  of  the  n  unit  vibrations  are  distributed  at  random  over 
the  entire  period.  In  each  combination  the  resultant  amplitude 
is  denoted  by  r  and  the  phase  (referred  to  a  given  epoch)  by  0 ; 
and  rectangular  coordinates  are  taken  so  that 

a?  =  r cos 0,  y^r sin  0. 
Thus  any  point  (a?,  y)  in  the  plane  of  reference  represents  a 
vibration  of  amplitude  r  and  phase  0,  and  the  whole  system  of 
N  vibrations  is  represented  by  a  distribution  of  points,  whose 
density  it  is  our  object  to  determine.  Since  no  particular  phase 
can  be  singled  out  for  distinction,  we  know  beforehand  that  the 
density  of  distribution  will  be  independent  of  0. 

Of  the  infinite  number  N  of  points  we  suppose  that 

Nf{n,  X,  y)  dxdy 
are  to  be  found  within  the  infinitesimal  area  dxdy,  and  we  will 
inquire  as  before  how  this  number  would  be  changed   by  the 
addition  to  the  n  component  vibrations  of  one  more  unit  vibration 
of  accidental  phase.     Any  vibration  which  after  the  addition  is 
represented  by  the  point  x,  y  must  before  have  corresponded  to 
the  point 

of  =  x  —  cos (f>,     y'  ̂y  —  sin  0, 
where  0  represents  the  phase  of  the  additional  unit  vibration. 
And,  if  for  the  moment  0  be  regarded  as  given,  to  the  area  dxdy 

corresponds  an  equal  area  dx'dy\  Again,  all  values  of  <f>  being 
equally  probable,  the  factor  necessary  under  this  head  is  d<l>/2'n: 
Accordingly  the  whole  number  to  be  found  in  dxdy  after  the 
superposition  of  the  additional  unit  is 

Ndxdy  rf(n,  x\  y')  d<f>/27r  ; 
and  this  is  to  be  equated  to 

Ndxdy  f(n  +  1,  x,  y)  ; 

so  that  /(w+1,  X,  y)^^ f{n,  x\  y')d<f>l2ir    (8). 
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The  value  of /(w,  x,  y)  is  obtained  by  introduction  of  the 
values  of  x\  y   and  expansion: 

/(-'.3/')=/(-.y)-fcos^-|8in^  +  |gco8«^ 

+  j  J- cos^sin^+5  T^,8m»^+..., 
dxdy  2dy^ so  that 

Also,  n  being  very  great, 

/(n  +  1,  X,  y)  -/(w,  ar,  y)  =  d//dn ; 
and  (8)  reduces  to 

dn"4  W     dj^y   ^  ̂' 
the  usual  equation  for  the  conduction  of  heat  in  two  dimensions. 

In  addition  to  (9),  /has  to  satisfy  the  special  condition  of 

evanescence  when  n  =  0  for  all  points  other  than  the  origin.     The 
appropriate  solution  is  necessarily  symmetrical  round  the  origin, 
and  takes  the  form 

/(n,  a;,  y)  =  ̂n-ie-'*'+y*»/'*   (lO), 
as  may  be  verified  by  differentiation.  The  constant  -4  is  to  be 
determined  by  the  condition  that  the  whole  number  is  N,    Thus 

iV  =  NAvr"^  11  e-<*'+y*»/»  dxdy^  NA  2im-^r  e'^l'^rdr  =  irAN ; 

and  the  number  of  vibrations  within  the  area  dxdy  becomes 

—  e-^^l^'dxdy   (11). 

If  we   wish   to   find   the   number  of  vibrations  which  have 

amplitudes  between   r  and  r  +  dr,   we    must    introduce    polar 

coordinates  and  integrate  with  i-espect  to  0.  The  required  number 
is  thus 

2Nn'-'e-^l''rdr   (12)^ 

The  result  may  also  be  expressed  by  saying  that  the  probahility 
of  a  resultant  amplitude  between  r  and  r  +  dr  when  a  large 
number  n  of  unit  vibrations  are  compounded  at  random  is 

2n-'e-^l''rdr   (13). 

^  Phil.  Mag.  Aag.  1880. 
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41 
The  mean  intensity  is  given  by 

0 

as  was  to  be  expected. 
The  probability  of  a  resultant  amplitude  less  than  r  is 

Jo 2n-»      e-'^^'^rdr  =  1  -  e-^f" (14), 

or,  which  is  the  same  thing,  the  probability  of  a  resultant  ampli- 
tude greater  than  r  is 

c-^'/~   (15). 

The  following  table  gives  the  probabilities  of  intensities  less 
than  the  fractions  of  n  named  in  the  first  column.  For  example, 

the  probability  of  intensity  less  than  n  is  *6321. 

•05 
•0488 

1         -80 

•5506 
•10 

•0952 

100 

•6321 
•20 

•1813 

i       1-50 

•7768 •40 
•3296 

2  00 

•8647 •60 

•4512 

1       3^00 

•9502 

It  will  be  seen  that,  however  great  n  may  be,  there  is  a 
reasonable  chance  of  considerable  relative  fluctuations  of  intensity 
in  different  combinations. 

If  the  amplitude  of  each  component  be  a,  instead  of  unity,  as 
we  have  hitherto  supposed  for  brevity,  the  probability  of  a  resultant 
amplitude  between  r  and  r  +  dr  is 

no? 
(16). 

The  result  is  thus  a  function  of  n  and  a  only  through  na^  and 
would  be  unchanged  if  for  example  the  amplitude  became  \ol  and 
the  number  4n.  From  this  it  follows  that  the  law  is  not  altered, 

even  if  the  components  have  different  amplitudes,  provided  always 
that  the  whole  number  of  each  kind  is  very  great;  so  that  if  there 

be  n  components  of  amplitude  a,  n'  of  amplitude  ̂ ,  and  so  on,  the 
probability  of  a  resultant  between  r  and  r  +  dr  is 

nar  +  w  /CP  -f  ... 

That  this  is  the  case  may  perhaps  be  made  more  clear  by  the 
consideration  of  a  particular  case.  Let  us  suppose  in  the  first 

place  that  n-\-in'  unit  vibrations  are  compounded  at  random. 
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The  appropriate  law  is  given  at  once  by  (13)  on  substitution  of 

n  +  4w'  for  n,  that  is 

2  (n  +  4n')-' c-^'/<«"^«Vdr   (18). 

Now  the  combination  of  n  +  4n'  unit  vibrations  may  be  re- 
garded as  arrived  at  by  combining  a  random  combination  of  n 

unit  vibrations  with  a  second  random  combination  of  4n'  units, 
and  the  second  random  combination  is  the  same  as  if  due  to  a 

random  combination  of  n'  vibrations  each  of  amplitude  2.  Thus 

(18)  applies  equally  well  to  a  random  combination  of  (n  +  n') 
vibrations,  n  of  which  are  of  amplitude  unity  and  n'  of  ampli- 

tude 2. 

Although  the  result  has  no  application  to  the  theory  of  vibra- 
tions, it  may  be  worth  notice  that  a  similar  method  applies  to  the 

composition  in  three  dimensions  of  unit  vectors,  whose  directions 
are  accidental.     The  equation  analogous  to  (8)  gives  in  place  of 

(9) 

dn     eKdaf'      dy^'^  dzV' The  appropriate  solution,  analogous  to  (13),  is 

V  UnV 
e-r«/!«r«dr     (18), 

expressing  the  probability  of  a  resultant  amplitude  lying  between 
r  and  r  +  dr. 

Here  again  the  mean  value  of  r",  to  be  expected  in  a  great 
number  of  independent  combinations,  is  n. 



CHAPTER  III. 

SYSTEMS   HAVING   ONE   DEGREE   OF   FREEDOM. 

43.  The  material  systems,  with  whose  vibrations  Acoustics  is 

concerned,  are  usually  of  considerable  complication,  and  are  sus- 
ceptible of  very  various  modes  of  vibration,  any  or  all  of  which 

may  coexist  at  any  particular  moment.  Indeed  in  some  of  the 

most  important  musical  instruments,  as  strings  and  organ-pipes, 
the  number  of  independent  modes  is  theoretically  infinite,  and 

the  consideration  of  several  of  them  is  essential  to  the  most  prac- 
tical questions  relating  to  the  nature  of  the  consonant  chords. 

Cases,  however,  often  present  themselves,  in  which  one  mode  is 
of  paramount  importance ;  and  even  if  this  were  not  so,  it  would 
still  be  proper  to  commence  the  consideration  of  the  general 

problem  with  the  simplest  case — that  of  one  degree  of  freedom. 
Jt  need  not  be  supposed  that  the  mode  treated  of  is  the  only  one 
possible,  because  so  long  as  vibrations  of  other  modes  do  not  occur 
their  possibility  under  other  circumstances  is  of  no  moment. 

41.  The  condition  of  a  system  possessing  one  degree  of  free- 
dom is  defined  by  the  value  of  a  single  co-ordinate  u,  whose  origin 

may  be  taken  to  correspond  to  the  position  of  equilibrium.  The 
kinetic  and  potential  energies  of  the  system  for  any  given  position 

are  proportional  respectively  to  ti*  and  u' : — 

T  =  ̂ mu\     V=-^fiu*   (1). 

where  m  and  fi  are  in  general  functions  of  u.  But  if  we  limit 

ourselves  to  the  consideration  of  positions  in  the  immediate  neigh" 
bowrhood  of  tfiat  corresponding  to  equilibrium,  u  is  a  small  quantity, 
and  m  and  fi  are  sensibly  constant.     On  this  underatanding  we 



44  ONE   DEGREE   OF   FREEDOM.  [44. 

now  proceed.  If  there  be  no  forces,  either  resulting  from  internal 
friction  or  viscosity,  or  impressed  on  the  system  from  without,  the 
whole  energy  remains  constant.     Thus 

T-f.  F=  constant. 

Substituting  for  T  and  V  their  values,  and  differentiating  with 
respect  to  the  time,  we  obtain  the  equation  of  motion 

mit-f  ̂ w  =  0   (2) 

of  which  the  complete  integral  is 

u^a  cos  (nt  —  a)   (3), 

where  n=*=ft-7-m,  representing  a  harmonic  vibration.  It  will  be 
seen  that  the  period  alone  is  determined  by  the  nature  of  the 

system  itself;  the  amplitude  and  phase  depend  on  collateral  cir- 
cumstances. If  the  differential  equation  were  exact,  that  is  to 

say.  if  T  were  strictly  proportional  to  li",  and  V  to  w',  then,  without 
any  restriction,  the  vibrations  of  the  system  about  its  configuration 
of  equilibrium  would  be  accurately  harmonic.  But  in  the  majority 
of  cases  the  proportionality  is  only  approximate,  depending  on  an 

assumption  that  the  displacement  u  is  always  small — how  small 
depends  on  the  nature  of  the  particular  system  and  the  degree  of 

approximation  required ;  and  then  of  course  we  must  be  careful 
not  to  push  the  application  of  the  integral  beyond  its  proper 
limits. 

But,  although  not  to  be  stated  without  a  limitation,  the  prin- 
ciple that  the  vibrations  of  a  system  about  a  configuration  of 

equilibrium  have  a  period  depending  on  the  structure  of  the 
system  and  not  on  the  particular  circumstances  of  the  vibration, 
is  of  supreme  importance,  whether  regarded  from  the  theoretical 
or  the  practical  side.  If  the  pitch  and  the  loudness  of  the  note 

given  by  a  musical  instrument  were  not  within  wide  limits  in- 
dependent, the  art  of  the  performer  on  many  instruments,  such 

as  the  violin  and  pianoforte,  would  be  revolutionized. 
The  periodic  time 

.  =  2^  =  2^^*   (4), 

so  that  an  increase  in  ?/i,  or  a  decrease  in  /i,  protracts  the  duration 
of  a  vibration.  By  a  generalization  of  the  language  employed  in 

the  case  of  a  material  particle  urged  towards  a  position  of  equili- 
brium by  a  spring,  m  may  be  called  the  inertia  of  the  system,  and 
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/A  the  force  of  the  equivalent  spring.  Thus  an  augmentation  of 
mass,  or  a  relaxation  of  spring,  increases  the  periodic  time.  By 
means  of  this  principle  we  may  sometimes  obtain  limits  for 
the  value  of  a  period,  which  cannot,  or  cannot  easily,  be  calculated 
exactly. 

45.     The  absence  of  all  forces  of  a  frictional  character  is  an 

ideal  case,  never  realized  but  only  approximated  to  in  practice. 
The  original  energy  of  a  vibration  is  always  dissipated  sooner  or 
later  by  conversion  into  heat.     But  there  is  another  source  of  loss, 

which   though  not,  properly  speaking,  dissipative,  yet  produces 

results  of  m#Dh  the  same  nature.     Consider  the  case  of  a  tuning- 
fork  vibrating  in  vacuo.     The  internal  friction  will  in  time  stop 
the   motion,   and   the   original  energy  will  be  transformed  into 
heat.     But  now  suppose  that  the  fork  is  transferred  to  an  open 

space.     In  strictness  the  fork  and  the  air  surrounding  it  consti- 
tute a  single  system,  whose  parts  cannot  be  treated  separately. 

In  attempting,  however,  the  exact  solution  of  so  complicated  a 

problem,  we  should  generally  be  stopped  by  mathematical  diffi- 
culties, and  in  any  case  an  approximate  solution  would  be  de- 

sirable.    The  effect  of  the  air  during  a  few  periods  is  quite  insig- 
nificant, and  becomes  important  only  by  accumulation.     We  are 

thus  led  to  consider  its  effect  as  a  disturbance  of  the  motion  which 

would  take  place  hi  vacuo.     The  disturbing  force  is  periodic  (to 

the  same  approximation  that  the'  vibrations  are  so),  and  may  be 
divided  into  two  parts,  one  proportional  to  the  acceleration,  and 
the  other  to  the  velocity.     The  former  produces  the  same  effect  as 
an  alt.eration  in  the  mass  of  the  fork,  and  we  have  nothing  more 

to  do  with  it  at  present.     The  latter  is  a  force  arithmetically  pro- 
portional to  the  velocity,  and  always  acts  in  opposition  to  the 

motion,  and  therefore  produces  effects  of  the  same  character  as 
those  due  to  friction.     In  many  similar  cases  the  loss  of  motion 
by  communication  may  be  treated  under  the  same  head  as  that 
due  to  dissipation  proper,  and  is  represented  in  the  differential 
equation  with  a  degree  of  approximation  sufficient  for  acoustical 

purposes  by  a  term  proportional  to  the  velocity.     Thus 

u  +  /cu-hn*M  =  0   (1) 

is   the  equation  of  vibration  for  a  system  with  one  degree  of 
freedom  subject  to  frictional  forces.     The  solution  is 

M  =  ̂ e-i««cos{\V-i/c2.  e-a}   (2). 
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If  the  friction  be  so  great  that  ̂ k^  >  n\  the  solution  changes  its 
form,  and  no  longer  corresponds  to  an  oscillatory  motion ;  but  in 
all  acoustical  applications  #c  is  a  small  quantity.  Under  these 
circumstances  (2)  may  be  regarded  as  expressing  a  harmonic 
vibration,  whose  amplitude  is  not  constant,  but  diminishes  in 

geometrical  progression,  when  considered  after  equal  intervals  of 
time.  The  diflTerence  of  the  logarithms  of  successive  extreme 

excursions  is  nearly  constant,  and  is  called  the  Logarithmic  Decre- 
ment.    It  is  expressed  by  \tcT,  if  t  be  the  periodic  time. 

The  frequency,  depending  on  n*  —  \/c*,  involves  only  the  second 
power  ot  k;  so  that  to  the  first  order  of  approximation  the  friction 

has  no  effect  on  the  pei^iod, — a  principle  of  very  general  application. 
The  vibration  here  considered  is  called  the  free  vibration.  It 

is  that  executed  by  the  system,  when  disturbed  from  equilibrium, 
and  then  left  to  itself 

46.  We  must  now  turn  our  attention  to  another  problem,  not 

less  important, — the  behaviour  of  the  system,  when  subjected  to  an 
external  force  varying  as  a  harmonic  frmction  of  the  time.  In 
order  to  save  repetition,  we  may  take  at  ouce  the  more  general 
case  including  friction.  If  there  be  no  friction,  we  have  only  to 

put  in  our  results  /c  =  0.     The  differential  equation  is 

u+#fi  +  n*ii=  Ecospt   (1). 

Assume  u  ==  a  cos  (pt  —  e)   (2), 
and  substitute : 

a  (n'  — p")  cos  (p^ "~  €)  —  ̂ ^  siJ^  (pt  —  c) 
=  £^  cos  €  cos  (pt  —  c)  —  Esine  sin  (pt  —  e) ; 

whence,  on  equating  coefficients  of  cos  (pt  —  c),  sin  (pt  —  c), 

a(««-^)  =  ̂ co8e|   

so  that  the  solution  may  be  written 

"=— r^co8(p^-€)   (4), 

where  tan  6  =  -^—,   (5). 

This  is  called  a  forced  vibration;  it  is  the  response  of  the  system 
to  a  force  imposed  upon  it  from  without,  and  is  maintained  by  the 
continued  operation  of  that  force.     The  amplitude  is  proportional 



46.]  FORCED   VIBRATIONS.  47 

to  E — the  magnitude  of  the  force,  and  the  period  is  the  same 
as  that  of  the  force. 

Let  us  now  suppose  E  given,  and  trace  the  effect  on  a  given 
system  of  a  variation  in  the  period  of  the  force.     The  effects 
produced  in  different  cases  are  not  strictly  similar;  because  the 
frequency  of  the  vibrations  produced  is  always  the  same  as  that  of 
the  force,  and  therefore  variable  in  the  comparison  which  we  are 
about  to  institute.     We  may,  however,  compare  the  energy  of  the 
system  in  different  cases  at  the  moment  of  passing  through  the 
position  of  equilibrium.    It  is  necessary  thus  to  specify  the  moment 
at  which  the  energy  is  to  be  computed  in  each  case,  because  the 
total  energy  is  not  invariable  throughout  the  vibration.     During 
one  part  of  the   period   the   system   receives   energy  from  the 
impressed  force,  and  during  the  remainder  of  the  period  yields  it 
back  again. 

From  (4),  if  w  =  0, 

energy  x  li-  x  sin^  e, 

and  is  therefore  a  maximum,  when  sin  €  =  1,  or,  from  (5),p  =  n.  If 
the  maximum  kinetic  energy  be  denoted  by  Tq,  we  have 

r=rosin«€   (6). 

The  kinetic  energy  of  the  motion  is  therefore  the  greatest  possible, 
when  the  period  of  the  force  is  that  in  which  the  system  would 
vibrate  freely  under  the  influence  of  its  own  elasticity  (or  other 
internal  forces),  without  friction.  The  vibration  is  then  by  (4) 
and  (5), 

M  =  -     Sin  nt : UK 

and,  if  k  be  small,  its  amplitude  is  very  great.     Its  phase  is  a 
quarter  of  a  period  behind  that  of  the  force. 

The   case,   where  p  =  7i,  may  also  be  treated  independently. 
Since  the  period  of  the  actual  vibration  is  the   same   as   that 
natural  to  the  system, 

u  4-  n^u  =  0, 

so  that  the  differential  equation  (1)  reduces  to 
icu=^EGospty 

whence  by  integration 

u=  -   \  cosptdt=  --  sin pt, 
K  J  TJ/C 

as  before. 
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If  p  be  less  than  n,  the  retardation  of  phase  relatively  to  the 
force  lies  between  zero  and  a  quarter  period,  and  when  p  is  greater 
than  n,  between  a  quarter  period  and  a  half  period. 

In  the  case  of  a  system  devoid  of  friction,  the  solution  is 

E 
w=   J     -.cospt   (7). 

When  p  is  smaller  than  n,  the  phase  of  the  vibration  agrees  with 

that  of  the  force,  but  when  p  is  the  greater,  the  sign  of  the  vibra- 
tion is  changed.  The  change  of  phase  from  complete  agreement 

to  complete  disagreement,  which  is  gradual  when  friction  acts, 
here  takes  place  abruptly  as  p  passes  through  the  value  n.  At  the 
^ame  time  the  expression  for  the  amplitude  becomes  infinite.  Of 
course  this  only  means  that,  in  the  case  of  equal  periods,  friction 
must  be  taken  into  account,  however  small  it  may  be,  and  however 
insignificant  its  result  when  p  and  n  are  not  approximately  equal. 
The  limitation  as  to  the  magnitude  of  the  vibration,  to  which  we 
are  all  along  subject,  must  also  be  borne  in  mind. 

That  the  excursion  should  be  at  its  maximum  in  one  direction 

while  the  generating  force  is  at  its  maximum  in  the  opposite 
direction,  as  happens,  for  example,  in  the  canal  theory  of  the  tides, 
is  sometimes  considered  a  paradox.  Any  difficulty  that  may  be 
felt  will  be  removed  by  considering  the  extreme  case,  in  which  the 

^'  spring  "  vanishes,  so  that  the  natural  period  is  infinitely  long.  In 
fact  we  need  only  consider  the  force  acting  on  the  bob  of  a  com- 

mon pendulum  swinging  freely,  in  which  case  the  excursion  on  one 
side  is  greatest  when  the  action  of  gravity  is  at  its  maximum 
in  the  opposite  direction.  When  on  the  other  hand  the  inertia  of 
the  system  is  very  small,  we  have  the  other  extreme  case  in  which 

the  so-called  equilibrium  theory  becomes  applicable,  the  force  and 
excursion  being  in  the  same  phase. 

When  the  period  of  the  force  is  longer  than  the  natural  period, 
the  effect  of  an  increasing  friction  is  to  introduce  a  retardation 
in  the  phase  of  the  displacement  varying  from  zero  up  to  a  quarter 
period.  If,  however,  the  period  of  the  natural  vibration  be  the 
longer,  the  original  retardation  of  half  a  period  is  diminished  by 
something  short  of  a  quarter  period ;  or  the  effect  of  friction  is  to 

accelerate  the  phase  of  the  displacement  estimated  from  that  corre- 

sponding* to  the  absence  of  friction.  In  either  case  the  influence 
of  friction  is  to  cause  an  approximation  to  the  state  of  things  that 
would  prevail  if  friction  were  paramount. 
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If  a  force  of  nearly  equal  period  with  the  free  vibrations 

vary  slowly  to  a  maximum  and  then  slowly  decrease,  the  dis- 
placement does  not  reach  its  maximum  until  after  the  force  has 

begun  to  diminish.  Under  the  operation  of  the  force  at  its 
maximum,  the  vibration  continues  to  increase  until  a  certain  limit 

is  approached,  and  this  increase  continues  for  a  time  even  although 
the  force,  having  passed  its  maximum,  begins  to  diminish.  On 
this  principle  the  retardation  of  spring  tides  behind  the  dajrs  of 
new  and  full  moon  has  been  explained \ 

47.  From  the  linearity  of  the  equations  it  follows  that  the 
motion  resulting  from  the  simultaneous  action  of  any  number  of 
forces  is  the  simple  sum  of  the  motions  due  to  the  forces  taken 
separately.  £ach  force  causes  the  vibration  proper  to  itself, 
without  regard  to  the  presence  or  absence  of  any  others.  The 
peculiarities  of  a  force  are  thus  in  a  manner  transmitted  into  the 
motion  of  the  system.  For  example,  if  the  force  be  periodic  in 
time  T,  so  will  be  the  resulting  vibration.  Elach  harmonic  element 
of  the  force  will  call  forth  a  corresponding  harmonic  vibration 
in  the  system.  But  since  the  retardation  of  phase  €,  and  the  ratio 
of  amplitudes  a  :  E,is  not  the  same  for  the  different  components, 

the  resulting  vibration,  though  periodic  in  the  same  time',  is  dif- 
ferent in  character  from  the  force.  It  may  happen,  for  instance, 

that  one  of  the  components  is  isochronous,  or  nearly  so,  with  the 
fi^e  vibration,  in  which  case  it  will  manifest  itself  in  the  motion 

out  of  all  proportion  to  its  original  importance.  As  another 
example  we  may  consider  the  case  of  a  system  acted  on  by  two 
forces  of  nearly  equal  period.  The  resulting  vibration,  being 
compounded  of  two  nearly  in  unison,  is  intermittent,  according  to 
the  principles  explained  in  the  last  chapter. 

To  the  motions,  which  are  the  immediate  effects  of  the  im- 

pressed forces,  must  always  be  added  the  term  expressing  free 
vibrations,  if  it  be  desired  to  obtain  the  most  general  solution. 
Thus  in  the  case  of  one  impressed  force, 

w  =  ̂ ^^^cos(p^-€)4-^e-*««cos{Vn«-i/c».«-a}   (1),   ' 
where  A  and  a  are  arbitrary. 

48.  The  distinction  between /arced  and  free  vibrations  is  very 

important,  and  must  be  clearly  understood.     The  period  of  the 

^  Airy's  Tides  and  Waves,  Art.  S2S. 

R.  ^ 
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former  is  determined  solely  by  the  force  which  is  supposed  to  act 
on  the  system  from  without ;  while  that  of  the  latter  depends  only 

on  the  constitution  of  the  system  itself.  Another  point  of  differ- 
ence is  that  so  long  as  the  external  influence  continues  to  operate, 

a  forced  vibration  is  permanent,  being  represented  strictly  by  a 

harmonic  function ;  but  a  free  vibration  gradually  dies  away,  be- 
coming negligible  after  a  time.  Suppose,  for  example,  that  the 

system  is  at  rest  when  the  force  E  cos  pt  begins  to  operate.  Such 
finite  values  must  be  given  to  the  constants  A  and  a  in  (1)  of  §  47, 
that  both  u  and  u  are  initially  zero.  At  first  then  there  is  a 
free  vibration  not  less  important  than  its  rival,  but  after  a  time 
friction  reduces  it  to  insignificance,  and  the  forced  vibration  is  left 
in  complete  possession  of  the  field.  This  condition  of  things  will 
continue  so  long  as  the  force  operates.  When  the  force  is  removed, 
there  is,  of  course,  no  discontinuity  in  the  values  of  u  or  u,  but 
the  forced  vibration  is  at  once  converted  into  a  free  vibration, 

and  the  period  of  the  force  is  exchanged  for  that  natural  to  the 

system. 
During  the  coexistence  of  the  two  vibrations  in  the  earlier  part 

of  the  motion,  the  curious  phenomenon  of  beats  may  occur,  in 
case  the  two  periods  diflFer  but  slightly.  For,  n  and  p  being  nearly 

equal,  and  k  small,  the  initial  conditions  are  approximately  satis- 
fied by 

u^a  cos  {pt  —  €)  —  ae~H  cos  {Vn*  —  ̂ ^' .  ̂  —  e]. 

There  is  thus  a  rise  and  fall  in  the  motion,  so  long  as  e*"***  remains 
sensible.  This  intermittence  is  very  conspicuous  in  the  earlier 
stages  of  the  motion  of  forks  driven  by  electro-magnetism  (§  63), 
[and  may  be  utilized  when  it  is  desired  to  adjust  n  and  p  to 
equality.  The  initial  beats  are  to  be  made  slower  and  slower, 

until  they  cease  to  be  perceptible.  The  vibration  then  swells 
continuously  to  a  maximum.] 

49.  Vibrating  systems  of  one  degree  of  freedom  may  vary  in 
two  ways  according  to  the  values  of  the  constants  n  and  k.  The 
distinction  of  pitch  is  sufficiently  intelligible ;  but  it  is  worth  while 
to  examine  more  closely  the  consequences  of  a  greater  or  less 
degree  of  damping.  The  most  obvious  is  the  more  or  less  rapid 
extinction  of  a  free  vibration.  The  effect  in  this  direction  may  be 
measured  by  the  number  of  vibrations  which  must  elapse  before 
the  amplitude  is  reduced  in  a  given  ratio.  Initially  the  amplitude 

may  be  taken  as  unity ;  after  a  time  t,  let  it  be  0.    Initially  0  =  e~**^ 
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2 
If  t^XTf  we  have  x  —   log  0.    In  a  system  subject  to  only  a 

n'i moderate  degree  of  damping,  we  may  take  approximately, 
T  =  27r  -r  n ; 

80  that  a;  =  —     -logO   (1). tcir 

This  gives  the  number  of  vibrations  which  are  performed,  before 
the  amplitude  falls  to  6, 

The  influence  of  damping  is  also  powerfully  felt  in  a  forced 
vibration,  when  there  is  a  near  approach  to  isochronism  In  the 
case  of  an  exact  equality  between  p  and  n,  it  is  the  damping  alone 
which  prevents  the  motion  becoming  infinite.  We  might  easily 
anticipate  that  when  the  damping  is  small,  a  comparatively  slight 
deviation  from  perfect  isochronism  would  cause  a  large  falling  off 
in  the  magnitude  of  the  vibration,  but  that  with  a  larger  damping 
the  same  precision  of  adjustment  would  not  be  required.  From 
the  equations 

r=ro8in«6,     tan6  =  -^, 

"-/-^J^-   «^ 
so  that  if  ic  be  small,  p  must  be  very  nearly  equal  to  w,  in  order  to 
produce  a  motion  not  greatly  less  than  the  maximum. 

The  two  principal  effects  of  damping  may  be  compared  by 
eliminating  k  between  (1)  and  (2).     The  result  is 

\oge_     ,p_n\    /     T 

where  the  sign  of  the  square  root  must  be  so  chosen  as  to  make 

the  right-hand  side  negative. 
If,  when  a  system  vibrates  freely,  the  amplitude  be  reduced  in 

the  ratio  6  after  x  vibrations ;  then,  when  it  is  acted  on  by  a  force 
(/)),  the  energy  of  the  resulting  motion  will  be  less  than  in  the 
case  of  perfect  isochronism  in  the  ratio  T  :  T^.  It  is  a  matter  of 
indifference  whether  the  forced  or  the  free  vibration  be  the  higher; 
all  depends  on  the  interval. 

In  most  cases  of  interest  the  interval  is  small;  and  then,  putting 

p^n-\-Sn,  the  formula  may  be  written. 

lQg^_255n    /~
T~ X    ~    n    V  To-T   ^'' 

4—2 
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The  following  table  calculated  from  these  formulae  has  been 

given  by  Helmholtz^: 

Interval  oorresponding  to  a  redaction 
of  the  resonance  to  one-tenth. 

Number  of  vibrations  after  which  the 
intensity  of  a  firee  vibration  is  re- VA      »UV      AVOVTAACaftAW      W      VftAV  «OA«  *A*. 

r:ro=i:io. 
daced  to  one-tenth. 

1  tone. 
38-00 

J  tone. 
1900 

^  tone. 

9-50 

1  tone. 

6-33 

Whole  tone. 

4-75 

^  tone. 

3-80 

^  tone  =  minor  third. 
317 

{^  tone. 

2-71 

Two  whole  tones  =  major  third. 

2-37 

Formula  (4)  shews  that,  when  Bn  is  small,  it  varies  coBteris 

paribus  as  -. 

60.  From  observations  of  forced  vibrations  due  to  known 

forces,  the  natural  period  and  damping  of  a  system  may  be  deter- 
mined.   The  formulse  are 

£^8in€       ,   ̂       . 
cos(pt  — €), 

t^  = 

where 

pK 

tan
€= 

 

/^ 
   

,. 

On  the  equilibrium  theory  we  should  have 
E 

ti  =  —  cos  pt. 

The  ratio  of  the  actual  amplitude  to  this  is 

J^sinc     E     n'sinc 

pK      ■  n*        pK     ' 
If  the  equilibrium  theory  be  known,  the  comparison  of  ampli- 

tudes  tells  us  the  value  of 

n'sine 

pte 

n'si
ne 

say 

P^ 

=  o, 

^  TonewqfJindMn^em,  Srd  edition,  p.  881. 
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and  €  is  also  known,  whence 

,       ̂      /-      co8€\         J  ©sine  .-. 
n»  =  o»-f-   1   ),  and  k—     (1). 

\  a  J  a  — C0S6 

61.  As  has  been  already  stated,  the  distinction  of  forced  and 
free  vibrations  is  important ;  but  it  may  be  remarked  that  most  of 
the  forced  vibrations  which  we  shall  have  to  consider  as  affecting 
a  system,  take  their  origin  ultimately  in  the  motion  of  a  second 
system,  which  influences  the  first,  and  is  influenced  by  it.  A 
vibration  may  thus  have  to  be  reckoned  as  forced  in  its  relation 
to  a  system  whose  limits  are  fixed  arbitrarily,  even  when  that 
system  has  a  share  in  determining  the  period  of  the  force  which 
acts  upon  it.  On  a  wider  view  of  the  matter  embracing  both  the 
systems,  the  vibration  in  question  will  be  recognized  as  free.  An 

example  may  make  this  clearer.  A  tuning-fork  vibrating  in  air 
is  part  of  a  compound  system  including  the  air  and  itself,  and 
in  respect  of  this  compound  system  the  vibration  is  free.  But 
although  the  fork  is  influenced  by  the  reaction  of  the  air,  yet  the 
amount  of  such  influence  is  small.  For  practical  purposes  it  is 
convenient  to  consider  the  motion  of  the  fork  as  given,  and  that  of 
the  air  as  forced.  No  error  will  be  committed  if  the  actual  motion 

of  the  fork  (as  influenced  by  its  surroundings)  be  taken  as  the 
basis  of  calculation.  But  the  peculiar  advantage  of  this  mode  of 
conception  is  manifested  in  the  case  of  an  approximate  solution 
being  required.  It  may  then  suffice  to  substitute  for  the  actual 
motion,  what  would  be  the  motion  of  the  fork  in  the  absence  of 

air,  and  afterwards  introduce  a  correction,  if  necessary. 

62.  Illustrations  of  the  principles  of  this  chapter  may  be 
drawn  from  all  parts  of  Acoustics.  We  will  give  here  a  few 
applications  which  deserve  an  early  place  on  account  of  their 
simplicity  or  importance. 

A  string  or  wire  ACB  is  stretched  between  two  fixed  points 
A  and  B,  and  at  its  centre  carries  a  mass  M,  which  is  supposed  to 

be  so  considerable  as  to  render  the  mass  of  the  string  itself  negli- 
gible. When  M  is  pulled  aside  from  its  position  of  equilibrium, 

and  then  let  go,  it  executes  along  the  line  CM  vibrations,  which 

are  the  subject  of  inquiry.  AC  —  CB  =  a,  CM  =  x.  The  tension 
of  the  string  in  the  position  of  equilibrium  depends  on  the  amount 
of  the  stretching  to  which  it  has  been  subjected.     In  any  other 
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position  the  tension  is  greater ;  but  we  limit  ourselves  to  the  case 
of  vibrations  so  small  that  the  additional  stretching  is  a  negligible 
fraction  of  the  whole.  On  this  condition  the  tension  may  be 
treated  as  constant.     We  denote  it  by  T. 

and 

IG.9. 

Thus,  kinetic  energy  =  \Md^, 

a? 
potential  energy  =27  {Va*  +  a:'  -  a}  =  T  —  approximately. 

The   equation  of  motion  (which  may  be  derived  also  inde- 
pendently) is  therefore 

a 

.(1). 

from  which  we  infer  that  the  mass  M  executes  harmonic  vibra- 
tions, whose  period 

^  =  2--\/S   <2)- 
The  amplitude  and  phase  depend  of  course  on  the  initial  cir- 

cumstances, being  arbitrary  so  far  as  the  differential  equation  is 
concerned. 

Equation  (2)  expresses  the  manner  in  which  t  varies  with  each 
of  the  independent  quantities  T,  M,a:  results  which  may  all  be 
obtained  by  consideration  of  the  dimensions  (in  the  technical  sense) 
of  the  quantities  involved.  The  argument  from  dimensions  is  so 
often  of  importance  in  Acoustics  that  it  may  be  well  to  consider 
this  first  instance  at  length. 

In  the  first  place  we  must  assure  ourselves  that  of  all  the 
quantities  on  which  t  may  depend,  the  only  ones  involving  a 
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reference  to  the  three  fundamental  units — of  length,  time,  and 
mass — are  a,  M,  and  T,     Let  the  solution  of  the  problem  be 
written 

r=f(a,M,T)   ;   (3). 

This  equation  must  retain  its  form  unchanged,  whatever  may 
be  the  fundamental  units  by  means  of  which  the  four  quantities 
are  numerically  expressed,  as  is  evident,  when  it  is  considered 

that  in  deriving  it  no  assumptions  would  be  made  as  to  the  mag- 
nitudes of  those  units.  Now  of  all  the  quantities  on  which  / 

depends,  T  is  the  only  one  involving  time ;  and  since  its  dimen- 

sions are  (Mass)  (Length)  (Time)"*,  it  follows  that  when  a  and  M 
are  constant,  t«  T"*;  otherwise  a  change  in  the  unit  of  time 
would  necessarily  disturb  the  equation  (3).  This  being  admitted, 
it  is  easy  to  see  that  in  order  that  (3)  may  be  independent  of  the 

unit  of  length,  we  must  have  t  x  r~* .  a*,  when  M  is  constant ;  and 
finally,  in  order  to  secure  independence  of  the  unit  of  mass, 

Tocr-*.JIf*.a*. 

To  determine  these  indices  we  might  proceed  thus : — assume 

TxT'.ifi'.a'; 

then  by  considering  the  dimensions  in  time,  space,  and  mass,  we 
obtain  respectively 

1  =  -  2a:,     0  =  a?  +  -?,     0  =  a:  +  y, 

whence  as  above        a?  =  —  i,    y  =  i»    z  =  \. 

There  must  be  no  mistake  as  to  what  this  argument  does  and 
does  not  prove.  We  have  assumed  that  there  is  a  definite 

periodic  time  depending  on  no  other  quantities,  having  dimen- 
sions in  space,  time,  and  mass,  than  those  above  mentioned.  For 

example,  we  have  not  proved  that  t  is  independent  of  the  ampli- 
tude of  vibration.  That,  so  far  as  it  is  true  at  all,  is  a  consequence 

of  the  linearity  of  the  approximate  differential  equation. 
From  the  necessity  of  a  complete  enumeration  of  all  the 

quantities  on  which  the  required  result  may  depend,  the  method 
of  dimensions  is  somewhat  dangerous ;  but  when  used  with  proper 
care  it  is  unquestionably  of  great  power  and  value. 

63.  The  solution  of  the  present  problem  might  be  made  the 
foundation  of  a  method  for  the  absolute  measurement  of  pitch. 

The  principal  impediment  to  accuracy  would  probably  be  the 
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dUBcnhy  of  making  M  mifBdeatiy  kfge  in  relatioQ  to  the  muB  of 
the  wire,  tritboat  at  the  Miiie  time  lowering  the  note  too  modi  in 
th&  miuneal  ncale. 

<=r riQ.ta 

1'
 

o 

The  wire  may  be  Htretched  by  a  weight  M'  attached  to  its 
further  eml  beyond  a  bridge  or  pulley  at  B,  The  periodic  time 
would  be  calculated  from 

-^-V 
aM 

2gM' 

.(!)• 

The  ratio  of  if ':  Jf  is  given  by  the  balance.  If  a  be  measured 
in  feet,  and  g  ■■  «32'2,  the  periodic  time  is  expressed  in  seconds. 

64.  In  an  ordinary  musical  string  the  weight,  instead  of  being 
concentrated  in  the  centre,  is  uniformly  distributed  over  its  length. 
Nevertholess  the  present  problem  gives  some  idea  of  the  nature  of 
the  gravest  vibration  of  huch  a  string.  Let  us  compare  the  two 
ciutes  more  closely,  supposing  the  amplitudes  of  vibration  the  same 
at  the  middle  point. 

riG.  II. 

Whon  the  uniform  string  is  straight,  at  the  moment  of  passing 

thriHigh  the  position  of  equilibrium,  its  different  parts  are  ani- 
mated with  a  variable  velocity,  increasing  from  either  end  towards 
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the  centre.  If  we  attribute  to  the  whole  mass  the  velocity  of  the 
centre,  it  is  evident  that  the  kinetic  energy  will  be  considerably 

over-estimated.  Again,  at  the  moment  of  maximum  excursion, 
the  uniform  string  is  more  stretched  than  its  substitute,  which 

follows  the  straight  courses  AMy  MB,  and  accordingly  the  poten- 
tial energy  is  diminished  by  the  substitution.  The  concentration 

of  the  mass  at  the  middle  point  at  once  increases  the  kinetic 

energy  when  a?  =  0,  and  decreases  the  potential  energy  when  i?  =  0, 
and  therefore,  according  to  the  principle  explained  in  §  44,  prolongs 
the  periodic  time.  For  a  string  then  the  period  is  less  than  that 
calculated  from  the  formula  of  the  last  section,  on  the  supposition 
that  M  denotes  the  mass  of  the  string.  It  will  afterwards  appear 
that  in  order  to  obtain  a  correct  result  we  should  have  to  take 

instead  of  M  only  (4/ir*)if.  Of  the  factor  4/7r*  by  far  the  more 
important  part,  viz.  ̂ ,  is  due  to  the  difference  of  the  kinetic 
energies. 

55.  As  another  example  of  a  system  possessing  practically  but 
one  degree  of  freedom,  let  us  consider  the  vibration  of  a  spring,  one 
end  of  which  is  clamped  in  a  vice  or  otherwise  held  fast,  while  the 
other  carries  a  heavy  mass. 

In   strictness,  this  system   like  the  last  has 

an  iuiinite  number  of  independent  modes  of  vi-  C    j 

bration;  but,  when   the   mass  of  the  spring  is  ^^ 
relatively  small,  that  vibration  which  is  nearly 

independent  of  its  inertia  becomes  so  much  the    Fioi2. 
most  important  that  the  others  may  be  ignored. 
Pushing  this  idea  to  its  limit,  we  may  regard  the 
spring  merely  as  the  origin  of  a  force  urging  the 
attached  mass  towards  the  position  of  equilibrium, 

and,  if  a  certain  point  be  not  exceeded,  in  simple         '^ 
proportion  to  the  displacement.     The  result  is  a         ̂  
harmonic  vibration,  with  a  period  dependent  on 
the  stiffness  of  the  spring  and  the  mass  of  the 
load. 

56.  In  consequence  of  the  oscillation  of  the  centre  of  inertia, 
there  is  a  constant  tendency  towards  the  communication  of  motion 
to  the  supports,  to  resist  which  adequately  the  latter  must  be 
very  firm  and  massive.     In  order  to  obviate  this  inconvenience. 
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two  precisely  similar    springs  and   loads   may  be   mounted   on 
the  same  framework  in  a  symmetrical  manner. 
If  the   two   loads   perform   vibrations   of    equal 
amplitude  in  such  a  manner  that   the  motions 
are  always  opposite,  or,  as  it  may  otherwise  be 

expressed,    with    a    phase-difference    of   half   a 
period,  the  centre  of  inertia  of  the  whole  system 
remains  at  rest,  and  there  is  no  tendency  to  set 
the  framework  into  vibration.     We  shall  see  in  a 

future  chapter  that  this  peculiar  relation  of  phases 
will  quickly  establish  itself,  whatever  may  be  the 
original   disturbance.     In   fact,  any   part  of  the 
motion  which  does  not  conform  to  the  condition 

of  leaving  the  centre  of  inertia  unmoved  is  soon 
extinguished    by    damping,    unless    indeed    the 
supports  of  the  system  are  more  than  usually 
firm. 

vvl 
O 

67.  As  in  our  first  example  we  found  a  rough  illustration  of 
the  fundamental  vibration  of  a  musical  string,  so  here  with  the 
spring  and  attached  load  we  may  compare  a  uniform  slip,  or  bar, 
of  elastic  material,  one  end  of  which  is  securely  fastened,  such  for 
instance  as  the  tongue  of  a  reed  instrument.  It  is  true  of  course 
that  the  mass  is  not  concentrated  at  one  end,  but  distributed 

over  the  whole  length ;  yet  on  account  of  the  smallness  of  the 
motion  near  the  point  of  support,  the  inertia  of  that  part  of 
the  bar  is  of  but  little  account.  We  infer  that  the  fundamental 

vibration  of  a  uniform  rod  cannot  be  very  different  in  character 

from  that  which  we  have  been  considering.  Of  course  for  pur- 
poses requiring  precise  calculation,  the  two  systems  are  suflBciently 

distinct ;  but  where  the  object  is  to  form  clear  ideas,  pi'ecision  may 
often  be  advantageously  exchanged  for  simplicity. 

In  the  same  spirit  we  may  regard  the  combination  of  two 
springs  and  loads  shewn  in  Fig.  13  as  a  representation  of  a 

tuning-fork.  The  instrument,  which  has  been  much  improved 
of  late  years,  is  indispensable  to  the  acoustical  investigator.  On 
a  large  scale  and  for  rough  purposes  it  may  be  made  by  welding 
a  cross  piece  on  the  middle  of  a  bar  of  steel,  so  as  to  form  a  T,  and 

then  bending  the  bar  into  the  shape  of  a  horse-shoe.  On  the 
handle  a  screw  should  be  cut.  But  for  the  better  class  of  tuning- 
forks  it  is  preferable  to  shape  the  whole  out  of  one  piece  of  steel. 
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A  division  running  from  one  end  down  the  middle  of  a  bar  is  first 
made,  the  two  parts  opened  out  to  form  the  prongs  of  the  fork, 
and  the  whole  worked  by  the  hammer  and  file  into  the  required 
shape.  The  two  prongs  must  be  exactly  symmetrical  with  respect 
to  a  plane  passing  through  the  axis  of  the  handle,  in  order  that 
during  the  vibration  the  centre  of  inertia  may  remain  unmoved, 

— unmoved,  that  is,  in  the  direction  in  which  the  prongs 
vibrate. 

The  tuning  is  effected  thus.  To  make  the  note  higher,  the 
equivalent  inertia  of  the  system  must  be  reduced.  This  is  done 
by  filing  away  the  ends  of  the  prongs,  either  diminishing  their 
thickness,  or  actually  shortening  them.  On  the  other  hand,  to 
lower  the  pitch,  the  substance  of  the  prongs  near  the  bend  may 
be  reduced,  the  effect  of  which  is  to  diminish  the  force  of  the 

spring,  leaving  the  inertia  practically  unchanged ;  or  the  inertia 
may  be  increased  (a  method  which  would  be  preferable  for 
temporary  purposes)  by  loading  the  ends  of  the  prongs  with 
wax,  or  other  material.  Large  forks  are  sometimes  provided  with 
moveable  weights,  which  slide  along  the  prongs,  and  can  be  fixed 
in  any  position  by  screws.  As  these  approach  the  ends  (where  the 
velocity  is  greatest)  the  equivalent  inertia  of  the  system  increases. 

In  this  way  a  considerable  range  of  pitch  may  be  obtained  fi'om 
one  fork.  The  number  of  vibrations  per  second  for  any  position 
of  the  weights  may  be  marked  on  the  prongs. 

The  relation  between  the  pitch  and  the  size  of  tuning-forks  is 
remarkably  simple.  In  a  future  chapter  it  will  be  proved  that, 
provided  the  material  remains  the  same  and  the  shape  constant, 
the  period  of  vibration  varies  directly  as  the  linear  dimension. 

Thus,  if  the  linear  dimensions  of  a  tuning-fork  be  doubled,  its 
note  falls  an  octave. 

68.  The  note  of  a  tuning-fork  is  a  nearly  pure  tone.  Imme- 
diately after  a  fork  is  struck,  high  tones  may  indeed  be  heard, 

corresponding  to  modes  of  vibration,  whose  nature  will  be  subse- 
quently considered ;  but  these  rapidly  die  away,  and  even  while 

they  exist,  they  do  not  blend  with  the  proper  tone  of  the  fork, 
partly  on  account  of  their  very  high  pitch,  and  partly  because 
they  do  not  belong  to  its  harmonic  scale.  In  the  forks  examined 

by  Helmholtz  the  first  of  these  overtones  had  a  frequency  from  5*8 
to  6*6  times  that  of  the  proper  tone. 

Tuning-forks  are  now  generally  supplied  with  resonance  cases, 



60  ONE   DEGREE   OF    FREEDOM.  [58. 

whose  effect  is  greatly  to  augment  the  volume  and  purity  of  the 
sound,  according  to  principles  to  be  hereafter  developed.  In 
order  to  excite  them,  a  violin  or  cello  bow,  well  supplied  with 
rosin,  is  drawn  across  the  prongs  in  the  direction  of  vibration. 
The  sound  so  produced  will  last  a  minute  or  more. 

59.  As  standards  of  pitch  tuning-forks  are  invaluable.  The 
pitch  of  organ-pipes  rapidly  varies  with  the  temperature  and  with 
the  pressure  of  the  wind ;  that  of  strings  with  the  tension,  which 

can  never  be  retained  constant  for  long;  but  a  tuning-fork  kept 
clean  and  not  subjected  to  violent  changes  of  temperature  or 
magnetization,  preserves  its  pitch  with  great  fidelity. 

[But  it  must  not  be  supposed  that  the  vibrations  of  a  fork  are 

altogether  independent  of  temperature.  According  to  the  obser- 

vations of  McLeod  and  Clarke^  the  frequency  falls  by  *00011  of  its 
value  for  each  degree  Cent,  of  elevation.] 

By  means  of  beats  a  standard  tuning-fork  may  be  copied  with 
very  great  precision.  The  number  of  beats  heard  in  a  second  is 
the  difference  of  the  frequencies  of  the  two  tones  which  produce 
them ;  so  that  if  the  beats  can  be  made  so  slow  as  to  occupy  half 

a  minute  each,  the  firequencies  differ  by  only  l-30th  of  a  vibra- 

tion. Still  greater  precision  might  be  obtained  by  Lissajous' 
optical  method. 

Very  slow  beats  being  difficult  of  observation,  in  consequence 
of  the  uncertainty  whether  a  falling  off  in  the  sound  is  due  to 
interference  or  to  the  gradual  dying  away  of  the  vibrations, 
Scheibler  adopted  a  somewhat  modified  plan.  He  took  a  fork 

slightly  different  in  pitch  from  the  standard — whether  higher  or 
lower  is  not  material,  but  we  will  say,  lower, — and  counted  the 
number  of  beats,  when  they  were  sounded  together.  About  four 
beats  a  second  is  the  most  suitable,  and  these  may  be  counted  for 
perhaps  a  minute.  The  fork  to  be  adjusted  is  then  made  slightly 
higher  than  the  auxiliary  fork,  and  tuned  to  give  with  it  precisely 
the  same  number  of  beats,  as  did  the  standard.  In  this  way  a 
copy  as  exact  as  possible  is  secured.  To  facilitate  the  counting 
of  the  beats  Scheibler  employed  pendulums,  whose  periods  of 
vibration  could  be  adjusted. 

[The  question  between  slow  and  quick  beats  depends  upon  the 
circumstances  of  the  case.  It  seems  to  be  sometimes  supposed 
that   quick  beats  have  the  advantage  as   admitting  of  greater 

1  Phil.  Trans.  ISSO,  p.  12. 
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relative  accuracy  of  counting.  But  a  little  consideration  shews 
that  in  a  comparison  of  frequencies  we  are  concerned  not  with  the 
relative,  but  with  the  absolute  accuracy  of  the  counting.  If  we 
miscount  the  beats  in  a  minute  by  one,  it  makes  just  the  same 
error  in  the  result,  whether  the  whole  number  of  beats  be  60  or 
240. 

When  the  sounds  are  pure  tones  and  are  well  maintained,  it  is 
advisable  to  use  beats  much  slower  than  four  per  second.  By 
choosing  a  suitable  position  it  is  often  possible  to  make  the 
intensities  at  the  ear  equal ;  and  then  the  phase  of  silence, 
corresponding  to  antagonism  of  equal  and  opposite,  vibrations,  is 

extremely  well  marked.  Taking  advantage  of  this  we  may  deter- 
mine slow  beats  with  very  great  accuracy  by  observing  the  time 

which  elapses  between  recurrences  of  silence.  In  favourable  cases 
the  whole  number  of  beats  in  the  period  of  observation  may  be 

fixed  to  within  one-tenth  or  one-twentieth  of  a  single  beat,  a 
degree  of  accuracy  which  is  out  of  the  question  when  the  beats 
are  quick.  In  this  way  beats  of  periods  exceeding  30  seconds  may 
be  utilised  with  excellent  effect  ̂ ] 

60.  The  method  of  beats  was  also  employed  by  Sch^ibler  to 
determine  the  absolute  pitch  of  his  standards.  Two  forks  were 
tuned  to  an  octave,  and  a  number  of  others  prepared  to  bridge 
over  the  interval  by  steps  so  small  that  each  fork  gave  with  its 
immediate  neighbours  in  the  series  a  number  of  beats  that  could 
be  easily  counted.  The  difference  of  frequency  corresponding  to 
each  step  was  observed  with  all  possible  accuracy.  Their  sum, 
being  the  difference  of  frequencies  for  the  interval  of  the  octave, 
was  equal  to  the  frequency  of  that  fork  which  formed  the  starting 
point  at  the  bottom  of  the  series.  The  pitch  of  the  other  forks 
could  be  deduced. 

If  consecutive  forks  give  four  beats  per  second,  65  in  all  will 

be  required  to  bridge  over  the  interval  from  c'  (256)  to  c"  (512), 
On  this  account  the  method  is  laborious ;  but  it  is  probably  the 
most  accurate  for  the  original  determination  of  pitch,  as  it  is 
liable  to  no  errors  but  such  as  care  and  repetition  will  eliminate. 
It  may  be  observed  that  the  essential  thing  is  the  measurement 
of  the  difference  of  frequencies  for  two  notes,  whose  ratio  of 
frequencies  is  independently  known.  If  we  could  be  sure  of  its 
accuracy,  the  interval  of  the  fifth,  fourth,  or  even  major  third,  might 

1  Acoustical  Obsenrations,  Phil,  Mag.  May,  1SS2,  p.  842. 
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be  substituted  for  the  octave,  with  the  advantage  of  reducing  the 
number  of  the  necessary  interpolations.  It  is  probable  that  with 
the  aid  of  optical  methods  this  course  might  be  successfully 

adopted,  as  the  corresponding  Lissajous'  figures  are  easily  recog- 
nised, and  their  steadiness  is  a  very  severe  test  of  the  accuracy 

with  which  the  ratio  is  attained. 

[It  is  essential  to  the  success  of  this  method  that  the  pitch  of 
eax^h  of  the  numerous  sounds  employed  should  be  definite,  and  in 
particular  that  the  vibrations  of  any  fork  should  take  place  at  the 
same  rate  whether  that  fork  be  sounding  in  conjunction  with  its 
neighbour  above  or  with  its  neighbour  below.  There  is  no  reason 
to  doubt  that  this  condition  is  sufficiently  satisfied  in  the  case  of 

independent  tuning-forks;  but  an  attempt  to  replace  forks  by  a 
set  of  reeds,  mounted  side  by  side  on  a  common  wind-chest,  has 
led  to  error,  owing  to  a  disturbance  of  pitch  by  mutual  inter- 

action \] 

The  frequency  of  large  tuning-forks  may  be  determined  by 
allowing  them  to  trace  a  harmonic  curve  on  smoked  paper,  which 
may  conveniently  be  mounted  on  the  circumference  of  a  revolving 
drum.  The  number  of  waves  executed  in  a  second  of  time  gives 
the  frequency. 

In  many  cases  the  use  of  intermittent  illumination  described 

in  §  42  gives  a  convenient  method  of  determining  an  unknown 
frequency. 

61.  A  series  of  forks  ranging  at  small  intervals  over  an  octave 
is  very  useful  for  the  determination  of  the  frequency  of  any 

musical  note,  and  is  called  Scheibler's  Tonometer.  It  may  also 
be  used  for  tuning  a  note  to  any  desired  pitch.  In  either  case 
the  frequency  of  the  note  is  determined  by  the  number  of  beats 
which  it  gives  with  the  forks,  which  lie  nearest  to  it  (on  each 
side)  in  pitch. 

For  tuning  pianofortes  or  organs,  a  set  of  twelve  forks  may  be 

used  giving  the  notes  of  the  chromatic  scale  on  the  equal  tempe- 
rament, or  any  desired  system.  The  corresponding  notes  are 

adjusted  to  unison,  and  the  others  tuned  by  octavea  It  is  better, 
however,  to  prepare  the  forks  so  as  to  give  four  vibrations  per 
second  less  than  is  above  proposed.  E^h  note  is  then  tuned  a 
little  higher  than  the  corresponding  fork,  until  they  give  when 
sounded  together  exactly  four  beats  in  the  second.     It  will  be 

1  Nature,  xvii.  pp.  12,  26 ;  1877. 
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observed  that  the  addition  (or  subtraction)  of  a  constant  number 
to  the  frequencies  is  not  the  same  thing  as  a  mere  displacement 
of  the  scale  in  absolute  pitch. 

In  the  ordinary  practice  of  tuners  a!  is  taken  from  a  fork,  and 
the  other  notes  determined  by  estimation  of  fifths.  It  will  be 
remembered  that  twelve  true  fifths  are  slightly  in  excess  of  seven 
octaves,  so  that  on  the  equal  temperament  system  each  fifth  is  a 
little  flat.  The  tuner  proceeds  upwards  from  a!  by  successive 
fifths,  coming  down  an  octave  after  about  every  alternate  step,  in 
order  to  remain  in  nearly  the  same  part  of  the  scale.  Twelve 
fifths  should  bring  him  back  to  a.  If  this  be  not  the  case,  the 
work  must  be  readjusted,  until  all  the  twelve  fifths  are  too  flat  by, 

as  nearly  as  can  be  judged,  the  same  small  amount.  The  in- 
evitable error  is  then  impartially  distributed,  and  rendered  as  little 

sensible,  as  possible.  The  octaves,  of  course,  are  all  tuned  true. 
The  following  numbers  indicate  the  order  in  which  the  notes  may 
be  taken : 

a%  b  d  c%  df  d't  e'  ff%  g'  g'%  o!  0!%  V  d'  d't  d!'  d"%  e" 13  5  16  8  19  11  3  14   6   17   9    1    12  4    16   7    18   10   2 

In  practice  the  equal  temperament  is  only  approximately 
attained;  but  this  is  perhaps  not  of  much  consequence,  considering 
that  the  system  aimed  at  is  itself  by  no  means  perfection. 

Violins  and  other  instruments  of  that  class  are  tuned  by  true 
fifths  from  a\ 

62.  In  illustration  of  forced  vibration  let  us  consider  the  case 

of  a  pendulum  whose  point  of  support  is  subject  to  a  small  hori- 
zontal harmonic  motion.     Q  is  the  bob  attached  by  a  fine  wire  to 

a  moveable  point  P.     OP  =  a:„,    p     p   
PQ  =  l^  and  x  is  the  horizontal 
co-ordinate  of  Q.  Since  the 
vibrations  are  supposed  small, 
the  vertical  motion  may  be 
neglected,  and  the  tension  of 
the  wire  equated  to  the  weight 
of  Q.   Hence  for  the  horizontal 

motion  ̂   +  /ci  +  y  (a?  —  aro)  =  0.  ar^  1^ 

Now  a?o  oc  cos  pt ;  so  that  putting  g-i-l^n^  our  equation  takes 
the  form  already  treated  of,  viz. 

x  +  KX-^  n^x  =  E  cos  pt 
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If  p  be  equal  to  n,  the  motion  is  limited  only  by  the  friction. 
The  assumed  horizontal  harmonic  motion  for  P  may  be  realized  by 
means  of  a  second  pendulum  of  massive  construction,  which  carries 
P  with  it  in  its  motion.  An  efficient  arrangement  is  shewn  in 
the  figure.     A,  B  are  iron  rings  screwed  into  a  beam,  or  other  firm 

/^/  C/5. 

support ;  C,  D  similar  rings  attached  to  a  stout  bar,  which  carries 
equal  heavy  weights  E,  F,  attached  near  its  ends,  and  is  supported 
in  a  horizontal  position  at  right  angles  to  the  beam  by  a  wire 

passing  through  the  four  rings  in  the  manner  shewn.  When  the 
pendulum  is  made  to  vibrate,  a  point  in  the  rod  midway  between 
C  and  D  executes  a  harmonic  motion  in  a  direction  parallel  to 

CD,  and  may  be  made  the  point  of  attachment  of  another  pen- 
dulum PQ.  If  the  weights  E  and  F  be  very  great  in  relation 

to  Q,  the  upper  pendulum  swings  very  nearly  in  its  own  proper 
period,  and  induces  in  Q  a  forced  vibration  of  the  same  period. 
When  the  length  PQ  is  so  adjusted  that  the  natural  periods  of  the 
two  pendulums  are  nearly  the  same,  Q  will  be  thrown  into  violent 
motion,  even  though  the  vibration  of  P  be  of  but  inconsiderable 
amplitude.  In  this  case  the  difference  of  phase  is  about  a  quarter 
of  a  period,  by  which  amount  the  upper  pendulum  is  in  advance. 
If  the  two  periods  be  very  different,  the  vibrations  either  agree 
or  are  completely  opposed  in  phase,  according  to  equations  (4) 
and  (5)  of  §  46. 
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63.    A  very  good  example  of  a  forced  vibration  is  aflforded  by 
a  fork  under  tke  influence  of  an  intermittent  electric  cuiTent, 

Fi  G.  /e. 
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,  xir 
whose  period  is  nearly  equal  to  its  own.  ACB  is  the  fork ;  E  a 

small  electro-magnet,  formed  by  winding  insulated  wire  on  an  iron 

core  of  the  shape  shewn  in  E  (similar  to  that  known  as  'Siemens' 

armature'),  and  supported  between  the  prongs  of  the  fork.  When 
an  intermittent  current  is  sent  through  the  wire,  a  periodic  force 

acts  upon  the  fork.  This  force  is  not  expressible  by  a  simple 

cirtjular  function  ;  but  may  be  expanded  by  Fourier's  theorem  in  a 
series  of  such  functions,  having  periods  t,  J  t,  ̂  t,  &c.  If  any  of 
these,  of  not  too  small  amplitude,  be  nearly  isochronous  with  the 
fork,  the  latter  will  be  caused  to  vibrate ;  otherwise  the  effect  is 

insignificant.  In  what  follows  we  will  suppose  that  it  is  the 
complete  period  t  which  nearly  agrees  with  that  of  the  fork,  and 
consequently  regard  the  series  expressing  the  periodic  force  as 
reduced  to  its  first  term. 

In  order  to  obtain  the  maximum  vibration,  the  fork  must  be 

carefully  tuned  by  a  small  sliding  piece  or  by  wax,  until  its  natural 
period  (without  friction)  is  equal  to  that  of  the  force.  This  is  best 
done  by  actual  trial.  When  the  desired  equality  is  approached, 
and  the  fork  is  allowed  to  start  from  rest,  the  force  and  com- 

plementary free  vibration  are  of  nearly  equal  amplitudes  and 
frequencies,  and  therefore  (§  48)  in  the  beginning  of  the  motion 
produce  heats^  whose  slowness  is  a  measure  of  the  accuracy  of 
the  adjustment.  It  is  not  until  after  the  free  vibration  has  had 
time  to  subside,  that  the  motion  assumes  its  permanent  character. 

The  vibrations  of  a  tuning-fork  properly  constructed  and  mounted 
are  subject  to  very  little  damping;  consequently  a  very  slight 
deviation  from  perfect  isochronism  occasions  a  marked  falling  off 
in  the  intensity  of  the  resonance. 

The  amplitude  of  the  forced  vibration  can  be  observed  with 
sufficient  accuracy   by   the   ear   or   eye;    but   the   experimental 
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If  p  be  equal  to  n,  the  motion  is  limited  only  by  the  friction. 
The  assumed  horizontal  harmonic  motion  for  P  may  be  realized  by 
means  of  a  second  pendulum  of  massive  construction,  which  carries 
P  with  it  in  its  motion.  An  efficient  arrangement  is  shewn  in 
the  figure.     Ay  B  are  iron  rings  screwed  into  a  beam,  or  other  firm 

support ;  (7,  D  similar  rings  attached  to  a  stout  bar,  which  carries 
equal  heavy  weights  E,  F,  attached  near  its  ends,  and  is  supported 
in  a  horizontal  position  at  right  angles  to  the  beam  by  a  wire 

passing  through  the  four  rings  in  the  manner  shewn.  When  the 
pendulum  is  made  to  vibrate,  a  point  in  the  rod  midway  between 
C  and  D  executes  a  harmonic  motion  in  a  direction  parallel  to 

CDy  and  may  be  made  the  point  of  attachment  of  another  pen- 
dulum PQ.  If  the  weights  E  and  F  be  very  great  in  relation 

to  Q,  the  upper  pendulum  swings  very  nearly  in  its  own  proper 
period,  and  induces  in  Q  a  forced  vibration  of  the  same  period. 
When  the  length  PQ  is  so  adjusted  that  the  natural  periods  of  the 
two  pendulums  are  nearly  the  same,  Q  will  be  thrown  into  violent 
motion,  even  though  the  vibration  of  P  be  of  but  inconsiderable 
amplitude.  In  this  case  the  difference  of  phase  is  about  a  quarter 

of  a  period,  by  which  amount  the  upper  pendulum  is  in  advance. 
If  the  two  periods  be  very  different,  the  vibrations  either  agree 
or  are  completely  opposed  in  phase,  according  to  equations  (4) 
and  (5)  of  §  46. 
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63.    A  very  good  example  of  a  forced  vibration  is  aflforded  by 
a  fork  under  tke  influence  of  an  intermittent  electric  current, 
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whose  period  is  nearly  equal  to  its  own.  ACB  is  the  fork ;  E  a 

small  electro-magnet,  formed  by  winding  insulated  wire  on  an  iron 

core  of  the  shape  shewn  in  E  (similar  to  that  known  as  '  Siemens  * 
armature'),  and  supported  between  the  prongs  of  the  fork.  When 
an  intermittent  current  is  sent  through  the  wire,  a  periodic  force 

acts  upon  the  fork.  This  force  is  not  expressible  by  a  simple 

circular  function ;  but  may  be  expanded  by  Fourier's  theorem  in  a 
series  of  such  functions,  having  periods  t,\t,\ t,  &c.  If  any  of 
these,  of  not  too  small  amplitude,  be  nearly  isochronous  with  the 
fork,  the  latter  will  be  caused  to  vibrate ;  otherwise  the  effect  is 

insignificant.  In  what  follows  we  will  suppose  that  it  is  the 
complete  period  t  which  nearly  agrees  with  that  of  the  fork,  and 

consequently  regai*d  the  series  expressing  the  periodic  force  as 
reduced  to  its  first  term. 

In  order  to  obtain  the  maximum  vibration,  the  fork  must  be 

carefully  tuned  by  a  small  sliding  piece  or  by  wax,  until  its  natural 
period  (without  friction)  is  equal  to  that  of  the  force.  This  is  best 
done  by  actual  trial.  When  the  desired  equality  is  approached, 
and  the  fork  is  allowed  to  start  from  rest,  the  force  and  com- 

plementary free  vibration  are  of  nearly  equal  amplitudes  and 
frequencies,  and  therefore  (§  48)  in  the  beginning  of  the  motion 
produce  fceate,  whose  slowness  is  a  measure  of  the  accuracy  of 
the  adjustment.  It  is  not  until  after  the  free  vibration  has  had 
time  to  subside,  that  the  motion  assumes  its  permanent  character. 

The  vibrations  of  a  tuning-fork  properly  constructed  and  mounted 
are  subject  to  very  little  damping;  consequently  a  very  slight 
deviation  from  perfect  isochronism  occasions  a  marked  falling  off 
in  the  intensity  of  the  resonance. 

The  amplitude  of  the  forced  vibration  can  be  observed  with 
sufficient  accuracy   by   the   ear   or   eye;    but   the   experimental 

R.  "S 



66  ONE   DEGREE   OF  FREEDOM.  [63. 

verification  of  the  relations  pointed  out  by  theory  between  its 
phase  and  that  of  the  force  which  causes  it,  requires  a  modified 
arrangement. 

Two  similar  electro-magnets  acting  on  similar  forks,  and  in- 
cluded in  the  same  circuit  are  excited  by  the  same  intermittent 

current.  Under  these  circumstances  it  is  clear  that  the  systems 
will  be  thrown  into  similar  vibrations,  because  they  are  acted  on 
by  equal  forces.  This  similarity  of  vibrations  refers  both  to  phase 
and  amplitude.  Let  us  suppose  now  that  the  vibrations  are 
effected  in  perpendicular  directions,  and  by  means  of  one  of 

Lissajous'  methods  are  optically  compounded.  The  resulting  figure 
is  necessarily  a  straight  line.  Starting  from  the  case  in  which,  the 
amplitudes  are  a  maximum,  viz.  when  the  natural  periods  of  both 
forks  are  the  same  as  that  of  the  force,  let  one  of  them  be  put  a 
little  out  of  tune.  It  must  be  remembered  that  whatever  their 

natural  periods  may  be,  the  two  forks  vibrate  in  perfect  unison 
with  the  force,  and  therefore  with  one  another.  The  principal 
effect  of  the  difference  of  the  natural  periods  is  to  destroy  the 

synchronism  of  phase.  The  straight  line,  which  previously  re- 
presented the  compound  vibration,  becomes  an  ellipse,  and  this 

remains  perfectly  steady,  so  long  as  the  forks  are  not  touched. 
Originally  the  forks  are  both  a  quarter  period  behind  the  force. 
When  the  pitch  of  one  is  slightly  lowered,  it  falls  still  more  behind 
the  force,  and  at  the  same  time  its  amplitude  diminishes.  Let  the 

difference  of  phase  between  the  two  forks  be  e',  and  the  ratio  of 
amplitudes  of  vibration  a  :  a©.     Then  by  (6)  of  §  46 

a  =  Uq  cos  e'. 
The  following  table  shews  the  simultaneous  values  of  a  :  a^ 

and  e'. 

a  :  an  c' 

1-0 
0 

•9 

25<'  50' 

•8 

36«  52' 

•7 

45»  34' 

•6 

53»  7' 

•5 

60« 

•4 

66»  25' 

•3 

720  32' 

•2 

78«  27' 

•1 

840 15'' ^  Tonempjindungent  8rd  edition,  p.  190. 
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It  appears  that  a  considerable  alteration  of  phase  in  either 
direction  may  be  obtained  without  very  materially  reducing  the 
amplitude.  When  one  fork  is  vibrating  at  its  maximum,  the 
other  may  be  made  to  differ  from  it  on  either  side  by  as  much  as 

60^  in  phase,  without  losing  more  than  half  its  amplitude,  or  by 
as  much  as  45^  without  losing  more  than  half  its  energy.  By 

allowing  one  fork  to  vibrate  45'  in  advance,  and  the  other  45® 
in  arrear  of  the  phase  corresponding  to  the  case  of  maximum 

resonance,  we  obtain  a  phase  difference  of  90®  in  conjunction  with 

an  equality  of  amplitudes.    Lissajous'  figure  then  becomes  a  circle. 
[An  intennittent  electric  current  may  also  be  applied  to 

regulate  the  speed  of  a  revolving  body.  The  phonic  wheel,  in- 
vented independently  by  M.  La  Cour  and  by  the  author  of  this 

work\  is  of  great  service  in  acoustical  investigations.  It  may  take 
various  forms;  but  the  essential  feature  is  the  approximate 

closing  of  the  magnetic  circuit  of  an  electro-magnet,  fed  with  an 
intermittent  current,  by  one  or  more  soft  iron  armatures  carried 
by  the  wheel  and  disposed  symmetrically  round  the  circumference. 
If  in  the  revolution  of  the  wheel  the  closest  passage  of  the 
armature  synchronises  with  the  middle  of  the  time  of  excitation, 

the  electro-magnetic  forces  operating  upon  the  armature  during 
its  advance  and  its  retreat  balance  one  another.  If  however  the 

wheel  be  a  little  in  arrear,  the  forces  promoting  advance  gain  an 
advantage  over  those  hindering  the  retreat  of  the  armature,  and 
thus  upon  the  whole  the  magnetic  forces  encourage  the  rotation. 
In  like  manner  if  the  phase  of  the  wheel  be  in  advance  of  that 
first  specified,  forces  are  called  into  play  which  retard  the  motion. 

By  a  self-acting  adjustment  the  rotation  settles  down  into  such 
a  phase  that  the  driving  forces  exactly  balance  the  resistances. 
When  the  wheel  runs  lightly,  and  the  electric  appliances  are 
moderately  powerful,  independent  driving  may  not  be  needed.  In 
this  case  of  course  the  phase  of  closest  passage  must  follow  that 
which  marks  the  middle  of  the  time  of  magnetisation.  If,  as  is 
sometimes  advisable,  there  be  an  independent  driving  power,  the 
phase  of  closest  passage  may  either  precede  or  follow  that  of 
magnetisation. 

In  some  cases  the  oscillations  of  the  motion  about  the  phase 
into  which  it  should  settle  down  are  very  persistent  and  interfere 
with  the  applications  of  the  instrument.  A  remedy  may  be 

found  in  a  ring  containing  water  or  mercury,  revolving  concen- 
1  Nature,  May  23, 1878. 
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trically.  When  the  rotation  is  uniform,  the  fluid  revolves  like  a 
solid  body  and  then  exercises  no  influence.  But  when  from  any 
cause  the  speed  changes,  the  fluid  persists  for  a  time  in  the  former 
motion,  and  thus  brings  into  play  forces  tending  to  damp  out 
oscillations.] 

64.  The  intermittent  current  is  best  obtained  by  a  fork- 
interrupter  invented  by  Helmholtz.  This  may  consist  of  a  fork 

and  electro-magnet  mounted  as  before.  The  wires  of  the  magnet 
are  connected,  one  with  one  pole  of  the  battery,  and  the  other  with 
a  mercury  cup.  The  other  pole  of  the  battery  is  connected  with 

a  second  mercury  cup.  A  U-shaped  rider  of  insulated  wire  is 
carried  by  the  lower  prong  just  over  the  cups,  at  such  a  height 
that  during  the  vibration  the  circuit  is  alternately  made  and 
broken  by  the  passage  of  one  end  into  and  out  of  the  mercury. 
The  other  end  may  be  kept  permanently  immersed.  By  means 

of  the  periodic  force  thus  obtained,  the  effect  of  friction  is  com- 
pensated, and  the  vibrations  of  the  fork  permanently  maintained. 

In  order  to  set  another  fork  into  forced  vibration,  its  associated 

electro-magnet  may  be  included,  either  in  the  same  driving-circuit, 
or  in  a  second,  whose  periodic  interruption  is  effected  by  another 
rider  dipping  into  mercury  cups^ 

The  modus  operandi  of  this  kind  of  self-acting  instrument  is 
often  imperfectly  apprehended.  If  the  force  acting  on  the  fork 

depended  only  on  its  position — on  whether  the  circuit  were  open 
or  closed — the  work  done  in  passing  through  any  position  would 
be  undone  on  the  return,  so  that  after  a  complete  period  there 
would  be  nothing  outstanding  by  which  the  eflect  of  the  frictional 
forces  could  be  compensated.  Any  explanation  which  does  not 
take  account  of  the  retardation  of  the  current  is  wholly  beside  the 
mark.  The  causes  of  retardation  are  two :  irregular  contact,  and 

self-induction.  When  the  point  of  the  rider  first  touches  the 
mercury,  the  electric  contact  is  imperfect,  probably  on  account  of 

^  I  have  arranged  seyeral  intermpters  on  the  aboye  plan,  all  the  component 
parts  being  of  home  mana£actare.  The  forks  were  made  by  the  village  blacksmith. 
The  oops  consisted  of  iron  thimbles,  soldered  on  one  end  of  copper  slips,  the 
farther  end  being  screwed  down  on  the  base  board  of  the  instrument.  Some 

means  of  adjusting  the  leyel  of  the  mercory  surface  is  necessary.  In  Helmholtz* 
interrupter  a  horse-shoe  electro-magnet  embracing  the  fork  is  adopted,  but  I  am 
inclined  to  prefer  the  present  arrangement,  at  any  rate  if  the  pitch  be  low.  In 

some  cases  a  greater  motive  power  is  obtained  by  a  horse-shoe  magnet  acting  on  a 
soft  iron  armature  carried  horizontally  by  the  upper  prong  and  perpendicular  to  it. 
I  have  usually  found  a  single  Smee  cell  sufficient  battery  power. 
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adhering  air.  On  the  other  hand,  in  leaving  the  mercury  the 
contact  is  prolonged  by  the  adhesion  of  the  liquid  in  the  cup  to 
the  amalgamated  wire.  On  both  accounts  the  current  is  retarded 
behind  what  would  correspond  to  the  mere  position  of  the  fork. 
But,  even  if  the  resistance  of  the  circuit  depended  only  on  the 

position  of  the  fork,  the  current  would  still  be  retarded  by  its  self- 
induction.  However  perfect  the  contact  may  be,  a  finite  current 
cannot  be  generated  until  afber  the  lapse  of  a  finite  time,  any 
more  than  in  ordinary  mechanics  a  finite  velocity  can  be  suddenly 
impressed  on  an  inert  body.  From  whatever  causes  arising^  the 
effect  of  the  retardation  is  that  more  work  is  gained  by  the  fork 
during  the  retreat  of  the  rider  from  the  mercury,  than  is  lost 
during  its  entrance,  and  thus  a  balance  remains  to  be  set  off 
against  friction. 

If  the  magnetic  force  depended  only  on  the  position  of  the  fork, 
the  phase  of  its  first  harmonic  component  might  be  considered  to 
be  ISO^  in  advance  of  that  of  the  fork  s  own  vibration.  The  re- 

tardation spoken  of  reduces  this  advance.  If  the  phase-difference 
be  reduced  to  90^  the  force  acts  in  the  most  favourable  manner, 

and  the  greatest  possible  vibration  is  produced. 
It  is  important  to  notice  that  (except  in  the  case  just  refeiTcd 

to)  the  actual  pitch  of  the  interrupter  differs  to  some  extent  frx>m 
that  natural  to  the  fork  according  to  the  law  expressed  in  (5)  of 

§  46,  €  being  in  the  present  case  a  prescribed  phase-difference 
depending  on  the  nature  of  the  contacts  and  the  magnitude  of  the 

self-induction.  If  the  intermittent  current  be  employed  to  drive 
a  second  fork,  the  maximum  vibration  is  obtained,  when  the 

frequency  of  the  fork  coincides,  not  with  the  natural,  but  with  the 
modified  frequency  of  the  interrupter. 

The  deviation  of  a  tuning-fork  interrupter  from  its  natural 
pitch  is  practically  very  small ;  but  the  fact  that  such  a  deviation 
is  possible,  is  at  first  sight  rather  surprising.  The  explanation  (in 
the  case  of  a  small  retardation  of  current)  is,  that  during  that  half 
of  the  motion  in  which  the  prongs  are  the  most  separated,  the 

electro-magnet  acts  in  aid  of  the  proper  recovering  power  due  to 
rigidity,  and  so  naturally  raises  the  pitch.  Whatever  the  relation 

of  phases  may  be,  the  force  of  the  magnet  may  be  divided  into 

1  Any  desired  retardation  might  be  obtained,  in  default  of  other  means,  by 
attaching  the  rider,  not  to  the  prong  itself,  bat  to  the  further  end  of  a  light 
straight  spring  carried  by  the  prong  and  set  into  forced  yibration  by  the  motion  of 
its  point  of  attachment. 
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two  parts  respectively  proportional  to  the  velocity  and  displacement 
(or  acceleration).  To  the  first  exclusively  is  due  the  sustaining 
power  of  the  force,  and  to  the  second  the  alteration  of  pitch. 

66.  The  general  phenomenon  of  resonance,  though  it  cannot 
be  exhaustively  considered  under  the  head  of  one  degree  of 
freedom,  is  in  the  main  referable  to  the  same  general  principles. 
When  a  forced  vibration  is  excited  in  one  part  of  a  system,  all 
the  other  parts  are  also  influenced,  a  vibration  of  the  same  period 
being  excited,  whose  amplitude  depends  on  the  constitution  of  the 
system  considered  as  a  whole.  But  it  not  unfrequently  happens 

that  interest  centres  on  the  vibration  of  an  'outljdng  part  whose 
connection  with  the  rest  of  the  system  is  but  loose.  In  such  a  case 
the  part  in  question,  provided  a  certain  limit  of  amplitude  be 
not  exceeded,  is  very  much  in  the  position  of  a  system  possessing 
one  degree  of  freedom  and  acted  on  by  a  force,  which  may  be 
regarded  as  given,  independently  of  the  natural  period.  The 
vibration  is  accordingly  governed  by  the  laws  we  have  already 
investigated.  In  the  case  of  approximate  equality  of  periods  to 

which  the  name  of  resonance  is  generally  restricted,  the  ampli- 
tude may  be  very  considerable,  even  though  in  other  cases  it 

might  be  so  small  as  to  be  of  little  account;  and  the  precision 
required  in  the  adjustment  of  the  periods  in  order  to  bring  out 
the  effect,  depends  on  the  degree  of  damping  to  which  the  system 
is  subjected. 

Among  bodies  which  resound  without  an  extreme  precision  of 

tuning,  may  be  mentioned  stretched  membranes,  and  strings  asso- 
ciated with  sounding-boards,  as  in  the  pianoforte  and  the  violin. 

When  the  proper  note  is  sounded  in  their  neighbourhood,  these 

bodies  are  caused  to  vibrate  in  a  very  perceptible  manner.  The 

experiment  may  be  made  by  singing  into  a  pianoforte  the  note 

given  by  any  of  its  strings,  having  first  raised  the  corresponding 
damper.  Or  if  one  of  the  strings  belonging  to  any  note  be  plucked 

(like  a  harp  string)  with  the  finger,  its  fellows  will  be  set  into 
vibration,  as  may  immediately  be  proved  by  stopping  the  first. 

The  phenomenon  of  resonance  is,  however,  most  striking  in 
cases  where  a  very  accurate  equality  of  periods  is  necessary  in 

order  to  elicit  the  full  effect  Of  this  class  tuning-forks,  mounted 
on  resonance  boxes,  are  a  conspicuous  example.  When  the  unison 
is  perfect  the  vibration  of  one  fork  will  be  taken  up  by  another 
across  the  width  of  a  room,  but  the  slightest  deviation  of  pitch 
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is  sufficient  to  render  the  phenomenon  almost  insensible.  Forks 
of  256  vibrations  per  second  are  commonly  used  for  the  purpose, 
and  it  is  found  that  a  deviation  from  unison  giving  only  one  beat 
in  a  second  makes  all  the  difference.  When  the  forks  are  well 

tuned  and  close  together,  the  vibration  may  be  transferred  back- 
wards and  forwards  between  them  several  times,  by  damping  them 

alternately,  with  a  touch  of  the  finger. 
Illustrations  of  the  powerful  effects  of  isochronism  must  be 

within  the  experience  of  every  one.  They  are  often  of  importance 
in  very  different  fields  from  any  with  which  acoustics  is  concerned. 
For  example,  few  things  are  more  dangerous  to  a  ship  than  to  lie 
in  the  trough  of  the  sea  under  the  influence  of  waves  whose  period 
is  nearly  that  of  its  own  natural  rolling. 

66  a.  It  has  already  (§  30)  been  explained  how  the  super- 
position of  two  vibrations  of  equal  amplitude  and  of  nearly  equal 

frequency  gives  rise  to  a  resultant  in  which  the  sound  rises  and 
falls  in  beats.  If  we  represent  the  two  components  by  cos  27r/ii^, 
cos  27rn^,  the  resultant  is 

2cos7r(w,  —  7i,)^.cos7r(7ii+n3)^   (1); 

and  it  may  be  regarded  as  a  vibration  of  frequency  J  (ui  +  n,),  and 

of  amplitude  2  cos  tt  (wi  —  n^)  t  In  passing  through  zero  the 
amplitude  changes  sign,  which  is  equivalent  to  a  change  of  phase 

of  180°,  if  the  amplitude  be  regarded  as  always  positive.  This 
change  of  phase  is  readily  detected  by  measurement  in  drawings 
traced  by  machines  for  compounding  vibrations,  and  it  is  a  feature 
of  great  importance.  If  a  force  of  this  character  act  upon  a  system 

whose  natural  frequency  is  ̂   (rii  +  n.j),  the  effect  produced  is  com- 
paratively small.  If  the  system  start  from  rest,  the  successive 

impulses  cooperate  at  first,  but  after  a  time  the  later  impulses 
begin  to  destroy  the  effect  of  former  ones.  The  greatest  response 
would  be  given  to  forces  of  frequency  7ii  and  ?i^,  and  not  to  a  force 
of  frequency  ̂   (w^  +  /ij). 

If,  as  in  some  experiments  of  Prof.  A.  M.  Mayer ',  an  otherwise 
steady  sound  is  rendered  intermittent  by  the  periodic  interposition 
of  an  obstacle,  a  very  different  result  is  arrived  at.  In  this  case 
the  phase  is  resumed  after  each  silence  without  reversal.  If  a 
force  of  this  character  act  upon  an  isochronous  system,  the  effect 
is  indeed  less  than  if  there  were  no  intermittence ;  but  as  all  the 

*  Phil,  Mag,  May.  1875. 
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impulses  operate  in  the  same  sense  without  any  antagonism,  the 
response  is  powerful.     One  kind  of  intermittent  vibration  or  force 
is  represented  by 

2(1  +COS  27rmf ) cos 27mf   (2), 

in  which  n  is  the  frequency  of  the  vibration,  and  m  the  frequency 
of  intermittence  ^  The  amplitude  is  here  always  positive,  and 
varies  between  the  values  0  and  4.  By  ordinary  trigonometrical 
transformation  (2)  may  be  put  in  the  form 

2  cas  27rn^  +  cos  27r  (n  '\-vi)t  +  cos  27r (n  —  m)  ̂    (3); 

which  shews  that  the  intermittent  vibration  in  question  is  equiva- 
lent to  three  simple  vibrations  of  frequencies  n,  n  +  nif  n  —  m. 

This  is  the  explanation  of  the  secondary  sounds  observed  by 
Mayer. 

The  form  (2)  is  of  course  only  a  particular  case.  Another  in 
which  the  intensity  of  the  intermittent  sound  rises  more  suddenly 
to  its  maximum  is  given  by 

^COQ*  Trmt  cos  27mt    (4), 

which  may  be  transformed  into 

f  cos  2Tmt  +  cos  27r  (n  +  m)  ̂  +  cos  27r  (n  —  vi)  t 

+  i  cos  27r  (n  +  2jn)  ̂  +  J  cos  27r  (n  -  2m)  t   (5). 

There  are  here  four  secondary  sounds,  the  frequencies  of  the 
two  new  ones  differing  twice  as  much  as  before  from  that  of  the 

primary  sound. 
The  theory  of  intermittent  vibrations  is  well  illustrated  by 

electrically  driven  forks.  A  fork  interrupter  of  frequency  128 
gave  a  periodic  current,  by  the  passage  of  which  through  an 

electro-magnet  a  second  fork  of  like  pitch  could  be  excited.  The 
action  of  this  current  on  the  second  fork  could  be  rendered  inter- 

mittent  by  short-cireuiting  the  electro-magnet.  This  was  eflfected 
by  another  interrupter  of  frequency  4,  worked  by  an  independent 
current  from  a  Smee  cell.  To  excite  the  main  cuirent  a  Grove 

cell  was  employed.  When  the  contact  of  the  second  interrupter 

was  permanently  broken,  so  that  the  main  current  passed  con- 
tinuously through  the  electro-magnet,  the  fork  was,  of  course, 

most  powerfully  affected  when  tuned  to  128.  Scarcely  any 
response  was  observable  when  the  pitch  was  changed  to  124  or 
132.     But  if  the  second  interrupter  were  allowed  to  operate,  so  as 

^  Cram  Brown  and  Tait.    Edin,  Proc.  June,  1S7S.    Acoostioal  Obserrations  ii. 
Phil.  Mag.  April,  1S80. 
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73 to  render  the  periodic  current  through  the  electro-magnet  inter- 
mittent, then  the  fork  would  respond  powerfully  when  tuned  to 

124  or  132  as  well  as  when  tuned  to  128,  but  not  when  tuned  to 

intermediate  pitches,  such  as  126  or  130. 

The  operation  of  the  intermittence  in  producing  a  sensitive- 

ness w*hich  would  not  otherwise  exist,  is  easily  understood.  When 
a  fork  of  frequency  124  starts  from  rest  under  the  influence  of  a 
force  of  frequency  128,  the  impulses  cooperate  at  first,  but  after  ̂  
of  a  second  the  new  impulses  begin  to  oppose  the  earlier  ones. 
After  ̂   of  a  second,  another  series  of  impulses  begins  whose  effect 
agrees  with  that  of  the  first,  and  so  on.  Thus  if  all  these  impulses 
are  allowed  to  act,  the  resultant  effect  is  trifling ;  but  if  every 
alternate  series  is  stopped  off,  a  large  vibration  accumulates. 

Fig.  16  a. 

The  most  general  expression  for  a  vibration  of  frequency  n, 
whose  amplitude  and  phase  are  slowly  variable  with  a  frequency 
m,  is 

{Ao-^Ai  cos  27rm^  -h  A  j  cos  4nr?nt  +  A^ cos  GttdU  -h  . . .) 

+  Bi  sin  2'jrmt  +  B^  sin  ̂ irint  +  -B,  sin  Gimit  +  . . .J 

f (7o  +  C^i  cos  2'mnt  -f  C,  cos  47rr?if  +  G^  cos  Girmt  +  . . .)    . 
(     +  -Disin  27rmt  +  Z),  sin  47rm^  +-D3  sin  Ginnt  +  . . .  J 

cos  27rr<f 

sm  Zimt 
...(6); 

and  this  applies  both  to  the  case  of  beats  (e.g.  if  Ai  only  be  finite) 
and  to  such  intermittence  as  is  produced  by  the  interposition  of 

an  obstacle.     The  vibration  in  question  is  accordingly  in  all  cases, 
equivalent  to  a  combination  of  simple  vibrations  of  frequencies 

n,  n  +  m,  n  —  m,  n  +  2m,  n  —  2m,  &c. 
It  may  be  well  here  to  emphasise  that  a  simple  vibration 

implies  infinite  continuance,  and  does  not  admit  of  variations  of 
phase  or  amplitude.  To  suppose,  as  is  sometimes  done  in  optical 
speculations,  that  a  train  of  simple  waves  may  begin  at  a  given 
epoch,  continue  for  a  certain  time  involving  it  may  be  a  large 
number  of  periods,  and  ultimately  cease,  is  a  contradiction  in  terms. 
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66.     The  solution  of  the  equation  for  free  vibration,  viz. 

u  +  /ici  +  w'a  =  0   (1). 

may  be  put  into  another  form  by  expressing  the  arbitrary  con- 
stants of  integration  A  and  a  in  terms  of  the  initial  values  of  u 

and  u,  which  we  may  denote  by  u©  and  u^     We  obtain  at  once 

u  =  6-i«^  \uo  — 7 — ^  y-a  [cos n'^  +  ̂   sin  n'tyh   (2), 

where  n'  =  V/i''  —  \i<^. 
If  there  be  no  friction,  /c  =  0,  and  then 

.  sinn^  ,  .  .Qv 
u  =  Uo   |-w«cosn^   (3). n 

These  results  may  be  employed  to  obtain  the  solution  of  the 
complete  equation 

u  + /cu  +  n^M  =  CT   (4), 

where  17  is  an  explicit  function  of  the  time ;  for  from  (2)  we  see 
that  the  effect  at  time  ̂   of  a  velocity  hu  communicated  at  time 
^'is 

n 

The  eflFect  of  i/'  is  to  generate  in  time  dt*  a  velocity  Udtf,  whose result  at  time  t  will  therefore  be 

n  ^        ̂  
and  thus  the  solution  of  (4)  will  be 

u^^,j^e^-^'-^^smn'(t-t')Udt'   (o). 
If  there  be  no  friction,  we  have  simply 

u  =  ̂f8inn(t-t')Udt'   (6), 

nj 

U  being  the  force  at  time  t\ 
The  lower  limit  of  the  integrals  is  so  far  arbitrary,  but  it  will 

generally  be  convenient  to  make  it  zero. 

On  this  supposition  u  and  u  as  given  by  (6)  vanish,  when 
^  =  0,  and  the  complete  solution  is 

,  ,  f.  sinn'^         /        ,,./«.      ,\\ u  =  e-*«*  i  ito  — } — h  Wo  ( cos  n  ̂  +  — >  sm  n  ̂  I  > 

+  i^  fe-i-^f-^)  sin  n'  (t  -  e')  Udt'   (7), n  Jo 
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or  if  there  be  no  friction 

sin  Tit  1  r^  . 
w  =  Uo   \-ii^coant-\--  I  8inn(^  — O  Udt'   (8). 
n  njQ  ^ 

When  t  is  sufficiently  great,  the  complementary  terms  tend  to 

vanish  on  account  of  the  factor  e"**S  and  may  then  be  omitted. 

66  a.  In  §  66  we  have  limited  the  discussion  to  the  case  of 
greatest  acoustical  importance,  that  is,  we  have  supposed  that  nf 

is  real,  as  happens  when  7i^  is  positive,  and  k  not  too  great.  But 
a  more  general  treatment  of  the  problem  of  free  vibrations  is  not 

without  interest.  Whatever  may  be  the  values  of  n'  and  k,  the 
solution  of  (1)  §  66  may  be  expressed 

XL  ̂   Ae^^^  +  B  e*^^   (1), 

where  /^,  fi^  are  the  roots  of 

/i*4-/c/i  +  n-  =  0   (2). 

The  case  already  discussed  is  that  in  which  the  values  of  /i  are 
imaginary.  The  motion  is  then  oscillatory,  with  amplitude  which 
decreases  if  k  be  positive,  but  increases  if  le  be  negative. 

But  if  n*,  though  positive,  be  less  than  ̂ /c*,  or  if  n^  be  negative, 

n'  becomes  imaginary,  that  is  fi  becomes  real.  The  motion 
expressed  by  (1)  is  then  non-oscillatoiy,  and  it  depends  upon  the 
sign  of  /i  whether  it  increases  or  diminishes  with  the  time.  From 
the  solution  of  (2),  viz. 

M  =  -i/c±Jv('t»-4H0   (3), 

it  is  evident  that  if  n^  be  positive  (and  less  than  \i^)  the  two 
values  of  /a  are  of  the  same  sign,  and  that  the  sign  is  the  opposite 
of  that  of  K.  Hence  if  k  be  positive,  both  terms  in  (1)  diminish 
with  the  time,  so  that  the  system,  however  disturbed,  subsides 
again  into  a  state  of  rest.  If,  on  the  contrary,  k  be  negative,  the 
motion  increases  without  limit. 

We  have  still  to  consider  the  case  of  n'*  negative.  The  real 
values  of  fi  are  then  of  opposite  signa  It  is  possible  so  to  start 

the  system  from  a  displaced  position  that  it  shall  approach  asymp- 
totically the  condition  of  rest  in  the  configuration  of  equilibrium ; 

but  unless  a  special  relation  between  displacement  and  velocity  is 

satisfied,  the  motion  tends  to  increase  w^ithout  limit.  Under  these 
circumstances  the  equilibrium  must  be  regarded  as  unstable.  In 

this  sense  stability  requires  that  n'  and  k  be  both  positive. 
A  word  may  not  be  out  of  place  as  to  the  eflFect  of  an  im- 
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pressed  force  upon  a  statically  unstable  system.  If  in  §  46  we 

suppose  /c  =  0,  the  solution  (7)  does  not  change  its  form  merely 

because  n^  becomes  negative.  The  fact  that  a  system  is  suscep- 
tible of  purely  periodic  motion  under  the  operation  of  an  external 

periodic  force  is  therefore  no  evidence  of  stability. 

67.  For  most  acoustical  purposes  it  is  suflBcient  to  consider 
the  vibrations  of  the  systems,  with  which  we  may  have  to  deal, 

as  infinitely  small,  or  rather  as  similar  to  infinitely  small  vibra- 
tion&  This  restriction  is  the  foundation  of  the  important  laws 
of  isochronism  for  free  vibrations,  and  of  persistence  of  period 

for  forced  vibrations.  There  are,  however,  phenomena  of  a  sub- 
ordinate but  not  insignificant  character,  which  depend  essentially 

on  the  square  and  higher  powers  of  the  motion.  We  will  therefore 
devote  the  remainder  of  this  chapter  to  the  discussion  of  the 
motion  of  a  sjrstem  of  one  degree  of  freedom,  the  motion  not  being 
so  small  that  the  squares  and  higher  powers  can  be  altogether 

neglected. 
The  approximate  expressions  for  the  kinetic  and  potential 

energies  will  be  of  the  form 

If  the  sum  of  T  and  V  be  diflFerentiated  with  respect  to  the 
time,  we  find  as  the  equation  of  motion 

rn^ii  +  fj^u  +  miuii  +  ̂ miu^  +  ̂fJLiu^  =  Impressed  Force, 
which  may  be  treated  by  the  method  of  successive  approximation. 

For  the  sake  of  simplicity  we  will  take  the  case  where  mi  =  0, 
a  supposition  in  no  way  affecting  the  essence  of  the  question. 
The  inertia  of  the  system  is  thus  constant,  while  the  force  of 

restitution  is  a  composite  function  of  the  displacement,  partly  pro- 
portional to  the  displacement  itself  and  partly  proportional  to 

its  square — cwjcordingly  unsymmetrical  with  respect  to  the  position 
of  equilibrium.     Thus  for  free  vibrations  our  equation  is  of  the 
form 

ii  +  n^u  +  au^^^O   (1). 
with  the  approximate  solution 

u^A  cosnt   (2), 

where  A — ^the  amplitude — is  to  be  treated  as  a  small  quantity. 
Substituting   the   value  of  ti   expressed  by  (2)  in  the  last 

term,  we  find 

A^ 

it  4-  n*?* 
 
=  —  a  -5- 

 
(1  +CO

S  
2nf)

, 
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whence  for  a  second  approximation  to  the  value  of  u 

u^Aco97it—  «-  +  ̂ --cosznt   (3); 

shewing  that  the  proper  tone  (n)  of  the  system  is  accompanied 
by  its  octave  (2n),  whose  relative  importance  increases  with  the 
amplitude  of  vibration.     A  trained  ear  can  generally  perceive  the 

octave  in  the  sound  of  a  tuning-fork  caused  to  vibrate  strongly  by 
means  of  a  bow,  and  with  the  aid  of  appliances,  to  be  explained 
later,  the  existence  of  the  octave  may  be  made  manifest  to  any 
one.      By   followiug  the   same   method   the  approximation  can 
be  carried  further;  but  we  pass  on  now  to  the  case  of  a  system 
in  which  the  recovering  power  is  symmetrical  with  respect  to 
the   position   of  equilibrium.     The   equation  of  motion  is  then 
approximately 

u  +  ?i»tt  +  /8a»  =  0   (4), 

which  may  be  underetood  to  refer  to  the  vibrations  of  a  heavy 
pendulum,  or  of  a  load  carried  at  the  end  of  a  straight  spring. 

If  we  take  as  a  first  approximation  u  =  A  cos  nt,  corresponding 
to  /8  =  0,  and  substitute  in  the  term  multiplied  by  /8,  we  get 

..       ,  j3A^       „  ,     3/8^» u  -h  n^u  =  —    ̂   cos  fint  —      .     cos  nt, 4  4 

Corresponding  to  the  last  term  of  this  equation,  we  should 
obtain  in  the  solution  a  term  of  the  form  ̂ sinn^,  becoming 
greater  without  limit  with  t  This,  as  in  a  parallel  case  in  the 
Lunar  Theory,  indicates  that  our  assumed  first  approximation 
is  not  really  an  approximation  at  all,  or  at  least  does  not  continue 

to  be  such.  If,  however,  we  take  as  our  starting  point  u  =  A  cos  mt, 
with  a  suitable  value  for  m,  we  shall  find  that  the  solution  may 
be  completed  with  the  aid  of  periodic  terms  only.  In  fact  it  is 
evident  beforehand  that  all  we  are  entitled  to  assume  is  that  the 

motion  is  approximately  simple  harmonic,  with  a  period  ap- 
proxiniately  the  same,  as  if  /3  =  0.  A  very  slight  examination 
is  sufficient  to  shew  that  the  term  varying  as  w^  not  only  may, 
but  must  affect  the  period.  At  the  same  time  it  is  evident 
that  a  solution,  in  which  the  period  is  assumed  wrongly,  no 
matter  by  how  little,  must  at  length  cease  to  represent  the  motion 

with  any  approach  to  accuracy. 
We  take  then  for  the  approximate  equation 

u-\-nh(,=  —    ~r — cosm^—   -r-  cos3m^   (5), 
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of  which  the  solution  will  be 

.          ̂      /8-4'    cos3m^  .^^ 
M  =  4cosmt+  ̂       9m'  -„.    (6). 

provided  that  m  be  taken  so  as  to  satisfy 

or  m»  =  »«  +  ̂'   (7). 

The  term  in  fi  thus  produces  two  effects.  It  alters  the  pitch 
of  the  fundamental  vibration,  and  it  introduces  the  twelfth  as 

a  necessary  accompaniment.  The  alteration  of  pitch  is  in  most 

cases  exceedingly  small — depending  on  the  square  of  the  amplitude, 
but  it  is  not  altogether  insensible.  Tuning-forks  generally  rise 
a  little,  though  very  little,  in  pitch  as  the  vibration  dies  away. 
It  may  be  remarked  that  the  same  slight  dependence  of  pitch 
on  amplitude  occurs  when  the  force  of  restitution  is  of  the 

form  n'M-haw^  as  may  be  seen  by  continuing  the  approximation 
to  the  solution  of  (1)  one  step  further  than  (3).  The  result  in  that 
case  is 

-'="'-^'   («)• 

The  difference  m'  —  n'  is  of  the  same  order  in  ii  in  both  cases  ; 
but  in  one  respect  there  is  a  distinction  worth  noting,  namely, 

that  in  (8)  m*  is  always  less  than  w',  while  in  (7)  it  depends  on 
the  sign  of  /8  whether  its  effect  is  to  raise  or  lower  the  pitch. 
However,  in  most  cases  of  the  unsymmetrical  class  the  change 
of  pitch  would  depend  partly  on  a  term  of  the  form  av^  and 

partly  on  another  of  the  form  /8w',  and  then 

,       ,     ha^A^  .  3/8i4«  ,^,, 
^=^-  6h^    +-4-    (^>- 

[In  all  cases  where  the  period  depends  upon  amplitude,  it  is 

necessarily  an  even  function  thereof,  a  change  of  sign  in  the  ampli- 

tude being  merely  equivalent  to  an  alteration  in  phase  of  180°.] • 

68.  We  now  pass  to  the  consideration  of  the  vibrations 
forced  on  an  unsymmetrical  system  by  two  harmonic  forces 

Ecospt,  F  cos  (qt  —  e). 

^  [A  correction  is  here  introduced,  the  necessity  for  which  was  pointed  oat  to  me 
by  Dr  Burton.] 
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The  equation  of  motion  is 

il-\-n^u^  -au^  +  Ecospt-h F cos{qt-  e)   (1). 

To  find  a  first  approximation  we  neglect  the  term  containing 
a.    Thus 

u  =  e  cos  pt+/cos(qt  —  e)   (2), 

where  «  =  n^'    f^n^-f   <^>- 
Substituting  this  in  the  term  multiplied  by  a,  we  get 

u  4-  n'a  =  ̂ cos  pt  +  i^cos  {qt  —  £) 

-  a    ̂-^  +  2  ̂̂ ^  ̂ ^^  +  4-  cos  2  {qt  -  c)  +  e/cos  {0>  -  ?)  «  +  e} 

+  efcos[{p'¥q)t-€\    , 

whence  as  a  second  approximation  for  u 

u  =  6cosp«+/cos (}«-€)   ^2^^  "2(7i*- V)^^^^ 

The  additional  terms  represent  vibrations  having  frequencies 
which  are  severally  the  doubles  and  the  sum  and  diflFerence  of 
those  of  the  primaries.  Of  the  two  latter  the  amplitudes  are 
proportional  to  the  product  of  the  original  amplitudes,  shewing 
that  the  derived  tones  increase  in  relative  importance  with 
the  intensity  of  their  parent  tones. 

68a.  If  an  isolated  vibrating  system  be  subject  to  internal 
dissipative  influences,  the  vibrations  cannot  be  permanent,  since 
they  are  dependent  upon  an  initial  store  of  energy  which  suffers 
gradual  exhaustion.  In  order  that  the  motion  may  be  maintained, 
the  vibrating  body  must  be  in  connection  with  a  source  of  energy. 
We  have  already  considered  cases  of  this  kind  under  the  head  of 
forced  vibrations,  where  the  system  is  subject  to  forces  whose 

amplitude  and  phase  are  prescribed,  independently  of  the  be- 
haviour of  the  system.  Such  forces  may  have  their  origin  in 

revolving  mechanism  (such  as  electric  alternators)  governed  so  as 
to  move  at  a  uniform  speed.  But  more  frequently  the  forces 
under  consideration  depend  upon  the  vibrations  of  other  systems. 
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and  then  the  question  as  to  how  the  vibrations  are  to  be  main- 
tained represents  itself.  A  good  example  is  afforded  by  the  case 

already  discussed  (§§  63,  65)  of  a  fork  maintained  in  vibration 
electrically  by  means  of  currents  governed  by  a  fork  interrupter. 
It  has  been  pointed  out  that  the  performance  of  the  latter 
depends  upon  the  magnetic  forces  operative  upon  it  differing  in 
phase  from  the  vibrations  of  the  fork  itself.  With  the  interrupter 
may  be  classed  for  the  present  purpose  almost  all  acoustical  and 
musical  instruments  capable  of  providing  a  sustained  sound.  It 

may  suflSce  to  mention  vibrations  maintained  by  wind  (organ- 
pipes,  harmonium  reeds,  seolian  harps,  &c.),  by  heat  (singing 

flames,  Rijke's  tubes,  &c.),  by  friction  (violin  strings,  finger- 
glasses),  and  the  slower  vibrations  of  clock  pendulums  and  watch 
balance-wheels. 

In  considering  whether  proposed  forces  are  of  the  right  kind 
for  the  maintenance  or  encouragement  of  a  vibration,  it  is  often 
convenient  to  regard  them  as  reduced  to  impulses.  Suppose,  to 
take  a  simple  case,  that  a  small  horizontal  positive  impulse  acts 
upon  the  bob  of  a  vibrating  pendulum.  The  effect  depends,  of 
course,  upon  the  phase  of  the  vibration  at  the  instant  of  the 
impulse.  If  the  bob  be  moving  positively  at  the  instant  in 
question  the  vibration  is  encouraged,  and  this  effect  is  a  maximum 
when  the  positive  motion  is  greatest,  that  is,  when  the  impulse 
occurs  at  the  moment  of  positive  movement  through  the  position 
of  equilibrium.  This  is  the  condition  of  things  aimed  at  in 
designing  a  clock  escapement,  for  the  effect  of  the  force  is  then  a 
maximum,  in  encouraging  the  vibration,  and  a  minimum  (zero  to 
the  first  order  of  approximation)  in  disturbing  the  period.  Of 
course,  if  the  impulse  be  half  a  period  earlier  or  later  than  is 
above  supposed,  the  effect  is  to  discourage  the  vibration,  again 
without  altering  the  period.  In  like  manner  we  see  that  if  the 
impulse  occur  at  a  moment  of  maximum  elongation  the  effect  is 

concentrated  upon  the  period,  the  vibration  being  neither  en- 
couraged nor  discouraged. 

In  most  cases  the  force  acting  upon  a  vibrating  system  in 
virtue  of  its  connection  with  a  source  of  energy  may  be  regarded 

as  harmonic.  It  may  then  be  divided  into  two  parts,  one  pro- 
portional to  the  displacement  u  (or  to  the  acceleration  it),  the 

second  proportional  to  the  velocity  u.  The  inclusion  of  such 
forces  does  not  alter  the  form  of  the  equation  of  vibration 

u  +  icu  +  n»u  =  0   (1). 
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By  the  first  part  (proportional  to  u)  the  pitch  is  modified,  and  by 
the  second  the  coefficient  of  decay.  If  the  altered  k  be  still 

positive,  vibrations  gradually  die  down ;  but  if  the  eflFect  of  the 
included  forces  be  to  render  k  negative,  vibrations  tend  on  the 
contrary  to  increase.  The  only  case  in  which  according  to  (1)  a 
steady  vibration  is  possible,  is  when  the  complete  value  of  k  is 
zero.  If  this  condition  be  satisfied,  a  vibration  of  any  amplitude 

is  permanently  maintained. 
When  K  is  negative,  so  that  small  vibrations  tend  to  increase, 

a  point  is  of  course  soon  reached  beyond  which  the  approximate 
equations  cease  to  be  applicable.  We  may  form  an  idea  of  the 
state  of  things  which  then  arises  by  adding  to  equation  (1)  a 
term  proportional  to  a  higher  power  of  the  velocity.     Let  us  take 

w+/cu+ic'ii»  +  n«a  =  0   (2), 

in  which  k  and  k  are  supposed  to  be  small  quantities.  The 
approximate  solution  of  (2)  is 

u  =  A  sin nt-\-—^    cos  Znt   (3), 

in  which  A  is  given  by 
/c  +  3acV^«  =  0   (4). 

From  (4)  we  see  that  no  steady  vibration  is  possible  unless  k  and 
K  have  opposite  signs.  If  k  and  k  be  both  positive,  the  vibration 
in  all  cases  dies  down ;  while  if  k  and  k  be  both  negative,  the 
vibration  (according  to  (2))  increases  without  limit.  If  /v  be 

negative  and  k'  positive,  the  vibration  becomes  steady  and 
assumes  the  amplitude  determined  by  (4).  A  smaller  vibration 
increases  up  to  this  point,  and  a  larger  vibration  falls  down  to  it. 
If  on  the  other  hand  k  be  positive,  while  k  is  negative,  the  steady 
vibration  abstractedly  possible  is  unstable,  a  departure  in  either 
direction  from  the  amplitude  given  by  (4)  tending  always  to 
increase  *. 

68  6.  We  will  now  consider  briefly  another  and  a  very  curious 

kind  of  maintenance,  of  which  the  peculiarity  is  that  the  maintain- 
ing influence  operates  with  a  frequency  which  is  the  double  of 

that  of  the  vibration  maintained.  Probably  the  best  known 

example  is  that  form  of  Melde  s  experiment,  in  which  a  fine  string 
is  maintained  in  transverse  vibration  by  connecting  one  of  its 

extremities  with  the  vibrating  prong  of  a  massive   tuning-fork, 

^  On  Maintained  Vibrations,  Phil.  Mag,,  April,  ISSS. 

R.  6 
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the  direction  of  motion  of  the  point  of  attachment  being  parallel  to 
the  lefigth  of  the  string.  The  effect  of  the  motion  is  to  render 
the  tension  of  the  string  periodically  variable ;  and  at  first  sight 
there  is  nothing  to  cause  the  string  to  depart  from  its  equilibrium 
condition  of  straightness.  It  is  known,  however,  that  under  these 
circumstances  the  equilibrium  may  become  unstable,  and  that  the 
string  may  settle  down  into  a  state  of  permanent  and  vigorous 
vibration,  whose  period  is  the  double  of  that  of  the  fork. 

As  a  simpler  example,  with  but  one  degree  of  freedom,  we 
may  take  a  pendulum,  formed  of  a  bar  of  soft  iron  and  vibrating 

upon  knife-edges.  Underneath  is  placed  symmetrically  a  vertical 
bar  electro-magnet,  through  which  is  caused  to  pass  an  electric 
current  rendered  intermittent  by  an  interrupter  whose  frequency 
is  twice  that  of  the  pendulum.  The  magnetic  force  does  not  tend 
to  displace  the  pendulum  from  its  equilibrium  position,  but 
produces  the  same  sort  of  effect  as  if  gravity  were  subject  to  a 
periodic  variation  of  intensity. 

A  similar  result  is  obtained  by  causing  the  point  of  support 
of  the  pendulum  to  vibrate  in  a  vertical  path.  If  we  denote  this 

motion  by  17  =  /8  sin  2p^,  the  effect  is  as  if  gravity  were  variable  by 
the  term  4p*/8  sin  2pt 

Of  the  same  nature  are  the  crispations  observed  by  Faraday* 
and  others  upon  the  surface  of  water  which  oscillates  vertically. 
Faraday  arrived  experimentally  at  the  conclusion  that  there  were 

two  complete  vibrations  of  the  support  for  each  complete  vibra- 
tion of  the  liquid. 

In  the  following  investigation',  relative  to  the  case  of  one 
degree  of  freedom,  we  shall  start  with  the  assumption  that  a 
steady  vibration  is  in  progress,  and  inquire  under  what  conditions 
the  assumed  state  of  things  is  possible. 

If  the  force  of  restitution,  or  "  spring,"  of  a  body  susceptible 
of  vibration  be  subject  to  an  imposed  periodic  variation,  the 
differential  equation  takes  the  form 

16 -h /cu -h  (n«  -  2a  sin  2pe)  M  =  0    (1), 
in  which  le  and  a  are  supposed  to  be  small.  A  similar  equation 
would  apply  approximately  to  the  case  of  a  periodic  variation  in 
the  effective  mass  of  the  body.  The  motion  expressed  by  the 
solution  of  (1)  can  be  regular  only  when  it  keeps  perfect  time 

*  Phil.  Trans,  1831,  p.  299. 
2  phii^  jjjf^g^  ̂ prii^  ige3. 
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with  the  imposed  variations.  It  will  appear  that  the  necessary 
conditions  cannot  be  satisfied  rigorously  by  any  simple  harmonic 
vibration,  but  we  may  assume 

u  *  Ai  empt  4-  B^  cos  pt 

+  Az sin  Spt-hBtiCOS  Spt+  A^  sin  bpt  +   (2), 

in  which,  it  is  not  necessary  to  provide  for  sines  and  cosines  of  even 

multiples  of  pt  If  the  assumption  be  justifiable,  the  solution  in 
(2)  must  be  convergent.  Substituting  in  the  differential  equation, 

and  equating  to  zero  the  coefficients  of  sin  pt,  cos  pt,  &c.  we  find 

^1  {^^-P')  -  f^P^i  -  olBi  +  olBs  =  0, 

Bi  (n^-p^)  +  fcpAi  -  ol4i  -  olAj  =  0 ; 

Az  (n:'  -  V)  -  SKpB^  -  olBi  +  olBj  =  0, 

^3  ( »^  -  V)  +  3 /c/)^  +  aid  1  -  a-d  5  =  0 ; 

J  5  (/I*  -  2op^)  -  oKpB,  -  aB^  +  olB^  =  0, 

B,  (n^  -  25j[)0  +  OKpA,  +  ail,  -  a^^  =  0 ; 

These  equations  shew  that  -^3,  ̂ 3  are  of  the  order  a  relatively 
to  Aif  Bi\  that  -4.5,  B^  are  of  order  a  relatively  to  -4,,  -B,,  and 
so  on.  If  we  omit  -4,,  B^  in  the  first  pair  of  equations,  we  find 

as  a  first  approximation, 

A,{n^^p^)^{Kp-¥a)B,^0, 

whence              ̂   -  -  "^  =  "^^^^  =  ̂ ^''r.M  (3) 
Whence  J,-^^  +  a     W^-jt)'     V(«+icp)   ^  ̂' 
and  (n«-p7  =  a^-Acy     (4). 

Thus,  if  a  be  given,  the  value  of  p  necessary  for  a  regular 
motion  is  definite ;  and  ;;  having  this  value,  the  regular  motion  is 

w  =  P  sin  {pt  +  e), 

in  which  e,  being  equal  to  tan~*  (BJAi),  is  also  definite.  On  the 
other  hand,  as  is  evident  at  once  from  the  linearity  of  the  original 

equation,  there  is  nothing  to  limit  the  amplitude  of  vibration. 
These  characteristics  are  preserved  however  far  it  may  be 

necessary  to  pursue  the  approximation.  If  A.i,n+it  -Bam+i  may  be 
neglected,  the  first  m  pairs  of  equations  determine  the  ratios  of  all 

the  coefficients,  leaving  the  absolute  magnitude  open;  and  they 
provide  further  an  equation  connecting  p  and  a,  by  which  the 

pitch  is  determined. 
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For  the  second  approximation  the  second  pair   of  equations 

give 

{
■
 

whence 
aP 

i^  =  P8in(p^  +  €)  +        _-^^ cos  (3;><  -h  e)   (5), 
and  from  the  first  pair 

tan€  =  |n^-;)»-^'jj^j-(a  +  /c/>)   (6), while  p  is  determined  by 

i"'-^'-„'-"y=«'-*'^^   (7). 
Returning  to  the  first  approximation,  we  see  from  (4)  that  the 

solution  is  possible  only  under  the  condition  that  a  be  not  less 

than  Kp.  If  a  =  xp,  then  p  =^7i;  that  is,  the  imposed  variation 

in  the  "spring"  must  be  exactly  twice  as  quick  as  the  natural 
vibration  of  the  body  would  be  in  the  absence  of  friction.  From 

(3)  it  appears  that  in  this  case  e^O,  which  indicates  that  the 

spring  is  a  minimum  one-eighth  of  a  period  after  the  body  has 
passed  its  position  of  equilibrium,  and  a  maximum  one-eighth  of  a 
period  be/ore  such  passage.  Under  these  circumstances  the 
greatest  possible  amount  of  energy  is  communicated  to  the 
system  ;  and  in  the  case  contemplated  it  is  just  sufficient  to 
balance  the  loss  by  dissipation,  the  adjustment  being  evidently 
independent  of  the  amplitude. 

If  a<  xp  sufficient  energy  cannot  pass  to  maintain  the  motion, 

whatever  may  be  the  phase-relation ;  but  it  a>  tcp,  the  balance 
between  energy  supplied  and  energy  dissipated  may  be  attained 
by  such  an  alteration  of  phase  as  shall  diminish  the  former 
quantity  to  the  required  amount.  The  alteration  of  phase  may 
for  this  purpose  be  indifferently  in  either  direction  ;  but  if  e  be 

positive,  we  must  have 

pa  =  n«  -  V(a'  -  t^p^)  ; 
while  if  6  be  negative 

p^  ̂  n}  +  V(a'  -  f^P^y 

If  a  be  very  much  greater  than  /(cp,  e  =  ±  ̂-ir,  which  indicates 
that  when  the  system  passes  through  its  position  of  equilibrium 
the  spring  is  at  its  maximum  or  at  its  minimum. 

The  inference  from  the  equation  that  the  adjustment  of  pitch 
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must  be  absolutely  rigorous  for  steady  vibration  will  be  subject  to 
some  modification  in  practice;  otherwise  the  experiment  could 
not  succeed.  In  most  cases  v?  is  to  a  certain  extent  a  function  of 

amplitude;  so  that  if  v?  have  very  nearly  the  required  value, 
complete  coincidence  is  attainable  by  the  assumption  of  an 
amplitude  of  large  and  determinate  amount  without  other 
alterations  in  the  conditions  of  the  system. 

The  reader  who  wishes  to  pursue  this  subject  is  referred  to  a 

paper  by  the  Author  "  On  the  Maintenance  of  Vibrations  by  Forces 
of  Double  Frequency,  and  on  the  Propagation  of  Waves  through  a 

Medium  endowed  with  a  Periodic  Structure,"*  in  which  the  analysis 
of  Mr  Hill''  is  applied  to  the  present  problem. 

68  c.  The  determination  of  absolute  pitch  by  means  of  the 

siren  has  already  been  alluded  to  (§  17).  In  all  probability  first- 
rate  results  might  be  got  by  this  method  if  proper  provision,  with 
the  aid  of  a  phonic  wheel  for  example,  were  made  for  uniform 

speed.  In  recent  years  several  experimenters  have  obtained  excel- 
lent results  by  various  methods ;  but  a  brief  notice  of  these  is  all 

that  our  limits  will  allow. 

One  of  the  most  direct  determinations  is  that  of  Koenig',  to 
whom  the  scientific  world  has  long  been  indebted  for  the  construc- 

tion of  much  excellent  apparatus.  This  depends  upon  a  special 
instrument,  consisting  of  a  fork  of  64  complete  vibrations  per 
second,  the  motion  being  maintained  by  a  clock  movement  acting 
upon  an  escapement.  A  dial  is  provided  marking  ordinary  time, 
and  serves  to  record  the  number  of  vibrations  executed.  The 

performance  of  the  fork  is  tested  by  a  comparison  between  the 
instrument  and  any  chronometer  known  to  be  keeping  good  time. 
The  standard  fork  of  256  complete  vibrations  was  compared  with 

that  of  the  instrument  by  observing  the  Lissajous*s  figure  appro- 
priate to  the  double  octave. 

M.  Koenig  has  also  investigated  the  influence  of  resonators 
upon  the  pitch  of  forks.  Thus  without  a  resonator  a  fork  of  256 
complete  vibrations  sounded  in  a  satisfactory  manner  for  about  90 
seconds.  A  resonator  of  adjustable  pitch  was  then  brought  into 
proximity,  and  the  pitch,  originally  much  graver  than  that  of  the 

»  P*a  Mag,,  August,  1887. 
^  On  the  Part  of  the  Motion  of  the  Lunar  Perigree  which  is  a  Function  of  the 

Mean  Motions  of  the  Sun  and  Moon,  Acta  Mathematica  8 ;  1,  1886.  Mr  HilFs 
work  was  first  published  in  1877. 

3  Wied.  Ann,  ix.  p.  394,  1880. 
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fork,  was  gradually  raised.  Even  when  the  resonator  was  still  a 
minor  third  below  the  fork,  there  was  observed  a  slight  diminution 
in  the  duration  of  the  vibratory  movement,  and  at  the  same  time 

an  augmentation  in  the  frequency  of  about  '005.  As  the  natural 
note  of  the  resonator  approached  nearer  to  that  of  the  fork,  this 
diminution  in  the  time  and  this  increase  in  frequency  became 
more  pronounced  up  to  the  immediate  neighbourhood  of  unison ; 
but  at  the  moment  when  unison  was  established,  the  alteration  of 

pitch  suddenly  disappeared,  and  the  frequency  became  exactly  the 
same  as  in  the  absence  of  the  resonator.  At  the  same  time  the 

sound  was  powerfully  reinforced;  but  this  exaggerated  intensity 
fell  off  rapidly  and  the  vibration  died  away  after  8  or  10  seconds. 
The  pitch  of  the  resonator  being  again  raised  a  little,  the  sound  of 
the  fork  began  to  change  in  the  opposite  direction,  being  now  as 
much  too  grave  as  before  the  unison  was  reached  it  had  been  too 
acute.  The  displacement  then  fell  away  by  degrees,  as  the  pitch 
of  the  resonator  was  fuii;her  raised,  and  the  duration  of  the 

vibrations  gradually  recovered  its  original  value  of  about  90 
seconds.  The  maximum  disturbance  in  the  frequency  observed 

by  Koenig  was  "OSS  complete  vibrations.  For  the  explanation 
of  these  effects  see  §  117. 

The  temperature  coeflBcient  found  by  Koenig  is  '000112,  so  that 
the  pitch  of  a  256  fork  falls  0286  for  each  degree  Cent,  by  which 
the  temperature  rises. 

In  determinations  of  absolute  pitch  ̂   by  the  Author  of  this  work 
an  electrically  maintained  interrupter  fork,  whose  frequency  may 
for  example  be  32,  was  employed  to  drive  a  dependent  fork  of 
pitch  128.  When  the  apparatus  is  in  good  order,  there  is  a  fixed 
relation  between  the  two  frequencies,  the  one  being  precisely 
four  times  the  other.  The  higher  is  of  course  readily  compared 
by  beats,  or  by  optical  methods,  with  a  standard  of  128,  whose 
accuracy  is  to  be  Wsted.  It  remains  to  determine  the  frequency 
of  the  interrupter  fork  itself. 

For  this  pui-pose  the  interrupter  is  compared  with  the  pendulum 
of  a  standard  clock  whose  rate  is  known.  The  comparison  may  be 
direct,  or  the  intervention  of  a  phonic  wheel  (§  63)  may  be  invoked. 
In  either  case  the  pendulum  of  the  clock  is  provided  with  a  silvered 

bead  upon  which  is  concentrated  the  light  from  a  lamp.  Im- 
mediately in  front  of  the  pendulum  is  placed  a  screen  perforated 

by  a  somewhat  narrow  vertical  slit.     The  bright  point  of  light 

^  Nature,  xvii.  p.  13, 1S77 ;  PhiL  Tram.  1SS3,  Part  I.  p.  816. 
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reflected  by  the  bead  is  seen  intermittently,  either  by  looking  over 

the  prong  of  the  interrupter  or  through  a  hole  in  the  disc  of  the 
phonic  wheel.  In  the  first  case  there  are  32  views  per  second,  but 
in  the  latter  this  number  is  reduced  by  the  intervention  of  the 
wheel.  In  the  experiments  referred  to  the  wheel  was  so 

arranged  that  one  revolution  corresponded  to  four  complete  vibra- 
tions of  the  interrupter,  and  there  were  thus  8  views  of  the  pen- 

dulum per  second,  instead  of  32.  Any  deviation  of  the  period  of 
the  pendulum  from  a  precise  multiple  of  the  period  of  intermittence 
shews  itself  as  a  cycle  of  changes  in  the  appearance  of  the  flash 
of  light,  and  an  observation  of  the  duration  of  this  cycle  gives  the 

data  for  a  pi*ecise  comparison  of  frequencies. 
The  calculation  of  the  results  is  very  simple.  Supposing  in 

the  first  instance  that  the  clock  is  correct,  let  a  be  the  number  of 

cycles  per  second  (perhaps  ̂ )  between  the  wheel  and  the  clock. 
Since  the  period  of  a  cycle  is  the  time  required  for  the  wheel  to 

gain,  or  lose,  one  revolution  upon  the  clock,  the  frequency  of  revo- 
lution is  8  ±  a.  The  frequency  of  the  auxiliary  fork  is  precisely  16 

times  as  great,  i.e.  128  ±  16a.  If  6  be  the  number  of  beats  per 
second  between  the  auxiliary  fork  and  the  standard,  the  frequency 
of  the  latter  is 

128  ±  16a  ±  6. 

An  error  in  the  mean  rate  of  the  clock  is  readily  allowed  for ; 
but  care  is  required  to  ascertain  that  the  actual  rate  at  the  time 
of  observation  does  not  differ  appreciably  from  the  mean  rate. 

To  be  quite  safe  it  would  be  necessarj'  to  repeat  the  deter- 
minations at  intervals  over  the  whole  time  required  to  rate  the 

clock  by  observation  of  the  stars.  In  this  case  it  would  probably 
be  coDvenient  to  attach  a  counting  apparatus  to  the  phonic  wheel. 

In  the  method  of  M'Leod  and  Clarke*  time,  given  by  a  clock, 
is  recorded  automatically  upon  the  revolving  drum  of  a  chrono- 

graph, which  is  maintained  by  a  suitable  governor  in  uniform 
rotation.  The  circumference  of  the  drum  is  marked  with  a  grating 
of  equidistant  lines  parallel  to  the  axis,  and  the  comparison  between 
the  drum  and  the  standard  fork  is  effected  by  observation  of  the 

wavy  pattern  seen  when  the  revolving  grating  is  looked  at  past 
the  edges  of  the  vibrating  prongs.  These  observers  made  a  special 
investigation  as  to  the  effect  of  bowing  a  fork  upon  previously 
existing  vibrations.  Their  conclusion  is  that  in  the  case  of  un- 

loaded forks  no  sensible  change  of  phase  occurs. 

1  PhiL  Tram,  1880,  Part  I.  p.  1. 
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In  the  chronographic  method  of  Prof.  A.  M.  Mayer^  the  fork 
under  investigation  is  armed  with  a  triaDgular  fragment  of  thin 
sheet  metal,  one  milligram  in  weight,  and  actually  traces  its 
vibrations  as  a  curve  of  sines  upon  smoked  paper.  The  time  is 
recorded  by  small  electric  discharges  from  an  induction  apparatus, 
under  the  control  of  a  clock,  and  delivered  from  the  same  tmcing 
point.  Although  the  disturbance  due  to  the  tracing  point  appears 
to  be  very  small,  it  is  doubtful  whether  this  method  could  compete 

in  respect  of  accuracy  with  those  above  described  where  the  com- 
parison with  the  standard  is  optical  or  acoustical.  On  the  other 

hand,  it  has  the  advantage  of  not  requiring  a  uniform  rotation  of 

the  drum,  and  the  apparatus  lends  itself  with  facility  to  the  deter- 
mination of  small  intervals  of  time  after  the  manner  originally 

proposed  by  T.  Young^ 

68d.  The  methods  hitherto  described  for  the  determination  of 

absolute  pitch,  with  the  exception  of  that  of  Scheibler,  may  be 
regarded  as  rather  mechanical  in  their  character,  and  they  depend 
for  the  most  part  upon  somewhat  special  apparatus  It  is  possible, 
however,  to  determine  pitch  with  fair  accuracy  with  no  other 
appliances  than  a  common  harmonium  and  a  watch,  and  as  the 
process  is  instructive  in  respect  of  the  theory  of  overtones,  a  short 

account  will  here  be  given  of  it*. 
The  fundamental  principle  is  that  the  absolute  frequencies  of 

two  musical  notes  can  be  deduced  from  the  interval  between 

them,  i.e.  the  ratio  of  their  frequencies,  and  the  number  of  beats 
which  they  occasion  in  a  given  time  when  sounded  together. 
For  example,  if  x  and  y  denote  the  frequencies  of  two  notes  whose 
interval  is  an  equal  temperament  major  third,  we  know  that 

y  =  1*25992  x.  At  the  same  time  the  number  of  beats  heard  in  a 
second  depending  upon  the  deviation  of  the  third  from  true 

intonation,  is  4y  —  ox.  In  the  case  of  the  notes  of  a  harmonium, 
which  are  rich  in  overtones,  these  beats  are  readily  counted,  and 
thus  two  equations  are  obtained  from  which  the  values  of  x  and  y 
are  at  once  found. 

Of  course  in  practice  the  truth  of  an  equal  temperament  third 
could  not  be  taken  for  granted,  but  the  diflBculty  thence  arising 
would  be  easily  met  by  including  in  the  counting  all  the  three 

^  National  Academy  of  Sciences,  Washington,  Memoirs,  VoL  ui.  p.  43, 1884. 
•  Lectures f  Vol.  i.  p.  191. 
*  Nature,  Jan.  28,  1879. 
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major  thirds  which  together  make  up  an  octave.  Suppose,  for 
example,  that  the  frequencies  of  c,  e,  gt,  c  are  respectively  x,  y,  z, 
2x,  and  that  the  beats  per  second  between  x  and  y  are  a,  between 
y  and  z  are  6,  and  between  z  and  2x  are  c.    Then 

4y  —  Oil;  =  a,     4fZ  —  oy^  6,     8a:  —  oz  =  c, 

from  which  a?  =  ̂   (25a  +  206  +  16c), 

y  =  J  (32a  +  256  +  20c), 

z  =  J  (40a  +  326  +  25c). 

In  the  above  statements  the  octave  c — c  is  for  simplicity 
supposed  to  be  true.  The  actual  error  could  readily  be  allowed 
for  if  required ;  but  in  practice  it  is  not  necessary  to  use  c  at  all, 
inasmuch  as  the  third  set  of  beats  can  be  counted  equally  well 
between  gf  and  c. 

The  principal  objection  to  the  method  in  the  above  form  is 
that  it  presupposes  the  absolute  constancy  of  the  notes,  for 
example,  that  y  is  the  same  whether  it  is  being  sounded  in 
conjunction  with  x  or  in  conjunction  with  z.  This  condition  is 
very  imperfectly  satisfied  by  the  notes  of  a  harmonium. 

In  order  to  apply  the  fundamental  principle  with  success,  it  is 
necessary  to  be  able  to  check  the  accuracy  of  the  interval  which  is 
supposed  to  be  known,  at  the  same  time  that  the  beats  are  being 
counted.  If  the  interval  be  a  major  tone  (9  :  8),  its  exactness  is 
proved  by  the  absence  of  beats  between  the  ninth  component  of 
the  lower  and  the  eighth  of  the  higher  note,  and  a  counting 
of  the  beats  between  the  tenth  component  of  the  lower  and  the 

ninth  of  the  higher  note  completes  the  necessary  data  for  de- 
termining the  absolute  pitch. 

The  equal  temperament  whole  tone  (1'12246)  is  intermediate 
between  the  minor  tone  (llllll)  and  the  major  tone  (1*12500), 
but  lies  much  nearer  to  the  latter.  Regarded  as  a  disturbed 

major  tone,  it  gives  slow  beats,  and  regai-ded  as  a  disturbed 
minor  tone  it  gives  quick  ones.  Both  sets  of  beats  can  be  heard 
at  the  same  time,  and  when  counted  (by  two  observers)  give  the 
means  of  calculating  the  absolute  pitch  of  both  notes.  If  x  and  y 
be  the  frequencies  of  the  two  notes,  a  and  6  the  frequencies  of  the 
slow  and  quick  beats  respectively, 

9a?— 8y  =  a,     9y— 10a:  =  6, 

whence  a:  =  9a  +  86,    y  =  10a  +  96. 

The  application  of  this  method  in  no  way  assumes  the  truth  of 
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the  equal  temperament  whole  tone,  and  in  fact  it  is  advantageous 
to  flatten  the  interval  somewhat,  so  as  to  make  it  lie  more  nearly 
midway  between  the  major  and  the  minor  tone.  In  this  way  the 
rapidity  of  the  quicker  beats  is  diminished,  which  facilitates  the 
counting. 

The  course  of  an  experiment  is  then  as  follows.  The  notes  C 
and  D  are  sounded  together,  and  at  a  given  signal  the  observers 

begin  counting  the  beats  situated  at  about  d"  and  e'  on  the  scale. 
After  the  expiration  of  a  measured  interval  of  time  a  second  signal 
is  given,  and  the  number  of  both  sets  of  beats  is  recorded. 

For  further  details  of  the  method  reference  must  be  made  to 

the  original  memoir,  but  one  example  of  the  results  may  be  given 
here.  The  period  being  10  minutes,  the  number  of  beats  recorded 
were  2392  and  2341,  giving  x  =  6709  as  the  pitch  of  C. 



CHAPTER  IV. 

VIBRATING   SYSTEMS   IN   GENERAL. 

69.  We  have  now  examined  in  some  detail  the  oscillations 

of  a  system  possessed  of  one  degree  of  freedom,  and  the  results, 
at  which  we  have  arrived,  have  a  very  wide  application.  But 
material  systems  enjoy  in  general  more  than  one  degree  of 
freedom.  In  order  to  define  their  configuration  at  any  moment 
several  independent  variable  quantities  must  be  specified,  which, 
by  a  generalization  of  language  originally  employed  for  a  point, 

are  called  the  co-ordinates  of  the  system,  the  number  of  indepen- 
dent co-ordinates  being  the  index  of  freedom.  Strictly  speaking, 

the  displacements  possible  to  a  natural  system  are  infinitely 
various,  and  cannot  be  represented  as  made  up  of  a  finite  number 
of  displacements  of  specified  type.  To  the  elementary  parts  of 
a  solid  body  any  arbitrary  displacements  may  be  given,  subject 
to  conditions  of  continuity.  It  is  only  by  a  process  of  abstraction 
of  the  kind  so  constantly  practised  in  Natural  Philosophy,  that 

solids  are  treated  as  rigid,  fluids  as  incompressible,  and  other  sim- 
plifications introduced  so  that  the  position  of  a  system  comes  to 

depend  on  a  finite  number  of  co-ordinates.  It  is  not,  however, 
our  intention  to  exclude  the  consideration  of  systems  possessing 
infinitely  various  freedom;  on  the  contrary,  some  of  the  most 
interesting  applications  of  the  results  of  this  chapter  will  lie  in 
that  direction.  But  such  systems  are  most  conveniently  conceived 
as  limits  of  others,  whose  freedom  is  of  a  more  restricted  kind. 

We  shall  accordingly  commence  with  a  system,  whose  position 

is  specified  by  a  finite  number  of  independent  co-ordinates  ^,, 

-^2,  V^s*  &c. 

70.  The  main  problem  of  Acoustics  consists  in  the  investi- 
gation of  the  vibrations  of  a  system  about  a  position  of  stable 

equilibrium,  but  it  will  be  convenient  to  commence  with   the 



92 VIBRATING   SYSTEMS   IN   GENERAL. 

[70. 

statical  part  of  the  subject.  By  the  Principle  of  Virtual  Velocities, 

if  we. reckon  the  co-ordinates  -^i,  ̂.j,  Ac.  from  the  configuration 
of  equilibrium,  the  potential  energy  of  any  other  configuration 

mil  be  a  homogeneous  quadratic  function  of  the  co-ordinates, 
provided  that  the  displacement  be  suflBciently  small.  This  quan- 

tity is  called  F,  and  represents  the  work  that  may  be  gained  in 
passing  from  the  actual  to  the  equilibrium  configuration.  We  may 
write 

Since  by  supposition  the  equilibrium  is  thoroughly  stable,  the 
quantities  Cn,  c^,  Cu,  &c.  must  be  such  that  V  is  positive  for  all 
real  values  of  the  co-ordinates. 

71.  If  the  system  be  displaced  from  the  zero  configuration 
by  the  action  of  given  forces,  the  new  configuration  may  be 
found  from  the  Principle  of  Virtual  Velocities.  If  the  work  done 

by  the  given  forces  on  the  hypothetical  displacement  S-^i,  S^„ 
&c.  be 

'^M^^'^H^'^   (1), 
this  expression  must  be  equivalent  to  SF,  so  that  since  S^j,  S-^a, 
&c.  are  independent,  the  new  position  of  equilibrium  is  deter- 

mined by 

Jr=*'.  #.-*-«"^   <=i). 
or  by  (1)  of  §70, 

Cai^i  +  CaaVra -f  Cas^s  +   =^a^   (3), 

where  there  is  no  distinction  in  value  between  Cr%  and  c,^. 

From  these  equations  the  co-ordinates  may  be  determined  in 
terms  of  the  forcea     If  V  be  the  determinant 

Cfl,  Caa,   Caa, 

^31*  ̂ 82*  Caa, 

the  solution  of  (3)  may  be  written 

_        ̂   dV  dV 
(vCai  dCaa 

(4), 

.(5). 
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These  equations  determine  -^i,  -^a,  &c.  uniquely,  since  V  does 
not  vanish,  as  appears  from  the  consideration  that  the  equations 

dV/dy^i  =  0,  &c.  could  otherwise  be  satisfied  by  finite  values  of  the 

co-ordinates,  provided  only  that  the  ratios  were  suitable,  which  is 
contrary  to  the  hypothesis  that  the  system  is  thoroughly  stable  in 
the  zero  configuration. 

72.  If  -^1,  ...  S?i,  ...  and  -^Z,  ...  S?/,  ...  be  two  sets  of  dis- 
placements and  corresponding  forces,  we  have  the  following  re- 

ciprocal relation, 

as  may  be  seen  by  substituting  the  values  of  the  forces,  when  each 
side  of  (1)  takes  the  form, 

Suppose  in  (1)  that  all  the  forces  vanish  except  ̂ j  and  ̂ /; 
then 

^,^;  =  ̂ i>i   (2). 

If  the  forces  ̂ a  and  "Vi  be  of  the  same  kind,  we  may  suppose 
them  equal,  and  we  then  recognise  that  a  force  of  any  type  acting 
alone  produces  a  displacement  of  a  second  type  equal  to  the 
displacement  of  the  first  tjrpe  due  to  the  action  of  an  equal  force 
of  the  second  type.  For  example,  if  A  and  B  be  two  points 

of  a  rod  supported  horizontally  in  any  manner,  the  vertical  de- 
flection at  A,  when  a  weight  W  is  attached  at  B,  is  the  same  as 

the  deflection  at  B,  when  W  is  applied  at  A  \ 

73.  Since  F  is  a  homogeneous  quadratic  function  of  the  co- 
ordinates, 

dV  dV 

^""-ii*-*^*'*   <»• 
or,  if  ̂ 1,  "^j,  &c.  be  the  forces  necessary  to  maintain  the  dis- 

placement represented  by  V^ijV^ai&c* 

2r=^iti  +  *.^»  +   (2). 

If  -^i  +  A-^^i,  -^j  +  A-^/rg,  &c.  represent  another  displacement 

for  which  the  necessary  forces  are'^i  +  AS?i,  '^s  +  AS^jj&c,  the 

>  On  this  sabjeot,  see  Phil.  Mag.,  Dec.,  1874,  and  Maroh,  1875. 
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corresponding  potential  energy  is  given  by 

=  27  +  *i  Ai/ri  +  >P,A^,  +  ... 

SO  that  we  may  write 

2A7=r2^.A^  +  2A*.^4-2A^.A^   (3), 

where  AFis  the  diflTerence  of  the  potential  energies  in  the  two 
cases,  and  we  must   particularly  notice  that   by  the   reciprocal 
relation,  §  72  (1), 

2^.AVr  =  2A*.Vr   (4). 

From  (3)  and  (4)  we  may  deduce  two  important  theorems, 

relating  to  the  value  of  V  for  a  system  subjected  to  given  dis- 
placements, and  to  given  forces  respectively. 

74.  The  first  theorem  is  to  the  effect  that,  if  given  displace- 
ments (not  sufficient  by  themselves  to  determine  the  configuration) 

be  produced  in  a  system  by  forces  of  corresponding  types,  the  re- 
sulting value  of  F  for  the  system  so  displaced,  and  in  equilibrium, 

is  as  small  as  it  can  be  under  the  given  displacement  conditions ; 
and  that  the  value  of  F  for  any  other  configuration  exceeds  this 
by  the  potential  energy  of  the  configuration  which  is  the  difference 
of  the  two.  The  only  difficulty  in  the  above  statement  consists 

in  understanding  what  is  meant  by  *  forces  of  corresponding  types.* 
Suppose,  for  example,  that  the  system  is  a  stretched  string,  of 

which  a  given  point  P  is  to  be  subject  to  an  obligatory  displace- 
ment; the  force  of  corresponding  type  is  here  a  force  applied 

at  the  point  P  itself.  And  generally,  the  forces,  by  which  the 
proposed  displacement  is  to  be  made,  must  be  such  as  would  do 
no  work  on  the  system,  provided  only  that  that  displacement  were 
not  made. 

By  a  suitable  choice  of  co-ordinates,  the  given  displacement 
conditions  may  be  expressed  by  ascribing  given  values  to  the  first 

r  co-ordinates  '^i,  V^a,  •••  '^r,  and  the  conditions  as  to  the  forces 
,  will  then  be  represented  by  making  the  forces  of  the  remaining 

types  S?r+i,  "^r+ai  &c.  vanish.  If  -^  -h  A-^/r  refer  to  any  other  con- 
figuration of  the  system,  and  "V  -h  A*^  be  the  corresponding  forces, 

we  are  to  suppose  that  A-^i,  A-^,,  &c.  as  far  as  A-^^.  all  vanish. 
Thus  for  the  first  r  suffixes  A*^  vanishes,  and  for  the  remaining 
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suffixes  ̂   vanishes.  Accordingly  S^.A*^  is  zero,  and  therefore 
SA^.*^  is  also  zero.     Hence 

2AF=x2A>P.AVr   (1), 

which  proves  that  if  the  given  displacements  be  made  in  any 
other  than  the  prescribed  way,  the  potential  energy  is  increased 
by  the  energy  of  the  diflTerence  of  the  configurations. 

By  means  of  this  theorem  we  may  trace  the  effect  on  V  of  any 
relaxation  in  the  stiffness  of  a  system,  subject  to  given  displacement 

conditions.  For,  if  after  the  alteration  in  stiffness  the  original  equi- 
librium configuration  be  considered,  the  value  of  V  corresponding 

thereto  is  by  supposition  less  than  before ;  and,  as  we  have  just 
seen,  there  will  be  a  still  further  diminution  in  the  value  of  V 

when  the  system  passes  to  equilibrium  under  the  altered  con- 
ditions. Hence  we  conclude  that  a  diminution  in  F  as  a  function 

of  the  co-ordinates  entails  also  a  diminution  in  the  actual  value  of 

V  when  a  system  is  subjected  to  given  displacements.  It  will 
be  understood  that  in  particular  cases  the  diminution  spoken  of 
may  vanish  ̂  

For  example,  if  a  point  P  of  a  bar  clamped  at  both  ends  be 

displaced  laterally  to  a  given  small  amount  by  a  force  there  ap- 
plied, the  potential  energy  of  the  deformation  will  be  diminished 

by  any  relaxation  (however  local)  in  the  stiffness  of  the  bar. 

76.  The  second  theorem  relates  to  a  system  displaced  hy  given 
forceSf  and  asserts  that  in  this  case  the  value  of  V  in  equilibrium 
is  greater  than  it  would  be  in  any  other  configuration  in  which 
the  system  could  be  maintained  at  rest  under  the  given  forces,  by 
the  operation  of  mere  constraints.  We  will  shew  that  the  removal 
of  constraints  increases  the  value  of  F. 

The  co-ordinates  may  be  so  chosen  that  the  conditions  of  con- 
straint are  expressed  by 

^1  =  0,    ̂ ,  =  0,   ^,  =  0   (1). 

We  have  then  to  prove  that  when  S^^+i,  S?,.+„  &c.  are  given,  the 
value  of  F  is  least  when  the  conditions  (1)  hold.  The  second 

configuration  being  denoted  as  before  by  -^^i-fA-^/rj  &c.,  we  see 
that  for  suffixes  up  to  r  inclusive  -^  vanishes,  and  for  higher 
suffixes  AS[^  vanishes.     Hence 

^  See  a  paper  on  General  Theorems  relating  to  Equilibriom  and  Initial  and 
Steady  Motions.    PhiL  Mag.,  March,  1875. 
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and  therefore 
2dF=2A>P.A^   (2), 

shewing  that  the  increase  in  V  due  to  the  removal  of  the  con- 
straints is  equal  to  the  potential  energy  of  the  difference  of  the  two 

configurations. 

76.  We  now  pass  to  the  investigation  of  the  initial  motion  of 

a  system  which  starts  from  rest  under  the  operation  of  given 
impulsea  The  motion  thus  acquired  is  independent  of  any 
potential  energy  which  the  system  may  possess  when  actually 
displaced,  since  by  the  nature  of  impulses  we  have  to  do  only 
with  the  initial  configuration  itself.  The  initial  motion  is  also 

independent  of  any  forces  of  a  finite  kind,  whether  impressed  on 
the  s}«tem  from  without,  or  of  the  nature  of  viscosity. 

If  P,  Q,  -R  be  the  component  impulses,  parallel  to  the  axes,  on 

a  particle  m  whose  rectangular  co-ordinates  are  x,  y,  z,  we  have  by 
D'Alembert's  Principle 

lm(xSx  +  ySy  +  zSz)=^X(PBx  +  Q8j/  +  RSz)   (1), 

where  i,  y,  z  denote  the  velocities  acquired  by  the  particle  in  virtue 

of  the  impulses,  and  Bx,  By,  Bz  correspond  to  any  arbitrary  dis- 
placement of  the  system  which  does  not  violate  the  connection  of 

its  parts.  It  is  required  to  transform  (1)  into  an  equation  expressed 

by  the  independent  generalized  co-ordinates. 

c/ 

For 
 
the  first

  s
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.  J ,  ■v    ( .  dx      .  dv  ,  .  dz\ 

-'^■If*'*-!!/   «• 

where  T,  the  kinetic  energy  of  the  system   is  supposed  to  be 

expressed  as  a  function  of  -^j,  -^j,  &c. 



76.]  IMPULSES.  97 

On  the  second  side, 

=  f.S^^.  +  f,Sf,+   (3), 

The  transformed  equation  is  therefore 

(lR-f')»*'^(^|.-f-)  «
*■  +  •■-»   '*>• 

where  S-^^i,  S-^^,,  &c.  are  now  completely  independent.     Hence  to 
determine  the  motion  we  have 

,-r=fi»      y;  =fa,&c   (5), 

where  fi,  fa,  &c.  may  be  considered  as  the  generalized  components 
of  impulse. 

77.     Since  T  is  a  homogeneous  quadratic  function  of  the  gene- 
ralized co-ordinates,  we  may  take 

whence 

Ci=    ,;    =  ttii-^/r,  +  ai2>|ra  +  aisY^s  +   

^9=     ,-7-    =  Oai-^l  +  a22^a  +  023^3  +   
aya 

(2), 

/ 

where  there  is  no  distinction  in  value  between  Ors  and  a^ 

Again,  by  the  nature  of  T, 

22'='^,-5T  +^'lf  +   =  f.^i  +  f.^.+    (3)- 
The  theory  of  initial  motion  is  closely  analogous  to  that  of  the 

displacement  of  a  system  from  a  configuration  of  stable  equilibrium 
by  steadily  applied  forces.  In  the  present  theory  the  initial  kinetic 
energy  T  bears  to  the  velocities  and  impulses  the  same  relations 

as  in  the  former  V  bears  to  the  displacements  and  forces  respect- 
ively. In  one  respect  the  theory  of  initial  motions  is  the  more 

complete,  inasmuch  as  T  is  exactly,  while  F  is  in  general  only 
approximately,  a  homogeneous  quadratic  function  of  the  variables. 
K.  7 
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If  -^1,  -^2, . . .,  fi»  ̂ 2 .  •  •  •  denote  oae  set  of  velocities  and  impulses 

for  a  system  started  from  rest,  and  -^Z,  yjt^, ...,  f/,  fj', ...  a  second 
set,  we  may  prove,  as  in  §  72,  the  following  reciprocal  relation : 

fi'ti+f.'t.+.-.=fiti'+f«t/+   (4y. 
This  theorem  admits  of  interesting  application  to  fluid  motion. 

It  is  known,  and  will  be  proved  later  in  the  course  of  this  work, 
that  the  motion  of  a  frictionless  incompressible  liquid,  which 
starts  from  rest,  is  of  such  a  kind  that  its  component  velocities 
at  any  point  are  the  corresponding  differential  coeflScients  of  a 

certain  function,  called  the  velocity-potential.  Let  the  fluid  be 
set  in  motion  by  a  prescribed  arbitrary  deformation  of  the  surface 
S  o{  a,  closed  space  described  within  it.  The  resulting  motion  is 
determined  by  the  normal  velocities  of  the  elements  of  8,  which, 
being  shared  by  the  fluid  in  contact  with  them,  are  denoted  by 

du/dn,  if  u  be  the  velocity-potential,  which  interpreted  physically 
denotes  the  impulsive  pressure.  Hence  by  the  theorem,  if  v  be 

the  velocity-potential  of  a  second  motion,  corresponding  to 
another  set  of  arbitrary  surface  velocities  dv/dn, 

lhPn^'lh>   «. 
— an  equation  immediately  following  from  Green's  theorem,  if 
besides  S  there  be  only  fixed  solids  immersed  in  the  fluid.  The 

present  method  enables  us  to  attribute  to  it  a  much  higher  gene- 
rality. For  example,  the  immersed  solids,  instead  of  being  fixed, 

may  be  free,  altogether  or  in  part,  to  take  the  motion  imposed 
upon  them  by  the  fluid  pressures. 

78.  A  particular  case  of  the  general  theorem  is  worthy  of 
special  notice.     In  the  first  motion  let 

yjti^A,    -^2  =  0,      ̂ 3  =  ̂ 4  =  ̂ 5    =0; 
and  in  the  second, 

^/=o,  ̂ 2'=^,  ?;=?;=?/   =0. 
Then  f/  =  f2   (1). 

In  words,  if,  by  means  of  a  suitable  impulse  of  the  correspond- 

ing type,  a  given  arbitrary  velocity  of  one  co-ordinate  be  impressed 

on  a  system,  the  impulse  corresponding  to  a  second  co-ordinate 
necessary  in  order  to  prevent  it  from  changing,  is  the  same  as 

would  be  required  for  the  first  co-ordinate,  if  the  given  velocity 
were  impressed  on  the  second. 

1  Thomaon  and  Tait,  §  318  (/). 
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As  a  simple  example,  take  the  ease  of  two  spheres  A  and  B 
immersed  in  a  liquid,  whose  centres  are  free  to  move  along  certain 
lines.  If  il  be  set  in  motion  with  a  given  velocity,  B  will 
naturally  begin  to  move  also.  The  theorem  asserts  that  the 
impulse  required  to  prevent  the  motion  of  B,  is  the  same  as  if 
the  functions  of  A  and  B  were  exchanged :  and  this  even  though 
there  be  other  rigid  bodies,  (7,  Z>,  &c.,  in  the  fluid,  either  fixed,  or 
free  in  whole  or  in  part. 

The  case  of  electric  currents  mutually  influencing  each  other  by 
induction  is  precisely  similar.  Let  there  be  two  circuits  A  and  B, 
in  the  neighbourhood  of  which  there  may  be  any  number  of  other 
wire  circuits  or  solid  conductors.  If  a  unit  current  be  suddenly 
developed  in  the  circuit  A,  the  electromotive  impulse  induced  in 
B  is  the  same  as  there  would  have  been  in  A,  had  the  current  been 

forcibly  developed  in  B, 

79.  The  motion  of  a  system,  on  which  given  arbitrary  velocities 

are  impressed  by  means  of  the  necessary  impulses  of  the  corre- 
sponding types,  possesses  a  remarkable  property  discovered  by 

Thomson.  The  conditions  are  that  -^i,  -^2,  "^j,  ..."^r  are  given, 
while  fr+i,  fr+2,  •••  vanish.  Let  -^i,  -^-,...^1,  fj,  &c.  correspond  to 
the  actual  motion ;  and 

to  another  motion  satisfying  the  same  velocity  conditions.  For 

each  suffix  either  A-^  or  f  vanishes.  Now  for  the  kinetic  energy 
of  the  supposed  motion, 

2(r+Ar)=(f,  +  Af)(^,  +  A^0  +  ... 

=  2r+fiA^,  +  f,A^2+... 

+  Afx.i^i  +  Af3.i|r,4-...  +  AfiA^i+Af5Ai^,+  .... 
But  by  the  reciprocal  relation  (4)  of  §  77 

of  which  the  former  by  hypothesis  is  zero ;  so  that 

2Ar=AfiA^i  +  Af,A^2-f   (1), 
shewing  that  the  energy  of  the  supposed  motion  exceeds  that  of 
the  actual  motion  by  the  energy  of  that  motion  which  would  have 
to  be  compounded  with  the  latter  to  produce  the  former.  The 
motion  actually  induced  in  the  system  has  thus  less  energy  than 
any  other  satisfying  the  same  velocity  conditions.  In  a  subsequent 
chapter  we  shall  make  use  of  this  property  to  find  a  superior  limit 
to  the  energy  of  a  system  set  in  motion  with  prescribed  velocities. 
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If  any  diminution  be  made  in  the  inertia  of  any  of  the  parts 
of  a  system,  the  motion  corresponding  to  prescribed  velocity 
conditions  will  in  general  undergo  a  change.  The  value  of  T  will 
necessarily  be  less  than  before  ;  for  there  would  be  a  decrease  even 
if  the  motion  remained  unchanged,  and  therefore  a  fortiori  when 
the  motion  is  such  as  to  make  T  an  absolute  minimum.  Con- 

versely any  increase  in  the  inertia  increases  the  initial  value  of  T. 
This  theorem  is  analogous  to  that  of  §  74.  The  analogue  for 

initial  motions  of  the  theorem  of  §  75,  relating  to  the  potential 

energy  of  a  system  displaced  by  given  forces,  is  that  of  Bertrand, 

and  may  be  thus  stated : — If  a  system  start  from  rest  under  the 
operation  of  given  impulses,  the  kinetic  energy  of  the  actual  motion 
exceeds  that  of  any  other  motion  which  the  system  might  have 
been  guided  to  take  with  the  assistance  of  mere  constraints,  by  the 
kinetic  energy  of  the  difference  of  the  motions^ 

[The  theorems  of  Kelvin  and  Bertrand  represent  different 
aspects  of  the  same  truth.  Let  us  suppose  that  the  prescribed 

impulse  is  entirely  of  the  first  type  fi.  Then  T^^fi*^!,  whether 
the  motion  be  free  or  be  subjected  to  any  constraint.  Further, 

under  any  given  circumstances  as  to  consti-aint,  -^i  is  proportional 
to  fi,  and  the  ratio  fi  :  '^i  may  be  regarded  as  the  moment  of 
inertia ;  so  that 

Kelvin's  theorem  asserts  that  the  introduction  of  a  constraint 
can  only  increase  the  value  of  T  when  ̂ ^  is  given.  Hence  whether 

•^1  be  given  or  not,  the  constraint  can  only  increase  the  ratio  of 
27  to  '^^  or  of  fi  to  '^^.  Both  theorems  are  included  in  the 
statement  that  the  moment  of  inertia  is  increased  by  the  intro- 

duction of  a  constraint.] 

80.  We  will  not  dwell  at  any  greater  length  on  the  mechanics 
of  a  system  subject  to  impulses,  but  pass  on  to  investigate 
Lagrange  8  equations  for  continuous  motion.  We  shall  suppose 
that  the  connections  binding  together  the  parts  of  the  system 
are  not  explicit  functions  of  the  time;  such  cases  of  forced 
motion  as  we  shall  have  to  consider  will  be  specially  shewn  to 
be  within  the  scope  of  the  investigation. 

By  D'Alembert  8  Principle  in  combination  with  that  of  Virtual 
Velocities, 

2m  {ithx  +  yhy  4-  zhz)  =  2  {Xix  +  Yhy  +  Zhz)   (1), 

1  Thomson  and  Tait,  §  311.    Phil  Mag.  March,  1875. 
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where  Sx,  Sy,  Sz  denote  a  displacement  of  the  system  of  the  most 
general  kind  possible  without  violating  the  connections  of  its 
parts.  Since  the  displacements  of  the  individual  particles  of 
the  system  are  mutually  related,  Sx,,..  are  not  independent.  The 

object  now  is  to  transform  to  other  variables  -^i,  yjr^,.,.,  which 
shall  be  independent.     We  have 

xix  =  -J-  (xSx)  —  J&c* , 
so  that 

2m  (xSx-\-  yiy  +  Hhz)  —  -ri-  2m  {xtx  4-  yhy  -\-zhz)  —  iT, 

But  (§  76)  we  have  already  found  that 

2m  (i&r  +  yiy  +  zhz)  =  —r-  Byfr^  +  --r- S^j  4- ..., 

while  sr=|^s^,  +  ̂̂ s^,+  ..., 

if  T  be  expressed  as  a  quadratic  function  of  -^i,  -^^Tj,  ...,  whose 
coefficients  are  in  general  functions  of  -^/ri, -^j,....     Also 

d  (dT  ,,  \      d  fdT\   ̂ ,       dT  ̂ ; 

inasmuch  as  -r.  8*^1  —  ̂;n'^i^ 
Accordingly 

+ (ife)-^w,+   (2). 
Thus,  if  the  transformation  of  the  second  side  of  (1)  be 

2(Z8ar+FSy  +  irS«)  =  ̂ ,S^,  +  ̂ ,8^,  +   (3), 

we  have  equations  of  motion  of  the  form 

lf^).^  =  >p   (4). 
dt^dyfr'      dir  ^ 

Since  'VSylr  denotes  the  work  done  on  the  system  during  a 
displacement  8^,  ̂   may  be  regarded  as  the  generalized  com- 

ponent of  force. 
In  the  case  of  a  conservative  system  it  is  convenient  to 

separate  from  '9  those  parts  which  depend  only  on  the  configura- 
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tion  of  the  system.  Thus,  if  V  denote  the  potential  energy,  we 

may  write 

dAdyfrJ      dyfr      dylr           
^^  ̂' 

where  ̂   is  now  limited  to  the  forces  acting  on  the  system  which 
are  not  already  taken  account  of  in  the  term  dVjd^. 

81.  There  is  also  another  group  of  forces  whose  existence 
it  is  often  advantageous  to  recognize  specially,  namely  those 
arising  from  friction  or  viscosity.  If  we  suppose  that  each 
particle  of  the  system  is  retarded  by  forces  proportional  to  its 
component  velocities,  the  effect  will  be  shewn  in  the  fundamental 

equation  (1)  §  80  by  the  addition  to  the  left-hand  member  of 
the  terms 

where  /««,  Ky,  k^  are  coefficients  independent  of  the  velocities, 
but  possibly  dependent  on  the  configuration  of  the  system.  The 

transformation  to  the  independent  co-ordinates  '^i,  '^s,  &c.  is 
effected  in  a  similar  manner  to  that  of 

^111  (xhx  -^ySy  +  z  Bz) 

considered  above  (§  80),  and  gives 

JT  ̂^'  +  rr  ̂ »+   <i>' dYi  dYi 

where  F=\^  {kJ?  +  K^y^  +  /c^«) 

=  iftu^i' +  i6a^,«  +  ...  +  5i,^i^,  +  5«^,ifr,  4-   (2). 
F,  it  will  be  observed,  is  like  T  a  homogeneous  quadratic 

function  of  the  velocities,  positive  for  all  real  values  of  the 
variables.    It  represents  half  the  rate  at  which  energy  is  dissipated. 

The  above  investigation  refers  to  retarding  forces  proportional 
to  the  absolute  velocities ;  but  it  is  equally  important  to  consider 
such  as  depend  on  the  relative  velocities  of  the  parts  of  the 
system,  and  fortunately  this  can  be  done  without  any  increase 
of  complication.  For  example,  if  a  force  act  on  the  particle  x^ 

proportional  to  (x^  —  i^),  there  will  be  at  the  same  moment  an 
equal  and  opposite  force  acting  on  the  particle  x^.  The  additional 
terms  in  the  fundamental  equation  will  be  of  the  form 

which  may  be  written 

««(*!  -  ̂s)  8(a^  -a:j)  =  8^1  rr  {i*« (^1  ~ ^a)*}  +  ••• ' 
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and  so  on  for  any  number  of  pairs  of  mutually  influencing 
particles.  The  only  effect  is  the  addition  of  new  terms  to  F, 
which  still  appears  in  the  form  (2)\  We  shall  see  presently  that 
the  existence  of  the  function  F,  which  may  be  called  the  Dis- 

sipation Function,  implies  certain  relations  among  the  coefficients 
of  the  generalized  equations  of  vibration,  which  carry  with  them 

important  consequences'. 
The  equations  of  motion  may  now  be  written  in  the  form 

d  /dT\     dT     dF     dV     ' 

dt\dyir)      dylr     dyjr      dylr    ^  ̂' 

82.  We  may  now  introduce  the  condition  that  the  motion 

takes  place  in  the  immediate  neighbourhood  of  a  configuration 
of  thoroughly  stable  equilibrium ;  T  and  F  are  then  homogeneous 
quadratic  functions  of  the  velocities  with  coefficients  which  are 
to  be  treated  as  constant,  and  F  is  a  similar  function  of  the 

co-ordinates  themselves,  provided  that  (as  we  suppose  to  be 

the  case)  the  origin  of  each  co-ordinate  is  taken  to  correspond 
with  the  configuration  of  equilibrium.  Moreover  all  three 
functions  are  essentially  positive.  Since  terms  of  the  form  dT/dyjr 
are  of  the  second  order  of  small  quantities,  the  equations  of  motion 

become  linear,  assuming  the  form 

dAd^/  d^^d^       ^  ̂' 
where  under  ̂   are  to  be  included  all  forces  acting  on  the  system 

not  already  provided  for  by  the  differential  coefficients  of  F  and  V. 

The  three  quadratic  functions  will  be  expressed  as  follows : — 

i^  =  i6ii^i'  +  i6«^2*+  ...  +6„t,^,+  ...  \   (2), 

where  the  coefficients  a,  6,  c  are  constants. 

From  equation  (1)  we  may  of  course  fall  back  on  previous 
results  by  supposing  F  and  F,  or  F  and  T,  to  vanish. 

A  third  set  of  theorems  of  interest  in  the  application  to  Elec- 

^  The  differences  referred  to  in  (he  text  may  of  coarse  pass  into  differential 
coefficients  in  the  case  of  a  body  continuonsly  deformed. 

^  The  Dissipation  Function  appears  for  the  first  time,  so  far  as  I  am  aware,  in 
a  paper  on  General  Theorems  relating  to  Vibrations,  published  in  the  Proceedingt 
of  the  Mathematical  Society  for  June,  1873. 
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tricity  may  be  obtained  by  omitting  T  and  F,  while  F  is  retained, 
but  it  is  unnecessary  to  pursue  the  subject  here. 

If  we  substitute  the  values  of  T,  F  and  F,  and  write  D  for  djdt, 
we  obtain  a  system  of  equations  which  may  be  put  into  the  form 

.^21-^1  +  e^'^^  +  e»'^j  +  ...  =  ̂ s .(3). 

where  e^  denotes  the  quadratic  operator 

ert^anD^-^hrgD-JfCn   (4). 

It  must  be  particularly  remarked  that  since 

it  follows  that  ^n^'^^t   (5). 

[The  theory  of  motional  forces,  i.e.  forces  proportional  to  the 
velocities,  has  been  further  developed  in  the  second  edition  of 

Thomson  and  Tait*s  Natural  Philosophy  (1879).  In  the  most 
general  case  the  equations  may  be  written 

iti^)'^^^''^'''^'''^^^^^ 
«+...=>Fil 

d/dT\      dV (6), 

where  br,=^b„,    firs=fiir   (7). 

Of  these  the  terms  with  the  coefficients  6  can  be  derived  from 

the  dissipation  function 

The  terms  in  /8  on  the  other  hand  do  not  represent  dissipation, 
and  are  called  the  gyrostatic  terms. 

If  we  multiply  the  first  of  equations  (6)  by  -^^i,  the  second  by 
'^s,  &c.,  and  then  add,  we  obtain 

^<l^+2F=%ir,  +  ̂ ,^,  +   
dt 

(8). 
In  this  the  first  term  represents  the  rate  at  which  energy  is 

being  stored  in  the  system  ;  2-P'is  the  rate  of  dissipation  ;  and  the 
two  together  account  for  the  work  done  upon  the  system  by  the 
extemfitl  forces.] 
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83.  Before  proceeding  further,  we  may  draw  an  important 
inference  from  the  linearity  of  our  equations.  If  corresponding 

respectively  to  the  two  sets  of  forces  ̂ j,  ̂ j,...,  ̂ Z,  ̂ j', ...  two 
motions  denoted  by  -^i,  "^j, ...,  -^Z,  -^a', ...  be  possible,  then  must 
also  be  possible  the  motion  i^i  +  -^/r/,  i^,  + 1^/, ...  in  conjunction 

with  the  forces  ̂ i  +  ̂ /,  ̂ j  +  ̂a'       Or,  as  a  particular  case, 
when  there  are  no  impressed  forces,  the  superposition  of  any  two 
natural  vibrations  constitutes  also  a  natural  vibration.  This  is  the 

celebrated  principle  of  the  Coexistence  of  Small  Motions,  first 
clearly  enunciated  by  Daniel  Bernoulli.  It  will  be  understood 
that  its  truth  depends  in  general  on  the  justice  of  the  assumption 
that  the  motion  is  so  small  that  its  square  may  be  neglected. 

[Again,  if  a  system  be  under  the  influence  of  constant  forces 

"^i,  &c.,  which  displace  it  into  a  new  position  of  equilibrium,  the 
vibrations  which  may  occur  about  the  new  position  are  the  same 
as  those  which  might  before  have  occurred  about  the  old  position.] 

84.  To  investigate  the  free  vibrations,  we  must  put  ̂ i,  "^j, ... 
equal  to  zero ;  and  we  will  commence  with  a  system  on  which  no 
frictional  forces  act,  for  which  therefore  the  coefficients  e^t ,  &c.  are 

even  functions  of  the  symbol  D,     We  have 

^1^1  +  ̂ n'^s  +  •  •  •  =0  \ 

From  these  equations,  of  which  there  are  as  many  (m)  as  the 
system  possesses  degrees  of  liberty,  let  all  but  one  of  the  variables 
be  eliminated.  The  result,  which  is  of  the  same  form  whichever 

be  the  co-ordinate  retained,  may  be  written 

V^  =  0    ;   (2), 
where  V  denotes  the  determinant 

(3), 

I 

^M>    ̂ aa>    ̂ 2S»  ••» 

^n»    ̂ J2»    ̂ w»  ••• 

and  is  (if  there  be  no  friction)  an  even  function  of  D  of  degree  2//i. 
Let  ±Xi,  IX,, ...,  ±Xtn  be  the  roots  of  V=0  considered  as  an 
equation  in  D,  Then  by  the  theory  of  differential  equations  the 
most  general  value  of  ̂   is 

^  =  il€^>^  +  ̂'e-*><  +  5€^^  +  £'e-^+   (4), 
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where  the  2m  quantities  A,  A\B,  B\  &c.  are  arbitrary  constants. 

This  form  holds  good  for  each  of  the  co-ordinates,  but  the  constants 
in  the  different  expressions  are  not  independent.  In  fact  if  a 

particular  solution  be 

yJTi  =  ili€^»^  ylt2  =  A2^'^,  &c., 

the  ratios  Ai  :  A^  :  A^...   are  completely  determined  by  the 

equations 

e„ili  +  eij^j4-ei8il,4-   =0  ̂  

6jnili  +  «2a^2  +  ̂ »^s+   =0  >   (5), 

where  in  each  of  the  coefficients  such  sls  Cn^Xi  is  substituted  for  D. 

Equations  (5)  are  necessarily  compatible,  by  the  condition  that  Xi 
is  a  root  of  V  =  0.  The  ratios  A^  :A^  :A^ ,..  corresponding  to 

the  root  —X,  are  the  same  as  the  ratios  AixA^'^A^.,,,  but  for 
the  other  pairs  of  roots  Xa,  —  Xa,  &c.  there  are  distinct  systems  of 
ratios. 

86.  The  nature  of  the  system  with  which  we  are  dealing 

imposes  an  important  restriction  on  the  possible  values  of  X.  If  Xj 

were  real,  either  Xi  or  —  Xi  would  be  real  and  positive,  and  we 

should  obtain  a  particular  solution  for  which  the  co-ordinates,  and 
with  them  the  kinetic  energy  denoted  by 

Xi»  [\ckiAi^  + . . .  ai^A  lilj  +  . . . }  €*2^'<, 

increase  without  limit.  Such  a  motion  is  obviously  impossible  for 

a  conservative  system,  whose  whole  energy  can  never  differ  from 
the  sum  of  the  potential  and  kinetic  energies  with  which  it  was 
animated  at  starting.  This  conclusion  is  not  evaded  by  taking  Xi 

negative ;  because  we  are  as  much  at  liberty  to  trace  the  motion 
backwards  as  forwards.  It  is  as  certain  that  the  motion  never  was 

infinite,  as  that  it  never  will  he.  The  same  argument  excludes  the 
possibility  of  a  complex  value  of  X. 

We  infer  that  all  the  values  of  X  are  purely  imaginary,  cor- 

responding to  real  negative  values  of  X'.  Analytically,  the  fact 
that  the  roots  of  V  =  0,  considered  as  an  equation  in  i>,  are 
all  real  and  negative,  must  be  a  consequence  of  the  relations 
subsisting  between  the  coefficients  On,  Oij, ...,  Cn,  Cia, ...  in  virtue  of 
the  fact  that  for  all  real  values  of  the  variables  T  and  V  are 

positive.  The  case  of  two  degrees  of  liberty  will  be  afterwards 
worked  out  in  full. 
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86.  The   form   of  the  solution  may  now  be  advantageously 

changed  by  writing  irii  for  \i,  &c.  (where  i=\/  — 1),  and  taking 
new  arbitrary  constants.     Thus 

>^i  =  Ai  cos  {lilt  —  a)  +A  cos  {nj;  —  /8)  +  Oi  cos  (nj;  —  7)  +  ...  ̂ 

-^a  =  -4a COS (n^t  —  a)  +  ̂ 2 cos {n^  —  /8)  +  CjCos  {nJ;  —  7) -f  ...   ...,(1) 
-^3  =  A^  cos  (riit  —  a)  +  5,  cos  (fi^t  —  ̂ )-¥Ci  cos  {nJL  —  7)  -f . . . 

where  n^,  n^,  &c.  are  the  m  roots  of  the  equation  of  m*^  degree 
in  n'  found  by  writing  —  n*  for  jD'  in  V  =  0.  For  each  value  of  n 
the  ratios  Ai-.A^iA^,.,  are  determinate  and  real. 

This  is  the  complete  solution  of  the  problem  of  the  free 
vibrations  of  a  conservative  system.  We  see  that  the  whole 
motion  may  be  resolved  into  m  normal  harmonic  vibrations  of 

(in  general)  different  periods,  each  of  which  is  entirely  indepen- 
dent of  the  others.  If  the  motion,  depending  on  the  original 

disturbance,  be  such  as  to  reduce  itself  to  one  of  these  (rij) 
we  have 

•^/tj  =  J. J  cos  {rtit  —  a),    -^/ra  =  A^  cos  {n^t  -  a),  &c   (2), 

where  the  ratios  A^:  A^:  A^ ,,.  depend  on  the  constitution  of  the 
system,  and  only  the  absolute  amplitude  and  phase  are  arbitrary. 

The  several  co-ordinates  are  always  in  similar  (or  opposite)  phases 
of  vibration,  and  the  whole  system  is  to  be  found  in  the  configura- 

tion of  equilibrium  at  the  same  moment. 
We  perceive  here  the  mechanical  foundation  of  the  supremacy 

of  harmonic  vibrations.  If  the  motion  be  sufficiently  smcdl,  the 
differential  equations  become  linear  with  constant  coefficients ; 
while  circular  (and  exponential)  functions  are  the  only  ones  which 
retain  their  type  on  differentiation. 

87.  The  m  periods  of  vibration,  determined  by  the  equation 

V  =0,  are  quantities  intrinsic  to  the  system,  and  must  come  out 
the  same  whatever  co-ordinates  may  be  chosen  to  define  the  con- 

figuration. But  there  is  one  system  of  co-ordinates,  which  is 
especially  suitable,  that  namely  in  which  the  normal  t)rpes  of 

vibration  are  defined  by  the  vanishing  of  all  the  co-ordinates  but 

one.  In  the  first  type  the  original  co-ordinates  '^ij'^a*  &c.  have 
given  ratios;  let  the  quantity  fixing  the  absolute  values  be  ̂ 1,  so 

that  in  this  type  each  co-ordinate  is  a  known  multiple  of  ̂ ,.  So 
in  the  second  type  each  co-ordinate  may  be  regarded  as  a  known 
multiple  of  a  second  quantity  ̂ 21  &nd  so  on.     By  a  suitable  deter- 
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minatioQ  of  the  m  quantities  <^,  ̂2,  &c.,  any  configuration  of  the 
system  may  be  represented  as  compounded  of  the  m  configurations 
of  these  types,  and  thus  the  quantities  ̂   themselves  may  be  looked 

upon  as  co-ordinates  defining  the  configuration  of  the  system. 
They  are  called  the  normal  co-ordinates  \ 

When  expressed  in  terms  of  the  normal  co-ordinates,  T  and  V 
are  reduced  to  sums  of  squares ;  for  it  is  easily  seen  that  if  the 
products  also  appeared,  the  resulting  equations  of  vibration  would 

not  be  satisfied  by  putting  any  m  —  1  of  the  co-ordinates  equal  to 
zero,  while  the  remaining  one  was  finite. 

We  might  have  commenced  with  this  transformation,  assuming 
from  Algebra  that  any  two  homogeneous  quadratic  functions  can 
be  reduced  by  linear  transformations  to  sums  of  squares.     Thus 

where  the  coefficients  (in  which  the  double  suffixes  are  no  longer 
required)  are  necessarily  positive. 

Lagrange's  equations  now  become 

ai^+Ci^i  =  0,      Oa^a  +  Ca<^  =  0,  &C   (2), 

of  which  the  solution  is 

4>i  =  A  cos(ni^  — a),     ̂   =  5 cos (^i^^  — /8),  &c   (3), 

where  A^  £...,  a,  13...  are  arbitrary  constants,  and 

7ii'=Ci-^ai,     Wa'  =  C2-r-aj,  &c   (4). 

[The  vibrations  expressed  by  the  various  normal  co-ordinates 
are  completely  independent  of  one  another,  and  the  energy  of  the 
whole  motion  is  the  simple  sum  of  the  parts  corresponding  to  the 
several  normal  vibrations  taken  sepcirately.     In  fact  by  (1) 

r+F=ic,il,«  +  ic^^«  +   (5). 
By  the  nature  of  the  case  the  coefficients  a  are  necessarily 

positive.  But  if  the  equilibrium  be  unstable,  some  of  the 
coefficients  c  may  be  negative.  Corresponding  to  any  negative 
c,  n  becomes  imaginary  and  the  circular  functions  of  the  time  are 
replaced  by  exponentials. 

In  any  motion  proportional  to  e^  the  disturbance  is  equally 
multiplied  in  equal  times,  and  the  degree  of  instability  may  be 
considered  to  be  measured  by  \.    If  there  be  more  than  one 

1  Thomson  and  Tait*B  Natural  Philosophy,  first  edition  1867.  §  337. 
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unstable  mode,  the  relative  importance  is  largely  determined  by 
the  corresponding  values  of  X.     Thus,  if 

in  which  Xi  >  Xa»  then  whatever  may  be  the  finite  ratio  of  A  :  B, 
the  first  term  ultimately  acquires  the  preponderance,  inasmuch  as 

Ae^^^  :B^^^{AIB)e^'^^-^^K 
In  general,  unstable  equilibrium  when  disturbed  infinitesimally 

will  be  departed  from  according  to  that  mode  which  is  most 
unstable,  viz.  for  which  \  is  greatest.  In  a  later  chapter  we  sh^U 
meet  with  interesting  applications  of  this  principle. 

The  reduction  to  normal  co-ordinates  allows  us  readily  to  trace 

what  occurs  when  two  of  the  values  of  n'  become  equal.  It  is 
evident  that  there  is  no  change  of  form.  The  spherical  pendulum 
may  be  referred  to  as  a  simple  example  of  equal  roots.  It  is 
remarkable  that  both  Lagrange  and  Laplace  fell  into  the  error  of 
supposing  that  equality  among  roots  necessarily  implies  terms 
containing  ̂   as  a  factor^  The  analytical  theory  of  the  general 

case  (where  the  co-ordinates  are  not  normal)  has  been  discussed  by 

Somof*  and  by  Routh'.] 

88.     The  interpretation  of  the  equations  T>f  motion  leads  to  a 

theorem  of  considerable  importance,  which  may  be  thus  stated*. 
The  period  of  a  conservative  system  vibrating  in  a  constrained  type 

about  a  position  of  stable  equilibrium  is  stationary'  in  value  when 
the   type   is   normal.     We   might   prove   this   from   the  original 

equations  of  vibi-ation,  but  it  will  be  more  convenient  to  employ 
the  normal  co-ordinates.     The  constraint,  which  may  be  supposed 
to  be  of  such  a  character  as  to  leave  only  one  degree  of  freedom,  is 
represented  by  taking  the  quantities  ̂   in  given  ratios. 

If  we  put 
4>,  =  A,e,  4>^^A,e,kc   (1), 

^  is  a  variable  quantity,  and  Ai,  A^,  &c.  are  given  for  a  given  con- 
straint. 

The  expressions  for  T  and  V  become 

r={iaiili»  +  iM2'  +   }^^ 
V ̂   [^c,A,' +  ̂ cj.^ -\'   }^, 

1  Thomson  and  Tait,  2nd  edition,  §  343  m. 
2  St  Petenb,  Acad.  Scu  Mhn,  i.  1859. 

>  Stability  of  Motion  (Adams  Prize  Essay  for  1877).    See  also,Routh*s  Rigid 
Dynamict,  5th  edition,  1892. 

*  Proeeedingt  of  the  Mathematical  Society,  June,  1873. 
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whence,  if  0  varies  as  cos  pt, 

P  "  a^Ai'-j-a^Aj' +  :..'{' OmAn,'   ^  ̂' 

This  gives  the  period  of  the  vibration  of  the  constrained  type  ; 
and  it  is  evident  that  the  period  is  stationary,  whefn  all  but  one  of 
the  coefficients  Ai.A^,...  vanish,  that  is  to  say,  when  the  type 
coincides  with  one  of  those  natural  to  the  system,  and  no  constraint 
is  needed. 

[In  the  foregoing  statement  the  equilibrium  is  supposed  to  be 
thoroughly  stable,  so  that  all  the  quantities  c  are  positive.  But 

the  theorem  applies  equally  even  though  any  or  all  of  the  c*s  be 
negative.  Only  if  p^  itself  be  negative,  the  period  becomes 
imaginary.  In  this  case  the  stationary  character  attaches  to  the 
coefficients  of  t  in  the  exponential  terms,  quantities  which  measure 
the  degree  of  instability. 

Corresponding  theorems,  of  importance  in  other  branches  of 
science,  may  be  stated  for  systems  such  that  only  T  and  F,  or  only 
Fand  F,  are  sensible  \ 

The  stationary  property  of  the  roots  of  Lagrange's  determinant 
(3)  §  84,  suggests  a  general  method  of  approximating  to  their 
values.     Beginning  with  assumed   rough   approximations  to  the 
ratios  AiiA^iA^   we  may  calculate  a  first  approximation  to 

jp^from 

■^  Clii-A  1   "^  8  ̂̂ ^a3-"-a  "H  •  •  •  "H  UiiAiJL  J  4"  . . . 

With  this  value  of  p*  we  may  recalculate  the  ratios  AiiA^...  from 
any  (m  —  1)  of  equations  (5)  §  84,  then  again  by  application  of  (3) 
determine  an  improved  value  of  jp*,  and  so  on.] 

By  means  of  the  same  theorem  we  may  prove  that  an  increase 
in  the  mass  of  any  part  of  a  vibrating  system  is  attended  by  a 
prolongation  of  all  the  natural  periods,  or  at  any  rate  that  no 
period  can  be  diminished.  Suppose  the  increment  of  mass  to  be 
infinitesimal.  After  the  alteration,  the  types  of  fi:^e  vibration  will 
in  general  be  changed ;  but,  by  a  suitable  constraint,  the  system 
may  be  made  to  retain  any  one  of  the  former  types.  If  this  be 
done,  it  is  certain  that  any  vibration  which  involves  a  motion  of 
the  part  whose  mass  has  been  increased  will  have  its  period 
prolonged.  Only  as  a  particular  case  (as,  for  example,  when  a 
load  is  placed  at  the  node  of  a  vibrating  string)  can  the  period 

1  Brit,  A$$,  Rep.  for  ISSo,  p.  911. 
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remain  unchanged.  The  theorem  now  allows  us  to  assert  that 
the  removal  of  the  constraint,  and  the  consequent  change  of  type, 

can  only  affect  the  period  by  a  quantity  of  the  second  oi*der ;  and 
that  therefore  in  the  limit  the  free  period  cannot  be  less  than 
before  the  change.  By  integration  we  infer  that  a  finite  increase 
of  mass  must  prolong  the  period  of  every  vibration  which  involves 
a  motion  of  the  part  affected,  and  that  in  no  case  can  the  period 
be  diminished ;  but  in  order  to  see  the  correspondence  of  the  two 
sets  of  periods,  it  may  be  necessary  to  suppose  the  alterations 
made  by  steps.  Conversely,  the  effect  of  a  removal  of  part  of 
the  mass  of  a  vibrating  system  must  be  to  shorten  the  periods 
of  all  the  free  vibrations. 

In  like  manner  we  may  prove  that  if  the  system  undergo  such 
a  change  that  the  potential  energy  of  a  given  configuration   is 
diminished,  while  the  kinetic  energy  of  a  given  motion  is  unaltered, 
the  periods  of  the  free  vibrations  are  all  increased,  and  conversely. 
This  proposition  may  sometimes  be  used  for  tracing  the  effects  of 
a   constraint;   for  if  we   suppose   that   the   potential   energy  of 
any  configuration  violating  the  condition  of  constraint  gradually 
increases,   we   shall   approach   a  state   of  things  in   which    the 
condition  is  observed  with  any  desired  degree  of  completeness. 
During  each  step  of  the   process   every  free  vibration  becomes  ] 
(in  general)  more  rapid,  and  a  number  of  the  free  periods  (equal 
to   the  degrees   of   liberty   lost)  become  infinitely  small.     The 

same  practical  result  may  be  reached  without  altering  the   po- 
tential  energy  by  supposing   the   kinetic  energy  of  any  moticm 

violating  the  condition  to  increase  without   limit.     In  this   case 
one  or  more  periods    become    infinitely   large,  but    the    finite 
periods  are  ultimately  the  same  as  those  arrived  at  when  the 

potential   energy  is  increased,  although  in  one  case  the  periods 
have  been  throughout  increasing,  and  in  the  other  diminishing. 
This  example  shews  the  necessity  of  making  the  alterations  by 
steps;   otherwise  we  should  not  understand   the   correspondence 
of  the  two  sets  of  periods.     Further  illustrations  will  be  given 
under  the  head  of  two  degrees  of  freedom. 

By  means  of  the  principle  that  the  value  of  the  free  periods 
is  stationary,  we  may  easily  calculate  corrections  due  to  any 
deviation  in  the  system  from  theoretical  simplicity.  If  we  take 
as  a  hypothetical  type  of  vibration  that  proper  to  the  simple 

system,  the  period  so  found  will  differ  from  the  truth  by  quan- 
tities depending  on  the  squares  of  the  irregularities.     Several 
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examples  of  such   calculations  will   be  given   in   the   course  of 
this  work. 

89.  Another  point  of  importance  relating  to  the  period  of  a 
system  vibrating  in  an  arbitrary  type  remains  to  be  noticed 

It  appears  from  (2)  §  88,  that  the  period  of  the  vibration  cor- 
responding to  any  hypothetical  type  is  included  between  the 

greatest  and  least  of  those  natural  to  the  system.  In  the  case 
of  systems  like  strings  and  plates  which  are  treated  as  capable 
of  continuous  deformation,  there  is  no  least  natural  period; 

but  we  may  still  assert  that  the  period  calculated  from  any  hypo- 
thetical type  cannot  exceed  that  belonging  to  the  gravest  normal 

tjrpe.  When  therefore  the  object  is  to  estimate  the  longest 

proper  period  of  a  system  by  means  of  calculations  founded 
on  an  assumed  type,  we  know  a  priori  that  the  result  will  come 
out  too  small. 

In  the  choice  of  a  hypothetical  type  judgment  must  be 
used,  the  object  being  to  approach  the  truth  as  nearly  as  can 
be  done  without  too  great  a  sacrifice  of  simplicity.  Thus  the 

type  for  a  string  heavily  weighted  at  one  point  might  suitably 
be  taken  from  the  extreme  case  of  an  infinite  load,  when  the 

two  parts  of  the  string  would  be  straight.  As  an  example  of 
a  calculation  of  this  kind,  of  which  the  result  is  known,  we 

will  take  the  case  of  a  uniform  string  of  length  I,  stretched 
with  tension  Ti,  and  inquire  what  the  period  would  be  on 
certain  suppositions  as  to  the  type  of  vibration. 

Taking  the  origin  of  x  at  the  middle  of  the  string,  let  the 
curve  of  vibration  on  the  positive  side  be 

y  =  co8/)f|l-(^)"|      (1), 
and  on  the  negative  side  the  image  of  this  in  the  axis  of  y, 
n  being  not  less  than  unity.  This  form  satisfies  the  condition 

that  y  vanishes  when  a?  =  ±  ̂i.  We  have  now  to  form  the  ex- 
pressions for  T  and  V,  and  it  will  be  sufficient  to  consider  the 

positive  half  of  the  string  only.  Thus,  p  being  the  longitudinal 
density, 
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He^ce  ^.'J."^^>.|   (., 
I{  n=l,  the  string  vibrates  as  if  the  mass  were  concentrated 

in  its  middle  point,  and 

If  n  =  2,  the  form  is  parabolic,  and 

^=  pir- 

The  true  value  of  p*  for  the  gravest  t3rpe  is  — j- ,  so  that 

the  assumption  of  a  parabolic  form  gives  a  period  which  is  too 

small  in  the  ratio  tt  :  VlO  or  '9936  :  1.  The  minimum  of  p^, 
as  given  by  (2),  occurs  when  n  =  J  (\/6  + 1)  =  1*72474,  and  gives 

©«  =  9-8990  5- 

The  period  is  now  too  small  in  the  ratio 

TT  :  \^9W90  =  -99851  :  1. 
It  will  be  seen  that  there  is  considerable  latitude  in  the 

choice  of  a  type,  even  the  violent  supposition  that  the  string 
vibrates  as  two  straight  pieces  giving  a  period  less  than  ten 
per  cent,  in  error.  And  whatever  type  we  choose  to  take,  the 
period  calculated  from  it  cannot  be  greater  than  the  truth. 

[In  the  above  applications  it  is  assumed  that  there  are  no 
unstable  modes.  When  unstable  modes  exist,  the  statement  is 

that  a  constrained  mode  if  stable  possesses  a  frequency  of  vibra- 
tion less  than  that  of  the  highest  normal  mode,  and  if  unstable 

has  a  degree  of  instability  less  than  that  of  the  most  unstable 
normal  mode.] 

90.  The  rigorous  determination  of  the  periods  and  types  of 
vibration  of  a  given  system  is  usually  a  matter  of  great  difficulty, 
arising  from,  the  fact  that  the  functions  necessary  to  express  the 

modes  of  vibration  of  most  continuous  bodies  are  not  as  yet  recog- 
nised in  analysis.  It  is  therefore  o£ben  necessary  to  fall  back  on 

methods  of  approximation,  referring  the  proposed  system  to  some 
other  of  a  character  more  amenable  to  analysis,  and  calculating 

corrections  depending  on  the  supposition  that  the  differeiice  be- 
tween the  two  systems  is  small.     The  problem  of  approximately 
R.  8 
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simple  systems  is  thus  one  of  great  importance,  more  especially 

as  it  is  impossible  in  pi-actice  actually  to  realise  the  simple  forms 
ftl)OUt  which  we  can  most  easily  reason. 

Let  us  suppose  then  that  the  vibrations  of  a  simple  system  are 
thoroughly  known,  and  that  it  is  required  to  investigate  those 
of  a  system  derived  from  it  by  introducing  small  variations  in 

the  mechanical  functions.  If  0i,  0,,  &c.  be  the  normal  co-ordi- 
nates of  the  original  system, 

and  for  the  varied  system,  referred  to  the  same  co-ordinates, 
which  are  now  only  approximately  normal, 

F+Sr=i  (Cx  +  SCn)  </>i»-h ...  +  SCi,</h<N 
in  which  Son,  Set,,,  Scu,  Scj,,  &c.  are  to  be  regarded  as  small 
quantitiea  In  certain  cases  new  co-ordinates  may  appear,  but 
if  so  their  coeflScients  must  be  small.  From  (1)  we  obtain  for  the 
Lagrangian  equations  of  motion, 

(oi  +  Sou  J5*  +  Ci  +  Scu)  <^  +  (Soi^Ifi  -f  Scij)  <f>2  ^ 
+  (Sa,82)«4-Sc,s)0,4- ...  =0   (2). 

■""1   (1), 

"i"  •  • .  / 

-h(Safl2)^  +  &a)<^8  +  ...  =0 

In  the  original  system  the  fundamental  types  of  vibration 

are  those  which  correspond  to  the  variation  of  but  a  single  co- 
ordinate at  a  time.  Let  us  fix  our  attention  on  one  of  them, 

involving  say  a  variation  of  0^,  while  all  the  remaining  co- 
ordinates vanish.  The  change  in  the  system  will  in  general 

entail  an  alteration  in  the  fundamental  or  normal  types;  but 
under  the  circumstances  contemplated  the  alteration  is  small. 
The  new  normal  type  is  expressed  by  the  sjmchronous  variation 

of  the  other  co-ordinates  in  addition  to  0r ;  but  the  ratio  of  any 
other  <f>,  to  <f>r  is  small.  When  these  ratios  are  known,  the  normal 
mode  of  the  altered  system  will  be  determined. 

Since  the  whole  motion  is  simple  harmonic,  we  may  suppose 

that  each  co-ordinate  varies  as  eosj^r^,  and  substitute  in  the 

differential  equations  —pr^  for  L^.  In  the  s^^  equation  <f>g  occurs 
with  the  finite  coefficient 

—  ttfPr^  —  ha^Pr  +  c,  +  8c«. 
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The  coefficient  of  ̂ ^  is 

The  other  terms  are  to  be  neglected  in  a  first  approximation, 

since  both  the  co-ordinate  (relatively  to  0^)  &nd  its  coefficient  are 
small  quantities     Hence 

<^.:<^,  =  -.«^---:Prg^   (3). 
Now  —  a,p,*  +  c,  =  0, 

-"""fc"      i"--*"^^   <*)• 
the  required  result. 

If  the  kinetic  energy  alone  undergo  variation, 

^,:^^=_P!!_«^   (5). 

The  corrected  value  of  the  period  is  determined  by  the  rth 
equation  of  (2),  not  hitherto  used.    We  may  write  it, 

Substituting  for  ̂ ,  :  ̂ ^  from  (4),  we  get 

^•'        Or  +  fiOrr  dfi^ip^-p*)   
The  first  term  gives  the  value  of  pr^  calculated  without  allow- 

ance for  the  change  of  type,  and  is  sufficient,  as  we  have  already 
proved,  when  the  square  of  the  alteration  in  the  system  may 
be  neglected.  The  terms  included  under  the  symbol  %  in 
which  the  summation  extends  to  all  values  of  a  other  than  r, 

give  the  correction  due  to  the  change  of  type  and  are  of  the 
second  order.  Since  a«  and  Or  are  positive,  the  sign  of  any  term 

depends  upon  that  o{  pi^—pr*.  li  p^>pr*,  that  is,  if  the  mode 
s  be  more  acute  than  the  mode  r,  the  correction  is  negative, 
and  makes  the  calculated  note  graver  than  before;  but  if  the 
mode  8  be  the  graver,  the  correction  raises  the  note.  If  r  refer 
to  the  gravest  mode  of  the  system,  the  whole  correction  is 
negative ;  and  if  r  refer  to  the  acutest  mode,  the  whole  correction 
is  positive,  as  we  have  already  seen  by  another  method. 

91.  As  an  example  of  the  use  of  these  formulae,  we  may 
take  the  case  of  a  stretched  string,  whose  longitudinal  density  p 
is  not  quite  constant.     If  x  be  measured  from  one  end,  and  y 
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be  the  transverse  displacement,  the  configuration  at  any  time  t 
will  be  expressed  by 

.     .    TTX       ,         27rx      ,     .    Ztrx  ,, . 

y  =  </>i8in  ̂    -h<^sin— ̂     -h<^8  8in-|-  +   (1), 

I  being  the  length  of  the  string.  <f>^,  02,...  are  the  normal 

co-ordinates  for  /»  =  constant,  and  though  here  p  is  not  strictly 
constant,  the  configuration  of  the  system  may  still  be  expressed 

by  means  of  the  same  quantities.  Since  the  potential  energy 

of  any  configuration  is  the  same  as  if  p  =  constant,  SF=  0.  For 
the  kinetic  energy  we  have 

T  +  hT  =  \\   pfi^ism -^-h^asm -,    +...jda? 

t  ;  •  r^      •  o'wa?  ,        1  ;  •   /'      •  ̂ 2irx  , 
=  J</>i    I    psin'-^   aa7  +  i4>a'  I   psm'-^-   cw?4-... y  0  ^  .'0  ^ 

;    :      [^        .     TTX    .      27rX   , 
4-9i9a  I   psm-y-sm  — y    cto4- .... 

If  p  were  constant,  the  products  of  the  velocities  would 

disappear,  since  ̂ ,  0„  &c.  are,  on  that  supposition,  the  normal 

co-ordinates.  As  it  is,  the  integral  coefficients,  though  not  actually 
evanescent,  are  small  quantities.  Let  p  =  Po  +  ̂P  >  then  in  our 
previous  notation 

Or  =  i  lpo>      ̂ Orr  =   /     Sp  siu^  — y-   dx,     SOrg  =  I     Sp  siu      ,  -  siu  -  .-    dx, Jo.*'  Jo  ^  ^ 

Thus  the  type  of  vibration  is  expressed  by 

or,  since  pr^  :  pt^  =  r^  :  $-, 

r*      f'2Sp   .    rvx   .    sttx  ,  ,.. 

0.  :  '^'  =  ̂ ^j;/^  «>«»-;    «»°— rf^   (2). 
Let  us  apply  this  result  to  calculate  the  displacement  of  the 

nodal  point  of  the  second  mode  (r  =  2),  which  would  be  in  the 
middle,  if  the  string  were  uniform.  In  the  neighbourhood  of 

this  point,  if  x  =  ̂ l  +  Sx,  the  approximate  value  of  y  is 
.    TT  ,    .     .    27r  .    Stt 

y  =  <^ism2 +<^sm  Y  +  <^,8m  g  +••• 

^    (tt  .         TT      27r  2Tr  ,        1 
ox  <j  <t>i  COH  -  -j-    y  92C0S-^  -h  ...  h 

TT 

=  01-08  +  05-  •••  +7  Sir  {-205  +  204+  ...}. 
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Hence  when  y  =  0, 

&^=2;^J*^"*»'^*»"-J   ^^^ 
approximately,  where 

To  shew  the  application  of  these  formulae,  we  may  suppose 
the  irregularity  to  consist  in  a  small  load  of  mass  po\  situated 

at  a?  =  ii,  though  the  result  might  be  obtained  much  more  easily 
directly.     We  have 

.   _    2\    f    2^    __2   2  2_  ) 

7rV2tP-4     3^-4     58-4"*"  7»-4'*"  
 j' 

from  which  the  value  of  Sx  may  be  calculated  by  approximation. 
The  real  value  of  Bx  is,  however,  very  simple.  The  series  within 
brackets  may  be  written 

-f +3-5-7  +  9  +  n-*"j' 
which  is  equal  to 

ol  +  a?* 
The  value  of  the  definite  integral  is 

TT  -T-  4  sm  T  , 
4 

and  thus  oa?=   -.  .  ̂ -  =  —  75, 
7rv2       4  2 

as  may  also  be  readily  proved  by  equating  the  periods  of  vibra- 
tion of  the  two  parts  of  the  string,  that  of  the  loaded  part  being 

calculated  approximately  on  the  assumption  of  unchanged  type. 
As  an  example  of  the  formula  (6)  §  90  for  the  period,  we 

may  take  the  case  of  a  string  carrying  a  small  load  p^  at  its 
middle  point.     We  have 

ar  =  ̂lpo»     Sorr  = /^o^  sin' -g- ,     Sor,  =  p©^  siu -g- sin -g- , 

and  thus,  if  P^  be  the  value  corresponding  to  \  =  0,  we  get  when 
r  is  even,  pr  =  Pr,  and  when  r  is  odd, 

-
/
 

'-•-'■'•{uwr'^i^v}   «■ 
1  Todhunter's  Int.  Cale,  %  255. 
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where  the  summation  is  to  be  extended  to  all  the  odd  values 

of  8  other  than  r.    If  r  =  1, 

p,«  =  P,«|l- 
2X     4\»   ̂      4     VI 

Now  22-T^  =  2-.-2    ̂  ««-l        «-l        «  +  l' 

in  which  the  values  of  «  are  3,  5,  7,  9....     Accordingly 

«»-l     4' 

and  p..  =  p,.|i_^  +  ̂ V   I   (6), 
giving  the  pitch  of  the  gravest  tone  accurately  as  far  as  the 
square  of  the  ratio  X  :  L 

In  the  general  case  the  value  of  pr^,  correct  as  far  as  the  first 
order  in  Sp,  will  be 

^.=P,{i-^}.i.,|i-l0^.-4...(,, 
92.  The  theory  of  vibrations  throws  great  light  on  expansions 

of  arbitrary  functions  in  series  of  other  fiinctioDS  of  specified 
types.  The  best  known  example  of  such  expansions  is  that 
generally  called  after  Fourier,  in  which  an  arbitrary  periodic 
function  is  resolved  into  a  series  of  harmonics,  whose  periods 
are  submultiples  of  that  of  the  given  function.  It  is  well  known 
that  the  diflSculty  of  the  question  is  confined  to  the  proof  of  the 
possibility  of  the  expansion  ;  if  this  be  assumed,  the  determination 
of  the  coeflScients  is  easy  enough.  What  I  wish  now  to  draw 
attention  to  is,  that  in  this,  and  an  immense  variety  of  similar 

cases,  the  possibility  of  the  expansion  may  be  inferred  fi:*om 
physical  considerations. 

To  fix  our  ideas,  let  us  consider  the  small  vibrations  of  a 

imiform  string  stretched  between  fixed  points.  We  know  from 
the  general  theory  that  the  whole  motion,  whatever  it  may 
be,  can  be  analysed  into  a  series  of  component  motions,  each 
represented  by  a  harmonic  function  of  the  time,  and  capable 
of  existing  by  itself.  If  we  can  discover  these  normal  types, 
we  shall  be  in  a  position  to  represent  the  most  general  vibration 
possible  by  combining  them,  assigning  to  each  an  arbitrary 
amplitude  and  phase. 
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Assuming  that  a  motion  is  harmonic  with   respect   to  time, 
we  get  to  determine  the  type  an  equation  of  the  form 

whence  it  appears  that  the  normal  functions  are 

.    irx  .    ̂ irx  .    Sirx    « 

y  =  8m-y,      y  =  8m—j-,     y  =  sm-j-,&c. 

We  infer  that  the  most  general  position  which  the  string  can 
assume  is  capable  of  representation  by  a  series  of  the  form 

J     .    wa?  .     ,     .    2'rrx       .     .    ̂ irx 
Ai  sm  -y-  +  ila sm  ~^—  +  iS,  sm  -v— 

which  is  a  particular  case  of  Fourier's  theorem.    There   would 
be  no  difficulty  in  proving  the  theorem  in  its  most  general  form. 

So  feu:  the  string  has  been  supposed  uniform.  But  we  have 
only  to  introduce  a  variable  density,  or  even  a  single  load  at 

any  point  of  the  string,  in  order  to  alter  completely  the  ex- 
pansion whose  possibility  may  be  inferred  from  the  dynamical 

theory.  It  is  unnecessary  to  dwell  here  on  this  subject,  as 
we  shall  have  further  examples  in  the  chapters  on  the  vibrations 
of  particular  systems,  such  as  bars,  membranes,  and  confined 
masses  of  air. 

92  a.  In  §  88  we  have  a  formula  for  the  frequency  of  vibration 
applicable  when  by  the  imposition  of  given  constraints  the  original 
system  is  left  with  only  one  degree  of  freedom.  It  is  of  interest 
to  trace  also  the  effect  of  less  complete  constraints,  such  as  may 

be  expressed  by  linear  relations  among  the  normal  co-ordinates  of 
number  less  by  at  least  two  than  that  of  the  (original)  degrees  of 
freedom.     Thus  we  may  suppose  that 

S^i<Ai  +  S^t.<^+5's<A.  +  ...  =  0  I    (1). 
hi<^  +  Aj<^  -h  Aa^s  -f- . . .  =  0 

If  the  number  of  equations  (r)  fall  short  of  the  number  of  the 
degrees  of  freedom  by  unity,  the  ratios  0i:^:09...  are  fully 
determined,  and  the  case  is  that  of  but  one  outstanding  degree  of 
freedom  discussed  in  §  88. 

This  problem  may  be  treated  in  more  than  one  way,  but  the 
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most  instructive  procedure  is  to  trace  the  effect  of  additions  to  T 
and  V.     We  will  suppose  that  equations  (1)  §  87  are  altered  to 

r=K<^i'  +  W»"  +  ---+i«(/i<^i  •+•/«*«  + •••y   (2), 

and  that  -P,  not  previously  existent,  is  now 

J^=i)8(/,^i+/s<^,+  . ..)».:...;   (4). 
The  connection  with  the  proposed  problem  will  be  understood 

by  supposing  for  instance  that  a  =  0,  y8  =  0,  while  7  =  x .  By  (3) 
the  potential  energy  of  any  displacement  violating  the  condition 

/i*i+/20,+  ...=O    (5) 
is  then  infinite,  and  this  is  tantamount  to  the  imposition  of  the 
constraint  represented  by  (5). 

Lagrange's  equations  with  \  written  for  D  now  become 
....(6). 

If  we  multiply  the  first  of  these  by/i/(aiV4-  Cj),  the  second  by 

fij(<h^^  +  Cj)*  ̂ ^^  s^  ̂ ^»  ̂ ^^  ̂ d  the  results  together,  the  factor 
(/i^+/202  +  *'* )  ̂^1  divide  out,  and  the  determinant  takes  the 
form 

^'^  +  .#    +   +  ..vAv-rT  =  0   (7). 
If  any  one  of  the  quantities  a,  )8,  7  become  infinite  while  the 

others  remain  finite,  the  effect  is  equivalent  to  the  imposition  of  the 
constraint  (5),  and  the  result  may  be  written 

2/V(a>-*  +  c)  =  0   (8V. 

When  multiplied  out  this  equation  is  of  degree  (m  —  1)  in  V,  one 
degree  of  freedom  having  been  lost. 

If  we  put  )8  =  0,  (7)  is  an  equation  of  the  mth  degree  in  V,  and 
the  coefiBcients  a,  7  enter  in  the  same  way  as  do  Oi,  Ci;  a,,  Cj;  &c. 

In  order  to  refer  more  directly  to  the  case  of  vibrations  about 

stable  equilibrium,  we  will  write  p*  for  —  V.  The  values  of  pr 
belonging  to  the  unaltered  system,  viz.  m,',  n^^...,  are  given  as 
before  by 

Ci  — aiWi'  =  0,        Cj  — 02^2^  =  0,  &c.,   (9); 
and  we  will  also  write 

y-ap'^O   (10), 

1  Booth's  Rigid  Dynamics,  5th  edition,  1892,  §  67. 
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where  i/*  relates  to  the  supposed  additions  to  T  and  V  considered 
as  belonging  to  an  independent  vibrator.  Let  the  order  of  magni- 

tude of  these  quantities  be 

Wi',  ?laS   V,  »^,  fh+i   W,n*   (11). 
We  shall  see  that  there  is  a  root  of  (7)  between  each  consecutive 
pair  of  the  quantities  (11). 

Our  equation  may  be  written 

/i'(7-ap»)(c-a,p«)(c-a,p«)   

+/i'(7-ap')(ci~a^)(c,-a,p»)   
+   

-f  (Ci-a,p«)(c-a,p«)   =  0   (12). 

When  p"  coincides  with  any  of  the  quantities  (11),  all  but  one 
of  the  terms  in  (12)  vanish,  and  the  sign  of  the  expression  is  the 

same  as  that  of  the  term  which  remains  over.  When  p'  <  Wi',  all 
the  terms  are  positive,  so  that  there  is  no  root  less  than  n^. 

When  ̂   =  n,^  the  expression  (12)  reduces  to  the  positive  quantity 

/i*  (7  -  awi*)  (Cs  -  «iWi')  {Cz  -  asw,«)   

When  p^  rises  to  n^,  (12)  becomes 

/a'  (7  -  aO  (Ci  -  Oi^aO  (Cj  -  Oj^ij')   ; 

and  this  is  negative,  since  the  factor  (c^  —  (h^)  is  now  negative. 

Hence  there  is  a  root  of  (12)  between  n,'  and  nf.  When  J3'=  w,^, 
the  expression  is  again  positive,  and  thus  there  is  a  root  between 

n,*  and  n^.  This  argument  may  be  continued,  and  it  proves  that 
there  is  a  root  of  (12)  between  any  consecutive  two  of  the  (m-|- 1) 
quantities  (11).  The  m  roots  of  (12)  are  now  accounted  for,  and 
there  is  none  greater  than  n„^.  If  we  compare  the  values  of  the 
roots  before  and  after  the  change,  we  see  that  the  eflFect  is  to 

cause  a  movement  which  is  in  every  case  towards  i^.^  Considered 
absolutely  the  movement  is  in  one  direction  for  those  roots  that 
are  greater  than  ir  and  in  the  opposite  direction  for  those  that 

are  less  than  i;*.  Accordingly  the  interval  from  rir*  to  rir+i',  in 
which  v^  lies,  contains  after  the  change  two  roots,  one  on  either 
side  of  v'. 

If  I/*  be  less  than  any  of  the  quantities  n',  as  happens  when 

7  =  0,  one  root  lies  between  p*  and  Wi*,  one  between  Wi'^  and  n,*,  and 
so  on.  Thus  every  root  is  depressed.  On  the  other  hand  if 

^  >  ̂ ^  every  root  is  increased.     This  happens  if  a  =  0.     (§  88.) 

^  It  will  be  understood  that  in  particular  cases  the  movement  may  vanish. 
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The  results  now  arrived  at  are  of  course  independent  of  the 

special  machinery  of  normal  co-ordinates  used  in  the  investigation. 
If  to  any  part  of  a  system  {ni\  n^   )  be  attached  a  vibrator 
(y)  having  a  aingle  degree  of  freedom,  the  eflFect  is  to  displace  all 

the  quantities  Wj*, ...  in  the  direction  of  i/".  Let  us  now  suppose 
that  a  second  change  is  made  in  the  vibrator  whereby  a  becomes 

a  4- a',  and  7  becomes  7  +  7'.  Every  root  of  the  determinantal 
equation  moves  towards  j/'',  where  7'  — aV'  =  0.  If  we  suppose 
that  V*  =  1/*,  the  movements  are  in  all  cases  in  the  same  directions 
as  before.  Going  back  now  to  the  original  system,  and  supposing 
that  a,  7  grow  from  zero  to  their  actual  values  in  such  a  manner 
that  i^  remains  constant,  we  see  that  during  this  process  the  roots 
move  without  regression  in  the  direction  of  closer  agreement 

with  v*. 

As  a  and  7  become  infinite,  one  root  of  (12)  moves  to  coinci- 

dence with  1/",  while  the  remaining  (m  —  1)  roots,  corresponding  to 
the  constrained  system,  are  given  by 

2/V(c-ap')  =  0    (13), 

and  are  independent  of  the  value  of  i/*. 
Particular  cases  are  obtained  by  supposing  either  i/*  =  0,  or 

!/>  =  X .  Whether  the  constraint  is  effected  by  making  infinite 
the  kinetic  energy  of  any  motion,  or  the  potential  energy  of 
any  displacement,  which  violates  it,  makes  no  difference  to  the 
vibrations  which  remain.  In  the  first  case  one  vibration  becomes 

infinitely  slow,  and  in  the  second  case  one  becomes  infinitely  quick. 

However  the  constraint  be  arrived  at,  the  (m  —  1)  frequencies  of 

vibration  of  the  constrained  system  separate^  the  m  frequencies 
of  the  original  system. 

Any  number  of  examples  of  this  theorem  may  be  invented 
without  diflSculty.  Consider  the  case  of  a  uniform  stretched 
string,  held  at  both  ends  and  vibrating  transversely.  This  is  the 
original  system.  Now  introduce  a  constraint  by  holding  at  rest  a 
point  which  divides  the  length  in  the  proportion  (say)  of  3  :  2. 
The  two  parts  vibrate  independently,  and  the  frequencies  for  each 
part  form  an  arithmetical  progression.  If  the  frequencies  proper 
to  the  undivided  string  be  1,  2,  3,  4   ;  those  for  the  parts  are 

^  But  in  particular  oases  the  "  separation  *'  may  vanish.  The  theorem  in  the 
text  was  proved  for  two  degrees  of  freedom  in  the  first  edition  of  this  work.  In 
its  generality  it  appears  to  be  due  to  Bouth. 
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f  (1,  2,  3, ...)  and  f  (1,  2,  3, ...).     The  beginning  of  each  series  is 
shewn  in  the  accompanying  scheme ; 

123456789       10       11       12 

H    ""  10 

111 

I    IJ  3J      »■  5         63 

I  2J  5  -^  7i  10  -^ 

and  it  will  be  seen  that  between  any  consecutive  numbers  in 
the  first  row  there  is  a  number  to  be  found  either  in  the  second 
or  in  the  third  row.  In  the  case  of  5  and  10  we  have  an  extreme 

condition  of  things ;  but  the  slightest  displacement  of  the  point 
at  which  the  constraint  is  applied  will  displace  one  of  the  fives, 
tens  &c.  to  the  lefb  and  the  other  to  the  right. 

The  coincidences  may  be  avoided  by  dividing  the  string 
incommensurably.  Thus»  if  x  be  an  incommensurable  number 

less  than  unity,  one  of  the  series  of  quantities  m/x,  m/(l  —a?),  where 
m  is  a  whole  number,  can  be  found  which  shall  lie  between  any 
given  consecutive  integers,  and  but  one  such  quantity  can  be  found. 

Again,  let  us  suppose  that  a  system  is  referred  to  co-ordinates 
which  are  not  normal  (§  84),  and  let  the  constraint  represented  by 

-^1  =  0  be  imposed.  The  determinant  of  the  altered  system  is 
formed  from  that  of  the  original  system  by  erasing  the  first  row 
and  the  first  column.  It  may  be  called  V^,  and  from  this  again 
may  be  formed  in  like  manner  a  new  determinant  Vj,  and  so  on. 

These  determinants  form  a  series  of  functions  of  p^,  regularly 
decreasing  in  degree;  and  we  conclude  that  the  roots  of  each 
separate   the   roots   of   that   immediately   preceding  ̂  

It  may  be  remarked  that  while  for  the  sake  of  simplicity  of 
statement  we  have  supposed  that  the  equilibrium  of  the  original 
system  was  thoroughly  stable,  as  also  that  of  the  vibration  brought 
into  connection  therewith,  these  restrictions  may  easily  be 
dispensed  with.     In  any  case  the  series  of  positive  and  negative 

quantities,  ni*,  n,*,   and  i/*,  may  be  arranged  in  algebraic  order, 
and  the  effect  of  the  vibrator  is  to  cause  a  movement  of  every 

value  of/)*  in  the  direction  of  i/*. 
In  order  to  extend  the  above  theory  we  will  now  suppose  that 

the  addition  to  T  is 

i^/(fi4>i  +/2^a  +•••)'  +  H  (9i4>i  +  .92</>a  +...)' 

■^ioLH{lh4>^  +  h4,+  ...y+   (14) 

1  Eouth*s  Rigid  Dynamics,  5th  edition.  Part  ii.  §  5S. 
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and  the  addition  to  V 

I£  W6  set 

a/K^  +  rif^F'.  a,X^  +  yg=G',   (16), 

and  so  on,  Lagrange's  equations  become 

(a,X'  +  c,)  ̂   +  Fy\  (/,^  +/j<^  +  . . .) 

+  O'gi(gi<l>i+9i<f>i+"-)  +  S\0h^  +  h^  + ...)  +  ...  =  0...(17), 

(o^*  +  c,)  ̂   +  F'f,  {fi<f>,  +f^^  +  ...) 

+  0'gt{gi^+g^+  •••)  +  H'ht{K4>i  +  h^t  +  ...)  +  —  =  o...(i8), 
and  so  on,  the  number  of  equations  being  equal  to  the  number 

(m)  of  co-ordinates  ^,  ̂ , ....  The  number  of  additions  (r),  corre- 
sponding to  the  letters y,  g,h,...,\s  supposed  to  be  less  than  m. 

From  the  above  m  equations  let  r  new  ones  be  formed,  as 

follows.  For  the  first  multiply  (17)  by  //(oiX"  +  c,),  (18)  by 
/^/(OjX' +  c,),  and  so  on,  and  add  the  results  together.  For  the 
second  proceed  in  the  same  manner,  using  the  multipliers 

^i/(aiX' +  c,),  gt/ic^^^  +  c,),  &C.  In  like  manner  for  the  third 
equation  use  h  instead  of  g,  and  so  on.  In  this  way  we  obtain  r 
equations  which  may  be  written 

P'  (Ml  +/A  +  •  •  •)  IV^'  +  ̂i"  +  P^  +  -f**  +. .  -1 
+  G'  igiih  +g,4>t+-)  {^i<?i  +  ̂ A  +  ■-} 
+  H'  (h,<tf,  +  lii^  +  ...){F,Hi  +  F^^+  ...}  +    =0...(19), 

+  0'ig,<lH+g^  +  ...)  {1IG'  +  Gr'+  G,'+  ...) 

+  ̂'(A,0,  +  A,(^,-l- ...)  {G^H,  +  G^H,  +  ...)  +   =0...(20), 
and  so  on,  where  for  brevity 

Ci'  =  <7iV(«i^*  +  <h),  G^  =  (///(a,X'  +  c),  &c.  I   (21 ). 

^iG,=/iy./(o,V  +  c),  &c.  ) 

The  determinantal  equation,  of  the  rth  order,  is  thus 

1/J"  +  2F»,  1FG,  tFH,... 

^FG,  1/G'  +  10\  IGH, 

IFH,  1GH,1/H'  +  1H*,... 

=  0, 

.(22). 
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If,  for  example,  there  be  two  additions  to  T  and  V  of  the  kind 
prescribed,  the  equation  is 

p^  +  ̂,  +-^  +2i».SG»-{2/'G}»  =  0     (23). 
and  herein 

^Tt{F,Q,^F,G,y   ^2-*). 

Equation  (23)  is  in  general  of  the  mth  degree  in  X',  and 
determines  the  frequencies  of  vibration.  In  the  extreme  case 

where  F'  and  0'  are  made  infinite,  the  system  is  subject  to  the two  constraints 

S^i<^i  +  5'i<^2  +  ...=0J 

and  the  equation  ̂   giving  the  (771  —  2)  outstanding  roots  is 

.(25), 

+ 

=  0 

.(26). 
(OjV  +  Ci)  (a,X«  4- Cj)     (aiX^*  +  Ci)  (a,X»  +  c,) 

In  general  if  the  system  be  subject  to  the  r  constraints  (1),  the 
determinantal  equation  is 

'S.FF,     IFO,    IFH,... 

IFH,   XGH,    IHH,.., 
(27). 

If  r  be  leas  than  m,  this  determinant  can  be  resolved'*  into  a 

sum  of  squares  of  determinants  of  the  same  order  (r).  Thus  if  there 
be  three  constraints,  the  first  of  these  squares  is 

i\    jPa    /;  » 
G,     G,     (?,       (28), 

Hi    if  a    H^ 

and  the  others  are  to  be  found  by  including  every  combination  of 
the  m  sufiBxes  taken  three  together.  To  fall  back  upon  the  original 
notation  we  have  merely  in  (28)  to  replace  the  capital  letters 
F,  (?,...  by/,  g,...,  and  to  introduce  the  denominator 

(oiX*  +  c)  (OaV  +  Cj)  (a,X«  +  c). 
The  determinantal  equation  for  a  system  originally  of  m  degrees 

of  freedom  and  subjected  to  r  constraints  is  thus  found.     Its  form 

1  This  resalt  is  due  to  Boatb,  loc.  cit.  §  67. 
'  Salmon,  Leiso/ns  on  Higher  Algebra^  §  24. 
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is  largely  determined  by  the  consideration  that  it  must  remain  un- 
aflfected  by  interchanges  either  of  the  letters  or  of  the  suffixes. 
That  it  would  become  nugatory  if  two  of  the  conditions  of  con- 

straint coincided,  could  also  have  been  foreseen.  If  r=m  — 1, 
the  system  is  reduced  to  one  degree  of  freedom,  and  the  equation 
IS 

f^  ft  ji-" 

h^  As  A4... 
(chy  +  Ci)  + 9i  9i  94"- (a,V  +  c)  +  ...=0   (29), 

in  agreement  with  §  (88). 
There  are  theories,  parallel  to  the  foregoing,  for  systems  in 

which  T  and  F,  or  V  and  F,  are  alone  sensible.  In  these  cases,  if 

the  functions  be  intrinsically  positive,  the  normal  motions  are 

proportional  to  exponential  functions  of  the  time  such  as  6~*''. 
The  quantities  r^,  r,,...  are  called  the  time-constants,  or  persis- 

tences, of  the  motions,  being  the  times  occupied  by  the  motions  in 
subsiding  in  the  ratio  of  6 : 1.  The  new  persistences,  after  the 
introduction  of  a  constraint,  will  separate  the  original  values. 

The  best  illustrations  of  this  theory  are  electrical,  where  the 
motions  are  not  restricted  to  be  small.  Suppose  (to  take  an 

electro-magnetic  example)  that  in  one  branch  of  a  net-work  of 
conductors  there  is  introduced  a  coil  of  persistence  (when  closed 

upon  itself)  equal  to  t',  the  original  persistences  being  Ti,  t,,.... 
Then  the  new  persistences  lie  in  all  cases  nearer  to  t\  and  they 

separate  the  quantities  t',  Ti,  tj....  If  t'  be  made  infinite  as  by 
increasing  the  self-induction  of  the  additional  coil  without  limit, 
or  be  made  to  vanish  as  by  breaking  the  contact  in  the  branch, 
the  result  is  a  constraint,  and  the  new  values  of  the  persistences 
separate  the  former  ones. 

93.  The  determination  of  the  coefficients  to  suit  arbitrarj' 
initial  conditions  may  always  be  readily  effected  by  the  funda- 

mental property  of  the  normal  functions,  and  it  maybe  convenient 

to  sketch  the  process  here  for  systems  like  strings,  bars,  mem- 
branes, plates,  &c.  in  which  there  is  only  one  dependent  variable 

(^  to  be  considered.  If  t^,  t^...be  the  normal  functions,  and 

^,  <^ . . .  the  corresponding  co-ordinates. 

f=<^Wi  +  <^lt,+  0,W,+ 
.(1). 
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The  equations  of  free  motion  are 

^  +  ni><^  =  0,     ̂   +  n,«<^  =  0,i&c   (2), 
of  which  the  solutions  are 

(3). 

01  =  ill  sin  riif  4-  -Bi  cos  riit 

<l>i^  A^smnjt  +  B^  cos  vjt 

The  initial  values  of  f  and  ̂   are  therefore 

t)  =  Wi-4iWi-fWjiljitj  +  Jvl8t£,+  ...J    

and  the  problem  is  to  determine  Ai,  A^,,..  B^  B^.,.  so  as  to 
correspond  with  arbitrary  values  of  fo  and  ([q. 

li  pdxhe  the  mass  of  the  element  da?,  we  have  from  (1) 

=  i<f)i*L  Mi'da:  +  J  <^M/9  Ms'da?  +  ...  +  01^  1^ 

But  the  expression  for  T  in  terms  of  <^,  <^3,  &c.  cannot  contain 
the  products  of  the  normal  generalized  velocities,  and  therefore 
every  integral  of  the  form 

lptArt*/fo  =  0   (5). 

/
'
 

Hence  to  determine  Br  we  have  only  to  multiple  the  first 
of  equations  (4)  by  pibr  and  integrate  over  the  system.  We  thus 
obtain 

BApUr^dx^  Ipur^ffib:   (6). 

Similarly,  rirAr  \pUr^dx=  IpUr^dx   (7). 

The  process  is  just  the  same  whether  the  element  dx  he  o,  line, 
area,  or  volume. 

The  conjugate  property,  expressed  by  (5),  depends  upon  the 
fact  that  the  functions  u  are  normal.  As  soon  as  this  is  known 

by  the  solution  of  a  differential  equation  or  otherwise,  we  may 

infer  the  conjugate  property  without  further  proof,  but  the  pro- 
perty itself  is  most  intimately  connected  with  the  fundamental 

variational  equation  of  motion  §  94. 



128  VIBRATING   SYSTEMS   IN   GENERAL.  [94. 

94.  If  "T  be  the  potential  energy  of  deformation,  f  the displacement,  and  p  the  density  of  the  (line,  area,  or  volume) 
element  dx,  the  equation  of  virtual  velocities  gives  immediately 

BV+jp^S^dx=0   (1). 

In  this  equation  8F  is  a  symmetrical  function  of  f  and  Sf, 
as  may  be  readily  proved  from  the  expression  for  V  in  terms 
of  generalized  co-ordinates.     In  fact  if 

Suppose  now  that  f  refers  to  the  motion  corresponding  to 

a  normal  function  Ur,  so  that  ̂   +  7ir*f=0,  while  Sf  is  identified 
with  another  normal  function  Ug ;  then 

S  y  =  iir^  I  ptirU/ix, 

Again,  if  we  suppose,  as  we  are  equally  entitled  to  do,  that  f 
varies  as  Ug  and  Sf  as  i/r,  we  get  for  the  same  quantity  SF, 

r 

SV=ng^  jpUrU/lx; 

and  therefore 
{nr^-ng^)jpurif4^  =  0   (2), 

from   which  the  conjugate  property  follows,  if  the   motions   re- 
presented respectively  by  Ur  and  u,  have  different  periods. 

A  good  example  of  the  connection  of  the  two  methods  of 
treatment  will  be  found  in  the  chapter  on  the  transverse  vibrations 
of  bars. 

96.  Professor  Stokes^  has  drawn  attention  to  a  very  general 
law  connecting  those  parts  of  the  free  motion  which  depend 
on  the  initial  displacements  of  a  system  not  subject  to  frictional 
forces,  with  those  which  depend  on  the  initial  velocities.  If 
a  velocity  of  any  type  be  communicated  to  a  system  at  rest, 
and  then  after  a  small  interval  of  time  the  opposite  velocity 
be  communicated,  the  effect  in  the  limit  will  be  to  start  the 

S3rstem  without  velocity,  but  with  a  displacement  of  the  corre- 
sponding type.     We  may  readily  prove  from  this  that  in   order 

1  Dynamical  Theory  of  Diffraction,  Cambridge  Trans.  Vol.  ix.  p.  1,  1866. 
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to  deduce  the  motion  depending  on  initial  displacements  from 
that  depending  on  the  initial  velocities,  it  is  only  necessary  to 
differentiate  with  respect  to  the  time,  and  to  replace  the  arbitrary 
constants  (or  functions)  which  express  the  initial  velocities  by 
those  which  express  the  corresponding  initial  displacement& 

Thus,  if  (f>  be  any  normal  co-ordinate  satisfying  the  equation 

^  4-  n»<^  =  0, 
the  solution  in  terms  of  the  initial  values  of  ̂   and  <^  is 

^  =  ̂ cos7i^  +  -<^osinn^   (1), 

of  which   the  first  term  may  be  obtained  from  the  second  by 

Stokes'  rule. 

R.  ^ 



CHAPTER  V. 

VIBBATING   SYSTEMS   IN   GENERAL 

CONTINUED. 

96.  When  dissipative  forces  act  upon  a  system,  the  character 
of  the  motion  is  in  general  more  complicated.  If  two  only  of  the 

functions  T,  F,  and  V  be  finite,  we  may  by  a  suitable  linear  trans- 
formation rid  ourselves  of  the  products  of  the  co-ordinates,  and 

obtain  the  normal  types  of  motion.  In  the  preceding  chapter  we 
have  considered  the  case  of  ̂   =  0.  The  same  theory  with  obvious 
modifications  will  apply  when  T  =  0,  or  F=0,  but  these  cases 
though  of  importance  in  other  parts  of  Physics,  such  as  Heat  and 
Electricity,  scarcely  belong  to  our  present  subject. 

The  presence  of  Motion  will  not  interfere  with  the  reduction  of 
T  and  V  to  sums  of  squares ;  but  the  transformation  proper  for 
them  will  not  in  general  suit  also  the  requirements  of  F,  The 
general  equation  can  then  only  be  reduced  to  the  form 

«i^i4-6u<^i4-6i2<^s  +  ...  +  Ci<^i  =  <E>i,   &c   (1), 

and  not  to  the  simpler  form  applicable  to  a  system  of  one  degree 
of  freedom,  viz. 

ai<if>i  +  6i^  +  Cj<^  =  *i,   &c.   (2). 

We  may,  however,  choose  which  pair  of  functions  we  shall 
reduce,  though  in  Acoustics  the  choice  would  almost  always  fall 
on  T  and  V. 

97.  There  is,  however,  a  not  unimportant  class  of  cases  in 
which  the  reduction  of  all  three  functions  may  be  effected ;  and 
the  theory  then  assumes  an  exceptional  simplicity.  Under  this  head 
the  most  important  are  probably  those  when  jP  is  of  the  same  form 
as  T  or  F.  The  first  case  occurs  frequently,  in  books  at  any  rate, 

when  the  motion  of  each  part  of  the  system  is  resisted  by  a  re- 
tarding force,  proportional  both  to  the  mass  and  velocity  of  the 
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part.  The  same  exceptional  reduction  is  possible  when  i^  is  a 
linear  function  of  T  and  F,  or  when  T  is  itself  of  the  same  form  as 

V.  In  any  of  these  cases,  the  equations  of  motion  are  of  the  same 
form  as  for  a  system  of  one  degree  of  freedom,  and  the  theory 
possesses  certain  peculiarities  which  make  it  worthy  of  separate 
consideration. 

The  equations  of  motion  are  obtained  at  once  from  T,  F 

and  V: — 

Oif  1  +  bi4>i  +  Ci<l>,  =  *, ,        ) 

Oj^a-ffta^  +  Cj^  =  <E>a,  &C.  j     ^   ̂* 

in  which  the  co-ordinates  are  separated. 

For  the  free  vibrations  we  have  only  to  put  <E>i  =  0,  &c.,  and 
the  solution  is  of  the  form 

(f>  =  e-i*<  Uo  ̂ ^  +  <l>o  (coan't  +  ̂,  sin  nftjl   (2), 

where  K=^b/a,    n*=^c/a,    n*  =  ̂ {n*  —  ̂K*), 
and  ̂ 0  »nd  <^o  ̂̂ re  the  initial  values  of  <f>  and  ̂ . 

The  whole  motion  may  therefore  be  analysed  into  component 
motions,  each  of  which  corresponds  to  the  variation  of  but  one 
normal  co-ordinate  at  a  time.  And  the  vibration  in  each  of  these 

modes  is  altogether  similar  to  that  of  a  system  with  only  one 
degree  of  liberty.  After  a  certain  time,  greater  or  less  according 

to  the  amount  of  dissipation,  the  free  vibrations  become  insignifi- 
cant, and  the  system  returns  sensibly  to  rest. 

[If  F  be  of  the  same  form  as  T,  all  the  values  of  k  are  equal, 
viz.  all  vibrations  die  out  at  the  same  rate.] 

Simultaneously  with  the  free  vibrations,  but  in  perfect  inde- 
pendence of  them,  there  may  exist  forced  vibrations  depending  on 

the  quantities  4>.  Precisely  as  in  the  case  of  one  degree  of  free- 
dom, the  solution  of 

a^4-6<^  +  c^  =  *   (3) 
may  be  written 

<^  =  i,f%-i*(/-r)sinn'(«-0*cft'   (4), 
n  J  0 

where  as  above 

K  =  b/a,      n^  =  c/a,      vf  =  V(^'  —  i  '<^)' 
To  obtain  the  complete  expression  for  ̂   we  must  add  to  the 

right-hand  member  of  (4),  which  makes  the  initial  values  of  ̂  
and  <l>  vanish,  the  terms  given  in  (2)  which  represent  the  residue 
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at  time  t  of  the  initial  values  <^o  And  ̂ o*     If  there  be  no  firiction, 
the  value  of  <f>  in  (4)  reduces  to 

4>^^l\mn(t-r)<Pdr   (5). 

98.  The  complete  independence  of  the  normal  co-ordinates 
leads  to  an  interesting  theorem  concerning  the  relation  of  the 
subsequent  motion  to  the  initial  disturbance.  For  if  the  forces 
which  act  upon  the  system  be  of  such  a  character  that  they  do  no 

work  on  the  displacement  indicated  by  S^,  then  <l>i  =  0.  No  such 
forces,  however  long  continued,  can  produce  any  eflFect  on  the 
motion  ̂ .  If  it  exist,  they  cannot  destroy  it ;  if  it  do  not  exist, 
they  cannot  generate  it.  The  most  important  application  of  the 
theorem  is  when  the  forces  applied  to  the  system  act  at  a  node  of 
the  normal  component  <^,  that  is,  at  a  point  which  the  component 
vibration  in  question  does  not  tend  to  set  in  motion.  Two  extreme 
cases  of  such  forces  may  be  specially  noted,  (1)  when  the  force  is 
an  impulse,  starting  the  system  from  rest,  (2)  when  it  has  acted  so 

long  that  the  system  is  again  at  rest  under  its  influence  in  a  dis- 
turbed position.  So  soon  as  the  force  ceases,  natural  vibrations 

set  in,  and  in  the  absence  of  friction  would  continue  for  an  in- 
definite time.  We  infer  that  whatever  in  other  respects  their 

character  may  be,  they  contain  no  component  of  the  type  <^i.  This 
conclusion  is  limited  to  cases  where  T,  F,  V  admit  of  simultaneous 

reduction,  including  of  course  the  case  of  no  friction. 

99.  The  formulae  quoted  in  §  97  are  applicable  to  any  kind  of 
force,  but  it  will  often  happen  that  we  have  to  deal  only  with  the 
effects  of  impressed  forces  of  the  harmonic  type,  and  we  may  then 
advantageously  employ  the  more  special  formulae  applicable  to  such 

forces.  In  using  normal  co-ordinates,  we  have  first  to  calculate  the 
forces  <&i,  4>,,  &C.  corresponding  to  each  period,  and  thence  deduce 
the  values  of  the  co-ordinates  themselves.  If  among  the  natural 
periods  (calculated  without  allowance  for  friction)  there  be  any 
nearly  agreeing  in  magnitude  with  the  period  of  an  impressed 
force,  the  corresponding  component  vibrations  will  be  abnormally 
large,  unless  indeed  the  force  itself  be  greatly  attenuated  in  the 
preliminary  resolution.  Suppose,  for  example,  that  a  transverse 
force  of  harmonic  type  and  given  period  acts  at  a  single  point  of 
a  stretched  string.  All  the  normal  modes  of  vibration  will,  in 
general,  be  excited,  not  however  in  their  own  proper  periods,  but 
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in  the  period  of  the  impressed  force ;  but  any  normal  component, 
which  has  a  node  at  the  point  of  application,  will  not  be  excited. 
The  magnitude  of  each  component  thus  depends  on  two  things : 
(1)  on  the  situation  of  its  nodes  with  respect  to  the  point  at  which 
the  force  is  applied,  and  (2)  on  the  degree  of  agreement  between 
its  own  proper  period  and  that  of  the  force.  It  is  important  to 
remember  that  in  response  to  a  simple  harmonic  force,  the  system 
will  vibrate  in  general  in  all  its  modes,  although  in  particular 
cases  it  may  sometimes  be  sufficient  to  attend  to  only  one  of  them 

as  being  of  paramount  importance. 

100.  When  the  periods  of  the  forces  operating  are  very  long 
relatively  to  the  free  periods  of  the  system,  an  equilibrium  theory 
is  sometimes  adequate,  but  in  such  a  case  the  solution  could 
generally  be  found  more  easily  without  the  use  of  the  normal 

co-ordinates.  Bernoulli's  theory  of  the  Tides  is  of  this  class,  and 
proceeds  on  the  assumption  that  the  free  periods  of  the  masses  of 
water  found  on  the  globe  are  small  relatively  to  the  periods  of  the 
operative  forces,  in  which  case  the  inertia  of  the  water  might  be 
left  out  of  account.  As  a  matter  of  fact  this  supposition  is  only 
very  roughly  and  partially  applicable,  and  we  are  consequently 
still  in  the  dark  on  many  important  points  relating  to  the  tides. 

The  principal  forces  have  a  semi-diurnal  period,  which  is  not  suffi- 
ciently long  in  relation  to  the  natural  periods  concerned,  to  allow 

of  the  inertia  of  the  water  being  neglected.  But  if  the  rotation  of 
the  earth  had  been  much  slower,  the  equilibrium  theory  of  the 
tides  might  have  been  adequate. 

A  corrected  equilibrium  theory  is  sometimes  useful,  when  the 
period  of  the  impressed  force  is  sufficiently  long  in  comparison 
with  most  of  the  natural  periods  of  a  system,  but  not  so  in  the 
case  of  one  or  two  of  them.  It  will  be  sufficient  to  take  the  case 

where  there  is  no  friction.     In  the  equation 

a4>  +  C(f>  =  <P,    or  ̂ -f  n*^  =  */a, 

suppose  that  the  impressed  force  varies  as  cos  pt     Then 

^  =  4>-T-a(n*-;)«)   (1). 

The  equilibrium  theory  neglects  jp*  in  comparison  with  w*, 
and  takes 

<^  =  <E>^an«   (2). 
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Suppose  now  that  this  course  is  justifiable,  except  in  respect 

of  the  single  normal  co-ordinate  <^.  We  have  then  only  to  add 
to  the  result  of  the  equilibrium  theory,  the  difference  between 
the  true  and  the  there  assumed  value  of  <^i,  viz. 

ai(ni^—p*)     OiW,' "" Til' — p' *  a   ^  ̂' 
The  other  extreme  case  ought  also  to  be  noticed.  If  the 

forced  vibrations  be  extremely  rapid,  they  may  become  nearly 
independent  of  the  potential  energy  of  the  system.  Instead 

of  neglecting  p"  in  comparison  with  n',  we  have  then  to  neglect 
7i«  in  comparison  with  p»,  which  gives 

<^  =  -4)^ap^   (4). 

If  there  be  one  or  two  co-ordinates  to  which  this  treatment 

is  not  applicable,  we  may  supplement  the  result,  calculated  on 
the  hypothesis  that  V  is  altogether  negligible,  with  corrections 

for  these  particular  co-ordinates. 

101.  Before  passing  on  to  the  general  theory  of  the  vibrations 
of  systems  subject  to  dissipation,  it  may  be  well  to  point  out 
some  peculiarities  of  the  free  vibrations  of  continuous  systems, 
started  by  a  force  applied  at  a  single  point.  On  the  suppositions 

and  notations  of  §  93,  the  configuration  at  any  time  is  deter- 
mined by 

?=^l^  +  <^2^2+^8^+   (1), 

where  the  normal  co-ordinates  satisfy  equations  of  the  form 

Suppose  now  that  the  system  is  held  at  rest  by  a  force  applied 

at  the  point  Q.  The  value  of  4>r  is  determined  by  the  considera- 
tion that  4>rS<^  represents  the  work  done  upon  the  system  by  the 

impressed  forces  during  a  hypothetical  displacement  B^=S<f>rUr, 
that  is 

S<l>rjZurdx; 

thus  ^r—IZtLrdiC=^Ur{Q)  jZd^'y 
so  that  initially  by  (2) 

Cr(f>r  =  'Ur{Q)lzdx   (3). 
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If  the  system  be  let  go  from  this  configuration  at  ̂   =  0,  we 
have  at  any  subsequent  time  t, 

Vr{Q)fzdx  Ur{Q)jZdx 
(f>r=OOBnrt   =COSM   j.     (4), 

^  fir*  IpV^^dx 

and  at  the  point  P 

Ur(P)Ur(Q)JZdx 
f=2cosnr^           (5). 

rir^jpUr^dx 

At  particular  points  tLr(P)   and  Ur(Q)  vanish,   but   on   the 
whole 

Ur(P)Vr(Q)-^jpyrdx 

neither  converges,  nor  diverges,  with  r.     The  series  for  f  therefore 

converges  with  nr~\ 
Again,  suppose  that  the  system   is  started  by  an  impulse 

from  the  configuration  of  equilibrium.     In  this  case  initially 

ar4>r  =  l^rdt  =  Ur  (Q)  jZidx, 
whence  at  time  t 

* r^    —-  -UriQ).  Z,dx=^   ^^^IZ^dx   (6). 

This  gives 

Vr{P)Ur{Q)\z,dx 
f^Ssinn^     (7), 

nr  \pu^da> 

shewing  that  in  this  case  the  series  converges  with  71^*"^  that 
is  more  slowly  than  in  the  previous  case. 

In  both  cases  it  may  be  observed  that  the  value  of  f  is 

symmetrical  with  respect  to  P  and  Q,  proving  that  the  displace- 
ment at  time  t  for  the  point  P  when  the  force  or  impulse  is  ap- 

plied at  Q,  is  the  same  as  it  would  be  at  Q  if  the  force  or  impulse 
had  been  applied  at  P.  This  is  an  example  of  a  very  general 
reciprocal  theorem,  which  we  shall  consider  at  length  presently. 
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As  a  third  case  we  may  suppose  the  body  to  start  fix)m  rest 
as  deformed  by  a  force  uniformly  distributed,  over  its  length, 
area,  or  volume.     We  readily  find 

Ur{P).Z.^u4a: 
^=%co^nrb   — ■     (8). 

Wy*  \pu^dx 

The  series  for  f  will  be  more  convergent  than  when  the  force 
is  concentrated  in  a  single  point. 

In  exactly  the  same  way  we  may  treat  the  case  of  a  con- 
tinuous body  whose  motion  is  subject  to  dissipation,  provided 

that  the  three  functions  T,  F,  V  be  simultaneously  reducible, 
but  it  is  not  necessary  to  write  down  the  formulae. 

102.  If  the  three  mechanical  functions  T,  F  and  V  of  any 
system  be  not  simultaneously  reducible,  the  natural  vibrations 
(as  has  already  been  observed)  are  more  complicated  in  their 
character.  When,  however,  the  dissipation  is  small,  the  method 
of  reduction  is  still  useful ;  and  this  class  of  cases  besides  being 
of  some  importance  in  itself  will  form  a  good  introduction  to 
the  more  general  theory.  We  suppose  then  that  T  and  V  are 
expressed  as  sums  of  squares 

F=ici^i'  +  ica<^,»  +  ...j    ^  ̂' 
while  F  still  appears  in  the  more  general  form 

F  =  ̂ bn4>i'  +  hb„4>,'  +  ...-^b^<f>,4>,+    (2). 
The  equations  of  motion  are  accordingly 

ai4>i  4-  6ii^  +  6u^  +  6i,<^j  +  ...  +  Ci<l>i  =  0  I 
as4>«  +  6n9i  +  &H<^2  +  &a<^8+  •••  +Ca^s  =  0  /   (3), 

in  which  the  coefficients  6u»  &u,  &c.  are  to  be  treated  as  small. 

If  there  were  no  friction,  the  above  system  of  equations  would 

be  satisfied  by  supposing  one  co-ordinate  <^r  to  vary  suitably, 
while  the  other  co-ordinates  vanish.  In  the  actual  case  there 

will  be  a  corresponding  solution  in  which  the  value  of  any  other 
co-ordinate  <f>t  will  be  small  relatively  to  (f>r. 

Hence,  if  we  omit  terms  of  the  second  order,  the  r^  equation 
becomes, 

Or^r  4- 6r»^r  +  Cr^r  =  0   (4), 
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from  which  we  infer  that  <f>r  varies  approximately  as  if  there 
were  no  change  due  to  friction  in  the  type  of  vibration.  If  4>r 

vary  as  e^,  we  obtain  to  determine  pr 

ttrPr*  +  itrPr  4- Cr  =  0   (5). 

The  roots  of  this  equation  are  complex,  but  the  real  part 
is  small  in  comparison  with  the  imaginary  part.  [The  character 
of  the  motion  represented  by  (5)  has  already  been  discussed 
(§  45).  The  rate  at  which  the  vibrations  die  down  is  proportional 

to  brr,  and  the  period,  if  the  term  be  still  admitted,  is  approxi- 
mately the  same  as  if  there  were  no  dissipation.] 

From  the  s^  equation,  if  we  introduce  the  supposition  that 
all  the  co-ordinates  vary  as  e^,  we  get 

terms  of  the  second  order  being  omitted ;  whence 

^     .    ̂     -  ̂ ri»j>r  h$Pr  /^x 

'^'  ■  '^'--J7^::^r'c^^^^)   ^^^- 

This  equation  determines  approximately  the  altered  type 
of  vibration.  Since  the  chief  part  of  pr  is  imaginary,  we  see 

that  the  co-ordinates  <^«  are  approximately  in  the  same  phase, 
hit  that  that  phase  differs  hy  a  quarter  period  from  the  phase 
of  <f>r.  Hence  when  the  function  F  does  not  reduce  to  a  sum 
of  squares,  the  character  of  the  elementary  modes  of  vibration 
is  less  simple  than  otherwise,  and  the  various  parts  of  the  system 
are  no  longer  simultaneously  in  the  same  phase. 

We  proved  above  that,  when  the  friction  is  small,  the  value 
of  Pr  may  be  calculated  approximately  without  allowance  for 
the  change  of  type ;  but  by  means  of  (6)  we  may  obtain  a  still 
closer  approximation,  in  which  the  squares  of  the  small  quantities 

are  retained.     The  r^^  equation  (3)  gives 

arp/^Cr^b„pr  +  t^^^^^=0   (7). 
The  leading  part  of  the  terms  included  under  S  being  real, 

the  correction  has  no  effect  on  the  real  part  of  pr  on  which 
the  rate  of  decay  depends. 

102  a.  Following  the  electrical  analogy  we  may  conveniently 
describe  the  forces  expressed  by  F  as  forces  of  resistance.  In 
§  102  we  have  seen  that  if  the  resistances  be  small,  the  periods 
are  independent  of  them.     We  may  therefore  extend  to  this  case 
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the  application  of  the  theorems  with  regard  to  the  eflfect  upon 
the  periods  of  additions  to  T  and  F,  which  have  been  already 
proved  when  there  are  no  resistances. 

By  (5)  §  102,  if  the  forces  of  resistance  be  increased,  the  rates 
of  subsidence  of  all  the  normal  motions  are  in  general  increased 
with  them;  but  in  particular  cases  it  may  happen  that  there 
is  no  change  in  a  rate  of  subsidence. 

It  is  natural  to  inquire  whether  this  conclusion  is  limited  to 
small  resistances,  for  at  first  sight  it  would  appear  likely  to  hold 
good  generally.  An  argument  sufficient  to  decide  this  question 
may  be  founded  upon  a  particular  case.  Consider  a  system  formed 
by  attaching  two  loads  at  any  points  of  a  stretched  string  vibrating 
transversely.  If  the  mass  of  the  string  itself  be  neglected,  there 

are  two  degrees  of  freedom  and  two  periods  of  vibration  corre- 
sponding to  two  normal  modes.  In  each  of  these  modes  both  loads 

in  general  vibrate.  Now  suppose  that  a  force  of  resistance  is 
introduced  retarding  the  motion  of  one  of  the  loads,  and  that  this 
force  gradually  increases.  At  first  the  effect  is  to  cause  both  kinds 

of  vibration  to  die  out  and  that  at  an  increasing  rate,  but  after- 
wards the  law  changes.  For  when  the  resistance  becomes  infinite, 

it  is  equivalent  to  a  constraint,  holding  at  rest  the  load  upon  which 
it  acts.  The  remaining  vibration  is  then  unaffected  by  resistance, 
and  maintains  itself  indefinitely.  Thus  the  rate  of  subsidence  of 
one  of  the  normal  modes  has  decreased  to  evanescence  in  spite  of  a 
continual  increase  in  the  forces  of  resistance  F.  This  case  is  of 

course  sufficient  to  disprove  the  suggested  general  theorem. 

103.  We  now  return  to  the  consideration  of  the  general 
equations  of  §  84. 

If  V^ii  V^a»  &c.  be  the  co-ordinates  and  'V^^'V^,  &c.  the  forces, we  have 

eflV^i  +  «aV^2+...='«'j,&c.J    ^  ̂' 

where  c„  =  a„Z)»  4- 6r#-D  4- c^,   (2). 

For  the  fi-ee  vibrations  ̂ i,  &c.  vanish.  If  V  be  the  de- 
terminant 

v^  e^ f  ̂ ,   (o) 
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the  result  of  eliminating  from  (1)  all  the  co-ordinates  but  one,  is 

VVr  =  0   (4). 

Since  V  now  contains  odd  powers  of  Z),  the  2m  roots  of  the 

equation  V  =  0  no  longer  occur  in  equal  positive  and  negative 
pairs,  but  contain  a  real  as  well  as  an  imaginary  part.  The 
complete  integral  may  however  still  be  written 

yjr^A^^^  +  A'ef'^'^  +  Be^  +  B'e^'^+   (5), 

where  the  pairs  of  conjugate  roots  are  Ah,  /^' ;  fi^t  fh  '>  &c.  Corre- 
sponding to  each  root,  there  is  a  pai*ticular  solution  such  as 

in  which  the  ratios  Ai  :  A^  :  A^,,,  are  determined  by  the  equa- 
tions of  motion,  and  only  the  absolute  value  remains  arbitrary. 

In  the  present  case  however  (where  V  contains  odd  powers  of  D) 
these  ratios  are  not  in  general  real,  and  therefore  the  variations 

of  the  co-ordinates  >^i,  yjr^,  &c.  are  not  sjmchronous  in  phase.     If 

we  put  /ii  =  ai  +  i)8i»  A^'  =  «i— */9i»  &c.,  we  see  that  none  of  the 
quantities  a  can  be  positive,  since  in  that  case  the  energy  of 
the  motion  would  increase  with  the  time,  as  we  know  it  cannot 
do. 

103  a.  The  general  argument  (§§  85,  103)  from  considerations 
of  energy  as  to  the  nature  of  the  roots  of  the  determinantal 

equation  (Thomson  and  Tait's  Natural  Philosophy,  1st  edition  1867) 
has  been  put  into  a  more  mathematical  form  by  Ilouth\  His 
investigation  relates  to  the  most  general  form  of  the  equation  in 
which  the  relations  §  82 

Ctr«  =  a«.,  hrt^bsTf  Crn  =  Ctr   (1), 

are  not  assumed.  But  for  the  sake  of  brevity  and  as  sufficient 
for  almost  all  acoustical  problems,  these  relations  will  here  be 

supposed  to  hold. 

We  shall  have  occasion  to  consider  two  solutions  corresponding 
to  two  roots  /i,  V  of  the  equation.     For  the  first  we  have 

Vr,=Jtf,e^S  V^,  =  J^f,e'*^>8  =  i^^3e^^&c   (2), 
and  for  the  second 

^,^N,^,  ir,=^N,e^,  ir,^N,e^,&,c   (3). 
In  either  of  these  solutions,  for  example  (2),  the  ratios 

Ml  :  M^i  Mi :   

^  Rigid  Dynamict,  5th  edition,  Ch.  vii. 



140  VIBRATING   SYSTEMS   IN   GENERAL.  [103  a. 

are  determinate  when  ̂   has  been  chosen.  They  are  real  when 
/i  is  real ;   and  when  /a  is  complex  (a  +  iyS),  they  take  the  form 
P  ±  iQ. 

If  now  we  substitute  the  values  of  '^  from  (2)  in  the  equations 
of  motion,  we  get 

(Oii/A*  +  hufji,  +  Cii)  ifi  +  (oiiAt*  4-  6is/iA  +  Ci,)  if,  +   =  0  \ 

(a^  +  bi^  +  Cu) JIfi  +  (a^  +  6jaAt  +  CM)if2+   =  0   p--W- 

The  first  result  is  obtained  by  multiplying  these  equations  in 
order  by  Mi,  if,,  &c.  and  adding.     It  may  be  written 

^/i«  +  £/i+C=0,   (5), where 

il  =  iOxiif,"  +  iOaif,' +  Oij^fiif,  +   (6). 

B  =  ̂ bnMi^  +  i6aif,«  +  6ijKJfiif,+   (7). 

C  =  ic„ifi*  +  JCjaJf,'  +  Ci5^1fiif,+   (8). 
The  functions  A,  jB,  C,  are,  it  will  be  seen,  the  same  as  we  have 

already  denoted  by  T,  F,  and  V  respectively;  but  the  varied 
notation  may  be  useful  as  reminding  us  that  there  is  as  yet  no 
limitation  upon  the  nature  of  these  quadratic  functions. 

The  following  inferences  from  (5)  are  drawn  by  Routh : — 
(a)     If  Ay  ByC  either  be  zero,  or  be  one-signed  functions  of 

the  same  sign,  the  fundamental  determinant  cannot  have  a  real 
positive  root.     For  if  /a  were  real,  the  coeflBcients  ifi,  if,,   
would  be  real.     We  should  thus  have  the  sum  of  three  positive 
quantities  equal  to  zero. 

(fi)    If  there  be  no  forces  of  resistance,  i.e.  if  the  term  B  be 

absent,  and  if  A  and  C  be  one-signed  and  have  the  same  sign, 
the  fundamental  determinant  cannot  have  a  real  root,  positive  or 

negative. 

(7)     If  ̂ ,  jB,  0  be  one-signed  functions,  but  if  the  sign  of 
B  be  opposite  to  that  of  A  and  (7,  the  fundamental  determinant 
cannot  have  a  real  negative  root. 

The  second  equation  is  obtained  as  before  from  (4),  except  that 
now  the  multipliers  are  iVj,  iV,,...  appropriate  to  the  root  1/.     The 
result  may  be  written 

il(/i,i/)/i«+5(M,i')/i  +  C(M,i/)  =  0    (9), where 

2A  (/JL,  v)  =  auMiNi  4-  ojkf^ar,  +   
+  ai,(M,N,+  M,NO+    (10), 
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with  similar  suppositions  for   B{fjL,v)  and   C(fi,v).     A(fjL,p)  is 

thus  a  symmetrical  function  of  the  M's  and  UTa,  so  that 
A(ji,p)  =  A(p,,i)    (11). 

It  will  be  observed  that  according  to  this  notation  A  (fi,  fi)  is 
the  same  as  ̂   in  (6). 

In  like  manner 

A(ji,v)v'  +  B(fi,v)v  +  C(fi,v)=^0   (12), 

shewing  that  fi,  v  are  both  roots  of  the  quadratic,  whose*  co- 
efficients are  A  (/a,  i/),  B  (ji,  v),  C  (/a,  v).     Accordingly 

^  +  i;  =  --_P — -         /Ai'^-jT — ;   (13). 

We  will  now  suppose  that  /a,  p  are  two  conjugate  complex 
roots,  so  that 

/i  =  a  +  i^,         1/  =  a  — 1)8, 
where  a,  /3  are  real.     Under  these  circumstances  if  J/i,  if,,  ...  be 

Pi  +  iQi,  i'.  +  iQ,,...,  then   N^.N,,...  will  be  Pi-iQu  P,-iQ,y 

  ,  the  Fs  and  Q's  being  real.     Thus  by  (10) 

2^(/i,i;)  =  a,,(P,«+Qx')-fa«(P,^+Q,«)  +   
+  2a^(P,P,  +  Q,Q,)+   

=  2^(P)  +  2^(Q)       (14). 

In  (14)  A(P)t  A(Q)  are  functions,  such  as  (6),  of  real  variables. 
From  (13)  we  now  find 

B(P)  +  B(Q) 

^-~A(P)~+MQ)      ^^^>' 

„,.  o,_C(P)  +  C7(Q) 
"  -^^-AJPHMQ)      ^    ̂' 

From  these  Routh  deduces  the  following  conclusions : — 

(S)  If  A  and  B  be  one-signed  and  have  the  same  sign 
(whether  Che  a,  one-signed  function  or  not),  then  the  real  part  a 
of  every  imaginary  root  must  be  negative  and  not  zero.  But  if  B 
be  absent,  then  the  real  part  of  every  imaginary  root  is  zero. 

(e)  If  A  and  C  be  one-signed  and  have  opposite  signs,  then 
whatever  may  be  the  character  of  B,  there  can  be  no  imaginary 
roots. 

It  may  be  remarked  that  if  jS  do  not  occur,  and  if  /i'  and  v* 
be  diflferent  roots  of  the  determinant,  it  follows  from  (9),  (12)  that 

A{,jL.p)^CifL,p)^0   (17). 
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When  the  number  of  degrees  of  freedom  is  finite,  the  funda- 
mental determinant  may  be  expanded  in  powers  of  /a,  giving 

an  equation  /  (/i)  =0  of  degree  2m.  The  condition  of  stability 
is  that  all  the  real  roots  and  the  real  parts  of  all  the  complex 
roots  should  be  negative.  If,  as  usual,  complex  quantities  x  +  iy 

be  represented  by  points  whose  co-ordinates  are  x,  y,  the  condition 
is  that  all  points  representing  roots  should  lie  to  the  left  of  the 

axis  of  y.  The  application  of  Cauchy*s  rule  relative  to  the 
number  of  roots  within  any  contour,  by  taking  as  the  contour  the 

infinite  semi-circle  on  the  positive  side  of  the  axis  of  y,  is  veiy 
fiiUy  discussed  by  RouthS  who  has  thrown  the  results  into  forms 
convenient  for  practical  application  to  particular  cases. 

103  6.  The  theorems  of  §  103  a  do  not  exhaust  all  that  general 
mechanical  principles  would  lead  us  to  expect  as  to  the  character 
of  the  roots  of  the  fundamental  determinant,  and  it  may  be  well 

to  pursue  the  question  a  little  further.  We  will  suppose  through- 
out that  A  is  one-signed  and  positive. 

If  B  and  C  be  both  one-signed  and  positive,  we  see  that  the 
equilibrium  is  thoroughly  stable  ;  for  from  (a)  it  follows  that  there 
can  be  no  positive  root,  and  from  (S)  that  no  complex  root  can  have 
its  real  part  positive. 

In  like  manner  the  equations  of  §  103  a  suffice  for  the  case 

where  C  is  one-signed  and  positive,  B  one-signed  and  negative. 
By  (5)  every  real  root  is  positive,  and  by  (15)  the  real  part 
of  every  complex  root.  Hence  the  equilibrium  is  unstable  in 
every  mode. 

When  G  is  one-signed  and  negative,  all  the  roots  are  real  (S) ; 
but  (5)  does  not  tell  us  whether  they  are  positive  or  negative. 

When  jB  =  0,  we  know  (§  87)  that  the  roots  occur  in  pairs  of  equal 
numerical  value  and  of  opposite  sign.  In  this  case  therefore 
there  are  m  positive  and  m  negative  roots.  We  vdll  prove  that 

this  state  of  things  cannot  be  disturbed  by  B.  For  if  the  determi- 

nant be  expanded,  the  coefficient  of  fi^  is  the  discriminant  of  -4, 
and  the  coefficient  of  fi^  is  the  discriminant  of  C,  By  supposition 
neither  of  these  quantities  is  zero,  and  thus  no  root  of  the  equation 
can  be  other  than  finite.  Hence  as  B  increases  from  zero  to  its 

actual  magnitude  as  a  function  of  the  variables,  no  root  of  the 
equation  can  change  sign,    and    accordingly  there    remain    iu 

^  Adams  Prize  Essay  1S77 ;  Rigid  Dynamics  §  290. 
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positive  and  m  negative  roots.     It  should  be  noticed  that  in  this 
argument  there  is  no  restriction  upon  the  character  of  B, 

In  the  case  of  a  real  root  the  values  of  M^  if,, ...  are  real,  and 
thus  the  motion  is  such  as  might  take  place  under  a  constraint 

reducing  the  system  to  one  degree  of  freedom.  But  if  this  con- 
straint were  actually  imposed,  there  would  be  two  corresponding 

values  of  /i,  being  the  values  given  by  (5).  In  general  only  one  of 
these  is  applicable  to  the  question  in  hand.  Otherwise  it  would 
be  possible  to  define  m  kinds  of  constraint,  one  or  other  of  which 
would  be  consistent  with  any  of  the  2m  roots.  But  this  could 
only  happen  when  the  three  functions  A,  B,  G  are  simultaneously 
reducible  to  sums  of  squares  (§  97). 

When  jB  =  0,  there  are  ni  modes  of  motion,  and  two  roots  for 
each  mode.  In  the  present  application  to  the  case  where  C  is 

one-signed  and  negative,  each  of  the  m  modes  for  5=0  gives 
one  positive  and  one  negative  root.  The  positive  root  denotes 
instability,  and  although  the  negative  root  gives  a  motion  which 
diminishes  without  limit,  the  character  of  instability  is  considered 
to  attach  to  the  mode  as  a  whole,  and  all  the  m  modes  are  said 

to  be  unstable.  But  when  B  is  finite,  there  are  in  general  2m 
distinct  modes  with  one  root  corresponding  to  each.  Of  the 
2m  modes  m  are  unstable,  but  the  remaining  m  modes  must  be 
reckoned  as  stable.  On  the  whole,  however,  the  equilibrium  is 

unstable,  so  that  the  influence  of  B,  even  when  positive,  is  in- 
sufficient to  obviate  the  instability  due  to  the  character  of  C. 

We  must  not  prolong  much  further  our  discussion  of  unstable 
systems,  but  there  is  one  theorem  respecting  real  roots  too 

fundamental  to  be  passed  over.  It  may  be  regarded  as  an  ex- 
tension of  that  of  §  88. 

The  value  of  fi  corresponding  to  a  given  constraint  M^iM^: ,,, 
is  one  of  the  roots  of  (5)  :  and  it  follows  from  (4)  that  the  value  of 
fi  is  stationary  when  the  imposed  constraint  coincides  with  one  of 
the  modes  of  free  motion.  The  effect  of  small  changes  in  A,  B,  G 
may  thus  be  calculated  from  (5)  without  allowance  for  the 
accompanying  change  of  type. 

Let  (7,  being  negative  for  the  mode  under  consideration, 
undergo  numerical  increase,  while  A  and  B  remain  unchanged  as 

functions  of  the  co-ordinates.  The  latter  condition  requires  that 
the  roots  of  (5),  one  of  which  is  positive  and  one  negative,  should 

move  either  both  towards  zero  or  both  away  fi-om  zero ;  and  the 
first  condition  excludes  the  former  alternative.     Whether  it  be 
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the  positive  or  the  negative  root  of  (5)  which  is  the  root  of  the 
determiDant,  we  infer  that  the  change  in  question  causes  the 
latter  to  move  away  from  zero. 

In  like  manner  if  A  increase,  while  B  and  C  remain  unchanged, 
the  movement  of  the  root,  whether  positive  or  negative,  is 
necessarily  towards  zero. 

Again,  if  A  and  C  be  given,  while  B  increases  algebraically 
as  a  function  of  the  variables,  the  movement  of  the  root  of  the 

determinant  must  be  in  the  positive  direction. 

Ad  algebraic  increase  in  B  thus  increases  the  stability,  or 
decreases  the  iostability,  in  every  mode.  A  numerical  increase 
in  C  or  decrease  in  A  on  the  other  hand  promotes  the  stability 
of  the  stable  modes  and  the  instability  of  the  unstable  modes. 

We  can  do  little  more  than  allude  to  the  theorem  relating  to 
the  eflfect  of  a  single  constraiut  upon  a  system  for  which  C  is 

one-signed  and  negative.  Whatever  be  the  nature  of  5,  the 
(m— 1)  positive  roots  of  the  determinant,  appropriate  to  the 
system  after  the  constraint  has  been  applied,  will  separate  the  m 
positive  roots  of  the  original  determiuant,  and  a  like  proposition 
will  hold  for  the  negative  roots.  Upon  this  we  may  found  a 
generalization  of  the  foregoing  conclusions  analogous  to  that 
of  §  92  a.  Consider  an  independent  vibrator  of  one  degree  of 
freedom  for  which  C  is  positive,  and  let  the  roots  of  the  frequency 

equation  be  ViyV^^  one  negative  and  one  positive.  If  we  regard 
this  as  forming  part  of  the  system,  we  have  in  all  (2m  +  2)  roots. 
The  eflFect  of  a  constraint  by  which  the  two  parts  of  the  system 
are  connected  will  be  to  reduce  the  (2m +  2)  back  to  2m.  Of 

these  the  m  positive  will  separate  the  (m  -f  1)  quantities  formed 
of  the  m  positive  roots  of  the  original  equation  together  with  (the 

positive)  1/,,  and  a  similar  proposition  will  hold  for  the  negative 
roots.  The  eflfect  of  the  vibrator  upon  the  original  system  is  thus 
to  cause  a  movement  of  the  positive  roots  towards  1/3,  and  a 
movement  of  the  negative  roots  towards  i/j.  This  conclusion 
covers  all  the  previous  statements  as  to  the  eflfect  of  changes  in 
A,  B,C  upon  the  values  of  the  roots. 

Enough  has  now  been  said  on  the  subject  of  the  free  vibra- 
tions of  a  system  in  general.  Any  further  illustration  that  it 

may  require  will  be  aflforded  by  the  discussion  of  th^  case  of  two 

degrees  of  freedom,  §  112,  and  by  the  vibrations  of  strings  and  other 
special  bodies  with  which  we  shall  soon  be  occupied.     We  resume 
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the  equations  (1)  §  103,  with  the  view  of  investigating  further  the 
nature  oi forced  vibrations. 

104.  In  order  to  eliminate  from  the  equations  all  the  co- 

ordinates but  one  ('^i),  operate  on  them  in  succession  with  the 
minor  determinants 

dV       dV       dV     ̂ ^ 

den  *    de^ '     de^  * 
and  add  the  results  together;  and  in  like  manner  for  the  other 

co-ordinatea  We  thus  obtain  as  the  equivalent  of  the  original 
system  of  equations 

V  I    -^  Mr       ̂   Mr       ̂ ^  \sr 
^^     den    ̂     de^    '     de^i    * 

\JbV\g  llrC22  ^"^^tlt 

de^g         cfejg         d^a 

(1). 

in  which  the  differentiations  of  V  are  to  be  made  without  re- 

cognition of  the  equality  subsisting  between  ert  &nd  etr- 

The  forces  "^^j,  ̂ ^,  &c.  are  any  whatever,  subject,  of  course, 
to  the  condition  of  not  producing  so  great  a  displacement  or 
motion  that  the  squares  of  the  small  quantities  become  sensible. 
If,  as  is  often  the  case,  the  forces  operating  be  made  up  of  two 
parts,  one  constant  with  respect  to  time,  and  the  other  periodic, 
it  is  convenient  to  separate  in  imagination  the  two  classes  of 
effects  produced.  The  effect  due  to  the  constant  forces  is  exactly 
the  same  as  if  they  acted  alone,  and  is  found  by  the  solution 
of  a  statical  problem.  It  will  therefore  generally  be  sufficient 
to  suppose  the  forces  periodic,  the  effects  of  any  constant  forces, 
such  as  gravity,  being  merely  to  alter  the  configuration  about 
which  the  vibrations  proper  are  executed.  We  may  thus  without 
any  real  loss  of  generality  confine  ourselves  to  periodic,  and 

therefore  by  Fourier's  theorem  to  harmonic  forces. 

We  might  therefore  assume  as  expressions  for  "9^,  &c.  circular 
functions  of  the  time;  but,  as  we  shall  have  frequent  occasion 

to  recognise  in  the  course  of  this  work,  it  is  usually  more  con- 
venient to  employ  an  imaginary  exponential  function,  such  as 

E(?^^,  where  £  is  a  constant  which  may  be  complex.    When  the 
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corresponding  symbolical  solution  is  obtained,  its  real  and 
imaginary  parts  may  be  separated,  and  belong  respectively  to 
the  real  and  imaginary  parts  of  the  data.  In  this  way  the 
analysis  gains  considerably  in  brevity,  inasmuch  as  differentiations 
and  alterations  of  phase  are  expressed  by  merely  modifying  the 
complex  coefficient  without  changing  the  form  of  the  function. 
We  therefore  write 

^i  =  ̂ie»i^,    "ir^^E^e^P^,  &c. 

dV 
The  minor  determinants 

 
of  the  type  -j—  are  rational  integral 

(l€r$ 

functions  of  the  symbol  D,  and  operate  on  ̂ i,  &c.  according  to 
the  law 

f{D)^p^^f(ip)e^   (2). 

Our  equations  therefore  assume  the  form 

Vi/ri  =  ̂ ie*^,     Vi/r,  =  ̂e»lrt,    &c   (3), 

where  -4i,  -4,,  &c.  are  certain  complex  constants.  And  the  sym- 
bolical solutions  are 

or  by  (2),  Vri  =  ̂ ^,  &c   (4), 

where  V  (ip)  denotes  the  result  of  substituting  ip  for  D  in  V. 

Consider  first  the  case  of  a  system  exempt  from  friction. 
V  and  its  differential  coefficients  are  then  even  functions  of 

D,  so  that  V(ip)  is  real.  Throwing  away  the  imaginary  part 

of  the  solution,  writing  iJie**>  for  -4i,  &c.,  we  have 

ti  =  v^cos(;)^  +  ̂0,     &c   (5). 

If  we  suppose  that  the  forces  '*'i,  &c.  (in  the  case  of  more 
than  one  generalized  component)  have  all  the  same  phase,  they 
may  be  expressed  by 

J&iC0s(jt)i4-a),     j^a  cos  ( jt)^ -f  a),   &c. ; 

and  then,  as  is  easily  seen,  the  co-ordinates  themselves  agree 
in  phase  with  the  forces: 

ti  =  v^-)Cos(pe  +  a)    (6). 
The  amplitudes  of  the  vibrations  depend  among  other  things 

on  the  magnitude  of  V(ijt)).     Now,  if  the  period  of  the  forces 
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be  the  same  as  one  of  those  belonging  to  the  free  vibrations, 

V  (ip)  =  0,  and  the  amplitude  becomes  infinite.  This  is,  of 
course,  just  the  case  in  which  it  is  essential  to  introduce  the 
consideration  of  friction,  from  which  no  natural  system  is  really 
exempt. 

If  there  be  friction,  V  (ip)  is  complex ;  but  it  may  be  divided 

into  two  parts — one  real  and  the  other  purely  imaginary,  of  which 
the  latter  depends  entirely  on  the  friction.     Thus,  if  we  put 

V(ip)  =  V,(tp)  +  i>V,(ip)   (7), 

Vi,  Vj  are  even  functions  of  ip,  and  therefore  real.  If  as  before 

A I  =  RiC^',  our  solution  takes  the  form 

or,  on  throwing  away  the  imaginary  part, 

^     iZiCosO)<-f  gi-fy)  ,g. 

where  tan7=:- ^^^*^^   (9). 

We  have  said  that  V,  (ip)  depends  entirely  on  the  friction ;  but 
it  is  not  true,  on  the  other  hand,  that  V^  {ip)  is  exactly  the  same, 
as  if  there  had  been  no  friction.  However,  this  is  approximately 
the  case,  if  the  friction  be  small ;  because  any  part  of  V  (ip),  which 

depends  on  the  first  power  of  the  coefficients  of  friction,  is  neces- 
sarily imaginary.  Whenever  there  is  a  coincidence  between  the 

period  of  the  force  and  that  of  one  of  the  free  vibrations,  Vj  {ip) 
vanishes,  and  we  have  tan  7  =  —  oo ,  and  therefore 

_i?,sin(p^  +  gi)  .     . 

^^"     i>V,(tp)         <^^^' 
indicating  a  vibration  of  large  amplitude,  only  limited  by  the 
friction. 

On  the  hypothesis  of  small  friction,  0  is  in  general  small,  and 
so  also  is  7,  except  in  case  of  approximate  equality  of  periods. 
With  certain  exceptions,  therefore,  the  motion  has  nearly  the 

same  (or  opposite)  phase  with  the  force  that  excites  it. 

When  a  force  expressed  by  a  harmonic  term  acts  on  a  system, 
the  resulting  motion  is  everywhere  harmonic,  and  retains  the 

original  period,  provided  always  that  the  squares  of  the  displace- 
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ments  and  velocities  may  be  neglected.  This  important  principle 
was  enunciated  by  Laplace  and  applied  by  him  to  the  theory  of 
the  tides.  Its  great  generality  was  also  recognised  by  Sir  John 
Herschel,  to  whom  we  owe  a  formal  demonstration  of  its  truths 

If  the  force  be  not  a  harmonic  function  of  the  time,  the  types 
of  vibration  in  different  parts  of  the  system  are  in  general  different 
from  each  other  and  from  that  of  the  force.  The  harmonic 

functions  are  thus  the  only  ones  which  preserve  their  type  un- 
changed, which,  as  was  remarked  in  the  Introduction,  is  a  strong 

reason  for  anticipating  that  they  correspond  to  simple  tones. 

106.  We  now  turn  to  a  somewhat  different  kind  of  forced 

vibration,  where,  instead  of  given /orce«  as  hitherto,  given  inexora- 
ble motions  are  prescribed. 

If  we  suppose  that  the  co-ordinates  -^i,  -^j,  ...  -^^  are  given 
functions  of  the  time,  while  the  forces  of  the  remaining  types 

"^r+i,  "^r+ai  •••  ̂ m  vauish,  the  equations  of  motion  divide  them- 
selves into  two  groups,  viz. 

and 

       (2). 

In  each  of  the  m—  r  equations  of  the  latter  group,  the  first  r 
terms  are  known  explicit  functions  of  the  time,  and  have  the  same 
effect  as  known  forces  acting  on  the  system.  The  equations  of 
this  group  are  therefore  suflScient  to  determine  the  unknown 

quantities ;  after  which,  if  required,  the  forces  necessary  to  main- 

tain the  prescribed  motion  may  be  determined  from  the  fii*st 
group.  It  is  obvious  that  there  is  no  essential  difference  between 
the  two  classes  of  problems  of  forced  vibrations. 

106.  The  motion  of  a  system  devoid  of  friction  and  executing 
simple  harmonic  vibrations  in  consequence  of  prescribed  variations 

of  some  of  the  co-ordinates,  possesses  a  peculiarity  parallel  to  those 
considered  in  §§  74,  79.     Let 

'^JTi^  Ai  cos  pty    '^,  =  -4,cos/>^,  &c., 
^  Encyc,  Metrop,  art.  S28.    Also  Outlines  ofAttronomy,  §  650. 
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in  which  the  quantities  Ai...Ar  are  regarded  as  given,  while  the 
remaining  ones  are  arbitrary.  We  have  from  the  expressions  for 
Tand  F,§82, 

2(r+F)  =  i(cu  +  i)'a,0^i'  +  ...  +  (Ci,+i>*aia)^i^-f-... 
+  {h (cii -l>* Ou) -4j'  + . ..  +  (cu -p'Oij)  AiAi  + . ..}  cos  2pt, 

from  which  we  see  that  the  equations  of  motion  express  the  con- 
dition that  E,  the  variable  part  of  T  +  F,  which  is  proportional  to 

^{Cu- P^CLn)Ai*+  ...  -^(Ca- p^dii)  AiA^-^-   (1), 
shall  be  stationary  in  value,  for  all  variations  of  the  quantities 

-4^+1 ...  -4m.  Let  jt)''  be  the  value  of  |>*  natural  to  the  system  when 
vibrating  under  the  restraint  defined  by  the  ratios 

then 

8o  that 

E^ip'^-p")  {^il,«  +  ...  +auiliil,  +  ...}   (2). 
From  this  we  see  that  if  p*  be  certainly  less  than  p*^ ;  that  is, 

if  the  prescribed  period  be  greater  than  any  of  those  natural  to 
the  system  under  the  partial  constraint  represented  by 

then  E  is  necessarily  positive,  and  the  stationary  value — there  can 
be  but  one — is  an  absolute  minimum.  For  a  similar  reason,  if  the 
prescribed  period  be  leas  than  any  of  those  natural  to  the  partially 
constrained  system,  £  is  an  absolute  maximum  algebraically,  but 
arithmetically  an  absolute  minimum.  But  when  p  lies  within  the 

range  of  possible  values  of  jt)'*,  E  may  be  positive  or  negative,  and 
the  actual  value  is  not  the  greatest  or  least  possible.  Whenever 
a  natural  vibration  is  consistent  with  the  imposed  conditions,  that 
will  be  the  vibration  assumed.  The  variable  part  of  r+ F  is  then 
zero. 

For  convenience  of  treatment  we  have  considered  apart  the 
two  great  classes  of  forced  vibrations  and  free  vibrations;  but  there 
is,  of  course,  nothing  to  prevent  their  coexistence.  After  the  lapse 
of  a  sufficient  interval  of  time,  the  free  vibrations  always  dis- 

appear, however  small  the  friction  may  be.  The  case  of  abso- 
lutely no  friction  is  purely  ideal. 

There  is  one  caution,  however,  which  may  not  be  superfluous 
in  respect  to  the  case  where  given  motions  are  forced  on  the 

system.  Suppose,  as  before,  that  the  co-ordinates  -^i,  '^2»"«'^r  are 
given.    Then  the  free  vibrations,  whose  existence  or  non-existence 
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is  a  matter  of  indifference  so  far  as  the  forced  motion  is  concerned, 

must  be  understood  to  be  such  as  the  system  is  capable  of,  when 

the  co-ordinates  V^i-.V^r  ctre  not  allowed  to  vary  from  zero.  In 
order  to  prevent  their  varying,  forces  of  the  corresponding,  types 
must  be  introduced ;  so  that  from  one  point  of  view  the  motion  in 
question  may  be  regarded  as  forced.  But  the  applied  forces  are 
merely  of  the  nature  of  a  constraint ;  and  their  effect  is  the  same 
as  a  limitation  on  the  freedom  of  the  motion. 

106  a.  The  principles  of  the  last  sections  shew  that  if 

"^i*  '^a«««'^r  be  given  harmonic  functions  of  the  time  Aicoapt, 
A^cospt,.,.,  the  forces  of  the  other  tjrpes  vanishing,  then  the 
motion  is  determinate,  unless  p  is  ao  chosen  as  to  coincide  with 

one  of  the  values  proper  to  the  system  when  -^i,  -^j.-.-^r  are 
maintained  at  zero.  As  an  example,  consider  the  case  of  a 
membrane  capable  of  vibrating  transversely.  If  the  displacement 

-^  at  every  point  of  the  contour  be  given  (proportional  to  cos  pt), 
then  in  general  the  value  in  the  interior  is  determinate ;  but  an 
exception  occurs  if  p  have  one  of  the  values  proper  to  the 
membrane  when  vibrating  with  the  contour  held  at  rest.  This 

problem  is  considered  by  M.  Duhem^  on  the  basis  of  a  special 
analytical  investigation  by  Schwartz.  It  will  be  seen  that  it  may 
be  regarded  as  a  particular  case  of  a  vastly  more  general  theorem. 

A  like  result  may  be  stated  for  an  elastic  solid  of  which  the 

surface  motion  (proportional  to  cos  pt)  is  given  at  every  point.  Of 
course,  the  motion  at  the  boundary  need  not  be  more  than  partially 
given.  Thus  for  a  mass  of  air  we  may  suppose  given  the  motion 
luyrmal  to  a  closed  surface.  The  internal  motion  is  then  deter- 

minate, unless  the  frequency  chosen  is  one  of  those  proper  to  the 
mass,  when  the  surface  is  made  unyielding. 

107.  Very  remarkable  reciprocal  relations  exist  between  the 
forces  and  motions  of  different  types,  which  may  be  regarded  as 
extensions  of  the  corresponding  theorems  for  systems  in  which 

only  F  or  T  has  to  be  considered  (§  72  and  §§  77,  78).  If  we  sup- 

pose that  all  the  component  forces,  except  two — ^^i  and  '9^ — are 
zero,  we  obtain  from  §  104, 

cteii  de^ 

dci2    *     de^s 

^  Coun  de  Phynque  Mathimatique,  Tome  Second,  p.  190,  Paris,  1891. (!)• 
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We  now  consider  two  cases  of  motion  for  the  same  system ;  first 

when  "^j  vanishes,  and  secondly  (with  dashed  letters)  when  '9i 
vanishes.     If  ̂ j  =  0, 

t.=v-'£^.   <2>- 
Similarly,  if  %'  =  0, 

^•'=^-£^''   <»)• 
In  these  equations  V  and  its  differential  coefficients  are  rational 

integral  functions  of  the  symbol  £>',  and  since  in  every  case 
^^  =  ̂ ^,  V  is  a  symmetrical  determinant,  and  therefore 

d^  ̂ dV        
'n       wow 

Hence  we  see  that  if  a  force  "^^i  act  on  the  system,  the  co- 
ordinate '^2  is  related  to  it  in  the  same  way  as  the  co-ordinate  '^/ 

is  related  to  the  force  '^./,  when  this  latter  force  is  supposed  to  act alone. 

In  addition  to  the  motion  here  contemplated,  there  may  be 
free  vibrations  dependent  on  a  disturbance  already  existing  at  the 
moment  subsequent  to  which  all  new  sources  of  disturbance  are 

included  in  '9 ;  but  these  vibrations  are  themselves  the  effect  of 
forces  which  acted  previously.  However  small  the  dissipation 

may  be,  there  must  be  an  interval  of  time  after  which  free  vibra- 
tions die  out,  and  beyond  which  it  is  unnecessary  to  go  in  taking 

account  of  the  forces  which  have  acted  on  a  system.  If  therefore 

we  include  under  '9  forces  of  sufficient  remoteness,  there  are  no 
independent  vibrations  to  be  considered,  and  in  this  way  the 
theorem  may  be  extended  to  cases  which  would  not  at  first  sight 
appear  to  come  within  its  scope.  Suppose,  for  example,  that  the 
system  is  at  rest  in  its  position  of  equilibrium,  and  then  begins  to 
be  acted  on  by  a  force  of  the  first  type,  gradually  increasing  in 

magnitude  from  zero  to  a  finite  value  "^^i,  at  which  point  it  ceases 
to  increase.  If  now  at  a  given  epoch  of  time  the  force  be  sud- 

denly destroyed  and  remain  zero  ever  afterwards,  free  vibrations  of 
the  system  will  set  in,  and  continue  until  destroyed  by  friction. 

At  any  time  t  subsequent  to  the  given  epoch,  the  co-ordinate  -^j 

has  a  value  dependent  upon  t  proportional  to  "^^i.  The  theorem 
allows  us  to  assert  that  this  value  '^s  beai*s  the  same  relation  to  '9i 
as  '^JTi  would  at  the  same  moment  have  borne  to  '9^',  if  the  original 
cause  of  the  vibrations  had  been  a  force  of  the  second  type  in- 
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creasing  gradually  from  zero  tx>  ̂ /,  and  then  suddenly  vanishing 
at  the  given  epoch  of  time.  We  have  already  had  an  example  of 
this  in  §  101,  and  a  like  result  obtains  when  the  cause  of  the 
original  disturbance  is  an  impulse,  or,  as  in  the  problem  of  the 

pianoforte-string,  a  variable  force  of  finite  though  short  duration. 
In  these  applications  of  our  theorem  we  obtain  results  relating  to 
free  vibrations,  considered  as  the  residual  effect  of  forces  whose 

actual  operation  may  have  been  long  before. 

108.  In  an  important  class  of  cases  the  forces  ̂ i  and  '^Z  are 
harmonic,  and  of  the  same  period.  We  may  represent  them  by 

A^ef^,  ̂ jV^^  where  A^  and  A^  may  be  assumed  to  be  real,  if  the 
forces  be  in  the  same  phase  at  the  moments  compared.  The 
results  may  then  be  written 

where  ip  is  written  for  i).     Thus, 

^>,=  il,Vr/   (2). 

Since  the  ratio  ̂ j  :  ̂,'  is  by  hypothesis  real,  the  same  is 
true   of  the  ratio  '^i    :  -^j;   which   signifies   that   the  motions 
represented  by  those  symbols  are  in  the  same  phase.  Passing 

to  real  quantities  we  may  state  the  theorem  thus: — 

If  a  force  ̂ i  =  Aj  cos  pt,  acting  on  the  system  give  rise  to 

the  motion  '^a  =  ̂ AiCos(pt  — e);  then  mil  a  force  "^^j' =  Aj' cos  pt 
produce  the  motion  yjri  =  ̂  Aj'  cos  (pt  —  e). 

If  there  be  no  friction,  e  will  be  zero. 

If  Ai^Ai\  then  '^/  =  '^2«  But  it  must  be  remembered  that 

the  forces  "^^i  and  ̂ /  are  not  necessarily  comparable,  any  more 
than  the  co-ordinates  of  corresponding  types,  one  of  which  for 
example  may  represent  a  linear  and  another  an  angular  dis- 
placement. 

The  reciprocal  theorem  may  be  stated  in  several  ways,  but 
before  proceeding  to  these  we  will  give  another  investigation, 
not  requiring  a  knowledge  of  determinants. 

If  *i,^„...  V^,,-^,,...  and  ̂ /,  ̂ /,...  Vr/,  i/r,',...  be  two  sets 
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of  forces  and  corresponding  displacements,  the  equations  of 
motion,  §  103,  give 

+  ̂ a' (6,1  Vri  +  eai/ra  + tfai/r, +  ...)  +  ... . 

Now,  if  all  the  forces  vary  as  e**,  the  eflfect  of  a  symbolic 
operator  such  as  en  on  any  of  the  quantities  '^  is  merely  to 
multiply  that  quantity  by  the  constant  found  by  substituting 
ip  for  D  in  er«.  Supposing  this  substitution  made,  and  having 
regard  to  the  relations  ert='egr,  we  may  write 

+  «i2(ti>a  +  t.>i)+   (3). 

Hence  by  the  symmetry 

^it/  +  ̂>>/^/+-  =  ̂i>i  +  *.>«+   W' 
which  is  the  expression  of  the  reciprocal  relation. 

109.  In  the  applications  that  we  are  about  to  make  it 
will  be  supposed  throughout  that  the  forces  of  all  types  but 
two  (which  we  may  as  well  take  as  the  first  and  second)  are 
zero.     Thus 

^iti'  +  ̂»t/  =  ̂i>i  +  *>V»   0). 
The  consequences  of  this  equation  may  be  exhibited  in  three 

different  ways.     In  the  first  we  suppose  that 

whence  ^/r,  :  ̂i  =  >/r/  :  ̂,'   (2), 

shewing,  as  before,  that  the  relation  of  -^a  to  "^i  in  the  first 
case  when  '^^2  =  0  is  the  same  as  the  relation  of  yjri  to  "^^/in 
the  second  case,  when  "^^jsO,  the  identity  of  relationship  ex- 

tending to  phase  as  well  as  amplitude. 

A  few  examples  may  promote  the  comprehension  of  a  law, 
whose  extreme  generality  is  not  unlikely  to  convey  an  impression 
of  vagueness. 

If  P  and  Q  be  two  points  of  a  horizontal  bar  supported  in 
any  manner  (e.g.  with  one  end  clamped  and  the  other  free),  a 
given  harmonic  transverse  force  applied  at  P  will  give  at  any 
moment  the  same  vertical  deflection  at  Q  as  would  have  been 
found  at  P,  had  the  force  acted  at  Q. 

If  we  take    angular    instead    of   linear   displacements,   the 
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theorem  will  run: — A  given  harmonic  couple  at  P  will  give  the 
same  rotoHon  at  Q  as  the  couple  at  Q  would  give  at  P. 

Or  if  one  displacement  be  linear  and  the  other  angular,  the 
result  may  be  stated  thus:  Suppose  for  the  first  case  that  a 
harmonic  couple  acts  at  P,  and  for  the  second  that  a  vertical 
force  of  the  same  period  and  phase  acts  at  Q,  then  the  linear 
displacement  at  Q  in  the  first  case  has  at  every  moment  the 
same  phase  as  the  rotatory  displacement  at  P  in  the  second, 
and  the  amplitudes  of  the  two  displacements  are  so  related  that 
the  maximum  couple  at  P  would  do  the  same  work  in  acting 
over  the  maximum  rotation  at  P  due  to  the  force  at  Q,  as  the 

maximum  force  at  Q  would  do  in  acting  through  the  maximum 
displacement  at  Q  due  to  the  couple  at  P.  In  this  case  the 
statement  is  more  complicated,  as  the  forces,  being  of  diflferent 
kinds,  cannot  be  taken  equal. 

If  we  suppose  the  period  of  the  forces  to  be  excessively  long, 
the  momentary  position  of  the  system  tends  to  coincide  with 
that  in  which  it  would  be  maintained  at  rest  by  the  then  acting 
forces,  and  the  equilibrium  theory  becomes  applicable.  Our 
theorem  then  reduces  to  the  statical  one  proved  in  §  72. 

As  a  second  example,  suppose  that  in  a  space  occupied  by 
air,  and  either  wholly,  or  partly,  confined  by  solid  boundaries, 
there  are  two  spheres  A  and  B,  whose  centres  have  one  degree 
of  freedom.  Then  a  periodic  force  acting  on  A  will  produce 

the  same  motion  in  B,  as  if  the  parts  were  interchanged ;  and ' 
this,  whatever  membranes,  strings,  forks  on  resonance  cases,  or 
other  bodies  capable  of  being  set  into  vibration,  may  be  present  in 
their  neighbourhood. 

Or,  if  A  and  B  denote  two  points  of  a  solid  elastic  body 
of  any  shape,  a  force  parallel  to  OX,  acting  at  A,  will  produce 
the  same  motion  of  the  point  B  parallel  to  OF  as  an  equal  force 
parallel  to  OY  acting  at  B  would  produce  in  the  point  A, 
parallel  to  OX. 

Or  again,  let  A  and  B  be  two  points  of  a  space  occupied  by 
air,  between  which  are  situated  obstacles  of  any  kind.  Then  a 

sound  originating  at  A  is  perceived  at  B  with  the  same  intensity 

as  that  with  which  an  equal  sound  originating  at  B  would  be  per- 
ceived at  -4.^     The  obstacle,  for  instance,  might  consist  of  a  rigid 

^  Helmholtz,  CreUe,  Bd.  ltii.,  1859.    The  sounds  must  be  such  as  in  the  absence 
of  obstacles  woold  diffuse  themselves  equaUy  in  all  directions. 
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wall  pierced  with  one  or  more  holes.  This  example  corresponds 
to  the  optical  law  that  if  by  any  combination  of  reflecting  or 
refracting  surfaces  one  point  can  be  seen  from  a  second,  the  second 
can  also  be  seen  from  the  first.  In  Acoustics  the  sound  shadows 

are  usually  only  partial  in  consequence  of  the  not  insignificant 
value  of  the  wave-length  in  comparison  with  the  dimensions  of 
ordinary  obstacles:  and  the  reciprocal  relation  is  of  considerable 
interest. 

A  further  example  may  be  taken  from  electricity.  Let  there 

be  two  circuits  of  insulated  wire  A  and  B,  and  in  their  neigh- 
bourhood any  combination  of  wire-circuits  or  solid  conductors 

in  communication  with  condensers.  A  periodic  electro-motive 
force  in  the  circuit  A  will  give  rise  to  the  same  current  in  B 

as  would  be  excited  in  A  if  the  electro-motive  force  operated- 
in  B. 

Our  last  example  will  be  taken  from  the  theory  of  conduction 

and  radiation  of  heat,  Newton's  law  of  cooling  being  assumed 
as  a  basis.  The  temperature  at  any  point  2I  of  a  conducting  and 
radiating  system  due  to  a  steady  (or  harmonic)  source  of  heat 
at  jB  is  the  same  as  the  temperature  at  B  due  to  an  equal  source 

at  A.  Moreover,  if  at  any  time  the  soui*ce  at  B  be  removed,  the 
whole  subsequent  course  of  temperature  at  A  will  be  the  same  as 
it  would  be  at  B  if  the  parts  of  B  and  A  were  interchanged. 

110.  The  second  way  of  stating  the  reciprocal  theorem  is 
arrived  at  by  taking  in  (1)  of  §  109, 

>/^i  =  0,     i^;  =  0; 

whence  ^iV^/  =  ̂'a>,   (1)» 

or  ^,  :  yfr,^^,'  :  i/r/   (2), 

shewing  that  the  relation  of  ̂ 1  to  -^a  in  the  first  case,  when  yjri  =  0, 

is  the  same  as  the  relation  of  ̂ j'  to  yjri  in  the  second  case,  when 

Thus  in  the  example  of  the  rod,  if  the  point  P  be  held  at 
rest  while  a  given  vibration  is  imposed  upon  Q  (by  a  force  there 
applied),  the  reaction  at  P  is  the  same  both  in  amplitude  and 
phase  as  it  would  be  at  Q  if  that  point  were  held  at  rest  and 
the  given  vibration  were  imposed  upon  P, 

So  if  A  and  B  be  two  electric  circuits  in  the  neighbourhood 
of  any  number  of  others,  C,  D,...  whether  closed  or  terminating 
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in  condensers,  and  a  given  periodic  current  be  excited  in  A  by 

the  necessary  electro-motive  force,  the  induced  electro-motive 
force  in  £  is  the  same  as  it  would  be  in  il,  if  the  parts  of  A 
and  B  were  interchanged. 

The  third  form  of  statement  is  obtained  by  putting  in  (I) 
of  §  109, 

^1  =  0,     Vr/  =  0; 

whence  ^/V^i  +  ̂ a>i  =  0   (3), 

or  t,  :  >;r,  =  -^/  :  >P/   (4), 

proving  that  the  ratio  of  -^i  to  -^j  in  the  first  case,  when  ̂ ^  acts 

alone,  is  the  negative  of  the  ratio  of  ̂ i'  to  '^'x'  ̂ ^  the  second  case, 
when  the  forces  are  so  related  as  to  keep  '^/  equal  to  zero. 

Thus  if  the  point  P  of  the  rod  be  held  at  rest  while  a  periodic 
force  acts  at  Q,  the  reaction  at  P  bears  the  same  numerical  ratio 

to  the  force  at  Q  as  the  displacement  at  Q  would  bear  to  the 
displacement  at  P,  if  the  rod  were  caused  to  vibrate  by  a  force 

applied  at  P. 

111.  The  reciprocal  theorem  has  been  proved  for  all  systems 
in  which  the  frictional  forces  can  be  represented  by  the  function  F, 
but  it  is  susceptible  of  a  further  and  an  important  generalization. 
We  have  indeed  proved  the  existence  of  the  function  F  for 
a  large  class  of  cases  where  the  motion  is  resisted  by  forces 
proportional  to  the  absolute  or  relative  velocities,  but  there  are 
other  sources  of  dissipation  not  to  be  brought  under  this  head, 
whose  effects  it  is  equally  important  to  include;  for  example,  the 
dissipation  due  to  the  conduction  or  radiation  of  heat.  Now 
although  it  be  true  that  the  forces  in  these  cases  are  not  for  all 

possible  motions  in  a  constant  ratio  to  the  velocities  or  displace- 
ments, yet  in  any  actual  case  of  periodic  motion  (t)  they  are 

necessarily  periodic,  and  therefore,  whatever  their  phase,  ex- 
pressible by  a  sum  of  two  terms,  ooe  proportional  to  the  dis- 

placement (absolute  or  relative)  and  the  other  proportional  to  the 
velocity  of  the  part  of  the  system  aflFected.  If  the  coeflScients 
be  the  same,  not  necessarily  for  all  motions  whatever,  but  for  all 
motions  of  the  period  t,  the  function  F  exists  in  the  only  sense 
required  for  our  present  purpose.  In  fact  since  it  is  exclusively 
with  motions  of  period  r  that  the  theorem  is  concerned,  it  is 
plainly  a  matter  of  indifference  whether  the  functions  T,  F,  V 
are  dependent  upon  r  or  not.     Thus  extended,  the  theorem  is 
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perhaps  sufficiently  geneml  to  cover  the  whole  field  of  dissipative 
forces. 

It  is  important  to  remember  that  the  Principle  of  Reciprocity 

is  limited  to  systems  which  vibrate  about  a  configuration  of  equi- 
librium,  and  is  therefore  not  to  be  applied  without  reservation  to 
such  a  problem  as  that  presented  by  the  transmission  of  sonorous 
waves  through  the  atmosphere  when  disturbed  by  wind.  The 
vibrations  must  also  be  of  such  a  character  that  the  square  of  the 

motion  can  be  neglected  throughout;  otherwise  our  demonstra- 
tion would  not  hold  good.  Other  apparent  exceptions  depend  on 

a  misunderstanding  of  the  principle  itself.  Care  must  be  taken 

to  observe  a  proper  correspondence  between  the  forces  and  dis- 
placements, the  rule  being  that  the  action  of  the  force  over  the 

displacement  is  to  represent  tuork  done.  Thus  couples  correspond 
to  rotations,  pressures  to  increments  of  volume,  and  so  on. 

Ill  a.  The  substance  of  the  preceding  sections  is  taken  from 

a  paper  by  the  Author  *,  in  which  the  action  of  dissipative  forces 
appears  first  to  have  been  included.  Reciprocal  theorems  of  a 
special  character,  and  with  exclusion  of  dissipation,  had  been 
previously  given  by  other  writers.  One,  due  to  von  Helmholtz, 
has  already  been  quoted.  Reference  may  also  be  made  to  the 

reciprocal  theorem  of  Betti',  relating  to  a  uniform  isotropic  elastic 
solid,  upon  which  bodily  and  surface  forces  act.  Lamb^  has  shewn 
that  these  results  and  more  recent  ones  of  von  Helmholtz*  may 
be  deduced  from  a  very  general  equation  established  by  Lagrange 
in  the  Micanique  Analytique. 

Ill  6.  In  many  cases  of  practical  interest  the  external  force, 
in  response  to  which  a  system  vibrates  harmonically,  is  applied  at  a 

single  point.  This  may  be  called  the  driving-point,  and  it  becomes 
important  to  estimate  the  reaction  of  the  system  upon  it.  When 
T  and  F  only  are  sensible,  or  F  and  V  only,  certain  general 
conclusions  may  be  stated,  of  which  a  specimen  will  here  be  given. 
For  further  details  reference  must  be  made  to  a  paper  by  the 

Author*. 

^  **  Some  General  Theorems  relating  to  Vibrations,"  Proe,  Math.  Soc,,  1S73. 
s  II  Nuovo  Cimento,  1S72. 
»  Proe.  Math.  Soc.,  Vol.  xix.,  p.  144,  Jan.  18SS. 
*  CreUe,  t.  100,  pp.  187,  213.     1886. 
*  '*The  Reaction  upon  the  Driving-point  of  a  System  executing  Forced  Harmonic 

Oscillations  of  various  Periods.*'    Phil.  Mag.,  May,>1886. 
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Consider  a  system,  devoid  of  potential  energy,  in  which  the 

co-ordinate  -^i  is  made  to  vary  by  the  operation  of  the  harmonic 

force  "^^i ,  proportional  to  ff^.  The  other  co-ordinates  may  be  chosen 
arbitrarily,  and  it  will  be  very  convenient  to  choose  them  so  that 

no  product  of  them  enters  into  the  expressions  for  2^  and  F,  They 
would  be  in  fact  the  normal  co-ordinates  of  the  system  on  the 
supposition  that  ̂ ^  is  constrained  (by  a  suitable  force  of  its  own 
type)  to  remain  zero.  The  expressions  for  T  and  F  thus  take  the 

following  forms : — 

T  =  iani^i^  +  \a^^^  +  \(h,'^}  +  . .  . 

-h  aia>/^,>/r,  +  (hz^x<t%  +  (hA^ii^A  +   (1). 

•       *  •  •        * 

The  equations  for  a  force  '9i,  proportional  to  ̂ ^,  are  accordingly 

(t>iii  +  6ii)  ̂ 1  +  (t^Ois  4- 6ij)  ̂,  +  (ipoi,  +  615)  >^5 -h  . . .  = '^^i , 

(ipoi,  +  61,)  ̂i  +  (ipcha  +  M  -^2  =  0, 

By  means  of  the  second  and  following  equations  -^j,  "^s  •••  are 
expressed  in  terms  of  ̂ 1.  Introducing  these  values  into  the  first 
equation,  we  get 

The  ratio  '^^i/'^i  is  a  complex  quantity,  of  which  the  real  part 
corresponds  to  the  work  done  by  the  force  in  a  complete  period 
and  dissipated  in  the  system.  By  an  extension  of  electrical 

language  we  may  call  it  the  resistance  of  the  system  and  denote  it 
by  the  letter  R\  The  other  part  of  the  ratio  is  imaginary.  If  we 

denote  it  by  ipL'yjri^  or  i'^i,  L'  will  be  the  moment  of  inertia,  or 
self-induction  of  electrical  theory.     We  write  therefore 

>P,  =  (iZ' +  tpi')  ̂ 1   W; 

and  the  values  of  R'  and  Z'  are  to  be  deduced  by  separation  of  the 
real  and  the  imaginary  parts  of  the  right-hand  member  of  (3).  In 
this  way  we  get 

This  is  the  value  of  the  resistance  as  determined  by  the 
constitution  of  the  system,  and  by  the  frequency  of  the  imposed 
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vibration.  Each  component  of  the  latter  series  (which  alone 

involves/))  is  of  the  form  ap^/ifi  +  7p*),  where  a,  /8,  y  are  all  positive, 
and  (as  may  be  seen  most  easily  by  considering  its  reciprocal) 

increases  continually  as  jj^  increases  from  zero  to  infinity.  We 
conclude  that  as  the  frequency  of  vibration  increases,  the  value  of 
R  increases  continuously  with  it.  At  the  lower  limit  the  motion 
is  determined  sensibly  by  the  quantities  b  (the  resistances)  only,  and 
the  corresponding  resultant  resistance  Bf  is  an  absolute  minimum, 
whose  value  is 

6„-2(6„VM     (6). 

At  the  upper  limit  the  motion  is  determined  by  the  inei*tia  of 
the  component  parts  without  regard  to  resistances,  and  the  value 
of  R  is 

Ou-^-j-^^  — r^n   » 
On  0^(hi' 

6n  +  2f6„^;-26,^-i?)   (7). 
or 

When  p  is  either  very  large  or  very  small,  all  the  co-ordinates 
are   in   the   same   phase,  and   (6),   (7)  may  be   identified   with 

Also  U^a,,-'i'^  +  'i^'^^^?y^'Xx     (8). 

In  the  latter  series  every  term  is  positive,  and  continually 

diminishes  as  p^  increases.  Hence  every  increase  of  frequency  is 
attended  by  a  diminution  of  the  moment  of  inertia,  which  tends 

ultimately  to  the  minimum  corresponding  to  the  disappearance  of 
the  dissipative  terms. 

If  /)  be  either  very  large  or  very  small,  (8)  identifies  itself 
with  2TI^^\ 

As  a  simple  example  take  the  problem  of  the  reaction  upon 

the  primary  circuit  of  the  electric  currents  generated  in  a  neigh- 
bouring secondary  circuit.  In  this  ciise  the  co-ordinates  (or  rather 

their  rates  of  increase)  are  naturally  taken  to  be  the  currents 

themselves,  so  that  -^i  is  the  primary,  and  ̂ ^  the  secondary 
current.  In  usual  electrical  notation  we  represent  the  coefficients 

of  self-induction  by  i,  iV,  and  of  mutual  induction  by  itf,  so  that 

and  the  resistances  by  R  and  S,    Thus 

aii  =  L,    Oij  =  if,    Oa  =  iV ; 

ill  =  -Ri    6i3  =  0,      iaj  =  iS ; 
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and  (5)  and  (8)  become  at  once 

*-«-^>   «■ 

These  formul»  were  given  originally  by  Maxwell,  who  remarked 
that  the  reaction  of  the  currents  in  the  secondary  has  the  effect 
of  increasing  the  effective  resistance  and  diminishing  the  effective 

self-induction  of  the  primary  circuit. 

If  the  rate  of  alternation  be  very  slow,  the  secondary  circuit  is 
without  influence.     If,  on  the  other  hand,  the  rate  be  very  rapid, 

112.  In  Chapter  ill.  we  considered  the  vibrations  of  a  system 
with  one  degree  of  freedom.  The  remainder  of  the  present  Chapter 
will  be  devoted  to  some  details  of  the  case  where  the  degrees  of 
freedom  are  two. 

If  X  and  y  denote  the  two  co-ordinates,  the  expressions  for  T 
and  V  are  of  the  form 

2F=i4a:«+25a?y  +  Cy^  J       ^^' 
so  that,  in  the  absence  of  friction,  the  equations  of  motion  are 

Lx  +  My  +  Ax^By^X\  .  . 

Mx  +  Ny  +  Bx+Cy^Y]   
^^^• 

When  there  are  no  impressed  forces,  we  have  for  the  natural 
vibrations 

(LI>  -\-A)x  +  (MD'  +  B)y^O\ 

(MD^'^B)x+{ND'-\'C)y  =  0'     D  being  the  symbol  of  differentiation  with  respect  to  time. 

If  a  solution  of  (3)  be  x  =  l€^,  y=^m€^^,  X'  is  one  of  the 
roots  of 

{L\^-\-A)(N\^-\-C)-(MV  +  By  =  0     (4), 
or 

\^(LN-M^)  +  \^(LC'\-NA-2MB)  +  AC'-B'  =  0   (5). 

The  constants  L,  M,  N\  A,  B,  C,  are  not  entirely  arbitrary. 
Since  T  and  V  are  essentially  positive,  the  following  inequalities 
must  be  satisfied : — 

LN>M\    AG>B'   (6). 

Moreover,  L,  N,  A,  C  must  themselves  be  positive. 

(3). 
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We  proceed  to  examine  the  eflFect  of  these  restrictions  on  the 
roots  of  (5). 

In  the  first  place  the  three  coefficients  in  the  equation  are 
positive.  For  the  first  and  third,  this  is  obvious  from  (6).  The 

coefficient  of  X^ 

-  {JLG  -jNAy  4-  2jLNAC  -  2MB, 

in  which,  as  is  seen  from  (6),  JLNAC  is  necessarily  greater  than 

MB.  We  conclude  that  the  values  of  X',  if  real,  are  both 
negative. 

It   remains  to   prove  that  the  roots  are  in   fact  real.     The 
condition  to  be  satisfied  is  that  the  following  quantity  be  not 

negative : — 
{LC^NA-2MBf-^{LN-M^){AC-B'). 

After  reduction  this  may  be  brought  into  the  form 

^{jLN.B^jAC.My 

+  (JLC^  J'NAy  {{JLC  -  JNA )« +  4  {jLNAC  -  MB)}, 
which  shews  that  the  condition  is  satisfied,  since  JLNAC  — MB 

is  positive.  This  is  the  analytical  proof  that  the  values  of  X*  are 
both  real  and  negative ;  a  fact  that  might  have  been  anticipated 
without  any  analysis  from  the  physical  constitution  of  the  system, 
whose  vibrations  they  serve  to  express. 

The  two  values  of  X'  are  different,  unless  both 

Jln.b-Jag.m^o 
JLC^JNA^O 

which  require  that 
L  :  M  :  N  =  A  :  B  :  C   (7). 

The  common  spherical  pendulum  is  an  example  of  this  case. 

By  means  of  a  suitable  force  Y  the  co-ordinate  y  may  be 
prevented  from  varying.  The  system  then  loses  one  degree  of 
freedom,  and  the  period  corresponding  to  the  remaining  one  is  in 

general  difierent  from  either  of  those  possible  before  the  introduc- 
tion of  Y,  Suppose  that  the  types  of  the  motions  obtained  by 

thus  preventing  in  turn  the  variation  of  y  and  x  are  respectively 

e^»^,  e^.     Then  fii^,  ̂ i^  are  the  roots  of  the  equation 

(iX^  +  il)(iV'X«-|-(7)  =  0, 
R.  \\ 
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being  that  obtained  from  (4)  by  suppressing  M  and  B,  Hence 

(4)  may  itself  be  put  into  the  form 

LN  (k'-'  fii')(\'-  fi^)--(M\'  +  By   (8), 

which  shews  at  once  that  neither  of  the  roots  of  X*  can  be 

intermediate  in  value  between  fii^  and  /ij*.  A  little  further 
examination  will  prove  that  one  of  the  roots  is  greater  than  both 

the  quantities  /L^l^  ̂ *,  and  the  other  less  than  both.     For  if  we  put 

f(V)  =  LN  (X»  -  /^»)  (X»  -  M.')  -  (if  V  +  B)\ 

we  see  that  when  X^  is  very  small,  /  is  positive  (AC  —  B*);  when 
X'  decreases  (algebraically)  to  fjLi\  f  changes  sign  and  becomes 

negative.  Between  0  and  y^  there  is  therefore  a  root ;  and  also 

by  similar  reasoning  between  \t^  and  —  oo  .  We  conclude  that  the 

tones  obtained  by  subjecting  the  system  to  the  two  kinds  of  con- 
straint in  question  are  both  intermediate  in  pitch  between  the 

tones  given  by  the  natural  vibrations  of  the  system.  In  particular 

cases  /Lti',  /ia'  may  be  equal,  and  then 

jTNji-±B^^jAC±B 

J'LNTM       JLN  +  M    ^  ̂' 
This  proposition  may  be  generalized.  Any  kind  of  constraint 

which  leaves  the  system  still  in  possession  of  one  degree  of  free- 
dom may  be  regarded  as  the  imposition  of  a  forced  relation 

between  the  co-ordinates,  such  as 

ax  +  $y  =  0   (10). 

Now  if  ow?  +  /8y,  and  any  other  homogeneous  linear  func- 
tion of  X  and  y,  be  taken  as  new  variables,  the  same  argument 

proves  that  the  single  period  possible  to  the  system  after  the 
introduction  of  the  constraint,  is  intermediate  in  value  between 

those  two  in  which  the  natural  vibrations  were  previously  per- 
formed. Conversely,  the  two  periods  which  become  possible 

when  a  constraint  is  removed,  lie  one  on  each  side  of  the  original 

period. 
If  the  values  of  X'  be  equal,  which  can  only  happen  when 

L  :  M  :  N^A  :  B  :  C, 

the  introduction  of  a  constraint  has  no  effect  on  the  period ;  for 
instance,  the  limitation  of  a  spherical  pendulum  to  one  vertical 

plane. 

113.    As  a  simple  example  of  a  system  with  two  degrees  of 
freedom,  we  may  take  a  stretched  string  of  length  2,  itself  without 
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inertia,  but  carrying  two  equal  masses  m  at  distances  a  and  h  from 

one  end  (Fig.  17).     Tension  =  2\. 

Fig.  17. 

If  X  and  y  denote  the  displacements, 

f c^rr       m    [^       (^  -  V)  V 

Since  T  and  V  are  not  of  the  same  form,  it  follows  that  the 

two  periods  of  vibration  are  in  every  case  unequal. 

If  the  loads  be  symmetrically  attached,  the  character  of  the 
two  component  vibrations  is  evident.  In  the  firat,  which  will  have 
the  longer  period,  the  two  weights  move  together,  so  that  x.  and  y 
remain  equal  throughout  the  vibration.  In  the  second  x  and  y  are 
numerically  equal,  but  opposed  in  sign.  The  middle  point  of  the 
string  then  remains  at  rest,  and  the  two  masses  are  always  to 
be  found  on  a  straight  line  passing  through  it.  In  the  first  case 

a;  — y  =  0,  and  in  the  second  x-k-y  —  Q]  so  that  x  —  y  and  x  +  y 
ai-e  the  new  variables  which  must  be  assumed  in  order  to  reduce 
the  functions  Tand  V  simultaneously  to  a  sum  of  squares. 

For  example,  if  the  masses  be  so  attached  as  to  divide  the 

string  into  three  equal  parts. 

2T  =  J'  [{x^.yy  +  {x-yr]         ] 2 

Q/77 2F=^'  {(^+y)'+3(a;-y)'j 

(1). 

from  which  we  obtain  as  the  complete  solution, 

a:  +  y  =  4cos(y/?^\e 

+  a 

\ 

x-y  =  Bco.(J\^\t^^)^ 

(2), 

where,  as  usual,  the  constants  A,  a,  By  jS  are  to  be  determined  by 
the  initial  circumstances. 

114.  When  the  two  natural  periods  of  a  system  are  nearly 

equal,  the  phenomenon  of  intermittent  vibration  sometimes  pre- 
sents itself  in  a  very  curious  manner.     In  order  to  illustrate  this, 



164  VIBRATING   SYSTEMS   IN   GENERAL.  [114. 

we  may  recur  to  the  string  loaded,  we  will  now  suppose,  with  two 

equal  masses  at  distances  from  its  ends  equal  to  one-fourth  of  the 
length.  If  the  middle  point  of  the  string  were  absolutely  fixed, 
the  two  similar  systems  on  either  side  of  it  would  be  completely 
independent,  or,  if  the  whole  be  considered  as  one  S3rstem,  the  two 
periods  of  vibration  would  be  equal.  We  now  suppose  that 
instead  of  being  absolutely  fixed,  the  middle  point  is  attached  to 
springs,  or  other  machinery,  destitute  of  inertia,  so  that  it  is 
capable  of  yielding  slightly.  The  reservation  as  to  inertia  is  to 
avoid  the  introduction  of  a  third  degree  of  freedom. 

From  the  symmetry  it  is  evident  that  the  fundamental  vibra- 

tions of  the  system  are  those  represented  hy  x-\-y  and  x  —  y. 
Their  periods  are  slightly  diflferent,  because,  on  account  of  the 
yielding  of  the  centre,  the  potential  energy  of  a  displacement 
when  X  and  y  are  equal,  is  less  than  that  of  a  displacement 
when  X  and  y  are  opposite;  whereas  the  kinetic  energies  are 
the  same  for  the  two  kinds  of  vibration.     In  the  solution 

x  +  y  =  ̂ cos(nie  +  a)  | 

j?-y=£cos(w,^  +  /8)  J   ^  ̂' 
we  are  therefore  to  regard  tij  and  n^  as  nearly,  but  not  quite,  equal. 
Now  let  us  suppose  that  initially  x  and  x  vanish.  The  conditions 
are 

A  cos  a  +     £  cos  /8  =  0 

7ii-4  sin  a  +  n^B  sin  /8  =  0  j ' 

which  give  approximately 

Thus  a:^A^m'^^t    sin  f'^^^e  +  a)  ) ^  ^     ̂   ^  \      (2). 

y  =  Aco6       —    t    cos  f      ̂^      ̂  "^  * )  ) 

The  value  of  the  co-ordinate  x  is  here  approximately  ex- 
pressed by  a  harmonic  term,  whose  amplitude,  being  proportional 

to  sin  ̂   (w,  -  th)  ̂,  is  a  slowly  varying  harmonic  function  of  the 
time.  The  vibrations  of  the  co-ordinates  are  therefore  intermittent, 
and  so  adjusted  that  each  amplitude  vanishes  at  the  moment  that 
the  other  is  at  its  maximum. 

This  phenomenon  may  be  prettily  shewn  by  a  tuning  fork  of 
very  low  pitch,  heavily  weighted  at  the  ends,  and  firmly  held  by 
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screwing  the  stalk  into  a  massive  support.  When  the  fork  vibrates 

in.  the  normal  manner,  the  rigidity,  or  want  of  rigidity,  of  the 
stalk  does  not  come  into  play ;  but  if  the  displacements  of  the  two 
prongs  be  in  the  same  direction,  the  slight  yielding  of  the  stalk 
entails  a  small  change  of  period.  If  the  fork  be  excited  by  striking 
one  prong,  the  vibmtions  are  intermittent,  and  appear  to  transfer 
themselves  backwards  and  forwards  between  the  prongs.  Unless, 
however,  the  support  be  very  firm,  the  abnormal  vibration,  which 
involves  a  motion  of  the  centre  of  inertia,  is  soon  dissipated ;  and 
then,  of  course,  the  vibration  appears  to  become  steady.  If  the 
fork  be  merely  held  in  the  hand,  the  phenomenon  of  intermittence 
cannot  be  obtained  at  all. 

116.  The  stretched  string  with  two  attached  masses  may  be 
used  to  illustrate  some  general  principles.  For  example,  the  period 
of  the  vibration  which  remains  possible  when  one  mass  is  held 

at  rest,  is  intermediate  between  the  two  free  periods.  Any  in- 
crease in  either  load  depresses  the  pitch  of  both  the  natural 

vibrations,  and  conversely.  If  the  new  load  be  situated  at  a  point 
of  the  string  not  coinciding  with  the  places  where  the  other  loads 
are  attached,  nor  with  the  node  of  one  of  the  two  previously 
possible  free  vibrations  (the  other  has  no  node),  the  effect  is  still 
to  prolong  both  the  periods  already  present.  With  regard  to  the 
third  finite  period,  which  becomes  possible  for  the  first  time  after 
the  addition  of  the  new  load,  it  must  be  regarded  as  derived  from 
one  of  infinitely  small  magnitude,  of  which  an  indefinite  number 
may  be  supposed  to  form  part  of  the  system.  It  is  instructive 
to  trace  the  effect  of  the  introduction  of  a  new  load  and  its  gradual 
increase  from  zero  to  infinity,  but  for  this  purpose  it  will  be 
simpler  to  take  the  case  where  there  is  but  one  other.  At  the 

commencement  there  is  one  finite  period  Ti,  and  another  of  in- 
finitesimal magnitude  r,.  As  the  load  increases  r^  becomes  finite, 

and  both  Ti  and  T]  continually  increase.  Let  us  now  consider 
what  happens  when  the  load  becomes  very  great.  One  of  the 
periods  is  necessarily  large  and  capable  of  growing  beyond  all 
limit.  The  other  must  approach  a  fixed  finite  limit.  The  first 
belongs  to  a  motion  in  which  the  larger  mass  vibrates  nearly  as 
if  the  other  were  absent ;  the  second  is  the  period  of  the  vibration 
of  the  smaller  mass,  taking  place  much  as  if  the  larger  were  fixed. 
Now  since  t^  and  t,  can  never  be  equal,  Ti  must  be  always  the 
greater ;  and  we  infer,  that  as  the  load  becomes  continually  larger^ 
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it  is  Ti  that  increases  indefinitely,  and  r^  that  approaches  a  finite 
limit. 

We  now  pass  to  the  consideration  of  forced  vibrations. 

116.  The  general  equations  for  a  system  of  two  degrees  of 
freedom  including  friction  are 

In  what  follows  we  shall  suppose  that  F  =  0,  and  that  X  —  e^^. 
The  solution  for  y  is 

If  the  connection  between  x  and  y  be  of  a  loose  character,  the 

constants  Jf ,  /8,  B  are  small,  so  that  the  term  {B  —  p^M  +  ifipf 
in  the  denominator  may  in  general  be  neglected.  When  this 

is  permissible,  the  co-ordinate  y  is  the  same  as  if  a?  had  been  pre- 
vented from  varying,  and  a  force  T  had  been  introduced  whose 

magnitude  is  independent  of  N,  7,  and  G,  But  if,  in  consequence 
of  an  approximate  isochronism  between  the  force  and  one  of  the 
motions  which  become  possible  when  or  or  y  is  constrained  to  be 

zero,  either  A—p^L-^iap  or  C—p^N-\-iyp  be  small,  then  the 
term  in  the  denominator  containing  the  coefficients  of  mutual 
influence  must  be  retained,  being  no  longer  relatively  unimportant ; 
and  the  solution  is  accordingly  of  a  more  complicated  character. 

Symmetry  shews  that  if  we  had  assumed  X  =  Q,  F  =«*''*,  we 
should  have  found  the  same  value  for  x  as  now  obtains  for  y.  This 
is  the  Reciprocal  Theorem  of  §  108  applied  to  a  system  capable 
of  two  independent  motions.  The  string  and  two  loads  may  again 
be  referred  to  as  an  example. 

117.  So  far  for  an  imposed  force.  We  shall  next  suppose 

that  it  is  a  motion  of  one  co-ordinate  {x  =  6*^)  that  is  prescribed, 
while  F=0;  and  for  greater  simplicity  we  shall  confine  ourselves 
to  the  case  where  )8  =  0.     The  value  of  y  is 

y        C-Np'  +  iyp   ^  ̂• 
Let  us  now  inquire  into  the  reaction  of  this  motion  on  x. 

We  have 
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If  the  real  and  imaginary  parts  of  the  coefficient  of  e^^  be  re- 

spectively A'  and  iap,  we  may  put 

{MI>  +  B)y^A'x  +  a'x    (3), 

and  {B-Mi^r{G-Ntn  (4) 

(C'-iVp»)«  +  7«p«   ^  ̂' 
It  appears  that  the  effect  of  the  reaction  of  y  (over  and  above 

what  would  be  caused  by  holding  y  =  0)  is  represented  by  changing 

A  into  A  +  A\  and  a  into  a  +  a\  where  A'  and  a'  have  the  above 
values,  and  is  therefore  equivalent  to  the  effect  of  an  alteration  in 
the  coeflScients  of  spring  and  friction.  These  alterations,  however, 

are  not  constants,  but  functions  of  the  period  of  the  motion  con- 
templated,  whose  character  we  now  proceed  to  consider. 

Let  n  be  the  value  of  jo  corresponding  to  the  natural  frictionless 

period  of  y  {x  being  maintained  at  zero);  so  that  G—n^N  —  Q, 
Then 

«'  =  <^-^^)^^^-^4--^^J 

.(6). 

In  most  cases  with  which  we  are  practically  concerned  7  is 

small,  and  interest  centres  mainly  on  values  of  p  not  much  differ- 
ing from  n.  We  shall  accordingly  leave  out  of  account  the 

variations  of  the  positive  factor  {B  —  Mp^f^  and  in  the  small  term 
7^,  substitute  for  p  its  approximate  value  n.  When  p  is  not 
nearly  equal  to  n,  the  term  in  question  is  of  no  importance. 

As  might  be  anticipated  from  the  general  principle  of  work, 

a'  is  always  positive.  Its  maximum  value  occurs  when  p  =  n 
nearly,  and  is  then  proportional  to  1/771',  which  varies  inversely 
with  7.  This  might  not  have  been  expected  on  a  superficial  view 
of  the  matter,  for  it  seems  rather  a  paradox  that,  the  greater  the 
friction,  the  less  should  be  its  result.  But  it  must  be  remembered 

that  7  is  only  the  coefficient  of  friction,  and  that  when  7  is  small 
the  maximum  motion  is  so  much  increased  that  the  whole  work 

spent  against  friction  is  greater  than  if  7  were  more  considerable. 

But  the  point  of  most  interest  is  the  dependence  of  A'  on  p, 
lip  be  less  than  n,  ̂'  is  negative.    As  p  passes  through  the  value 
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n,  A'  vanishes,  and  changes  sign.  When  A'  is  negative,  the  in- 
fluence of  y  is  to  diminish  the  recovering  power  of  the  vibration  a?, 

and  we  see  that  this  happens  when  the  forced  vibration  is  slower 
than  that  natural  to  y.  The  tendency  of  the  vibration  y  is  thus 
to  retard  the  vibration  a?,  if  the  latter  be  already  the  slower,  but 
to  accelerate  it,  if  it  be  already  the  more  rapid,  only  vanishing  in 
the  critical  case  of  perfect  isochronism.  The  attempt  to  make  x 
vibrate  at  the  rate  determined  by  n  is  beset  with  a  peculiar 
difficulty,  analogous  to  that  met  with  in  balancing  a  heavy 

body  with  the  centre  of  gravity  above  the  support.  On  which- 
ever side  a  slight  departure  from  precisioi\^  of  adjustment  may 

occur  the  influence  of  the  dependent  vibiution  is  alwajrs  to  increase 
the  error.  Ebcamples  of  the  instability  of  pitch  accompanying  a 
strong  resonance  will  come  across  us  hereafter ;  but  undoubtedly 
the  most  interesting  application  of  the  results  of  this  section  is  to 

the  explanation  of  the  anomalous  refraction,  by  substances  possess- 
ing a  very  marked  selective  absorption,  of  the  two  kinds  of  light 

situated  (in  a  normal  spectrum)  immediately  on  either  side  of  the 
absorption  band^  It  was  observed  by  Christiansen  and  Kundt, 
the  discoverers  of  this  remarkable  phenomenon,  that  media  of  the 

kind  in  question  (for  example, /i^A^" we  in  alcoholic  solution)  refract 
the  ray  immediately  hel(no  the  absorption-band  abnormally  in 
excess,  and  that  above  it  in  defect  If  we  suppose,  as  on  other 
grounds  it  would  be  natural  to  do,  that  the  intense  absorption  is 
the  result  of  an  agreement  between  the  vibrations  of  the  kind  of 
light  affected,  and  some  vibration  proper  to  the  molecules  of  the 

absorbing  agent,  our  theory  would  indicate  that  for  light  of  some- 
what greater  period  the  eflfect  must  be  the  same  as  a  relaxation  of 

the  natural  elasticity  of  the  ether,  manifesting  itself  by  a  slower 
propagation  and  increased  refraction.  On  the  other  side  of  the 

absorption-band  its  influence  must  be  in  the  opposite  direc- 
tion. 

In  order  to  trace  the  law  of  connection  between  A'  and  p,  take, 
for  brevity,  7  n  =  a,   i\r  (p^  —  n*)  =  a?,  so  that 

A  3C    —-     -. 
ic*  +  a^ 

When  the  sign  of  a;  is  changed.  A'  is  reversed  with  it,  but  pre- 
serves its  numerical  value.     When   a?  =  0,  or   ±  00 ,  -4'  vanishes. 

^  Phil  Mag.,  May,  1872.     Also  Sellmeier,  Pogg,  Ann.  t.  oxliii.  p.  272,  1871. 
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Hence  the  origin  is  on  the  representative  curve  (Fig.  18),  and  the 
axis  of  X  is  an  asymptote.  The  maximum  and  minimum  values  of 

A'  occur  when  x  is  respectively  equal  to  +  a,  or  —  a ;  and  then 
X 

The  corresponding  values  of  jo  are  given  by 

jp2  =  n=± 

yn 

F 

(7). 
Hence,  the  smaller  the  value  of  a  or  7,  the  greater  will  be  the 

maximum  alteration  of  Ay  and  the  corresponding  value  of  p  will 
approach  nearer  and  nearer  to  n.  It  may  be  well  to  repeat,  that  in 
the  optical  application  a  diminished  7  is  attended  by  an  increased 
maximum  absorption.  When  the  adjustment  of  periods  is  such  as 

to  favour  A'  as  much  as  possible,  the  corresponding  value  of  a'  is one  half  of  its  maximum. 



CHAPTER  VI. 

TRANSVERSE   VIBRATIONS   OF   STRINGS. 

118.  Among  vibrating  bodies  there  are  none  that  occupy  a 
more  prominent  position  than  Stretched  Strings.  From  the 
earliest  times  they  have  been  employed  for  musical  purposes, 
and  in  the  present  day  they  still  form  the  essential  parts  of  such 
important  instruments  as  the  pianoforte  and  the  violin.  To  the 
mathematician  they  must  always  possess  a  peculiar  interest  as  the 

battle-field  on  which  were  fought  out  the  controversies  of  DAlem- 
bert,  Euler,  Bernoulli  and  Lagrange,  relating  to  the  nature  of  the 
solutions  of  partial  differential  equations.  To  the  student  of 

Acoustics  they  are  doubly  important.  In  consequence  of  the  com- 
parative simplicity  of  their  theory,  they  are  the  ground  on  which 

difficult  or  doubtful  questions,  such  as  those  relating  to  the  nature 
of  simple  tones,  can  be  most  advantageously  faced ;  while  in  the 
form  of  a  Monochord  or  Sonometer,  they  afford  the  most  generally 
available  means  for  the  comparison  of  pitch. 

The  'string*  of  Acoustics  is  a  perfectly  uniform  and  flexible 
filament  of  solid  matter  stretched  between  two  fixed  points — in 
fact  an  ideal  body,  never  actually  realized  in  practice,  though 
closely  approximated  to  by  most  of  the  strings  employed  in  music. 

We  shall  afterwards  see  how  to  take  account  of  any  small  devia- 
tions from  complete  flexibility  and  uniformity. 

The  vibrations  of  a  string  may  be  divided  into  two  distinct 
classes,  which  are  practically  independent  of  one  another,  if  the 
amplitudes  do  not  exceed  certain  limits.  In  the  first  class  the 
displacements  and  motions  of  the  particles  are  longitudinal^  so 
that  the  string  always  retains  its  straightness.  The  potential 
energy  of  a  displacement  depends,  not  on  the  whole  tension,  but 
on  the  changes  of  tension  which  occur  in  the  various  parts  of  the 
string,  due  to  the  increased  or  diminished  extension.     In  order  to 
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calculate  it  we  must  know  the  relation  between  the  extension  of 

a  string  and  the  stretching  force.  The  approximate  law  (given  by 
Hooke)  may  be  expressed  by  saying  that  the  extension  varies 
as  the  tension,  so  that  if  I  and  l  denote  the  natural  and  the 

stretched  lengths  of  a  string,  and  T  the  tension, 

^---'  =  ̂   (1) 

where  ̂   is  a  constant,  depending  on  the  material  and  the  section, 
which  may  be  interpreted  to  mean  the  tension  that  would  be 
necessary  to  stretch  the  string  to  twice  its  natural  length,  if  the 
law  applied  to  so  great  extensions,  which,  in  general,  it  is  far 
firom  doing. 

119.  The  vibrations  of  the  second  kind  are  transverse ;  that  is 

to  say,  the  particles  of  the  string  move  sensibly  in  planes  perpen- 
dicular to  the  line  of  the  string.  In  this  case  the  potential  energy 

of  a  displacement  depends  upon  the  general  tension,  and  the 
small  variations  of  tension  accompanying  the  additional  stretching 
due  to  the  displacement  may  be  left  out  of  account.  It  is  here 
assumed  that  the  stretching  due  to  the  motion  may  be  neglected 
in  comparison  with  that  to  which  the  string  is  already  subject  in 
its  position  of  equilibrium.  Once  assured  of  the  fulfilment  of  this 
condition,  we  do  not,  in  the  investigation  of  transverse  vibrations, 
require  to  know  anything  further  of  the  law  of  extension. 

The  most  general  vibration  of  the  transverse,  or  lateral,  kind 
may  be  resolved,  as  we  shall  presently  prove,  into  two  sets  of 
component  normal  vibrations,  executed  in  perpendicular  planea 
Since  it  is  only  in  the  initial  circumstances  that  there  can  be  any 
distinction,  pertinent  to  the  question,  between  one  plane  and 
another,  it  is  sufficient  for  most  purposes  to  regard  the  motion  as 
entirely  confined  to  a  single  plane  passing  through  the  line  of  the 
string. 

In  treating  of  the  theory  of  strings  it  is  usual  to  commence 
with  two  particular  solutions  of  the  partial  diflferential  equation, 

representing  the  transmission  of  waves  in  the  positive  and  nega- 
tive directions,  and  to  combine  these  in  such  a  manner  as  to  suit 

the  case  of  a  finite  string,  whose  ends  are  maintained  at  rest ; 
neither  of  the  solutions  taken  by  itself  being  consistent  with  the 
existence  of  nodes,  or  places  of  permanent  rest.  This  aspect  of  the 
question  is  very  important,  and  we  shall  fully  consider  it ;  but  it 
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seems  scarcely  desirable  to  found  the  solution  in  the  first  instance 
on  a  property  so  peculiar  to  a  uniform  string  as  the  undisturbed 
transmission  of  waves.  We  will  proceed  by  the  more  general 
method  of  assuming  (in  conformity  with  what  was  proved  in  the 

last  chapter)  that  the  motion  may  be  resolved  into  normal  com- 
ponents of  the  harmonic  tjrpe,  and  determining  their  periods  and 

character  by  the  special  conditions  of  the  system. 

Towards  carrying  out  this  design  the  first  step  would  naturally 
be  the  investigation  of  the  partial  diflTerential  equation,  to  which 
the  motion  of  a  continuous  string  is  subject.  But  in  order  to 
throw  light  on  a  point,  which  it  is  most  important  to  understand 

clearly, — the  connection  between  finite  and  infinite  freedom,  and 
the  passage  corresponding  thereto  between  arbitrary  constants 

and  arbitrary  functions,  we  will  commence  by  following  a  some- 
what diflTerent  course. 

120.  In  Chapter  iii.  it  was  pointed  out  that  the  fundamental 
vibration  of  a  string  would  not  be  entirely  altered  in  character, 
if  the  mass  were  concentrated  at  the  middle  point.  Following 
out  this  idea,  we  see  that  if  the  whole  string  were  divided  into  a 
number  of  small  parts  and  the  mass  of  each  concentrated  at  its 
centre,  we  might  by  suflSciently  multiplying  the  number  of  parts 

arrive  at  a  system,  still  of  finite  freedom,  but  capable  of  represent- 
ing the  continuous  string  with  any  desired  accuracy,  so  far  at 

least  as  the  lower  component  vibrations  are  concerned.  If  the 
analytical  solution  for  any  number  of  divisions  can  be  obtained, 
its  limit  will  give  the  result  corresponding  to  a  uniform  string. 
This  is  the  method  followed  by  Lagrange. 

Let  I  be  the  length,  pi  the  whole  mass  of  the  string,  so  that 
p  denotes  the  mass  per  unit  length,  T^  the  tension. 

Fig.  19. 

The  length  of  the  string  is  divided  into  m  + 1  equal  parts  (a), 
so  that 

(m  +  l)a  =  i   (1). 
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At  the  m  points  of  division  equal  masses  (fi)  are  supposed  con- 
centrated, which  are  the  representatives  of  the  mass  of  the  por- 

tions (a)  of  the  string,  which  they  severally  bisect.  The  mass  of 
each  terminal  portion  of  length  ̂ a  is  supposed  to  be  concentrated 
at  the  final  points.     On  this  understanding,  we  have 

(m+l)fi  =  pl    (2). 

We  proceed  to  investigate  the  vibrations  of  a  string,  itself 
devoid  of  inertia,  but  loaded  at  each  of  vi  points  equidistant 
(a)  from  themselves  and  from  the  ends,  with  a  mass  fi. 

If  >^i,  >^j   i^m+i  denote  the  lateral  displacements  of  the 
loaded  points,  including  the  initial  and  final  points,  we  have  the 
following  expressions  for  T  and  V, 

y=iMl^i'  +  ̂.*  +  ...+^m+i  +  ̂m+a}   (3) 

with  the  conditions  that  '^i  and  ̂ m+s  vanisL     These  give  by 

Lagrange's  Method  the  m  equations  of  motion. 

B^lr^  -\-Aylr:,      +£>^4      =0 
Bylr^  +Aylr^      -^  Bylr,      =0 

Bfm  +  Ayltm+i  +  Bylr^+,  =  0 

(5), 

where  A^iiD^^-   \         £  =  -ii   (6). 

Supposing  now  that  the  vibration  under  consideration  is  one 

of  normal  t3rpe,  we  assume  that  >^i,  "^j,  &c.  are  all  proportional  to 
cos  {nt  —  e),  where  n  remains  to  be  determined.  A  and  B  may 

then  be  regarded  as  constants,  with  a  substitution  of  —  ?i'  for  D*. 

If  for  the  sake  of  brevity  we  put 

C=A^B  =  -2  +  ̂^^   (7), 

the  determinantal  equation,  which  gives  the  values  of  n^  assumes 
the  form 
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a,  1,  0,  0,  0. 
1,  C,  1,  0,  0. 
0,  1,  G,  1,  0. 
0.  0,  1,  G,  I. 
0,  0,  0,  1,  G. 

m  rows 
=  0. 

(8). 

From  this  equation  the  values  of  the  roots  might  be  fouoA 

It  may  be  proved  that,  if  (7=  2  cos  6,  the  determinant  is  equivalent 
to  sin  (m  + 1)  ̂  -r  sin  0 ;  but  we  shall  attain  our  object  with  greater 
ease  directly  from  (5)  by  acting  on  a  hint  derived  from  the  known 
results  relating  to  a  continuous  string,  and  assuming  for  trial  a 
particular  type  of  vibration.     Thus  let  a  solution  be 

'^^  =  P  8in(r  — 1))8   co8(n^  — e) 
(9). 

a  form  which  secures   that   >/ri  =  0.     In   order   that   -^m+j  may 
vanish, 

(m+l)/3  =  «7r   (10), 

where  «  is  an  integer.     Substituting  the  assumed  values  of  ̂ /r  in 
the  equations  (5),  we  find  that  they  are  satisfied,  provided  that 

2jBcos/3  +  il=0    (11); 

so  that  the  value  of  n  in  terms  of  )3  is 

"='^«-f\/S   w 
A  normal  vibration  is  thus  represented  by 

J,    .    (r-l)sir       ,    . Yr  =  Pi  sin  ̂^   T —  cos  (n,< ftt  +  l 

-€.). 

where 
w,  =  2a/-^  si 

sir 

fia         2(m4-l) 

(13). 

(14), 

and  P„  €,  denote  arbitrary  constants  independent  of  the  general 
constitution  of  the  system.  The  m  admissible  values  of  n  are 
found  from  (14)  by  ascribing  to  «  in  succession  the  values  1,  2, 

3...m,  and  are  all  diflferent.  If  we  take  s^m  +  l,  -^^  vanishes, 
so  that  this  does  not  correspond  to  a  possible  vibration.  Greater 

values  of  s  give  only  the  same  periods  over  again.  If  m  H- 1  be 
even,  one  of  the  values  of  n — that,  namely,  corresponding   to 
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5  =  ̂ (m  +  l),— is  the  same  as  would  be  found  in  the  case  of  only 
a  single  load  (m  =  1).  The  interpretation  is  obvious.  In  the  kind 
of  vibration  considered  every  alternate  particle  remains  at  rest,  so 
that  the  intermediate  ones  really  move  as  though  they  were 
attached  to  the  centres  of  strings  of  length  2a,  fastened  at 
the  ends. 

The  most  general  solution  is  found  by  putting  together  all  the 
possible  particular  solutions  of  normal  type 

irr^^l.       P, sin  ̂̂      ̂  ̂̂ ,  cos  (n,t - €,)   (15), ♦■■I  7/lr     -f-     1 

and,  by  ascribing  suitable  values  to  the  arbitrary  constants,  can 
be  identified  with  the  vibration  resulting  from  arbitrary  initial 
circumstances. 

Let  X  denote  the  distance  of  the  particle  r  from  the  end  of  the 

string,  so  that  (r  — l)a  =  a?;  then  by  substituting  for  /x  and  a 
from  (1)  and  (2),  our  solution  may  be  written, 

■\lr{x)  =  P,sins  J-  coa(n,t  —  €,)    (16), 

2(»H-1)     /r;   .        s-TT 
"•=— r-\/7«^°2(m+i)   ^i^>- 

In  order  to  pass  to  the  case  of  a  continuous  string,  we  have 
only  to  put  m  infinite.  The  first  equation  retains  its  form,  and 
specifies  the  displacement  at  any  point  x.  The  limiting  form  of 
the  second  is  simply 

  (18), 

whence  for  the  periodic  time. 

-?-fy^   w 
The  periods  of  the  component  tones  are  thus  aliquot  parts  of 

that  of  the  gravest  of  the  series,  found  by  putting  5  =  1.  The 
whole  motion  is  in  all  cases  periodic ;  and  the  period  is  21  V0>/2\). 
This  statement,  however,  must  not  be  understood  as  excluding 
a  shorter  period;  for  in  particular  cases  any  number  of  the 
lower  components  may  be  absent.     All  that  is  asserted  is  that  the 
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above-mentioned  interval  of  time  is  sufficient  to  bring  about  a  com- 

plete recuri'ence.  We  defer  for  the  present  any  further  discussion 
of  the  important  formula  (19),  but  it  is  interesting  to  observe  the 
approach  to  a  limit  in  (17),  as  m  is  made  successively  greater  and 
greater.  For  this  purpose  it  will  be  sufficient  to  take  the  gravest 

tone  for  which  5  =  1,  and  accordingly  to  trace  the  variation  of 
2  (m  -h  1) sin TT 

TT 

2(m-f  1)' The  following  are  a  series  of  simultaneous  values  of  the  func- 
tion and  variable : — 

m 1 2 3 4 9 
19 

39 

2(m+l)    .          IT 

IT              2(m  +  l) 

•9003 •9549 
•9745 •9836 

•9959 
•9990 

•9997 

It  will  be  seen  that  for  very  moderate  values  of  m  the  limit  is 
closely  approached.  Since  m  is  the  number  of  (moveable)  loads, 

the  case  m=  1  corresponds  to  the  problem  investigated  in  Chapter 
III.,  but  in  comparing  the  results  we  must  remember  that  we  there 
supposed  the  whole  mass  of  the  string  to  be  concentrated  at  the 
centre.  In  the  present  case  the  load  at  the  centre  is  only  half  as 

great;  the  remainder  being  supposed  concentrated  at  the  ends, 
where  it  is  without  effect. 

From  the  fact  that  our  solution  is  general,  it  follows  that  any 
initial  form  of  the  string  can  be  represented  by 

*  =  00 

*rrx 

-^  (ic)  =  2  _  (P  cos  €),  sin  5  -^ 
(20). 

And,  since  any  form  possible  for  the  string  at  all  may  be 

regarded  as  initial,  we  infer  that  any  finite  single  valued  function 
of  X,  which  vanishes  at  a?  =  0  and  x  =  l,  can  be  expanded  within 
those  limits  in  a  series  of  sines  of  irxjl  and  its  multiples, — which 

is  a  case  of  Fourier's  theorem.  We  shall  presently  shew  how  the 
more  general  form  can  be  deduced. 

121.  We  might  now  determine  the  constants  for  a  continuous 

string  by  integration  as  in  §  93,  but  it  is  instructive  to  solve  the 
problem  first  in  the  general  case  (m  finite),  and  afterwards  to 
proceed  to  the  limit.     The  initial  conditions  are 
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y(a)  =  -4i8in -T-      H-ilj8m2-^     +  ...  4--4„»8mm -^  , 

'i|r(2a)  =  ̂ 1  sm  2  -T-  +  -4,  sm  4  -p     +  . . .  4-  .A^  sm  2m -^ , 

•  /      V       -«     •        "^tt       ̂      •    rt     ̂ ct  -      .  Tra 
y  (ma)  =  -di8mm-T-  +iljSin2m  -v-  +...  +-4,«8in  mm-j- ; 

where,  for  brevity,  il,  =  P, cose,,  and  -^(a),  '^(2a)   '>^{ma) 
are  the  iDitial  displacements  of  the  m  particles. 

To  determine  any  constant  -4,,  multiply  the  first  equation  by 
8in(57ra/i),  the  second  by  sin  (2«7ra//),  &c.,  and  add  the  results. 
Then,  by  Trigonometry,  the  coeflScients  of  all  the  constants,  except 

A,y  vanish,  while  that  of  ̂ ,  =  ̂   (m  4- 1)^     Hence 

^  —   t2      "^^ira)  sinr«  -7-   (1). m4-l»^i  I 

We  need  not  stay  here  to  write  down  the  values  of  jB,  (equal 

to  Pg  sin  €g)  as  depending  on  the  initial  velocities.  When  a  becomes 

infinitely  small,  ra  under  the  sign  of  summation  ranges  by  infi- 

nitesimal  steps  from  zero  to  L     At  the  same  time    ^  =  y , 

SO  that  writing  ra  =  x,  a^dx,  we  have  ultimately 

-4,  =  yj  ylr(x)  sinf^jcte     (2), 0 

expressing  A,  in  terms  of  the  initial  displacements. 

122.  We  will  now  investigate  independently  the  partial  differ- 
ential equation  governing  the  transverse  motion  of  a  perfectly 

flexible  string,  on  the  suppositions  (1)  that  the  magnitude  of  the 
tension  may  be  considered  constant,  (2)  that  the  square  of  the 

inclination  of  any  part  of  the  string  to  its  initial  direction  may  be 
neglected.  As  before,  p  denotes  the  linear  density  at  any  point, 

and  Ti  is  the  constant  tension.  Let  rectangular  co-ordinates  be 
taken  parallel,  and  perpendicular  to  the  string,  so  that  x  gives  the 
equilibrium  and  x,  y,  z  the  displaced  position  of  any  particle  at 
time  t     The  forces  acting  on  the  element  dx  are  the  tensions  at 

I  Todhunter's  Int.  Calc.,  p.  267. 
R.  1^ 
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its  two  ends,  and  any  impressed  forces  Tp  dx,  Zp  dx.  By  D'Alem- 
bert*8  Principle  these  form  an  equilibrating  system  with  the 
reactions  against  acceleration,  —pdh/ldt^y  —pd^z/dt*.  At  the 
point  X  the  components  of  tension  are 

rp  dy       ̂   dz ^'dx'      ̂ 'di' 

if  the  squares  of  dy/dx,  dzjdx  be  neglected ;  so  that  the  forces 
acting  on  the  element  dx  arising  out  of  the  tension  are 

Hence  for  the  equations  of  motion, 

dt^      p  da^^ dH      Ti  d^z      ̂  
(1), 

dt^      p  da^ 

from  which  it  appears  that  the  dependent  variables  y  and  z  are 
altogether  independent  of  one  another. 

The  student  should  compare  these  equations  with  the  corre- 
sponding equations  of  finite  diCFerences  in  §  120.  The  latter  may 

be  written 

/*  5^8 -^  W  =  — M*^  (^  -  «)  + '^  (^  +  a)  -  2i|r  (a?)}. 

Now  in  the  limit,  when  a  becomes  infinitely  small, 

>/r  (a?  -  a)  +  i|r  (a?  H- a)  -  2'i|r  (a?)  =  >/r"  (a?)  a', 

while  p»  —  pa\  and  the  equation  assumes  ultimately  the  form 

agreeing  with  (1). 

In  like  manner  the  limiting  forms  of  (3)  and  (4)  of  §  120  are 

dx   (2), 

-^m 
=*^./(i) 

''''''i,   (3), 

which  may  also  be  proved  directly. 
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The  first  is  obvious  from  the  definition  of  T.  To  prove  the 
second,  it  is  sufficient  to  notice  that  the  potential  energy  in  any 
configuration  is  the  work  required  to  produce  the  necessary 
stretching  against  the  tension  Ti.  Reckoning  from  the  configura- 

tion of  equilibrium,  we  have 

^'^•}{i-'h-' 
and,  so  far  as  the  third  power  of  -~ , 

^-l  =  if^)' 

123.  In  most  of  the  applications  that  we  shall  have  to  make, 
the  density  p  is  constant,  there  are  no  impressed  forces,  and  the 
motion  may  be  supposed  to  take  place  in  one  plane.  We  may 
then  conveniently  write 

7--   <■>• 

and  the  differential  equation  is  expressed  by 

d{aty     da^   ^  ̂' 
If  we  now  assume  that  y  varies  as  cos  mat,  our  equatipn 

becomes 

S+"^'y=o   <3), 
of  which  the  most  general  solution  is 

y  =  (-4  sin7;ia;  + (7cosma?)cosma^   (4). 

This,  however,  is  not  the  most  general  harmonic  motion  of 
the  period  in  question.     In  order  to  obtain  the  latter,  we  must 
assume. 

y  =2  y^  cos  mat  +  ya  sin  m^t   (5), 

where  yi,  y^  are  functions  of  x,  not  necessarily  the  same.  On 
substitution  in  (2)  it  appears  that  yi  and  y,  are  subject  to  equations 

of  the  form  (3),  so  that  finally 

y  =  {A  sin  mx  +  G  cos  mx)  cos  mat  ]  ,^. 

+  (B8inmx  +  Dcosm>x)smmatj   

an  expression  containing  four  arbitrary  constants.  For  any  con- 

tinuous length  of  string  satisfpng  without  interruption  the  differ- 

Vi— '^ 
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ential  equation,  this  is  the  most  general  solution  possible,  under 
the  condition   that  the  motion  at  every  point  .shall  be  simple 
harmonic.     But  whenever  the   string  forms  part  of  a  system 
vibrating  freely  and  without  dissipation,  we  know  from  former 
chapters  that  all  parts  are  simultaneously  in  the  same  phase, 
which  requires  that 

A  :  B  =  C  :  D   (7); 

and  then  the  most  general  vibration  of  simple  harmonic  type  is 

y  =  {asin7n^  +  )8cos  mx}  co8(mat  —  €)   (8). 

124.  The  most  simple  as  well  as  the  most  important  problem 
connected  with  our  present  subject  is  the  investigation  of  the  free 
vibrations  of  a  finite  string  of  length  I  held  fast  at  both  its  ends. 
If  we  take  the  origin  of  x  at  one  end,  the  terminal  conditions  are 

that  when  x  =  0,  and  when  x  =  l,  y  vanishes  for  all  values  of  t. 
The  first  requires  that  in  (6)  of  §  123 

C=0,     2)  =  0   (1); 
and  the  second  that 

8mml  =  0   (2), 

or  that  ml  =  sir,  where  s  is  an  integer.     We  learn  that  the  only 
harmonic  vibrations  possible  are  such  as  make 

^  =  T   (3). 
and  then 

.    STTX f  .        sirat      „   .    siratx 
y  =  sm-y-(-4  cos  —, — hi5sm— v- )   (4). 

Now  we  know  a  priori  that  whatever  the  motion  may  be,  it 
can  be  represented  as  a  sum  of  simple  harmonic  vibrations,  and 
we  therefore  conclude  that  the  most  general  solution  for  a  string, 
fixed  at  0  and  I,  is 

_•-•    .    STTX  f  .         swat      „    .    87rat\ 

The  slowest  vibration  is  that  corresponding  to  5  =  1.  Its 
period  (ti)  is  given  by 

n=-  =  2Z^/x,   (6). 

The  other  components  have  periods  which  are  aliquot  parts 
of  Ti : — 

T*  =  Ti-T-«   (7); 
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80  that,  as  has  been  already  stated,  the  whole  motion  is  under  all 

circumstances  periodic  in  the  time  Tj.  Thp  sound  emitted  con- 
stitutes in  general  a  musical  note,  according  to  our  definition  of 

that  term,  whose  pitch  is  fixed  by  Tj,  the  period  of  its  gravest 
component.  It  may  happen,  however,  in  special  cases  that  the 
gravest  vibration  is  absent,  and  yet  that  the  whole  motion  is  not 
periodic  in  any  shorter  time.  This  condition  of  things  occurs,  if 

Ai^-^Bi*  vanish,  while,  for  example,  A^-\-B^  and  A^-^B^  are 
finite.  In  such  cases  the  sound  could  hardly  be  called  a  note; 
but  it  usually  happens  in  practice  that,  when  the  gravest  tone  is 
absent,  some  other  takes  its  place  in  the  character  of  fundamental, 
and  the  sound  still  constitutes  a  note  in  the  ordinary  sense, 
though,  of  course,  of  elevated  pitch.  A  simple  case  is  when  all 
the  odd  components  beginning  with  the  first  are  missing.  The 
whole  motion  is  then  periodic  in  the  time  ̂ Ti,  and  if  the  second 
component  be  present,  the  sound  presents  nothing  unusual. 

The  pitch  of  the  note  yielded  by  a  string  (6),  and  the  character 
of  the  fundamental  vibration,  were  first  investigated  on  mechanical 
principles  by  Brook  Taylor  in  1715 ;  but  it  is  to  Daniel  Bernoulli 
(1755)  that  we  owe  the  general  solution  contained  in  (5).  He 
obtained  it,  as  we  have  done,  by  the  synthesis  of  particular 
solutions,  permissible  in  accordance  with  his  Principle  of  the 
Coexistence  of  Small  Motions.  In  his  time  the  generality  of  the 
result  so  arrived  at  was  open  to  question ;  in  fact,  it  was  the 
opinion  of  Euler,  and  also,  strangely  enough,  of  Lagrange ^  that 
the  series  of  sines  in  (5)  was  not  capable  of  representing  an 

arbitrary  function ;  and  Bernoulli's  argument  on  the  other  side, 
drawn  from  the  infinite  number  of  the  disposable  constants, 

was  certainly  inadequate*. 

Most  of  the  laws  embodied  in  Taylor  s  formula  (6)  had  been 
discovered  experimentally  long  before  (1636)  by  Mersenne.  They 

may  be  stated  thus : — 

1  See  Riemann's  Partielle  Differential  Gleiehungen,  §  78. 
'  Dr  Toung,  in  his  memoir  of  1800,  seems  to  have  understood  this  matter  quite 

correctly.  He  says,  **  At  the  same  time,  as  M.  BemouUi  has  justly  observed,  since 
every  figure  may  be  infinitely  approximated,  by  considering  its  ordinates  as 

composed  of  the  ordinates  of  an  infinite  number  of  trochoids  of  different  magni- 
tudes, it  may  be  demonstrated  that  all  these  constituent  curves  would  revert  to 

their  initial  state,  in  the  same  time  that  a  similar  chord  bent  into  a  trochoidal 
curve  would  perform  a  single  vibration  ;  and  this  is  in  some  respects  a  convenient 

and  compendious  method  of  considering  the  problem/' 
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(1)  For  a  given  string  and  a  given  tension,  the  time  varies  as 
the  length. 

This  is  the  fundamental  principle  of  the  monochord,  and 
appears  to  have  been  understood  by  the  ancients  \ 

(2)  When  the  length  of  the  string  is  given,  the  time  varies 
inversely  as  the  square  root  of  the  tension. 

(3)  Strings  of  the  same  length  and  tension  vibrate  in  times, 
which  are  proportional  to  the  square  roots  of  the  linear  density. 

These  important  results  may  all  be  obtained  by  the  method  of 
dimensions,  if  it  be  assumed  that  r  depends  only  on  I,  p,  and  Ti. 

For,  if  the  units  of  length,  time  and  mass  be  denoted  re- 
spectively by  [L],  [T],  [if],  the  dimensions  of  these  symbols  are 

given  by 

Z  =  [Z],    p^[ML'^l    T,  =  [MLl^l 
and  thus  (see  §  52)  the  only  combination  of  them  capable  of  re- 

presenting a  time  is  2^"* .p^,l.  The  only  thing  left  undetermined 
is  the  numerical  &ctor. 

126.  Mersenne's  laws  are  exemplified  in  all  stringed  instru- 
ments. In  playing  the  violin  different  notes  are  obtained  from 

the  same  string  by  shortening  its  efficient  length.  In  tuning 
the  violin  or  the  pianoforte,  an  adjustaient  of  pitch  is  effected 
with  a  constant  length  by  varying  the  tension ;  but  it  must  be 
remembered  that  p  is  not  quite  invariable. 

To  secure  a  prescribed  pitch  with  a  string  of  given  material,  it  is 
requisite  that  one  relation  only  be  satisfied  between  the  length,  the 
thickness,  and  the  tension;  but  in  practice  there  is  usually  no  great 

latitude.  The  length  is  often  limited  by  considerations  of  con- 
venience, and  its  curtailment  cannot  always  be  compensated  by 

an  increase  of  thickness,  because,  if  the  tension  be  not  increased 

proportionally  to  the  section,  there  is  a  loss  of  flexibility, 
while  if  the  tension  be  so  increased,  nothing  is  effected  towards 
lowering  the  pitch.  The  difficulty  is  avoided  in  the  lower  strings 
of  the  pianoforte  and  violin  by  the  addition  of  a  coil  of  fine  wire, 
whose  effect  is  to  impart  inertia  without  too  much  impairing 
flexibility. 

^  Aristotle  **  knew  that  a  pipe  or  a  chord  of  doable  length  produced  a  sound  of 
which  the  vibrations  occupied  a  doable  time ;  and  that  the  properties  of  concords 
depended  on  the  proportions  of  the  times  occupied  by  the  vibrations  of  the 

separate  sounds." — Young's  Lectures  on  Natural  Philoeqphy,  Vol.  i.  p.  404. 
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For  quantitative  investigations  into  the  laws  of  strings,  the 
sonometer  is  employed.  By  means  of  a  weight  hanging  over  a 
pulley,  a  catgut,  or  a  metallic  wire,  is  stretched  across  two  bridges 
mounted  on  a  resonance  case.  A  moveable  bridge,  whose  position 
is  estimated  by  a  scale  running  parallel  to  the  wire,  gives  the 
means  of  shortening  the  eflScient  portion  of  the  wire  to  any 
desired  extent.  The  vibrations  may  be  excited  by  plucking,  as 
in  the  harp,  or  with  a  bow  (well  supplied  with  rosin),  as  in  the 
violin. 

If  the  moveable  bridge  be  placed  half-way  between  the  fixed 
ones,  the  note  is  raised  an  octave ;  when  the  string  is  reduced  to 
one-third,  the  note  obtained  is  the  twelfth. 

By  means  of  the  law  of  lengths,  Mersenne  determined  for  the 
first  time  the  frequencies  of  known  musical  notes.  He  adjusted  the 
length  of  a  string  until  its  note  was  one  of  assured  position  in  the 
musical  scale,  and  then  prolonged  it  under  the  same  tension  until 
the  vibrations  were  slow  enough  to  be  counted. 

For  experimental  purposes  it  is  convenient  to  have  two,  or 
more,  strings  mounted  side  by  side,  and  to  vary  in  turn  their 
lengths,  their  masses,  and  the  tensions  to  which  they  are  subjected. 
Thus  in  order  that  two  strings  of  equal  length  may  jdeld  the 
interval  of  the  octave,  their  tensions  must  be  in  the  ratio  of  1  :  4, 
if  the  masses  be  the  same ;  or,  if  the  tensions  be  the  same,  the 
masses  must  be  in  the  reciprocal  ratio. 

The  sonometer  is  very  useful  for  the  numerical  determination 
of  pitch.  By  varjdng  the  tension,  the  string  is  tuned  to  unison 
with  a  fork,  or  other  standard  of  known  frequency,  and  then  by 
adjustment  of  the  moveable  bridge,  the  length  of  the  string  is 
determined,  which  vibrates  in  unison  with  any  note  proposed  for 
measurement.  The  law  of  lengths  then  gives  the  means  of 

effecting  the  desired  comparison  of  fi-equencies. 

Another  application  by  Scheibler  to  the  determination  of 

absolute  pitch  is  important.  The  principle  is  the  same  as  that 
explained  in  Chapter  ill.,  and  the  method  depends  on  deducing 
the  absolute  pitch  of  two  notes  from  a  knowledge  of  both  the 
ratio  and  the  difference  of  their  frequencies.  The  lengths  of  the 
sonometer  string  when  in  unison  with  a  fork,  and  when  giving  with 
it  four  beats  per  second,  are  carefully  measured.     The  ratio  of  the 
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lengths  is  the  inverse  ratio  of  the  frequencies,  and  the  diflference 
of  the  frequencies  is  four.  From  these  data  the  absolute  pitch  of 
the  fork  can  be  calculated. 

The  pitch  of  a  string  may  be  calculated  also  by  Taylor's 
formula  from  the  mechanical  elements  of  the  system,  but 
great  precautions  are  necessary  to  secure  accuracy.  The  tension 
is  produced  by  a  weight,  whose  mass  (expressed  with  the  same 

unit  as  p)  may  be  called  P;  so  that  Ti=gP,  where  g  =  32% 
if  the  units  of  length  and  time  be  the  foot  and  the  second.  In 
order  to  secure  that  the  whole  tension  acts  on  the  vibrating 
segment,  no  bridge  must  be  interposed,  a  condition  only  to  be 
satisfied  by  suspending  the  string  vertically.  After  the  weight  is 
attached,  a  portion  of  the  string  is  isolated  by  clamping  it  firmly 
at  two  points,  and  the  length  is  measured.  The  mass  of  the  unit 
of  length  p  refers  to  the  stretched  state  of  the  string,  and  may  be 
found  indirectly  by  observing  the  elongation  due  to  a  tension 
of  the  same  order  of  magnitude  as  7\,  and  calculating  what 

would  be  produced  by  2\  according  to  Hooke's  law,  and  by 
weighing  a  known  length  of  the  string  in  its  normal  state. 
After  the  clamps  have  been  secured  great  care  is  required  to 
avoid  fluctuations  of  temperature,  which  would  seriously  influence 
the  tension.     In  this  way  Seebeck  obtained  very  accurate  results. 

126.  When  a  string  vibrates  in  its  gravest  normal  mode,  the 
excursion  is  at  any  moment  proportional  to  sin  (irx/l),  increasing 
numerically  from  either  end  towards  the  centre ;  no  intermediate 

point  of  the  string  remains  permanently  at  rest.  But  it  is  other- 
wise in  the  case  of  the  higher  normal  components.  Thus,  if  the 

vibration  be  of  the  mode  expressed  by 

.    87rx  (  .         STrat      ̂     •    S7rat\ 
y  =  sm  -^  ( Ag  cos  —, — h  B,  sm  — p  J , 

the  excursion  is  proportional  to  sin  (sttx/I),  which  vanishes  at  «  —  1 
points,  dividing  the  string  into  s  equal  parts.  These  points  of  no 
motion  are  called  nodes,  and  may  evidently  be  touched  or  held 

fast  without  in  any  way  disturbing  the  vibration.  The  produc- 

tion of  *  harmonics '  by  lightly  touching  the  string  at  the  points  of 
aliquot  division  is  a  well-known  resource  of  the  violinist.  All 
component  modes  are  excluded  which  have  not  a  node  at  the 
point  touched ;  so  that,  as  regards  pitch,  the  effect  is  the  same  as 
if  the  string  were  securely  fastened  there. 
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127.  The  constants,  which  occur  in  the  general  value  of  y, 

§  124,  depend  on  the  special  circumstances  of  the  vibration,  and 
may  be  expressed  in  terms  of  the  initial  values  of  y  and  y. 

Putting  <  =  0,  we  find 

yo  =  2,^i -4,sm  ̂ -;     yo=  y  2,.i  «jB,sm -y-    (1). 

STTX 

Multiplying  by  sin— p,  and  integrating  from  0  to  I,  we  obtain 

^•  =  7    yosm-v-cte;     5«  =  -— I  yosm-j-cto   (2). 

These  results  exemplify  Stokes*  law,  §  95  ;  for  that  part  of  y,  which 
depends  on  the  initial  velocities,  is 

^»"«  2      .    9Trx     ,    snat  /*'  .     .    sirx  , y=^._i  — sm  -J-  sm — i—  I  Vosm— j— cw', ^  '"^TTCW  I  I      Jo  i 

and  from  this  the  part  depending  on  initial  displacements  may 
be  inferred,  by  differentiating  with  respect  to  the  time,  and 
substituting  y©  for  y©. 

When  the  condition  of  the  string  at  some  one  moment  is 
thoroughly  known,  these  formnlse  allow  us  to  calculate  the 
motion  for  all  subsequent  time.  For  example,  let  the  string  be 
initially  at  rest,  and  so  displaced  that  it  forms  two  sides  of  a 
triangle.     Then  5,  =  0 ;  and 

.  2y  (  f^  X     .      STTX    J  f^  I  —X     .      STTX  J    I 

=  ,^^6(f-6)"^°  T      <^>' 
on  integration. 

We  see  that  Ag  vanishes,  if  sin  (sirb/l)  =  0,  that  is,  if  there  be 
a  node  of  the  component  in  question  situated  at  P,  A  more 
comprehensive  view  of  the  subject  will  be  afforded  by  another 
mode  of  solution  to  be  given  presently. 
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128.  In  the  expression  for  y  the  coefficients  of  sin  (sirx/l)  are 

the  normal  co-ordinates  of  Chapters  iv.  and  v.  We  will  denote 
them  therefore  by  0«,  so  that  the  configuration  and  motion  of  the 
system  at  any  instant  are  defined  by  the  values  of  (f>g  and  <^« 
according  to  the  equations 

,     .    Tra?  .    .     .    27rx  ,     .    STTX 
y^<l>iQin-j-  +  <l>2 sin  — p-  -h . . .  H- <^,  sm  -y-  +  . . . 

^  ^  1^    (1). ;        .     TTX        ;        .      27rX  .     ;        .      STTX 

y  =  0i8in  -y- +  92sm  -j-+  ...  +  9,sm-y— +  ... 

We  proceed  to  form  the  expressions  for  T  and  F,  and  thence 
to  deduce  the  normal  equations  of  vibration. 

For  the  kinetic  energy, 

=  ipj  2,^1  4>i' sm' -^- dx, 

the   product  of  every  pair  of  terms  vanishing  by  the  general 
property  of  normal  co-ordinates.     Hence 

T  =  ipl^,^,  <!>»'     (2). 
In  like  manner, 

=w-x;:r^*.'   w 
These  expressions  do  not  presuppose  any  particular  motion,  either 

natural,  or  otherwise;  but  we  may  apply  them  to  calculate  the 

whole  energy  of  a  string  vibratiug  naturally,  as  follows : — ^If  M 

be  the  whole  mass  of  the  string  (pi),  and  its  equivalent  (a^p)  be 
substituted  for  2\,  we  find  for  the  sum  of  the  energies, 

or,  in  terms  of  Ag  and  J5,  of  §  126, 

T+V^ir^M.tl^,  dLiL£t   (5). 

(4). 
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If  the  motion  be  not  confined  to  the  plane  of  xy,  we  have 
merely  to  add  the  energy  of  the  vibrations  in  the  perpendicular 

plane. 

Lagrange's  method  gives  immediately  the  equation  of  motion 

*-+(T)"*-i*-   »■ 
which  has  been  already  considered  in  §  66.     If  ̂ o  ̂ ^^  4^o  ̂   ̂ ^^ 

initial  values  of  ̂   and  ̂ ,  the  general  solution  is 

,       ;  sin  nt      , 
<f>=^  (pQ   h  <f>Q  cos  nt 

+  ̂j\inn(t--f)<S>dt'   (7), Ipn, 

where  n  is  written  for  sira/l. 

By  definition  4>«  is  such  that  4>«  S<f),  represents  the  work  done 

by  the  impressed  forces  on  the  displacement  80,.  Hence,  if  the 

force  acting  at  time  t  on  an  element  of  the  string  pdxhe  p  Ydx, 

^.^fpYsin^dx   (8). 

In  these  equations  0«  is  a  linear  quantity,  as  we  see  from  (1);  and 
4>,  is  therefore  a  force  of  the  ordinary  kind. 

129.  In  the  applications  that  we  have  to  make,  the  only 

impressed  force  will  be  supposed  to  act  in  the  immediate  neigh- 
bourhood of  one  point  x^b,  and  may  usually  be  reckoned  as 

a  whole,  so  that 

4>,  =  sin -^  I /jFda?   (1). 

If  the  point  of  application  of  the  force  coincide  with  a  node  of 

the  mode  («),  4>,  =  0,  and  we  learn  that  the  force  is  altogether 
without  influence  on  the  component  in  question.  This  principle 
is  of  great  importance  ;  it  shews,  for  example,  that  if  a  string  be 
at  rest  in  its  position  of  equilibrium,  no  force  applied  at  its  centre, 
whether  in  the  form  of  plucking,  striking,  or  bowing,  can  generate 
any  of  the  even  normal  components  ̂   If  after  the  operation  of 
the  force,  its  point  of  application  be  damped,  as  by  touching  it 

1  The  observation  that  a  harmonio  is  not  generated,  when  one  of  its  nodal 
points  ia  plucked,  is  due  to  Young. 
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with  the  fioger,  all  motion  must  forthwith  cease ;  for  those  com- 
ponents which  have  not  a  node  at  the  point  in  question  are 

stopped  by  the  damping,  and  those  which  have,  are  absent  from 
the  beginning^  More  generally,  by  damping  any  point  of  a 
sounding  string,  we  stop  all  the  component  vibrations  which  have 
not,  and  leave  entirely  unaflfected  those  which  have  a  node  at  the 

point  touched. 

The  case  of  a  string  pulled  aside  at  one  point  and  afterwards 
let  go  from  rest  may  be  regarded  as  included  in  the  preceding 
statements.  The  complete  solution  may  be  obtained  thus.  Let 
the  motion  commence  at  the  time  f  =  0;  from  which  moment 

4>,  =  0.     The  value  of  0,  at  time  t  is 

^*  =  (^*)oCosn^4--(</),)o8inn^   (2), 

where  {(f>g)o,  {4>»)o  denote  the  initial  values  of  the  quantities 
aflFected  with  the  suffix  «.  Now  in  the  problem  in  hand  {4>t)o  =  0, 
and  (0,)o  is  determined  by 

„.(^.),  =  |<I..  =  |Fsinf   (3). 
if  F'  denote  the  force  with  which  the  string  is  held  aside  at  the 
point  b.     Hence  at  time  t 

^''^Tpn''      sin-y-cosn«   (4), 
and  by  (1)  of  §128 

,        2  ̂ .   ̂  «.«   .    sirb  .    STTX  cos nt  .^. 

where  n  =  sira/L 

The  symmetry  of  the  expression  (5)  in  x  and  b  is  an  example 
of  the  principle  of  §  107. 

The  problem  of  determining  the  subsequent  motion  of  a  string 
set  into  vibration  by  an  impulse  acting  at  the  poiut  6,  may  be 
treated  in  a  similar  manner.  Integrating  (6)  of  §  128  over  the 

duration  of  the  impulse,  we  find  ultimately,  with  the  same  nota- 
tion as  before, 

. .  2    .    sirb  ̂  

(<^*)o  =  ̂ sm  -J-  F„ 

^  A  like  restilt  ensnes  when  the  point  which  is  damped  is  at  the  same  distance 
from  one  end  of  the  string  as  the  point  of  excitation  is  from  the  other  end. 
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if  lY'dt  be  denoted  by  Fj.    At  the  same  time  (<^,)o  =  0,  so  that  by 

(2)  at  time  t 
2Yi  ̂ ^m   .    8vb  .    STTX  Binnt  .^. 

y=i^^->"°"T''°"r-^   ^^^- 
The  series  of  component  vibrations  is  less  convergent  for  a  struck 
than  for  a  plucked  string,  as  the  preceding  expressions  shew. 
The  reason  is  that  in  the  latter  case  the  initial  value  of  y  is 
continuous,  and  only  dyjdx  discontinuous,  while  in  the  former  it 
is  y  itself  that  makes  a  sudden  spring.     See  §§  32,  101. 

The  problem  of  a  string  set  in  motion  by  an  impulse  may  also 
be  solved  by  the  general  formulae  (7)  and  (8)  of  §  128.     The  force 

finds  the  string  at  rest  at  ̂   =  0,  and  acts  for  an  infinitely  short 
time  from  ̂   =  0  to  t  =  T,    Thus  (<^,)o  and  (<^,)o  vanish,  and  (7) 
of  5  128  reduces  to 

2  f^' 
while  by  (8)  of  §128 

|''<I>,d^'  =  sin?^|V'd^'  =  sin?^-^  F,. 
H^nce,  as  before, 

<f>i  =  j~  Fisin— ̂   sinw^    (7). 

Hitherto  we  have  supposed  the  disturbing  force  to  be  concen- 
trated at  a  single  point.  If  it  be  distributed  over  a  distance  /3 

on  either  side  of  6,  we  have  only  to  integrate  the  expressions  (6) 
and  (7)  with  respect  to  6,  substituting,  for  example,  in  (7)  in  place 
of  Fi  sin  (sirb/l), 

I F/  sin  -J-  db. 

If  F/  be  constant  between  the  limits,  this  reduces  to 

Fi  —  sm  —f-  sm  — y—   (8). 
STT  0  t 

The  principal  effect  of  the  distribution  of  the  force  is  to  render 
the  series  for  y  more  convergent. 

130.  The  problem  which  will  next  engage  our  attention  is 
that  of  the  pianoforte  wire.  The  cause  of  the  vibration  is  here 
the  blow  of  a  hammer,  which  is  projected  against  the  string,  and 
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after  the  impact  rebounds.  But  we  should  not  be  justified  in 

assuming,  as  in  the  last  section,  that  the  mutual  action  occupies 

so  short  a  time  that  its  duration  may  be  neglected.  Measured  by 
the  standards  of  ordinary  life  the  duration  of  the  contact  is  indeed 

very  small,  but  here  the  proper  comparison  is  with  the  natural 
periods  of  the  string.  Now  the  hammers  used  to  strike  the  wires 
of  a  pianoforte  are  covered  with  several  layers  of  cloth  for  the 

express  purpose  of  making  them  more  yielding,  with  the  eflFect  of 
prolonging  the  contact.  The  rigorous  treatment  of  the  problem 
would  be  difficult,  and  the  solution,  when  obtained,  probably  too 

complicated  to  be  of  use ;  but  by  introducing  a  certain  simplifica- 
tion Helmholtz  has  obtained  a  solution  representing  all  the 

essential  features  of  the  case.  He  remarks  that  since  the  actual 

yielding  of  the  string  must  be  slight  in  comparison  with  that  of 
the  covering  of  the  hammer,  the  law  of  the  force  called  into  play 
during  the  contact  must  be  nearly  the  same  as  if  the  string  were 
absolutely  fixed,  in  which  case  the  force  would  vary  very  nearly  as 
a  circular  function.  We  shall  therefore  suppose  that  at  the  time 

^  =  0,  when  there  are  neither  velocities  nor  displacements,  a  force 

F  sin  pt  begins  to  act  on  the  string  at  a?  =  6,  and  continues  through 
half  a  period  of  the  circular  function,  that  is,  until  t  =  7r/p,  after 
which  the  string  is  once  more  free.  The  magnitude  of  p  ̂vill 
depend  on  the  mass  and  elasticity  of  the  hammer,  but  not  to  any 

great  extent  on  the  velocity  with  which  it  strikes  the  string. 

The  required  solution  is  at  once  obtained  by  substituting  for 

4>,  in  the  general  formula  (7)  of  §  128  its  value  given  by 

<I>,  =  ̂   sm^sinpt'   (1), 

the  range  of  the  integration  being  from  0  to  ir/p.  We  find 
(t  >  ir/p) 

2F  .    87rb  fp  ,       ..     .,.   .      .,  ,w 
<l>t  =  j —  sm  -J-    I   smn^t  —  t) ainpt  at Ifip  I      JO 

nir 
4p  cos  ̂   ,  .  , 

-^.  ..rsm  -7-  .smwU-s-      (2), 

lfm{p^-n^y  I    '  \      2pj 
and  the  final  solution  for  y  becomes,  if  we  substitute  for  n  and  /> 
their  values, 

cos  -^- ,  .  sm 
ifapl'F  ̂ ^<»        2pl  I     .    STTW    .    sira/.      7r\     .^. 

y  —  ̂ JL       2         r--   .  „   ,v   sm— ,     sm-^— U-^p-)...(d). 
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We  see  that  all  components  vanish  which  have  a  node  at  the 
point  of  excitement,  but  this  conclusion  does  not  depend  on  any 
particular  law  of  force.  The  interest  of  the  present  solution  lies 

in  the  information  that  may  be  elicited  from  it  as  to  the  depend- 
ence of  the  resulting  vibrations  on  the  duration  of  contact.  If 

we  denote  the  ratio  of  this  quantity  to  the  fundamental  period  of 

the  string  by  v,  so  that  1/  =  Tra :  2p/,  the  expression  for  the  ampli- 
tude of  the  component  8  is 

^Fl     V  cos  {sTTv)     .    sirh  .  . 

7i^-5(l-4^i;«)^"'"r   
^*^- 

We  fall  back  on  the  case  of  an  impulse  by  putting  i/  =  0, 
and 

F,=        Fsinptdt^  —  . 
Jo  ^  p 

When  V  is  finite,  those  components  disappear,  whose  periods 
are  |,  ̂,  f, ...  of  the  duration  of  contaxjt;  and  when  8  is  very 

great,  the  series  converges  with  5""'.  Some  allowance  must  also 
be  made  for  the  finite  breadth  of  the  hammer,  the  effect  of  which 

will  also  be  to  favour  the  convergence  of  the  series. 

The  laws  of  the  vibration  of  strings  may  be  verified,  at  least 

in  their  main  features,  by  optical  methods  of  observation— either 
with  the  vibration-microscope,  or  by  a  tracing  point  recording  the 
character  of  the  vibration  on  a  revolving  drum.  This  character 

depends  on  two  things, — the  mode  of  excitement,  and  the  point 
whose  motion  is  selected  for  observation.  Those  components  do 

not  appear  which  have  nodes  either  at  the  point  of  excitement,  or 
at  the  point  of  observation.  The  former  are  not  generated,  and 
the  latter  do  not  manifest  themselves.  Thus  the  simplest  motion 
is  obtained  by  plucking  the  string  at  the  centre,  and  observing 
one  of  the  points  of  trisection,  or  vice  versa.  In  this  case  the 
first  harmonic  which  contaminates  the  purity  of  the  principal 

vibration  is  the  fifth  coYnponent,  whose  intensity  is  usually  in- 
sufficient to  produce  much  disturbance. 

[The  dynamical  theory  of  the  vibration  of  strings  may  be 

employed  to  test  the  laws  of  hearing,  and  the  necessary  experi- 
ments are  easily  carried  out  upon  a  grand  pianoforte.  Having 

freed  a  string,  say  c,  from  its  damper  by  pressing  the  digital,  pluck 

it  at  one-third  of  its  length.  According  to  Young's  theorem  the 
third   component  vibration   is  not  excited   then,  and  in  corre- 
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spoDdence  with  that  fact  the  ear  fails  to  detect  the  component  g\ 

A  slight  displacement  of  the  point  plucked  brings  g'  in  again; 
and  if  a  resonator  {g[)  be  used  to  assist  the  ear,  it  is  only  with 
difficulty  that  the  point  can  be  hit  with  such  precision  as  entirely 
to  extinguish  the  tone.  Experiments  of  this  kind  shew  that  the 

ear  analyses  the  sound  of  a  string  into  precisely  the  same  con- 
stituents as  are  found  by  sympathetic  resonance,  that  is,  into 

simple  tones,  according  to  Ohm's  definition  of  this  conception. 
Such  experiments  are  also  well  adapted  to  shew  that  it  is  not  a 
mere  play  of  imagination  when  we  hear  overtones,  as  some  people 
believe  it  is  on  hearing  them  for  the  first  time\ 

If,  after  the  string  has  been  sounded  loudly  by  striking  the 
digital,  it  be  touched  with  the  finger  at  one  of  the  points  of 
trisection,  all  components  are  stopped  except  the  3rd,  6th,  &c.,  so 
that  these  are  left  isolated.  The  inexperienced  observer  is  usually 
surprised  by  the  loudness  of  the  residual  sound,  and  begins  to 
appreciate  the  large  part  played  by  overtones.] 

131.  The  case  of  a  periodic  force  is  included  in  the  general 
solution  of  §  128,  but  we  prefer  to  follow  a  somewhat  different 
method,  in  order  to  make  an  extension  in  another  direction.  We 
have  hitherto  taken  no  account  of  dissipative  forces,  but  we  will 

now  suppose  that  the  motion  of  each  element  of  the  string  is 
resisted  by  a  force  proportional  to  its  velocity.  The  partial 
differential  equation  becomes 

by  means  of  which  the  subject  may  be  treated.  But  it  is  still 

simpler  to  avail  ourselves  of  the  results  of  the  last  chapter, 

remarking  that  in  the  present  case  the  dissipation-function  F  is 
of  the  same  form  as  T.     In  fact 

•»  . 

^=ip^/.2^,<^.»   (2), 

where  ̂ i,  ̂ j,...  are  the  normal  co-ordinates,  by  means  of  which 
T  and   V  are  reduced  to   sums   of  squares.     The   equations   of 
motion  are  therefore  simply 

2 

^,  +  /t<^,  +  n«</>.=  r^4>,     (3), 

1  Helmholtz,  Ch.  n, ;  Brandt,  Pogg,  Arm,,  Vol.  cni.  p.  824, 1861. 
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of  the  same  form  as  obtains  for  systems  with  but  one  degree  of 
freedom.  It  is  only  necessary  to  add  to  what  was  said  in 

Chapter  iii.,  that  since  k  is  independent  of  8y  the  natural  vibra- 
tions subside  in  such  a  manner  that  the  amplitudes  maintain  their 

relative  values. 

If  a  periodic  force  F  cos  pt  act  at  a  single  point,  we  have 

<I>,  =  -F8in  -,    cospt   (4), 

and§46  <^,=    lppK~^^^    ̂ - cos(pt-€)    (o), 

where  tan  6=   ̂  — ~   (6). 

If  among  the  natural  vibrations  there  be  any  one  nearly 
isochronous  with  cosp^,  then  a  large  vibration  of  that  type  will 
be  forced,  unless  indeed  the  point  of  excitement  should  happen  to 
fall  near  a  node.  In  the  case  of  exact  coincidence,  the  component 
vibration  in  question  vanishes ;  for  no  force  applied  at  a  node  can 
generate  it,  under  the  present  law  of  friction,  which  however,  it 
may  be  remarked,  is  very  special  in  character.  If  there  be  no 
friction,  /c  =  0,  and 

^p<^f  =  ̂ i-^8in-^-  cospf   (/), 

which  would  make  the  vibration  infinite,  in  the  case  of  perfect 
isochronism,  unless  sin  (sTrb/l)  =  0. 

The  value  of  y  is  here,  as  usual, 

y  =  <^sm-^  -f  </»jSm  y-  +  ̂ sm  -7-+   (8). 

132.  The  preceding  solution  is  an  example  of  the  use  of 

normal  co-ordinates  in  a  problem  of  forced  vibrations.  It  is  of 
course  to  free  vibrations  that  they  are  more  especially  applicable, 
and  they  may  generally  be  used  with  advantage  throughout, 
whenever  the  system  after  the  operation  of  various  forces  is 

ultimately  left  to  itself.  Of  this  application  we  have  already  had 
examples. 

In  the  case  of  vibrations  due  to  periodic  forces,  one  advantage 

of  the  use  of  normal  co-ordinates  is  the  facility  of  comparison  with 
the  equilibrium  theory,  which  it  will  be  remembered  is  the  theory 
R.  13 
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of  the  motion  on  the  supposition  that  the  inertia  of  the  system 

may  be  left  out  of  account.  If  the  value  of  the  normal  co-ordinate 
<f>t  on  the  equilibrium  theory  be  A g  cos pt,  then  the  actual  value 
will  be  given  by  the  equation 

^•  =  ri^^^^^l^^   W' 

so  that,  when  the  result  of  the  equilibrium  theory  is  known  and 

can  readily  be  expressed  in  terms  of  the  normal  co-ordinates,  the 
true  solution  with  the  eflfects  of  inertia  included  can  at  once  be 
written  down. 

In  the  present  instance,  if  a  force  F  cos  pt  of  very  long  period 
act  at  the  point  b  of  the  string,  the  result  of  the  equilibrium 
theory,  in  accordance  with  which  the  string  would  at  any  moment 
consist  of  two  straight  portions,  will  be 

Ip^t^^sm  ̂     cospt   (2), 

from  which  the  actual  result  for  all  values  of  p  is  derived  by  simply 

writing  (n'  —  p^)  in  place  of  n\ 

The  value  of  y  in  this  and  similar  cases  may  however  be 
expressed  in  finite  terms,  and  the  difficulty  of  obtaining  the 
finite  expression  is  usually  no  greater  than  that  of  finding  the 
form  of  the  normal  functions  when  the  system  is  free.  Thus  in 

the  equation  of  motion 

suppose  that  F  varies  as  cos  moL  The  forced  vibration  will  then satisfy 

S+-'^  =  -i»^   <3)- 
If  F=  0,  the  investigation  of  the  normal  functions  requires  the 

solution  of 

and  a  subsequent  determination  of  m  to  suit  the  boundary  con- 
ditions. In  the  problem  of  forced  vibrations  m  is  given,  and  we 

have  only  to  supplement  any  particular  solution  of  (3)  with  the 
complementary  function  containing  two  arbitrary  constants.  This 
function,  apart  from  the  value  of  m  and  the  ratio  of  the  constants. 
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is  of  the  same  form  as  the  normal  functions ;  and  all  that  remains  to 
be  effected  is  the  determination  of  the  two  constants  in  accordance 

with  the  prescribed  boundary  conditions  which  the  complete 
solution  must  satisfy.  Similar  considerations  apply  in  the  case 
of  any  continuous  system. 

133.  If  a  periodic  force  be  applied  at  a  single  point,  there  are 
two  distinct  problems  to  be  considered;  the  first,  when  at  the 

point  x^by  a,  given  periodic  force  acts ;  the  second,  when  it  is  the 
actual  motion  of  the  point  b  that  is  obligatory.  But  it  will  be 
convenient  to  treat  them  together. 

The  usual  differential  equation 

is  satisfied  over  both  the  parts  into  which  the  string  is  divided  at 
6,  but  is  violated  in  crossing  from  one  to  the  other. 

In  order  to  allow  for  a  change  in  the  arbitrary  constants,  we 
must  therefore  assume  distinct  expressions  for  y,  and  afterwards 
introduce  the  two  conditions  which  must  be  satisfied  at  the  point 
of  junction.     These  are 

(1)  That  there  is  no  discontinuous  change  in  the  value  of  y ; 

(2)  That  the  resultant  of  the  tensions  acting  at  b  balances  the 
impressed  force. 

Thus,  \i  Foo^pt  be  the  force,  the  second  condition  gives 

2'.A@+i'cos/)«  =  0   (2), 

where   A{dy/dx)  denotes  the  alteration  in  the  value  of  dy/dx 

incurred  in  crossing  the  point  a?  =  6  in  the  positive  direction. 

We  shall,  however,  find  it  advantageous  to  replace  cospt  by 

the  complex  exponential  e^^^,  and  finally  discard  the  imaginary 
part,  when  the  symbolical  solution  is  completed.  On  the  assump- 

tion that  y  varies  as  e'^^  the  differential  equation  becomes 

S  +  '^V'O   (3); 
where  X^  is  the  complex  constant, 

^'  =  ̂(P'-»1>«)   (4). 

13—2 



196  TRANSVERSE   VIBRATIONS  OF  STRINGS.  [l33. 

The  most  general  solution  of  (3)  consists  of  two  terms,  pro- 
portional respectively  to  sinXo;,  and  cosXo;;  but  the  condition  to 

be  satisfied  at  a?  =  0  shews  that  the  second  does  not  occur  here. 

Hence  if  7  ff^  be  the  value  of  y  at  a?  =  6, 
sinXa?     .^  ,,. 

y  =  7-^^ri-«'*   (5), 

is  the  solution  applying  to  the  first  part  of  the  string  from  a;  ==  0 
to  a;  =  6.    In  like  manner  it  is  evident  that  for  the  second  part  we 
shall  have 

sinX(Z  — a?)^^ 

If  7  be  given,  these  equations  constitute  the  sjrmbolical  solution 
of  the  problein ;  but  if  it  be  the  force  that  is  given,  we  require 
further  to  know  the  relation  between  it  and  7. 

Differentiation  of  (5)  and  (6)  and  substitution  in  the  equation 
analogous  to  (2)  gives 

Thus 

_  F_  sinXA  sinX(Z--6) 

"^"T,  XsinXi    ^^)- 

^F  sm\x  sin \{l  —  6)  ,^ 
^"2\  Xsinx;  ̂  

from  0?  =  0  to  d;  =  6 

__  ̂  sin  X(Z  —  x)  sin  X6  ̂ ^ 

from  a?  =  6  to  a?  =  Z 

L..(8y. 

These  equations  exemplify  the  general  law  of  reciprocity 
proved  in  the  last  chapter ;  for  it  appears  that  the  motion  at  x 
due  to  the  force  at  h  is  the  same  as  would  have  been  found  at  h, 
had  the  force  acted  at  x. 

In  discussing  the  solution  we  will  take  first  the  case  in  which 
there  is  no  friction.  The  coefficient  k  is  then ^ zero;  while  X  is 

real,  and  equal  to  pjcu  The  real  part  of  the  solution,  correspond- 
ing to  the  force  Foospt,  is  found  by  simply  putting  cos|>^  for  ̂ ^^ 

in  (8),  but  it  seems  scarcely  necessary  to  write  the  equations  again 
for  the  sake  of  so  small  a  change.  The  same  remark  applies  to 
the  forced  motion  given  in  terms  of  7. 

It  appears  that  the  motion  becomes  infinite  in  case  the  force 

^  Donkin's  Acouttici,  p.  121. 
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is  isochronous  with  one  of  the  natural  vibrations  of  the  entire 

string,  unless  the  point  of  application  be  a  node ;  but  in  practice 
it  is  not  easy  to  arrange  that  a  string  shall  be  subject  to  a  force 
of  given  magnitude.  Perhaps  the  best  method  would  be  to  attach 

a  small  mass  of  iron,  attracted  periodically  by  an  electro-magnet, 
whose  coils  are  traversed  by  an  intermittent  current.  But  unless 
some  means  of  compensation  were  devised,  the  mass  would  have 
to  be  very  small  in  order  to  avoid  its  inertia  introducing  a  new 
complication. 

A  better  approximation  may  be  obtained  to  the  imposition  of 
an  obligatory  motion.  A  massive  fork  of  low  pitch,  excited  by 

a  bow  or  sustained  in  permanent  operation  by  electro-magnetism, 
executes  its  vibrations  in  approximate  independence  of  the  re- 

actions of  any  light  bodies  which  may  be  connected  with  it.  In 
order  therefore  to  subject  any  point  of  a  string  to  an  obligatory 
transverse  motion,  it  is  only  necessary  to  attach  it  to  the  extremity 
of  one  prong  of  such  a  fork,  whose  plane  of  vibration  is  perpendicular 
to  the  length  of  the  string.  This  method  of  exhibiting  the  forced 
vibrations  of  a  string  appears  to  have  been  first  used  by  Melded 

Another  arrangement,  better  adapted  for  aural  observation, 
has  been  employed  by  Helmholtz.  The  end  of  the  stalk  of  a 

powerful  tuning-fork,  set  into  vibration  with  a  bow,  or  otherwise, 
is  pressed  against  the  string.  It  is  advisable  to  file  the  surface, 

which  comes  into  contact  with  the  string,  into  a  suitable  (saddle- 
shaped)  form,  the  better  to  prevent  slipping  and  jarring. 

Referring  to  (5)  we  see  that,  if  sin  X&  vanished,  the  motion 
(according  to  this  equation)  would  become  infinite,  which  may  be 
taken  to  prove  that  in  the  case  contemplated,  the  motion  would 

really  become  great, — so  great  that  corrections,  previously  insigni- 
ficant, rise  into  importance.  Now  sin  X6  vanishes,  when  the  force 

is  isochronous  with  one  of  the  natural  vibrations  of  the  first  part 
of  the  string,  supposed  to  be  held  fixed  at  0  and  b. 

When  a  fork  is  placed  on  the  string  of  a  monochord,  or  other 

instrument  properly  provided  with  a  sound-board,  it  is  easy  to 
find  by  trial  the  places  of  maximum  resonance.  A  very  slight 
displacement  on  either  side  entails  a  considerable  falling  off  in  the 
volume  of  the  sound.  The  points  thus  determined  divide  the 
string  into  a  number  of  equal  parts,  of  such  length  that  the 
natural  note  of  any  one  of  them  (when  fixed  at  both  ends)  is 

1  Pogg.  Ann,  oix.  p.  198,  1859. 
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the  same  as  the  note  of  the  fork,  as  may  readily  be  verified.  The 
important  applications  of  resonance  which  Helmholtz  has  made  to 
purify  a  simple  tone  from  extraneous  accompaniment  will  occupy 
our  attention  later. 

134.  Returning  now  to  the  general  case  where  X  is  complex, 
we  have  to  extract  the  real  parts  from  (5),  (6),  (8)  of  §  133.  For 
this  purpose  the  sines  which  occur  as  factors,  must  be  reduced  to 
the  form  Re^.     Thus  let 

sin\a?  =  i2a;e***   (1), 

with  a  like  notation  for  the  others.  From  (5)  §  133  we  shall  thus 
obtain 

from  a;  =  0  to  a?  =  6, 
and  from  (6)  §  133 

from  a;  =  6  to  0?  =  Z, 

corresponding  to  the  obligatory  motion  y  =  7  cosp^  at  6. 

By  a  similar  process  from  (8)  §  138,  if 

X  =  a+i/8   (3), 
we  should  obtain 

y  =  7;g-cos(pe  +  €a.-66)   (2), 

J'=lv(fc^.''^(^^'^'*^'""''"'^''"^^/"0 from  a?  =  0  to  a?  =  6 

,..(4), 

from  a?  =  6toa?  =  Z      j 

corresponding  to  the  impressed  force  F^o^pi  at  6.    It  remains  to 
obtain  the  forms  of  Rx^^xj  &c. 

The  values  of  a  and  y8  are  determined  by 

a3-^  =  £!.     2a^  =  -^   (5), 

and       sin  Xo;  =  sin  our  cos  i^x  +  cos  fxx  sin  ifix 

=  sm  fix    s   f-  *  cos  ow?   s   , 
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SO  that 

Bx^  =  8in^ax  (        ̂   —  j  H-cos^ow?  f   5   j  ...(6), 

while 

V(a»  +  /8')  =  ̂̂ (/)*+pV)    (8). 

This  completes  the  solution. 

If  the  friction  be  very  small,  the  expressions  may  be  simpli- 
fied.    For  instance,  in  this  case,  to  a  sufficient  approximation, 

a  -^pja,      ;8  =  -  /c/2a,       V(a'  +  P")  ̂ Vl^^ 

i(e^*  +  e-^*)  =  l,    i  (e^*  -  e-^*)  =  - /ca;/2a ; 

so  that,  corresponding  to  the  obligatory  motion  at  6  y  =  7  cosp^,  the 
amplitude  of  the  motion  between  a?  =  0  and  a;  =  6  is,  approximately 

/  .  ̂ px     i^a?      ̂ px  \ 
^m-^-  +  -^  -  cos'-^  I 71 

.     'p6     H^h^      ̂ ph 
sm'^—  +  -/-  cos*^— a      4a*         a  j 

(9), 

which  becomes  great,  but  not  infinite,  when  sin  (pb/a)  =  0,  or  the 
point  of  application  is  a  node. 

If  the  imposed  force,  or  motion,  be  not  expressed  by  a  single 
harmonic  tenn,  it  must  first  be  resolved  into  such.  The  preceding 
solution  may  then  be  applied  to  each  component  separately,  and 
the  results  added  together.  The  extension  to  the  case  of  more  than 
one  point  of  application  of  the  impressed  forces  is  also  obvioua 
To  obtain  the  most  general  solution  satisfying  the  conditions,  the 
expression  for  the  natural  vibrations  must  also  be  added;  but 
these  become  reduced  to  insignificance  after  the  motion  has  been 
in  progress  for  a  sufficient  time. 

The  law  of  friction  assumed  in  the  preceding  investigation  is 
the  only  one  whose  results  can  be  easily  followed  deductively,  and 
it  is  sufficient  to  give  a  general  idea  of  the  effects  of  dissipative 

forces  on  the  motion  of  a  string.  But  in  other  respects  the  con- 
clusions drawn  from  it  possess  a  fictitious  simplicity,  depending  on 

the  fact  that  F — the  dissipation-function — is  similar  in  form  to  T, 
which  makes  the  normal  co-ordinates  independent  of  each  other. 
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In  almost  any  other  case  (for  example,  when  but  a  single  point  of 

the  string  is  retarded  by  friction)  there  are  no  normal  co-ordinates 
properly  so  called.  There  exist  indeed  elementary  types  of  vibra- 

tion into  which  the  motion  may  be  resolved,  and  which  are 

perfectly  independent,  but  these  are  essentially  diflferent  in  cha- 
racter from  those  with  which  we  have  been  concerned  hitherto,  for 

the  various  parts  of  the  system  (as  affected  by  one  elementary 
vibration)  are  not  simultaneously  in  the  same  phase.  Special  cases 

excepted,  no  linear  transformation  of  the  co-ordinates  (with  real 
coefficients)  can  reduce  T,  F,  and  V  together  to  a  sum  of 

squares. 

If  we  suppose  that  the  string  has  no  inertia,  so  that  T  =  0, 
F  and  V  may  then  be  reduced  to  sums  of  squares.  This  problem 
is  of  no  acoustical  importance,  but  it  is  interesting  as  being 
mathematically  analogous  to  that  of  the  conduction  and  radiation 
of  heat  in  a  bar  whose  ends  are  maintained  at  a  constant  tem- 

perature. 

136.  Thus  far  we  have  supposed  that  at  two  fixed  points, 

07  =  0  and  x^l,  the  string  is  held  at  rest.  Since  absolute  fixity 
cannot  be  attained  in  practice,  it  is  not  without  interest  to  inquire 
in  what  manner  the  vibrations  of  a  string  are  liable  to  be  modified 

by  a  yielding  of  the  points  of  attachment;  and  the  problem 
will  furnish  occasion  for  one  or  two  remarks  of  importance. 
For  the  sake  of  simplicity  we  shall  suppose  that  the  system  is 
sjrmmetrical  with  reference  to  the  centre  of  the  string,  and  that 
each  extremity  is  attached  to  a  mass  M  (treated  as  unextended  in 

space),  and  is  urged  by  a  spring  (ji)  towards  the  position  of  equi- 
librium. If  no  frictional  forces  act,  the  motion  is  necessarily 

resolvable  into  normal  vibrations.    Assume 

y  =  {a  sin  7IM7  +  y8  cos  ma?}  cos(?na^— €)   (1). 

The  conditions  at  the  ends  are  that 

when    a?  =  0,    My  +  fiy-^    T,^ 

^    \    (2), when    x^ly     My  +  /xy  =  —  Ti  -i^ 

which  give 

(!t__^  tan  mZ  —  a  _  /i  —  Ma^m^  .^. 

i8~atanwiZ  +  /8"    ~mTi           ^  ̂' 
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two  equations,  sufficient  to  determine  m,  and  the  ratio  of  /9  to  a. 
Eliminating  the  latter  ratio,  we  find 

taLnml  =  -     (4), 

if  for  brevity  we  write  v  for   ^j   . 

Equation  (3)  has  an  infinite  number  of  roots,  which  may  be 

found  by  writing  tan  0  for  v,  so  that  tan  mZ  =  tan  20,  and  the  result 
of  adding  together  all  the  corresponding  particular  solutions,  each 
with  its  two  arbitrary  constants  a  and  6,  is  necessarily  the  most 
general  solution  of  which  the  problem  is  capable,  and  is  therefore 

adequate  to  represent  the  motion  due  to  an  arbitrary  initial  dis- 
tribution of  displacement  and  velocity.  We  infer  that  any  function 

of  X  may  be  expanded  between  a?  =  0  and  x  =  liu  a  series  of  terms 

(fhi^i  sin  vi^x  +  cos  niix)  +  <f>i{p2  sin  rryc  +  cos  rrifX)  +   (5), 

7^1,  rwa,  &c.  being  the  roots  of  (3)  and  Vi,  Vj,  &c.  the  corresponding 

values  of  p.  The  quantities  ̂ i,  ̂3,  &c.  are  the  normal  co-ordinates 
of  the  system. 

From  the  s)rmmetry  of  the  system  it  follows  that  in  each 
normal  vibration  the  value  of  y  is  numerically  the  same  at  points 
equally  distant  from  the  middle  of  the  string,  for  example,  at  the 
two  ends,  where  x  =  0  and  x  =  l.  Hence  1;,  sin  m^  +  cos  m^  =  ±  1 , 
as  may  be  proved  also  from  (4). 

The  kinetic  energy  T  of  the  whole  motion  is  made  up  of  the 
energy  of  the  string,  and  that  of  the  masses  M.    Thus 

^~i/^|   {S  ̂  (1/ sin  TTW? -h  cos ma?)}^  da? 
J  0 

+  )^M  {<^i  +  <^j  H- . . .}'  4-  iif  (<^i  (i/i  sin  mil  +  cos  mj,)  -[-...}'. 

But  by  the  characteristic  property  of  normal  co-ordinates,  terms 
containing  their  products  cannot  be  really  present  in  the  expres- 
sion  for  T,  so  that 

p  1  (Pr  sin  mfX  H-  cos  mrx)  (i/,  sin  m^  +  cos  m^x)  dx 

+  if  H-  M(pr  sin  mfl  H-  cos  rrirl)  (v,  sin  m^  4-  cos  m^  =  0   (6), 

if  r  and  8  be  different. 

This  theorem  suggests  how  to  determine  the  arbitrary  con- 
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stants,  80  that  the  series  (5)  may  represent  an  arbitrary  function 
y.     Take  the  expression 

pj  y(y»  81^  ̂ r!P  +  cos  mgx)dx  +  My^  +  Myi  {v,  sin  mJL  +  cos  mJL). .  .(7), 

and  substitute  in  it  the  series  (5)  expressing  y.  The  result  is  a 
series  of  terms  of  the  type 

p\  ̂r  (vr  sin  mra?  + cos  m^a?)  (v,  sin  m^  + cos  m,aj)  da? J  0 

H-  M^  H-  M<l>r  {vr  sin  mji  +  cos  mji)  {vg  sin  m^  +  cos  ntgl), 

all  of  which  vanish  by  (6),  except  the  one  for  which  r  =  «.  Hence 
(f>g  is  equal  to  the  expression  (7)  divided  by 

p  I    (vg sin rrigX  +  cos mgxy  dx  +  M+M^i/g sin  mj  +  cos  m^y. , .(8), J  0 

and  thus  the  coefficients  of  the  series  are  determined.  If  M=0, 
even  although  /i  be  finite,  the  process  is  of  course  much  simpler, 
but  the  unrestricted  problem  is  instructive.  So  much  stress  is 

often  laid  on  special  proofs  of  Fourier's  and  Laplace's  series,  that 
the  student  is  apt  to  acquire  too  contracted  a  view  of  the  nature 
of  those  important  results  of  analysis. 

We  shall  now  shew  how  Fourier's  theorem  in  its  general  form 
can  be  deduced  from  our  present  investigation.  Let  ilf  =  0 ;  then 

if  /i  =  X ,  the  ends  of  the  string  are  fast,  and  the  equation  de- 
termining m  becomes  tan  mi  =  0,  or  ml  =  sw,  as  we  know  it  must 

be.    In  this  case  the  series  for  y  becomes 

y  —  AiSm^  +  A^sin  —j-  H-il,sm— p  +   (9), 

which  must  be  general  enough  to  represent  any  arbitrary  functions 
of  Xy  vanishing  at  0  and  2,  between  those  limits.  But  now  suppose 
that  /i  is  zero,  M  still  vanishing.  The  ends  of  the  string  may  be 
supposed  capable  of  sliding  on  two  smooth  rails  perpendicular  to 
its  length,  and  the  terminal  condition  is  the  vanishing  of  dyjdx. 
The  equation  in  m  is  the  same  as  before ;  and  we  learn  that  any 
function  y  whose  rates  of  variation  vanish  at  a?  =  0  and  x  =  l,  can 
be  expanded  in  a  series 

y  =  jBi cos -V- H- jBj cos  -,-  H-^,cos— r-  +   (10). 
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This  series  remains  unaifected  when  the  sign  of  a;  is  changed, 
and  the  first  series  merely  changes  sign  without  altering  its 
numerical  magnitude.  If  therefore  yf  be  an  even  function  of  x, 

(10)  represents  it  from  —  Z  to  H-  f.  And  in  the  same  way,  if  y  be 
an  odd  function  of  x,  (9)  represents  it  between  the  same  limita 

Now,  whatever  function  of  x  <f>  (x)  may  be,  it  can  be  divided 
into  two  parts,  one  of  which  is  even,  and  the  other  odd,  thus : 

A  (^)  =  *  1?)_±  ̂ (-^)  +  <^  (a?)  -  <^  (- a?) . 

so  that,  if  <f>  (x)  be  such  that  ̂   (-  Z)  =  <^  (+ 1)  and  4>'  (- 1)  =  <(>  (+ 1), 
it  can  be  represented  between  the  limits  ±lhy  the  mixed  series 

.     .    Tra?  .   o        TTX       .    ,    2irx      „        2Trx  „-. 
-4iSin-^  +jDiC0S-^+-4jSm    ,    -h -B,  cos -t— +   (11). 

This  series  is  periodic,  >vith  the  period  21.  If  therefore  ̂   {x) 
possess  the  same  property,  no  matter  what  in  other  respects  its 
character  may  be,  the  series  is  its  complete  equivalent.  This  is 

Fourier's  theorem  \ 

We  now  proceed  to  examine  the  effects  of  a  slight  yielding  of 
the  supports,  in  the  case  of  a  string  whose  ends  are  approximately 
fixed.  The  quantity  v  may  be  great,  either  through  fi  or  through 
M.  We  shall  confine  ourselves  to  the  two  principal  cases,  (1) 
when  /i  is  great  and  M  vanishes,  (2)  when  /x  vanishes  and  M  is 

great. 

In  the  first  case  v  =  ̂ (— , 
lim 

and  the  equation  in  m  is  approximately 

,         2         2Tim 
tan  mt  =  —  =   . V  fl 

Assume  mZ  =  ̂ tt  +  x,  where  x  is  small ;  then 

2T,.sir  ... 
X  =  tan  x  =   -, —    approximately, 

and  mi  =  57r(l--^')   (12). 

^  The  best  *  syetem '  for  proving  Fourier's  theorem  from  dynamical  considera- 
tions is  an  endless  chain  stretched  round  a  smooth  cylinder  (§  189),  or  a  thin 

re-entrant  column  of  air  enclosed  in  a  ring-shaped  tube. 
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To  this  order  of  approximation  the  tones  do  not  cease  to  form 
a  harmonic  scale,  but  the  pitch  of  the  whole  is  slightly  lowered. 
The  effect  of  the  yielding  is  in  &ct  the  same  as  that  of  an  increase 

2T 
in  the  length  of  the  string  in  the  ratio  1  :  1  H — ^ ,  as  might 

have  been  anticipated. 

The  result  is  otherwise  if  fi  vanish,  while  M  is  great.    Here 

and  tan  ml  =  ̂   ̂     approximately. 

Hence  mZ  =  g^r  +  i#  ,  ^ —    (13)- Ma^ .  sir 

The  effect  is  thus  equivalent  to  a  decrease  in  /  in  the  ratio 

1.1-     1?^ 

and  consequently  there  is  a  rise  in  pitch,  the  rise  being  the 
greater  the  lower  the  component  tone.  It  might  be  thought 
that  any  kind  of  jdelding  would  depress  the  pitch  of  the  string, 
but  the  preceding  investigation  shews  that  this  is  not  the  case. 
Whether  the  pitch  will  be  raised  or  lowered,  depends  on  the 
sign  of  i;,  and  this  again  depends  on  whether  the  natural  note  of 
the  mass  M  urged  by  the  spring  /a  is  lower  or  higher  than  that  of 
the  component  vibration  in  question. 

136.  The  problem  of  an  otherwise  uniform  string  carrying 
a  finite  load  Jf  at  a?  =  6  can  be  solved  by  the  formulae  investigated 
in  §  133.  For,  if  the  force  F  cos  pt  be  due  to  the  reaction  against 
acceleration  of  the  mass  M, 

F^ypW.   (1), 

which  combined  with  equation  (7)  of  §  133  gives,  to  determine  the 
possible  values  of  X  (or  jp  :  a), 

a»ilfXsinX6  sinX.  (i  -  6)  =  T^sinXZ   (2). 

The  value  of  y  for  any  normal  vibration  corresponding  to  X  is 

y  =  P  sin  Xa;  sin  X  (Z  —  6)  cos  (aXt  —  e) 
from  x=^0  to  x  =  b  .  .^. 

y  =  PsinX  (?  —  a:)  sin X6 cos (aX<  —  c)   '      from  x=^b  to  x  =  l 

where  P  and  €  are  arbitrary  constants. 
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It  does  not  require  analysis  to  prove  that  any  normal  com- 
ponents which  have  a  node  at  the  point  of  attachment  are  un- 

affected by  the  presence  of  rthe  load.  For  instance,  if  a  string  be 
weighted  at  the  centre,  its  component  vibrations  of  even  orders 
remain  unchanged,  while  all  the  odd  components  are  depressed  in 
pitch.  Advantage  may  sometimes  be  taken  of  this  effect  of  a 
load,  when  it  is  desired  for  any  purpose  to  disturb  the  harmonic 
relation  of  the  component  tones. 

If  M  be  very  great,  the  gravest  component  is  widely  sepa- 
rated in  pitch  from  all  the  others.  We  will  take  the  case  when 

the  load  is  at  the  centre,  so  that  6  =  2  —  6  =  ̂ 2.  The  equation  in 
\  then  becomes 

sm  2"  .  j-g  tan  2-  -  y  =  0   (4), 

where  pi  :  M,  denoting  the  ratio  of  the  masses  of  the  string  and 
the  load,  is  a  small  quantity  which  may  be  called  a?.  The  first 
root  corresponding  to  the  tone  of  lowest  pitch  occurs  when  \\l  ia 
small,  and  such  that 

(JXZ)»  {1  4  i  (i  ny]  =  o'  nearly, 

whence  i[Kl  =  a  (1  —  ̂   o*), 

and  the  periodic  time  is  given  by 

/Ml 
['^t^   (^)- 

The  second  term  constitutes  a  correction  to  the  rough  value 
obtained  in  a  previous  chapter  (§  52),  by  neglecting  the  inertia  of 
the  string  altogether.  That  it  would  be  additive  might  have 

been  expected,  and  indeed  the  formula  as  it  stands  may  be  ob- 
tained from  the  consideration  that  in  the  actual  vibration  the  two 

parts  of  the  string  are  nearly  straight,  and  may  be  assumed  to  be 

exactly  so  in  computing  the  kinetic  and  potential  energies,  with- 
out entailing  any  appreciable  error  in  the  calculated  period.  On 

this  supposition  the  retention  of  the  inertia  of  the  string  increases 
the  kinetic  energy  corresponding  to  a  given  velocity  of  the  load  in 
the  ratio  of  if  :  Jf+Jpi,  which  leads  to  the  above  result.  This 

method  has  indeed  the  advantage  in  one  respect,  as  it  might  be 
applied  when  p  is  not  uniform,  or  nearly  uniform.  All  that  is 
necessary  is  that  the  load  M  should  be  sufSciently  predominant. 

There  is  no  other  root  of  (4),  until  sinJXZ  =  0,  which  gives 
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the  second  component  of  the  string, — a  vibration  independent  of 
the  load.  The  roots  after  the  first  occur  in  closely  contiguous 

pairs;  for  one  set  is  given  by  J\Z  =  57r,  and  the  other  approxi- 

mately by  iXZ=57r4--Ar>,  in  which  the  second  term  is  small. 

The  two  types  of  vibration  for  «  =  1  are  shewn  in  the  figure. 

Fig.  21. 

The  general  formula  (2)  may  also  be  applied  to  find  the  effect 
of  a  small  load  on  the  pitch  of  the  various  components. 

137.  Actual  strings  and  wires  are  not  perfectly  flexible. 
They  oppose  a  certain  resistance  to  bending,  which  may  be  divided 
into  two  parts,  producing  two  distinct  effects.  The  first  is  called 
viscosity,  and  shews  itself  by  damping  the  vibrations.  This  part 
produces  no  sensible  effect  on  the  periods.  The  second  is  con- 

servative in  its  character,  and  contributes  to  the  potential  energy 
of  the  system,  with  the  effect  of  shortening  the  periods.  A  com- 

plete investigation  cannot  conveniently  be  given  here,  but  the 
case  which  is  most  interesting  in  its  application  to  musical 
instruments,  admits  of  a  sufficiently  simple  treatment. 

When  rigidity  is  taken  into  account,  something  more  must  be 

specified  with  respect  to  the  terminal  conditions  than  that  y 
vanishes.     Two  cases  may  be  particularly  noted : — 

(i)    When  the  ends  are  clamped,  so  that  dy/dx  =  0  at  the  ends. 
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(ii)    When  the  terminal  directions  are  perfectly  free,  in  which 

case  dhf/da^  =  0. 

It  is  the  latter  which  we  propose  now  to  consider. 

If  there  were  no  rigidity,  the  type  of  vibration  would  be 
STTtXi 

y  X  sin    .    ,    satisfying  the  second  condition. 

The  eflFect  of  the  rigidity  might  be  slightly  to  disturb  the  type; 
but  whether  such  a  result  occur  or  not,  the  period  calculated 
from  the  potential  and  kinetic  energies  on  the  supposition  that 
the  type  remains  unaltered  is  necessarily  correct  as  far  as  the  first 
order  of  small  quantities  (§  88). 

Now  the  potential  energy  due  to  the  stiffness  is  expressed  by 

SF 

=**/:(2)'^   «• where  £  is  a  quantity  depending  on  the  nature  of  the  material 
and  on  the  form  of  the  section  in  a  manner  that  we  are  not  now 

prepared  to  examine.  The /o7^n  of  SF  is  evident,  because  the  force 
requiied  to  bend  any  element  ds  is  proportional  to  ds,  and  to  the 
amount  of  bending  already  effected,  that  is  to  ds/p.  The  whole 
work  which  must  be  done  to  produce  a  curvature  l/p  in  ds  is 

therefore  proportional  to  ds/p^;  while  to  the  approximation  to 
which  we  work  d8  =  dx,  and  l/p  =  d^yldx\ 

STTX 

Thus,  if  y  =  <^  sin  — ^ 

and  the  period  of  <^  is  given  by 

if  To  denote  what  the  period  would  become  if  the  string  were 
endowed  with  perfect  flexibility.  It  appears  that  the  effect  of  the 

stiffness  increases  rapidly  with  the  order  of  the  component  vibra- 
tions, which  cease  to  belong  to  a  harmonic  scale.  However,  in  the 

strings  employed  in  music,  the  tension  is  usually  sufficient  to 
reduce  the  influence  of  rigidity  to  insignificance. 

The  method  of  this  section  cannot  be  applied  without  modifi- 
cation to  the  other  case  of  terminal  condition,  namely,  when  the 

ends  are  clamped.    In  their  immediate  neighbourhood  the  type  of 
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vibration  must  differ  from  that  assumed  by  a  perfectly  flexible 

string  by  a  quantity,  which  is  no  longer  small,  and  whose  square 
therefore  cannot  be  neglected.  We  shall  return  to  this  subject, 
when  treating  of  the  transverse  vibrations  of  rods. 

138.  There  is  one  problem  relating  to  the  vibrations  of  strings 
which  we  have  not  yet  considered,  but  which  is  of  some  practical 
interest,  namely,  the  character  of  the  motion  of  a  violin  (or  cello) 
string  under  the  action  of  the  bow.  In  this  problem  the  modus 
operandi  of  the  bow  is  not  sufficiently  understood  to  allow  us  to 
follow  exclusively  the  a  priori  method :  the  indications  of  theory 
must  be  supplemented  by  special  observation.  By  a  dexterous 
combination  of  evidence  drawn  from  both  sources  Helmholtz  has 

succeeded  in  determining  the  principal  features  of  the  case,  but 
some  of  the  details  are  still  obscure. 

Since  the  note  of  a  good  instrument,  well  handled,  is  musical, 
we  infer  that  the  vibrations  are  strictly  periodic,  or  at  least  that 

strict  periodicity  is  the  ideal.  Moreover — and  this  is  very  import- 
ant— the  note  elicited  by  the  bow  has  nearly,  or  quite,  the  same 

pitch  as  the  natural  note  of  the  string.  The  vibrations,  although 
forced,  are  thus  in  some  sense  free.  They  are  wholly  dependent 

for  their  maintenance  on  the  energy  drawn  fi-om  the  bow,  and  yet 
the  bow  does  not  determine,  or  even  sensibly  modify,  their  periods. 

We  are  reminded  of  the  self-acting  electrical  interrupter,  whose 
motion  is  indeed  forced  in  the  technical  sense,  but  has  that  kind 

of  freedom  which  consists  in  determining  (wholly,  or  in  part)  under 
what  influences  it  shall  come. 

But  it  does  not  at  once  follow  from  the  fact  that  the  string 
vibrates  with  its  natural  periods,  that  it  conforms  to  its  natural 

types.    If  the  coefficients  of  the  Fourier  expansion 

.     .    irx      .    .    2,irx 
y=^<l>i&m  -y- +  <^, sm -y- +   

be  taken  as  the  independent  co-ordinates  by  which  the  configura- 
tion of  the  system  is  at  any  moment  defined,  we  know  that  when 

there  is  no  friction,  or  friction  such  that  Foe  T,  the  natural  vibra- 

tions are  expressed  by  making  each  co-ordinate  a  simple  harmonic 
(or  quasi-harmonic)  function  of  the  time ;  while,  for  all  that  has 
hitherto  appeared  to  the  contrary,  each,  co-ordinate  in  the  present 
case  might  be  any  function  of  the  time  periodic  in  time  t.     But  a 



138.]  VIOLIN   STRING.  209 

little  examination  will  shew  that  the  vibrations  must  be  sensibly 
natural  in  their  types  as  well  as  in  their  periods. 

The  force  exercised  by  the  bow  at  its  point  of  application  may 
be  expressed  by 

F=  ̂ Ar  COS  f   €r]  ', 

SO  that  the  equation  of  motion  for  the  co-ordinate  (f>t  is 

h  being  the  point  of  application.  Each  of  the  component  paits  of 

4>,  will  give  a  corresponding  term  of  its  own  period  in  the  solu- 
tion, but  the  one  whose  period  is  the  same  as  the  natural  period 

of  <\>g  will  rise  enormously  in  relative  importance.  Practically  then, 
if  the  damping  be  small,  we  need  only  retain  that  part  of  ̂ « 

which  depends  on  Ag  cos  (   e,] ,  that  is  to  say,  we  may  regard 

the  vibrations  as  natural  in  their  types. 

Another  material  fact,  supported  by  evidence  drawn  both  from 
theory  and  aural  observation,  is  this.  All  component  vibrations 

are  absent  which  have  a  node  at  the  point  of  excitation.  "In 
order,  however,  to  extinguish  these  tones,  it  is  necessary  that  the 
coincidence  of  the  point  of  application  of  the  bow  with  the  node 
should  be  very  exact.  A  very  small  deviation  reproduces  the 

missing  tones  with  considerable  strengths" 

The  remainder  of  the  evidence  on  which  Helmholtz'  theory 
rests,  was  derived  from  direct  observation  with  the  vibration- 
microscope.  As  explained  in  Chapter  ii.,  this  instrument  affords 
a  view  of  the  curve  representing  the  motion  of  the  point  under 
observation,  as  it  would  be  seen  traced  on  the  surface  of  a  trans- 

parent cylinder.  In  order  to  deduce  the  representative  curve  in 
its  ordinary  form,  the  imaginary  cylinder  must  be  conceived  to 
be  unrolled,  or  developed,  into  a  plane. 

The  simplest  results  are  obtained  when  the  bow  is  applied  at  a 
node  of  one  of  the  higher  components,  and  the  point  observed  is 
one  of  the  other  nodes  of  the  same  system.  If  the  bow  work 
fairly  so  as  to  draw  out  the  fundamental  tone  clearly  and  strongly, 
the  representative  curve  is  that  shewn  in  figure  22;  where  the 

^  Donkin's  Acousiict^  p.  131. 
R.  14 
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[138. 
abscissse  correspond  to  the  time  (AB  being  a  complete  period), 
and  the  ordinates  represent  the  displacement.     The  remarkable 

Fig.  22. 

fact  is  disclosed  that  the  whole  period  t  may  be  divided  into  two 

parts  To  and  t  — Tq,  during  each  of  which  the  velocity  of  the 
observed  point  is  constant ;  but  the  velocities  to  and  fro  are  in 

general  unequal. 

We  have  now  to  represent  this  curve  by  a  series  of  harmonic 

terms.  If  the  origin  of  time  correspond  to  the  point  A,  and 

AD^  FC = 7,   Fourier's  theorem  gives 

y=»  -r-r   \2      ̂ jsm — ?sm  —  («-^)   (1). 
^        7r»To(T-To)       •-!  «*  T  T     V  2/  ^    ̂ 

With  respect  to  the  value  of  To,  we  know  that  all  those  com- 
ponents of  y  must  vanish  for  which  sin  (sTrXo/l)  =  0  (x^  being  the 

point  of  observation),  because  under  the  circumstances  of  the  case 

the  bow  cannot  generate  them.  There  is  therefore  i*eason  to 
suppose  that  TqI  t=:Xq:  l\  and  in  &ct  observation  proves  that 
AC  :  CB  (in  the  figure)  is  equal  to  the  ratio  of  the  two  parts  into 
which  the  string  is  divided  by  the  point  of  observation. 

Now  the  free  vibrations  of  the  string  are  represented  in 
general  by 

STTX 

iAgCoa  - 

f~ao 

y  =  2,-i  sm-j- j^,cos  —  +BgBm-yV; 

and  this  at  the  point  x  =  Xo  must  agree  with  (1).     For  convenience 
of  comparison,  we  may  write 

.         2«7r^  .  „    .    287rt     ̂         28Tr 
Ag  cos   h  Bg  sm   =  Cg  cos  — T  T  T 

n    •    257r 
+  Jjg  sm   

and  it  then  appears  that  Cg  =  0. 

('-?) 

('-!•)• 
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We  find  also  to  determine  D, 

.    «7ra?o    rv  27T*        1    .    airXQ 

I  tt'to  (t  —  To)  «*  C whence 

unless  sin  (sirxo/l)  =  0. 

In  the  case  reserved,  the  comparison  leaves  Dg  undetermined, 
but  we  know  on  other  grounds  that  D,  then  vanishes.  However, 
for  the  sake  of  simplicity,  we  shall  suppose  for  the  present  that 
Df  is  always  given  by  (2).  If  the  point  of  application  of  the  bow 
do  not  coincide  with  a  node  of  any  of  the  lower  components,  the 
error  committed  will  be  of  no  great  consequence. 

On  this  understanding  the  complete  solution  of  the  problem  is 

y=-r — J-   .  T      -sin  —J-  sm   U— 77    (3). 
^      7r»To  (t  -  To)  ̂-1  5*  I  T    \       2j  ̂ ^ 

The  amplitudes  of  the  components  are  therefore  proportional  to  «~*. 
In  the  case  of  a  plucked  string  we  found  for  the  corresponding 

function  «~'  sin  (airb/l),  which  is  somewhat  similar.  If  the  string 
be  plucked  at  the  middle,  the  even  components  vanish,  but  the 
odd  ones  follow  the  same  law  as  obtains  for  a  violin  string.  The 
equation  (3)  indicates  that  the  string  is  alwa}rs  in  the  form  of  two 
straight  lines  meeting  at  an  angle.  In  order  more  conveniently 
to  shew  this,  let  us  change  the  origin  of  the  time,  and  the  constant 
multiplier,  so  that 

y  =  — S^ain-psin^j^    W 

will  be  the  equation  expressing  the  form  of  the  string  at  any  time. 

Now  we  know  (§  127)  that  the  equation  of  the  pair  of  lines 
proceeding  from  the  fixed  ends  of  the  string,  and  meeting  at  a 

point  whose  co-ordinates  are  a,  13,  is 
2BP      -»  1    .    8Tra    .    svx 

Thus  at  the  time  t,  (4)  represents  such  a  pair  of  lines,  meeting  at 

the  point  whose  co-ordinates  are  given  by 

I3fi 
a(Z-a) 

=  ±4P, 

sm  -J-  =  ±  sm  - — I  T 

14—2 
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These  equations  indicate  that  the  projection  on  the  axis  of  x 
of  the  point  of  intersection  moves  uniformly  backwards  and 

forwards  between  a:  =  0  and  a?  =  ?,  and  that  the  point  of  inter- 
section itself  is  situated  on  one  or  other  of  two  parabolic  arcs, 

of  which  the  equilibrium  position  of  the  string  is  a  common 
chord. 

Since  the  motion  of  the  string  as  thus  defined  by  that  of  the 
point  of  intersection  of  its  two  straight  parts,  has  no  especial 
relation  to  Xq  (the  point  of  observation),  it  follows  that,  according 
to  these  equations,  the  same  kind  of  motion  might  be  observed  at 

any  other  point.  And  this  is  approximately  true.  But  the  theo- 
retical result,  it  will  be  remembered,  was  only  obtained  by  as- 
suming the  presence  in  certain  proportions  of  component  vibrations 

having  nodes  at  x^^  though  in  fact  their  absence  is  required  by 
mechanical  laws.  The  presence  or  absence  of  these  components  is 
a  matter  of  indifference  when  a  node  is  the  point  of  observation, 
but  not  in  any  other  case.  When  the  node  is  departed  from,  the 
vibration  curve  shews  a  series  of  ripples,  due  to  the  absence  of 
the  components  in  question.  Some  further  details  will  be  found 
in  Helmholtz  and  Donkin. 

The  sustaining  power  of  the  bow  depends  upon  the  fact  that 
solid  friction  is  less  at  moderate  than  at  small  velocities,  so  that 

when  the  part  of  the  string  acted  upon  is  moving  with  the  bow 
(not  improbably  at  the  same  velocity),  the  mutual  action  is  greater 
than  when  the  string  is  moving  in  the  opposite  direction  with 
a  greater  relative  velocity.  The  accelerating  effect  in  the  first 

part  of  the  motion  is  thus  not  entirely  neutralised  by  the  sub- 
sequent retardation,  and  an  outstanding  acceleration  remains 

capable  of  maintaining  the  vibration  in  spite  of  other  losses  of 
energy.  A  curious  effect  of  the  same  peculiarity  of  solid  friction 
has  been  observed  by  W.  Froude,  who  found  that  the  vibrations 
of  a  pendulum  swinging  from  a  shaft  might  be  maintained  or 
even  increased  by  causing  the  shaft  to  rotate. 

[Another  case  in  which  the  vibrations  of  a  string  are  main- 
tained is  that  of  the  Aeolian  Harp.  It  has  often  been  suggested 

that  the  action  of  the  wind  is  analogous  to  that  of  a  bow ;  but  the 

analogy  is  disproved  by  the  observation*  that  the  vibrations  are 
executed  in  a  plane  transverse  to  the  direction  of  the  wind.  The 

true  explanation  involves  hydrodynamical  theory  not  yet  de- 
veloped.] 

1  Phil  Mag.,  March,  1879,  p.  161. 
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139.  A  string  stretched  on  a  smooth  curved  surface  will  in 

equilibrium  lie  along  a  geodesic  line,  and,  subject  to  certain  con- 
ditions of  stability,  will  vibrate  about  this  configuration,  if  dis- 

placed. The  simplest  case  that  can  be  proposed  is  when  the 
surface  is  a  cylinder  of  any  form,  and  the  equilibrium  position 
of  the  string  is  perpendicular  to  the  generating  lines.  The  student 
will  easily  prove  that  the  motion  is  independent  of  the  curvature 
of  the  cylinder,  and  that  the  vibrations  are  in  all  essential  respects 
the  same  as  if  the  surface  were  developed  into  a  plane.  The  case 
of  an  endless  string,  forming  a  necklace  round  the  cylinder,  is 
worthy  of  notice. 

In  order  to  illustrate  the  characteristic  features  of  this  class  of 

problems,  we  will  take  the  comparatively  simple  example  of  a 
string  stretched  on  the  surface  of  a  smooth  sphere,  and  lying, 

when  in  equilibrium,  along  a  great  circle.  The  co-ordinates  to 
which  it  will  be  most  convenient  to  refer  the  s}rstem  are  the 
latitude  6  measured  from  the  great  circle  as  equator,  and  the 
longitude  ̂   measured  along  it.  If  the  radius  of  the  sphere  be  a, 
we  have 

T=ljp(adyad<t>=^^je»d<t,   (1). 
The  extension  of  the  string  is  denoted  by 

Now 

ds"  =  (adey  +  (a  cos  d  d<f>y ; so  that 

Thus 

and 
-«/{(• d<^   (2); 

If  the  ends  be  fixed, 

^  Cambridge  Mathematical  Tripos  Examination,  1876. 
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and  the  equation  of  virtual  velocities  is 

a'pf'esed<i>-'aT,j^Be(^+e)d<f>=o, 
whence,  since  Bd  is  arbitrary, 

«V^-2'«(|^.  +  ̂ )   (3> 
This  is  the  equation  of  motion. 

If  we  assume  d  qc  cos  pt,  we  get 

i  +  »-TV*-«   W. 
of  which  the  solution,  subject  to  the  condition  that  0  vanishes 
with  0,  is 

0^Asm\-jjrp^  +  l-  4>. cos pt   (5). 

The  remaining  condition  to  be  satisfied  is  that  0  vanishes  when 

o^  =  Z,  or  (^  =  a,  if  a  =  l/a. 

This  gives 
T,  /m«7r»       \      r,/m'7r»      1\ 

^=aVV"^"V=7l"7^""a»j   ^^>' 
where  m  is  an  integer. 

The  normal  functions  are  thus  of  the  same  form  as  for  a 

straight  string,  viz. 

0  =  A8Ui   —  cospt   (/), 

but  the  series  of  periods  is  different.  The  effect  of  the  curvature 
is  to  make  each  tone  graver  than  the  corresponding  tone  of  a 

straight  string.  If  a  >  tt,  one  at  least  of  the  values  of  />*  is  nega- 
tive, indicating  that  the  corresponding  modes  are  unstable.  If 

a  =  IT,  ̂   is  zero,  the  string  being  of  the  same  length  in  the  dis- 
placed position,  as  when  d  =  0. 

A  similar  method  might  be  applied  to  calculate  the  motion  of 

a  string  stretched  round  the  equator  of  any  surface  of  revolu- 
tion\ 

140.  The  approximate  solution  of  the  problem  for  a  vibrating 
string  of  nearly  but  not  quite  uniform  longitudinal  density  has  been 
fully  considered  in  Chapter  iv.  §  91,  as  a  convenient  example  of 

^  [For  a  more  general  treatment  of  this  question  see  MicheU,  Messenger  of 
Mathematics,  vol.  xzx.  p.  S7,  1890.] 
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the  general  theory  of  approximately  simple  systems.  It  will  be 
sufficient  here  to  repeat  the  result.  If  the  density  be  po  +  Bp,  the 

period  t^  of  the  r^  component  vibration  is  given  by 

"■"f-{>na'='-7^i   *» 

If  the  irregularity  take  the  form  of  a  small  load  of  ma.<«  m 
at  the  point  x  =  b,  the  formula  may  be  written 

-•=f'l'-S''-?l   ■:■■''' 

These  values  of  7^  are  correct  as  far  as  the  first  power  of  the 
small  quantities  Bp  and  m,  and  give  the  means  of  calculating  a 
correction  for  such  slight  departures  from  uniformity  as  must 
always  occur  in  practice. 

As  might  be  expected,  the  effect  of  a  small  load  vanishes  at 
nodes,  and  rises  to  a  maximum  at  the  points  midway  between 
consecutive  nodes.  When  it  is  desired  merely  to  make  a  rough 
estimate  of  the  effective  density  of  a  nearly  uniform  string,  the 

formula  indicates  that  attention  is  to  be  given  to  the  neighbour- 
hood of  loops  rather  than  to  that  of  nodes. 

[The  effect  of  a  small  variation  of  density  upon  the  period  is 
the  same  whether  it  occur  at  a  distance  x  from  one  end  of  the 

string,  or  at  an  equal  distance  from  the  other  end.  The  mean 
variation  at  points  equidistant  from  the  centre  is  all  that  we  need 
regard,  and  thus  no  generality  will  be  lost  if  we  suppose  that  the 
density  remains  symmetrically  distributed  with  respect  to  the  centre. 
Thus  we  may  write 

T,»  =  ̂"(l  +  ar)    (3) 

where  ar  =  T  I    — (1  —  cos,    jdx    (4). 

In  this  equation  Bp  may  be  expanded  from  0  to  ̂ Z  in  the  series 

Bp      A        A         27ra?  .             .          27rrx  .  ,.. 
—  =  ̂ 0  +  ̂ 1  cos—,--  +  ...  + -Ay  cos — =   h   (o), 
Po  I  V 

where 
P Ao^^T-^d^    (6), Wo  Po 

ilr  =  T  I      —COS   f-  dx        (7). 
t.'o    />0  ̂  
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Accordingly, 

Or^A.^^Ar   (8). 

This  equation,  as  it  stands,  gives  the  changes  in  period  in 
terms  of  the  changes  of  density  supposed  to  be  known.  And 
it  shews  conversely  that  a  variation  of  density  may  always  be 
found  which  will  give  prescribed  arbitrary  displacements  to  all 
the  perioda     This  is  a  point  of  some  interest. 

In  order  to  secure  a  reasonable  continuity  in  the  density,  it  is 

necessaiy  to  suppose  that  a,,  a,  •••  are  so  prescribed  that  a,,  assumes 
ultimately  a  constant  value  when  r  is  increased  indefinitely.  If 
this  condition  be  satisfied,  we  may  take  Ao  =  a^,  and  then  Ar  tends 
to  zero  as  r  increases. 

As  a  simple  example,  suppose  that  it  be  required  so  to  vary 
the  density  of  a  string  that,  while  the  pitch  of  the  fundamental 
tone  is  displaced,  all  other  tones  shall  remain  unaltered.  The 
conditions  give 

Accordingly 

and  ill  =  —  2ai. 
Thus  by  (6) 

Bp/po  =  —  2ai  cos  {27ra!/l),] 

141.  The  differential  equation  determining  the  motion  of  a 

string,  whose  longitudinal  density  p  is  variable,  is 

P 
dt^        'da^ 

from  which,  if  we  assume  y  oc  cosjp^,  we  obtain  to  determine  the 
normal  functions 

Z^^py-^   (2). 

where  v^  is  written  for  p^/Ti.  This  equation  is  of  the  second 
order  and  linear,  but  has  not  hitherto  been  solved  in  finite  terms. 

Considered  as  defining  the  curve  assumed  by  the  string  in  the 
normal  mode  under  consideration,  it  determines  the  curvature  at 

any  point,  and  accordingly  embodies  a  rule  by  which  the  curve 
can  be  constructed  graphically.  Thus  in  the  application  to  a 
string  fixed  at  both  ends,  if  we  start  fi:om  either  end  at  an  arbitrary 
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inclination,  and  with  zero  curvature,  we  are  always  directed  by  the 
equation  with  what  curvature  to  proceed,  and  in  this  way  we 
may  trace  out  the  entire  curve. 

If  the  assumed  value  of  v*  be  right,  the  curve  will  cross 
the  axis  of  x  at  the  required  distance,  and  the  law  of  vibration 
will  be  completely  determined.  If  i^  be  not  known,  different 
values  may  be  tried  until  the  curve  ends  rightly;  a  sufficient 

approximation  to  the  value  of  v^  may  usually  be  arrived  at  by  a 
calculation  founded  on  an  assumed  type  (§§  88,  90). 

Whether  the  longitudinal  density  be  uniform  or  not,  the 
periodic  time  of  any  simple  vibration  varies  cceteria  paribus  as  the 
square  root  of  the  density  and  inversely  as  the  square  root  of  the 
tension  under  which  the  motion  takes  place. 

The  converse  problem  of  determining  the  density,  when  the 
period  and  the  type  of  vibration  are  given,  is  alwajrs  soluble.  For 
this  purpose  it  is  only  necessary  to  substitute  the  given  value  of  y, 
and  of  its  second  differential  coefficient  in  equation  (2).  Unless 
the  density  be  infinite,  the  extremities  of  a  string  are  points  of 
zero  curvature. 

When  a  given  string  is  shortened,  every  component  tone  is 
raised  in  pitch.  For  the  new  state  of  things  may  be  regarded  as 
derived  from  the  old  by  introduction,  at  the  proposed  point  of 
fixture,  of  a  spring  (without  inertia),  whose  stiffness  is  gradually 
increased  without  limit.  At  each  step  of  the  process  the  potential 
energy  of  a  given  deformation  is  augmented,  and  therefore  (§  88) 
the  pitch  of  every  tone  is  raised.  In  like  manner  an  addition  to 
the  length  of  a  string  depresses  the  pitch,  even  though  the  added 
part  be  destitute  of  inertia. 

142.  Although  a  general  integration  of  equation  (2)  of  §  141 
is  beyond  our  powers,  we  may  apply  to  the  problem  some  of  the 
many  interesting  properties  of  the  solution  of  the  linear  equation 
of  the  second  order,  which  have  been  demonstrated  by  MM.  Sturm 
and  Liouville^  It  is  impossible  in  this  work  to  give  anything 
like  a  complete  account  of  their  investigations ;  but  a  sketch,  in 
which  the  leading  features  are  included,  may  be  found  interesting, 
and  will  throw  light  on  some  points  connected  with  the  general 

^  The  memoirs  referred  to  in  the  text  are  contained  in  the  first  volume  of 
Liooville's  Journal  (1S36). 
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theory  of  the  vibrations  of  continuous  bodies.  I  have  not  thought 
it  necessary  to  adhere  very  closely  to  the  methods  adopted  in  the 
original  memoira 

At  no  point  of  the  curve  satisf}dng  the  equation 

^^'^py-^   (1)' 

can  both  y  and  dyldx  vanish  together.  By  successive  differen- 
tiations of  (1)  it  is  easy  to  prove  that,  if  y  and  dy/dx  vanish 

simultaneously,  all  the  higher  differential  coefficients  d^y/da:^, 
d^y/da^y  &c.  must  also  vanish  at  the  same  point,  and  therefore 

by  Taylor's  theorem  the  curve  must  coincide  with  the  axis  of  x. 

Whatever  value  be  ascribed  to  i/*,  the  curve  satisfying  (1)  is 
sinuouSy  being  concave  throughout  towards  the  axis  of  x,  since 
p  is  everywhere  positive.  If  at  the  origin  y  vanish,  and  dy/dx 
be  positive,  the  ordinate  will  remain  positive  for  all  values  of  x 

below  a  certain  limit  dependent  on  the  value  ascribed  to  v^. 
If  J/*  be  very  small,  the  curvature  is  slight,  and  the  curve  will 
remain  on  the  positive  side  of  the  axis  for  a  great  distance.  We 

have  now  to  prove  that  as  j/*  increases,  all  the  values  of  x  which 
satisfy  the  equation  y  =  0  gradually  diminish  in  magnitude. 

Let  y'  be  the  ordinate  of  a  second  curve  satisfying  the  equa- tion 

^'+'''Vy'  =  o   (2). 
as  well  as  the  condition  that  y'  vanishes  at  the  origin,  and  let  us 
suppose  that  v'^  is  somewhat  greater  than  i^.  Multiplying  (2)  by 
y,  and  (1)  by  y',  subtracting,  and  integrating  with  respect  to  x 
between  the  limits  0  and  x,  we  obtain,  since  y  and  y'  both  vanish with  X, 

y't-y%-(-"-''^Jlpyy'^   <3)- 
If  we  further  suppose  that  x  corresponds  to  a  point  at  which 

y  vanishes,  and  that  the  difference  between  v'*  and  v*  is  very  small, 
we  get  ultimately 

y'^=^^jjy'da!   (4). 
The  right-hand  member  of  (4)  being  essentially  positive,  we 

learn  that  y'  and  dy/dx  are  of  the  same  sign,  and  therefore  that, 
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whether  dyjdx  be  positive  or  negative,  j/  is  already  of  the  same 
sign  as  that  to  which  y  is  changing,  or  in  other  words,  the  value 
of  X  for  which  y  vanishes  is  less  than  that  for  which  y  vanishes. 

If  we  fix  our  attention  on  the  portion  of  the  curve  lying 

between  x  =  Q  and  a?  =  Z,  the  ordinate  continues  positive  through- 
out as  the  value  of  i/*  increases,  until  a  certain  value  is  attained, 

which  we  will  call  v^.  The  function  y  is  now  identical  in  form 
with  the  first  normal  function  ttj  of  a  string  of  density  p  fixed 

at  0  and  2,  and  has  no  root  except  at  those  points.  As  i/*  again 
increases,  the  first  root  moves  inwards  from  x  =  l  until,  when  a 
second  special  value  v^  is  attained,  the  curve  again  crosses  the 
axis  at  the  point  x^l,  and  then  represents  the  second  normal 
function  u^.  This  function  has  thus  one  internal  root,  and  one 

only.  In  like  manner  corresponding  to  a  higher  value  v^  we 
obtain  the  third  normal  function  u^  with  two  internal  roots,  and 

so  on.  The  v!-^  fiinction  u^  has  thus  exactly  n—\  internal  roots,  and 
since  its  first  differential  coefficient  never  vanishes  simultaneously 
with  the  function,  it  changes  sign  each  time  a  root  is  passed. 

From  equation  (3)  it  appears  that  if  Ur  and  Ug  be  two  different 
normal  functions, 

pUrUgdx^O   (5). 
J  Q 

A  beautiful  theorem  has  been  discovered  by  Sturm  relating 
to  the  number  of  the  roots  of  a  function  derived  by  addition 
from  a  finite  number  of  normal  functions.  If  Um  be  the  component 
of  lowest  order,  and  tin  the  component  of  highest  order,  the  function 

where  ̂ ,  <f>m+i,  &c.  are  arbitrary  coefficients,  has  at  least  m—  1 
internal  roots,  and  at  most  n  —  1  internal  roots.  The  extremities 
at  a:  =  0  and  At  x  =  l  correspond  of  course  to  roots  in  all  cases. 
The  following  demonstration  bears  some  resemblance  to  that  given 
by  Liouville,  but  is  considerably  simpler,  and,  I  believe,  not  less 

rigorous. 

If  we  suppose  that  f(x)  has  exactly  fi  internal  roots  (any 

number  of  which  may  be  equal),  the  derived  function/"  (a:)  cannot 
have  less  than  ̂ i  + 1  internal  roots,  since  there  must  be  at  least 

one  root  off  (x)  between  each  pair  of  consecutive  roots  of /(a?),  and 

the  whole  number  of  roots  of  f(x)  concerned  is  ̂t  -h  2.  In  like 

manner,  we  see  that  there  must  be  at  least  fi  roots  of  /"(a?), 

{ 
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besides  the  extremities,  which  themselves  necessarily  correspond 
to  roots;  so  that  in  passing  from  f{x)  to  f  {x)  it  is  impossible 
that  any  roots  can  be  lost.     Now 

=  -  P  {Vrn  (f>m  W,n  +  V^m+i  <f>m+i  ̂ wi+i  +   +  I'n'  <^n  ̂).  •  (7), 

as  we  see  by  (1);  and  therefore,  since  p  is  always  positive,  we 
infer  that 

^m' <^m ̂ ^  +  I^tiH-i  <^m+i  Wtn+l  +   ■^Vn4>n^n   (8), 

has  at  least  fi,  roots. 

Again,  since  (8)  is  an  expression  of  the  same  form  as  f(x), 
similar  reasoning  proves  that 

has  at  least  fi  internal  roots ;  and  the  process  may  be  continued 
to  any  extent.  In  this  way  we  obtain  a  series  of  functions,  all 
with  fi  internal  roots  at  least,  which  differ  from  the  original 
function /(re)  by  the  continually  increasing  relative  importance  of 
the  components  of  the  higher  orders.  When  the  process  has  been 
carried  sufficiently  far,  we  shall  arrive  at  a  function,  whose  form 
differs  as  little  as  we  please  from  that  of  the  normal  frinction  of 

highest  order,  viz.  it^^  and  which  has  therefore  n  —  1  internal  roots. 
It  follows  that,  since  no  roots  can  be  lost  in  passing  down  the 
series  of  functions,  the  number  of  internal  roots  of /(a?)  cannot 
exceed  n  —  1. 

The  other  half  of  the  theorem  is  proved  in  a  similar  manner 
by  continuing  the  series  of  functions  backwards  from  /(os).  In 
this  way  we  obtain 

VnT*  ̂ m  ̂   +  V^m+i  <^ni+i  l^+i  +   +  ̂'n"*  ̂   "„ 

•> 

arriving  at  last  at  a  function  sensibly  coincident  in  form  with  the 

normal  function  of  lowest  order,  viz.  -m^,  and  having  therefore 
m  —  1  internal  roots.  Since  no  roots  can  be  lost  in  passing  up  the 
series  from  this  function  to  f(x),  it  follows  that  f(x)  cannot  have 
fewer  internal  roots  than  m  —  1 ;  but  it  must  be  understood  that 

any  number  of  the  m  —  1  roots  may  be  equal. 

•  We  will  now  prove  that  f{x)  cannot  be  identically  zero,  unless 
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all  the  coefficients  ^  vanish.  Suppose  that  <f}r  is  not  zero. 

Multiply  (6)  by  pUr,  and  integrate  with  respect  to  x  between  the 
limits  0  and  L     Then  by  (5) 

I  P'^f{^)dx  =  if>r\  pur^dx    (9); JO  Jo 

from  which,  since  the  integral  on  the  right-hand  side  is  finite,  we 
see  that  f(x)  cannot  vanish  for  all  values  of  x  included  within  the 

range  of  integration. 

Liouville  has  made  use  of  Sturm's  theorem  to  shew  how  a 
series  of  normal  functions  may  be  compounded  so  as  to  have  an 

arbitrary  sign  at  all  points  lying  between  x^O  and  x=^l.  His 
method  is  somewhat  as  follows. 

The  values  of  x  for  which  the  function  is  to  change  sign  being 

a,  6,  c,  ...,  quantities  which  without  loss  of  generality  we  may 

suppose  to  be  all  different,  let  us  consider  the  series  of  determi- 
nants, 

1*1  (a),  Ui{x)  I  I  ?ti(a),  Wi(6),  tii{x) 

Ma  (a),   Vni^)    \  I   Vii((l)y  ̂ 3(6),  lUiix) 

th  (a),  "9  (6),  fh  (^)  i ,  &c. 

The  first  is  a  linear  function  o(  v^(x)  and  Ui(x),  and  by  Sturm's 
theorem  has  therefore  one  internal  root  at  most,  which  root  is 

evidently  a.  Moreover  the  determinant  is  not  identically  zero, 
since  the  coefficient  of  w,  (x),  viz.  i^  (a),  does  not  vanish,  whatever 
be  the  value  of  a.  We  have  thus  obtained  a  function,  which 

changes  sign  at  an  arbitrary  point  a,  and  there  only  internally. 

The  second  determinant  vanishes  when  x  =  a,  and  when  ̂ r  =  6, 

and,  since  it  cannot  have  more  than  two  internal  roots,  it  changes 

sign,  when  x  passes  through  these  values,  and  there  only.  The 
coefficient  of  u^  (x)  is  the  value  assumed  by  the  first  determinant 
when  re  =  6,  and  is  therefore  finite.  Hence  the  second  determinant 

is  not  identically  zero. 

Similarly  the  third  determinant  in  the  series  vanishes  and 

changes  sign  when  x  =  a,  when  x  =  b,  and  when  x  =  c,  and  at  these 
internal  points  only.  The  coefficient  of  U4(x)  is  finite,  being  the 
value  of  the  second  determinant  when  x  =  c. 

It  is  evident  that  by  continuing  this  process  we  can  form 

functions  compounded  of  the  normal  functions,  which  shall  vanish 

and  change  sign  for  any  arbitrary  values  of  x,  and  not  elsewhere 
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internally ;  or,  in  other  words,  we  can  form  a  function  whose  sign 

is  arbitrary  over  the  whole  range  from  x  =  0  to  x^l. 

On  this  theorem  Liouville  founds  his  demonstration  of  the 

possibility  of  representing  an  arbitrary  function  between  x  =  0  and 
J?  =  Z  by  a  series  of  normal  functions.  If  we  assume  the  possibility 
of  the  expansion  and  take 

/(a?)  =  ̂ ii^(a?)  +  0,2i,(a?)  +  0,i^,(a:)  +   (10), 

the  necessary  values  of  ̂ i,  <^a,  &c.  are  determined  by  (9),  and  we 
find 

f(x)  =  ̂ \nr(x)l  pUr(x)/(x)dx-7-\   pv^^(x)dx>   (11). 

If  the  series  on  the  right  be  denoted  by  F(x),  it  remains  to 
establish  the  identity  o{f(x)  and  F(x), 

If  the  right-hand  member  of  (11)  be  multiplied  by  pur(x)  and 
integrated  with  respect  to  x  from  x  =  0  to  x  —  l,we  see  that 

I    ptlr{x)F{x)dx—j    ptCr(x)f(x)dx, Jo  Jo 

or,  as  we  may  also  write  it, 

{F(x)''f(x)}pur(x)dx  =  0   (12), 
Jc 

0 

where  Ur(x)  is  any  normal  function.    From  (12)  it  follows  that 

/, 
{F(x)  -f(x)}  [Aiu,  (x)  +  il,w,  (x)  +  A^v^(x)+. . .}  p  (ic  =  0. .  .(13), 0 

where  the  coefficients  Ai,  A^,  &c.  are  arbitrary. 

Now  if  F(x)  -f(x)  be  not  identically  zero,  it  will  be  possible 
so  to  choose  the  constants  A^,  A^,  &c.  that  AiUi  (a;)  +  ilst^(^)+  ... 

has  throughout  the  same  sign  as  F{x)—/(x\  in  which  case  every 
element  of  the  integral  would  be  positive,  and  equation  (13)  could 

not  be  true.  It  follows  that  F(x)—f(x)  cannot  differ  from  zero, 
or  that  the  series  of  normal  frmctions  forming  the  right-hand 
member  of  (11)  is  identical  with /(a?)  for  all  values  of  x  from  x  =  0 
to  a?  =  i. 

The  arguments  and  results  of  this  section  are  of  course  ap- 
plicable to  the  particular  case  of  a  uniform  string  for  which  the 

normal  functions  are  circular. 

[As  a  particular  case  of  variable  density  the  supposition  that 
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p  =  aar^  is  worthy  of  notice,  §  148  6.  In  the  notation  there 
adopted 

m«-hi  =  7i«=p»cr/2\   (14), 

and  the  general  solution  is 

y  =  Aa^'^+Ba:^"'   (15). 

If  the  string  be  fixed  at  two  points,  whose  abscissae  Xi,  x^  are 

as  r  to  1,  the  frequency  equation  is  r^"*  =»  1,  or 

"'^i+dgvy   w 
where  8  denotes  an  integer.  The  proper  frequencies  thus  depend 
only  upon  the  ratio  of  the  terminal  abscissae.  By  supposing  r 
nearly  equal  to  unity  we  may  fall  back  upon  the  usual  formula 
(§  124)  applicable  to  a  uniform  string. 

The  general  form  of  the  normal  function  is 

1  .    sir  log  (xlx^  .,  ̂.  T 

142  a.  The  points  where  the  string  remains  at  rest,  or  nodes, 
are  of  course  determined  by  the  roots  of  the  normal  functions, 
when  the  vibrations  are  free.  In  this  case  the  frequency  is  limited 
to  certain  definite  values ;  but  when  the  vibrations  are  forced,  they 
may  be  of  any  frequency,  and  it  becomes  possible  to  trace  the 
motion  of  the  nodal  points  as  the  frequency  increases  continuously. 

For  example,  suppose  that  the  imposed  force  acts  at  a  single 
point  P  of  a  string  AB,  whose  density  may  be  variable.  So  long 
as  the  frequency  is  less  than  that  of  either  of  the  two  parts  AP, 
PB  (supposed  to  be  held  at  rest  at  both  extremities)  into  which 

the  string  is  divided,  there  can  be  no  (interior)  node  (Q).  Other- 
wise, that  part  of  the  string  AQ  between  the  node  Q  and  one 

extremity  (-4),  which  does  not  include  P,  would  be  vibrating 
freely,  and  more  slowly  than  is  possible  for  the  longer  length  AP, 
included  between  the  point  P  and  the  same  extremity.  When  the 
frequency  is  raised,  so  as  to  coincide  with  the  smaller  of  those 

proper  to  AP,  PB,  say  ilP,  a  node  enters  at  P  and  then  advances 
towards  A.  At  each  coincidence  of  the  frequency  with  one  of 

those  proper  to  the  whole  string  AB,  the  vibration  identifies  itself 

with  the  corresponding  free  vibration,  and  at  each  coincidence  with 
a  frequency  proper  to  AP,  or  BP,  a  new  node  appears  at  P,  and 
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advances  in  the  first  case  towards  A  and  in  the  second  towards  B. 

And  throughout  the  whole  sequence  of  events  all  the  nodes  move 
outwards  from  P  towards  A  or  B. 

Thus,  if  the  string  be  uniform  and  be  bisected  at  P,  there  is 

no  node  until  the  pitch  rises  to  the  octave  (c')  of  the  note  (c)  of  the 
string.  At  this  stage  two  nodes  enter  at  P,  and  move  outwards 

sjrmmetrically.  When  g'  is  reached,  the  mode  of  vibration  is  that 
of  the  fi^ee  vibration  of  the  same  pitch,  and  the  nodes  are  at  the 

two  points  of  trisection.  At  c"  these  nodes  have  moved  outwards 
so  far  as  to  bisect  AP,  BP,  and  two  new  nodes  enter  at  P. 

143.  When  the  vibrations  of  a  string  are  not  confined  to  one 
plane,  it  is  usually  most  convenient  to  resolve  them  into  two  sets 

executed  in  perpendicular  planes,  which  may  be  treated  inde- 
pendently. There  is,  however,  one  case  of  this  description  worth 

a  passing  notice,  in  which  the  motion  is  most  easily  conceived  and 
treated  without  resolution. 

Suppose  that 
.    8irx        2sirt 

V  =  sm  — s-  cos   

.    sirx    .    2s7rt 
z  =  sm  —V-  sm   i  T 

r 
(1). Then 

STTX 

r  =  V(y^-h^«)  =  8in    ̂ -   (2), 

and  z  :  y  =  tan  (2«7r^/T)   (3), 

shewing  that  the  whole  string  is  at  any  moment  in  one  plane, 
which  revolves  uniformly,  and  that  each  particle  describes  a  circle 
with  radius  sin  (swx/l).  In  fact,  the  whole  system  turns  without 
relative  displacement  about  its  position  of  equilibrium,  completing 
each  revolution  in  the  time  r/s.  The  mechanics  of  this  case  is 

quite  as  simple  as  when  the  motion  is  confined  to  one  plane,  the 
resultant  of  the  tensions  acting  at  the  extremities  of  any  small 

portion  of  the  string's  length  being  balanced  by  the  centrifugal force. 

144.     The  general  differential  equation  for  a  uniform  string, 
viz. 

^y  =  a'^  (1) 
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may  be  transformed  by  a  change  of  variables  into 

&  =  0   <2). 

where  u^x  —  at,v  =  X'\'at.    The  general  solution  of  (2)  is 

y^f{u)  +  F(v)=f(a^-'at)-\'F(x  +  at)   (3)\ 

f,  F  being  two  arbitrary  functions. 

Let  us  consider  first  the  case  in  which  F  vanishes.  When 

t  has  any  particular  value,  the  equation 

y^f{x-^at)   (4). 

expressing  the  relation  between  x  and  y,  represents  the  form  of  the 
string.  A  change  in  the  value  of  ̂   is  merely  equivalent  to  an 
alteration  in  the  origin  of  x,  so  that  (4)  indicates  that  a  certain 

f(yrm  is  propagated  along  the  string  with  uniform  velocity  a  in  the 
positive  direction.  Whatever  the  value  of  y  may  be  at  the  point 
X  and  at  the  time  ty  the  same  value  of  y  will  obtain  at  the  point 
x  +  aMdki  the  time  t  -h  A^. 

The  form  thus  perpetuated  may  be  any  whatever,  so  long  as  it 
does  not  violate  the  restrictions  on  which  (1)  depends. 

When  the  motion  consists  of  the  propagation  of  a  wave  in  the 

positive  direction,  a  certain  relation  subsists  between  the  inclina- 
tion and  the  velocity  at  any  point.     Differentiating  (4)  we  find 

S=-«£   » 
Initially,  dyldt  and  dyjdx  may  both  be  given  arbitrarily,  but  if 

the  above  relation  be  not  satisfied,  the  motion  cannot  be  repre- 
sented by  (4). 

In  a  similar  manner  the  equation 

y^Fix-^at)   (6) 

denotes  the  propagation  of  a  wave  in  the  negative  direction,  and 
the  relation  between  dyjdt  and  dyjdx  corresponding  to  (5)  is 

i-«i   <'> 
In  the  general  case  the  motion  consists  of  the  simultaneous 

propagation  of  two  waves  with  velocity  a,  the  one  in  the  positive, 

1  [Bqofttions  (1)  and  (8)  are  due  to  D'Alembert  (1750).] 
R.  15 

I 
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and  the  other  in  the  negative  direction;  and  these  waves  are 

entirely  independent  of  one  another.  In  the  first  dyjdt  =  —  a  dy/dx, 
and  in  the  second  dyldt  —  adyjdx.  The  initial  values  of  rfy/ctt 
and  dyjdx  must  be  conceived  to  be  divided  into  two  parts,  which 
satisfy  respectively  the  relations  (5)  and  (7).  The  first  constitutes 
the  wave  which  will  advance  in  the  positive  direction  without 
change  of  form ;  the  second,  the  negative  wave.    Thus,  initially, 

/»-r(.)=-l| 
whence 

(8). 

equations  which  determine  the  functions  /'  and  F'  for  all  values 
of  the  argument  from  a?  =  —  oo  to  a?  =  oo ,  if  the  initial  values  of 
dyjdx  and  dyjdt  be  known. 

If  the  disturbance  be  originally  confined  to  a  finite  portion  of 
the  string,  the  positive  and  negative  waves  separate  after  the 
interval  of  time  required  for  each  to  traverse  half  the  disturbed 

portion. 
Fig.  28. 

Suppose,  for  example,  that  AB  is  the  part  initially  disturbed. 

A  point  P  on  the  positive  side  remains  at  rest  until  the  positive 
wave  has  travelled  from  -4  to  P,  is  disturbed  during  the  passage 

of  the  wave,  and  ever  after  remains  at  rest.  The  negative  wave 

never  affects  P  at  all.  Similar  statements  apply,  mviaUs  mutandis, 

to  a  point  Q  on  the  negative  side  of  AB,  If  the  character  of  the 

original  disturbance  be  such  that  a  dyjdx  —  dyjdt  vanishes  initially, 
there  is  no  positive  wave,  and  the  point  P  is  never  disturbed  at 

all ;  and  if  a  dyjdx  +  dyjdt  vanish  initially,  there  is  no  negative 

wave.  If  dyjdt  vanish  initially,  the  positive  and  the  negative 
waves  are  similar  and  equal,  and  then  neither  can  vanish.  In 

cases  where  either  wave  vanishes,  its  evanescence  may  be  con- 
sidered to  be  due  to  the  mutual  destruction  of  two  component 
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waves,  one  depending  on  the  initial  displacements,  and  the  other 
on  the  initial  velocities.  On  the  one  side  these  two  waves  con- 

spire, and  on  the  other  they  destroy  one  another.  This  explains 
the  apparent  paradox,  that  P  can  fail  to  be  affected  sooner  or  later 
after  AB  has  been  disturbed. 

The  subsequent  motion  of  a  string  that  is  initially  displaced 
without  velocity,  may  be  readily  traced  by  graphical  methods. 
Since  the  positive  and  the  negative  waves  are  equal,  it  is  only 
necessary  to  divide  the  original  disturbance  into  two  equal  parts, 
to  displace  these,  one  to  the  right,  and  the  other  to  the  left, 
through  a  space  equal  to  at,  and  then  to  recompound  them.  We 
shall  presently  apply  this  method  to  the  case  of  a  plucked  string 
of  finite  length. 

146.  Vibrations  are  called  stationary,  when  the  motion  of  each 
particle  of  the  system  is  proportional  to  some  function  of  the  time, 
the  same  for  all  the  particles.    If  we  endeavour  to  satisfy 

t"'^   <•)• 
by  assuming  y  =  XT,  where  X  denotes  a  function  of  x  only,  and 
T  a  function  of  t  only,  we  find 

Td^'^Xda?''^     (a  constant)
, SO  that 

T  =  -4  cos  mat  -h  B  sin  mat 
X  =  (7  cos  WW?  +  D  sin  mx 

]    (2). 
proving  that  the  vibrations  must  be  simple  harmonic,  though  of 
arbitrary  period.    The  value  of  y  may  be  written 

y  =  P  COS  {mat  —  e)  cos  {ma  —  a) 

-\Pqo& {mxii  +  ma:  —  6  —  a)  +  iPcos  {ma;t  —  !?«;  —  €  +  a).. .(3), 

shewing  that  the  most  general  kind  of  stationary  vibration  may 

be  regarded  as  due  to  the  superposition  of  equal  progressive  vibra- 
tions, whose  directions  of  propagation  are  opposed.  Conversely, 

two  stationary  vibrations  may  combine  into  a  progressive  one. 

The  solution  y=f{x  —  at)  +  F{x-¥at)  applies  in  the  first 
instance  to  an  infinite  string,  but  may  be  interpreted  so  as  to 
give  the  solution  of  the  problem  for  a  finite  string  in  certain 

15—2 
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casea  Let  us  suppose,  for  example,  that  the  string  terminates 
at  x  =  0,  and  is  held  fast  there,  while  it  extends  to  infinity  in 
the  positive  direction  only.  Now  so  long  as  the  point  ̂r  =  0 
actually  remains  at  rest,  it  is  a  matter  of  indifference  whether 
the  string  be  prolonged  on  the  negative  side  or  not.  We  are 
thus  led  to  regard  the  given  string  as  forming  part  of  one  doubly 
infinite,  and  to  seek  whether  and  how  the  initial  displacements 
and  velocities  on  the  negative  side  can  be  taken,  so  that  on 

the  whole  there  shall  be  no  displacement  at  a;  =  0  throughout  the 
subsequent  motion.  The  initial  values  of  y  and  y  on  the  positive 
side  determine  the  corresponding  parts  of  the  positive  and  negative 
waves,  into  which  we  know  that  the  whole  motion  can  be  resolved. 

The  former  has  no  influence  at  the  point  x  =  0.  On  the  negative 

side  the  positive  and  the  negative  waves  are  initially  at  our  dis- 
posal, but  with  the  latter  we  are  not  concerned.  The  problem  is 

to  determine  the  positive  wave  on  the  negative  side,  so  that  in 
conjunction  with  the  given  negative  wave  on  the  positive  side 
of  the  origin,  it  shall  leave  that  point  undisturbed. 

Let   OPQRS...  be  the  line  (of  any  form)  representing  the 
wave  in  OX,  which  advances  in  the  negative  direction.     It  is 

evident  that  the  requirements  of  the  case  are  met  by  taking  on 
the  other  side  of  0  what  may  be  called  the  contrary  wave,  so  that 

0  is  the  geometrical  centre,  bisecting  every  chord  (such  as  PP') 
which  passes  through  it.     Analytically,  if  y  =/(a?)  is  the  equation 

of  OPQRS   ,  -y^fi-x)  is  the  equation  of  OFQ'RS:   When  after  a  time  t  the  curves  are  shifted  to  the  left  and  to 

the  right  respectively  through  a  distance  at,  the  co-ordinates 
corresponding  to  a;  =  0  are  necessarily  equal  and  opposite,  and 
therefore  when  compounded  give  zero  resultant  displacement. 

The  effect  of  the  constraint  at  0  may  therefore  be  represented 
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by  supposing  that  the  negative  wave  moves  through  undisturbed, 
but  that  a  positive  wave  at  the  same  time  emerges  from  0.  This 
reflected  wave  may  at  any  time  be  found  from  its  parent  by  the 
following  rule : 

Let  APQRS.,.  be  the  position  of  the  parent  wave.    Then  the 
reflected  wave  is  the  position  which  this  would  assume,  if  it  were 

Fig.  25. 

turned  through  two  right  angles,  flrst  about  OX  as  an  axis  of 
rotation,  and  then  through  the  same  angle  about  OY.  In  other 
words,  the  return  wave  is  the  image  of  APQRS  formed  by 
successive  optical  reflection  in  OX  and  OT,  regarded  as  plane 
mirrors. 

The  same  result  may  also  be  obtained  by  a  more  analytical 
process.     In  the  general  solution 

y  =/(aj  -  at)  -h  F(x  +  at), 

the  functions /(-gr),  F{z)  are  determined  by  the  initial  circumstances 
for  all  positive  values  of  z.     The  condition  at  a;  =  0  requires  that 

for  all  positive  values  of  t,  or 

/(-  z)  =  -  Fiz) 

for  positive  values  of  z.  The  functions  /  and  F  are  thus  de- 
termined for  all  positive  values  of  x  and  t 

There  is  now  no  difficulty  in  tracing  the  course  of  events  when 
ttvo  points  of  the  string  A  and  B  are  held  fast.  The  initial  dis- 

turbance in  AB  divides  itself  into  positive  and  negative  waves, 
which  are  reflected  backwards  and  forwards  between  the  fixed 

points,  changing  their  character  from  positive  to  negative,  and 
vice  versd,  at  each  reflection.  After  an  even  number  of  reflec- 

tions in   each  case  the  original  form  and  motion  is  completely 
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recovered.  The  process  is  most  easily  followed  in  imagination 
when  the  initial  disturbance  is  confined  to  a  small  pcui)  of  the 
string,  more  particularly  when  its  character  is  such  as  to  give  rise 
to  a  wave  propagated  in  one  direction  only.  The  pulse  travels  with 
uniform  velocity  (a)  to  and  firo  along  the  length  of  the  string,  and 
after  it  has  returned  a  second  time  to  its  starting  point  the 

original  condition  of  things  is  exactly  restored.  The  period  of 
the  motion  is  thus  the  time  required  for  the  pulse  to  traverse 
the  length  of  the  string  twice,  or 

T  =  2Z/a   (1). 

The  same  law  evidently  holds  good  whatever  may  be  the  character 
of  the  original  disturbance,  only  in  the  general  case  it  may 
happen  that  the  shortest  period  of  recurrence  is  some  aliquot  part 
of  T. 

146.  The  method  of  the  last  few  sections  may  be  advantage- 
ously applied  to  the  case  of  a  plucked  string.  Sinc6  the  initial 

velocity  vanishes,  half  of  the  displacement  belongs  to  the  positive 
and  half  to  the  negative  wave.  The  manner  in  which  the  wave 

must  be  completed  so  as  to  produce  the  same  effect  as  the  con- 
straint, is  shewn  in  the  figure,  where  the  upper  curve  represents 

]^.  26. 

the  positive,  and  the  lower  the  negative  wave  in  their  initial 

positions.  In  order  to  find  the  configuration  of  the  string  at  any 
future  time,  the  two  curves  must  be  superposed,  after  the  upper 

has  been  shifted  to  the  right  and  the  lower  to  the  left  through  a 

space  equal  to  o^.  ^ 
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The  resultant  curve,  like  its  components,  is  made  up  of  straight 
piecea    A  succession  of  six  at  intervals  of  a  twelfth  of  the  period, 

Fig.  27. 

shewing  the  course  of  the  vibration,  is  given  in  the  figure  (Fig.  27), 
taken  from  Helmholtz.    From  0  the  string  goes  back  again  to  A  . 
through  the  same  stages  \ 

It  will  be  observed  that  the  inclination  of  the  string  at  the 

points  of  support  alternates  between-  two  constant  values. « 

147.  If  a  small  disturbance  be  made  at  the  time  t  at  the 

point  X  of  an  infinite  stretched  string,  the  effect  will  not  be  felt 
at  0  until  after  the  lapse  of  the  time  a/a,  and  will  be  in  all 
respects  the  same  as  if  a  like  disturbance  had  been  made  at 

the  point  sb  +  Ax  at  time  t  —  Ax/a:  Suppose  that  similar  dis- 
turbances are  communicated  to  the  string  at  intervals  of  time 

r  at  points  whose  distances  from  0  increase  each  time  by'aSr, then  it  is  evident  that  the  result  at.O  will  be  the  same  as  if  the 

disturbances  were  all  made  at  the  same  point,  provided  that  the 
time-intervals  be  increased  from  t  to  t  +  St.    This  remark  con- 

^  This  method  of  treating  the  vibration  of  a  plooked  string  is  dae  to  Tooag. 
Phil.  Trant.t  1800.  The  student  is  recommended  to  make  himself  familiar  with  it 
by  aotoaUy  oonstmoting  the  forms  of  Fig.  27. 
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tains  the  theory  of  the  alteration  of  pitch  due  to  motion  of  the 
source  of  disturbance ;  a  subject  which  will  come  under  our  notice 
again  in  connection  with  aerial  vibrations. 

148.  When  one  point  of  an  infinite  string  is  subject  to  a  forced 

vibration,  trains  of  waves  proceed  from  it  in  both  directions  ac- 
cording to  laws,  which  are  readily  investigated.  We  shall  suppose 

that  the  origin  is  the  point  of  excitation,  the  string  being  there 

subject  to  the  forced  motion  y  =  Ae^^\  and  it  will  be  sufficient  to 
consider  the  positive  side.  If  the  motion  of  each  element  ds  be 
resisted  by  the  frictional  force  Kpyds,  the  differential  equation  is 

S-I--S   c)^ 
or  since  y  oc  e*'^, 

^'(!f-^^-y   
(»)■ 

if  for  brevity  we  write  \^  for  the  coefficient  of  y. 

The  general  solution  is 

y  =  {(7e-^»  +  D  e+^}  e»i^   (3). 

Now  since  y  is  supposed  to  vanish  at  an  infinite  distance,  D 
must  vanish,  if  the  real  part  of  X  be  taken  positive.     Let 

where  a  is  positive. 
Then  the  solution  is 

y  =  ̂ e-<*+*>*+»^   (4), 

or,  on  throwing  away  the  imaginary  part, 

y-Ae-**  cos(pt-l3x)    (5), 
corresponding  to  the  forced  motion  at  the  origin 

y  =  A  cos  pt   (6). 

An  arbitrary  constant  may,  of  course,  be  added  to  t 

To  determine  a  and  /3,  we  have 

)
^
 

a
*
'
 
 

a* 

If  we  suppose  that  k  is  small, 

/3  =  p/a,  a  =  K/2a    nearly. 

«.»^  =  -g;  2a/8==^   (7). 

and 
y  =  Ae-'^f^co&(pt-^x\   (8). 
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This  solution  shews  that  there  is  propagated  along  the  string 
a  wave,  whose  amplitude  slowly  diminishes  on  account  of  the 

exponential  factor.  If  k  =  0,  this  factor  disappears,  and  wo  have 
simply 

y  =  ̂  cos  [pt-^)   (9). 
This  result  stands  in  contradiction  to  the  general  law  that, 

when  there  is  no  friction,  the  forced  vibrations  of  a  system  (due 
to  a  single  simple  harmonic  force)  must  be  s}aichronous  in  phase 
throughout.  Accoixling  to  (9),  on  the  contrary,  the  phase  varies 
continuously  in  passing  from  one  point  to  another  along  the  string. 
The  fact  is,  that  we  are  not  at  liberty  to  suppose  ie  =  0  in  (8), 
inasmuch  as  that  equation  was  obtained  on  the  assumption  that 
the  real  part  of  \  in  (3)  is  positive,  and  not  zero.  However  long 
a  finite  string  may  be,  the  coefficient  of  friction  may  be  taken  so 
small  that  the  vibrations  are  not  damped  before  reaching  the 
further  end.  After  this  point  of  smallness,  reflected  waves  begin 
to  complicate  the  result,  and  when  the  friction  is  diminished 
indefinitely,  an  infinite  series  of  such  must  be  taken  into  account, 
and  would  give  a  resultant  motion  of  the  same  phase  throughout. 

This  problem  may  be  solved  for  a  string  whose  mass  is  supposed 
to  be  concentrated  at  equidistant  points,  by  the  method  of  §  120. 

The  co-ordinate  '^i  may  be  supposed  to  be  given  {=n&^*\  and 
it  will  be  found  that  the  system  of  equations  (5)  of  §  120  may  all 
be  satisfied  by  taking 

tr  =  ̂ ^ti   (10), 

where  0  is  a  complex  constant  determined  by  a  quadratic  equa- 
tion. The  result  for  a  continuous  string  may  be  afterwards 

deduced. 

[In  the  notation  of  §  120  the  quadratic  equation  is 

5^  +  ̂ ^+5  =  0     (11), 

where  il=-^/)=--f  -\    B=--^   (12). 

The  roots  of  (11)  are 

^-  25    ^^^'' 

and  are  imaginary  if  45"  >  A*,  that  is,  if 

P'<^    <!*)• 



234  TRANSVERSE   VIBRATIONS  OF  STRINGS.  [148. 

a  condition  always  satisfied  in  passing  to  the  limit  where  a  and  /^ 
are  infinitely  small.  In  any  case  when  (14)  is  satisfied  the 
modulus  of  ̂   is  unity,  so  that  (10)  represents  wave  propagation. 

If,  however,  (14)  be  not  satisfied,  the  values  of  0  are  real.  In 
this  case  all  the  motions  are  in  the  same  phase,  and  no  wave 

is  propagated.    The  vibration  impressed  upon  ̂ i  is  imitated  upon 

a  reduced  scale  by  -^a*  V^s   >  with  amplitudes  which  form  a 
geometrical  progression.  In  the  first  case  the  motion  is  pro- 

pagated to  an  infinite  distance,  but  in  the  second  it  is  practically 
confined  to  a  limited  region  round  the  source.] 

148  a.  So  long  as  the  conditions  of  §  144  are  satisfied,  a 
positive,  or  a  negative,  wave  is  propagated  undisturbed.  If 
however  there  be  any  want  of  uniformity,  such  (for  example)  as 
that  caused  by  a  load  attached  at  a  particular  point,  reflection 
will  ensue  when  that  point  is  reached.  The  most  interesting 
problem  under  this  head  is  that  of  two  strings  of  diflFerent 
longitudinal  densities,  attached  to  one  another,  and  vibrating 
transversely  under  the  common  tension  2\.  Or,  if  we  regard  the 

string  as  single,  the  density  may  be  supposed  to  vary  dia- 
continuously  from  one  uniform  value  (p,)  to  another  (p,).  If 
Oi,  Oj  denote  the  corresponding  velocities  of  propagation, 

a,«=  TiK        a,«  =  2V/>,    (1), 

and  /A  =  Oi/oa  =  V  W/>i)   (2). 

The  conditions  to  be  satisfied  at  the  junction  of  the  two  parts 
are  (i)  the  continuity  of  the  displacement  y,  and  (ii)  the  continuity 
of  dyldx.  If  the  two  parts  met  at  a  finite  angle,  an  infinitely 
small  element  at  the  junction  would  be  subject  to  a  finite  force. 

Let  us  suppose  that  a  positive  wave  of  harmonic  type,  travelling 
in  the  first  part  (p,),  impinges  upon  the  second  (/>,).  In  the  latter 
the  motion  will  be  adequately  represented  by  a  positive  wave, 
but  in  the  former  we  must  provide  for  a  negative  reflected  wave. 
Thus  we  may  take  for  the  two  parts  respectively 

y  =  fie*»<»»<-^+ire*»  <«»*+«>   (3), 

y=Ze*«<««*-^    (4), 

where  ki  =  27r/Xi ,        k^  =  27r/X, , 

so  that  kidi^k^    (5). 
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The  conditions  at  the  junction  (a?=  0)  give 

H-¥K^L    (6), 

k,H^k,K  =  kJ.     (7); 

,                                K     ki-ki         /A-1  .Qv whence  n^^i^ — r  =  —  ̂- — ?    (p)- 

Since  the  ratio  K/H  is  real,  we  may  suppose  that  both 
quantities  are  real;  and  if  we  throw  away  the  imaginary  parts 
from  (3)  and  (4)  we  get  as  the  solution  in  terms  of  real  quantities 

y  ss  H  cos  ki{(iit '-  x)  •{-  K  coaki  (oit  •\'  x)   (9); 

y^(H +  K) cos k^(aj;-x)      (10). 

The  ratio  of  amplitudes  of  the  reflected  and  the  incident 
waves  expressed  by  (8)  is  that  first  obtained  by  T.  Young  for 
the  corresponding  problem  in  Optics. 

148  b.  The  expression  for  the  intensity  of  reflection  established 
in  §  148  a  depends  upon  the  assumption  that  the  transition  from 
the  one  density  to  the  other  is  sudden,  that  is  occupies  a  distance 
which  is  small  in  comparison  with  a  wave  length.  If  the 
transition  be  gradual,  the  reflection  may  be  expected  to  fall  off, 
and  in  the  limit  to  disappear  altogether. 

The  problem  of  gradual  transition  includes,  of  course,  that  of 
a  variable  medium,  and  would  in  general  be  encumbered  with 
great  difficulties.  There  is,  however,  one  case  for  which  the 
solution  may  be  readily  expressed,  and  this  it  is  proposed  to 
consider  in  the  present  section.  The  longitudinal  density  is 
supposed  to  vary  as  the  inverse  square  of  the  abscissa.  If  y, 

denoting  the  transverse  displacement  be  proportional  to  ̂ ^,  the 
equation  which  it  must  satisfy  as  a  function  o{  x,  is  (§  141), 

g+n«^-*y  =  0   (1). 

where  n*  is  some  positive  constant,  of  the  nature  of  an  abstract 
number. 

The  solution  of  (1)  is  y  =  Ax^+''''  +  Bx^*^   (2), 

where  71%^  =  ̂ ,^  —  ̂     (3). 

If  m  be  real,  that  is,  if  n  >  i,  we  may  obtain,  by  supposing 
il  =  0,  as  a  final  solution  in  real  quantities, 

y  =  CWcos  (pt  —  mlog X  +  e)    (4), 
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which  represents  a  positive  progressive  wave,  in  many  respects 
similar  to  those  propagated  in  uniform  media. 

Let  us  now  suppose  that,  to  the  left  of  the  point  x^Xi,  the 
variable  medium  is  replaced  by  one  of  uniform  constitution,  such 
that  there  is  no  discontinuity  of  density  at  the  point  of  transition ; 
and  let  us  inquire  what  reflection  a  positive  progressive  wave  in 
the  uniform  medium  will  undergo  on  arrival  at  the  variable 
medium.  It  will  be  sufficient  to  consider  the  case  where  m  is 

real,  that  is,  where  the  change  of  density  is  but  moderately  rapid. 

By  supposition,  there  is  no  negative  wave  in  the  variable 
medium,  so  that  -4  =  0  in  (2).     Thus 

and,  when  ic  =  a?i,  ?  =■-          (5). 

ydx         Xi  ^ 

The  general  solution  for  the  uniform  medium,  satisfying  the 

equation  dhfjda?  +  n^Xi~^y  =  0,  may  be  written 

y  =  He      '•    +Ke      *»      (6), 

from  which,  when  x  =  x,, 

dy^  _  _in  H  -  K  .,. 

ydx"      x,H  +  K    ^  ̂' 
In  equation  (6),  H  represents  the  amplitude  of  the  incident 

positive  wave,  and  K  the  amplitude  of  the  reflected  negative 

wave.     The   condition   to   be   satisfied  at  x=^x^  is  expressed  by 

equating  the  values  of  —J;    given  by  (5)  and  (7).    Thus if 

which  gives,  in  symbolical  form,  the  ratio  of  the  reflected  to  the 
incident  vibration. 

Having  regard  to  (3),  we  may  write  (8)  in  the  form 

ir"'2(n+m)     ^^' 

so  that  the  amplitude  of  the  reflected  wave  is  J(n  +  m)""^  of 
that  of  the  incident.  Thus,  as  was  to  be  expected,  when  n  and  m 
are  great,  t.e.,  when  the  density  changes  slowly  in  the  variable 
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medium,  there  is  but  little  reflection.  As  regards  phase,  the 
result  embodied  in  (9)  may  be  represented  by  supposing  that  the 
reflection  occurs  at  a;  =  a:i,  and  involves  a  change  of  phase  amount- 

ing to  a  quarter  period. 

Passing  on  now  to  the  more  important  problem,  we  will 
suppose  that  the  variable  medium  extends  only  so  far  as  the  point 
x^Xi,  beyond  which  the  density  retains  uniformly  its  value  at 
that  point.  A  positive  wave  travelling  at  first  in  a  uniform 

medium  of  density  proportional  to  xr^,  passes  at  the  point  a?  =  a?i 
into  a  variable  medium  of  density  proportional  to  ar^,  and  again,  at 
the  point  x  =  x^,  into  a  uniform  medium  of  density  proportional  to 

Xi~^,  The  velocities  of  propagation  are  inversely  proportional  to 
the  square  roots  of  the  densities,  so  that,  if  ft  be  the  refractive 
index  between  the  extreme  media, 

Xt 

M  =  ̂      (10). 

The  thickness  (d)  of  the  layer  of  transition  is 

d  =  a?s-ar,      (11). 

The  wave-lengths  in  the  two  media  are  given  by 

_  2irxi  __  iirxj 
\i  —    — - ,  A,  —  ~  -— -  ; fi  n 

2ird             27rd 

so  that  «  =  x,--x,  =  0*---i)X.        (12). 
For  the  first  medium  we  take,  as  before, 

y  =  He      '»  -^-Ke      '^        (6), 

giving,  when  x^Xi, 

dy  __      inH  —  K  _  _^  inO  .,^ 

ydx^      XiH+K^       Xi          ^  ̂' 

if,  for  brevity,  we  write  0  for  „     -fr  • 

For  the  variable  medium, 

y  =  ilici+'"*  +  fiari-*'"   (2), 

giving,  when  x  =  Xi, 

dy__^_,(^  +  im)  Ax^^  +  (i  -  im)  Bxr'"  .. «. 

ydx"'  Ax.^^-BxT'^    ^^'^^' 



238  TRANSYEBSB   VIBRATIONS  OF  STBINQS.        [148  6. 

Hence  the  condition  to  be  satisfied  tA  x  =  Xi  gives 

whence  ^  =  ̂ .-«.»^^^|   (14). 
The  condition  to  be  satisfied  at  x^x^  may  be  deduced  from  (14), 
by  substituting  x^  for  x^,  putting  at  the  same  time  ̂   =  1  in  virtue 
of  the  supposition  that  in  the  second  medium  there  is  no  negative 
wave.     Hence,  equating  the  two  values  oi  A:B,  we  get 

Xi-^"^  -. — —T-w—-^  ̂ xf^'^- — —,   f-    (15), 

as  the  equation  from  which  the  reflected  wave  in  the  first  medium 
is  to  be  found.     Having  regard  to  (3),  we  get 

~  H-hK  -  rn  +  n  -li^pL^^(m  -^  n  +  Ji) ' 

80  that  ^=  Q-.   \ -.-cT^^/   \   (16). 
H     2  (m  +  n)  +  2/a**»  (m  —  n)  ^     "^ 

This  is  the  symbolical  solution.  To  interpret  it  in  real  quantities, 
we  must  distinguish  the  cases  of  m  real  and  m  imaginary.  If  the 
transition  be  not  too  sudden,  m  is  real,  and  (16)  may  be  written 

K  _i  —  1  +  cos  (2m  log /a) +  i  sin  (2m  log /a) 

JT  ""  2  m  +  n  +  (m  —  w)  cos  (2m  log  /a)  +  i  (m  —  n)  sin  (2m  log  /a)  ' 
Thus  the  expression  for  the  ratio  of  the  intensities  of  the  reflected 
and  the  incident  waves  is,  after  reduction, 

sinHmlog/i)    

4m' +  sin*  (m  log /a)       ^     ̂' 

If  m  be  imaginary,  we  may  write  im^m'  \  (16)  then  gives  for 
the  ratio  of  intensities, 

or,  if  we  introduce  the  notation  of  hyperbolic  trigonometry  §  170, 

sinh^m^log/^)  ,,qv 

sinh«  (m' log /i)  +  4m'»      ^     ̂' 
For  the  critical  value  m  =  0,  we  get,  from  (17)  or  (19), 

4  +  (log^)«      
^^^'- 
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These  expressions  allow  us  to  trace  the  effect  of  a  more  or 
less  gradual  transition  between  media  of  given  indices.  If  the 

transition  be  absolutely  abrupt,  n  =  0,  by  (12);  so  that  m'  =  i. 

In  this  case,  (18)  gives  us  (§  148  a)  Young's  well-known  formula 

>  - 1\' 
U+i-' 

.(21). 

smh  (Cm 

Since       increases  continually  from   x^O,  the  ratio    (19) X 

increases  continually  from  m=0  to  m'«=J,  i.e.,  diminishes 
continually  frt)m  the  case  of  sudden  transition  m'  =  ̂ ,  when  its 
value  is  (21),  to  the  critical  case  m  =  0,  when  its  value  is  (20), 

after  which  this  form  no  longer  holds  good.  When  m'  =^0,n^\, 
and,  by  (12),  d  =  (X,  -  \)/  Anr. 

When  n>\,  (17)  is  the  appropriate  form.  We  see  from  it 
that  with  increasing  n  the  reflection  diminishes,  until  it  vanishes, 

when  mlog/i  =  7r,  i.e.  when 

"-*+(i^   ••   •   <*^>- 
With  a  still  more  gradual  transition  the  reflection  revives,  reaches 

a  maximum,  again  vanishes  when  m  log  /i  »  27r,  and  so  on^ 

148  c.  In  the  problem  of  connected  strings,  vibrating  imder 
the  influence  of  tension  alone,  the  velocity  in  each  uniform  part  is 
independent  of  wave  length,  and  there  is  nothing  corresponding  to 
optical  dispersion.  This  state  of  things  will  be  departed  frx>m  if 
we  introduce  the  consideration  of  stiffness,  and  it  may  be  of  interest 
to  examine  in  a  simple  case  how  far  the  problem  of  reflection  is 

thereby  modified.  As  in  §  148  a,  we  will  suppose  that  at  a;  =  0 
the  density  changes  discontinuously  from  />i  to  p,,  but  that  now 
the  vibrations  of  the  second  part  occur  under  the  influence  of 
sensible  stiffness.  The  differential  equation  applicable  in  this 
case  is,  §  188, 

or,  if  y  vary  as  e**^, 

-'^S  +  «'"S+"'^  =  0   (!>• 
SO  that,  if  y  vsjj  as  e***, 

^A-*  +  a^»i'»-n>=0   (2). 

1  Proc.  Math,  Soc,,  vol.  xi.  Febmary,  18S0  ;  where  will  also  be  found  a  numeri- 
cal example  illustrative  of  optical  conditions. 
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In  consequence  of  the  stiflftiess  represented  by  ̂   the  velocity 
of  propagation  deviates  from  a,,  and  must  be  found  from  (2).  The 

two  values  of  k^  given  by  this  equation  are  real,  one  being  positive 
and  the  other  negative.  The  four  admissible  values  of  k  may  thus 
be  written  +  k^y  ±  ih^,  so  that  the  complete  solution  of  (1)  will  be 

y  =  Ae^^  +  Be-^^-¥Ce-'^  +  D^   (3), 

/ts»  k^  being  real  and  positive.    The  velocity  of  propagation  is  n/k^ 

In  the  application  which  we  have  to  make  the  disturbance  of 
the  imperfectly  flexible  second  part  is  due  to  a  positive  wave 
entering  it  from  the  first  part.  When  x  is  great  and  positive,  (3) 
must  reduce  to  its  second  term.    Thus 

^=0,   Z)  =  0; 

and  we  are  left  with 

y  =  £^-<M  +  (7^M   (4). 

This  holds  when  x  is  positive.  When  x  is  negative,  corresponding 
to  the  perfectly  flexible  first  part,  we  have 

y  =  JETe-**'*  +  JfiTc***   (5), 

in  which  ki=^n/ai   (6). 

The  "  refractive  index  "  is  given  by 

fi^kjk,   (7). 

The  conditions  at  the  junction  are  first  the  continuity  of  y  and 

dyjdx.  Further,  d^y/da^  in  (4)  must  vanish  at  this  place,  inasmuch 
as  curvature  implies  a  couple  (§  162),  and  this  could  not  be 
transmitted  by  the  first  part.     Hence 

H+K=B+C   (8), 

h{H-K)^k^''ihjO   (9), 

-&,»5  +  A,'C=:0   (10). 

From  these  we  deduce 

H-K~       kji,           ^    ̂' 

K^_hj{ki  —  kt)  +  iktKi  .^ _.  _ 

H~h{k,  +  k,)  +  ikA     ^  ̂' 
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and  thence  for  the  intensity  of  reflection,  equal  to  Mod^.  (K/H\ 

\iCi  ~"  "'i)      I    '•'1  '•'2  /"'3 

(k,  +  k,y  +  k\%'/hj^ (13). 

If  the  second  part,  as  well  as  the  first,  be  perfectly  flexible, 

^  =  0,  Aj  '=  00 ,  and  we  fall  back  on  Young's  formula.  In  general, 
the  intensity  of  reflection  is  not  accurately  given  by  this  formula, 
even  though  we  employ  therein  the  value  of  the  refractive  index 
appropriate  to  the  waves  actually  under  propagation. 

R.  16 



CHAPTER  VII. 

LONGITUDINAL   AND   TORSIONAL    VIBRATIONS   OF   BARS. 

149.  The  next  system  to  the  string  in  order  of  simplicity 
is  the  bar,  by  which  term  is  usually  understood  in  Acoustics  a 
mass  of  matter  of  uniform  substance  and  elongated  cylindrical 
form.  At  the  ends  the  cylinder  is  cut  off  by  planes  perpendicular 

to  the  generating  lines.  The  centres  of  inertia  of  the  transverse 
sections  lie  on  a  straight  line  which  is  called  the  cuds. 

The  vibrations  of  a  bar  are  of  three  kinds — longitudinal, 
torsional,  and  lateral.  Of  these  the  last  are  the  most  important, 
but  at  the  same  time  the  most  diflScult  in  theory.  They  are 
considered  by  themselves  in  the  next  chapter,  and  will  only  be 
referred  to  here  so  far  as  is  necessary  for  comparison  and  contrast 
with  the  other  two  kinds  of  vibrations. 

Longitudinal  vibrations  are  those  in  which  the  axis  remains 
unmoved,  while  the  transverse  sections  vibrate  to  and  fro  in  the 

direction  perpendicular  to  their  planes.  The  moving  power  is 
the  resistance  offered  by  the  rod  to  extension  or  compression. 

One  peculiarity  of  this  class  of  vibrations  is  at  once  evident. 
Since  the  force  necessary  to  produce  a  given  extension  in  a  bar 
is  proportional  to  the  area  of  the  section,  while  the  mass  to  be 
moved  is  also  in  the  same  proportion,  it  follows  that  for  a  bar  of 
given  length  and  material  the  periodic  times  and  the  modes  of 
vibration  are  independent  of  the  area  and  of  the  form  of  the 
transverse  section.  A  similar  law  obtains,  as  we  shall  presently 
see,  in  the  case  of  torsional  vibrations. 

It  is  otherwise  when  the  vibrations  are  lateral.  The  periodic 
times  are  indeed  independent  of  the  thickness  of  the  bar  in  the 
direction  perpendicular  to  the  plane  of  flexure,  but  the  motive  power 
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in  this  case,  viz.  the  resistance  to  bending,  increases  more  rapidly 
than  the  thickness  in  that  plane,  and  therefore  an  increase  in 
thickness  is  accompanied  by  a  rise  of  pitch. 

In  the  case  of  longitudinal  and  lateral  vibrations,  the  mechan- 
ical constants  concerned  are  the  density  of  the  material  and  the 

value  of  Young's  modulus.  For  small  extensions  (or  compressions) 
Hooke's  law,  according  to  which  the  tension  varies  as  the  extension, 
,    ,,  ,      T- .,         .       .         .     actual  lenirth  —  natural  lencfth 
holds  eood.     If  the  extension,  viz.   ^   ^,   rr   — , ®  natural  length 

be  called  e,  we  have  T=q€,  where  q  is  Young's  modulus,  and  T 
is  the  tension  per  unit  area  necessary  to  produce  the  extension  €. 

Young's  modulus  may  therefore  be  defined  as  the  force  which  would 
have  to  be  applied  to  a  bar  of  unit  section,  in  order  to  double  its 

length,  if  Hooke's  law  continued  to  hold  good  for  so  great  exten- 
sions ;  its  dimensions  are  accordingly  those  of  a  force  divided  by  an 

area. 

The  torsional  vibrations  depend  also  on  a  second  elastic  con- 
stant fly  whose  interpretation  will  be  considered  in  the  proper 

place. 

Although  in  theory  the  three  classes  of  vibrations,  depending 

respectively  on  resistance  to  extension*,  to  torsion,  and  to  flexure 
are  quite  distinct,  and  independent  of  one  another  so  long  as  the 
squares  of  the  strains  may  be  neglected,  yet  in  actual  experiments 
with  bars  which  are  neither  uniform  in  material  nor  accurately 

cylindrical  in  figure  it  is  often  found  impossible  to  excite  longi- 
tudinal or  torsional  vibrations  without  the  accompaniment  of  some 

measure  of  lateral  motion.  In  bars  of  ordinary  dimensions  the 
gravest  lateral  motion  is  far  graver  than  the  gravest  longitudinal 
or  torsional  motion,  and  consequently  it  will  generally  happen  that 
the  principal  tone  of  either  of  the  latter  kinds  agrees  more  or  less 
perfectly  in  pitch  with  some  overtone  of  the  former  kind.  Under 
such  circumstances  the  regular  modes  of  vibrations  become 
unstable,  and  a  small  irregularity  may  produce  a  great  effect.  The 
difficulty  of  exciting  purely  longitudinal  vibrations  in  a  bar  is 
similar  to  that  of  getting  a  string  to  vibrate  in  one  plane. 

With  this  explanation  we  may  proceed  to  consider  the  three 
classes  of  vibrations  independently,  commencing  with  longitudinal 
vibrations,  which  will  in  fact  raise  no  mathematical  questions 
beyond  those  already  disposed  of  in  the  previous  chapters. 

16—2 
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150.  When  a  rod  is  stretched  by  a  force  parallel  to  its  length, 
the  stretching  is  in  general  accompanied  by  lateral  contraction  in 
such  a  manner  that  the  augmentation  of  volume  is  less  than  if 
the  displacement  of  every  particle  were  parallel  to  the  axis.  In  the 
case  of  a  short  rod  and  of  a  particle  situated  near  the  cylindrical 
boundary,  this  lateral  motion  would  be  comparable  in  magnitude 
with  the  longitudinal  motion,  and  could  not  be  overlooked  without 
risk  of  considerable  error.  But  where  a  rod,  whose  length  is  great 
in  proportion  to  the  linear  dimensions  of  its  section,  is  subject 
to  a  stretching  of  one  sign  throughout,  the  longitudinal  motion 
accumulates,  and  thus  in  the  case  of  ordinary  rods  vibrating 
longitudinally  in  the  graver  modes,  the  inertia  of  the  lateral 
motion  may  be  neglected.  Moreover  we  shall  see  later  how  a 
correction  may  be  introduced,  if  necessary. 

Let  X  be  the  distance  of  the  layer  of  particles  composing  any 
section  from  the  equilibrium  position  of  one  end,  when  the  rod 
is  unstretched,  either  by  permanent  tension  or  as  the  result  of 
vibrations,  and  let  f  be  the  displacement,  so  that  the  actual 

position  is  given  by  x  +  (.     The  equilibrium  and  actual  position 

of  a  neighbouring  layer  being  x-i-  Sx,  a;  +  &»  +  f  +  -7^  S^  re- 

spectively, the  elongation  m  d^jdx,  and  thus,  if  T  be  the  tension 
per  unit  area  acting  across  the  section, 

^=^f   (!)• 
Consider  now  the  forces  acting  on  the  slice  bounded  by  x 

and  X'\-hx,  If  the  area  of  the  section  be  co,  the  tension  at  a;  is 

by  (1)  qtod^/dx,  acting  in  the  negative  direction,  and  at  x  +  Bx 
the  tension  is 

acting  in  the  positive  direction;  and  thus  the  force  on  the  slice 
due  to  the  action  of  the  adjoining  parts  is  on  the  whole 

The  mass  of  the  element  is  pay  &r,  if  p  be  the  original  density, 
and  therefore  if  X  be  the  accelerating  force  acting  on  it,  the 

equation  of  equilibrium  is 

^+?2-»   «■ 
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In  what  follows  we  shall  not  require  to  consider  the  operation 
of  an  impressed  force.  To  find  the  equation  of  motion  we  have 

only  to  replace  X  by  the  reaction  against  acceleration  —  ̂,  and 

thus  if  5  :  p  =  a*,  we  have 

dC  "  dx'   ^^^- 

This  equation  is  of  the  same  form  as  that  applicable  to  the 
transverse  displacements  of  a  stretched  string,  and  indicates  the 
undisturbed  propagation  of  waves  of  any  tjrpe  in  the  positive  and 
negative  directions.  The  velocity  a  is  relative  to  the  unstretched 

condition  of  the  bar ;  the  apparent  velocity  with  which  a  disturb- 
ance is  propagated  in  space  will  be  greater  in  the  ratio  of  the 

stretched  and  unstretched  lengths  of  any  portion  of  the  bar.  The 
distinction  is  material  only  in  the  case  of  permanent  tension. 

161.     For  the  actual  magnitude  of  the  velocity  of  propagation, 
we  have 

a^  =  q  :  p  =  qoi)  :  pco, 

which  is  the  ratio  of  the  whole  tension  necessary  (according  to 

Hooke's  law)  to  double  the  length  of  the  bar  and  the  longitudinal 
density.  If  the  same  bar  were  stretched  with  total  tension  T, 
and  were  flexible,  the  velocity  of  propagation  of  waves  along  it 

would  be  \/(y  •  P«)-  I*^  order  then  that  the  velocity  might  be 
the  same  in  the  two  cases,  T  must  be  qo),  or,  in  other  words,  the 
tension  would  have  to  be  that  theoretically  necessary  in  order  to 
double  the  length.  The  tones  of  longitudinally  vibrating  rods 
are  thus  very  high  in  comparison  with  those  obtainable  from 
strings  of  comparable  length. 

In  the  case  of  steel  the  value  of  q  is  about  22  x  10*  grammes 
weight  per  square  centimetre.  To  express  this  in  absolute  units 

of  force  on  the  c.  G.s.*  system,  we  must  multiply  by  980.  In 
the  same  system  the  density  of  steel  (identical  with  its  specific 

gravity  referred  to  water)  is  7*8.     Hence  for  steel 

/980  X  22  X  10^      r,«^oAA 
a  =  y   ^^   =  530,000 

approximately,  which  shews  that  the  velocity  of  sound  in  steel  is 
about  530,000  centimetres  per  second,  or  about  16  times  greater 

^  Centimetre,  Gramme,  Second.     This  system  is  recommended  by  a  Committee 
of  the  British  Association.     Brit,  Aas.  Report,  1878. 
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than  the  velocity  of  sound  in  air.     In  glass  the  velocity  is  about 
the  same  as  in  steel. 

It  ought  to  be  mentioned  that  in  strictness  the  value  of  q  deter- 
mined by  statical  experiments  is  not  that  which  ought  to  be  used 

here.  As  in  the  case  of  gases,  which  will  be  treated  in  a  subsequent 

chapter,  the  rapid  alterations  of  state  concerned  in  the  propaga- 
tion of  sound  are  attended  with  thermal  effects,  one  result  of 

which  is  to  increase  the  effective  value  of  q  beyond  that  obtained 

from  observations  on  extension  conducted  at  a  constant  tempera- 
ture. But  the  data  are  not  precise  enough  to  make  this  correction 

of  any  consequence  in  the  case  of  solids. 

162.  The  solution  of  the  general  equation  for  the  longitudinal 
vibrations  of  an  unlimited  bar,  namely 

^=f{x-at)-¥F{x^-at\ 

being  the  same  as  that  applicable  to  a  string,  need  not  be  further 
considered  here. 

When  both  ends  of  a  bar  are  free,  there  is  of  course  no  perma- 
nent tension,  and  at  the  ends  themselves  there  is  no  temporary 

tension.     The  condition  for  a  free  end  is  therefore 

§-»   m. 
To  determine  the  normal  modes  of  vibration,  we  must  assume 

that  f  varies  as  a  harmonic  function  of  the  time^-cos  nat  Then 
as  a  function  of  x,  f  must  satisfy 

S+~'^='   <2>- 
of  which  the  complete  integral  is 

f  =  -4  cos  rue  +  fisinwa?   (.3), 

where  A  and  B  are  independent  of  x. 

Now  since  d^jdx  vanishes  always  when  x  =  0,  we  get  5  =  0;  and 
again  since  d^/dx  vanishes  when  x  =  I — the  natural  length  of  the 
bar,  sin  nl  =  0,  which  shews  that  n  is  of  the  form 

%  being  integral. 
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Accordingly,  the  normal  modes  are  given  by  equations  of  the 
form 

-,       ,        iirx        iirat  ,^. 
f  =  -4  cos  -,-  cos— y—   (o), 

in  which  of  course  an  arbitrary  constant  may  be  added  to  t,  if 
desired. 

The  complete  solution  for  a  bar  with  both  ends  free  is  there- 
fore expressed  by 

(6), 
f=2^^cos    ̂     |il<cos-j-  +  5iSin— p  •... 

where  Ai  and  Bi  are  arbitrary  constants,  which  may  be  determined 
in  the  usual  manner,  when  the  initial  values  of  f  and  ̂   are 

given. 

A  zero  value  of  %  is  admissible ;  it  gives  a  term  representing  a 
displacement  f  constant  with  respect  both  to  space  and  time, 
and  amounting  in  fact  only  to  an  alteration  of  the  origin. 

The  period  of  the  gravest  component  in  (6)  corresponding  to 
i  =  1,  is  2f/a,  which  is  the  time  occupied  by  a  disturbance  in 
travelling  twice  the  length  of  the  rod.  The  other  tones  found 
by  ascribing  integral  values  to  i  form  a  complete  harmonic  scale ; 
so  that  according  to  this  theory  the  note  given  by  a  rod  in 
longitudinal  vibration  would  be  in  all  cases  musical. 

In  the  gravest  mode  the  centre  of  the  rod,  where  x  =  Ji,  is  a 

place  of  no  motion,  or  node ;  but  the  periodic  elongation  or  com- 
pression d^/dx  is  there  a  maximum. 

163.  The  case  of  a  bar  with  one  end  free  and  the  other  fixed 

may  be  deduced  from  the  general  solution  for  a  bar  with  both 
ends  free,  and  of  twice  the  length.  For  whatever  may  be  the 
initial  state  of  the  bar  free  at  a?  =  0  and  fixed  at  a:  =  Z,  such  dis- 

placements and  velocities  may  always  be  ascribed  to  the  sections 
of  a  bar  extending  from  0  to  21  and  free  at  both  ends  as  shall 
make  the  motions  of  the  parts  from  0  to  i  identical  in  the  two 

cases.  It  is  only  necessary  to  suppose  that  from  I  to  21  the  dis- 
placements and  velocities  are  initially  equal  and  opposite  to  those 

found  in  the  portion  from  0  to  Z  at  an  equal  distance  from  the 
centre  x  =^L  Under  these  circumstances  the  centre  must  by 
the  symmetry  remain  at  rest  throughout  the  motion,  and  then  the 
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portion  from  0  to  Z  satisfies  all  the  required  conditions.  We  con- 
clude that  the  vibrations  of  a  bar  free  at  one  end  and  fixed  at  the 

other  are  identical  with  those  of  one  half  of  a  bar  of  twice  the 

length  of  which  both  ends  are  free,  the  latter  vibrating  only  in  the 
uneven  modes,  obtained  by  making  i  in  succession  all  odd  integers. 
The  tones  of  the  bar  still  belong  to  a  harmonic  scale,  but  the 
even  tones  (octave,  &c.  of  the  fundamental)  are  wanting. 

The  period  of  the  gravest  tone  is  the  time  occupied  by  a  pulse 
in  travelling /cmr  times  the  length  of  the  bar. 

164.  When  both  ends  of  a  bar  are  fixed,  the  conditions  to 

be  satisfied  at  the  ends  are  that  the  value  of  ̂   is  to  be  invariable. 

At  a?  =  0,  we  may  suppose  that  f  =  0.  At  a:  =  f,  f  is  a  small 
constant  a,  which  is  zero  if  there  be  no  permanent  tension.  In- 

dependently of  the  vibrations  we  have  evidently  f  =  a?  a  -r-  Z,  and 
we  should  obtain  our  result  most  simply  by  assuming  this  term 
at  once.  But  it  may  be  instructive  to  proceed  by  the  general 
method. 

Assuming  that  as  a  function  of  the  time  f  varies  ss 

A  cos  nat  +  B  sin  nat, 

we  see  that  as  a  function  of  x  it  must  satisfy 

of  which  the  general  solution  is 

f  =  (7  cos  nx  +  D^iu  nx   (1). 

But  since  f  vanishes  with  x  for  all  values  of  ̂ ,  G  =  0,  and  thus 
we  may  write 

f  =  2  sin  Tia?  }-4  cos  nat  +  B  sin  ncU], 

The  condition  at  a;  =  Z  now  gives 

2  sin  nl  [A  cos  nat  -|-  5  sin  nat]  =  a, 

from  which  it  follows  that  for  every  finite  admissible  value  of  n 

7      A  *^ sm  nZ  =  0,   or   n  =  -r- . 

But  for  the  zero  value  of  w,  we  get 

Aq  sin  nl  =  a, 
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and  the  corresponding  term  in  f  is 

t  =  Ao  sin  nx  =  a  —   ,  =  a  r  • *  sin  nl        I 

The  complete  value  of  f  is  accordingly 

f  =  «7  +  A.j  sm    j- 

,  iirat      -n    '    ifrat 
Ai  cos    -, — h  Bi  sm  —j- 

...(2). 

The  series  of  tones  form  a  complete  harmonic  scale  (from 
which  however  any  of  the  members  may  be  missing  in  any 

actual  case  of  vibration),  and  the  period  of  the  gravest  com- 
ponent is  the  time  taken  by  a  pulse  to  travel  twice  the  length 

of  the  rod,  the  same  therefore  as  if  both  ends  were  free.  It 
must  be  observed  that  we  have  here  to  do  with  the  unstretched 

length  of  the  rod,  and  that  the  period  for  a  given  natural  length 
is  independent  of  the  permanent  tension. 

The  solution  of  the  problem  of  the  doubly  fixed  bar  in  the 
case  of  no  permanent  tension  might  also  be  derived  from  that 
of  a  doubly  free  bar  by  mere  differentiation  with  respect  to  a. 

For  in  the  latter  problem  d^/dx  satisfies  the  necessary  differential 
equation,  viz. 

dt^  \dx)  da?  \dx 

inasmuch  as  ̂   satisfies 

and  at  both  ends  d^jdx  vanishes.  Accordingly  d^fdv  in  this 
problem  satisfies  all  the  conditions  prescribed  for  f  in  the  case 
when  both  ends  are  fixed.  The  two  series  of  tones  are  thus 
identical. 

155.  The  effect  of  a  small  load  if  attached  to  any  point  of 

the  rod  is  readily  calculated  approximately,  as  it  is  sufficient 

to  assume  the  type  of  vibration  to  be  unaltered  (§  88).  We 
will  take  the  case  of  a  rod  fixed  at  a?  =  0,  and  free  At  x  =  l.  The 
kinetic  energy  is  proportional  to 

Jo 
p(t)  sm*  ̂ y  clx  +  Jif  Sin'     . 

pcol  /_      2M  .  „  iirxX 
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Since  the  potential  energy  is  unaltered,  we  see  by  the  prin- 
ciples of  Chapter  iv.,  that  the  effect  of  the  small  load  AT  at  a 

distance  x  fr(5m  the  fixed  end  is  to  increase  the  period  of  the 
component  tones  in  the  ratio 

The  small  quantity  M  :  ptol  is  the  ratio  of  the  load  to  the 
whole  mass  of  the  rod. 

If  the  load  be  attached  at  the  free  end,  sin'(i7rir/2Z)  =  l,  and 
the  effect  is  to  depress  the  pitch  of  every  tone  by  the  same  small 
interval.     It  will  be  remembered  that  i  is  here  an  uneven  integer. 

If  the  point  of  attachment  of  M  be  a  node  of  any  component, 
the  pitch  of  that  component  remains  unaltered  by  the  addition. 

156.  Another  problem  worth  notice  occurs  when  the  load  at 
the  free  end  is  great  in  comparison  with  the  mass  of  the  rod. 
In  this  case  we  may  assume  as  the  type  of  vibration,  a  condition 
of  uniform  extension  along  the  length  of  the  rod. 

If  f  be  the  displacement  of  the  load  M,  the  kinetic  energy  is 

.0  ^ 

The  tension  corresponding  to  the  displacement  f  is  qco  f/Z, 
and  thus  the  potential  energy  of  the  displacement  is 

Fv?*"-?   (2) 

The  equation  of  motion  is 

(M  +  ip<ol)  ?  +  ̂̂ ^  f  =  0, and  if  f  X  cos  pt 

P'  =  ̂^{M  +  ifxol)   (3). 

The  correction  due  to  the  inertia  of  the  rod  is  thus  equivalent 
to  the  addition  to  3f  of  one-third  of  the  mass  of  the  rod. 

156  tt.  So  long  as  a  rod  or  a  wire  is  uniform,  waves  of  longi- 
tudinal vibration  are  propagated  along  it  without  change  of  type, 

but  any  interruption,  or  alteration  of  mechanical  properties,  will 
in  general  give  rise  to  reflection.     If  two  uniform  wires  be  joined, 
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the  problem  of  determining  the  reflection  at  the  junction  may  be 
conducted  as  in  §  148  a.  The  conditions  to  be  satisfied  at  the 
junction  are  (i)  the  continuity  of  f,  and  (ii)  the  continuity  of 
qcjd^fdx,  measuring  the  tension.  If  pi,  /o,,  ©i,  ©a,  Oi,  a^  denote 
the  volume  densities,  the  sections,  and  the  velocities  in  the  two 

wires,  the  ratio  of  the  reflected  to  the  incident  amplitude  is 
given  by 

H     pitOiOi  ■\- p^io^o^   
The  reflection  vanishes,  or  the  incident  wave  is  propagated 

through  the  junction  without  loss,  if 

pi<0\(ti  =  p^cc^a^   (2). 

This  result  illustrates  the  diflSculty  which  is  met  with  in  obtaining 
effective  transmission  of  sound  from  air  to  metal,  or  from  metal  to 

air,  in  the  mechanical  telephone.  Thus  the  value  of  pa  is  about 
100,000  times  greater  in  the  case  of  steel  than  in  the  case  of  air. 

157.  Our  mathematical  discussion  of  longitudinal  vibrations 
may  close  with  an  estimate  of  the  error  involved  in  neglecting 
the  inertia  of  the  lateral  motion  of  the  parts  of  the  rod  not 

situated  on  the  axis.  If  the  ratio  of  lateral  contraction  to  longi- 
tudinal extension  be  denoted  by  fi,  the  lateral  displacement  of  a 

particle  distant  r  from  the  axis  will  be  fire  in  the  case  of  equili- 
brium, where  €  is  the  extension.  Although  in  strictness  this 

relation  will  be  modified  by  the  inertia  of  the  lateral  motion,  yet 

for  the  present  purpose  it  may  be  supposed  to  hold  good,  §  88. 

The  constant  /a  is  a  numerical  quantity,  Ij'ing  between  0  and  ̂ . 
If  fjL  were  negative,  a  longitudinal  tension  would  produce  a  lateral 
swelling,  and  if  fi  were  greater  than  ̂ ,  the  lateral  contraction 
would  be  great  enough  to  overbalance  the  elongation,  and  cause 
a  diminution  of  volume  on  the  whole.  The  latter  state  of  things 
would  be  inconsistent  with  stability,  and  the  former  can  scarcely 
be  possible  in  ordinary  solids.  At  one  time  it  was  supposed 
that  fjL  was  necessarily  equal  to  J,  so  that  there  was  only  one 
independent  elastic  constant,  but  experiments  have  since  shewn 

that  /JL  is  variable.  For  glass  and  brass  Wertheim  found  experi- 
mentally fi  =  ̂ . 

If  f)  denote  the  lateral  displacement  of  the  particle  distant  r 
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from  the  axis,  and  if  the  section  be  circular,  the  kinetic  energy 
due  to  the  lateral  motion  is 

Thus  the  whole  kinetic  energy  is 

In  the  case  of  a  bar  free  at  both  ends,  we  have 

iirx      df         iir   .    iirx 
^'^'^^  I  '    ̂ *-T«^°   i  • 

and  thus 

The  effect  of  the  inertia  of  the  lateral  motion  is  therefore  to 

increase  the  period  in  the  ratio 

This  correction  will  be  nearly  insensible  for  the  graver  modes  of 
bars  of  ordinary  proportions  of  length  to  thickness. 

[A  more  complete  solution  of  the  problem  of  the  present 
section  has  been  given  by  Pochhammer^  who  applies  the  general 
equations  for  an  elastic  solid  to  the  case  of  an  infinitely  extended 
cylinder  of  circular  section.  The  result  for  longitudinal  vibrations, 

so  far  as  the  term  in  r^jl^,  is  in  agreement  with  that  above  deter- 

mined. A  similar  investigation  has  also  been  published  by  Chree', 
who  has  also  treated  the  more  general  question'  in  which  the 
cylindrical  section  is  not  restricted  to  be  circular.] 

158.  Experiments  on  longitudinal  vibrations  may  be  made 
with  rods  of  deal  or  of  glass.  The  vibrations  are  excited  by 
friction  §  138,  with  a  wet  cloth  in  the  case  of  glass;  but  for  metal 
or  wooden  rods  it  is  necessary  to  use  leather  charged  with  powdered 

rosin.  "  The  longitudinal  vibrations  of  a  pianoforte  string  may  be 
excited  by  gently  rubbing  it  longitudinally  with  a  piece  of  india 
rubber,  and  those  of  a  violin  string  by  placing  the  bow  obliquely 
across  the  string,  and  moving  it  along  the  string  longitudinally, 
keeping  the  same  point  of  the  bow  upon  the  string.  The  note  is 

unpleasantly  shrill  in  both  cases." 
1  CrelU,  Bd.  81,  1876.  ^  Quart,  Math,  Joum.,  Vol.  21,  p.  287,  188C. 
»  Ihid,  Vol.  23,  p.  317,  1889. 
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"  If  the  peg  of  the  violin  be  turned  so  as  to  alter  the  pitch  of 
the  lateral  vibrations  very  considerably,  it  will  be  found  that  the 
pitch  of  the  longitudinal  vibrations  has  altered  very  slightly.  The 
reason  of  this  is  that  in  the  case  of  the  lateral  vibrations  the 

change  of  velocity  of  wave-transmission  depends  chiefly  on  the 
change  of  tension,  which  is  considerable.  But  in  the  cajse  of  the 

longitudinal  vibrations,  the  change  of  velocity  of  wave-transmis- 
sion depends  upon  the  change  of  extension,  which  is  comparatively 

slight  \" 

In  Savart's  experiments  on  longitudinal  vibrations,  a  peculiar 
sound,  called  by  him  a  "  son  rauque,"  was  occasionally  observed, 
whose  pitch  was  an  octave  below  that  of  the  longitudinal  vibra- 

tion. According  to  Terquem  *  the  cause  of  this  sound  is  a  trans- 
verse vibration,  whose  appearance  is  due  to  an  approximate 

agreement  between  its  own  period  and  that  of  the  sub-octave  of 
the  longitudinal  vibration  §  68  b.  If  this  view  be  correct,  the 
phenomenon  would  be  one  of  the  second  order,  probably  referable 
to  the  fact  that  longitudinal  compression  of  a  bar  tends  to  produce 
curvature. 

159.  The  second  class  of  vibrations,  called  torsional,  which 

depend  on  the  resistance  opposed  to  twisting,  is  of  very  small 
importance.  A  solid  or  hollow  cylindrical  rod  of  circular  section 
may  be  twisted  by  suitable  forces,  applied  at  the  ends,  in  such  a 
manner  that  each  transverse  section  remains  in  its  own  plane. 

But  if  the  section  be  not  circulai-,  the  effect  of  a  twist  is  of  a 
more  complicated  character,  the  twist  being  necessarily  attended 

by  a  warping  of  the  layers  of  matter  originally  composing  the 

normal  sections.  Although  the  effects  of  the  warping  might  pro- 
bably be  determined  in  any  particular  case  if  it  were  worth 

while,  we  shall  confine  ourselves  here  to  the  case  of  a  circular 

section,  when  there  is  no  motion  parallel  to  the  axis  of  the  rod. 

The  force  with  which  twisting  is  resisted  depends  upon  an 

elastic  constant  different  from  q,  called  the  rigidity.  If  we  de- 
note it  by  n,  the  relation  between  g,  n,  and  fi  may  be  written 

"=20.Vl)   <^>' 
^  Donkin*8  Acoustic*,  p.  154. 
«  Ann.  de  Chimie,  lvii.  129—190. 
'  Thomsou  and  Tait,  §  683.    This,  it  should  be  remarked,  applies  to  isotropic 

material  only. 
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shewing  that  n  lies  between  J  5  and  J5.     In  the  case  of  /a=  J, 

Let  us  now  suppose  that  we  have  to  do  with  a  rod  in  the  form 
of  a  thin  tube  of  radius  r  and  thickness  dr,  and  let  d  denote  the 

angular  displacement  of  any  section,  distant  x  from  the  origin. 
The  rate  of  twist  at  a;  is  represented  by  dd/dx,  and  the  shear  of  the 
material  composing  the  pipe  by  r  dO/dx,  The  opposing  force  per 
unit  of  area  is  nr  dO/dx ;  and  since  the  area  is  2irr  dr,  the  moment 
round  the  axis  is 

27171-7^  dr  -J- . 
dx 

Thus  the  force  of  restitution  acting  on  the  slice  dx  has  the 
moment 

271717^  dr  dx  i— , 

Now  the  moment  of  inertia  of  the  slice  under  consideration 

is  2'7rrdr.dx.p.r^j  and  therefore  the  equation  of  motion  assumes 
the  form 

d^0      d^e 

P^^^^'d^   (2>- 

Since  this  is  independent  of  r,  the  same  equation  applies  to  a 
cylinder  of  finite  thickness  or  to  one  solid  throughout. 

The  velocity  of  wave  propagation  is  '\/(n/p),  and  the  whole 
theory  is  precisely  similar  to  that  of  longitudinal  vibrations,  the 
condition  for  a  free  end  being  dd/dx  =  0,  and  for  a  fixed  end  ̂   =  0, 
or,  if  a  permanent  twist  be  contemplated,  d  =  constant. 

The  velocity  of  longitudinal  vibrations  is  to  that  of  torsional 
vibrations  in  the  ratio  V?  •  V'^  or  V(2  +  2/a)  :  1.  The  same  ratio 

applies  to  the  frequencies  of  vibration  for  bars  of  equal  length 
vibrating  in  corresponding  modes  under  corresponding  terminal 
conditions.     If  /a  =  J,  the  ratio  of  frequencies  would  be 

V?:\/w  =  \/8  :  V3  =  l*63, 
corresponding  to  an  interval  rather  greater  than  a  fifth. 

In  any  case  the  ratio  of  frequencies  must  lie  between 

V2  :  1  =  1-414,    and  V3  :  1  =  1*732. 

Longitudinal  and  torsional  vibrations  were  first  investigated  by 
ChladnL 



CHAPTER  VIII. 

LATERAL   VIBRATIONS   OF   BARS. 

160.  In  the  present  chapter  we  shall  consider  the  lateral 
vibrations  of  thin  elastic  rods,  which  in  their  natural  condition  are 

straight.  Next  to  those  of  strings,  this  class  of  vibrations  is  per- 
haps the  most  amenable  to  theoretical  and  experimental  treatment. 

There  is  difficulty  sufficient  to  bring  into  prominence  some  im- 
portant points  connected  with  the  general  theory,  which  the  fami- 

liarity of  the  reader  with  circular  functions  may  lead  him  to  pass 
over  too  lightly  in  the  application  to  strings ;  while  at  the  same 
time  the  difficulties  of  analysis  are  not  such  as  to  engross  attention 
which  should  be  devoted  to  general  mathematical  and  physical 

principles. 

Daniel  Bernoulli '  seems  to  have  been  the  first  who  attacked 
the  problem.  Euler,  Riccati,  Poisson,  Cauchy,  and  more  recently 

Strehlke',  Lissajous",  and  A.  Seebeck*  are  foremost  among  those 
who  have  advanced  our  knowledge  of  it. 

161.  The  problem  divides  itself  into  two  parts,  according  to 
the  presence,  or  absence,  of  a  permanent  longitudinal  tension. 

The  consideration  of  permanent  tension  entails  additional  compli- 
cation, and  is  of  interest  only  in  its  application  to  stretched 

strings,  whose  stiffness,  though  small,  cannot  be  neglected  al- 
together. Our  attention  will  therefore  be  given  principally  to  the 

two  extreme  cases,  (1)  when  there  is  no  permanent  tension, 
(2)  when  the  tension  is  the  chief  agent  in  the  vibration. 

1  Comment,  Acad,  Petrop,  t.  xiii.  *  Pogg.  Ann,  Bd.  xxvii.  p.  505,  1833. 
*  Ann.  d,  Chimie  (3),  xxx.  385,  1850. 
*  Ahhandlungen  d.   Math.  Phys.  Clatte  d.  K.  Sdchs.    QetelUehaft  d.  Wissen- 

9cha/ten.    Leipzig,  1852. 
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With  respect  to  the  section  of  the  rod,  we  shall  suppose  that 
one  principal  axis  lies  in  the  plane  of  vibration,  so  that  the  bending 
at  every  part  takes  place  in  a  direction  of  maximum  or  minimum 
(or  stationary)  flexural  rigidity.  For  example,  the  surface  of  the 
rod  may  be  one  of  revolution,  each  section  being  circular,  though 
not  necessarily  of  constant  radius.  Under  these  circumstances  the 

potential  energy  of  the  bending  for  each  element  of  length  is  pro- 
portional to  the  square  of  the  curvature  multiplied  by  a  quantity 

depending  on  the  material  of  the  rod,  and  on  the  moment  of 
inertia  of  the  transverse  section  about  an  axis  through  its  centre  of 
inertia  perpendicular  to  the  plane  of  bending.  If  o)  be  the  area 

of  the  section,  /c'©  its  moment  of  inertia,  q  Young's  modulus,  ds  the 
element  of  length,  and  dV  the  corresponding  potential  energy  for 
a  curvature  1  -r-  ii  of  the  axis  of  the  rod, 

dr=ig«=a,g    (1). 
This  result  is  readily  obtained  by  considering  the  extension  of 

the  various  filaments  of  which  the  bar  may  be  supposed  to  be 
made  up.  Let  77  be  the  distance  from  the  axis  of  the  projection 
on  the  plane  of  bending  of  a  filament  of  section  d(o.  Then  the 
length  of  the  filament  is  altered  by  the  bending  in  the  ratio 

R  being  the  radius  of  curvature.  Thus  on  the  side  of  the  axis  for 
which  17  is  positive,  viz.  on  the  otUward  side,  a  filament  is  extended, 
while  on  the  other  side  of  the  axis  there  is  compression.  The 
force  necessary  to  produce  the  extension  rj/R  is  q  rj/R .  dto  by  the 

definition  of  Young's  modulus;  and  thus  the  whole  couple  by 
which  the  bending  is  resisted  amounts  to 

jq^,rj,d(o  =  ̂K^<o, 
if  CD  be  the  area  of  the  section  and  k  its  radius  of  g3rration  about 
a  line  through  the  axis,  and  perpendicular  to  the  plane  of  bending. 

The  angle  of  bending  corresponding  to  a  length  of  axis  ds  18  ds-i-JR, 
and  thus  the  work  required  to  bend  ds  to  curvature  1  -r  i2  is 

ds 

^' 

since  the  mean  is  half  the  final  value  of  the  couple. 

[For  a  more  complete  discussion  of  the   legitimacy  of  .the Jg/c*© 
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foregoing  method  of  calculation  the  reader  must  be  referred  to 
works  upon  the  Theory  of  Elasticity.  The  question  of  lateral 

vibrations  has  been  specially  treated  by  Pochhammer^  on  the 
basis  of  the  general  equations.] 

For  a  circular  section  ic  is  one-half  the  radius. 

That  the  potential  energy  of  the  bending  would  be  proportional, 

C(Bte7^  paribtM,  to  the  square  of  the  curvature,  is  evident  before- 
hand.    If  we  call  the  coefficient  B^  we  may  take 

-iK- 
or,  in  view  of  the  approximate  straightness, 

=i/-©^   (^). 
in  which  y  is  the  lateral  displacement  of  that  point  on  the  axis  of 

the  rod  whose  abscissa,  measured  parallel  to  the  undisturbed  posi- 
tion, is  X.  In  the  case  of  a  rod  whose  sections  are  similar  and 

similarly  situated  i^  is  a  constant,  and  may  be  removed  from  under 
the  integral  sign. 

The  kinetic  energy  of  the  moving  rod  is  derived  partly  from 
the  motion  of  translation,  parallel  to  y,  of  the  elements  composing 
it,  and  partly  from  the  rotation  of  the  same  elements  about  axes 

through  their  centres  of  inertia  perpendicular  to  the  plane  of  vibra- 
tion.    The  former  part  is  expressed  by 

^jfXD^cUc   (3), 

if  p  denote  the  volume-density.  To  express  the  latter  part,  we  have 
only  to  observe  that  the  angular  displacement  of  the  element  dx  is 
dyjdx,  and  therefore  its  angular  velocity  (Py/dt  dx.  The  square  of 
this  quantity  must  be  multiplied  by  half  the  moment  of  inertia  of 
the  element,  that  is,  by  ̂/^p€o  dx.     We  thus  obtain 

T=ifpcoil'dx  +  ̂ fK'pa>{^^Jdx   (4). 

1  CrelU,  Bd.  81, 1876. 

R.  17 
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162.  In  order  to  form  the  equation  of  motion  we  may  avail 
ourselves  of  the  principle  of  virtual  velocities.  If  for  simplicity  we 
confine  ourselves  to  the  case  of  uniform  section,  we  have 

where  the  terms  free  from  the  integral  sign  are  to  be  taken  between 
the  limits.  This  expression  includes  only  the  internal  forces  due 
to  the  bending.  In  what  follows  we  shall  suppose  that  there  are 
no  forces  acting  from  without,  or  rather  none  that  do  work  upon 
the  system.  A  force  of  constraint,  such  as  that  necessary  to  hold 
any  point  of  the  bar  at  rest,  need  not  be  regarded,  as  it  does  no 

work  and  therefore  cannot  appear  in  the  equation  of  virtual  velo- 
cities. 

The  virtual  moment  of  the  accelerations  is 

Thus  the  variational  equation  of  motion  is 

in  which  the  terms  free  from  the  integral  sign  are  to  be  taken 
between  the  limita  From  this  we  derive  as  the  equation  to  be 
satisfied  at  all  points  of  the  length  of  the  bar 

while  at  each  end 

or,  if  we  introduce  the  value  of  B,  viz.  qi^m,  and  write  qjp  =  b", 
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and  for  each  end 

'•SKl)^{li-'"S}«^=«   ('^ 
In  these  equations  b  expresses  the  velocity  of  transmission  of 

longitudinal  waves. 

The  condition  (5)  to  be  satisfied  at  the  ends  assumes  different 
forms  according  to  the  circumstances  of  the  case.  It  is  possible  to 
conceive  a  constraint  of  such  a  nature  that  the  ratio  S  {dyjdx)  :  hy 
has  a  prescribed  finite  value.  The  second  boundary  condition  is 
then  obtained  from  (5)  by  introduction  of  this  ratio.  But  in  all 
the  cases  that  we  shall  have  to  consider,  there  is  either  no  constraint 

or  the  constraint  is  such  that  either  h  {dyjdx)  or  hy  vanishes,  and 
then  the  boundary  conditions  take  the  form 

SK^-«'  {^-"t]^-'   <«>• 
We  must  now  distinguish  the  special  cases  that  may  arise.  If 

an  end  be  free,  iy  and  B(dy/dx)  are  both  arbitrary,  and  the 
conditions  become 

a^"""'     d^dx  ̂   da?"^   ^^^' 

the  first  of  which  may  be  regarded  as  expressing  that  no  couple 
acts  at  the  free  end,  and  the  second  that  no  force  acta 

If  the  direction  at  the  end  be  free,  but  the  end  itself  be  con- 
strained to  remain  at  rest  by  the  action  of  an  applied  force  of  the 

necessary  magnitude,  in  which  case  for  want  of  a  better  word  the 
rod  is  said  to  be  supported,  the  conditions  are 

3-^  =  0, 
da^ 

Sy  =  0    (3), 

by  which  (5)  is  satisfied. 

A  third  case  arises  when  an  extremity  is  constrained  to  main- 
tain its  direction  by  an  applied  couple  of  the  necessary  magnitude, 

but  is  free  to  take  any  position.     We  have  then 

17—2 
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Fourthly,  the  extremity  may  be  constrained  both  as  to 
position  and  direction,  in  which  case  the  rod  is  said  to  be  clamped. 
The  conditions  are  plainly 

(|)=o.      8y=o   (10). 
Of  these  four  cases  the  first  and  the  last  are  the  more 

important;  the  third  we  shall  omit  to  consider,  as  there  are 
no  experimental  means  by  which  the  contemplated  constraint 
could  be  realized.  Even  with  this  simplification  a  considerable 
variety  of  problems  remain  for  discussion,  as  either  end  of  the 
bar  may  be  free,  clamped  or  supported,  but  the  complication 
thence  arising  is  not  so  great  as  might  have  been  expected. 
We  shall  find  that  difiFerent  cases  may  be  treated  together, 
and  that  the  solution  for  one  case  may  sometimes  be  derived 
immediately  from  that  of  another. 

In  experimenting  on  the  vibrations  of  bars,  the  condition 
for  a  clamped  end  may  be  realized  with  the  aid  of  a  vice  of 
massive  construction.  In  the  case  of  a  free  end  there  is  of  course 

no  difiSculty  so  far  as  the  end  itself  is  concerned ;  but,  when  both 
ends  are  free,  a  question  arises  as  to  how  the  weight  of  the  bar 
is  to  be  supported.  In  order  to  interfere  with  the  vibration 

as  little  as  possible,  the  supports  must  be  confined  to  the  neigh- 
bourhood of  the  nodal  points.  It  is  sometimes  sufiicient  merely 

to  lay  the  bar  on  bridges,  or  to  pass  a  loop  of  string  round  the  hsjr 
and  draw  it  tight  by  screws  attached  to  its  ends.  For  more  exact 
purposes  it  would  perhaps  be  preferable  to  carry  the  weight  of 
the  bar  on  a  pin  traversing  a  hole  drilled  through  the  middle  of 
the  thickness  in  the  plane  of  vibration. 

When  an  end  is  to  be  'supported,'  it  may  be  pressed  inta 
contact  with  a  fixed  plate  whose  plane  is  perpendicular  to  the 

length  of  the  bar. 

163.  Before  proceeding  further  we  shall  introduce  a  sup- 
position»  which  will  greatly  simplify  the  analysis,  without  seriously 
interfering  with  the  value  of  the  solution.  We  shall  assume  that 
the  terms  depending  on  the  angular  motion  of  the  sections  of 
the  bar  may  be  neglected,  which  amounts  to  supposing  the 
inertia  of  each  section  concentrated  at  its  centre.  We  shall 

afterwards  (§  186)  investigate  a  correction  for  the  rotatory  in- 
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ertia,  and  shall  prove  that  under  ordinary  circumstances  it  is 
small.     The  equation  of  motion  now  becomes 

j'--»-s=»   «• 
and  the  boundary  conditions  for  a  fi*ee  end 

d^~^'         da?-^   ^^^• 

The  next  step  in  conformity  with  the  general  plan  will  be 
the  assumption  of  the  harmonic  form  of  y.  We  may  conveniently 
take 

y=if  cos/  -ii'niH\    (3), 

where  I  is  the  length  of  the  bar,  and  m  is  an  abstract  number, 
whose  value  has  to  be  determined.  Substituting  in  (1),  we 
obtain 

di*  =  -F"   ^*>- 

If  w  =  eP»»*/'  be  a  solution,  we  see  that  p  is  one  of  the  fourth 
roots  of  unity,  viz.  +1,  —1,  +i,  —  i;  so  that  the  complete 
solution  is 

u=^  A  coam-j+B  sinm^  -{-  C  e"^'^  '\'  D  e"^^'^   (4a), 

containing  four  arbitrary  constants. 

[The  simplest  case  occurs  when  the  motion  is  strictly  periodic 

with  respect  to  x,  C  and  D  vanishing.  If  X  be  the  wave-length 
and  T  the  period  of  the  vibration,  we  have 

27r  _  m  27r  _    ,  m' 

so  that  T=^     ,   (46).] 
27r/co 

In  the  case  of  a  finite  rod  we  have  still  to  satisfy  the  four 

boundary  conditions, — two  for  each  end.  These  determine  the 
ratios  A  :  B  :  C  :  D,  and  furnish  besides  an  equation  which  m 
must  satisfy.  Thus  a  series  of  particular  values  of  m  are  alone 
admissible,  and  for  each  m  the  corresponding  u  is  determined  in 
ever}rthing  except  a  constant  multiplier.  We  shall  distinguish  the 
different  functions  u  belonging  to  the  same  system  by  suffixes. 
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The  value  of  y  at  any  time  may  be  expanded  in  a  series  of 

the  functions  u  (§§  92,  93).  If  ̂ i,  ̂ ,  &c.  be  the  normal  co- 
ordinates, we  have 

y=<^i^i  +  «^M,+   (5), 

and  T^^pw  |(^iMi  +  ̂2i^a  + ...)*da; 

=  ipft)|<^f  [t/i»c;tr+<^//i/,»AF+...  •    (6). 

We  are  fully  justified  in  asserting  at  this  stage  that  each 
integrated  product  of  the  functions  vanishes,  and  therefore  the 
process  of  the  following  section  need  not  be  regarded  as  more 
than  a  verification.  It  is  however  required  in  order  to  determine 
the  value  of  the  integrated  squares. 

164.  Let  w,»,  Um!  denote  two  of  the  normal  functions  cor- 

responding respectively  to  m  and  m\    Then 

d*u^_m\^  d*u„,'  _  m!^ 

1^^  l*^'  (ir*   "  l*"^"'   ^^^' 

or,   if    dashes  indicate  differentiation  with    respect   to  (mx/l), 

t^""  =  t^n,  Um''''^Um'   (2). 

If  we  subtract  equations  (1)  after  multiplying  them  by  u,„', 
«^  respectively,  and  then  integrate  over  the  length  of  the  bar, 
we  have 

_         d^Um'  d^Un,       dUm'd^Um       du^d^U„,'  , 
"^"*"d^^ ''''•'  da^^  dx    dx'       dx    dx'      ^'^^' 

the  integrated  terms  being  taken  between  the  limits. " 
Now  whether  the  end  in  question  be  clamped,  supported,  or 

free^  each   term   vanishes  on  account   of  one   or  other  of  its 

^  The  reader  should  observe  that  the  cases  here  specified  are  particular,  and 
that  the  right-hand  member  of  (3)  vanishes,  provided  that 

"•  •    da;'         "*    '     dar»   ' 

and  ^^  :  ̂!!^*  =  ̂'  :  ̂̂ ' , 
dx    '    dx*        dx    '    dx^ 

These  conditions  include,  for  instance,  the  case  of  a  rod  whose  end  is  urged 
towards  its  position  of  equilibrium  by  a  force  proportional  to  the  displacement,  as 
by  a  spring  without  inertia. 
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fisK^tors.  We  may  therefore  conclude  that,  if  Um>  ̂ '  refer  to  two 
modes  of  vibration  (corresponding  of  course  to  the  same  terminal 
conditions)  of  which  a  rod  is  capable,  then 

/
•
 

hl,nUni'dx  =  0   (4). 

provided  m  and  wi'  be  different. 

The  attentive  reader  will  perceive  that  in  the  process  just 
followed,  we  have  in  fact  retraced  the  steps  by  which  the  funda- 

mental differential  equation  was  itself  proved  in  §  162.  It  is  the 
original  variational  equation  that  has  the  most  immediate  con- 

nection with  the  conjugate  property.     If  we  denote  yhyu  and  &y 

and  the  equation  in  question  is 

^jd^^^+p''h'^=^   <^)- 
Suppose  now  that  u  relates  to  a  normal  component  vibration, 

so  that  il  +  n'w  =  0,  where  n  is  some  constant ;  then d^u  cPv 

By  similar  reasoning,  if  v  be  a  normal  function,  and  u  represent 
any  displacement  possible  to  the  system, 

We  conclude  that  if  u  and  v  be  both  normal  functions,  which 

have  different  periods, 

vvda^O   (6); 

/
'
 

and  this  proof  is  evidently  as  direct  and  general  as  could  be 
desired. 

The  reader  may  investigate  the  formula  corresponding  to  (6), 
when  the  term  representing  the  rotatory  inertia  is  retained. 

By  means  of  (6)  we  may  verify  that  the  admissible  values  of  n* 
are  real.  For  if  w-  were  complex,  and  u^a+ifi  were  a  normal 
function,  then  a  -  i^,  the  conjugate  of  w,  would  be  a  normal 

function  also,  corresponding  to  the  conjugate  of  n",  and  then  the 
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product  of  the  two  functions,  being  a  sum  of  squares,  would  not 
vanish,  when  integrated^ 

If  in  (3)  m  and  m  be  the  same,  the  equation  becomes  iden- 
tically true,  and  we  cannot  at  once  infer  the  value  of  ju^^dx. 

We  must  take  m'  equal  to  m  +  Sm,  and  trace  the  limiting  form  of 
the  equation  as  5m  tends  to  vanish.  [It  should  be  observed  that 
the  function  Um-^^n  is  not  a  normal  function  of  the  system ;  it  is 
supposed  to  be  derived  from  i/^  by  variation  of  m  in  (4a)  §  163, 
the  coefficients  A,  B,C,  D  being  retained  constant.]  In  this  way 
we  find 

Z*  J  dmda^     dmda^     da^dmdx     dxdmdx^* 

the  right-hand  side  being  taken  between  the  limits. 

^T  du     m   ,  o  du      X   ,  o 

Now  ^  =  jti,  &c.,        ̂ -=jw,&c., 
and  thus 

^'  f     •  J       3m'      f„     m' 4m'  f     .  ,       3m'      ,„     rri?x      ,,,,     m^x  ,  ,,, —  *"     '  uu     — 74    ̂ ^ 

/-./" 
,  m*    ,  ,,  ,  ??i'a? ,  „..     2m'   ,  „     rn^x   , 

in  which  w""  =  w,  so  that 

-J  \Un?dx  = 3uu'" + '^  V?  -  ̂^  uu-  ̂   v:v;'  -h  ̂   {y:y, .  .(7), 
between  the  limits. 

Now  whether  an  end  be  clamped,  supported,  or  free, 

and  thus,  if  we  take  the  origin  of  x  at  one  end  of  the  rod. 

j  ?*'da;  =  ]|(w«-2tA'?r-hu"')- 

=  iZ(w'-2u'f/"-hw"%.i   (8). 

The  form  of  our  integral  is  independent  of  the  terminal  con- 

dition at  0?  =  0.  If  the  end  a?  =  i  be  free,  u"  and  u'"  vanish,  and 
accordingly 

\  u^dx  =  Uu^l)   (9), 

.'0 

^  This  method  is,  I  believe,  doe  to  Poisson. 
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that  is  to  say,  for  a  rod  with  one  end  free  the  mean  value  of  t^'  is 
one-fourth  of  the  terminal  value,  and  that  whether  the  other  end 
be  clamped,  supported,  or  free. 

Again,  if  we  suppose  that  the  rod  is  clamped  Bit  x  =  l,  u  and  it' 
vanish,  and  (8)  gives 

/: 

Since  this  must  hold  good  whatever  be  the  terminal  condition  at 
the  other  end,  we  see  that  for  a  rod,  one  end  of  which  is  fixed  and 
the  other  free, 

/, u^dx ^\lu^ (free  end)  =  \lu''^  (fixed  end), 0 

shewing  that  in  this  case  u^  at  the  free  end  is  the  same  as  u''^  at 
the  clamped  end. 

The  annexed  table  gives  the  values  of  four  times  the  mean  of  u^ 
in  the  different  cases. 

I 

clamped,  free    i  v?  (free  end),  or  w"*  (clamped  end) 
free,  free      |  w' (free  end) I 

clamped,  clamped  ...  I  u"^  (clamped  end) 

supported,  supported  j  —  2u'u'"  (supported  end)  =  2m'' 

supported,  free    ;  v?  (free  end),  or  -  2u'u'"  (supported  end) 
supported,  clamped  j  u'*^  (clamped  end),  or  -  2u'u'"  (supported  end) 

By  the  introduction  of  these  values  the  expression  for  T 

assumes  a  simpler  form.  In  the  case,  for  example,  of  a  clamped- 
free  or  a  free-free  rod, 

3f'=^{<^'t^'(0  +  <^''^'(0  +  ...}   (10), 

where  the  end  x=^l\%  supposed  to  be  free. 

165.  A  similar  method  may  be  applied  to  investigate  the 

values  of  fu'^dx,  and  ju"^dx.  In  the  derivation  of  equation  (7)  of 
the  preceding  section  nothing  was  assumed  beyond  the  truth  of 

the  equation  u"**  =  u,  and  since  this  equation  is  equally  true  of  any 
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of  the  derived  functions,  we  are  at  liberty  to  replace  u  by  u  or  u". Thus 

taken  between  the  limits,  since  the  term  uv!'  vanishes  in  all  three 
cases. 

For  a  free-free  rod 

^ J  u'^dx  =  3  (uu')i  -  3  (mw')o  +  ̂'i  (^'0« 

=  6(ww')«  +  m(it'0«   (1), 

for,  as  we  shall  see,  the  values  of  u  u'  must  be  equal  aud  opposite 
at  the  two  ends.  Whether  u  be  positive  or  negative  at  a?  =  Z, 
u  xi!  is  positive. 

For  a  rod  which  is  clamped  at  a?  =  0  and  free  eX  x  —  l 

4m 

0 
Lm  C^ 

[We  have  already  seen  that  ?/o"  =  ±  ui;  and  it  may  be  proved 
from  the  formulse  of  §  173  that 

1//"  _  tio'  _  cos  7n  +  cosh  m 
ui        vi       sin  m  sinh  m  ' 

xi_  X  (w"^"')o        (cos  m  +  cosh  mV         ,  ̂ so  that  \  .   .  ■  =  -  — ^"i   .  ,  a       =  -  1] 
(u  u)i  sm*  m  smh'  m 

Thus  ^^  j  u'^dx==2(uu')i  +  mu{^   (2), 
a  result  that  we  shall  have  occasion  to  use  later. 

By  applying  the  same  equation  to  the  evaluation  of  / u'^dx,  we 
find 

4m  f 

Ti" 
"'dx  =  3m"«'  +  ̂   «"» -2'^  u'"  u'  -  u'"  u  +  y  u' 

=rni(tt"»- 2m' «'"  +  «'),, 

since  u'u"  and  uu'"  vanish. 
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Comparing  this  with  (8)  §  164,  we  see  that 

h^-h''^   (3). 
whatever  the  terminal  conditions  may  be. 

The  same  result  may  be  arrived  at  more  directly  by  integrating 

by  parts  the  equation 

vi^    .        d*u 
/*  da:* 

166.     We  may  now  form  the  expression  fot*  V  in  terms  of  the 
normal  co-ordinates. 

=— ^^  jmi^^i*  I Wi*(ir  +  rn3*^*/M^'da? +...>•   (1). 

If  the  functions  u  be  those  proper  to  a  rod  free  At  x  =  l,  this  expres- 
sion reduces  to 

V  =  ̂^  jm,*  [u,  (0?^!^  +  7/1,*  [u,(l)Y<f>,'  + . .  . 
.......••iMf* 

In  any  case  the  equations  of  motion  are  of  the  form 

pcD  juj^dx  ̂1  +  — IT    wii*  lui'da;  ̂ i  =  4>i   (3), 

and,  since  4>iS<^  is  by  definition  the  work  done  by  the  impressed 
forces  during  the  displacement  S<^, 

4>i=  /  Yuipmdx    (4), 

if  Ypwdx  be  the  lateral  force  acting  on  the  element  of  mass  ptodx. 
If  there  be  no  impressed  forces,  the  equation  reduces  to 

^.+^;^^V=o   (5). 
as  we  know  it  ought  to  do. 
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167.  The  significance  of  the  reduction  of  the  integrals 
jv?dx  to  dependence  on  the  terminal  values  of  the  function  and 
its  derivatives  may  be  placed  in  a  clearer  light  by  the  following 
line  of  argument.  To  fix  the  ideas,  consider  the  case  of  a 

rod  clamped  at  a?  =  0,  and  free  at  x^l,  vibrating  in  the  normal 
mode  expressed  by  u.  If  a  small  addition  AZ  be  made  to  the 
rod  at  the  free  end,  the  form  of  u  (considered  as  a  function  of 

x)  is  changed,  but,  in  accordance  with  the  general  principle 
established  in  Chapter  iv.  (§  88),  we  may  calculate  the  period 
under  the  altered  circumstances  without  allowance  for  the  change 
of  type,  if  we  are  content  to  neglect  the  square  of  the  change. 
In  consequence  of  tlie  straightness  of  the  rod  at  the  place  where 
the  addition  is  made,  there  is  no  alteration  in  the  potential 
energy,  and  therefore  the  alteration  of  period  depends  entirely 
on  the  variation  of  T.    This  quantity  is  increased  in  the  ratio 

^dx  :   I       v?dxy 

Jo 

whicli   is  also  the  ratio  in  which  the  square  of  the   period  is 
augmented.     Now,  as  we  shall  see  presently,  the  actual  period 
varies  as  P,  and  therefore  the  change  in  the  square  of  the  period 
is  in  the  ratio 

1  :  1  +  4A///. 

A  comparison  of  the  two  ratios  shews  that 

Jo 

Uj^  :   lu^dx  =  4t  :  L 

The  above  reasoning  is  not  insisted  upon  as  a  demonstration, 

but  it  serves  at  least  to  explain  the  reduction  of  which  the  in- 
tegral is  susceptible.  Other  cases  in  which  such  integrals  occur 

may  be  treated  in  a  similar  manner,  but  it  would  often  require 
care  to  predict  with  certainty  what  amount  of  discontinuity  in  the 
varied  type  might  be  admitted  without  passing  out  of  the  range 
of  the  principle  on  which  the  argument  depends.  The  reader 
may,  if  he  pleases,  examine  the  case  of  a  string  in  the  middle 
of  which  a  small  piece  is  interpolated. 

168.  In  treating  problems  relating  to  vibrations  the  usual 
course  has  been  to  determine  in  the  first  place  the  forms  of  the 
normal    functions,   viz.   the   functions  representing   the    normal 
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types,  and  afterwards  to  investigate  the  integral  formulae  by 
means  of  which  the  particular  solutions  may  be  combined  to 
suit  arbitrary  initial  circumstances.  I  have  preferred  to  follow 
a  different  order,  the  better  to  bring  out  the  generality  of  the 
method,  which  does  iiot  depend  upon  a  knowledge  of  the  normal 
fwnctions.  In  pursuance  of  the  same  plan,  I  shall  now  investigate 
the  connection  of  the  arbitrary  constants  with  the  initial  circum- 

stances, and  solve  one  or  two  problems  analogous  to  those  treated 
under  the  head  of  Strings. 

The  general  value  of  y  may  be  written 

y  =  ̂-4i cos y  m^H  +  B^ sin ^ m^t\  u^ 

+  (ilaC08-^r/l3*^  +  -BjSin-^7W,'^j  Wa 

+   (1). 
so  that  initially 

yo  =  -4iUi  +  4,W2+   (2), 

Kb 

yo  =  -7^  {wii*fiiMi  +  ma'Bal4a+...}        (3). 

If  we  multiply  (2)  by  Ur  and  integrate  over  the  length  of  the 
rod,  we  get 

[y^xirdx-  ArWdx   (4), 

and  similarly  from  (3) 

-Tiy^Urdx^  mr^Br\Ur^dx     (5), 

formulse  which  determine  the  arbitrary  constants  iir,  Br. 

It  must  be  observed  that  we  do  not  need  to  prove  analytically 
the  possibility  of  the  expansion  expressed  by  (1).  If  all  the 
particular  solutions  are  included,  (1)  necessarily  represents  the 
most  general  vibration  possible,  and  may  therefore  be  adapted 
to  represent  any  admissible  initial  state. 

Let  us  now  suppose  that  the  rod  is  originally  at  rest,  in  its 
position  of  equilibrium,  and  is  set  in  motion  by  a  blow  which 
imparts  velocity  to  a  small  portion  of  it.  Initially,  that  is,  at 
the  moment  when  the  rod  becomes  free,  y©  =  0,  and  y©  differs  from 
zero  only  in  the  neighbourhood  of  one  point  {x  =  c). 
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From  (4)  it  appears  that  the  coefficients  A  vanish,  and  from 

(5)  that 

rrir^Br  I  Ur^dx  =  -^  i^r  (c)  I  yf^dx. 

Calling  fy^tprndx,  the  whole  momentum  of  the  blow,   Y,  we 
have 

£=J1Z^  ̂^(g)           (Q) 

and  for  the  final  solution 

„  -  _^  K  (£)J^)  sin  C^  ̂*t\  + 

ltric)U.(x)    .      (kI)       ,\  )  ,^. 

In  adapting  this  result  to  the  case  of  a  rod  free  dX  x^l,  we 
may  replace 

I'
 

Ur^dx    by    \l[ur{l)\\ 

If  the  blow  be  applied  at  a  node  of  one  of  the  normal  com- 
ponents, that  component  is  missing  in  the  resulting  motion.  The 

present  calculation  is  but  a  particular  case  of  the  investigation 

of  §  101. 

169.  As  another  example  we  may  take  the  case  of  a  bar, 
which  is  initially  at  rest  but  deflected  from  its  natural  position 

by  a  lateral  force  acting  at  x  =  c.  Under  these  circumstances 
the  coefficients  B  vanish,  and  the  others  are  given  by  (4),  §  168. 

Now 

l.y^'^^^wl.y'd^^' 
4nd  on  integrating  by  parts 

yo-7-i  »a^-yo  ITS-—    .^    3-^ da"  ^^  dx"       dx    daf" 

d^yo  dur     d'yo ,,    .  f '  d'.Vo ,,   , 

dx'    dx''da^'^^Jo~d^^     ' 
in  which  the  terms  free  from  the  integral  sign  are  to  be  taken 
between  the  limits;  by  the  nature  of  the  case  y^  satisfies  the 
same  terminal  conditions  as  does  Ur,  and  thus  all  these  terms 
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vanish  at  both  limits.  If  the  external  force  initially  applied 
to  the  element  dx  be  YdXy  the  equation  of  equilibrium  of  the 

bar  gives 

P-'^'^Z'-^   (1)' 
and  accordingly 

If  we  now  suppose  that  the  initial  displacement  is  due  to 
a  force  applied  in  the  immediate  neighbourhood  of  the  point 
a?  =  c,  we  have 

and  for  the  complete  value  of  y  at  time  t, 

In  deriving  the  above  expression  we  have  not  hitherto  made 
any  special  assumptions  as  to  the  conditions  at  the  ends,  but 
if  we  now  confine  ourselves  to  the  case  of  a  bar  which  is  clamped 

at  d?  =  0  and  free  at  a?  =  Z,  we  may  replace 

^Ur^dx    by    \l[ur{l)\\ 

If  we  suppose  further  that  the  force  to  which  the  initial  deflection 

is  due  acts  at  the  end,  so  that  c  =  /,  we  get 

When  ̂   =  0,  this  equation  must  represent  the  initial  displace- 
ment. In  cases  of  this  kind  a  difficulty  may  present  itself  as 

to  how  it  is  possible  for  the  series,  every  term  of  which  satisfies 

the  condition  ̂ "'  =  0,  to  represent  an  initial  displacement  in 
which  this  condition  is  violated.  The  fact  is,  that  after  triple 
differentiation  with  respect  to  a?,  the  series  no  longer  converges 

for  ic  =  Z,  and  accordingly  the  value  of  y"'  is  not  to  be  anived 
at  by  making  the  differentiations  first  and  summing  the  terms 
afterwards.  The  truth  of  this  statement  will  be  apparent  if 
we  consider  a  point  distant  dl  from  the  end,  and  replace 

«'"(Z-dZ)    by    u"\l)-u^{l)dl, 
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in  which  u^^  (I)  is  equal  to 

For  the  solution  of  the  present  problem  by  normal  co-ordinates 
the  reader  is  referred  to  §  101. 

170.  The  forms  of  the  normal  functions  in  the  various  par- 
ticular cases  are  to  be  obtained  by  determining  the  ratios  of  the 

four  constants  in  the  general  solution  of 

d*u  __  m* 

If  for  the  sake  of  brevity  x'  be  written  for  (mx/l),  the  solution 
may  be  put  into  the  form 

u=:A{cosx  -h  cosh  a?') -hB  (cos  a?'  -cosha?') 
-h  C (sin X  +  sinh  x)  +  D (sin x  —  sinh x)   (1), 

where  cosh  x  and  sinh  x  are  the  hyperbolic  cosine  and  sine  of  x, 
defined  by  the  equations 

cosha?  =  J(^  +  6-*)»     sinha:  =  J(c*-c-^)   (2). 

I  have  followed  the  usual  notation,  though  the  introduction  of 
a  special  symbol  might  very  well  be  dispensed  with,  since 

cosh  a:  =  cos  ir,     sinh  ̂   =  —  i  sin  to;   (3), 

where  i  =  \/(—  1) ;  and  then  the  connection  between  the  formulae  of 

circular  and  hyperbolic  trigonometry  would  be  moi"e  apparent.  The 
rules  for  differentiation  are  expressed  in  the  equations 

-T-  cosh  X  =  sinh  x,      -j-  sinh  x  =  cosh  x ax  ax 

(P  d'    .  . 
-J-.  cosh  X  =  cosh  X,      -J—  si  nh  a;  :=  sinh  x, CM/  CM/ 

In  differentiating  (1)  any  number  of  times,  the  same  four  com- 
pound functions  as  there  occur  are  continually  reproduced.  The 

only  one  of  them  which  does  not  vanish  with  x  is  cos  a?' -f  cosh  a?', 
whose  value  is  then  2. 

Let  us  take  first  the  case  in  which  both  ends  are  free.  Since 

d^ulda^  and  d^u/da^  vanish  with  x,  it  follows  that  £  =  0,  i)  =  0,  so 
that 

u-  A  (cos  x'  +  cosh  a?')  +  (7  (sin  a?' +  sinh  x')   (4). 
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We  have  still  to  satisfy  the  necessary  conditions  when  a?  =  i,  or 

x'  =  m.     These  give 

A  (-  cos  m  +  cosh  m)  +  C  (-  sin  m  +  sinh  m)  =  0 
A{    sin  m  +  sinh  m)  +  G(—  cosm  +  cosh  m) 

equations  whose  compatibility  requires  that 

(cosh  m  —  cos  m)*  =  sinh'  m  —  sin*  m, 
or  in  virtue  of  the  relation 

cosh' m  —  sinh' m  =  1   (6), 

cosm  cosh  wi  =  l   (7). 

This  is  the  equation  whose  roots  are  the  admissible  values  of  m. 
If  (7)  be  satisfied,  the  two  ratios  of  -4  :  C  given  in  (5)  are  equal, 
and  either  of  them  may  be  substituted  in  (4).  The  constant  multi- 

plier being  omitted,  we  have  for  the  normal  function 

y  .  .  ,      V  f       True  ,  mx) 
w  =  (8mm  — smhm)  -^cos  -j-  +  cosh  —.  > 

—  (cos  m  —  cosh  m)  -jsin    .-  +  sinh-y  j-   (8), 

or,  if  we  prefer  it, 

u  =  (cos  m  —  cosh  m)  scos  -r-  +  cosh  —j-> 

+  (sin  m+ sinh  w) -jsin -y-+ sinh  -j->   (9); 

and  the  simple  harmonic  component  of  this  type  is  expressed  by 

y=Pucosf^m'e+€)    (10). 

Kb 

171.     The  frequency  of  the  vibration  is  c>~>s^*'»  ̂ ^  which  b  is 

a  velocity  depending  only  on  the  material  of  which  the  bar  is 
formed,  and  m  is  an  abstract  number.  Hence  for  a  given  material 

and  mode  of  vibration  the  frequency  varies  directly  as  k — the 
radius  of  gyration  of  the  section  about  an  axis  perpendicular  to  the 

plane  of  bending — and  inversely  as  the  square  of  the  length.  These 
results  might  have  been  anticipated  by  the  argument  from  dimen- 

sions, if  it  were  considered  that  the  frequency  is  necessarily 

determined  by  the  value  of  I,  together  with  that  of  xb — the 
only  quantity  depending  on  space,  time  and  mass,  which  occurs  in 
R.  18 
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the  differential  equation.  If  everything  concerning  a  bar  be  given, 
except  its  absolute  magnitude,  the  frequency  varies  inversely  as 
the  linear  dimension. 

These  laws  find  an  important  application  in  the  case  of  tuning- 
forks,  whose  prongs  vibrate  as  rods,  fixed  at  the  ends  where  they 

join  the  stalk,  and  free  at  the  other  enda  Thus  the  period  of  vibra- 
tion of  forks  of  the  same  material  and  shape  varies  sjb  the  linear 

dimension.  The  period  will  be  approximately  independent  of  the 

thickness  perpendicular  to  the  plane  of  bending,  but  will  vai'y 
inversely  with  the  thickness  in  the  plane  of  bending.  When  the 
thickness  is  given,  the  period  is  as  the  square  of  the  length. 

In  order  to  lower  the  pitch  of  a  fork  we  may,  for  temporary 
purposes,  load  the  ends  of  the  prongs  with  soft  wax,  or  file  away 
the  metal  near  the  base,  thereby  weakening  the  spring.  To  raise 
the  pitch,  the  ends  of  the  prongs,  which  act  by  inertia,  may  be 
filed. 

The  value  of  b  attains  its  maximum  in  the  case  of  steel,  for 

which  it  amounts  to  about  5237  metres  per  second.  For  brass 

the  velocity  would  be  less  in  about  the  ratio  1*5  :  1,  so  that  a 
tuning-fork  made  of  brass  would  be  about  a  fifth  lower  in  pitch 
than  if  the  material  were  steel. 

[For  the  design  of  steel  vibrators  and  for  rough  determinations 
of  frequency,  especially  when  below  the  limit  of  hearing,  the 
theoretical  formula  is  often  convenient.  If  the  section  of  the  bar 

be  rectangular  and  of  thickness  t  in  the  plane  of  vibration,  k*  =■  r^t-; 
and  then  with  the  above  value  of  6,  and  the  values  of  m  given 
later,  we  get  as  applicable  to  the  gravest  mode 

(clamped-free)  frequency  =  84590  ̂ /P, 

(free-free)  frequency         =  538400  tIP, 

I  and  t  being  expressed  in  centimetres. 

The  first  of  these  may  be  used  to  calculate  the  pitch  of  steel 

tuning-forka 

The  lateral  vibrations  of  a  bar  may  be  excited  by  a  blow,  as 

when  a  tuning-fork  is  struck  against  a  pad.  This  method  is  also 
employed  for  the  harmonicon,  in  which  strips  of  metal  or  glass  are 
supported  at  the  nodes,  in  such  a  manner  that  the  free  vibrations 
are  but  little  impeded.    A  frictional  maintenance  may  be  obtained 
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with  a  bow,  or  by  the  action  of  the  wetted  fingers  upon  a  slender 

rod  of  glass  suitably  attached.  The  electro-magnetic  maintenance 
of  forks  has  been  already  considered,  §  64.  It  may  be  applied  with 
equal  facility  to  the  case  of  metal  bars,  or  even  to  that  of 
wooden  planks  carrying  iron  armatures,  free  at  both  ends  and 
supported  at  the  nodes.  The  maintenance  by  a  stream  of  wind 
of  the  vibrations  of  harmonium  and  organ  reeds  may  also  be 
referred  to. 

The  sound  of  a  bar  vibrating  laterally  may  be  reinforced  by  a 
suitably  tuned  resonator,  which  may  be  placed  under  the  middle 
portion  or  under  one  end.  On  this  principle  dinner  gongs  have 
been  constructed,  embracing  one  octave  or  more  of  the  diatonic 
scale.] 

172.  The  solution  for  the  case  when  both  ends  are  clamped 

may  be  immediately  derived  from  the  preceding  by  a  double  dif- 
ferentiation. Since  y  satisfies  at  both  ends  the  terminal  con- 

ditions 

da*        '      dx'     ̂ ' 

it  is  clear  that  y"  satisfies 

dy"
 

which  are  the  conditions  for  a  clamped  end.  Moreover  the  general 

diflferential  equation  is  also  satisfied  by  y".  Thus  we  may  take, 
omitting  a  constant  multiplier,  as  before, 

u  =  (sin  m  —  sinh  m)  {cos  x  —  cosh  x*] 

—  (cos  m  —  cosh  m)  {sin  x'  —  sinh  xf]   (1), 
while  m  is  given  by  the  same  equation  as  before,  namely, 

cosm  co8hm  =  l   (2). 

We  conclude  that  the  component  tones  have  the  same  pitch  in  the 
two  cases. 

In  each  case  there  are  four  systems  of  points  determined  by 
the  evanescence  of  y  and  its  derivatives.  Where  y  vanishes,  there 

is  a  node ;  where  y'  vanishes,  a  loop,  or  place  of  maximum  displace- 
ment; where  y"  vanishes,  a  point  of  infiection;  and  where  j/'* 

vanishes,  a  place  of  maximum  curvature.  Where  there  are  in  the  first 

case  (free-free)  points  of  infiection  and  of  maximum  curvature,  there 

18—2 
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are  in  the  second  (clamped-clamped)  nodes  and  loops  respectively ; 
and  vice  versd^  points  of  inflection  and  of  maximum  curvature  for 

a  doubly-clamped  rod  correspond  to  nodes  and  loops  of  a  rod  whose 
ends  are  free. 

173.  We  will  now  consider  the  vibrations  of  a  rod  clamped  at 

07  =  0,  and  free  at  x^L  Reverting  to  the  general  integral  (1) 

§  170,  we  see  that  A  and  C  vanish  in  virtue  of  the  conditions  at 
a;  =  0,  so  that 

w  =  B  (cos  a/ —  cosh  a?')  +  Z)  (sin  0?' -  sinh  a?')   (I). 

The  remaining  conditions  at  a?  =  i  give 

B(    cos  m  4-  cosh  m)  +  D  (sin  m  +  sinh  m)  =  0  | 

B (—  sin m  +  sinh m)-\'D (cos m  +  cosh m)=0  ]  * 

whence,  omitting  the  constant  multiplier, 

=  (sin  m  +  smh  m)  <  cos    . —  cosh    .  -  j- 

—  (cos  m  +  cosh  m)  jsm    .    —  smh  -.—  - (2). 

or 

u  =  (cos  m  +  cosh  vi)  <  cos  -j —  cosh  -j-  r 

+  (sin  m  — sinh  m)-jsin  —, —  sinh  -^  '   (3), 
where  m  must  be  a  root  of 

cosm  cosh m  + 1=0   (4). 

The  periods  of  the  component  tones  in  the  present  problem  are 

thus  different  from,  though,  as  we  shall  see  presently,  nearly  re- 
lated to,  those  of  a  rod  both  whose  ends  are  clamped,  or  free. 

If  the  value  of  u  in  (2)  or  (3)  be  differentiated  twice,  the  re- 

sult {u")  satisfies  of  course  the  fundamental  differential  equation. 
At  a?  =  0,  d^vi'jda?,  d^u'^jda^  vanish,  but  at  0?  =  /  u"  and  du"/dx 
vanish.  The  function  u'  is  therefore  applicable  to  a  rod  clamped 
at  I  and  free  at  0,  proving  that  the  points  of  inflection  and  of 
maximum  curvature  in  the  original  curve  are  at  the  same  distances 
from  the  clamped  end,  as  the  nodes  and  loops  respectively  are 
from  the  fr^e  end. 
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174.  In  default  of  tables  of  the  hyperbolic  cosine  or  its  loga- 
rithm, the  admissible  values  of  m  may  be  calculated  as  follows. 

Taking  first  the  equation 
cosm  cosh  771  =  1   (1), 

we  see  that  m,  when  large,  must  approximate  in  value  to 
^(2i+l)7r,  I  being  an  integer.     If  we  assume 

m  =  i(2i  +  l)7r-(-l)»/8   (2), 

fi  will  be  positive  and  comparatively  small  in  magnitude. 

Substituting  in  (1),  we  find 

cot  J)8  =  c"»  =  e*<*'+*>'  e-^-^>^ ; 

or,  if  eJ<2*+i)»  be  called  a, 

a  tan  i)9  =  e<-^>^   (3), 

an  equation  which  may  be  solved  by  successive  approximation  after 

expanding  tan^)9  and  g^""*)'^  in  ascending  powers  of  the  small 
quantity  )9.     The  result  is 

'^      a     ̂       ̂   a*     3a'     ̂       ̂   3a* 

...(4)S 

which  is  sufficiently  accurate,  even  when  i  =  1. 

By  calculation 

/3i  =  -0179666  -  -0003228  +  0000082  -  -0000002  =  -0176518. 

^3)  fii,  0A,  05  are  found  still  more  easily.  After  0^  the  first  term  of 
the  series  gives  fi  correctly  as  far  as  six  significant  figures.  The 
table  contains  the  value  of  )9,  the  angle  whose  circular  measure  is 
i8,  and  the  value  of  sin  ̂ )9,  which  will  be  required  further  on. 

Free-Free  Bar, 

/?. 

P  expressed  in  degrees, 
minutes,  and  seconds. 

1 
2 
3  ; 

4  ! 

10-^  X  •176518 
10-'  X  -777010 
10-*  X  -335505 
10-»  X  -144989 
10-'  X  -626556 

P  0'  40"-94 2'  40"-2699 6"-92029 

•299062 

•0129237 

10-«  X  -88258 
10-»  X  -38850 
10-*  X  -16775 

10-*  X  -72494 
10-'  X  -31328 

^  This  process  is  somewhat  similar  to  that  adopted  by  Strehlke. 
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The  values  of  w  which  satisfy  (1)  are 

Wi=  4-7123890  +  /3,=  47300408 

r?j,=  7-8539816 -)82=  7-8532046 

wi,  =  10-9955743  +  A  =  10-9956078 

m,  =  14-1371669  -  /34  =  141371655 

m,  =  17-2787596  +  ̂ ^  =  17*2787596 

after  which  m  =  ̂ (2i+  l)7r  to  seven  decimal  places. 

We  will  now  consider  the  roots  of  the  equation 

cosw  coshm  =  — 1     (5)\ 
[Assuming 

r?i,  =  i(2i-l)7r^(-lVa,   (6), 

we  have  e^  =  cot  ̂ Oi  =  g^^a'-^)' .  er^-^^^i , 

or  a  tan  ̂ Oj+i  =  g-^-^^'^+i   (7), 
a  having  the  value  previously  defined. 

Thus,  as  in  (4), 

«'*.-!-(-»'^s-(-')'"^+   <■'). 

Ui+i  being  approarimately  equal  to  fit. 

The  values  calculated  from  (8)  are 

a,  =  10-^  X  -182979,     a^  =  IQ-*  x  335527, 

a,  =»  10-'  X  -775804,    Cj  =  10"*  x  -144989, 

after  which  the  difference  between  Oj+j  and  )9,-  does  not  appear.] 

The  value  of  Ci  may  be  obtained  by  trial  and  error  from  the 

equation 
logio  cot  ̂ tti  -  -6821882  -  43429448  a,  =  0, 

and  will  be  found  to  be 

a,  =  -3043077. 

Another  method  by  which  Wi  may  be  obtained  directly  will  be 

given  presently. 

The  values  of  m,  which  satisfy  (5),  are 

1)1,  =»  1-5707963 +  ai=  1875104 

7n,=  4-7123890-0,=  4-694098 

^8=  7-8539816  4-03=  7-854757 

m,  =  10-9955743  -  a^  =  10995541 

m,  =  14-1371669  +  a,=  14137168 

VI,  =  17-2787596  -  a«  =  17-278759 , 
^  The  calculation  of  the  roots  of  (5)  given  in  the  first  edition  was  affected  by  an 

error,  which  has  been  pointed  out  by  Qreenhill  (Math.  Mess.^  Dec.  1S86). 
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after  which  m  =  ̂   (2i  —  1)  tt  sensibly.  The  frequencies  are  propor- 
tional to  ni\  and  are  therefore  for  the  higher  tones  nearly  in  the 

ratio  of  the  squares  of  the  odd  numbers.  However,  in  the  case  of 
overtones  of  very  high  order,  the  pitch  may  be  slightly  disturbed 

by  the  rotatorj'  inertia,  whose  effect  is  here  neglected. 

176.  Since  the  component  vibrations  of  a  system,  not  subject 
to  dissipation,  are  necessarily  of  the  harmonic  type,  all  the  values 

of  m*,  which  satisfy 
cosm  coshm=  ±  1   (1), 

must  be  real.  We  see  further  that,  if  m  be  a  root,  so  are  also 

—  m,  wV(—  1),  —  mV(—  1).  Hence,  taking  first  the  lower  sign,  we 
have 

2(c..smcoshm+l)=l-j2"^12^"   

=('-3('-5)^   «• 
If  we  take  the  logarithms  of  both  sides,  expand,  and  equate  co- 

efficients, we  get 

2  —  =  ̂ ;      2— ̂   =  ,^j.«^;   &c   (3). 

This  is  for  a  clamped-free  rod. 

From  the  known  value  of  2m~*,  the  value  of  mi  may  be  derived 
with  the  aid  of  approximate  values  of  m,,  m^,       We  find 

2m-«  =  006547621, 

and  mf^  =  -000004  242 

7w,-»  =  000000069 

mr^  =  000000005, 

whence  mr^  =  006543305 

giving  7Wi    =  '1875104,     as  before. 

In  like  manner,  if  both  ends  of  the  bar  be  clamped  or  free, 

'->ll5---('-3('-S)^   <*)■ 

whence  2  — :  =  ts-jt^  &c.,  where  of  course  the  summation  is  exclu- m*     12.3o 
sive  of  the  zero  value  of  m. 
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176.  The  frequencies  of  the  series  of  tones  are  proportional  to 

m'.  The  interval  between  any  tone  and  the  gravest  of  the  series 
may  conveniently  be  expressed  in  octaves  and  fractions  of  an 
octave.  This  is  effected  by  dividing  the  difference  of  the  logarithms 

of  m^  by  the  logarithm  of  2.    The  results  are  as  follows : 
1-4629 

2-6478 

2-4358 
4-1332 

3-1590 
5-1036 

3-7382,  &c. 
6-8288,  &c 

where  the  first  column  relates  to  the  tones  of  a  rod  both  whose 

ends  are  clamped,  or  free ;  and  the  second  column  to  the  case  of  a 
rod  clamped  at  one  end  but  free  at  the  other.  Thus  fix>m  the 

second  column  we  find  that  the  first  overtone  is  2*6478  octaves 
higher  than  the  gravest  tone.  The  fractional  part  may  be  reduced 
to  mean  semitones  by  multiplication  by  12.  The  interval  is  then 

two  octaves  +  7*7736  mean  semitones.  It  will  be  seen  that  the 
rise  of  pitch  is  much  more  rapid  than  in  the  case  of  strings. 

If  a  rod  be  clamped  at  one  end  aDd  free  at  the  other,  the  pitch 

of  the  gravest  tone  is  2  (log  4*7300  -  log  1*8751)  -t-  log  2  or  2*6698 
octaves  lower  than  if  both  ends  were  clamped,  or  both  free. 

177.  In  order  to  examine  more  closely  the  curve  in  which  the 
rod  vibrates,  we  will  transform  the  expression  for  u  into  a  form 
more  convenient  for  numerical  calculation,  taking  first  the  case 

when  both  ends  are  free.  Since  m  =  ̂ (2i  + l)'7r  —  (— 1)*/8, 
cos  m  =  sin  /8,  sin  m  =  cos  iir  x  cos  /8 ;  and  therefore,  m  being  a 
root  of  cos  m  cosh  m  =  1,    cosh  m  =  cosec  /8. 

Also 

sinh'  m  =  cosh^  m  —  1  =  tan'  m  =•  cot*  /8, 

or,  since  cot  /8  is  positive, 
sinh  m  =  cot  /8. 

Thus 

sin  m  —  sinh  m  __  1  —  cos  iir  sin  13 
cos  m  —  cosh  m  cos  /8 

(cos  i^  —  cos  iir  sin  ̂ /S)*         
(cos  J/8  —  cos  iV  sin  i/8)(cos  ̂ /S  +  cos  tV  sin  i/8) 

_  cos  ̂ /8  cos  tV  —  sin  ̂ y8 

""  cos  ̂ /8  cos  tV  +  sin  i/8 ' 



177.]  GRAVEST  MODE  FOR   FREE-FREE  BAR.  281 

We  may  therefore  take,  omitting  the  constant  multiplier, 

u  =  (cos  i/8  cos  ITT  4-  sin  i/8)  jsin  -J-  +  sinh  -j 

—  (cos  ̂ /8  cos  tV  -  sin  i/8)  jcos  -•  -  +  cosh  -y-  >• 

=  v2  cos  tTT  sm  j-y  - -J  +  (  - 1)*  ̂ h 

+  sin i/S e^' -  cos  ITT  cos^l3er^^   (1). 
If  we  further  throw  out  the  factor  V2,  and  put  1=1,  we 

may  take 

where 

Fi  =  cos  ITT  sin  [nuc  —  Jth  +  i(  —  l)*i8}  \ 

logi^,=     f/w?  log  e  +  log  sin  i^  —  log  V2  >   W» 

log  ±  fj  =  -  tho;  log  c  +  log  cos  ̂ /9  —  log  »^2  ) 

from  which  t^  may  be  calculated  for  different  values  of  i  and  x. 

At  the  centre  of  the  bar,  a?  =  ̂ ,  and  F^,  F^  are  numerically 

equal  in  virtue  of  e"*  =  cot  J  /8.  When  i  is  wen,  these  terms  cancel. 
For  i^i,  we  have  i^i  =  (— lysin^tV,  which  is  equal  to  zero  when 
i  is  even,  and  to  ±  1  when  t  is  odd.  When  t  is  even,  therefore, 

the  sum  of  the  three  terms  vanishes,  and  there  is  accordingly  a 
node  in  the  middle. 

When  a?  =  0,  u  reduces  to  —  2  (—  1)*  sin  { J  7r  —  i  (—  1)*  /8},  which 
(since  /8  is  always  small)  shews  that  for  no  value  of  t  is  there  a 
node  at  the  end.  If  a  long  bar  of  steel  (held,  for  example,  at  the 
centre)  be  gently  tapped  with  a  hammer  while  varying  points  of 
its  length  are  damped  with  the  fingers,  an  unusual  deadness  in 
the  sound  will  be  noticed,  as  the  end  is  closely  approached. 

178.     We  will  now  take  some  particular  case& 

Vibration  with  two  nodes,    i=l. 

If  i  =  1,  the  vibration  is  the  gravest  of  which  the  rod  is  capable. 
Our  formulae  become 

i^i  =  -  sin  {x{rj^  +  V  0'  40" -94)  -  45*  -  30'  20" '47} 

log  F^  =     2054231  x  +  37952391 

log /;  =  -  2054231  X  4- 1-8494681, 
from  which  is  calculated  the  following  table,  giving  the  values  of 
u  for  X  equal  to  00,  05,  10,  &c. 
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Tbe  values  of  u  :  u  (5)  for  the  intermediate  values  of  a:  (in  the 

last  column)  were  found  by  interpolation  formulae.  If  o,  p,  q,  r,  s,  t 
be  six  consecutive  terms,  that  intermediate  between  q  and  r  is 

'l^'+'i^^*^-"+l|2[!+'-(r+»)l-Cp+') +»+'}• 

X 

•000 

■^1 

+  -0062408 
+■7070793 

" 

+  1645219 +  ■7133200 +  14266401 ■026 
1454176 ■050 

■5292548 
■0079059 

■5581572 
10953179 

1  ■263 134 
•075 1-072162 
■100 

■3157243 -0100153 
■4406006 ■7663401 ■8837528 

■125 

... 

■6969004 

■150 

+  ■0846166 

■01268T4 ■3478031 
■4451071 ■6133028 

•175 ■3341625 
■200 

-  1513020 
■0160726 

■2745503 
+  ■1394309 +  1607819 

■225 
-  0054711 

■250 

■3786027 
■0-203609 ■2167256 -  -1415162 

1631982 ■275 
■3109982 

•300 

■5849265 
■0257934 ■1710798 ■3880523 

■4475066 

■325 
... 

■5714137 
■350 

■7586838 
■0326753 ■1350477 

■6909608 ■6815032 
•375 

... 

■7766629 
•400 

■8902038 
■0413934 

■1066045 ■7422059 ■8559210 
■425 ■9184491 
■460 

■9721635 
■0524376 

■0841519 ■8355740 
■9635940 

■475 ■9908730 
■500 

-l^OOOOOO +  -0664285 
■0664283 -  ■86714.33 

- 1  -0000000 

Since  the  vibration  curve  is  symmetrical  with  respect  to  the 

middle  of  the  rod,  it  is  unnecessary  to  continue  the  table  beyond 

X  -  '3.     The  curve  itself  is  shewn  in  fig.  28. 

Fig.  38. 
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To  find  the  position  of  the  node,  we  have  by  interpolation 

which  is  the  fraction  of  the  whole  length  by  which  the  node  is 
distant  from  the  nearer  end. 

Vibration  with  three  nodes,    i  =  2. 

i^i  =  sin  {  (45(>>  -  2'  40"  -27)  ̂r  -  45«  4- 1'  20"  •135} 

log  F^  =     3-410604  X  +  4438881 6 

log  (-  F;)  =  -  3-410604  X  +  1-8494850. 

X 
u:-u{0) X 

1 
M  :  -  M  (0) 

•000 - 10000 

•250 

+  -5847 •025 
•8040 

•275 •6374 

•050 
•6079 

•300 
•6620 

•075 
•4147 

•325 •6569 

•100 
•2274 

•350 •6245 

•125 
-    ̂ 0487 

•375 •5652 

•150 
+  •ins 

•400 •4830 

•175 
•2672 

•425 •3805 

•200 
•3972 

•450 •2627 

•225 
•5037 

•475 •1340 •500 •0000 

In  this  table,  as  in  the  preceding,  the  values  of  u  were  calcu- 

lated directly  for  a?  =  -000,  '050,  -100  &c,  and  interpolated  for  the 
intermediate  values.  For  the  position  of  the  node  the  table  gives 

by  ordinary  interpolation  a:  =132.  Calculating  from  the  above 
formulae,  we  find 

w  (1321)  =  --000076. 

w  (1322)  =  4-000881, 

whence  a;  =  -132108,  agreeing  with  the  result  obtained  by  Strehlke. 
The  place  of  maximum  excursion  may  be  found  from  the  derived 
function.     We  get 

li  (-3083)  =  4-  -0006077,      u'  (3084)  =  -  -0002227, 

whence  u'  (-308373)  =  0. 
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[178. 
Hence  it  is  a  maximum,  when  x  =  '308373 ;  it  then  attains 

the  value  '6636,  which,  it  should  be  observed,  is  much  less  than 
the  excursion  at  the  end. 

The  curve  is  shewn  in  fig.  29. 

Fig.  29. 

Vibration  tuithfour  nodes,     i  =  3. 

i?*!  =  -  sin  { (63(y>  +  6"-92)  a?  -  45<'  -  3"-46}, 

logi?;=     4-775332  a;  +  50741527, 

log  F^^"  4-775332  x  + 1-8494850. 

From  this  w(0)  =  1-41424,  w(i)  =  1-00579.  The  positions  of 
the  nodes  are  readily  found  by  trial  and  error.     Thus 

u (-3558)  =  -  000037         a (3559)  =  +  001047, 

whence  u  (-355803)  =  0.     The  value  of  x  for  the  node  near  the  end 
is  -0944,  (Seebeck). 

The  position  of  the  loop  is  best  found  from  the  derived 

function.  It  appears  that  u'  =  0,  when  x  =  -2200,  and  then 
u  =  — '9349.  There  is  also  a  loop  at  the  centre,  where  however 
the  excursion  is  not  so  great  as  at  the  two  others. 

Fig.  30. 

We  saw  that  at  the  centre  of  the  bar  F^  and  F^  are  numerically 
equal.  In  the  neighbourhood  of  the  middle,  F^  is  evidently  very 
small,  if  t  be  moderately  great,  and  thus  the  equation  for  the  nodes 
reduces  approximately  to 

mx     IT     , -iy|= ±ntr. 

n  being  an  integer.     If  we  transform  the  origin  to  the  centre  of 
the  rod,  and  replace  m  by  its  approximate  value  ̂ (2i  +  l)7r,  we 
find 

a;  _  ±  2n  —  t 
1  ~  ~2i +T ' 
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shewing  that  near  the  middle  of  the  bar  the  nodes  are  uniformly- 
spaced,  the  interval  between  consecutive  nodes  being  2l-7-(2i+l), 
This  theoretical  result  has  been  verified  by  the  measurements  of 
Strehlke  and  Lissajous. 

For  methods  of  approximation  applicable  to  the  nodes  near 
the  ends,  when  i  is  greater  than  3,  the  reader  is  referred  to  the 

memoir  by  Seebeck  already  mentioned  §  160,  and  to  Donkin's 
Acoustics  (p.  194). 

179.  The  calculations  are  very  similar  for  the  case  of  a  bar 
clamped  at  one  end  and  free  at  the  other.  If  uo:  F,  and 

F=Fi'\'Fi  +  Fz,  we  have  in  general 

F^  =  cos  {mx  +  iir  +  i  (-  lya}, 

(-1V  1 

i^,=  --^siniae»»*;    i^,  =  --^cosia«-^. 

If  i=  1,  we  obtain  for  the  calculation  of  the  gravest  vibration- 
curve 

(ISO 
Fi  =  cos  • IT maf>  + 4:0^ -^8^43' '0665 

log  (-  Ft)  =     nix\oge+l  -0300909. 

log  (-  i^s)  =  -  Twa?  log  e  +  1  •8444383. 

These  give  on  calculation 

i^(0)  = -000000. 

i?*  (-2)  =  -102974, 

i^  (-4)  =  -370625, 

F(  -6)=  -743452, 

F{  -8)  =  1-169632, 

i?'(10)  =  1-612224, 

from  which  fig.  31  was  constructed. 

Fig.  31. 
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The  distances  of  the  nodes  from  the  free  end  in  the  case  of  a 

rod  clamped  at  the  other  end  are  given  by  Seebeck  and  by  Donkin. 

2°^  tone   -2261. 

3"*  tone   -1321,     4999. 

4^Hone  -0944,     -3558, 

•6439. 

•th tone 1-3222    4-9820    90007    4/- 3    4i- 10-9993    4i --70175 
4i-2'   4t-2'   4i-2'4i-2'       4i-2 4t-2 

"The  last  row  in  this  table  must  be  understood  as  meaning 
47  —  3 

that  j^ — ^  may  be  taken  as  the  distance  of  the  f^  node  from  the 

free  end,  except  for  the  first  three  and  the  last  two  nodes." 

When  both  ends  are  free,  the  distances  of  the  nodes  from  the 
nearer  end  are 

l"  tone  -2242. 

2™*  tone  -1321 

•5. 

3"*  tone  -0944 

•3558. 

^, ,         1-3222 *    *«°^   4i+2 

4-9820 

4i  +  2 

9-0007 

4i+2 4;- 3 
4i  +  2 

The  points  of  inflection  for  a  free-free  rod  (corresponding  to 
the  nodes  of  a  clamped-clamped  rod)  are  also  given  by  Seebeck  ; — 

!•*  tone 
2nd  tone 
3*^  tone 

^  tone 

1**  point. 
2n<l  point 

rtb 
point. No  inflection  point. 

-5000 
•3593 

50175 
4i  +  2 

8-9993 

4t+2 
4k +  1 
4i  +  2 

Except  in  the  case  of  the  extreme  nodes  (which  have  no 

corresponding  inflection-point),  the  nodes  and  inflection-points 
always  occur  in  close  proximity. 

180.  The  case  where  one  end  of  a  rod  is  free  and  the  other 

mpported  does  not  need  an  independent  investigation,  as  it  may  be 
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referred  to  that  of  a  rod  with  both  ends  free  vibrating  in  an  even 
mode,  that  is,  with  a  node  in  the  middle.  For  at  the  central  node 

y  and  y"  vanish,  which  are  precisely  the  conditions  for  a  supported 
end.  In  like  manner  the  vibrations  of  a  clamped-supported  rod 
are  the  same  as  those  of  one-half  of  a  rod  both  whose  ends  are 

clamped,  vibrating  with  a  central  node. 

181.  The  last  of  the  six  combinations  of  terminal  conditions 

occurs  when  both  ends  are  supported.  Referring  to  (1)  §  170,  we 

see  that  the  conditions  at  ir  =  0,  give  -4  =  0,  -B  =  0 ;  so  that 

u  =  (C  +  D)  sin  ar'  +  (C  -  2))  sinh  x\ 

Since  u  and  w"  vanish  when  a?'  =  m,  (7  —  i)  =  0,  and  sin  m  =  0. 
Hence  the  solution  is 

.    iirx         i^ir^Kb  ̂  
y  =  sm    ̂ -  cos— ^^-t     (1), 

where  i  is  an  integer.  An  arbitrary  constant  multiplier  may  of 
course  be  prefixed,  aud  a  constant  may  be  added  to  t 

It  appears  that  the  normal  curves  are  the  same  as  in  the  case 
of  a  string  stretched  between  two  fixed  points,  but  the  sequence  of 
tone  is  altogether  diflferent,  the  frequency  varying  as  the  square 

of  i.  The  nodes  and  inflection-points  coincide,  and  the  loops 
(which  are  also  the  points  of  maximum  curvature)  bisect  the 
distances  between  the  nodes. 

182.  The  theory  of  a  vibrating  rod  may  be  applied  to  illustrate 
the  general  principle  that  the  natural  periods  of  a  system  fulfil  the 

maximum-minimum  condition,  and  that  the  greatest  of  the  natural 
periods  exceeds  any  that  can  be  obtained  by  a  variation  of 

type.  Suppose  that  the  vibration  curve  of  a  clamped-free  rod  is 
that  in  which  the  rod  would  dispose  itself  if  deflected  by  a  force 
applied  at  its  free  extremity.  The  equation  of  the  curve  may  be 
taken  to  be 

y  = -91x^  +  0^, 

which  satisfies  d^yjdx^  =  0  throughout,  and  makes  y  and  y  vanish 

at  0,  and  y"  at  L    Thus,  if  the  configuration  of  the  rod  at  time  t  be 

y  =  (-3ii;»  +  .T»)  QOBpt   (1). 

the  potential  energy  is  by  (1)  §  161,  6  j/c'wZ'cos'p^,  while  the 
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kinetic    energy  is  =^  pto  U  p^  sm'  pt ;    and   thus   jp*  =    -- 

Now  j>i  (the  true  value  of  p  for  the  gravest  tone)  is  equal  to 

^  X  {ismr ; 
80  that 

p,:p^  (1-8751)»  y  ̂  =  -98556, 

shewing  that  the  real  pitch  of  the  gravest  tone  is  rather  (but 

comparatively  little)  lower  than  that  calculated  from  the  hypo- 
thetical type.  It  is  to  be  observed  that  the  h)rpothetical  type  in 

question  violates  the  terminal  condition  y'"=  0.  This  circumstance, 
however,  does  not  interfere  with  the  application  of  the  principle, 
for  the  assumed  type  may  be  any  which  would  be  admissible  as  an 

initial  configuration ;  but  it  tends  to  prevent  a  very  close  agree- 
ment of  periods. 

We  may  expect  a  better  approximation,  if  we  found  our  calcu- 
lation on  the  curve  in  which  the  rod  would  be  deflected  by  a  force 

acting  at  some  little  distance  from  the  free  end,  between  which 

and  the  point  of  action  of  the  force  (a?  =  c)  the  rod  would  be 
straight,  and  therefore  without  potential  energy.     Thus 

potential  energy  =  6  qx^axs^  cos^  pt. 

The  kinetic  energy  can  be  readily  found  by  integration  from 
the  value  of  y. 

From  0  to  c  y  =  —  3ca7*  4-  a?* ; 

and  from  ctol  y^(f{C''  Sx), 

as  may  be  seen  frx)m  the  consideration  that  y  and  y'  must  not 
suddenly  change  at  a?  =  c.     The  result  is 

[33  
1 =7xC'  +  ic*(Z  — c)(c*+3P)    , 

whence 

The  maximum  value  of  1/p^  will  occur  when  the  point  of 
application  of  the  force  is  in  the  neighbourhood  of  the  node  of  the 
second  normal  component  vibration.  If  we  take  c  =  f  Z,  we  obtain 
a  result  which  is  too  high  in  the  musical  scale  by  the  interval 
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expressed  by  the  ratio  1 :  '9977,  and  is  accordingly  extremely  near 
the  truth.  This  example  may  give  an  idea  how  nearly  the  period 
of  a  vibrating  system  may  be  calculated  by  simple  means  without 
the  solution  of  differential  or  transcendental  equations. 

The  type  of  vibration  just  considered  would  be  that  actually 
assumed  by  a  bar  which  is  itself  devoid  of  inertia,  but  carries  a 
load  M  at  its  free  end,  provided  that  the  rotatory  inertia  of  ilf  could 
be  neglected.     We  should  have,  in  fact, 

F=  QqK^toV  cos-'  pU       T  =  ̂ MU'p^hm^pt, 

so  that  P'--M^    (3). 

Even  if  the  inertia  of  the  bar  be  not  altogether  negligible  in 
comparison  with  if,  we  may  still  take  the  same  type  as  the  basis 
of  an  approximate  calculation  : 

F=6?/c='g)Pco8«j^«, 

T  =  UmI^  + 1?  ptoV\  p^  sin'  pt, 
whence 

p'  ~  3gr/e=^G)  \ ̂ +i1)^«0   ^*>' 
that  is,  M  is  to  be  increased  by  about  one  quarter  of  the  mass  of 
the  rod.  Since  this  result  is  accurate  when  M  is  infinite,  and  does 

not  differ  much  from  the  truth,  even  when  il/  =  0,  it  may  be  re- 
garded as  generally  applicable  as  an  approximation.  The  error 

will  always  be  on  the  side  of  estimating  the  pitch  too  high. 

183.  But  the  neglect  of  the  rotatory  inertia  of  M  could  not 
be  justified  under  the  ordinary  conditions  of  experiment.  It  is  as 
easy  to  imagine,  though  not  to  construct,  a  case  in  which  the  inertia 
of  translation  should  be  negligible  in  comparison  with  the  inertia  of 
rotation,  as  the  opposite  extreme  which  has  just  been  considered. 
If  both  kinds  of  inertia  in  the  mass  M  be  included,  even  though 
that  of  the  bar  be  neglected  altogether,  the  system  possesses  two 
distinct  and  independent  periods  of  vibration. 

Let  z  and  6  denote  the  values  of  y  and  dy/dx  B,t  x^l.  Then 
the  equation  of  the  curve  of  the  bar  is 

y=-p-^  +  — ^^, 
R.  19 
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y^^^iSz-'-SzW  +  l^e^}    (1); 

while  for  the  kinetic  energy 

T^iMz'  +  ̂MK'^e'   (2), 

if  K  be  the  radius  of  gyration  of  M  about  an  axis  perpendicular  to 

the  plane  of  vibration. 

The  equations  of  motion  are  therefore 

Mz     +^^      (6z-SW)  =  o' 

Mk''0-^^^(^SIz  +  21'0)  =  0 

whence,  if  z  and  0  vary  as  cos  pt,  we  find 

(3); 

P 
(O 

1  + 

3«'»        /        3/c'»     9*'*1 (4). 

corresponding  to  the  two  periods,  which  are  always  different. 

If  we  neglect  the  rotatory  inertia  by  putting  ic'  =  0,  we  fall 
back  on  our  previous  result 

P  "  "MP   • 

The  other  value  of  p*  is  then  infinite. 

It  K  :  I  be  merely  small,  so  that  its  higher  powers  may  be 
neglected, 

P      MIk''  \   ̂i  I*) 

(5). 

If  on  the  other  hand  «'*  be  very  great,  so  that  rotation  is 
prevented. 

or 

MU^ 

(6), 

the  latter  of  which  is  very  small.  It  appears  that  when  rotation 
is  prevented,  the  pitch  is  an  octave  higher  than  if  there  were  no 
rotatory  inertia  at  all.     These  conclusions  might  also  be  derived 
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directly  from  the  differential  equations ;  for  if  /c'  =  « ,  tf  =  0,  and then 

but  if  #c'  =  0,   0  =  3z/2l,  by  the  second  of  equations  (3),  and  in that  case 

M£  +  -^ —  2r  =  0. 

184.  If  any  addition  to  a  bar  be  made  at  the  end,  the  period 
of  vibration  is  prolonged.  If  the  end  in  question  be  free,  suppose 
first  that  the  piece  added  is  without  inertia.  Since  there  would  be 

no  alteration  in  either  the  potential  or  kinetic  energies,  the  pitch 
would  be  unchanged;  but  in  proportion  as  the  additional  part 
acquires  inertia,  the  pitch  falls  (§^88). 

In  the  same  way  a  small  continuation  of  a  bar  beyond  a 
clamped  end  would  be  without  effect,  as  it  would  acquire  no 
motion.  No  chlmge  will  ensue  if  the  new  end  be  also  clamped ; 
but  as  the  first  clamping  is  relaxed,  the  pitch  falls,  in  consequence 
of  the  diminution  in  the  potential  energy  of  a  given  deformation. 

The  case  of  a  '  supported '  end  is  not  quite  so  simple.  Let  the 
original  end  df  the  rod  be  A,  and  let  the  added  piece  which  is  at 
first  supposed  to  have  no  inertia,  he  AB.  Initially  the  end  A  is 

fixed,  or  held,  if  we  like  so  to  regard  it,  by  a  spring  of  infinite  stiff- 
ness. Suppose  that  this  spring,  which  has  no  inertia,  is  gradually 

relaxed.  During  this  process  the  motion  of  the  new  end  B 
diminishes,  and  at  a  certain  point  of  relaxation,  B  comes  to  rest. 
During  this  process  the  pitch  falls.  B,  being  now  at  rest,  may  be 
supposed  to  become  fixed,  and  the  abolition  of  the  spring  at  A 
entails  another  fall  of  pitch,  to  be  further  increased  as  AB  acquires 
inertia. 

186.  The*  case  of  a  rod  which  is  not  quite  uniform  may  be 
treated  by  the  general  method  of  §  90.  We  have  in  the  notation 
there  adopted 

a^  =  \  pfO(,u-f*dx,  BOf  —  I  BpctUf^dx, 

19—2 
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whence,  P^  being  the  uncorrected  value  of  jo^, 

Pr  "  ■*  r  "(•'•'• 

\^^^-£)^       jp^oUr^^ 

*■    \  B^jUr^dx        payjur^dx)   

[If  the  motion  be  strictly  periodic  with  respect  to  a*,  w/'  is 
proportional  to  tir,  and  both  quantities  vanish  at  a  node.  Ac- 

cordingly an  irregularity  situated  at  a  node  of  this  kind  of  motion 
has  no  effect  upon  the  period.  A  similar  conclusion  will  hold  good 

approximately  for  the  interior  nodes  of  a  bar  vibrating  with 
numerous  subdivisions,  even  though,  as  when  the  terminals  are 
clamped  or  free,  the  mode  of  motion  be  not  strictly  periodic  with 
respect  to  w.] 

If  the  rod  be  clamped  at  0  and  free  at  I, 

p^u  — .  _____  - 
Jo  ̂ 0  fr^r  J  0  DG)«  ) 

i_ 

The  same  formula  applies  to  a  doubly  free  bar. 

The  effect  of  a  small  load  dM  is  thus  given  by 

B^^L^.u^dM)    

where  M  denotes  the  mass  of  the  whole  bar.  If  the  load  be  at 

the  end,  its  effect  is  the  same  as  a  lengthening  of  the  bar  in  the 
ratio  M  :  M  +  dM.    (Compare  §  167.) 

[In  (2)  dM  is  supposed  to  act  by  inertia  only ;  but  a  similar 
formula  may  conveniently  be  employed  when  an  irregularity  of 
mass  dM  depends  upon  a  variation  of  section,  without  a  change 

of  mechanical  properties.     Since  B  =  q/c*a>, 

so  that  the  effect  of  a  local  excrescence  is  given  by 

If  the  thickneds  in  the  plane  of  bending  be  constant,  Sk'  =  0, 

and  S  (/e*a>)/(/ic'6>),  =  Sa/a^ 
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t:,    ̂ ,  fSooda:     dM 
^''''^'''  J  7^  =  ̂   ' 

and  thus  p./p.  =  1  +  4  ̂  '^^^   (4). 
If,  however,  the  thickness  in  the  plane  perpendicular  to  that  of 

bending  be  constant,  and  in  the  plane  of  bending  variable  (27), 

then  S  (/e*a))/(ic«o))o  =  V/7o*  =  3  S7/70  =  3Sa)/a)o ; 

and  in  place  of  (4) 

pVP^^i-^^-j^-^^   (^)- 

If  a  tuning-fork  be  filed  {dM  negative)  near  the  stalk  (clamped 
end),  the  pitch  is  lowered ;  and  if  it  be  filed  near  the  free  end,  the 

pitch  is  raised.  Since  u^*^  =  uf,  the  effects  of  a  given  stroke  of 
the  file  are  equal  and  opposite  in  the  circumstances  of  (4),  but  in 
the  circumstances  of  (5)  the  effect  at  the  stalk  is  three  times  as 
great  as  at  the  free  end.] 

186.  The  same  principle  may  be  applied  to  estimate  the 
correction  due  to  the  rotatory  inertia  of  a  uniform  rod.  We  have 
only  to  find  what  addition  to  make  to  the  kinetic  energy,  supposing 
that  the  bar  vibrates  according  to  the  same  law  as  would  obtain, 
were  there  no  rotatory  inertia. 

Let  us  take,  for  example,  the  case  of  a  bar  clamped  at  0  and 
free  at  Z,  and  assume  that  the  vibration  is  of  the  type, 

where  u  is  one  of  the  functions  investigated  in  §  179.    The  kinetic 
energy  of  the  rotation  is 

=  ̂'"*'*"^8in°ja<  (2W  +  »»«'«),, 

by  (2)  §  165. 
To  this  must  be  added 

^/>'sin'/}M   u^dx,     or  -^  jo^sin'p^V; I  J  Q  o 

so  that  the  kinetic  energy  is  increased  in  the  ratio 

1  :  1+  y,-  (2-  +  m—    • 
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The  altered  frequency  bears  to  that  calculated  without  allow- 
ance for  rotatory  inertia  a  ratio  which  is  the  square  root  of  the 

reciprocal  of  the  preceding.     Thus 

By  use  of  the  relations  cosh  m  =  —  sec  m,  sinh  m  =  cos  tV.  tan  m, 

we  may  express  u'  :  u  when  x^l'in  the  form 
u'  —  sin  m  cos  a 

u      cos  iir  +  cos  m     1  —  cos  iir  sin  a ' 

if  we  substitute  for  m  from 

m  =  i(2i-l)^-(-iya. 

In  the  case  of  the  gravest  tone,  a  =  3043,  or,  in  degrees  and 

minutes,  a  =  17®  26',  whence 

-  =  -73413,       2--^m  —  =  2-4789. 
u  u         vJ^ 

Thus 

p:P=l-2-324l|   (2), 

which  gives  the  correction  for  rotatory  inertia  in  the  case  of  the 

gravest  tone. 

When  the  order  of  the  tone  is  moderate,»a  is  very  small, 
and  then 

u' :  w  =  1    sensibly, 

and 

shewing  that  the  correction  increases  in  importance  with  the 
order  of  the  component. 

In  all  ordinary  bars  k  \lia  very  small,  and  the  term  depending 
on  its  square  may  be  neglected  without  sensible  error. 

187.  When  the  rigidity  and  density  of  a  bar  are  variable 
from  point  to  point  along  it,  the  normal  functions  cannot  in 

general  be  expressed  analytically,  but  their  nature  may  be  investi- 
gated by  the  methods  of  Sturm  and  Liouville  explained  in  §  142. 

If ,  as  in  §  162,  B  denote  the  variable  ilexural  rigidity  at  any 
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point  of  the  bar,  and  pto  dx  the  mass  of  the  element,  whose  length 
is  dx,  we  find  as  the  general  differential  equation 

^^^p^'2-'   w. da?\    da?) 

the  effects  of  rotatory  inertia  being  omitted.  If  we  assume  that 
y  <x  cos  vt,  we  obtain  as  the  equation  to  determine  the  form  of  the 
normal  functions 

£(^g)-«   «• 
in  which  v^  is  limited  by  the  terminal  conditions  to  be  one  of  an 
infinite  series  of  definite  quantities  v^,  v^^  v^   

Let  U8  suppose,  for  example,  that  the  bar  is  clamped  at  both 
ends,  so  that  the  terminal  values  of  y  and  dyjdx  vanish.  The  first 

normal  function,  for  which  v^  has  its  lowest  value  vi,  has  no 
internal  root,  so  that  the  vibration-curve  lies  entirely  on  one  side 
of  the  equilibrium-position.  The  second  normal  function  has  one 
internal  root,  the  third  function  has  two  internal  roots,  and, 

generally,  the  r^**  function  has  r  — 1  internal  roots. 

Any  two  different  normal  functions  are  conjugate,  that  is  to 
say,  their  product  will  vanish  when  multiplied  by  ptadx,  and 
integrated  over  the  length  of  the  bar. 

Let  us  examine  the  number  of  roots  of  a  function  f(x)  of 
the  form 

compounded  of  a  finite  number  of  normal  functions,  of  which  the 
function  of  lowest  order  is  Um(^)  and  that  of  highest  order  is 
Wn  i^)'  If  the  number  of  internal  roots  oif{x)  be  m,  so  that  there 
are  /i  +  4  roots  in  all,  the  derived  function  f  (x)  cannot  have  less 

than  /x  -h  1  internal  roots  besides  two  roots  at  the  extremities,  and 
the  second  derived  function  cannot  have  less  than  /x  +  2  roots. 
No  roots  can  be  lost  when  the  latter  function  is  multiplied  by  B, 
and  another  double  differentiation  with  respect  to  x  will  leave  at 
least  fM  internal  roots.     Hence  by  (2)  and  (3)  we  conclude  that 

has  at  least  as  many  roots  as  f{x).  Since  (4)  is  a  function  of  the 
same  form  as  f{x\  the  same  argument  may  be  repeated,  and  a 
series  of  functions  obtained,  every  member  of  which  has  at  least 
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as  many  roots  as  f{x)  has.  When  the  operation  by  which  (4)  was 
derived  from  (3)  has  been  repeated  sufficiently  often,  a  function  is 
arrived  at  whose  form  differs  as  little  as  we  please  from  that  of  the 

component  normal  function  of  highest  order  %in{x)\  and  we  con- 
clude that  f{x)  cannot  have  more  than  n  —  1  internal  roots.  In 

like  manner  we  may  prove  that  f{x)  cannot  have  less  than  m  —  1 
internal  roots. 

The  application  of  this  theorem  to  demonstrate  the  possibility 
of  expanding  an  arbitrary  function  in  an  infinite  series  of  normal 
functions  would  proceed  exactly  as  in  §  142. 

[An  analytical  investigation  of  certain  cases  where  the  section 
of  a  rod  is  supposed  to  be  variable,  will  be  found  in  a  memoir  by 

Kirchhoff^]. 

188.  When  the  bar,  whose  lateral  vibrations  are  to  be  con- 

sidered, is  subject  to  longitudinal  tension,  the  potential  energ}'  of 
any  configuration  is  composed  of  two  parts,  the  first  depending  on 
the  stiffness  by  which  the  bending  is  directly  opposed,  and  the 
second  on  the  reaction  against  the  extension,  which  is  a  necessary 
accompaniment  of  the  bending,  when  the  ends  are  nodes.  The 
second  part  is  similar  to  the  potential  energy  of  a  deflected  string ; 
the  first  is  of  the  same  nature  as  that  with  which  we  have  been 

occupied  hitherto  in  this  Chapter,  though  it  is  not  entirely 
independent  of  the  permanent  tension. 

Consider  the  extension  of  a  filament  of  the  bar  of  section  dw, 

whose  distance  from  the  axis  projected  on  the  plane  of  vibration 
is  i;.  Since  the  sections,  which  were  normal  to  the  axis  originally, 
remain  normal  during  the  bending,  the  length  of  the  filament 

bears  to  the  corresponding  element  of  the  axis  the  i*atio  R  +  ri  :R, 
R  being  the  radius  of  curvature.  Now  the  axis  itself  is  extended 

in  the  ratio  q'*q-¥  T^  reckoning  from  the  unstretched  state,  if 
Tm  denote  the  whole  tension  to  which  the  bar  is  subjected. 

Hence  the  actual  tension  on  the  filament  is  [T+ri{T  •\-q)IR]dtD^ 
from  which  we  find  for  the  moment  of  the  couple  acting  across  the 
section 

1  Berlin  MonaUber,,  1S79 ;  Collected  Works,  p.  339.     See  also  Todhunter  and 

Pearson's  Hiitory  of  the  Theory  of  Elasticity,  Vol.  ii.,  Part  ii.,  §  1302. 
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and  for  the  whole  potential  energy  due  to  stiffness 

Uq+T)K'a>f[^Jda:   (1), 
an  expression  differing  from  that  previously  used  (§  162)  by  the 
substitution  of  (q  +  T)  for  q. 

Since  q  is  the  tension  required  to  stretch  a  bar  of  unit  area  to 
twice  its  natural  length,  it  is  evident  that  in  most  practical  cases 
T  would  be  negligible  in  comparison  with  q. 

The  expression  (1)  denotes  the  work  that  would  be  gained 
during  the  straightening  of  the  bar,  if  the  length  of  each  element 
of  the  axis  were  preserved  constant  during  the  process.  But 
when  a  stretched  bar  or  string  is  allowed  to  pass  from  a  displaced 
to  the  natural  position,  the  length  of  the  axis  is  decreased.  The 
amount  of  the  decrease  is  if(dy/dwyd^,  and  the  corresponding 
gain  of  work  is 

Thus 

V^Hq  +  T)^a>j{^Jdx  +  ̂ Ta>f[^Jda:   (2). 

The  variation  of  the  first  part  due  to  a  hypothetical  displace- 
ment is  given  in  §  162.     For  the  second  part,  we  have 

In  all  the  cases  that  we  have  to  consider,  Sy  vanishes  at  the 
limits.     The  general  differential  equation  is  accordingly 

or,  if  we  put  q-\-T=b^p,      T=  a«p, 

'^V  da^     da^dt^l     ""da^^dt^^   ^*^* 

For  a  more  detailed  investigation  of  this  equation  the  reader  is 

referred  to  the  writings  of  Clebsch^  and  Donkin. 

189.  If  the  ends  of  the  rod,  or  wire,  be  clamped,  dy/dx  =  0,  and 
the  terminal  conditions  are  satisfied.  If  the  nature  of  the  support 
be  such  that,  while  the  extremity  is  constrained  to  be  a  node,  there 

1  Theorie  der  ElaiticitUt  fester  lOVrper.    Leipzig,  1862. 
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is  no  couple  acting  on  the  bar,  d^y/da^  must  vanish,  that  is  to  say, 
the  end  must  be  straight.  This  supposition  is  usually  taken  to 
represent  the  case  of  a  string  stretched  over  bridges,  as  in  many 
musical  instruments ;  but  it  is  evident  that  the  part  beyond  the 
bridge  must  partake  of  the  vibration,  and  that  therefore  its  length 
cannot  be  altogether  a  matter  of  indiflference. 

If  in  the  general  differential  equation  we  take  y  proportional 
to  cos  ntt  we  get 

-('■S-'2)--2-"V-o   a). 

which  is  evidently  satisfied  by 

y  =  sin  i    ,  cos  nt   (2), 

if  n  be  suitably  determined.  The  same  solution  also  makes 

y  and  y"  vanish  at  the  extremities.  By  substitution  we  obtain for  n, 

"^  "   P      >  +  iV/c^      ^^^' 
which  determines  the  frequency. 

If  we  suppose  the  wire  infinitely  thin,  n'  =  i'7r*a'-r  P,  the  same 
as  was  found  in  Chapter  vi.,  by  starting  from  the  supposition  of 
perfect  flexibility.  If  we  treat  k:1  as  b,  very  small  quantity,  the 
approximate  value  of  n  is 

21'  Va'       J, 
I    {    '      21 

For  a  wire  of  circular  section  of  radius  r,  /k*  =  J  r*.  and  if  we 
replace  b  and  a  by  their  values  in  terms  of  q,  T,  and  p, 

lira 

which  gives  the  correction  for  rigidity  \  Since  the  expression 
within  brackets  involves  i,  it  appears  that  the  harmonic  relation 
of  the  component  tones  is  disturbed  by  the  stiffness. 

190.  The  investigation  of  the  correction  for  stiffness  when  the 
ends  of  the  wire  are  clamped  is  not  so  simple,  in  consequence  of 
the  change  of  type  which  occurs  near  the  ends.  In  order  to  pass 

from  the  case  of  the  preceding  section  to  that  now  under  con- 

1  Donkin*8  Acoutties,  Art.  1S4. 
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sideration  an  additional  constraint  must  be  introduced,  with  the 

effect  of  still  further  raising  the  pitch.  The  following  is,  in  the 
main,  the  investigation  of  Seebeck  and  Donkin. 

If  the  rotatory  inertia  be  neglected,  the  differential  equation 
becomes 

(^-;^*-;y!'=»   <■)■ 

where  D  stands  for  -y- .     In  the  equation 

a? 

n' 

K^b^        b'K^ 

=  0, 

one  of  the  values  of  D*  must  be  positive,  and  the  other  negative. 
We  may  therefore  take 

^-^.^-i.S=<^-'><^+'^> 
(2), 

and  for  the  complete  integral  of  (1) 

y  —  A  cosh  ax-\-B  sinh  ax-\-Ccosfix-\-  D  sin  fix   (3), 

where  a  and  fi  are  functions  of  n  determined  by  (2). 

The  solution  must  now  be  made  to  satisfy  the  four  boundary 
conditions,  which,  as  there  are  only  three  disposable  ratios,  lead 
to  an  equation  connecting  a,  )8,  L     This  may  be  put  into  the  form 

sinhaZ  sinfil  2a fi 

1  —  cosh  al  cos  fil     a"  —  /8^ 

=  0 

.(4). 

a" 

The  value  of  -j—^oi »  determined  by  (2),  is  — :^- ,  so  that 

sinh  al  sin  fit 

1  —  cosh  al  cos  (il 

From  (2)  we  find  also  that (5). 

^ =   «-l   / 2fr»«»  (V 

1  +  4  — .     +1 

tt
' 

1  +  4  -  ̂    1 

a* 

.(6). 

Thus  far  our  equations  are  rigorous,  or  rather  as  rigorous  as 
the  differential  equation  on  which  they  are  founded ;  but  we  shall 
now  introduce  the  supposition  that  the  vibration  considered  is  but 
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slightly  affected  by  the  existence  of  rigidity.    This  being  the  case, 
the  approximate  expression  for  y  is 

y  =  sm  -^-  cos  (  y  c^H  > 
%Trx 

I 
and  therefore 

fi  =  iw/lf       n^iirajl    (7), 
nearly. 

The  introduction  of  these  values  into  the  second  of  equations 

(6)  proves  that  n^b^K^/a*  or  h^K^ja^l^  is  a  small  quantity  under  the 
circumstances  contemplated,  and  therefore  that  a^Z^  is  a  large 
quantity.  Since  coshaZ,  sinhaZ  are  both  large,  equation  (5)  re- 

duces to 

tan/8Z=:-  /, 

or,  on  substitution  of  the  approximate  value  for  /8  derived  fi'om 
(6), 

nl     ̂  nbx 
tan  —  =  2     -  . 

a         a* 
The  approximate  value  of  nl/a  is  iV.     If  we  take  rd/a  =  iir  +  0, 
we  get 

tan(t7r  +  tf)  =  tantf=tf  =  2-^f  =  2t7r-y, 

so  that  n  =  i-^(l  +  2^j)    (8). 

According  to  this  equation  the  component  tones  are  all  raised 
in  pitch  by  the  same  small  interval,  and  therefore  the  harmonic 
relation  is  not  disturbed  by  the  rigidity.  It  would  probably  be 

otherwise  if  terms  involving  m^  :  P  were  retained ;  it  does  not  there- 
fore follow  that  the  harmonic  relation  is  better  preserved  in  spite 

of  rigidity  when  the  ends  are  clamped  than  when  they  are  free, 
but  only  that  there  is  no  additional  disturbance  in  the  former 
case,  though  the  absolute  alteration  of  pitch  is  much  greater.  It 
should  be  remarked  that  6 :  a  or  \/(9  +  T)  :  '^T,  is  a  large  quantity, 
and  that,  if  our  result  is  to  be  correct,  k  :  I  must  be  small  enough 
to  bear  multiplication  by  6 :  a  and  yet  remain  small. 

The  theoretical  result  embodied  in  (8)  has  been  compared  with 
experiment  by  Seebeck,  who  found  a  satisfactory  agreement.  The 
constant  of  stifiness  was  deduced  from  observations  of  the  rapidity 
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of  the  vibratious  of  a  small  piece  of  the  wire,  when  one  end  was 

clamped  in  a  vice. 

[As   the    result    of   a  second   approximation   Seebeck   gives 
{loc.  cit) 

„  =  ̂ ,{l  +  4^J  +  (12  +  »'^)^^'}   (9)]. 
191.  It  has  been  shewn  in  this  chapter  that  the  theory  of  bars, 

even  when  simplified  to  the  utmost  by  the  omission  of  unimportant 
quantities,  is  decidedly  more  complicated  than  that  of  perfectly 
flexible  strings.  The  reason  of  the  extreme  simplicity  of  the 
vibrations  of  strings  is  to  be  found  in  the  fact  that  waves  of  the 
harmonic  type  are  propagated  with  a  velocity  independent  of  the 
wave  length,  so  that  an  arbitrary  wave  is  allowed  to  travel  without 

decomposition.  But  when  we  pass  from  strings  to  bars,  the  con- 

stant in  the  dififerential  equation,  viz.  ch//dt*-\- K^b*d*j//da!^  =  0,  is 
no  longer  expressible  as  a  velocity,  and  therefore  the  velocity  of 
transmission  of  a  train  of  harmonic  waves  cannot  depend  on  the 
differential  equation  alone,  but  must  vary  with  the  wave  length. 
Indeed,  if  it  be  admitted  that  the  train  of  harmonic  waves  can 

be  propagated  at  all,  this  consideration  is  sufficient  by  itself  to 
prove  that  the  velocity  must  vary  inversely  as  the  wave  length. 
The  same  thing  may  be  seen  from  the  solution  applicable   to 

27r 

waves  propagated  in  one  direction,  viz.  y  =  cos -r-iVt  —  x\  which 

satisfies  the  differential  equation  if 

VJ-^    (1). 

Let  us  suppose  that  there  are  two  trains  of  waves  of  equal 
amplitudes,  but  of  different  wave  lengths,  travelling  in  the  same 
direction.     Thus 

=  2  COS  TT 

l'(;-;')-'a4)l-'|'(;-?)-'(^x^)!-«- 
If  t'  — T,  X'  — X  be  small,  we  have  a  train  of  waves,  whose 

amplitude  slowly  varies  from  one  point  to  another  between  the 
values  0  and  2,  forming  a  series  of  groups  separated  from  one 
another  by  regions  comparatively  free  from  disturbance.  In  the 
case  of  a  string  or  of  a  column  of  air,  X  varies  as  r,  and  then  the 
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groups  move  forward  with  the  same  velocity  as  the  component  trains, 
and  there  is  no  change  of  type.  It  is  otherwise  when,  as  in  the  case 
of  a  bar  vibrating  transversely,  the  velocity  of  propagation  is  a 
function  of  the  wave  length.  The  position  at  time  t  of  the  middle 
of  the  group  which  was  initially  at  the  origin  is  given  by 

which  shews  that  the  velocity  of  the  group  is 

If  we  suppose  that  the  velocity  F  of  a  train  of  waves  varies  as 
X**,  we  find 

^-^=im*-<»->^   <»>• 
In  the  present  case  n  =  —  1,  and  accordingly  the  velocity  of  the 

groups  is  ttvice  that  of  the  component  waves^ 

192.  On  account  of  the  dependence  of  the  velocity  of  propaga- 
tion on  the  wave  length,  the  condition  of  an  infinite  bar  at  any 

time  subsequent  to  an  initial  disturbance  confined  to  a  limited 
portion,  will  have  none  of  the  simplicity  which  characterises  the 

corresponding  problem  for  a  string;  but  nevertheless  Fourier's 
investigation  of  this  problem  may  properly  find  a  place  here. 

It  is  required  to  determine  a  function  of  x  and  t,  so  as  to 
satisfy 

^y+^  =  o   (1) 

and  make  initially  y  =  ̂   (x),  y  =  ylr  (x). 

A  solution  of  (1)  is 

y  =  cos  qH  cos  g  (a?  — a)   (2), 

where  q  and  a  are  constants,  from  which  we  conclude  that 

y  =  I      da  F{a)  I      dq  cos  qH  cos  g  (a?  —  a) 

^  In  the  oorresponding  problem  for  waves  on  the  earfaoe  of  deep  water,  the 
Telocity  of  propagation  varies  directly  as  the  square  root  of  the  wave  length,  so 
that  n  a  J .  The  velocity  of  a  group  of  such  waves  is  therefore  one  half  of  that  of 
the  component  trains.    [See  note  on  Progressive  Waves,  appended  to  this  volume.] 
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is  also  a  solution,  where  F{d)  is  an  arbitrary  function  of  a.     If 

now  we  put  t  =  0, 
r+oo  r+flo 

yo  =  I       daF{a)  I       dq  cos  g  (a?  —  a), 

which  shews  that  F(a)  must  be  taken  to  be  ̂ -  ̂   (a),  for  then  by /  LIT 

Fourier's  double  integral   theorem  y©  =  <^  (^)-     Moreover,  y  =  0 ; hence 

y  =  ̂ l      da<f>(a)l      dqcosq^t  coaq(x  —  a)   (3) 

satisfies  the  differential  equation,  and  makes  initially 

By  Stokes'  theorem  (§  95),  or  independently,  we  may  now 
supply  the  remaining  part  of  the  solution,  which  has  to  satisfy  the 

differential  equation  while  it  makes  initially  y  =  0,  y  =  -^  (a?) ;  it  is 

y^^-^l       dayjr(a)\       dq-sinqH  C09q(x  —  a)   (4). 27r  j  _oo  .  — ao       q 

The  final  result  is  obtained  by  adding  the  right-hand  members 
of  (3)  and  (4). 

In  (3)  the  integration  with  respect  to  q  may  be  effected  by 
means  of  the  formula 

j^    dqcosqHcosqz  =  j^'^  sin(|  +  y   (5), 
which  may  be  proved  as  follows.     If  in  the  well-known  integral 
formula 

J  _«  a 

we  put  iT  +  6  for  x,  we  get 

r* g-a« (*»+>&*)  ̂   =  V?  ga«6«^ 

— 00 

Now  suppose  that  a'  =  i  =  e*'',  where  i  =  \/(— l)i  and  retain 
only  the  real  part  of  the  equation.     Thus 

I       COS  (x^  +  26a?)  dx  =  V^  sin  (6^  -f  i  tt), 

^30 
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whence 

/+« 
 _ 

cos  a?  cos  26a?  dx  =  Jnr  sin  (6*  + 1  w), 

from  which  (5)  follows  by  a  simple  change  of  variable.     Thus 
equation  (3)  may  be  written 

.«  a  —  a? 

1     r+« 1     /•+« y  =  -^  I       d/x(co8 /!» +  sin yif) <f>(x  +  2/x VO   (6). 

192  a.  If  the  axis  of  the  rod  be  curved  instead  of  straight, 
we  obtain  problems  which  may  be  regarded  as  extensions  of 

those  of  the  present  and  of  the  last  chapters.  The  most  impor- 
tant case  under  this  head  is  that  of  a  circular  ring,  whose  section 

we  will  regard  as  also  circular,  and  of  radius  (c)  small  in 
comparison  with  the  radius  (a)  of  the  circular  axis. 

The  investigation  of  the  flexural  modes  of  vibration,  executed 
in  the  plane  of  the  ring,  is  analogous  to  the  case  of  a  cylinder 
(see  §  233),  and  was  first  efifected  by  Hopped  If  s  be  the  number 
of  periods  in  the  circumference,  the  coefficient  p  of  the  time  in 
the  expression  for  the  vibrations  is  given  by 

^     4     l  +  «'     pa*    ^  ̂' 

where  q  is  Young's  modulus  and  p  the  density  of  the  material. 
This  may  be  compared  with  equation  (9)  §  233.  To  fall  back 
upon  the  case  of  a  straight  axis  we  have  only  to  suppose 
8  and  a  to  be  infinite  in  such  a  manner  that  27ra/8  is  equal  to  the 
proposed  linear  period.  The  vibrations  in  question  are  then  purely 
transverse. 

In  the  class  of  vibrations  considered  above  the  circular  axis 

remains  unextended,  and  (§  232)  the  periods  are  comparatively 
long.  For  the  other  class  of  vibrations  in  the  plane  of  the  ring, 

Hoppe  found 

;>'=(i+«')^^,   (2). 
1  CretU,  Bd.  63,  p.  168,  1871. 
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The  frequencies  are  here  independent  of  c,  and  the  vibrations 
are  analogous  to  the  longitudinal  vibrations  of  straight  rods. 

If  8  =  0  in  (2),  we  have  the  solution  for  vibrations  which  are 

purely  radial. 

For  flexural  vibrations  perpendicular  to  the  plane  of  the 

ring,  the  result^  corresponding  to  (1)  is 

the  difference  consisting  only  in  the  occurrence  of  Poisson's  ratio 
(ji)  in  the  denominator. 

Our  limits  will  not  allow  of  our  dwelling  further  upon  the 
problem  of  this  section.  A  complete  investigation  will  be  found 

in  Love's  Treatise  on  Elasticity,  Chapter  xviii.  The  effect  of 
a  small  curvature  upon  the  lateral  vibrations  of  a  limited  bar 

has  been  especially  considered  by  Lamb*. 

^  MicheU,  Meuenger  of  Mathematict,  xn.,  1889. 
3  Proc.  Lond.  Math,  Soc.,  xiz.,  p.  366, 1888. 

20 



CHAPTER  IX. 

VIBRATIONS   OF  MEMBRANES. 

193.  The  theoretical  membrane  is  a  perfectly  flexible  and 
infinitely  thin  lamina  of  solid  matter,  of  uniform  material  and 
thickness,  which  is  stretched  in  all  directions  by  a  tension  so  great 

as  to  remain  sensibly  unaltered  during  the  vibrations  and  displace- 
ments contemplated.  If  an  imaginary  lii)e  be  drawn  across  the 

membrane  in  any  direction,  the  mutual  action  between  ̂ he  two 
portions  separated  by  an  element  of  the  line  is  proportional  to  the 
length  of  the  element  and  perpendicular  to  its  direction.  If  the 
force  in  question  be  Ti  ds,  Z\  may  be  called  the  tension  of  the  mem^ 

brane ;  it  is  a  quantity  of  one  dimension  in  mass  and  —  2  in  time. 

The  principal  problem  in  connection  with  this  subject  is  the 
investigation  of  the  transverse  vibrations  of  membranes  of  different 
shapes,  whose  boundaries  are  fixed.  Other  questions  indeed  may 
be  proposed,  but  they  are  of  comparatively  little  interest ;  and, 
moreover,  the  methods  proper  for  solving  them  will  be  sufficiently 
illustrated  in  other  parts  of  this  work.  We  may  therefore  proceed 
at  once  to  the  consideration  of  a  membrane  stretched  over  the 

area  include()  within  a  fixed,  closed,  plane  boundary. 

194.  Taking  the  plane  of  the  boundary  as  that  of  ocy,  let  w 
denote  the  small  displacement  therefrom  of  any  point  P  of  the 
membrane.  Round  P  take  a  small  area  £>,  and  consider  the  forces 

acting  upon  it  parallel  to  z.  The  resolved  part  of  the  tension  is 
expressed  by 

where  ds  denotes  an  element  of  the  boundary  of  S,  and  dn  an 
element  of  the  normal  to  the  curve  drawn  outwards.  This  is 

balanced  by  the  reaction  against  acceleration  measured  by  p8w^ 
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p  being  a  symbol  of  one  dimension  in  mass  and  —2  in  length 

denoting  the  superficial  density.     Now  by  Green's   theorem,  if 

[f^ds^jl V^w dS = V'w .  8    ultimately, 

and  thus  the  equation  of  motion  is 

dJ^w  ̂   Ti  fd?w     d?w\ 

cft»  "  p  Vda:*      df)       ^^' 
The  condition  to  be  satisfied  at  the  boundary  is  of  course  w^O. 

The  differential  equation  may  also  be  investigated  from  the 
expression  for  the  potential  energy,  which  is  found  by  multiplying 
the  tension  by  the  superficial  stretching.     The  altered  area  is 

and  thus 

^-i-.//{(£r-Q*}«^   «■ from  which  SFis  easily  found  by  an  integration  by  parts. 

If  we  write  Ti  -r  p  =  c*,  then  c  is  of  the  nature  of  a  velocity,  and 
the  differential  equation  is  * 

d^w      « fd^w     d?w 

=»-(S-S)   w dV"         \da^^  df 

196.  We  shall  now  suppose  that  the  boundary  of  the  mem- 
brane is  the  rectangle  formed  by  the  coordinate  axes  and  the  lines 

x  =  a,  y  =  b.  For  every  point  within  the  area  (3)  §  194  is  satisfied, 
and  for  every  point  on  the  boundary  m;  =  0. 

A  particular  integral  is  evidently 

w  =  8m   ain—j^coapt   (1), 

where  p.  =  c',r'(jV|)    (2), 

and  m  and  n  are  integers;  and  from  this  the  general  solution  may 
be  derived.     Thus 

tn—oo     n— 00 

^  =  2^j  \^^  sm  -^  sm  -^  [A„,n  cos pt  +  B^n  smp^}   (3). 

20—2 
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That  this  result  is  really  general  may  be  proved  a  posteriori, 
by  shewing  that  it  may  be  adapted  to  express  arbitrary  initial 
circumstances. 

Whatever  function  of  the  co-ordinates  w  may  be,  it  can  be  ex- 
pressed for  all  values  of  x  between  the  limits  0  and  a  by  the  series 

Xism    --h  FjSm   h   , a  a 

where  the  coefficients  Fi,  F,,  &c.  are  independent  of  x.  Again 
whatever  function  of  y  any  one  of  the  coefficients  F  may  be,  it  can 
be  expanded  between  0  and  b  in  the  series 

(7isin^+  (7jsin^  +   , 
0  0 

where  Ci  &c.  are  constants.  From  this  we  conclude  that  any 

function  of  x  and  y  can  be  expressed  within  the  limits  of  the  rect- 
angle by  the  double  series 

m-flo     n-oo  ^^^        ̂ ^y 

2       2       -Awnsm   sm— r^; m-l       n-1  a 

and  therefore  that  the  expression  for  w  in  (3)  can  be  adapted  to 
arbitrary  initial  values  of  w  and  w.     In  fact 

The  character  of  the  normal  functions  of  a  given  rectangle, 

.    Tmwx  .    niry 
sm   sm    j-  , a  b 

as  depending  on  m  and  n,  is  easily  understood.  If  m  and  n  be  both 
unity,  w  retains  the  same  sign  over  the  whole  of  the  rectangle, 
vanishing  at  the  edge  only;  but  in  any  other  case  there  are 
nodal  lines  running  parallel  to  the  axes  of  coordinates.  The 

number  of  the  nodal  lines  parallel  to  x  is  n  —  1,  their  equations being 

^     n*  n  '         n 
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In  the  same  way  the  equations  of  the  nodal  lines  parallel  to  y 
are 

_a      2a  (m— l)a 
m     VI  m 

being  m  —  1  in  number.  The  nodal  system  divides  the  rectangle 
into  mn  equal  parts,  in  each  of  which  the  numerical  value  of  k;  is 
repeated 

196.    The  expression  for  w  in  terms  of  the  normal  functions 
is 

w  =  Z2d>,„n8m   sm    ,--    (1), a  0 

where  ̂ ,nn  &c.  are  the  normal  coordinates.  We  proceed  to  form 
the  expression  for  V  in  terms  of  <l>mn-     We  have 

In  integrating  these  expressions  over  the  area  of  the  rectangle 
the  products  of  the  normal  coordinates  disappear,  and  we  find 

"•I/IKS'- (D'H* 
r,a67r> 
2     4 

2SS'  +  9*»»'   <2). 
the  summation  being  extended  to  all  integral  values  of  m  and  n. 

The  expression  for  the  kinetic  energy  is  proved  in  the  same 
way  to  be 

r=|^22^„'   (3), 
from  which  we  deduce  as  the  normal  equation  of  motion 

In  this  equation 

^mn^j  J    Zsin^—^ sin^ dxdy   (5), 

a  Zdxdy  denote  the  transverse  force  acting  on  the  element  dxdy. 



310  VIBRATIONS   OF   MEMBRANES.  [196. 

Let  us  suppose  that  the  initial  condition  is  one  of  rest  under 
the  operation  of  a  constant  force  Zy  such  as  may  be  supposed  to 

arise  from  gaseous  pressure.  At  the  time  f  =  0,  the  impressed 
force  is  removed,  and  the  membrane  left  to  itself  Initially  the 

equation  of  equilibrium  is 

^  +  j,j(^).  =  ̂ *».»   (6). 
whence  (^wn)©  is  to  be  found.    The  position  of  the  system  at  time  t 
is  then  given  by 

^n  =  (<Amn)o  cos  ̂ ^^  +  ̂  .  CTrfj       (7), 
in  conjunction  with  (1). 

In  order  to  express  4>^n,  we  have  merely  to  substitute  for  Z  its 
value  in  (5),  or  in  this  case  simply  to  remove  Z  from  under  the 
integral  sign.     Thus 

^mn—Z\    I    sm   sm-r^dady, 
JoJo  a  0  *^ 

nh 
=  Z   r  (1  —  COS  rnir)  (1  —  cos  nir). 

We  conclude  that  <E>mn  vanishes,  unless  m  and  n  are  hoth  odd,  and 
that  then 

mnTT* 
Accordingly,  m  and  n  being  both  odd, 

_  16Z  cospt 

*"*'*^7^'^^«    ^^^' 

where  ^.^c^^sg+gj   (9). 
This  is  an  example  of  (8),  §  101. 

If  the  membrane,  previously  at  rest  in  its  position  of  equili- 
brium, be  set  in  motion  by  a  blow  applied  at  the  point  (a,  /3),  the 

solution  is 

<f>mn  =  -J-  sm   sin  — ,-     1 1  WqO^ dy.smpt... (10). 

[As  an  example  of  forced  vibrations,  suppose  that  a  harmonic 
force  acts  at  the  centre.  Unless  m  and  n  are  both  odd,  <[>mn  =  0, 
and  in  the  case  reserved 

*mn=±^iC08  9^   (11), 
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where  Z^  is  the  whole  force  acting  at  time  t,  and  ±  represents 
sin^mTT  sin^WTT.    From  (4)  and  (9)  we  have 

_      ±4ZxC03g^ 

and  w  is  then  given  by  (1). 

In  the  case  of  a  square  membrane,  j)  is  a  symmetrical  function 
of  m  and  n.  When  m  and  n  are  unequal,  the  terms  occur  in  pairs, 
such  as 

±  4Z^9^  Jsin^'^^sin  ̂   +  sin^-^sin  ̂ ...(13), 

a  combination  symmetrical  as  between  x  and  ̂ .  The  vibration  is 
of  course  similarly  related  as  well  to  the  four  sides  as  to  the  four 
comers  of  the  square. 

In  the  neighbourhood  of  the  centre,  where  the  force  is  applied, 
the  series  loses  its  convergency,  and  the  displacement  w  tends  to 
become  (logarithmically)  infinite.] 

197.  The  frequency  of  the  natural  vibrations  is  found  by 
ascribing  different  integral  values  to  m  and  n  in  the  expression 

h-y%*t   w 
For  a  given  mode  of  vibration  the  pitch  falls  when  either 

side  of  the  rectangle  is  increased.  In  the  case  of  the  gravest 
mode,  when  m  =  l,  n  =  l,  additions  to  the  shorter  side  are  the 
more  effective;  and  when  the  form  is  very  elongated,  additions 
to  the  longer  side  are  almost  without  eflfect. 

When  a'  and  6'  are  incommensurable,  no  two  pairs  of  values 
of  m  and  n  can  give  the  same  frequency,  and  each  fundamental 
mode  of  vibration  has  its  own  characteristic  period.  But  when 

a'  and  6*  are  commensurable,  two  or  more  fundamental  modes 
may  have  the  same  periodic  time,  and  may  then  coexist  in  any 
proportions,  while  the  motion  still  retains  its  simple  harmonic 
character.  In  such  cases  the  specification  of  the  period  does 
not  completely  determine  the  type.  The  full  consideration  of 
the  problem  now  presenting  itself  requires  the  aid  of  the  theory 
of  numbers;  but  it  will  be  suflScient  for  the  purposes  of  this 
work  to  consider  a  few  of  the  simpler  cases,  which  arise  when 
the  membrane  is  square.  The  reader  will  find  fuller  information 

in  Riemann's  lectures  on  partial  differential  equations. 



w 
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Ifa  =  6, 

I'^j^^^   
(=>■ 

The  lowest  tone  is  found  by  putting  m  and  n  equal  to  unity, 
which  gives  only  one  fundamental  mode : — 

.    irx   ,    iry         ̂  
w  —  svcL  —  sm  —  co8j)f   (3). 

Next  suppose  that  one  of  the  numbers  m,  n  is  equal  to  2,  and 
the  other  to  unity.  In  this  way  two  distinct  types  of  vibration 
are  obtained,  whose  periods  are  the  same.  If  the  two  vibrations 

be  synchronous  in  phase,  the  whole  motion  is  expressed  by 

=  -^C;sm   sin  -^  +  2) sin —  sm — ^Vcospf...(4); 

so  that,  although  every  part  vibrates  synchronously  with  a 
harmonic  motion,  the  type  of  vibration  is  to  some  extent  arbitrary. 
Four  particular  cases  may  be  especially  noted.     First,  if  2)  =  0, 

^  .    27ra?   .    ̂           ̂  
w^  1/ sm   sin— ^  cos  of    (6), 

which  indicates  a  vibration  with  one  node  along  the  line  x  =  ̂ a. 
Similarly  if  (7  =  0,  we  have  a  node  parallel  to  the  other  pair  of 
edges.  Next,  however,  suppose  that  C  and  D  are  finite  and 
equal.     Then  w  is  proportional  to 

.    27ra?  .    TTV       .    TTX  .    27ry 
sin   sm  -  -  +  sm      sm  — -  , a  a  a  a 

which  may  be  put  into  the  form 

^  .    TTX   .    Try  /       7ra?  .        iry\ 
2  sm  —  sm  — ^  cos   h  cos  — ^    . a         a  \       a  aj 

This  expression  vanishes,  when 

sin  TTx/a  =  0,  or  sin  Try/a  =  0 
or  again,  when 

cos  TTx/a  +  cos  Try /a  =  0. 

The  first  two  equations  give  the  edges,  which  were  originally 

assumed  to  be  nodal ;  while  the  third  gives  y  +  a?  =  a,  representing 
one  diagonal  of  the  square. 

In  the  fourth  case,  when  C  =  —  2),  we  obtain  for  the  nodal 
lines,  the  edges  of  the  square  together  with  the  diagonal  y  =  x. 
The  figures  represent  the  four  cases. 



197.] CASES  OF  EQUAL  PEBIOD& 313 

D  = 
=  0. Fig.  82. 

(7  =  0.  C-D  =  0.        a  +  2)  =  o. 

[Frequency  (referred  to  gravest)  =  1*58.] 
For  other  relative  values  of  C  and  D  the  interior  nodal  line 

is  curved,  but  is  always  analytically  expressed  by 

Ccos— +  2)cos^  =  0 a  a 

(6), 

and  may  be  easily  constructed  with  the  help  of  a  table  of  logarith- 
mic cosines. 

The  next  case  in  order  of  pitch  occurs  when  m  =  2,  n  =  2. 
The  values  of  m  and  n  being  equal,  no  alteration  is  caused  by 
their  interchange,  while  no  other  pair  of  values  gives  the  same 
frequency  of   vibration.     The    only  type    to    be    considered    is 
accordingly 

.    27rx   .    27rv 
k;  =  sm   sm  — *^  cos  pt, 

a  a         ̂  

Fig.  83. 
whose  nodes,  determined  by  the  equation 

.    TTX   .    wy       irx       Try     ̂  
sm  —  sin  — ^  cos  —  cos  -^  =  0, a         a         a         a 

are  (in  addition  to  the  edges)  the  straight  lines 
Fig.  (33) 

x  =  \a        y  =  ia. 
[Frequency  =  200.] 

The  next  case  which  we  shall  consider  is  obtained  by  ascribing 
to  m,  n  the  values  3,  1,  and  1,  3  successively.     We  have 

w {^  .    ̂ irx  .Try      y.  .    irx   ,    Sttv) 
=  xC/sm   sm  — ^  +  i)sm  —  sm  — -  \  cos  pt 
{  a  a  a  a  )       ̂  

The  nodes  are  given  by 

8in^8in^|(7(4co8«^-l)  +  Z)(4co8«^-l)l  =  0. 
or,  if  we  reject  the  first  two  fsictors,  which  correspond  to  the  edges. 

(7(4co8»^'^-l)+2)(4cos'^-l)  =  0   (7). 
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If  £7  =  0,  we  have       y  =  ̂a,    y  =  ̂ a. 

Ifi>  =  0,  a!=ia,    x^ia. 

a  a 

whence,  y  =  iCi     y  =  a  —  a, 

which  represent  the  two  diagonals. 

Lastly,  if  (7s=  D,  the  equation  of  the  node  is 

cos'   h  coe'  -^  =  J, 

[197. 

1  +  ci 

.(8). 

0=0. 

I)= 

). 
0+J)-0 c-i)-o. 
\      / 

A o 
[Frequency  =  2'24.] 

In  case  (4)  when  x^^a,  y  =  ̂ a,  orja;  and  similarly  when 

y  =  ia,  a;=ijr,  or  Jo.  Thus  one  half  of  each  of  the  lines  joining 
the  middle  points  of  opposite  edges  ia  intercepted  by  the  curve. 

[The  diameters  of  the  nodal  curve  parallel  to  the  sides  of  the 

square  are  thus  equal  to  ̂ a.  Those  measured  along  the  diagonals 

are  sensibly  smaller,  equal  to  J\/2 .  a,  or  '471  a.] 
It  should  be  noticed  that  in  whatever  ratio  to  one  another 

C  and  D  may  be  taken,  the  nodal  curve  always  passes  through 
the  four  points  of  intersection  of  the  nodal  lines  of  the  first  two 

cases,  G  =  0,  D^O.  If  the  vibrations  of  these 
cases  be  compounded  with  corresponding  phases, 
it  is  evident  that  in  the  shaded  compartments  of 

Fig.  (35)  the  directions  of  displacement  are  the 
same,  and  that  therefore  no  part  of  the  nodal  curve 

is  to  be  found  there ;  whatever  the  ratio  of  ampli- 
tudes, the  curve  must  be  drawn  through  the  un- 
shaded portions.  When  on  the  other  hand  the  phases  are  opposed, 

the  nodal  curve  will  pass  exclusively  through  the  shaded  portions. 

Fie.  86. 
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When  m  =  3,  n  =  3,  the  nodes  are  the  straight  lines  parallel 
to  the  edges  shewn  in  Fig.  (36). 

Fig.  36. 
The  last  case  [Frequency  =  2*55]  which  we 

shall  consider  is  obtained  by  putting 

"  1      I  "" 
— J — ^ — i   i 

m  =  3,  n  =  2,     or  m  =  2,  n=3. 

The  nodal  system  is 

[Frequency  =  300.] 
^  .    Sirx    ,    2'iry      r\  •    27ra?   .    37ry     . 
C/Sin   sm — -+D8m  — sm         =0, a  a  a  a 

or,  if  the  factors  corresponding  to  the  edges  be  rejected, 

Cf4cos'^-l')cos^  +  2)cos'^f4cos«^-0  =  0   (9). 

If  C  or  i)  vanish,  we  fall  back  on  the  nodal  systems  of  the 
component  vibrations,  consisting  of  straight  lines  parallel  to  the 
edges.     If  C  =  2),  our  equation  may  be  written 

(cos  —  +  cos ^ )  (4 cos  —  cos  ̂  -  1 )  =  0   (10), \a  a/\  a         a        I 

of  which  the  first  factor  represents  the  diagonal  y  +  ̂ ^^a,  and 
the  second  a  hyperbolic  curve. 

If  C  =  —  i),  we  obtain  the  same  figure  relatively  to  the  other 
diagonals 

198.  The  pitch  of  the  natural  modes  of  a  square  membrane, 
which  is  nearly,  but  not  quite  uniform,  may  be  investigated  by 
the  general  method  of  §  90. 

We  will  suppose  in  the  first  place  that  m  and  n  are  equal. 
In  this  case,  when  the  pitch  of  a  uniform  membrane  is  given, 
the  mode  of  its  vibration  is  completely  determined.  If  we  now 
conceive  a  variation  of  density  to  ensue,  the  natural  type  of 
vibration  is  in  general  modified,  but  the  period  may  be  calculated 
approximately  without  allowance  for  the  change  of  type. 

We  have 

T  =  \  ffipo  +  Bp)  «^^,„'  sin'  '—■  sin'  ̂   cUcdy 

=  i  ̂mm'  jpo  ^  +  jjSp  8in«  ̂   8in«  ̂   dxdyl , 

1  Lain£,  Lefotu  tur  VtUutieiti,  p.  129. 
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of  which  the  second  term  is  the  increment  of  T  due  to  ip.  Hence 
if  w  oc  cospf,  and  P  denote  the  value  of  p  previously  to  variation, 
we  have 

i>»»*:P„«'  =  l-^J"r^8in«^J?sin»^<fo:dy   (1). 

where  Pmm''^ — ^^  ,     and    d'^^T^-r-p^. 

For  example,  if  there  be  a  small  load  M  attached  to  the  middle  of 
the  square, 

/>mm^:-Pmm*=l-"j-     siu*  m  ̂    (2), ctrpo  z 

in  which  sin*  ̂ mir  vanishes,  if  m  be  even,  and  is  equal  to  unity,  if 
m  be  odd.  In  the  former  case  the  centre  is  on  the  nodal  line  of 

the  unloaded  membrane,  and  thus  the  addition  of  the  load  produces 
no  result. 

When,  however,  m  and  n  are  unequal,  the  problem,  though  re- 
maining subject  to  the  same  general  principles,  presents  a  pecu- 

liarity different  from  anything  we  have  hitherto  met  with.  The 

natural  type  for  the  unloaded  membrane  corresponding  to  a  speci- 
fied period  is  now  to  some  extent  arbitrary ;  but  the  introduction 

of  the  load  will  in  general  remove  the  indeterminate  element.  In 

attempting  to  calculate  the  period  on  the  assumption  of  the  undis- 
turbed type,  the  question  will  arise  how  the  selection  of  the  undis- 
turbed type  is  to  be  made,  seeing  that  there  are  an  indefinite 

number,  which  in  the  uniform  condition  of  the  membrane  give 

identical  periods.  The  answer  is  that  those  t}'pes  must  be  chosen 
which  differ  infinitely  little  from  the  actual  types  assumed  under 
the  operation  of  the  load,  and  such  a  type  will  be  known  by  the 
criterion  of  its  making  the  period  calculated  from  it  a  maximum 
or  minimum. 

As  a  simple  example,  let  us  suppose  that  a  small  load  M  is 

attached  to  the  membrane  at  a  point  lying  on  the  line  a  =  Ja,  and 
that  we  wish  to  know  what  periods  are  to  be  substituted  for  the 
two  equal  periods  of  the  unloaded  membrane,  found  by  making 

m=2,  w=l,     or    m  =  l,  n=2. 

It  is  clear  that  the  normal  types  to  be  chosen,  are  those  whose 
nodes  are  represented  in  the  first  two  cases  of  Fig.  (32).  In  the 
first  case  the  increase  in  the  period  due  to  the  load  is  zero,  which 
is  the  least  that  it  can  be;  and  in  the  second  case  the  increase 
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is  the  greatest  possible.     If  P  be  the  ordinate  of  M,  the  kiuetic 
energy  is  altered  in  the  ratio 

2  4*24^2^^''     a    ' 

and  thus  p^^  :  P„«=  1 -*f  sin"-'"-'^   (3) ^  a^p  a  ^  ̂ 

while  p^^  =  P„»  =  P„». 
The  ratio  characteristic  of  the  interval  between  the  two  natural 

tones  of  the  loaded  membrane  is  thus  approximately 

1+      -  sin» — '^   (4). 
a^p  a  ' 

If  ̂   =  i  a,  neither  period  is  affected  by  the  load. 

As  another  example,  the  case  where  the  values  of  m  and  n 
are  3  and  1,  considered  in  §  197,  may  be  referred  to.  With  a  load 
in  the  middle,  the  two  normal  types  to  be  selected  are  those 
corresponding  to  the  last  two  cases  of  Fig.  (34),  in  the  former 
of  which  the  load  has  no  effect  on  the  period. 

The  problem  of  determining  the  vibration  of  a  square  mem- 
brane which  carries  a  relatively  heavy  load  is  more  difficult,  and 

we  shall  not  attempt  its  solution.  But  it  may  be  worth  while  to 
recall  to  memory  the  fact  that  the  actual  period  is  greater  than 
any  that  can  be  calculated  from  a  hypothetical  type,  which  differs 
from  the  actual  one. 

199.  The  preceding  theory  of  square  membranes  includes  a 

good  deal  more  than  was  at  first  intended.  Whenever  in  a  vibrat- 
ing system  certain  parts  remain  at  rest,  they  may  be  supposed  to 

be  absolutely  fixed,  and  we  thus  obtain  solutions  of  other  questions 
than  those  originally  proposed.  For  example,  in  the  present  case,, 
wherever  a  diagonal  of  the  square  is  nodal,  we  obtain  a  solution 
applicable  to  a  membrane  whose  fixed  boundary  is  an  isoscelea 

right-angled  triangle.  Moreover,  any  mode  of  vibration  possible  to 
the  triangle  corresponds  to  some  natural  mode  of  the  square,  as 

may  be  seen  by  supposing  two  triangles  put  together,  the  vibra- 
tions being  equal  and  opposite  at  points  which  are  the  images  of 

each  other  in  the  common  h3rpothenuse.  Under  these  circum- 
stances it  is  evident  that  the  hypothenuse  would  remain  at  rest 

without  constraint,  and  therefore  the  vibration  in  question  is  in- 
cluded among  those  of  which  a  complete  square  is  capable. 
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The  frequency  of  the  gravest  tone  of  the  triangle  is  found  by 

putting  m  =  1,  n  =  2  in  the  formula 

^  =  ̂V(m'  +  n')   (1). 
and  is  therefore  equal  to  c^Jo/ia. 

The  next  tone  occurs,  when  m  =  3,  w  =  1.     In  this  case 

27r"    2a 

as  might  also  be  seen  by  noticing  that  the  triangle  divides  itself 
into  two,  Fig.  (37),  whose  sides  are  less 

than  those  of  the  whole  triangle  in  the  ^'  ̂^* 
ratio  ̂ 2  :  1.  yi\ 

For  the  theory  of  the  vibrations  of 
a  membrane  whose  boundary  is  in  the 

form   of   an   equilateral    triangle,   the        /  j  \ 

reader  is  referred   to    Lamp's  Lefons 
sur  Vilasticiti.  It  is  proved  that  the  frequency  of  the  gravest 

tone  is  c  -h  A,  where  h  is  the  height  of  the  triangle,  which  is  the 
same  as  the  frequency  of  the  gravest  tone  of  a  square  whose 

diagonal  is  h 

200.  When  the  fixed  boundary  of  the  membrane  is  circular, 

the  first  step  towards  a  solution  of  the  problem  is  the  expression 

of  the  general  diflferential  equation  in  polar  co-ordinates.  This 
may  be  effected  analytically ;  but  it  is  simpler  to  form  the  polar 
equation  de  novo  by  considering  the  forces  which  act  on  the  polar 
element  of  area  rdOdr.  As  in  §  194  the  force  of  restitution  acting 
on  a  small  area  of  the  membrane  is 

and  thus,  if  TJp  =  c*  as  before,  the  equation  of  motion  is 

dp 

The  subsidiary  condition  to  be  satisfied  at  the  boundary  is  that 
w  =  0,  when  r  =  a. 

In  order  to  investigate  the  normal  component  vibrations  we 
have  now  to  assume  that  te;  is  a  harmonic  function  of  the  time. 

w  _      (d^w     1  ̂   ,  J^  c^w) 

f^idi^'^rd^'^^dd^]   ^^^- 
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Thus,  i{  w  QC  cos  (pt  —  e),  and  for  the  sake  of  brevity  we  write 
p/c  =  k,  the  differential  equation  appears  in  the  fonn 

d^w     Idw      1  d^w  .  ,,        ̂   .rt\ 

d^  +  rd;  +  r»d^  +  *'«'=^^   
<2). 

in  which  k  is  the  reciprocal  of  a  linear  quantity. 

Now  whatever  may  be  the  nature  of  k;  as  a  function  of  r  and  0, 

it  can  be  expanded  in  Fourier's  series 
w=^Wo  +  Wi  cos  (0  +  tti)  +  Wj  cos  2  (^  +  a,)  +   (3), 

in  which  Wq,  Wi,  &c.  are  functions  of  r,  but  not  of  0.  The  result 

of  substituting  from  (3)  in  (2)  may  be  written 

the  summation  extending  to  all  integral  values  of  n.  If  we 
multiply  this  equation  by  cos  n  (d  +  On),  and  integrate  with  respect 
to  0  between  the  limits  0  and  27r,  we  see  that  each  term  must 

vanish  separately,  and  we  thus  obtain  to  determine  t(;n  as  a 
function  of  r 

d^Wn  .  1  dwn 

+  -,^^  +  (^-^)^n  =  0   (4), 

dr^ 

in  which  it    is    a    matter   of   indifference  whether  the    factor 

cos  n  (0  +  On)  be  supposed  to  be  included  in  Wn  or  not. 

The  solution  of  (4)  involves  two  distinct  functions  of  r, 
each  multiplied  by  an  arbitrary  constant.  But  one  of  these 
functions  becomes  infinite  when  r  vanishes,  and  the  correspondiDg 

particular  solution  must  be  excluded  as  not  satisfying  the  pre- 
scribed conditions  at  the  origin  of  co-ordinates.  This  point  may 

be  illustrated  by  a  reference  to  the  simpler  equation  derived  from 
(4)  by  making  k  and  n  vanish,  when  the  solution  in  question 

reduces  to  w^logr,  which,  however,  does  not  at  the  origin 

satisfy  V'w  =  0,  as  may  be  seen  from  the  value  of  f(dw/dn)  ds,  inte- 
grated round  a  small  circle  with  the  origin  for  centre.  In  like 

manner  the  complete  integral  of  (4)  is  too  general  for  our 
present  purpose,  since  it  covers  the  case  in  which  the  centre  of 
the  membrane  is  subjected  to  an  external  force. 

The  other  function  of  r,  which  satisfies  (4),  is  the  Bessel's 
function  of  the  rfi^  order,  denoted  by  Jn  (kr),  and  may  be  expressed 
in  several  waya  The  ascending  series  (obtained  immediately 
from  the  differential  equation)  is 

y 
1 

•/      ..  ' w 
r 
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«^n(^)=2»r(ii+i)r"2: 

z^ 

2n  +  2     2.  4.  2n+ 2.271  +  4 

+ 

}   (5), 

2.4.6.2n  +  2.2n-l-4.2n  +  6 

from  which  the  following  relations  between  functions  of  consecu- 
tive orders  may  readily  be  deduced : 

/o'(^)  =  -/i(^)   (6), 
2//(^)  =  /n-iW-/n+i(^)   (7), 

^j„(z)  =  j;^,(^)  +  j„+.(^)   (8). z 

When  n  is  an  integer,  J^  {z)  may  be  expressed  by  the  definite 
integral 

1  r» 

Jn{^)=^  -  I    cos  (i:  sin  O)  —  710))  do)   (9), 

which  is  Bessel's  original  form.  From  this  expression  it  is  evident 
that  Jn  and  its  differential  coefficients  with  respect  to  z  are  always 
less  than  unity. 

The  ascending  series  (6),  though  infinite,  is  convergent  for  all 
values  of  n  and  z\  but,  when  z  is  great,  the  convergence  does  not 
begin  for  a  long  time,  and  then  the  series  becomes  useless  as  a 
basis  for  numerical  calculation.  In  such  cases  another  series 

proceeding  by  descending  powers  of  z  may  be  substituted  with 
advantage.     This  series  is 

r/x         /^Ii      (1"  -  4r't")  (3«  -  47i«)  ̂   \        (       IT        ir\ 

-^-(^)=V^i^^  1.2.(8.)'         ̂    r^(^-4"^2) 
/T  {V  -  4n«     (1«  -  47i»)  (3' "  4n»)  (5'  -  47i')  1 

^V  -rrzX  \.Sz  1.2.3.(8.)»  ̂    | 

xsin^.-'^-7i|)   (10); 
it  terminates,  if  2n  be  equal  to  an  odd  integer,  but  otherwise,  it 
runs  on  to  infinity,  and  becomes  ultimately  divergent.  Nevertheless 

when  z  is  great,  the  convergent  part  may  be  employed  in  calcula- 
tion ;  for  it  can  be  proved  that  the  sum  of  any  number  of  terms 

differs  from  the  true  value  of  the  function  by  less  than  the  last 
term  included.  We  shall  have  occasion  later,  in  connection  with 

another  problem,  to  consider  the  derivation  of  this  descending  series. 

As  Bessel's  functions  6u:e  of  considerable  importance  in  theo- 
retical acoustics,  I  have  thought  it  advisable  to  give  a  table  for 

the  functions  J^  and  t/i,  extracted  from  Lommel's^  work,  and  due 
1  Loxxunel,  Studien  iiber  die  BetteVschen  Functionen,    Leipzig,  1868. 
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originally  to  Hansen, 
the  relation 

The  functions  J^  and  Ji  are  connected  by 

z 

00 

^o(^) 

J^{z)    : 
z 

45 

Jo{^) 
J,{z) 

Z            Jo  (2) 
1 1 

10000 00000 

•3205 
•2311 

9^0       • 0903 

•2453 

01 
•9975 •0499  ; 4  6 

•2961 
•2566 

9^1 

1142 

•2324 

0-2 
•9900 

•0995 4  7 

•2693 
•2791 

9^2 

•1367 
•2174 

0-3 
•9776 

•1483 48 

•2404 •2985 

93 
1577 

•2004 

0-4 
•9604 

•1960 
4-9 

•2097 
•3147 

9^4 
1768 

•1816 

0-5 
•9385 

•2423 5  0 

•1776 

,      3276 9-5 1939 

•1613 

0-6 
•9120 

•2867 
5^1 

•1443 
•3371 

9-6 

•2090 
•1395 

07 
•8812 

•3290 
52 

•1103 
•3432 

9^7 

•2218 
•1166 

0-8 
•8463 

•3688 5-3 

•0758 
•3460 

9^8 

•2323 •0928 

0-9 
•8075 

•4060 
5-4 

•0412 
•3453 

9^9       ' 

•2403 
•0684 

1-0 
•7652 

•4401 
5-5 

•-•0068 

•3414 

10-0 

•2459 
•0435 

M •7196 
•4709 

5^6 
+  ̂ 0270 

•3343 

10-1 

•2490 

+  •0184 

1-2 
•6711 

•4983 
5-7 

•0599 
•3241 

10^2 

•2496 
-■0066 

1-3 
•6201 

•5220 
58 

•0917 
•3110 

10^3 

•2477 •0313 

1-4 
•5669 •5419 : 

6-9 

•1220 
•2951 

10^4 

•2434 •0555 

1-5 
•5118 

•5579 
6-0 

•1506 
•2767 

10^5 

•2366 
■0789 

1-6 
•4554 
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6-1 

•1773 •2559 

10^6       • 
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•1012 
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•3980 

•5778 

6-2 

•2017 •2329 

10-7 

•2164 
•1224 

1-8 
•3400 

•5815 
6  3 

•2238 
•2081 

10^8 

2032 

•1422 

1-9 
•2818 

•5812 
6^4 

•2433 •1816 

10^9       • 
1881 

•1604 

20 
•2239 

•5767 
65 

•2601 

•1538  ' 

110       • 
1712 

•1768 

2-1 
•1666 

•5683 
6^6 

•2740 
•1250 

111        • 
1528 

•1913 

2-2 
•1104 

•5560 
6-7 

•2851 
•0953 

11-2       • 1330 

•2039 

2-3 
•0555 

•5399 

6^8 

•2931 
•0652 

ir3     • 
1121 

•2143 

2-4 +  ̂ 0025 
•5202 

69 

•2981 
•0349 
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•2225 

2-5 -  ̂ 0484 •4971  i 
7^0 

•3001 -  ̂ 0047 

11^5 

0677 

•2284 

2-6 
•0968 

•4708 

7^1 

•2991 

+  ■0252 

116        • 
0446 

•2320 
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•1424 

•4416 
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•2951 •0543 
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0213 

•2333 
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•1850 

•4097 

73 

•2882 •0826 

11-8    +• 
0020 

•2323 

2-9 .  -2243 
•3754 

7^4 

•2786 •1096 

11-9       • 
0250 

•2290 

3  0 
•2601 

•3391 

7  5 

•2663 •1352 

12^0       • 
0477 

•2234 

31 •2921 
•3009 

76 

•2516 •1592 

12^1 
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•2613 77 

•2346 •1813  , 

122       • 
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•2080 
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•2207  1 

7^8 
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•1944 
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12^4 
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•1807 
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•1374 
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•1717 •2346 

12-5 

1469 

•1655 
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•3918 

•0955 
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•1475 
•2476 

12-6       • 1626 

•1487 
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•0538 
8^2 
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•2580 
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•1307 

3-8 
•4026 +  ̂ 0128 83 

•0960 
•2657 

12^8 

1887 

•1114 

3-9 
•4018' 

-•0272 
8^4 
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•2708 

12^9       • 
1988 

•0912 

40 •3972 
•0660 

8-5 

•0419 
•2731 

130       • 
2069 

•0703 

1  4.1 
•3887 

•1033 
8-6 +  •0146 

•2728 

13^1 

2129 

•0489 

4-2 
•3766 

.     •1386 8^7 

-•0125 
•2697 

132       • 
2167 

•0271 

4-3 
•3610 

i     ̂1719 8^8 

•0392 •2641  ; 

13-3       • 2183 

-•0052 

4-4 
•3423 

•2028 
8-9 

•0653 
•2559 

13^4 

2177 
+  •0166 
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201.     In  accordance  with  the  notation  for  BesseFs  functions 

the  expression  for  a  normal  component  vibration  may  therefore  be 
written 

w  =  PJn(kr)  cosn(0  +  a)  cos(/)^  +  €)   (1); 

and  the  boundary  condition  requires  that 

Jn{ka)  =  0   (2), 

an  equation  whose  roots  give  the  admissible  values  of  k,  and 
therefore  of  p. 

The  complete  expression  for  w  is  obtained  by  combining  the 
particular  solutions  embodied  in  (1)  with  all  admissible  values  of 
k  and  w,  and  is  necessarily  general  enough  to  cover  any  initial 
circumstances  that  may  be  imagined.  We  conclude  that  any 
function  of  r  and  0  may  be  expanded  within  the  limits  of  the 
circle  r=a  in  the  series 

w  =  22  Jn  (At)  {<^  cos  wd  + -^  sin  nd}   (3). 

For  every  integral  value  of  n  there  are  a  series  of  values  of  k, 

given  by  (2);  and  for  each  of  these  the  constants  <f>  and  yfr  are 
arbitrary. 

The  determination  of  the  constants  is  effected  in  the  usual 

way.    Since  the  energy  of  the  motion  is  equal  to 

^pT  Tw^rdedr   (4), J  0  J  0 

and  when  expressed  by  means  of  the  normal  co-oixlinates  can  only 
involve  their  squares,  it  follows  that  the  product  of  any  two  of  the 
terms  in  (3)  vanishes,  when  integrated  over  the  area  of  the  circle. 

Thus,  if  we  multiply  (3)  by  Jn{kr)co8nd,  and  integrate,  we 
find 

cos  710  rdrdd 
\    j    wJnikr) JoJa 

=  <^  f [  [Jn  (kr)y  COS'  nd  rdr  dtf  =  <^ .  tt  T  [J^  {h')Y  rdr   (o), 

by  which  ̂   is  determined.  The  corresponding  formula  for  yjr  is 

obtained  by  "writing  sinn0  forcoswft  A  method  of  evaluating 
the  integral  on  the  right  will  be  given  presently.  Since  <f>  and  -^ 
each  contain  two  terms,  one  varying  as  cosjp^  and  the  other  as 
sinpt,  it  is  now  evident  how  the  solution  may  be  adapted  so  as  to 
agree  with  arbitrary  initial  values  of  w  and  w. 
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202.  Let  us  now  examine  more  particularly  the  character  of 

the  fundamental  vibrations.     If  n  =  0,  w  is  a  function  of  r  only, 
that  is  to  say,  the  motion  is  symmetrical  with  respect  to  the  centre 
of  the  membmne.     The  nodes,  if  any,  are  the  concentric  circles, 
whose  equation  is 

Jo(kr)^0   (1). 

When  71  has  an  integral  value  different  from  zero,  w  is  a  func- 
tion of  ̂   as  well  as  of  r,  and  the  equation  of  the  nodal  system 

takes  the  form 

Jn(kr)  cos 71  (^- a)  =  0   (2). 

The  nodal  system  is  thus  divisible  into  two  parts,  the  first  con- 
sisting of  the  concentric  circles  represented  by 

Jn{fcr)  =  0   (3), 
and  the  second  of  the  diameters 

^  =  a  +  (2m  +  l)7r/27i   (4), 

where  7/i  is  an  integer.  These  diameters  are  n  in  number,  and 
are  ranged  uniformly  round  the  centre;  in  other  respects  their 
position  is  arbitrary.  The  radii  of  the  circular  nodes  will  be 
investigated  further  on. 

203.  The  important  integral  formula 

'jn(kr)Jn(k'r)rdr  =  0   (1), /, 0 

where  k  and  k'  are  different  roots  of 

Jn{ka)^0   (2), 

may  be  verified  analytically  by  means  of  the  differential  equations 

satisfied  by  Jn{kr),  Jn{k'r);  but  it  is  both  simpler  and  more 
instructive  to  begin  with  the  more  general  problem,  where  the 
boundary  of  the  membrane  is  not  restricted  to  be  circular. 

The  variational  equation  of  motion  is 

SV+pjjwSwdxdy=-0   (3) 
where 

^'i'M^hm'"'^   '«• and  therefore 

sir     T  ffidwdSw     dwdBw]  ,    ,  ... 

21—2 
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In  these  equations  t£;  refers  to  the  actual  motion,  and  Bwtoa,  hypo- 
thetical displacement  consistent  with  the  conditions  to  which  the 

system  is  subjected.  Let  us  now  suppose  that  the  system  is  exe- 
cuting one  of  its  normal  component  vibrations,  so  that  w=^u,  and 

u  +  p^u^O   (6), 
while  Bw  is  proportional  to  another  normal  function  v. 

Since  k^pjc,  we  get  from  (3) 

A?//«i;(i^dy=//g|  +  ||}d^dy   (7). 
The  integral  on  the  right  is  symmetrical  with  respect  to  n  and  v, 
and  thus 

(k'^-k')jjuvdxdy  =  0   (8), 
where  A'*  bears  the  same  relation  to  v  that  A-*  bears  to  u. 

Accordingly,  if  the  normal  vibrations  represented  by  u  and  v 
have  different  periods, 

uvdwdy  =  0   (9). 

In  obtaining  this  result,  we  have  made  no  assumption  as  to  the 
boundary  conditions  beyond  what  is  implied  in  the  absence  of  re- 

actions against  acceleration,  which,  if  they  existed,  would  appear 
in  the  fundamental  equation  (3). 

If  in  (8)  we  suppose  k'  =  k,  the  equation  is  satisfied  identically, 

and  we  cannot  infer  the  value  of  jlu^chdt/.    In  order  to  evaluate 

this  integral  we  must  follow  a  rather  different  course. 

If  u  and  V  be  functions  satisfying  within  a  certain  contour  the 

equations  V*u  +  k^u  =  0,  V^v  -|-  A'^y  =  0,  we  have 

(k''''-k')jjuvdxdy^  jj(vV''u-uV''v)dxdy 
tf  du        dv\  , 

'j['dJi-''d-n}'^   (1<^>' 
by  Green  s  theorem.  Let  us  now  suppose  that  v  is  derived  from 
u  by  slightly  varying  k,  so  that 

V  =  1/  +  ̂   SA,     k'^^k  +  Bk'y 
substituting  in  (10),  we  find 

j*//„.d..,./(ii-.^)*   ("); 



203.]  VALUES   OF   INTEGRATED   SQUARES.  325 

or,  if  u  vanish  on  the  boundary, 

2kffu^d.a,=f£'£ds   (12). 
For  the  application  to  a  circular  area  of  radius  r,  we  have 

u ^ C08  nd  Jn{kr))  .-^. 

v  =  cos7idJn{k'r)]   ^  ""^^ 

and  thus  from  (10)  on  substitution  of  polar  co-ordinates  and  integra- 
tion with  respect  to  0, 

(k'^-'k')rJn{kr)Jn{k'r)rdr  .       . 

Jo 

=  rJ„(k'r)^-Jn(kr)-rJ„(kr)^J„ik'r)   (14). 

Accordingly,  if 

and  k  and  k'  be  different. 

rJn(kr)Jn{k'r)rdr^O    (15), 0 

an  equation  first  proved  by  Fourier  for  the  case  when 

J^  (At)  =:  Jn  {k'r)  =  0. Again  from  (11) 

dJdJ       .  dV 
dJc 2A*  I  t/n*  (kr)  rdr  =  r  ̂  -^   rJ^- 

Jq      ̂     ̂   dkdr  dr 

=  jfcr>  J'a  -  ki^'J 

dashes  denoting  differentiation  with  respect  to  kr.     Now 

and  thus 

2^y^^{kr)rdr^r-J,;-{kr)-\-r^{\  -  J^l^Jn'Ocr)   (16). 
This  result  is  general ;  but  if,  as  in  the  application  to  membranes 
with  fixed  boundaries,         /„  {kr)  =  0, 

then  2  \'jn^{kr)rdr^r^J^^{kr)   (17). 
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204.     We  may  use  the  result  just  arrived  at  to  simplify  the 
expressions  for  T  and  V.    From 

M;  =  22  {<l>mnJ'n  (JCmnr)  COS  uO  +  '>^mnJn  {^Cmnr)  siu  1x6]   (1), 
we  find 

r=  i  pira'  22  JnHKnO)  [^mn^  +  ̂^n']   (2), 

F  =  i  pira^.  Xlp,nn'Jn'  (^mn<0  [<l>mn'  +  >^,mr.   (3)  ; 

whence  is  derived  the  normal  equation  of  motion 2  4>«nn 

4>mn  +  Ihnn'  4>mn  =  ̂ QJ.  (J,^;^a)   ^^^' 

and  a  similar  equation  for  '>^mn*  The  value  of  O^n  is  to  be  found 
from  the  consideration  that  ̂ mni4*mn  denotes  the  work  done  by  the 
impressed  forces  during  a  h3rpothetical  displacement  Z4>mn  \  so  that 
if  Z  be  the  impressed  force,  reckoned  per  unit  of  area, 

^»in=  \\ZJn{^mn'^*)  CQsnOrdrdO   (5). 

These  expressions  and  equations  do  not  apply  to  the  case  n  =  0, 
when  (f>  and  yft  are  amalgamated.     We  then  have 

T^if}7ra^Jo''(k^a)4>,no'        I  .^. 

r^ip7ra'Pmo'Jo'{kmoa)<l>mir'    ^  ̂' 

As  an  example,  let  us  suppose  that  the  initial  velocities  are  zero, 
and  the  initial  configuration  that  assumed  under  the  influence  of  a 
constant  pressure  Z ;  thus 

*^o -Z,2'rr  \  Jo (kmor) rdr. 
Jo 

Now  by  the  differential  equation, 

rJ,  (kr)  =  -  (r Jo" (kr)  +  i  Jo'  (*r)}, 
and  thus 

f Jo 
»  a 

Jo{kr)rdr  =  ''^Jo'{ka)   (8) 

SO  that  4>,„^  =  -  -J-  ZJo  (k^n^a). 

'IM 

Substituting  this  in  (7),  we  see  that  the  initial  value  of  ̂ mo  is 
-2Z 

(<^mo)<-o  =  h~:;r'2-^-r.r—.   (9). 
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'inn 

For  values  of  n  other  than  zero,  4>  and  the  initial  value  of  <f> 
vanish.     The  state  of  the  system  at  time  t  is.  expressed  by 

^ino  =  (^mo)f-o  •  COS  Pmot      '(10)» 

tO==l(f>,noJo{kimr)   (11), 

the  summation  extending  to  all  the  admissible  values  of /r^. 

As  an  example  o(  forced  vibrations,  we  may  suppose  that  Z,  still 
constant  with  respect  to  space,  varies  as  a  harmonic  function  of  the 
time.  This  may  be  taken  to  represent  roughly  the  circumstances 
of  a  small  membrane  set  in  vibration  by  a  train  of  aerial  waves. 

If  Z=  cos  qt,  we  find,  nearly  as  before, 

■"pa^^^^       k,no{q*-Pfno^)Jo(k„^a)   

The  forced  vibration  is  of  course  independent  of  0.  It  will  be  seen 
that,  while  none  of  the  symmetrical  normal  components  are  missing, 
their  relative  importance  may  vary  greatly,  especially  if  there  be  a 
near  approach  in  value  between  q  and  one  of  the  series  of  quanti- 

ties ptno-  If  the  approach  be  very  close,  the  effect  of  dissipative 
forces  must  be  included. 

[Again,  suppose  that  the  force  is  applied  locally  at  the  centre. 
By  (5) 

*„u,  = -?i  cos  2^   (13), 

if  Zi  cos  qt  denote  the  whole  force  at  time  t     From  (7) 

^   ^1  cos  g^  n  A\ 

and  vj  is  then  given  by  (11).  The  series  is  convergent,  unless 
r  =  0. 

But  this  problem  would  be  more  naturally  attacked  by  including 

in  the  solutions  of  (4)  §  200  the  second  Bessel's  function  §  341. 
In  this  method  k  =  q/c ;  and  the  ratio  of  constants  by  which  the 

two  functions  of  ?'  are  multiplied  is  determined  by  the  boundary 
condition.  When  q  coincides  with  one  of  the  values  of  p,  the 
second  function  disappears  from  the  solution.] 

206.  The  pitches  of  the  various  simple  tones  and  the  radii  of 
the  nodal  circles  depend  on  the  roots  of  the  equation 

Jn  (ka)  =  Jn  (z)  =  0. 
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If  these  (exclusive  of  zero)  taken  in  order  of  magnitude  be 

called  Zn^\  Zn^^\  Zn^*^   Zn^'^   ,  then  the  admissible  values  of  jo 

are  to  be  found  by  multiplying  the  quantities  ̂ n<*'  by  cja.     The 
particular  solution  may  then  be  written 

...(1). 

W  =  Jn  (zn,^'^  -)  {-4n<"  COS  nO  +  5n""  sin  71^}  cos  |-  Zn^n  -  €«<*' 

The  lowest  tone  of  the  group  7i  corresponds  to  ̂ h"'  5  and  since  in 
this  case  Jn  {zn^^  r/a)  does  not  vanish  for  any  value  of  r  less  than  a, 
there  is  no  interior  nodal  circle.  If  we  put  «  =  2,  J^  will  vanish, 
when 

«  (2)  !.  3-  ̂   a) (jv 

Z  ̂* 

that  is,  when  r  =  a  ̂-- , 

which  is  the  radius  of  the  one  interior  nodal  circle.  Similarly 

if  we  take  the  root  ̂ n**^,  we  obtain  a  vibration  with  «— 1  nodal 
circles  (exclusive  of  the  boundary)  whose  radii  are 

All  the  roots  of  the  equation  J^,  {ha)  =  0  are  real.  For,  if 

possible,  let  A;a  ==  X  + 1;^  be  a  root ;  then  A;'a  =  X  —  ifi  is  also  a  root, 
and  thus  by  (14)  §  203, 

^i\fi  I  Jn  (kr)  Jn  (Mr)  rdr  =  0. 

Now  Jn(kr)y  Jn(k'r)  are  conjugate  complex  quantities,  whose 
product  is  necessarily  positive ;  so  that  the  above  equation  requires 
that  either  X  or  ̂   vanish.  That  X  cannot  vanish  appears  from 

the  consideration  that  if  ka  were  a  pure  imaginary,  each  term  of 

the  ascending  series  for  Jn  would  be  positive,  and  therefore  the 
sum  of  the  series  incapable  of  vanishing.  We  conclude  that 

^  =  0,  or  that  k  is  reaP.  The  same  result  might  be  arrived  at 
from  the  consideration  that  only  circular  functions  of  the  time 
can  enter  into  the  analytical  expression  for  a  normal  component 
vibration. 

The  equation  Jn  (z)  =  0  has  no  equal  roots  (except  zero).  From 
equations  (7)  and  (8)  §  200  we  get 

Jn  ̂ 'zJni"  Jn-¥\  > Z 

^  Riemann,  Partielle  Differentialgleichungen,  Braanschweig,  1869,  p.  2C0. 
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whence  we  see  that  if  Jn,  Jn  vanished  for  the  same  value  of  z,  Jn+i 
would  also  vanish  for  that  value.  But  in  virtue  of  (8)  §  200 
this  would  require  that  all  the  functions  Jn  vanish  for  the  value 
of  z  in  question  \ 

206.  The  actual  values  of  Zn  may  be  found  by  interpolation 

from  Hansen's  tables  so  far  as  these  extend ;  or  formule  may  be 
calculated  from  the  descending  series  by  the  method  of  successive 
approximation,  expressing  the  roots  directly.  For  the  important 
case  of  the  symmetrical  vibrations  (n  =  0),  the  values  of  Zq  may  be 

found  from  the  following,  given  by  Stokes*: 

V"_        o.      '050661      -053041      '262051  , 
V"^"''^'^"^'4^^n:'"(4*-i)»'^(4«-iy   ^^^• 

For  n  =  1,  the  formula  is 

^iW_       -151982   015399   -245270 

The  latter  series  is  convergent  enough,  even  for  the  first  root, 

corresponding  to  «  =  1.  The  series  (1)  will  suffice  for  values  of  8 
greater  than  unity;  but  the  first  root  must  be  calculated 
independently.  The  accompanying  table  (A)  is  taken  from 

Stokes*  paper,  with  a  slight  difference  of  notation. 
It  will  be  seen  either  from  the  formulae,  or  the  table,  that  the 

difference  of  successive  roots  of  high  order  is  approximately  tt. 
This  is  true  for  all  values  of  n,  as  is  evident  from  the  descending 
series  (10)  §  200. 

[The  general  formula,  analogous  to  (1)  and  (2),  for  the  roots  of 

Jn  {z)  has  been  investigated  by  Prof.  M^^Mahon.     If  m  =  4n',  and 
a  =  j7r(2u-l+4«)   (3), 

,                     ,^,             m-1      4(m-l)(7m-31) 
we  have  ..-=a-     ^^   ^^^   

32  (m  -  1)  (83?yt^  ~  982m  •+  3779) 

io{Say        ~       "^  
 ^*^- 

1  Bourget,  "  M^moire  snr  le  mouvement  vibratoire  des  membranes  circulaires," 
Ann.  de  Vicole  normale^  t.  in.,  1S66.  In  one  passage  M.  Bourget  implies  that  he 

has  proved  that  no  two  Bessel's  (unctions  of  integral  order  can  have  the  same  root, 
but  I  cannot  find  that  he  has  done  so.  The  theorem,  however,  is  probably  true ; 
in  the  case  of  functions,  whose  orders  di£fer  by  1  or  2,  it  may  be  easily  proved  from 
the  formuliB  of  §  200. 

'  Camh,  Phil.  Tram.  Vol.  ix.  "  On  the  numerical  calculation  of  a  class  of  defi- 

nite integrals  and  infinite  series."  [In  accordance  with  the  calculation  of  Prof. 
M<^Mahon  the  numerator  of  the  last  term  in  (2)  has  been  altered  from  *245S3o 
to  -245270.] 
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[206. This  formula  may  be  applied  not  only  to  integral  values  of  n  as  in 

(1)  and  (2),  but  also  when  n  is  fractional.  The  cases  of  n  =  J,  and 
n  =  f  are  considered  in  §  207.] 

M.  Bourget  has  given  in  his  memoir  very  elaborate  tables  of 
the  frequencies  of  the  different  simple  tones  and  of  the  radii  of 
the  nodal  circles.  Table  B  includes  the  values  of  z,  which  satisfy 

Jn(^),  for  n  =  0,  1, ...  5,  «=  I,  2,  ...  9. 

Table  A. 

8 -forJJz)  =  0. 
V 

1 
•7655 

2 1-7571 

3 2-7546 

4 3-7534 

5 
4-7527 

6 5-7522 

7 6-7519 

8 7-7516 

9 
8-7514 

10 9-7513 

11 10-7512 
12 11-7611 

Diff. -for.7,(«)  =  0. 
IT 

•9916 
•9975 
•9988 
•9993 
•9995 
•9997 
•9997 
•9998 
•9999 
•9999 
-9999 

1-2197 
2-2330 
3-2383 
4-2411 
5-2428 
6-2439 
7-2448 
8-2454 
9-2459 

10-2463 
11-2466 
12-2469 

Diff. 

10133 1-0053 
1-0028 
1-0017 
1-0011 
1-0009 

1-0006 1-0005 

10004 1-0003 
1-0003 

When  n  is  considerable  the  calculation  of  the  earlier  roots 

becomes  troublesome.  For  very  high  values  of  n,  Zn^^^/n  approxi- 
mates to  a  ratio  of  equality,  as  may  be  seen  from  the  consideration 

that  the  pitch  of  the  gravest  tone  of  a  very  acute  sector  must  tend 
to  coincide  with  that  of  a  long  parallel  strip,  whose  width  is  equal 
to  the  greatest  width  of  the  sector. 

Table  B. 

8 n  =  0 

1 
2-404 

2 
5-520 

3 8-654 

4 11-792 
5 14-931 
6 18-071 
7 21-212 
8 24-353 
9 27-494 

3-832 
7-016 

10-173 
13-323 
16-470 
19-616 
22-760 
25-903 
29-047 

5-135 
8-417 

11-620 
14-796  i 

17-960  
' 

21-117 
24-270  , 
27-421  ; 

30-571  I 

6-379 
9-760 

13-017 

16-224 
19-410 
22-583 
25-749 
28-909 
32-050 

n  =  4 n  =  5 7-586 

11-064 
14-373 
17-616 
20-827 
24-018 
27-200 
30-371 
33-512 

8-780 

12-339 15-700 

18-982 

22-220 25-431 
28-628 
31-813 
34-983 
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i.OOO 

9,iS0 

3. a  SB 

i.534 

2,653 

4.144 

2,9IP 

3,B00 
.878^639 

4,1^4 

The  figures  represent  the  more  important  normal  modes  of 
vibration,  and  the  numbers  affixed  give  the  frequency  referred  to 
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the  gravest  as  unity,  together  with  the  radii  of  the  circular  nodes 
expressed  as  fractions  of  the  radius  of  the  membrane.  In  the  case 
of  six  nodal  diameters  the  frequency  stated  is  the  result  of  a  rough 
calculation  by  myself. 

The  tones  corresponding  to  the  various  fundamental  modes  of 
the  circular  membrane  do  not  belong  to  a  harmonic  scale,  but 
there  are  one  or  two  approximately  harmonic  relations  which  may 
be  worth  notice.     Thus 

^  X  1-594  =  2125  =  2-136  nearly, 

f  X  1-594  =  2-657  =  2-653  nearly, 

2  X  1-594  =  3188  =  3*156  nearly; 

80  that  the  four  gravest  modes  with  nodal  diameters  only  would 
give  a  consonant  chord. 

The  area  of  the  membrane  is  divided  into  segments  by  the 
nodal  system  in  such  a  manner  that  the  sign  of  the  vibration 
changes  whenever  a  node  is  crossed.  In  those  modes  of  vibration 
which  have  nodal  diameters  there  is  evidently  no  displacement  of 

the  centre  of  inertia  of  the  membrane.  In  the  case  of  symmetri- 
cal vibrations  the  displacement  of  the  centre  of  inertia  is  propor- 

tional to 

|V.  (kr)  rdr  =  -£  U"  (kr)  +  i  J,'  (kr)  |  rdr  =  -  |  J,'  (ka), 
an  expression  which  does  not  vanish  for  any  of  the  admissible 
values  of  k,  since  Jq  {z)  and  Jo  (z)  cannot  vanish  simultaneously. 
In  all  the  symmetrical  modes  there  is  therefore  a  displacement  of 
the  centre  of  inertia  of  the  membrane. 

207.  Hitherto  we  have  supposed  the  circular  area  of  the 
membrane  to  be  complete,  and  the  circumference  only  to  be 
fixed;  but  it  is  evident  that  our  theory  virtually  includes  the 

solution  of  other  problems,  for  example — some  cases  of  a  mem- 
brane bounded  by  two  concentric  circles.  The  complete  theory 

for  a  membrane  in  the  form  of  a  ring  requires  the  second  Bessel's 
function. 

The  problem  of  the  membrane  in  the  form  of  a  semi-circle 
may  be  regarded  as  already  solved,  since  any  mode  of  vibration 
of  which  the  semi-circle  is  capable  must  be  applicable  to  the 
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complete  circle  also.  In  order  to  see  this,  it  is  only  necessary 

to  attribute  to  any  point  in  the  complementary  semi-circle  the 
opposite  motion  to  that  which  obtains  at  its  optical  image  in 
the  bounding  diameter.  This  line  will  then  require  no  constraint 
to  keep  it  nodal.  Similar  considerations  apply  to  any  sector 
whose  angle  is  an  aliquot  part  of  two  right  angles. 

When  the  opening  of  the  sector  is  arbitrary,  the  problem 
may  be  solved  in  terms  of  Bessels  functions  of  fractional  order. 
If  the  fixed  radii  are  tf  =  0^  d=  ̂ 8,  the  particular  solution  is 

vtrO 

tv  =  PJy^fp{kr)  sin  ̂    coe{pt-€)    (1). 

where  v  is  an  integer.  We  see  that  if  fi  be  an  aliquot  part  of  tt, 
V7r/I3  is  integral,  and  the  solution  is  included  among  those  aheady 
used  for  the  complete  circle. 

An  interesting  case  is  when  fi  =  27r,  which  corresponds  to  the 
problem  of  a  complete  circle,  of  which  the 

radius  tf  =  0  is  constrained  to  be  nodal.  ^'^*  *®- 
We  have 

w  =  PJ^^  (kr)  sin  ̂ p0  cos  (pt  —  c). 
When  V  is  even,  this  gives,  as  might  be 

expected,  modes  of  vibration  possible  without 
the  constraint;  but,  when  v  is  odd,  new 

modes  make  their  appearance.  In  fact,  in 
the  latter  case  the  descending  series  for  / 
tenninates,  so   that  the   solution   is  expressible  in  finite  terms.. 
Thus,  when  j/  =  1, 

sm  iw* w  =  P ^j^  sm^d  cos (pt'-e)    (2). 

The  values  of  k  are  given  by 

sin  ka  =  0,    or  ka  =  sir. 

Thus  the  circular  nodes  divide  the  fixed  radius  into  equal 

parts,  and  the  series  of  tones  form  a  har-  ^w,  39. 
monic  scale.  In  the  case  of  the  gravest 
mode,  the  whole  of  the  membrane  is  at  any 
moment  deflected  on  the  same  side  of  its 

equilibrium  position.  It  is  remarkable  that 
the  application  of  the  constmnt  to  the 

radius  ̂   =  0  makes  the  problem  easier  than 
before. 



334  VIBRATIONS   OF   MEMBRANES.  [207. 

If  we  take  j/  =  3,  the  solution  is 

^  "  ̂  Mcr)  Cl7~  ""  ̂̂ ®  *V  ®^^  ̂^  ̂̂ ^  ̂̂ ^  "  ̂^   ^^^' 

In  this  case  the  nodal  radii  are  Fig.  (39) 

and  the  possible  tones  are  given  by  the  equation 

tan  ka  =  ka   (4). 

To  calculate  the  roots  of  tan  a?  =  a?  we  may  assume 

a:  =  (5  +  i)'7r-y  =  X-y, 

where  y  is  a  positive  quantity,  which  is  small  when  x  is  large. 

Substituting  this,  we  find  cot  y^^X-^y, 
whence 

^~XV       Z     Z'        V      3      16      315     ••• 
This  equation  is  to  be  solved  by  successive  approximation. 

It  will  readilv  be  found  that 

„        2  ̂        13  ̂         146  ̂  

so  that  the  roots  of  tan  a?  =  a?  are  given  by 

.  =  Z-Z— |z-.-.lfz--^«X--   (5). 

where  X  =  (8  +  i)  tt. 

In  the  first  quadrant  there  is  no  root  after  zero  since  tan  x>x, 
and  in  the  second  quadrant  there  is  none  because  the  signs  of 
X  and  tana;  are  opposite.  The  first  root  after  zero  is  thus  in 

the  third  quadra  it,  corresponding  to  «=1.  Even  in  this  case 
the  series  converges  sufficiently  to  give  the  value  of  the  root 
with  considerable  accuracy,  while  for  higher  values  of  8  it  is 

all  that  could  be  desired.  The  actual  values  of  x/ir  are  1*4303, 
2-4590,  3-4709,  4*4747,  5-4818,  6-4844,  &c. 

^  208.  The  effect  on  the  periods  of  a  slight  inequality  in  the 
density  of  the  circular  membrane  may  be  investigated  by  the 
general  method  §  90,  of  which  several  examples  have  already 
been  given.    It  will  be  sufficient  here  to  consider  the  case  of  a 



208.]  EFFECT   OF   SMALL   LOAD.  335 

small  load  M  attached  to  the  membrane  at  a  point  whose  radius 

vector  is  r'. 

We  will  take  first  the  symmetrical  types  (n  =  0),  which  may 
still  be  supposed  to  apply  notwithstanding  the  presence  of  M.  The 
kinetic  energy  T  is  (6)  §  204  altered  from 

i  pira'  Jo''  (k^noo)  <^,.o'  to  i  pira'  Jo''  (*moa)  <l>mo'  +  i  M4>,no'  Jo'  {kjnorl 
and  therefore 

P^n,  .imo-1      pjra^  J^'^k„,oa)   ^^^' 

where  P,,^'  denotes  the  value  o{  p,„a*,  when  there  is  no  load. 

The  unsymmetrical  normal  types  are  not  fully  determinate  for 
the  unloaded  membrane ;  but  for  the  present  purpose  they  must 
be  taken  so  as  to  make  the  resulting  periods  a  maximum  or 
minimum,  that  is  to  say,  so  that  the  effect  of  the  load  is  the 
greatest  and  least  possible.  Now,  since  a  load  can  never  raise 
the  pitch,  it  is  clear  that  the  influence  of  the  load  is  the  least 
possible,  viz.  zero,  when  the  type  is  such  that  a  nodal  diameter  (it 
is  indifferent  which)  passes  through  the  point  at  which  the  load  is 
attached.  The  unloaded  membrane  must  be  supposed  to  have  two 
coincident  periods,  of  which  one  is  unaltered  by  the  addition  of  the 
load.  The  other  type  is  to  be  chosen,  so  that  the  alteration  of 
period  is  as  great  as  possible,  which  will  evidently  be  the  case 
when  the  radius  vector  /  bisects  the  angle  between  two  adjacent 

nodal  diameters.     Thus,  if  r  coiTespond  to  ̂   =  0,  we  are  to  take 

W  =  4>^nn  Jn  {hnnT)  COS  uB  ] 
so  that  (2)  §  204 

r  =  i  pTra^  <^,nn'  Jn^ {hnnd)  +  i  il/ <^,nu'  Jn' (KnO. 

The  altered  pmn  is  therefore  given  by 

..     a  .  p     2  -  1  -   ̂̂ /-  •^~'  (^wnO  /ox 

Of  course,  if  r  be  such  that  the  load  lies  on  one  of  the  nodal 

circles,  neither  period  is  affected. 

For  example,  let  M  be  at  the  centre  of  the  membrane.  J„  (0) 

vanishes,  except  when  71  =  0 ;  and  Jo  (0)  =  1.  It  is  only  the 
symmetrical  vibrations  whose  pitch  is  influenced  by  a  central  load, 
and  for  them  by  (1) 

M 
Hmo    '  ■'^  mo   "  ̂         r '•»/;.     «\      ^9   V*'/' 
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By  (6)  §200  J^{z)  =  ̂ J,{z\ 

so  that  the  application  of  the  formula  requires  only  a  knowledge  of 
the  values  of  Ji  {z),  when  Jo  {z)  vanishes,  §  200.  For  the  gravest 

mode  the  value  of  Jo  {kmoCt)  is  '51903*.  When  k^oO,  is  consider- able, 

Ji'  (kmoo)  =  2-5-  Trk,„oa 

approximately;  so  that  for  the  higher  components  the  influence  of 
the  load  in  altering  the  pitch  increases. 

The  influence  of  a  small  irregularity  in  disturbing  the  nodal 
system  may  be  calculated  from  the  formulae  of  §  90.  The  most 
obvious  effect  is  the  breaking  up  of  nodal  diameters  into  curves 

of  hyperbolic  form  due  to  the  introduction  of  subsidiary  sym- 
metrical vibrations.  In  many  cases  the  disturbance  is  fiavoured 

by  close  agreement  between  some  of  the  natural  periods. 

209.  We  will  next  investigate  how  the  natural  vibrations  of 
a  uniform  membrane  are  affected  by  a  slight  departure  from  the 
exact  circular  form. 

Whatever  may  be  the  nature  of  the  boundary,  w  satisfies  the 

equation 

d.-  +  r  dr-^?  d^+*^^  =  0   (1), 

where  fc  is  a  constant  to  be  determined.     By  Fourier's  theorem  w 
may  be  expanded  in  the  series 

W==Wq'\-  Wi  cos  (0  +  tti)  -I-  Wa  cos  2  (tf  +  Oa)  -H   
+WnCosn(^+an)  +   

where  Wo,  t^i,  &c.  are  functions  of  r  only.  Substituting  in  (1),  we 
see  that  Wn  must  satisfy 

dr*  ̂ r   dr  ̂V      r^)'^''     ̂ ' 
of  which  the  solution  is 

Wn  3C  Jn  (kr) ; 

for,  as  in  §  200,  the  other  function  of  r  cannot  appear. 

The  general  expression  for  w  may  thus  be  written 

w  =  AoJo  {kr)  +  Ji  (kr)  (Ai  cos  d  +  Bi  sin  0) 

+  ...  +  Jn(kr)(AnCO8ii0  +  Bnsinn0)  +   (2). 

For  all  points  on  the  boundary  w  is  to  vanish. 

1  The  RQCceeding  values  are  approximately  '341,  '271,  '232,  *206,  '187,  <Src. 



209.]  NEAKLY   CIRCULAR  BOUNDARY.  337 

In  the  case  of  a  nearly  circular  membrane  the  radius  vector  is 

nearly  constant.  We  may  take  r==a  +  Br,  Br  being  a  small 
function  of  d.     Hence  the  boundary  condition  is 

0  =  Ao[Jo{ka)  +  kBrJo'(ka)]  +   

+  [Jn  (ka)  +  kBr  Jn  (ka)]  [An  cos  nO  +  Bn  sin  nd] 

+   (3), 

which  is  to  hold  good  for  all  values  of  0. 

Let  us  consider  first  those  modes  of  vibration  which  are  nearly 
symmetrical,  for  which  therefore  approximately 

w  —  AqJq  ikr). 

All  the  remaining  coefficients  are  small  relatively  to  ilo,  since 
the  type  of  vibration  can  only  diflTer  a  little  from  what  it  would 
be,  were  the  boundary  an  exact  circle.  Hence  if  the  squares  of 
the  small  quantities  be  omitted,  (3)  becomes 

A^[J^{ka)-¥kBrJ^\ka)]'¥Ji{ka)[AiQo&e-\-B^Axie] 

+  ...  ̂ -Jnika)  [ilnCosn^  +  £nsinnd]+  ...  =0   (4). 

If  we  integrate  this  equation  with  respect  to  6  between  the 
limits  0  and  27r,  we  obtain 

27r  Jo  {ka)  +  J^  {ka)  (  'kBrdd  =  0, 

Jo 

or 
Jo  \ka  +  kj    Br  |^}  =  0   (5), 

which  shews  that  the  pitch  of  the  vibration  ia  approximately  the 
same  as  if  the  radius  vector  had  uniformly  its  niean  value. 

This  result  allows  us  to  form  a  rough  estimate  of  the  pitch  of 
any  membrane  whose  boundary  is  not  extravagantly  elongated. 

If  a-  denote  the  area,  so  that  pa  is  the  mass  of  the  whole  mem- 
brane, the  frequency  of  the  gravest  tone  is  approximately 

(27r)-^  X  2-404  x  y  ̂̂    (6)*. 

<rp 

In  order  
to  investigate  

the  
altered  

type  
of  vibration,  

we  may 
^  [A  numerical  error  is  here  corrected.] 
R.  22 
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multiply  (4)  by  cosn^,  or  sinnOy  and  then  integrate  as  before. 
Thus 

Ao  Jo{ka)  I     kBr  cos  nO  d6  +  irAn  Jn  (ka)  =  0 Jo 

y 

.(7), 

/•2Jr Ao  Jo(ka)       kBr  sin  7i.d  dO  +  -rrBn  Jn  (ka)  =  0 
Jo 

which  determine  the  ratios  -4^  :  Aq  and  Bn  -  Aq. 

If  Sr=Sro  +  Sri-f  ...  +  8r„H- ... 

be  Fourier's  expansion,  the  final  expression  for  w  may  be  written, 
w  :Ao  =  Jo  (kr) 

^  k  J,' (ka)  )^-l^^    (8). 
When  the  vibration  is  not  approximately  symmetrical,  the 

question  becomes  more  complicated.  The  normal  modes  for  the 
truly  circular  membrane  are  to  some  extent  indeterminate,  but  the 

irregularity  in  the  boundary  will,  in  general,  remove  the  indeter- 
minateness.  The  position  of  the  nodal  diameters  must  be  taken, 
so  that  the  resulting  periods  may  have  maximum  or  minimum 

values.     Let  us,  however,  suppose  that  the  approximate  tj'pe  is 

w  =  A^J^{kr)  cosi/d   (9), 

and  afterwards  investigate  how  the  initial  line  must  be  taken  in 
order  that  this  form  may  hold  good. 

All  the  remaining  coefficients  being  treated  as  small  in  com- 
parison with  A,,  we  get  from  (4) 

Ao  Jo  (ka)  +  ...  +  Ay[Jy  (ka)  +  khrJJ  {ka)]  cos  vd 

-\-B^J^(ka)8inv0  -\-   

-hJnika)  [AnCosn0-{'BnCosnd]'\- ,..  =0   (10). 

Multiplying  by  cos  vd  and  integrating, 

J^  (ka)  +  k  J  J  (ka)  \    Br  cos^  vBdO^O, 

Jo 

'o 

or 

pa  +  A?  [  '  Sr  cos^  pd  —1  =  0, 
which  shews  that  the  effective  radius  of  the  membrane  is 

r*'                 dO 
a+       Br  cos^vO-   (11). 
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The  ratios  of  An  and  Bn  to  A^  may  be  found  as  before  by  in- 
tegrating equation  (10)  after  multiplication  by  cos  nO,  sin  nO. 

But  the  point  of  greatest  interest  is  the  pitch.  The  initial  line 
is  to  be  so  taken  as  to  make  the  expression  (11)  a  maximum  or 

minimum.  If  we  refer  to  a  line  fixed  in  space  by  putting  0  —  a 
instead  of  0,  we  have  to  consider  the  dependence  on  a  of  the 

quantity 

•2ir 

Sr  cos^  viO-a)  d0, 
J  a 

0 

which  may  also  be  written 

COS*  I/a  I     Sr  cos'^  i/^cW  +  2  cos  va  sin  va  j     Sr  cos  v0  sin  v0d0 Jo  Jo 

-^-sin^par  Srsm^v0d0   (12), 

Jo 

and  is  of  the  form 

A  cos*  pa  -h  2-B  cos  pa  sin  i/a  +  C  sin*  i/a, 

A,  By  C  being  independent  of  a.  There  are  accordingly  two 
admissible  positions  for  the  nodal  diameters,  one  of  which  makes 
the  period  a  maximum,  and  the  other  a  minimum.  The  diameters 
of  one  set  bisect  the  angles  between  the  diameters  of  the  other 
set. 

There  are,  however,  cases  where  the  normal  modes  remain  inde- 
terminate, which  happens  when  the  expression  (12)  is  independent 

of  a.  This  is  the  case  when  Sr  is  constant,  or  when  Sr  is  propor- 
tional to  cos  p0.  For  example,  if  Sr  were  proportional  to  cos  20, 

or  in  other  words  the  boundary  were  slightly  elliptical,  the  nodal 

system  corresponding  to  n  =  2  (that  consisting  of  a  pair  of  per- 
pendicular diameters)  would  be  arbitrary  in  position,  at  least  to 

this  order  of  approximation.  But  the  single  diameter,  correspond- 
ing to  71=1,  must  coincide  with  one  of  the  principal  axes  of 

the  ellipse,  and  the  periods  will  be  different  for  the  two  axes. 

210.  We  have  seen  that  the  gravest  tone  of  a  membrane, 
whose  boundary  is  approximately  circular,  is  nearly  the  same  as 
that  of  a  mechanically  similar  membrane  in  the  form  of  a  circle  of 
the  same  mean  radius  or  area.  If  the  area  of  a  membrane  be 

given,  there  must  evidently  be  some  form  of  boundary  for  which 
the  pitch  (of  the  principal  tone)  is  the  gravest  possible,  and  this 

22—2 
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form  can  be  no  other  than  the  circle.  In  the  case  of  approximate 
circularity  an  analytical  demonstration  may  be  given,  of  which  the 
following  is  an  outline. 

The  general  value  of  w  being 

w^AqJq  (kr)  +  . . .  +  «/n  {kr)  {An  cos  nd  +  -B  sin  nff)  +   (1), 

in  which  for  the  present  purpose  the  coefficients  A^^Bi,. . .  are  small 
relatively  to  ilo,  we  find  from  the  condition  that  w  vanishes 
whenr  =  a+Sr, 

A^J^{ka)'\'kA^J,\ha)hrJr\l(^A^J^\ka).{irf^   

+  2  [{Jn (ifca)  +  ̂ n  (*a)  Sr +  . ..}{il„ cos nfl  +  5n sin  nfl}]  =  0... (2). 

Hence,  if 

Sr  =  ai  cos  fl  +  A  sill  ̂   +•••+  On  cos  nfl  +  /8n  sin  n^  +   (3), 

we  obtain  on  integration  with  respect  to  0  from  0  to  27r, 
nas« 

24,  J,  +  ̂1^A,  Jo"  2^^^  (o„»  +  ̂„») 

n=« 
+  kl      ,  [ia„An  +  finBn)Jn']=0   (4), n»l 

from  which  we  see,  as  before,  that  if  the  squares  of  the  small 

quantities  be  neglected,  «7o  (M^)  —  0,  or  that  to  this  order  of  ap- 
proximation the  mean  radius  is  also  the  effective  radius.  In 

order  to  obtain  a  closer  approximation  we  first  determine  An :  Aq 

and  Bn  :  Aq  by  multipl3ring  (2)  by  cos  nfl,  sin  n0,  and  then  in- 
tegrating between  the  limits  0  and  27r.     Thus 

Substituting  these  values  in  (4),  we  get 

J.  (ka)  =  i  A»  ill'  han"  +  /3„»)  l*^*^?'  -  i  J,' j 
Since  Jo  satisfies  the  fundamental  equation (6). 

J."  +  ̂Jo'  +  Jo^O   (7), 

and  in  the  present  case  Jo  =  0  approximately,  we  may  replace 

Jq'  by  —  r- «/o'.     Equation  (6)  then  becomes 

l»=QO 

J.(te)=JA.J,'2^_^^(«„.  +  ̂„»){^'  +  2Ll 
(8). 
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Let  118  now  suppose  that  a  +  da  is  the  equivalent  radius  of  the 
membrane,  so  that 

«/o  [k  (a  +  da)]  =  Jo  (Jca)  +  J^  (ka)  kda  =  0. 

Then  by  (8)  we  find 

Again,  if  a  +  da'  be  the  radius  of  the  truly  circular  membrane 
of  equal  area, 

'^'=^cr<«»'+^»'>   <i^>; 
so  that 

The  question  is  now  as  to  the  sign  of  the  right-hand  member. 
If  n  =  1,  and  z  be  written  for  fca, 

vanishes  approximately  by  (7),  since  in  general  Ji  =  —  Jq\  and 

in  the  present  case  Jq  (z)  =  0  nearly.  Thus  da'  —  da  =  0,  as  should 
evidently  be  the  case,  since  the  term  in  question  represents  merely 
a  displacement  of  the  circle  without  an  alteration  in  the  form  of 

the  boundary.     When  n  =  2,  (8)  §  200, 

«/,  — -t/i  —  «/o, 
Z 

from  which  and  (7)  we  find  that,  when  Jq  =  0, 

Ja  2z        
whence 

(12), 

<ia'-da-^(a,'+/9,»)(^-l)   (13), 

which  is  positive,  since  z  =  2*404. 

We  have  still  to  prove  that 

Jn  (Z) 

is  positive  for  integral  values  of  n  greater  than  2,  when  z  =  2*404. 
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For  this  purpose  we  may  avail  ourselves  of  a  theorem  given  in 
Biemann  s  Partielle  Differentialgleichungen,  to  the  effect  that 
neither  Jn  nor  Jn  has  a  root  (other  than  zero)  less  than  w.  The 
differential  equation  for  «/«  may  be  put  into  the  form 

while  initially  Jn  and  Jn  (as  well  as  dJn/d  logz)  are  positive.  Ac- 
cordingly (Un/d  log  z  begins  by  increasing  and  does  not  cease  to  do 

so  before  z  =  n,  from  which  it  is  clear  that  within  the  range  z  =  0 
to  z  =  n,  neither  Jn  nor  Jn  can  vanish.  And  since  Jn  and  Jn  are 

both  positive  until  <e  =  n,  it  follows  that,  when  n  is  an  integer  greater 

than  2*404,  da'  — da  is  positive.  We  conclude  that,  unless  Oa,  /Sj, 
as, ...  all  vanish,  da'  is  greater  than  da,  which  shews  that  in  the 
case  of  any  membrane  of  approximately  circular  outline,  the  circle 
of  equal  area  exceeds  the  circle  of  equal  pitch. 

We  have  seen  that  a  good  estimate  of  the  pitch  of  an  approxi- 
mately circular  membrane  may  be  obtained  from  its  area  alone, 

but  by  means  of  equation  (9)  a  still  closer  approximation  may  be 
effected.  We  will  apply  this  method  to  the  case  of  an  ellipse, 
whose  semi-axis  major  is  jB  and  eccentricity  e. 

The  polar  equation  of  the  boundary  is 

r  =  jB  {l-.ic»-.^e*  +   +ie»cos2fl-h   } 
(14); 

so  that  in  the  notation  of  this  section 

o  =  ii(l-ie»-^e*),     o,  =  ie»i2. 

Accordingly  by  (9) 

da  =  — ^  .  kR .  • 

or  by  (12),  since  kR  =  z  =  2*404, 
[JA^)^2zr 

da  —  --    AT-^-R- 
o4 

Thus  the  radius  of  the  circle  of  equal  pitch  is 
•779  e* 

a-hda  =  i?|l-.Te»-^^ (       4  64 

(15), 

in  which  the  term  containing  e*  should  be  correct. 
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The  result  may  also  be  expressed  in  terms  of  e  and  the  area  a. 
We  have 

and  thus 

from  which  we  see  how  small  is  the  influence  of  a  moderate  eccen- 

tricity, when  the  area  is  given. 

211.  When  the  fixed  boundary  of  a  membrane  is  neither 
straight  nor  circular,  the  problem  of  determining  its  vibrations 
presents  diflSculties  which  in  general  could  not  be  overcome 
without  the  introduction  of  functions  not  hitherto  discussed  or 

tabulated.  A  partial  exception  must  be  made  in  favour  of  an 

elliptic  boundary ;  but  for  the  purposes  of  this  treatise  the  im- 
portance of  the  problem  is  scarcely  sufficient  to  warrant  the 

introduction  of  complicated  analysis.  The  reader  is  therefore 
referred  to  the  original  investigation  of  M.  Mathieu^ 

[The  method  depends  upon  the  use  of  conjugate  functions.     If 

x  +  iy  =  eco8{^'¥ir))   (1), 

then  the  curves  rj  =  const,  are  confocal  ellipses,  and  f  =  const,  are 
confocal  hyperbolas.  In  terms  of  f,  rj  the  fundamental  equation 

(V'-hk^)u  =  0  becomes 

where  k'  =  ke. 

The  solution  of  (2)  may  be  found  in  the  form 

«  =  S(f).H(i,)   (3). 

in  which  B  is  a  function  of  f  only,  and  H  a  function  of  rj  only, 

provided 

^-(A:'»cos«f-a)B  =  0   (4), 

^'^  +  (ik'»cosh»i7-a)H  =  0   (5), 
a  being  an  arbitrary  constant*. 

*  Lioaville,  xin.,  1868 ;  Court  de  phytique  mathimatique,  1873,  p.  122. 
-  Pockels,  Uber  die  partielle  Differentialgleiehung  Au+J;^u=0,  p.  114. 
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Michell^  has  shewn  that  the  elliptic  transformation  (1)  is  the 
only  one  which  yields  an  equation  capable  of  satisfaction  in  the 
form  (3).] 

Soluble  cases  may  be  invented  by  means  of  the  general 
solution 

w  —  AqJq  (At)  + . . .  +  (il  n  cos  n^  +  ̂n  sin  n  fl)  «7n  (At)  +   

For  example  we  might  take 

w=^Jq  (kr)  —  X  «/i  (At)  cos  fl, 

and  attaching  different  values  to  X,  trace  the  various  forms  of 
boundary  to  which  the  solution  will  then  apply. 

Useful  information  may  sometimes  be  obtained  from  the 
theorem  of  §  88,  which  allows  us  to  prove  that  any  contraction  of 

the  fixed  boundary  of  a  vibrating  membrane  must  cause  an  eleva- 
tion of  pitch,  because  the  new  state  of  things  may  be  conceived  to 

differ  from  the  old  merely  by  the  introduction  of  an  additional 
constraint.  Springs,  without  inertia,  are  supposed  to  urge  the 
line  of  the  proposed  boundary  towards  its  equilibrium  position, 
and  gradually  to  become  stiffen  At  each  step  the  vibrations 
become  more  rapid,  until  they  approach  a  limit,  corresponding  to 
infinite  stiffness  of  the  springs  and  absolute  fixity  of  their  points 
of  application.  It  is  not  necessary  that  the  part  cut  off  should 
have  the  same  density  as  the  rest,  or  even  any  density  at  all. 

For  instance,  the  pitch  of  a  regular  polygon  is  intermediate 
between  those  of  the  inscribed  and  circumscribed  circles.  Closer 

limits  would  however-  be  obtained  by  substituting  for  the  circum- 
scribed circle  that  of  equal  area  according  to  the  result  of  §  210. 

In  the  case  of  the  hexagon,  the  ratio  of  the  radius  of  the  circle  of 

equal  area  to  that  of  the  circle  inscribed  is  1*050,  so  that  the  mean 
of  the  two  limits  cannot  differ  from  the  truth  by  so  much  as  2^  per 
cent.  In  the  same  way  we  might  conclude  that  the  sector  of  a 

circle  of  60^  is  a  graver  form  than  the  equilateral  triangle  obtained 
by  substituting  the  chord  for  the  arc  of  the  circle. 

The  following  table  giving  the  relative  frequency  in  certain 
calculable  cases  for  the  gravest  tone  of  membranes  under  similar 
mechanical  conditions  and  of  equal  area  (a),  shews  the  effect  of  a 
greater  or  less  departure  from  the  circular  form. 

^  Me$$enger  of  Mathematicit  vol.  xiz.  p.  86, 1890. 
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Circle    2404 .  Vtt  =  4-261. 

Square    V2  . -w  =  4*443. 

Quadrant  of  a  circle    -^—  .  V7r  =  4'551. 

v?= 

Sector  of  a  circle  60^         6-379  a/ ̂   =4*616. 

Rectangle  3x2           A/-g- .  tt  =  4624. 

Equilateral  triangle    27r.Vtan30^=  4*774. 

Semicircle        3*832  a/|  =  4*803. 

Rectangle  2x1   )  ^^/I^^.qq^ Right-angled  isosceles  triangle   J  v   2 
lo 

Rectangle  3  x  1    7rW-^  =  5*736. 

For  instance,  if  a  square  and  a  circle  have  the  same  area,  the 

former  is  the  more  acute  in  the  ratio  4*443  :  4*261,  or  1*043  : 1. 

For  the  circle  the  absolute  frequency  is 

(27r)-»  X  2*404 c  a/-  ,   where   c  =  V2\  ■^  Vp- 

In  the  case  of  similar  forms  the  frequency  is  inversely  as  the 
linear  dimension. 

[From  the  principle  that  an  extension  of  boundary  is  always 
accompanied  by  a  fall  of  pitch,  we  may  infer  that  the  gravest 
mode  of  a  membrane  of  any  shape,  and  of  any  variable  density,  is 
devoid  of  internal  nodal  lines.] 

212.  The  theory  of  the  free  vibrations  of  a  membrane  was 
first  successfully  considered  by  Poisson^  His  theory  in  the 

case  of  the  rectangle  left  little  to  be  desired,  but  his  treatment 
of  the  circular  membrane  was  restricted  to  the  symmetrical 

vibrations.  Kirchhoif's  solution  of  the  similar,  but  much  more 
difficult,  problem  of  the  circular  plate  was  published  in  1850, 

and  Clebsch's  Theory  of  Elasticity  (1862)  gives  the  general  theory 
of  the  circular  membrane  including  the  eflFects  of  stiffness  and 

^  M£m.  de  VAcadimie,  t.  Tin.  1829. 
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of  rotatory  inertia^  It  will  therefore  be  seen  that  there  was  not 
much  left  to  be  done  in  1866 ;  nevertheless  the  memoir  of  Bourget 

already  referred  to  contains  a  useful  discussion  of  the  problem 
accompanied  by  very  complete  numerical  results,  the  whole  of 
which  however  were  not  new. 

213.  In  his  experimental  investigations  M.  Bourget  made  use 
of  various  materials,  of  which  paper  proved  to  be  as  good  as  any. 
The  paper  is  immersed  in  water,  and  after  removal  of  the  superfluous 

moisture  by  blotting-paper  is  placed  upon  a  frame  of  wood  whose 
edges  have  been  previously  coated  with  glue.  The  contraction  of  the 
paper  in  dr3dng  produces  the  necessary  tension,  but  many  failures 
may  be  met  with  before  a  satisfactory  result  is  obtained.  Even 
a  well  stretched  membrane  requires  considerable  precautions  in 
use,  being  liable  to  great  variations  in  pitch  in  consequence  of  the 
varying  moisture  of  the  atmosphere.  The  vibrations  are  excited 

by  organ-pipes,  of  which  it  is  necessary  to  have  a  series  proceeding 
by  small  intervals  of  pitch,  and  they  are  made  evident  to  the  eye 
by  means  of  a  little  sand  scattered  on  the  membrane.  If  the 
vibration  be  suflSciently  vigorous,  the  sand  accumulates  on  the 
nodal  lines,  whose  form  is  thus  defined  with  more  or  less  precision. 

Any  inequality  in  the  tension  shews  itself  by  the  circles  becoming 
elliptic. 

The  principal  results  of  experiment  are  the  following : — 

A  circular  membrane  cannot  vibrate  in  unison  with  every  sound. 

It  can  only  place  itself  in  unison  with  sounds  more  acute  than 
that  heard  when  the  membrane  is  gently  tapped. 

As  theory  indicates,  these  possible  sounds  are  separated  by  less 
and  less  intervals,  the  higher  they  become. 

The  nodal  lines  are  only  formed  distinctly  in  response  to 
certain  definite  sounds.  A  little  above  or  below  confusion  ensues, 

and  when  the  pitch  of  the  pipe  is  decidedly  altered,  the  membrane 
remains  unmoved.  There  is  not,  as  Savart  supposed,  a  continuous 
transition  from  one  system  of  nodal  lines  to  another. 

The  nodal  lines  are  circles  or  diameters  or  combinations  of 

circles  and  diameters,  as  theory  requires.     However,  when   the 

^  [The  reader  who  vrishes  to  pursne  the  subject  from  a  mathematical  point  of 
view  is  referred  to  an  excellent  discussion  by  Pockels  (Leipzig,  1S91)  of  the 

differential  equation  ̂ hi  +  k^u  aO.] 
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number  of  diameters  exceeds  two,  the  sand  tends  to  heap  itself 
confusedly  towards  the  middle  of  the  membrane,  and  the  nodes 
are  not  well  defined. 

The  same  general  laws  were  verified  by  MM.  Bernard  and 

Bourget  in  the  case  of  square  membranes*;  and  these  author 
consider  that  the  results  of  theory  are  decisively  established  in 
opposition  to  the  views  of  Savart,  who  held  that  a  membrane 

was  capable  of  responding  to  any  sound,  no  matter  what  its  pitch 
might  be.  But  I  must  here  remark  that  the  distinction  between 
forced  and  free  vibrations  does  not  seem  to  have  been  sufficiently 
borne  in  mind.  When  a  membrane  is  set  in  motion  by  aeiial 

waves  having  their  origin  in  an  organ-pipe,  the  vibration  is 
properly  speaking /arced.  Theory  asserts,  not  that  the  membrane 
is  only  capable  of  vibrating  with  certain  defined  frequencies,  but 
that  it  is  only  capable  of  so  vibrating  freely.  When  however  the 
period  of  the  force  is  not  approximately  equal  to  one  of  the 
natural  periods,  the  resulting  vibration  may  be  insensible. 

In  Savart's  experiments  the  sound  of  the  pipe  was  two  or  three 
octaves  higher  than  the  gravest  tone  of  the  membrane,  and  was 

accordingly  never  far  from  unison  with  one  of  the  series  of  over- 
tones. MM.  Bourget  and  Bernard  made  the  experiment  under 

more  favourable  conditions.  When  they  sounded  a  pipe  somewhat 
lower  in  pitch  than  the  gravest  tone  of  the  membrane,  the  sand 
remained  at  rest,  but  was  thrown  into  vehement  vibration  as  unison 

was  approached.  So  soon  as  the  pipe  was  decidedly  higher  than  the 
membrane,  the  sand  returned  again  to  rest.  A  modification  of  the 
experiment  was  made  by  first  tuning  a  pipe  about  a  third  higher 
than  the  membrane  when  in  its  natural  condition.  The  membrane 

was  then  heated  until  its  tension  had  increased  sufficiently  to 

bring  the  pitch  above  that  of  the  pipe.  During  the  process  of 
cooling  the  pitch  gradually  fell,  and  the  point  of  coincidence 
manifested  itself  by  the  violent  motion  of  the  sand,  which  at  the 
beginning  and  end  of  the  experiment  was  sensibly  at  rest. 

M.  Bourget  found  a  good  agreement  between  theory  and  obser- 
vation with  respect  to  the  radii  of  the  circular  nodes,  though  the 

test  was  not  very  precise,  in  consequence  of  the  sensible  width  of 
the  bands  of  sand;  but  the  relative  pitch  of  the  various  simple 
tones  deviated  considerably  from  the  theoretical  estimates.     The 

^  Ann.  de  Chim.  Lx.  449—479.  1860. 
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committee  of  the  French  Academy  appointed  to  report  on 

M.  Bourget's  memoir  suggest  as  the  explanation  the  want  of 
perfect  fixity  of  the  boundary.  It  should  also  be  remembered  that 

the  theory  proceeds  on  the  supposition  of  perfect  flexibility — a 
condition  of  things  not  at  all  closely  approached  by  an  ordinary 
membrane  stretched  with  a  comparatively  small  force.  But 

perhaps  the  most  important  disturbing  cause  is  the  resistance  of 
the  air,  which  acts  with  much  greater  force  on  a  membrane  than 
on  a  string  or  bar  in  consequence  of  the  large  surface  exposed. 
The  gravest  mode  of  vibration,  during  which  the  displacement  is 
at  all  points  in  the  same  direction,  might  be  affected  very 
differently  from  the  higher  modes,  which  would  not  require  so 
great  a  transference  of  air  from  one  side  to  the  other. 

[In  the  case  of  kettle-drums  the  matter  is  further  complicated 
by  the  action  of  the  shell,  which  limits  the  motion  of  the  air  upon 
one  side  of  the  membrane.  From  the  fact  that  kettle-drums  are 
struck,  not  in  the  centre,  but  at  a  point  about  midway  between 
the  centre  and  edge,  we  may  infer  that  the  vibrations  which  it  is 
desired  to  excite  are  not  of  the  symmetrical  class.  The  sound  is 
indeed  but  little  affected  when  the  central  point  is  touched  with 

the  finger.  Under  these  cii-cumstances  the  principal  vibration  (1)  is 
that  with  one  nodal  diameter  and  no  nodal  circle,  and  to  this 

corresponds  the  greater  part  of  the  sound  obtained  in  the  normal 
use  of  the  instrument.  Other  tones,  however,  are  audible,  which 

correspond  with  vibrations  characterized  (2)  by  two  nodal  diameters 
and  no  nodal  circle,  (3)  by  three  nodal  diameters  and  no  nodal 
circles,  (4)  by  one  nodal  diameter  and  one  nodal  circle.  By 
observation  with  resonators  upon  a  large  kettle-drum  of  25  inches 
diameter  the  pitch  of  (2)  was  found  to  be  about  a  fifth  above  (1), 
that  of  (3)  about  a  major  seventh  above  (1),  and  that  of  (4)  a  little 
higher  again,  forming  an  imperfect  octave  with  the  principal  tone. 

For  the  corresponding  modes  of  a  uniform  perfectly  flexible  mem- 
brane vibrating  in  vacuo,  the  theoretical  intervals  are  those 

represented  by  the  ratios  1*34,  1*66,  1*83  respectively ^ 

The  vibrations  of  soap  films  have  been  investigated  by  Melde  -. 
The  frequencies  for  surfaces  of  equal  area  in  the  form  of  the  circle, 
the  square  and  the  equilateral   triangle,  were  found  to  be  as 

1  Phil.  Mag,,  vol.  vn.,  p.  160,  1879. 
2  Pogg.  Ann.,  159,  p.  275,  1876.    Akustik,  p.  131,  1883. 
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1*000  :  1'049  :  1'175.     In  membranes  of  this  kind  the  tension  is 
due  to  capillarity,  and  is  independent  of  the  thickness  of  the  film.] 

213  a.  The  forced  vibrations  of  square  and  circular  membranes 

have  been  further  experimentally  studied  by  Elsas*,  who  has 
confirmed  the  conclusions  of  Savart  as  to  the  responsiveness  of  a 
membrane  to  sounds  of  arbitrary  pitch.  In  these  experiments  the 
vibrations  of  a  fork  were  communicated  to  the  membrane  by  means 
of  a  light  thread,  attached  normally  at  the  centre ;  and  the  position 
of  the  nodal  curves  and  of  the  maxima  of  disturbance  was  traced 

in  the  usual  manner  by  sand  and  lycopodium.  A  series  of  figures 

accompanies  the  memoir,  shewing  the  eflFect  of  sounds  of  pro- 
gressively rising  pitch. 

In  many  instances  the  curves  found  do  not  exhibit  the 
symmetries  demanded  by  the  supposed  conditions.  Thus  in 
the  case  of  the  square  membrane  all  the  curves  should  be  similarly 
related  to  the  four  comers,  and  in  the  case  of  the  circular  mem- 

brane all  the  curves  should  be  circles.  The  explanation  is  probably 
to  be  sought  in  the  diflSculty  of  attaining  equality  of  tension.  If 
there  be  any  irregularity,  the  eflFect  will  be  to  introduce  modes  of 
vibration  which  should  not  appear,  as  having  nodes  at  the  point  of 
excitation,  and  this  especially  when  there  is  a  near  agreement  of 
periods.  Or  again,  an  irregularity  may  operate  to  disturb  the 
balance  between  two  modes  of  theoretically  identical  pitch,  which 
should  be  excited  to  the  same  degree.  Indeed  the  passage  through 
such  a  point  of  isochronism  may  be  expected  to  be  highly  unstable 
in  the  absence  of  moderate  dissipative  forces. 

The  theoretical  solution  of  these  questions  has  already  (§§  196, 
204)  been  given,  but  would  need  much  further  development  for 
an  accurate  determination  of  the  nodal  curves  relating  to  periods 
not  included  among  the  natural  periods.  But  the  general  course 
of  the  phenomenon  can  be  traced  without  diflSculty. 

If  the  imposed  frequency  be  less  than  the  lowest  natural 
frequency,  the  vibration  is  devoid  of  (internal)  nodes.  For  a  nodal 
line,  if  it  existed,  being  of  necessity  either  endless  or  terminated 

at  the  boundary*,  would  divide  the  membrane  into  two  parts.     Of 

^  Nova  Acta  der  Ksl,  Leap.  Carol,  DeuUchen  Akademie,  Bd.  xly.  Nr.  1.  Halle, 
1S82. 

^  Otherwise  the  extremity  would  have  to  remain  at  rest  under  the  action  of 
component  tensions  from  the  surrounding  parts  which  are  aU  in  one  direction. 
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these  one  part  would  be  vibrating  freely  with  a  frequency  less 
than  the  lowest  natural  to  the  whole  membrane,  an  impossible 
condition  of  things  (§  211).  The  absence  of  nodal  curves  under  the 

above-mentioned  conditions  is  one  of  the  conclusions  drawn  by 
Elsas  from  his  observations. 

As  the  frequency  of  the  imposed  vibration  rises  through  the 
lowest  natural  frequency,  a  nodal  curve  manifests  itself  round  the 

point  of  excitation,  and  gradually  extends.  The  course  of  things 
is  most  easily  followed  in  the  case  of  the  circular  membrane, 
excited  at  the  centre.  The  nodal  curves  are  then  of  necessity  also 
circles,  and  it  is  evident  that  the  first  appearance  of  a  nodal  circle 
can  take  place  only  at  the  centre.  Otherwise  there  would  be  a 
circular  annulus  of  finite  internal  diameter,  vibrating  finely  with  a 
frequency  only  infinitesimally  higher  than  that  of  the  entire  circle. 
At  first  sight  indeed  it  might  appear  that  even  an  infinitely  small 
nodal  circle  would  entail  a  finite  elevation  of  pitch,  but  a  con- 

sideration of  the  solution  (§  204)  as  expressed  by  a  combination  of 
BesseVs  functions  of  the  first  and  second  kinds,  shews  that  this  is 

not  the  case.  At  the  point  of  isochronism  the  second  function 

disappears,  and  immediately  afterwards  re-enters  with  an  infinitely 
small  coefficient.  But  inasmuch  as  this  function  is  itself  infinite 

when  r  =  0,  a  nodal  circle  of  vanishing  radius  is  possible.  Accord- 

ingly the  fixation  of  the  centre  of  a  vibi-ating  circular  membrane 
does  not  alter  the  pitch,  a  conclusion  which  may  be  extended  to 
the  fixation  of  any  number  of  detached  points  of  a  membrane  of 

any  shape. 
The  eflFect  of  gradually  increasing  frequency  upon  the  nodal 

system  of  a  circular  membrane  may  be  thus  summarized.  Below 
the  first  proper  tone  there  is  no  internal  node.  As  this  point  is 
reached,  the  mode  of  vibration  identifies  itself  with  the  corre- 

sponding free  mode,  and  then  an  infinitely  small  nodal  circle 
manifests  itself.  As  the  frequency  further  increases,  this  circle 

expands,  until  when  the  second  proper  tone  is  reached,  it  coincides 
with  the  nodal  circle  of  the  free  vibration  of  this  frequency. 
Another  infinitely  small  circle  now  appears,  and  it,  as  well  as  the 
first,  continually  expands,  until  they  coincide  with  the  nodal  system 
of  a  free  vibration  in  the  third  proper  tone.  This  process  con- 

tinues as  the  pitch  rises,  every  circle  moving  continually  outwards. 
At  each  coincidence  with  a  natural  frequency  the  nodal  system 
identifies  itself  with  that  of  the  free  vibration,  and  a  new  circle 

begins  to  form  itself  at  the  centre. 
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The  behaviour  of  a  square  membrane  is  of  course  more  difficult 

to  follow  in  detail.  The  transition  from  Fig.  (34)  case  (4),  corre- 
sponding to  7ti  =  3, 71  =  1,  and  w  =  1,  n  =  3,  to  Fig.  (36)  where  m  =  3, 

n  =  3,  can  be  traced  in  Elsas's  curves  through  such  forms  as 

Fig.  39  a. 



CHAPTER  X. 

VIBRATIONS   OF   PLATES \ 

214.  In  order  to  form  axx^ording  to  Green's  method  the  equa- 
tions of  equilibrium  and  motion  for  a  thin  solid  plate  of  uniform 

isotropic  material  and  constant  thickness,  we  require  the  expression 
for  the  potential  energy  of  bending.  It  is  easy  to  see  that  for  each 
unit  of  area  the  potential  energy  F  is  a  positive  homogeneous 
symmetrical  quadratic  function  of  the  two  principal  curvatures. 
Thus,  if  pi,  p^  be  the  principal  radii  of  curvature,  the  expression 
for  V  will  be 

Aa^\^^)   (1). 

where  A  and  fi  are  constants,  of  which  A  must  be  positive,  and 
fi  must  be  numerically  less  than  unity.  Moreover  if  the  material 
be  of  such  a  character  that  it  undergoes  no  lateral  contraction 
when  a  bar  is  pulled  out,  the  constant  /j,  must  vanish.  This 
amount  of  information  is  almost  all  that  is  required  for  our 
purpose,  and  we  may  therefore  content  ourselves  with  a  mere 
statement  of  the  relations  of  the  constants  in  (1)  with  those  by 
means  of  which  the  elastic  properties  of  bodies  are  usually  de- 
fined. 

From  Thomson  and  Tait  s  Natural  Philosophy,  §§  639,  642, 

720,  it  appears  that,  if  2A  be  the  thickness,  q  Young's  modulus, 

^  [This  Chapter  deals  only  with  jUxural  vibrations.  The  extensional  vibrations 
of  an  infinite  plane  plate  are  briefly  considered  in  Chapter  X.a,  as  a  particolar 
case  of  those  of  an  infinite  cylindrical  shell.  They  are  not  of  much  acoustical 
importance.] 
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and  fi  the  ratio  of  lateral  contraction  to  longitudinal  elongation 
when  a  bar  is  pulled  out,  the  expression  for  V  is 

3  (1  -  /i»)  Wpi     pj  pipt 
•  •••••••••    \st J  • 

[Equation  (2)  gives  the  interpretation  of  the  constants  of  (1) 
in  its  application  to  a  homogeneous  plate  of  isotropic  material ; 
but  the  expression  (1)  itself  is  of  far  wider  scope.  The  material 
composing  the  plate  may  vary  from  layer  to  layer,  and  the  elastic 
character  of  any  layer  need  not  be  isotropic,  but  only  symmetrical 
with  respect  to  the  normal.  As  a  particular  case,  the  middle 
layer,  or  indeed  any  other  layer,  may  be  supposed  to  be  physically 
inextensible. 

Similar  remarks  apply  to  the  investigations  of  the  following 
chapter  relating  to  curved  shells.] 

If  w  be  the  small  displacement  perpendicular  to  the  plane 
of  the  plate  at  the  point  whose  rectangular  coordinates  in  the 
plane  of  the  plate  are  x,  y, 

pi     9%"     ̂'      pi  pi      dx"  df      [dxdyj  ' 
and  thus  for  a  unit  of  area,  we  have 

''-3(^,[('->-<'-'')|S^-(^)'}]«. 
which  quantity  has  to  be  integrated  over  the  sur&ce  (8)  of  the 

plate. 

^  The  foUowisg  comparison  of  the  notations  need  by  the  principal  writers  may 
save  trouble  to  those  who  wish  to  consult  the  original  memoirs. 

Bigidity=:n  (Thomson) =ai  (Lam6). 

Young's  modulus =£  (Clebsch)=Jf  (Thomson)  =  ̂ ^-  -  (Thomson) 

^fi(8w-n)    /Thomson) =g  (Kirchhoff  and  Donkin)=2JS:ii^  (Kirchhoff). in  l  +  ff'     _. 

Batio  of  lateral  contraction  to  longitudinal  elongation =^1  (Clebsch  and  Donkin) 
tn      n.  6  \ 

=  «r  (Thomson)=-2^    (Thomson)  =  j-j-^-^  (Kirchhofl)=2— ^    (Lamfi). 

Poisson  assumed  this  ratio  to  be  i,  and  Wertheim  \. 

R.  23 

»  ■'    L, 

A 
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216.    We  proceed  to  find  the  variation  of  V,  but  it  should  be 

previously  noticed  that  the  second  term  in  F,  namely    1 1  — , 

represents  the  total  curvature  of  the  plate,  and  is  therefore  de- 
pendent only  on  the  state  of  things  at  the  edge. 

SO  that  we  have  to  consider  the  two  variations 

jjV^w.V^Sw.dS      and     ||s  (/h />,)-' dS. 

Now  by  Green's  theorem 

(h^w .  V^Sw .  d8  =  jh^w  .Bw.dS 

-j-^T  '^^'ds  +  jV^w-^ds   (2), 
in  which  da  denotes  an  element  of  the  boundary,  and  d/dn  denotes 
differentiation  with  respect  to  the  normal  of  the  boundary  drawn 
outwards. 

The  transformation  of  the  second  part  is  more  difficult.     We 
have 

IcPw  cPSw     d^w  d^Sw  __  g  d^w  d^Sw)  ,^ 

C-//{: da^  dy*       dy*  da^         dxdy  dxdy] 
The  quantity  under  the  sign  of  integration  may  be  put  into 

the  form 

d^  /dBw  d^w  _  dSw  dhv\     jd  /dSw  d^w  _  dSw  d"w  \ 

dy  \  dy  da^      dx  dxdy)     dx\dx  dy^      dy  dxdy) ' 
Now,  if  i^  be  any  function  of  x  and  y, 

ll--j-dxdy^  iFBinOds 

rr^p  r  }   (3)> 
If  ̂   da?dy  =/ i^ cos ^ dfi 

where  0  is  the  angle  between  x  and  the  normal  drawn  outwards, 
and  the  integration  on  the  right-hand  side  extends  round  the 
boundary.    Using  these,  we  find 

S  [f  — =  (ds  sin  0  {—  ̂   «  ̂^  ̂ ^\ J  J  PiRi     J  [dy  daf^       dx  dxdy] 

4-  (d        ff  J^^  ̂ ^  —  ̂̂ ^  ̂*^^  I 
J  \dx  dy^       dy  dxdy]  ' 
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If  we  substitute  fgr  dZwjdx,  dSw/dy  their  values  in  terms 
dSw/dn,  dSw/ds,  from  the  equations  (see  Fig.  40) 

dSw     dhw       ̂     dSw  .    ̂  
QQQff — ;— sin^ dx       dn da 

dhw  dSw  .  >,  .  d6w  A 
j— = -j — sm^+  J— cos^ 
dy       dn  da 

Fig.  40. 

(4), 

we  obtain 

—  =  \da-j-<sm^6-j-z+co8^6  :j-r-2smdcos^  ,-^-l 

The  second  integral  by  a  partial  integration  with  respect  to 
a  may  be  put  into  the  form 

C!ol]ecting  and  rearranging  our  results,  we  find 

-I 

Swda- (d^'^w dn +  (l-A^)5^(cos^sm^(^-^j 

f  ^  ̂  1^^'^ + (1  -  /^)  (cos'  e 

+  2co8^8in^^^)i    ...(6). 

23—2 
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There  will  now  be  no  difficulty  in  forming  the  equations  of 
motion.  If  p  be  the  volume  density,  and  Z.p.2h.dS  the  transverse 
force  acting  on  the  element  dS, 

SV-jf2ZphBwd8+jJ2phwSwdS^0   (7y 

is  the  general  variational  equation,  which  must  be  true  whatever 
function  (consistent  with  the  constitution  of  the  system)  Sw  may 
be  supposed  to  be.  Hence  by  the  principles  of  the  Calculus  of 
Variations 

g^^jV'«,-Z+«=0   (8). 
at  every  point  of  the  plate. 

If  the  edges  of  the  plate  be  free,  there  is  no  restriction  on  the 
hypothetical  boundary  values  of  Bw  and  dSw/dn,  and  therefore  the 
coefficients  of  these  quantities  in  the  expression  for  S  Fmust  vanish. 

The  conditions  to  be  satisfied  at  a  free  edge  ai*e  thus 

dn 
+ 

+  (co8.<?-8in«^)|Jy-}=0 
.(9). 

4- 2co8^sin  ̂   T-j-h  =0 

dxdy) 

If  the  whole  circumference  of  the  plate  be  clamped,  Bw^O, 
d&w/dn  =  0,  and  the  satis&ction  of  the  boundary  conditions  is 

already  secured.  If  the  edge  be  '  supported'*,  Sw  —  0,  but  dSw/dn 
is  arbitrary.  The  second  of  the  equations  (9)  must  in  this  case  be 
satisfied  by  w. 

216.  The  boundary  equations  may  be  simplified  by  getting 
rid  of  the  extrinsic  element  involved  in  the  use  of  Cartesian 
coordinates  Taking  the  axis  of  x  parallel  to  the  normal  of  the 
bounding  curve,  we  see  that  we  may  write 

cos*  0  j-T  +  sm*  ̂   J-,  +  2 cos  tf  sm  0  j— r-  =  3-  - . 
cur"  ay"  dxdy      dn^ 

AUo  V.«;=^-+^,      (1). 

^  The  rotatory  inertia  is  here  neglected.  >  Compare  §  162. 
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where  <r  is  a  fixed  axis  coinciding  with  the  tangent  at  the  point 

under  consideration.  In  general  cPw/da^  differs  from  (Pw/dsK 
To  obtain  the  relation  between  them,  we  may  proceed  thus. 

Expand  w  by  Maclaurin's  theorem  in  ascending  powers  of  the 
small  quantities  n  and  c,  and  substitute  for  n  and  a  their  values 
in  terms  of  8,  the  arc  of  the  curve. 

Thus  in  general 

while  on  the  curve  cr  =  «  +  cubes,  n  =  —  ̂   s^jp  + . .. ,  where  p  is 
the  radius  of  curvature.    Accordingly  for  points  on  the  curve, 

.dws^dw        .  d?w  .  ,      ,        - 
ti;  =  Wo  —  Aj   hj—^  +  i  J— J  ̂  +  cubes  of  «, 

^  dno  p     ao-o       *  a<7o* 0  ^^0 

,  . ,       -  c^w     d^w     1  dw  .^. 
and  therefore  -ri  =  j-t   j-    (2); 

d^      da^     p  dn  ^  ̂  * 
whence  from  (1) 

-_        d^w     Idw  ̂   d^w  ,-. 

^'"-'M-^-pdi.-^l^   <3>- 
We  conclude  that  the  second  boundary  condition  in  (9)  §  215 

may  be  put  into  the  form 

d?w  ̂      (IdAi)     d?w\  . 

di^^-^^y^dn-^-dFr^   (*>• 
In  the  same  way  by  putting  ̂   =  0,  we  see  that 

is  equivalent  to  d^w/dndc,  where  it  is  to  be  understood  that 
the  axes  of  n  and  <r  are  fixed.  The  first  boundary  condition  now 
becomes 

|v.„.a-rt|(^^)=o   (.> 
If  we  apply  these  equations  to  the  rectangle  whose  sides  are 

parallel  to  the  coordinate  axes,  we  obtain  as  the  conditions  to  be 
satisfied  along  the  edges  parallel  to  y, 

d  fd^w  d^w)     ̂ y 
^{d^-^(2-;.)^.}=a^    ^^^ d^w       d?w    ̂  
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In  this  case  the  distinction  between  a  and  a  disappears,  and  p^  the 
radius  of  curvature,  is  infinitely  great.  The  conditions  for  the 
other  pair  of  edges  are  found  by  interchanging  x  and  y.  These 
results  may  be  obtained  equally  well  from  (9)  §  215  directly,  with- 

out the  preliminary  transformation. 

217.    If  we  suppose  Z  =  0,  and  write 

zfii^r"^   <^>' 
the  general  equation  becomes 

t£;  +  c*V*w  =  0   (2), 
or,  if  w  X  cos  {pt  —  €), 

V*w  =  k'w   (3), 

where  k^=^p^/c^   (4). 

Any  two  values  of  te;,  u  and  v,  corresponding  to  the  same 
boundary  conditions,  are  conjugcUe,  that  is  to  say 

// 

uvdS^O   (5), 

provided  that  the  periods  be  different  In  order  to  prove  this 
from  the  ordinary  differential  equation  (3),  we  should  have  to 
retrace  the  steps  by  which  (3)  was  obtained.  This  is  the  method 
adopted  by  Kirchhoff  for  the  circular  disc,  but  it  is  much  simpler 
and  more  direct  to  use  the  variational  equation 

BV+2phJlw&wdS=^0   (6), 

in  which  w  refers  to  the  actual  motion,  and  Su;  to  an  arbitrary 
displacement  consistent  with  the  nature  of  the  system.  SFis  a 
symmetrical  function  of  w  and  Bw,  as  may  be  seen  ftom  §  215,  or 
from  the  general  character  of  V  (§  94). 

If  we  now  suppose  in  the  first  place  that  w^u,  Sw  =  v,  we 
have 

&r=2php'jjuvdS; 

and  in  like  manner  if  we  put  w  =  v,  Sw^u,  which  we  are  equally 
entitled  to  do. 

SF=:  2php'*jjuvdS, 
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whence 

(P^^p'')jjuvd8^0  .:'.   (7). 
This  demonstration  is  valid  whatever  may  be  the  form  of  the 

boundary,  and  whether  the  edge  be  clamped,  supported,  or  firee,  in 
whole  or  in  part 

As  for  the  case  of  membranes  in  the  last  Chapter,  equation 
(7)  may  be  employed  to  prove  that  the  admissible  values  of  p^  are 
real ;  but  this  is  evident  from  physical  considerations. 

218.  For  the  application  to  a  circular  disc,  it  is  necessary  to 
express  the  equations  by  means  of  polar  coordinates.  Taking  the 
centre  of  the  disc  as  pole,  we  have  for  the  general  equation  to  be 
satisfied  at  all  points  of  the  area 

(V*-&*)t(;»0   (1), 

wl,e«(§200,  V..*+i4  +  l*. 
To  express  the  boundary  condition  (§  216)  for  a  free  edge 

(r  =  a),  we  have 

d  — ,    _  ̂  rra        d  /  d^w  \  __   d    d^  / dw\     d^w  _  d?w 
dfi     ̂ ^Tr     ̂ '   diKdliid^J^^Ldech-K^)'    (&»~^5^' 

p  =  radius  of  curvature  ^  a ;  and  thus 

dr\df^'^  rdr)'^de»\   a»     dr        a*    ̂)^     ̂   .„. 
c   \^)' d?w       (1  dw     1  d^w\  _  ̂ 

After  the  differentiations  are  performed,  r  is  to  be  made  equal 
to  a. 

If  whe  expanded  in  Fourier's  series 

each  term  separately  must  satisfy  (2),  and  thus,  since 

Wn  «  cos  (n0  —  a), 

d  fd^Wnldw^\        fi-fidwn     3-A*.„  '\_ A 

Tr\d?~'^rW)^''\lir  dr''    a»    "^V"".  ^g^ 
d^Wn  .        /I  dWn       W*        \       A 



360  VIBRATIONS   OF  PLATES.  [218. 

The  superficial  differential  equation  may  be  written 

(V«  +  ifc»)  ( V«  -  ifc»)  w  =  0, 
which  becomes  for  the  general  term  of  the  Fourier  expansion 

shewing  that  the  complete  value  of  Wn  will  be  obtained  by  adding 
together,  with  arbitrary  constants  prefixed,  the  general  solutions  of 

■  it-lTr-t^^h-"   <*^ 
The  equation  with  the  upper  sign  is  the  same  as  that  which 

obtains  in  the  case  of  the  vibrations  of  circular  membranes,  and 

as  in  the  last  Chapter  we  conclude  that  the  solution  applicable 
to  the  problem  in  hand  is  Wn  «  Jn  (At),  the  second  function  of  r 
being  here  inadmissible. 

In  the  same  way  the  solution  of  the  equation  with  the  lower 

sign  iawnocjn  (ikr),  where  i  =  V  (—  1)  as  usual.     [See  §  221  a.] 
The  simple  vibration  is  thus 

Wn  =  cos nO  {aJn (At)  +  fiJn  (ikr)}  +  sin  nd  [yJn (kr)  +  BJn  (ikr)]. 

The  two  boundary  equations  will  determine  the  admissible 
values  of  k  and  the  values  which  must  be  given  to  the  ratios 
a  :  fi  and  y  :  S.  From  the  form  of  these  equations  it  is  evident 
that  we  must  have  a  :  fi  =  y  :  S, 

and  thus  Wn  may  be  expressed  in  the  form 

Wn  =  P  cos  (nd  —  a)  {/„  (At)  +  X«/„  (ikr)]  cos  (pt  —  e)   (5). 

As  in  the  case  of  a  membrane  the  nodal  system  is  composed  of 
the  n  diameters  symmetrically  distributed  round  the  centre,  but 
otherwise  arbitrary,  denoted  by 

cos(n5-a)  =  0   (6), 

together  with  the  concentric  circles,  whose  equation  is 

Jn(kr)  +  \Jn(ikr)  =  0   (7). 

219.  In  order  to  determine  \  and  k  we  must  introduce  the 

boundary  conditions.  When  the  edge  is  free,  we  obtain  from 

(3) §  218 

n^(M"'l)[kaJn(ka)-Jn{ka)}-k^a*Jn'(ka)\ 
n V  - 1)  {ikaJn'iika)  -  Jn{ika)}  +  ik'a'Jn'  (ika) 

_  (fjL'-l){kaJn'(ka)  -n^Jn{ka)]  -  k'a^Jn  (ka)     1 

(ji -  l){%kaJn' (ika)- n^Jn (tfca)}"+  k^a'Jn (ika)  ) 

...(1), 
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in  which  use  has  been  made  of  the  di£ferential  equations  satisfied 

by  JnQcr\  Jn{ilcr),  In  each  of  the  fractions  on  the  right  the 
denominator  may  be  derived  from  the  numerator  by  writing  ik  in 
place  of  k.  By  elimination  of  X  the  equation  is  obtained  whose 
roots  give  the  admissible  values  of  h 

When  n  =s  0,  the  result  assumes  a  simple  form,  viz. 

This,  of  course,  could  have  been  more  easily  obtained  by  neglecting 
n  from  the  beginning. 

The  calculation  of  the  lowest  root  for  each  value  of  n  is  trouble- 
some, and  in  the  absence  of  appropriate  tables  must  be  effected 

by  means  of  the  ascending  series  for  the  functions  Jn  (kr),  Jn  (ikr). 

In  the  case  of  the  higher  roots  recourse  may  be  had  to  the  semi- 
convergent  descending  series  for  the  same  functions.  Earchhoff 
finds 

tan(to-i/i7r)-  -i::i:i/(8ifca)i:^/(8ika)>  +  . . .         ^^^' where 

5  =  7(l-4n»)-8, 

C=7(l-4n«)(9-4n«)  +  48(lH-4n«), 

2)  =  -  Yi  {(1  -  4^^")  (9  -  *w')  (13  -  ̂.n^}  +  8  (9  +  136n«  +  SOn*). 

When  ka  is  great, 
tan  {ka  -  \  rnr)  =  0    approx. ; 

whence 

A;a  =  i7r(n  +  2A)   (4), 
where  h  is  an  integer. 

It  appears  by  a  numerical  comparison  that  h  is  identical  with 
the  number  of  circular  nodes,  and  (4)  expresses  a  law  discovered 
by  Chladni,  that  the  frequencies  corresponding  to  figures  with  a 
given  number  of  nodal  diameters  are,  with  the  exception  of  the 
lowest,  approximately  proportional  to  the  squares  of  consecutive 
even  or  uneven  numbers,  according  as  the  number  of  the  diameters 
is  itself  even  or  odd.  Within  the  limits  of  application  of  (4),  we 
see  also  that  the  pitch  is  approximately  unaltered,  when  any 
number  is  subtracted  frt)m  h,  provided  twice  that  number  be 
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[219. 
added  to  ;i.  This  law,  of  which  traces  appear  in  the  following  table, 
may  be  expressed  by  saying  that  towards  raising  the  pitch  nodal 
circles  have  twice  the  effect  of  nodal  diameters.  It  is  probable, 
however,  that,  strictly  speaking,  no  two  normal  components  have 
exactly  the  same  pitch. 

h 

0 
1 
2 

h 

0 
1 

n  =  0 n=l 

Ch. 
•  •  • 

Ois 

gi««'  + 

P. 
•  ■  • 

Ois  + 

b'- 

W. 
•  •  • 

A  + 
b'  + 

Ch. 
•  .  • 

b e"  + 
P. .  •  • 

h- 

W. 
•  ■  • 

c- 

fi8"  + 

n=2 n=3 

Ch. 
C 

g'
 

P. 
C 

gi8'  + 

W. 

C 

a'- 

Ch, 
d 

d".difl" 

p. 

dis  — di8"  + 

w. 

dis  — 

e"- The  table,  extracted  from  Kirchhoff's  memoir,  gives  the  pitch 
of  the  more  important  overtones  of  a  free  circular  plate,  the  gravest 
being  assumed  to  be  (7  ̂   The  three  columns  under  the  heads 
Ch,  P,  W  refer  respectively  to  the  results  as  observed  by  Chladni 

and  as  calculated  from  theory  with  Poisson's  and  Wertheim's 
values  of  fi,  A  pliLS  sign  denotes  that  the  actual  pitch  is  a  little 
higher,  and  a  minus  sign  that  it  is  a  little  lower,  than  that  written. 
The  discrepancies  between  theory  and  observation  are  considerable, 
but  perhaps  not  greater  than  may  be  attributed  to  irregularity  in 
the  plate. 

220.  The  radii  of  the  nodal  circles  in  the  sjrmmetrical  case 
(n  =  0)  were  calculated  by  Poisson,  and  compared  by  him  with 
results  obtained  experimentally  by  Savart.  The  following  numbers 
are  taken  from  a  paper  by  Strehlke^  who  made  some  careful 
measurements.    The  radius  of  the  disc  is  taken  as  unity. 

Obfleryation.    Cftleolation. 

One  circle  ...  0-67815    0-68062. 

Two  circles, fO-39133 

'•••(0-84149 

[0-25631 
Three  circles  i  0-59107 

lo-89360 

0-39151. 
0*84200. 
0-25679. 
0-59147. 
0-89381. 

^  Gis  corresponds  to  Gj(  of  the  English  notation,  and  htob  natural. 
s  Fogg.  Ann.  xcr.  p.  577.     1855. 
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The  calculated  results  appear  to  refer  to  Poisson's  value  of  fi,  but 
would  vary  very  little  if  Wertheim's  value  were  substituted. 

The  following  table  gives  a  comparison  of  EarchhofiTs  theory 
(n  not  zero)  with  measurements  by  Strehlke  made  on  less  accurate 
discs. 

Radix  of  Circular  Nodes. 

n 
n 
n 

1,  h 
2,  h 
3,  h 

1 
1 
1 

n  =  l,   A  =  2 

Observation. Calculation. 

^  =  }(P.).      ,t  =  i(W.). 

0-781     0-783    0-781    0-783 
0-78136 0-78088 

0-79      0-81      0-82 082194 
0-82274 

0-838    0-842 
0-84523 

0-84681 

0-488    0-492 
0-49774 0-49715 

0-869    0-869 
0-87057 0-87015 

The  most  general  motion  of  the  uniform  circular  plate  is 
expressed  by  the  superposition,  with  arbitrary  amplitudes  and 
phases,  of  the  normal  components  already  investigated.  The 
determination  of  the  amplitude  and  phase  to  correspond  to 
arbitrary  initial  displacements  and  velocities  is  effected  precisely 
as  in  the  corresponding  problem  for  the  membrane  by  the  aid  of 
the  characteristic  property  of  the  normal  functions  proved  in  §  217. 

221.  When  the  plate  is  truly  symmetrical,  whether  uniform 
or  not,  theory  indicates,  and  experiment  verifies,  that  the  position 
of  the  nodal  diameters  is  arbitrary,  or  rather  dependent  only  on 
the  manner  in  which  the  plate  is  supported,  and  excited.  By 
varying  the  place  of  support,  any  desired  diameter  may  be  made 
nodal  It  is  generally  otherwise  when  there  is  any  sensible 
departure  from  exact  sjrmmetry.  The  two  modes  of  vibration, 
which  originally,  in  consequence  of  the  equality  of  periods,  could 
be  combined  in  any  proportion  without  ceasing  to  be  simple 
harmonic,  are  now  separated  and  affected  with  different  periods. 
At  the  same  time  the  position  of  the  nodal  diameters  becomes 
determinate,  or  rather  limited  to  two  alternatives.  The  one  set  is 

derived  frt)m  the  other  by  rotation  through  half  the  angle  included 
between  two  adjacent  diameters  of  the  same  set.  This  supposes 
that  the  deviation  from  uniformity  is  small ;  otherwise  the  nodal 
system  will  no  longer  be  composed  of  approximate  circles  and 
diameters  at  all  The  cause  of  the  deviation  may  be  an  irregu- 

larity either  in  the  material  or  in  the  thickness  or  in  the  form  of 
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the  boundary.  The  effect  of  a  small  load  at  any  point  may  be 
investigated  as  in  the  parallel  problem  of  the  membrane  §  208. 
If  the  place  at  which  the  load  is  attached  does  not  lie  on  a  nodal 
circle,  the  normal  types  are  made  determinate.  The  diametral 
system  corresponding  to  one  of  the  types  passes  through  the  place 
in  question,  and  for  this  type  the  period  is  unaltered.  The  period 
of  the  other  type  is  increased. 

[The  divergence  of  free  periods,  which  is  due  to  slight  in- 
equalities, would  seem  to  afford  an  explanation  of  some  curious 

observations  by  Savart^  When  a  circular  plate,  vibrating  with 
nodal  diameters,  is  under  the  influence  of  the  bow  applied  at  any 
part  of  the  circumference,  the  nodal  diameters  indicated  by  sand  are 
so  situated  that  the  bow  lies  in  the  middle  of  a  vibrating  segment. 
If,  however,  the  bow  be  suddenly  withdrawn,  the  nodal  system 
oscillates,  or  even  revolves,  during  the  subsidence  of  the  motion. 
It  is  evident  that  no  such  displacement  could  be  expected, 
were  the  plate  absolutely  symmetrical.  The  same  would  be  true, 
even  in  the  case  of  asymmetry,  if  the  bow  were  so  applied  as  to 
excite  one  only  of  the  two  determinate  vibmtions  then  possible. 
But  in  general  the  effect  of  the  bow  must  be  to  excite  both  kinds 
of  vibrations,  and  then  the  matter  is  more  complicated.  It  would 
seem  that  so  long  as  the  constraining  action  of  the  bow  lasts,  both 
vibrations  are  forced  to  keep  the  same  time,  and  the  effect  is 
much  the  same  as  in  the  case  of  symmetry.  But  on  withdrawal 
of  the  bow  the  free  vibrations  which  then  ensue  take  place  each  in 
its  proper  frequency,  and  a  phase  difference  soon  arises  by  which 
the  effects  are  modified. 

Let  us  suppose  that  the  origin  of  0  is  so  chosen  in  relation 
to  the  irregularities  that  the  types  of  vibration  are  represented 
by  cos  nO,  sin  nO.  Then  in  general  the  free  vibrations,  resulting 

frx>m  the  action  of  the  bow  at  an  arbitrary  point  of  the  circum- 
ference, may  be  taken  to  be 

cosna  sin  n^  cos  pi  —  sin  na  cos  n^  cos  (pi  +  e)   (1), 

where  e  is  the  difference  of  phase  which  has  accumulated  since 
the  commencement  of  the  free  vibrations.  In  the  case  of 

sjrmmetry  6  =  0,  and  (1)  becomes 

sin  n(^  — a)  cos  pi   (2), 

1  Ann.  Chim.,  vol.  86,  p.  267,  1827. 
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which  represents  a  fixed  nodal  system 

e^a  +  miir/n)   (3), 

in  any  arbitrary  position  depending  upon  the  point  of  application 
of  the  bow.  A  similar  fixity  of  the  nodal  system  occurs,  in  spite 
of  the  variable  €,  when  a  is  so  chosen  that  cos  na  «>  0  or  sin  na  ==  0. 
But  in  general  there  is  no  fixed  nodal  system.  When  €  is  a 
multiple  of  27r,  that  is  when  the  two  vibrations  are  restored  to 
the  same  phase,  there  is  a  nodal  system  represented  by  (3).  And 
when  €  is  an  odd  multiple  of  tt,  so  that  the  two  vibrations  are  in 
opposite  phases,  we  have  in  place  of  (2) 

8inw(^  +  a)cosp^   (4), 
with  a  nodal  system 

5  =  -a-f  m(7r/n)   (5). 

In  these  cases  there  is  a  nodal  system,  and  in  a  sense  the  system 
may  be  said  to  oscillate  between  the  positions  given  by  (3)  and  (5) ; 
but  it  must  not  be  overlooked  that  at  intermediate  times  there  is 

no  true  nodal  system  at  all.     Thus,  when  e  =  Jtt,  (1)  becomes 

cos  na  sin  n0  cospt  +  sin  na  cos  nO  sin  pt 

The  squared  amplitude  of  this  motion  is 

cos'  na  sin'  nd  +  sin'  na  cos*  nO, 

a  quantity  which  does  not  vanish  for  any  value  of  0.  In  general 
the  squared  amplitude  is 

cos'  na  sin'  n6  -h  sin'  na  cos'  nd  -2  cos  na  sin  na  cos  nO  sin  nO  cos  e, 

or,  as  it  may  also  be  written, 

^  — ^cos2na  cos  2n0  — ^sin2na  sin  2n0  cose   (6). 

This  quantity  is  a  maximum  or  a  minimum  when 

tan  2ndsscos€  tan2na   (7). 

The  minimum  of  motion  thus  oscillates  backwards  and  forwards 

between  tf  =  +  a  and  ̂   =  —  a ;  but  as  we  have  seen,  it  is  only  in 
these  extreme  positions  that  the  minimum  is  zero. 

A  like  phenomenon  occurs  during  the  free  vibrations  of  a 
circular  membrane,  or  in  fact  of  any  system  of  revolution  such 

that  the  position  of  nodal  lines  is  arbitrary  so  long  as  the 
symmetry  is  complete.] 
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The  two  other  cases  of  a  circular  plate  in  which  the  edge 
is  either  clamped  or  siipported  would  be  easier  than  the  preceding 
in  their  theoretical  treatment,  but  are  of  less  practical  interest  on 
account  of  the  difficulty  of  experimentally  realising  the  conditions 

assumed.  The  general  result  that  the  nodal  qrstem  is^compoeed 
of  concentric  circles,  and  diameters  symmetrically  distributed,  is 
applicable  to  all  the  three  cases. 

221a.  The  use  in  the  telephone  of  a  thin  circular  plate 
clamped  at  the  edge  lends  a  certain  interest  to  the  calculation  of 
the  periods  and  modes  of  vibration  of  such  a  plate.  It  will  suffice 
to  consider  the  sjrmmetrical  modes. 

By  (5)  §  218  we  may  take  as  representing  the  motion  in 
this  case 

w^Jo(kr)'¥\Jo{ikr)^Jo{kr)'\-\Io{kr)   (1), 
from  which 

^  =  J-;(Jtr)  +  i\Jo'(»AT)  =  -/,(AT)  +  X/x(AT)   (2), 
where  we  write 

/o(^)  =  /o(i«)  =  l+|  +  2i^  +   (3), 

Ii (^)  ̂ iJo{iz)  =  2  +  2^  +  2M^ "^   (*^- 

Since  the  plate  is  clamped  at  r  =  a,  both  w  and  dw/dr  must 
there  vanish.  Hence,  writing  ka^z,  we  get  as  the  frequency 

equation 

Mz)'^i,(zr^   (^>- 
In  (5)  /i  and  Iq  are  both  positive,  so  that  the  signs  of  Ji  and  J^ 

must  be  opposite.  Hence  by  Table  B  §  206  the  first  root  must 

lie  between  2*4  and  3*8,  the  second  between  5*5  and  7*0,  and 
so  on.  The  values  of  the  earlier  roots  might  be  obtained  without 
much  difficulty  from  the  series  for  /o  and  Ii  by  using  the  table 

§  200  for  t/o  Ai^d  t/i ;  but  it  will  be  convenient  for  the  present  and 

further  purposes  to  give  a  short  table  ̂   of  the  functions  /«  and  /^ 
themselvea  For  large  values  of  the  argument  descending  series, 

analogous  to  (10)  §  200,  may  be  employed. 

^  Caloolated  by  A.  Lodge,  Brit.  An,  Rep.y  1889. 
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1-6 
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19-0926 16*8626 

1-8 
1-9896 1-3172 4-8 22-7937 20*2528 

20 2-2796 
1-5906 

5-0 27-2399 24-3356 

2*2 
2*6291 

1-9141  1 
5-2 

32-5836 29-2543 

2*4 
3-0493 2-2981 

5-4 
39-0088 35*1821 

2-6 
3-5533 2*7554 5*6 46-7376 42-3283 

2-8 
4-1573 

33011 5*8 
56-0381 50-9462 

, 
6-0 

67-2344 61-3419 

The  first  root  of  (5)  is  ̂  =  3*20.  This  then  is  the  value  of  ka 
for  the  gravest  sjrmmetrical  vibration.  The  next  value  oi  z  is 

about  6'3.  Since  the  frequency  varies  as  i*  (§  217),  the  interval 
between  the  tones  is  nearly  two  octaves. 

Returning  to  the  first  root,  we  have  for  the  fi^uency  (n) 

§217, 

_  p  _(3'2)«c'_      (3-2) Vg. A 

(6). 

27r        2wa«        27ra«  V3/»  (i  - /a«J   

This  is  the  general  formula.     For  rough  calculations  fi*  in  the 
denominator  may  be  omitted.     If  for  the  case  of  iron  we  take 

p  ̂  7-7,    g  =  20  X  10" 
2-4  X  10».2A we  find 

n  = 

a' 

(7), 

2h  and  a  being  expressed  in  centimetres. 

A  telephone  plate  measured  by  the  author  gave 

a  =  2-2,    2A  =  020. 

According  to  these  values 

n  =s  991  vibrations  per  second. 

222.  We  have  seen  that  in  general  Chladni's  figures  as  traced 
by  sand  agree  very  closely  with  the  circles  and  diameters  of 
theory;  but  in  certain  cases  deviations  occur,  which  are  usually 
attributed  to  irregularities  in  the  plate.     It  must  however  be  re- 
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membered  that  the  vibrations  excited  by  a  bow  are  not  strictly 
speaking  free,  and  that  their  periods  are  therefore  liable  to  a 
certain  modification.  It  may  be  that  under  the  action  of  the  bow 
two  or  more  normal  component  vibrations  coexist.  The  whole 
motion  may  be  simple  harmonic  in  virtue  of  the  external  force, 
although  the  natural  periods  would  be  a  little  different.  Such  an 

explanation  is  suggested  by  the  regular  character  of  the  figures 
obtained  in  certain  cases. 

Another  cause  of  deviation  may  perhaps  be  found  in  the 
manner  in  which  the  plates  are  supported.  The  requirements  of 
theory  are  often  difficult  to  meet  in  actual  experiment  When 

this  is  so,  we  may  have  to  be  content  with  an  imperfect  compari- 
son ;  but  we  must  remember  that  a  discrepancy  may  be  the  fault 

of  the  experiment  as  well  as  of  the  theory. 

[In  the  ordinary  use  of  sand  to  investigate  the  vibrations  of 
flat  plates  and  membranes  the  movement  to  the  nodes  is  irregular 
in  its  character.  If  a  grain  be  situated  elsewhere  than  at  a  node, 
it  is  made  to  jump  by  a  sufficiently  vigorous  transverse  vibration. 
The  result  may  be  a  movement  either  towards  or  from  a  node ; 
but  after  a  succession  of  such  jumps  the  grain  ultimately  finds  its 
way  to  a  node  as  the  only  place  where  it  can  remain  undisturbed. 
Grains  which  have  already  arrived  at  a  node  remain  there,  while 
others  are  constantly  shifting  their  position. 

It  was  found  by  Savart  that  very  fine  powder,  such  as  lyco- 
podium,  behaves  differently  from  sand.  Instead  of  collecting  at 
the  nodes,  it  heaps  itself  up  at  the  places  of  greatest  motion. 

This  effect  was  traced  by  Faraday*  to  the  influence  of  currents  of 
air,  themselves  the  result  of  the  vibration.  In  a  vacuum  all 

powders  move  to  the  nodes. 

In  some  cases  the  movement  of  sand  to  the  nodes,  or  to  some 

of  them,  takes  place  in  a  more  direct  manner  as  the  result  of 
friction.  Thus,  in  his  investigation  of  the  longitudinal  vibrations 

of  thin  narrow  strips  of  glass,  held  horizontally,  Savart*  observed 
the  delineation  of  nodes  apparently  dependent  upon  an  accom- 

paniment of  vibrations  of  a  transverse  character.  The  special 

peculiarity  of  this  phenomenon  was  the  non-correspondence  of  the 
lines  traced  by  sand  upon  the  two  faces  of  the  glass  when  tested 

1  On  a  Peoaliar  Class  of  Aoonstical  Figures,  Phil,  Trans.,  1S81,  p.  299. 
<  Am.  d.  Chim,,  vol.  U,  p.  113,  1S20. 
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in  succession,  a  fact  sufficient  to  shew  that  the  transverse  motion 

was  connected  with  a  failure  of  uniformity.  In  consequence  of 
this  there  are  developed  transverse  vibrations  of  the  same  (high) 
pitch  as  that  of  the  principal  longitudinal  motion,  and  therefore 
attended  with  many  nodes.  These  nodes  are  of  course  the  same 
whichever  face  of  the  glass  is  uppermost,  and  it  might  be  supposed 
that  they  would  all  be  indicated  by  the  sand,  as  would  happen  if 
the  transverse  vibrations  existed  alone.  But  the  combination  of 

the  two  kinds  of  motion  causes  a  creeping  of  the  sand  towards  the 
alternate  nodes,  the  movements  of  the  sand  at  corresponding 
points  on  the  two  sides  of  the  plate  being  always  in  opposite 
directions.  On  the  one  side  an  inwards  longitudinal  motion  (for 
example)  is  attended  by  an  upwards  transverse  motion,  but  when 
the  plate  is  reversed  the  same  inwards  longitudinal  motion  is 
associated  with  a  transverse  motion  directed  downwards.  If  there 

were  no  transverse  motion,  the  longitudinal  force  upon  any 
particle  resulting  from  friction  would  vanish  in  the  long  run,  but 
in  consequence  of  the  transverse  motion  this  balance  is  upset,  and 
in  a  manner  different  upon  the  two  sides  of  the  plate.  The  above 
considerations  appear  to  afford  sufficient  ground  for  an  explanation 
of  the  remarkable  phenomenon  observed  by  Savart,  but  an  attempt 
to  follow  the  matter  further  into  detail  would  lead  us  too 
far\] 

223.  The  first  attempt  to  solve  the  problem  with  which  we 
have  just  been  occupied  is  due  to  Sophie  Germain,  who  succeeded 
in  obtaining  the  correct  differential  equation,  but  was  led  to 
erroneous  boundary  conditions.  For  a  free  plate  the  latter  part  of 

the  problem  is  indeed  of  considerable  difficulty.  In  Poisson's 
memoir  *Sur  T^quilibre  et  le  mouvement  des  corps  flastiquesV 
that  eminent  mathematician  gave  three  equations  as  necessary  to  be 
satisfied  at  all  points  of  a  free  edge,  but  Eirchhoff  has  proved  that 
in  general  it  would  be  impossible  to  satisfy  them  alL  It  happens, 
however,  that  an  exception  occurs  in  the  case  of  the  symmetrical 
vibrations  of  a  circular  plate,  when  one  of  the  equations  is  true 

identically.  Owing  to  this  peculiarity,  Poisson's  theory  of  the 
symmetrical  vibrations  is  correct,  notwithstanding  the  error  in  his 
view  as  to  the  boundary  conditions.     In  1850  the  subject  was 

^  See  Terqnem,  C.  12.,  zlyx.,  p.  775,  1858. 
2  Mim.  de  VAcad.  d.  Sc.  b,  Par,    1829. 

B.  24 
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resumed  by  Eirchhoff  ̂   who  first  gave  the  two  equations  appropriate 
to  a  free  edge,  and  completed  the  theory  of  the  vibrations  of  a 
circular  disc. 

224.  The  correctness  of  Earchhoff's  boundary  equations  has 
been  disputed  by  Mathieu',  who,  without  explaining  where  he 
considers  EirchhofiTs  error  to  lie,  has  substituted  a  different  set  of 

equations.  He  proves  that  if  u  and  u  be  two  normal  functions,  so 

that  w^ucospt,  w=iu' cos p't  are  possible  vibrations,  then 

(p^  -  p'^)  j  j  uu' dxdy 

^c^  I  d8\u ,d^^u     -,    du'     -,  ,du        dVW an  an  an  an ,(1). 

This  follows,  if  it  be  admitted  that  u,  v!  satisfy  respectively 
the  equations 

c*  V^u^p^u,      c*  V*i£' «  p'^u\ 

Since  the  left-hand  member  is  zero,  the  same  must  be  true  of 

the  right-hand  member;  and  this,  according  to  Mathieu,  cannot 

be  the  case,  unless  at  all  points  of  the  boundary  both  u  and  u' 
satisfy  one  of  the  four  following  pairs  of  equations : 

u  =0  I  V«u  =0 u   =0  1-    =0 
dn 

an       J  dn         J  J  dn J 

Y ' 

The  second  pair  would  seem  the  most  likely  for  a  free  edge,  but 
it  is  found  to  lead  to  an  impossibility.  Since  the  first  and  third 
pairs  are  obviously  inadmissible,  Mathieu  concludes  that  the  fourth 
pair  of  equations  must  be  those  which  really  express  the  condition 
of  a  free  edge.  In  his  belief  in  this  result  he  is  not  shaken  by  the 
fisict  that  the  corresponding  conditions  for  the  free  end  of  a  bar 

would  be  du/dx  =  0,  d^u/da^  =  0,  the  first  of  which  is  contradicted 
by  the  roughest  observation  of  the  vibration  of  a  large  tuning- 
fork. 

^  Crelle,  t.  zl.  p.  51.    Ueber  das  Oleichgewicht  und  die  Bewegnng  einer  elas- 
tischen  Soheibe. 

>  LiouviUe,  t.  ziv.  1869. 
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The  fact  is  that  although  any  of  the  four  pairs  of  equations 
would  secure  the  evanescence  of  the  boundary  integral  in  (1),  it 

does  not  follow  conversely  that  the  integral  can  be  made  to  vanish 

in  no  other  way;  and  such  a  conclusion  is  negatived  by  EarchhofiTs 

investigation.  There  are  besides  innumerable  other  cases  in 

which  the  integral  in  question  would  vanish,  all  that  is  really 
necessary  being  that  the  boundary  appliances  should  be  either  at 
rest,  or  devoid  of  inertia. 

226.  The  vibrations  of  a  rectangular  plate,  whose  edge  is 
supported,  may  be  easily  investigated  theoretically,  the  normal 
functions  being  identical  with  those  applicable  to  a  membrane  of 
the  same  shape,  whose  boundary  is  fixed.     If  we  assume 

w  =  sm-       sm  —j-^  cospt   (1), 

we  see  that  at  all  points  of  th^  boundary, 

w  =  0,      d'wld^=^0,      d^w/df=^0, 

which  secure  the  fulfilment  of  the  necessary  conditions  (§  215). 

The  value  of  p,  found  by  substitution  in  c^V*w^p^w, 

is 

^-^H?+S   <2)' 
shewing  that  the  analogy  to  the  membrane  does  not  extend  to  the 
sequence  of  tones. 

It  is  not  necessary  to  repeat  here  the  discussion  of  the  primary 
and  derived  nodal  systems  given  in  Chapter  ix.  It  is  enough  to 
observe  that  if  two  of  the  fundamental  modes  (1)  have  the  same 
period  in  the  case  of  the  membrane,  they  must  also  have  the  same 
period  in  the  case  of  the  plate.  The  derived  nodal  systems  are 
accordingly  identical  in  the  two  cases. 

The  generality  of  the  value  of  w  obtained  by  compounding 
with  arbitrary  amplitudes  and  phases  all  possible  particular  solu- 

tions of  the  form  (1)  requires  no  fresh  discussion. 

Unless  the  contrary  assertion  had  been  made,  it  would  have 
seemed  unnecessary  to  say  that  the  nodes  of  a  supported  plate 

have  nothing  to  do  with  the  ordinary  Chladni's  figures,  which 
belong  to  a  plate  whose  edges  are  free. 

24—2 
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The  realization  of  the  conditions  for  a  supported  edge  is 
scarcely  attainable  in  practice.  Appliances  are  required  capable 
of  holding  the  boundaiy  of  the  plate  at  rest,  and  of  such  a  nature 
that  they  give  rise  to  no  couples  about  tangential  axes.  We  may 
conceive  the  plate  to  be  held  in  its  place  by  friction  against  the 
walls  of  a  cylinder  circumscribed  closely  round  it. 

226.  The  problem  of  a  rectangular  plate,  whose  edges  are 
free,  is  one  of  great  diflSculty,  and  has  for  the  most  pcui;  resisted 
attacks  If  we  suppose  that  the  displacement  w  is  independent 
of  y,  the  general  differential  equation  becomes  identical  with  that 
with  which  we  were  concerned  in  Chapter  viil  If  we  take  the 
solution  corresponding  to  the  case  of  a  bar  whose  ends  are  free, 
and  therefore  satisfying  dhu/da^==0,  dhu/da^^^O,  when  a?  =  0  and 
when  a?  =  a,  we  obtain  a  value  of  w  which  satisfies  the  general 
differential  equation,  as  well  as  the  pair  of  boundary  equations 

dx 
da^  dy\ 

=  0 

d^w        d^w      ̂  \   (1). 

which  are  applicable  to  the  edges  parallel  to  y ;  but  the  second 
boundary  condition  for  the  other  pair  of  edges,  namely 

^  +  ̂dii  =  °    <2). 
will  be  violated,  unless  fi^O.  This  shews  that,  except  in  the 
case  reserved,  it  is  not  possible  for  a  free  rectangular  plate  to 

vibrate  after  the  manner  of  a  bar;  unless  indeed  as  an  approxima- 
tion, when  the  length  parallel  to  one  pair  of  edges  is  so  great  that 

the  conditions  to  be  satisfied  at  the  second  pair  of  edges  may  be 
left  out  of  account. 

Although  the  constant  ^i  (which  expresses  the  ratio  of  lateral 
contraction  to  longitudinal  extension  when  a  bar  is  drawn  out) 

is  positive  for  every  known  substance,  in  the  case  of  a  few  sub- 
stances— cork,  for  example — it  is  comparatively  very  small  There 

is,  so  far  as  we  know,  nothing  absurd  in  the  idea  of  a  substance 

^  [The  case  where  two  opposite  edges  are  free  while  the  other  two  edges  are 
supported,  has  been  discussed  by  Yoigt  {Qdttingen  Nachriekten,  1898).] 
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for  which  fi  vanishes  The  investigation  of  the  problem  under 
this  condition  is  therefore  not  devoid  of  interest,  though  the  results 
will  not  be  strictly  applicable  to  ordinary  glass  or  metal  plates, 
for  which  the  value  of /tt  is  about  ̂ } 

liuiy  ?^,  &c.  denote  the  normal  functions  for  a  free  bar  inves- 
tigated in  Chapter  viii.,  corresponding  to  2,  3,    nodes,  the 

vibrations  of  a  rectangular  plate  will  be  expressed  by 

w^Ui  {xla)y    \o  =  Ua  {xja),  &c., 

or  w^  Ui  (y/b),     xo=^  ̂ iiy/b),  &c. 

In  each  of  these  primitive  modes  the  nodal  system  is  composed 
of  straight  lines  parallel  to  one  or  other  of  the  edges  of  the 

rectangle.  When  6  =  a,  the  rectangle  becomes  a  square,  and  the 
vibrations 

w  =  tin  {xja),    w^Un  (y/a), 

having  necessarily  the  same  period,  may  be  combined  in  any  pro- 
portion, while  the  whole  motion  still  remains  simple  harmonia 

Whatever  the  proportion  may  be,  the  resulting  nodal  curve  will  of 
necessity  pass  through  the  points  determined  by 

Un  (x/a)  =  0,     Un  (y/a)  =  0. 

Now  let  us  consider  more  particularly  the  case  of  n  =  1.  The 
nodal  system  of  the  primitive  mode,  w  =  Uj  (x/a),  consists  of  a 
pair  of  straight  lines  parallel  to  y,  whose  distance  from  the  nearest 

edge  is  '2242  a.  The  points  in  which  these  lines  are  met  by  the 
corresponding  pair  for  w  ==  v^  (2/l<^)»  are  those  through  which  the 
nodal  curve  of  the  compound  vibration  must  in  all  cases  pasa  It 
is  evident  that  they  are  symmetrically  disposed  on  the  diagonals 
of  the  square.  If  the  two  primitive  vibrations  be  taken  equal, 
but  in  opposite  phases  (or,  algebraically,  with  equal  and  opposite 
amplitudes),  we  have 

w=  iti  (xfa)  -  Ml  (y/a)   (3), 

^  In  order  to  make  a  plate  of  material,  for  which  fi  is  not  zero,  vibrate  in  the 
manner  of  a  bar,  it  would  be  necessary  to  apply  constraining  couples  to  the  edges 
parallel  to  the  plane  of  bending  to  prevent  the  assumption  of  a  contrary  curvature. 
The  efifect  of  these  couples  would  be  to  raise  the  pitch,  and  therefore  the  calcu- 

lation founded  on  the  type  proper  to  fi=0  would  give  a  result  somewhat  higher  in 
pitch  than  the  truth. 



374 VIBRATIONS   OF   PLATES. 

[226. 
from  which  it  is  evident  that  w  vanishes  when  a?  =  y,  that  is  along 
the   diagonal   which    passes    through    the   origin.        Fig.  41. 
That  w  will  also  vanish  along  the  other  diagonal 
follows  from  the  symmetry  of  the  functions,  and 
we  conclude  that  the  nodal  system  of  (3)  comprises 

both  the  diagonals  (Fig.  41).    This  is  a  well-known 
mode  of  vibration  of  a  square  plate. 

A  second  notable  case  is  when  the  amplitudes  are  equal  and 
their  phases  the  same,  so  that 

w  =  u^{x/a)-^u,(y/a)   (4). 

The  most  convenient  method  of  constructing  graphically 
the  curves,  for  which  w  =  const.,  is  that  employed  by  Maxwell 
in  similar  cases.  The  two  systems  of  curves  (in  this  instance 

straight  lines)  represented  by  i^i  (x/a)  =  const.,  u^  (y/ct)  =  const.,  are 
first  laid  down,  the  values  of  the  constants  forming  an  arith- 

metical progression  with  the  same  common  difference  in  the  two 
cases.  In  this  way  a  network  is  obtained  which  the  required 
curves  cross  diagonally.  The  execution  of  the  proposed  plan 
requires  an  inversion  of  the  table  given  in  Chapter  viii.,  §  178, 
expressing  the  march  of  the  function  Wj,  of  which  the  result  is  as 
follows : — 

w, 

X  :  a 

^1 

X  :  a 

+  1-00 

•5000 
-    -25 

•1871 •75 

•3680 

•50 

•1518 
•50 

•3106 

•75 

•1179 •25 

•2647 1-00 

•0846 
•00 

•2242 

r25 

•0517 

-1^50 

•0190 

The  system  of  lines  represented  by  the  above  values  of  x  (com- 
pleted symmetrically  on  the  ftirther  side  of  the  central  line)  and 

the  corresponding  system  for  y  are  laid  down  in  Fig.  42.  From 
these  the  curves  of  equal  displacement  are  deduced.  At  the 
centre  of  the  square  we  have  w  a  maximum  and  equal  to  2  on  the 

scale  adopted.  The  first  curve  proceeding  outwards  is  the  locus  of 

points  at  which  ti;  =  1.  The  next  is  the  nodal  line,  separating  the 
regions  of  opposite  displacement.     The  remaining  curves  taken  in 
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order  give  the  displacements  —  1,  —  2,  —  3.  The  numerically  great* 
est  negative  displacement  occurs  at  the  comers  of  the  aquare, 

where  it  amounts  to  2  x  1-643  =  3-290.' 

The  nodal  curve  thus  constructed  agrees  pretty  closely  with  the 

observations  of  Strehlke  *.  His  results,  which  refer  to  three  care- 
fully worked  plates  of  glass,  are  embodied  in  the  following  polar 

equations : 

-40143     -01711  -00127] 
r  =  -40143  +  -01721  cos  4(  +  -00127[  cos  St, 
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the  centre  of  the  square  being  pole.     From  these  we  obtain  for 

the  radius  vector  parallel  to  the  aides  of  the  square  (t  -  0)  -41980, 

'  Od  the  nodal  linei  ot »  «qnu-e  pUt«.    Phil.  Mag.  Angiut,  I9T8. 
•  Pogg.  Ann.  Vol.  cilvi.  p.  819, 1873. 
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•41981,  '4200,  while  the  calculated  result  is  '4154.  The  radius 

vector  measured  along  a  diagonal  is  *3856,  *d855,  *3864,  and  by 
calculation  '3900. 

By  crossing  the  network  in  the  other  direction  we  obtain  the 

locus  of  points  for  which  Wj  {xja)  —  Ui  (y/a)  is  constant,  which  are 
the  curves  of  constant  displacement  for  that  mode  in  which  the 
diagonals  are  nodal.  The  pitch  of  the  vibration  is  (according  to 
theory)  the  same  in  both  cases. 

^ 

Fig. 
48. 
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/ 

\\ 

\ 

\ 

/ 

1 

\ } 
/ \ 

The  primitive  modes  represented  by  w  =  m,  (a:/a)  or  w  =:  t*,  (y/a) 
may  be  combined  in  like  manner.     Fig.  43  shews  the  nodal  curve 
for  the  vibration 

w  =  ita  (a?/a)  ±  li,  (y/a)   (5). 

The  form  of  the  curve  is  the  same  relatively  to  the  other  diagonal, 
if  the  sign  of  the  ambiguity  be  altered. 
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227.  The  method  of  superposition  does  not  depend  for  its 

application  on  any  particular  form  of  normal  function.  Whatever 

the  form  may  be,  the  mode  of  vibration,  which  when  /tt  =  0 
passes  into  that  just  discussed,  must  have  the  same  period, 
whether  the  approximately  straight  nodal  lines  are  parallel  to 
a?  or  to  y.  If  the  two  synchronous  vibrations  be  superposed, 
the  resultant  has  still  the  same  period,  and  the  general  course 

of  its  nodal  system  may  be  traced  by  means  of  the  considera- 
tion that  no  point  of  the  plate  can  be  nodal  at  which  the 

primitive  vibrations  have  the  same  sign.  To  determine  exactly 
the  line  of  compensation,  a  complete  knowledge  of  the  primitive 
normal  functions,  ̂ nd  not  merely  of  the  points  at  which  they 
vanish,  would  in  general  be  necessary.  Doctor  Young  and  the 
brothers  Weber  appear  to  have  had  the  idea  of  superposition  as 
capable  of  giving  rise  to  new  varieties  of  vibration,  but  it  is  to  Sir 

Charles  Wheatstone  ^  that  we  owe  the  first  systematic  application 

of  it  to  the  explanation  of  Chladni's  figures.  The  results  actually 
obtained  by  Wheatstone  are  however  only  very  roughly  applicable 
to  a  plate,  in  consequence  of  the  form  of  normal  function  implicitly 

assumed.  In  place  of  Fig.  42  (itself,  be  it  remembered,  only  an 
approximation)  Wheatstone  finds  for  the  node  of  the  compound 
vibration  the  inscribed  square  shewn  in  Fig.  44.  Fig.  44. 
This  form  is  really  applicable,  not  to  a  plate  vi- 

brating in  virtue  of  rigidity,  but  to  a  stretched 
membrane,  so  supported  that  every  point  of  the 

circumference  is  free  to  move  along  lines  perpen- 
dicular to  the  plane  of  the  membrane.  The 

boundary    condition    applicable    under    these    circumstances    is 

,    =  0 ;  and  it  is  easy  to  shew  that  the  normal  functions  which 

involve  only  one  co-ordinate  are 

w  =s  cos  (m7ra?/a),  or  w  ==  cos  (rmry/ a), 

the  origin  being  at  a  comer  of  the  square.     Thus  the  vibration 

2'n'x  .         27ry  ._. w  =  coQ  —  -I- cos- — -    (1) 

has  its  nodes  determined  by 

TT  (a?  +  y)        Trix'-y)     ̂  
cos    ̂    ^cos     ̂        ̂ ^-Q, a  a 

1  PHI.  Trans.  1888. 
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whence    a?  +  y  =  ia    or    |a,    ora?  —  y  =  +  Ja,    equations    which 
represent  the  inscribed  square. 

If 
w  =  cos   cos  — - a  a (2), 

the  nodal  system  is  composed  of  the  two  diagonals.  This  result, 
which  depends  only  on  the  symmetry  of  the  normal  functions,  is 
strictly  applicable  to  a  square  plate. 

When  m  =  3, 
  (3), 37ra?  .        Ziry 

w  =  cos   h  cos  —  - a  a 

and  the  equations  of  the  nodal  lines  are 

a         5a a «?-y  =  ±o» 

shewn  in  Fig.  45.  If  the  other  sign  be  taken,  we 

obtain  a  similar  figure  with  reference  to  the  other 

diagonal. 

When  wi  =  4, 

47r/c  47ry 
w  =  cos   h  cos a a 

(4), Fig.  46. 

giving  the  nodal  lines 

a    Sa    5a    7a  .a      .  3a  .^,      .^. 

^■*"^"4'  T'T*   4"'    *"y=±4'   ±-4(F^?*6)- 

With  the  other  sign 

we  obtain 

47ra?  47ry 
w  =  cos   cos  — - a a 

«  +  y  =  2'^'T'       a?--y=0,   ±2  (Fig.  47), 

representing  a  system  composed  of  the  diagonals, 
together  with  the  inscribed  square. 

These  forms,  which  are  strictly  applicable  to  the  membrane, 
resemble  the  figures  obtained  by  means  of  sand  on  a  square  plate 
more  closely  than  might  have  been  expected.  The  sequence  of 
tones  is  however  quite  diflferent.  From  §  176  we  see  that,  if  fi  were 
zero,  the  interval  between  the  form  (43)  derived  from  three 

primitive  nodes,  and  (41)  or  (42)  derived  from  two,  would  be 
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1*4629  octaves;  and  the  interval  between  (41)  or  (42)  and  (46)  or 
(47)  would  be  2*43o8  octaves.  Whatever  may  be  the  value  of  /x  the 
forms  (41)  and  (42)  should  have  exactly  the  same  pitch,  and  the 

same  should  be  true  of  (46)  and  (47).  With  respect  to  the  first- 

mentioned  pair  this  result  is  not  in  agreement  with  Chladni's 
observations,  who  found  a  difference  of  more  than  a  whole  tone, 

(42)  giving  the  higher  pitch.  If  however  (42)  be  left  out  of 

account,  the  comparison  is  more  satisfactory.  According  to  theorj' 

(m  =  0),  if  (41)  gave  d,  (43)  should  give  g'  - ,  and  (46),  (47) 
should  give  (7"  +  .  Chladni  found  for  (43)  5r'jf  +  ,  and  for  (46), 
(47)  g'%  and  g*'t-\-  respectively. 

228.  The  gravest  mode  of  a  square  plate  has  yet  to  be  consi- 
dered. The  nodes  in  this  case  are  the  two  lines  drawn  through  the 

middle  points  of  opposite  sides.  That  there  must  be  such  a  mode 
will  be  shewn  presently  from  considerations  of  symmetry,  but 
neither  the  form  of  the  normal  function,  nor  the  pitch,  has  yet 

been  determined,  even  for  the  particular  case  of  /a  =  0.  A  rough 
calculation  however  may  be  founded  on  an  assumed  type  of 
vibration. 

If  we  take  the  nodal  lines  for  axes,  the  form  w^xy  satisfies 

V*w  =:  0,  as  well  as  the  boundary  conditions  proper  for  a  free  edge 
at  all  points  of  the  perimeter  except  the  actual  comers.  This  is 
in  fact  the  form  which  the  plate  would  assume  if  held  at  rest  by 

four  forces  numerically  equal,  acting  at  the  comers  perpendicu- 
larly to  the  plane  of  the  plate,  those  at  the  ends  of  one  diagonal 

being  in  one  direction,  and  those  at  the  ends  of  the  other  diagonal 
in  the  opposite  direction.  From  this  it  follows  that  w^xycospt 
would  be  a  possible  mode  of  vibration,  if  the  mass  of  the  plate 
were  concentrated  equally  in  the  four  comers.  By  (3)  §  214,  we 
see  that 

^=3-(rr^r'^'-p*   ^i>' inasmuch  as 

d^wjdx"^  =  d^w/dy^  =  0,      d^wjdxdy  =  Qospt 
For  the  kinetic  energy,  if  p  be  the  volume  density,  and  M  the 
additional  mass  at  each  comer, 

y = ijp»  sin^pt  W^''  l^''  2phahf^dxdy  H-  \Ma^\ 

-W^^pt[^^l  +  %M]   (2). 



380  VIBRATIONS  OF   PLATES.  [228. 

Hence 

1  _pil+ti)a*/.  .  -.if' 1  _p{l+ti)a*/  M\  ,„. 

where  if'  denotes  the  mass  of  the  plate  without  the  loads.  This 
result  tends  to  become  accurate  when  M  is  relatively  great ;  other- 

wise by  §  89  it  is  sensibly  less  than  the  truth.  But  even  when 
Jf  =  0,  the  error  is  probably  not  very  great.  In  this  case  we 
should  have 

^=._9M'_  (4) 

giving  a  pitch  which  is  somewhat  too  high.  The  gravest  mode 
next  after  this  is  when  the  diagonals  are  nodes,  of  which  the  pitch, 

if  /Lt  =  0,  would  be  given  by 

„  ̂  qh^  (4'7300y  . 

^  "pa'         3      "   ^  ̂' (see  §  174). 

We  may  conclude  that  if  the  material  of  the  plate  were  sucli 

that  /A  =  0,  the  interval  between  the  two  gravest  tones  would 

be  somewhat  greater  than  that  expressed  by  the  ratio  1*318. 
Chladni  makes  the  interval  a  fifth. 

229.  That  there  must  exist  modes  of  vibration  in  which 

the  two  shortest  diameters  are  nodes  may  be 
inferred  from  such  considerations  as  the  following. 
In  Fig.  (48)  suppose  that  GH  is  a  plate  of  which 
the  edges  HO,  00  are  supported,  and  the  edges 
OC,  CH  free.  This  plate,  since  it  tends  to  a 
definite  position  of  equilibrium,  must  be  capable 
of  vibrating  in  certain  fundamental  modes.  Fixing 
our  attention  on  one  of  these,  let  us  conceive  a 

distribution  of  w  over  the  three  remaining  quadrants,  such  that  in 
any  two  that  adjoin,  the  values  of  w  are  equal  and  opposite  at 
points  which  are  the  images  of  each  other  in  the  line  of  separation. 
If  the  whole  plate  vibrate  according  to  the  law  thus  determined, 
no  constraint  will  be  required  in  order  to  keep  the  lines  OE,  FH 
fixed,  and  therefore  the  whole  plate  may  be  regarded  as  free.  The 
same  argument  may  be  used  to  prove  that  modes  exist  in  which 
the  diagonals  are  nodes,  or  in  which  both  the  diagonals  and  the 
diameters  just  considered  are  together  nodal. 
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The  principle  of  symmetry  may  also  be  applied  to  other  forms 
of  plate.  We  might  thus  infer  the  possibility  of  nodal  diameters 
in  a  circle,  or  of  nodal  principal  axes  in  an  ellipse.     When  the 

Fig.  49.  Fig.  60.  Fig.  61. 

boundary  is  a  regular  hexagon,  it  is  easy  to  see  that  Figs.  (49), 
(50),  (51)  represent  possible  forms. 

It  is  interesting  to  trace  the  continuity  of  Chladni's  figures,  as 
the  form  of  the  plate  is  gradually  altered.  In  the  circle,  for 
example,  when  there  are  two  perpendicular  nodal  diameters,  it  is  a 

matter  of  indifference  as  respects  the  pitch  and  the  type  of  vibra- 
tion, in  what  position  they  be  taken.  As  the  circle  develops  into 

a  square  by  throwing  out  comers,  the  position  of  these  diameters 

becomes  definite.  In  the  two  alternatives  the  pitch  of  the  vibra- 
tion is  different,  for  the  projecting  comers  have  not  the  same  effi- 

ciency in  the  two  cases.  The  vibration  of  a  square  plate  shewn  in 
Fig.  (42)  corresponds  to  that  of  a  circle  when  there  is  one  circular 
node.  The  correspondence  of  the  graver  modes  of  a  hexagon  or 
an  ellipse  with  those  of  a  circle  may  be  traced  in  like  manner. 

230.  For  plates  of  uniform  material  and  thickness  and  of 
invariable  shape,  the  period  of  the  vibration  in  any  fundamental 
mode  varies  as  the  square  of  the  linear  dimension,  provided  of 
course  that  the  boundary  conditions  are  the  same  in  all  the  cases 
compared.  When  the  edges  are  clamped,  we  may  go  further 
and  assert  that  the  removal  of  any  external  portion  is  attended 
by  a  rise  of  pitch,  whether  the  material  and  the  thickness  be 
uniform,  or  not. 

Let  AB  be  a  part  of  a  clamped  edge  (it  is  of  no  consequence 
whether  the  remainder  of  the  boundary  be  clamped,  or  not),  and 
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let  the  piece  ACBD  be  removed,  the  new  edge  ADB  being  also 
clamped.  The  pitch  of  any  fundamental  vibration  is  sharper 
than  before  the  change.  This  is  evident,  since  the  altered 
vibrations  might  be  obtained  from  the  original  system  by  the 
introduction  of  a  constraint  clamping  the  edge  ADB,  The  effect 
of  the  constraint  is  to  raise  the  pitch  of  every  component,  and 
the  portion  ACBD  being  plane  and  at  rest  throughout  the  motion, 
may  be  removed.  In  order  to  follow  the  sequence  of  changes 
with  greater  security  from  error,  it  is  best  to  suppose  the  line 
of  clamping  to  advance  by  stages  between  the  two  positions 
ACB,  ADB,  For  example,  the  pitch  of  a  uniform  clamped  plate 
in  the  form  of  a  regular  hexagon  is  lower  than  for  the  inscribed 
circle  and  higher  than  for  the  circumscribed  circle. 

When  a  plate  is  free,  it  is  not  true  that  an  addition  to 
the  edge  always  increases  the  period.  In  proof  of  this  it  may  be 
sufficient  to  notice  a  particular  case. 

AB  is  a  narrow  thin  plate,  itself  without  inertia  but  carrying, 
loads  B,t  A,  By  C,     It  is  clear  that  the  addition  to  the  breadth 

Fig.  53. 
  ^ 

•A. 

•C 

B* 

1 

indicated  by  the  dotted  line  would  augment  the  stiffness  of  the 
bar,  and  therefore  lessen  the  period  of  vibration.  The  same 
consideration  shews  that  for  a  uniform  free  plate  of  given  area 
there  is  no  lower  limit  of  pitch ;  for  by  a  sufficient  elongation 
the  period  of  the  gravest  component  may  be  made  to  exceed 
any  assignable  quantity.  When  the  edges  are  clamped,  the 
form  of  gravest  pitch  is  doubtless  the  circle. 

If  all  the  dimensions  of  a  plate,  including  the  thickness,  be 
altered  in  the  same  proportion,  the  period  is  proportional  to  the 
linear  dimension,  as  in  every  case  of  a  solid  body  vibrating  in 
virtue  of  its  own  elasticity. 

The  period  also  varies  inversely  as  the  square  root  of  Young's 
modulus,  if  fi  be  constant,  and  directly  as  the  square  root  of  the 
mass  of  unit  of  volume  of  the  substance. 
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231.  Experimenting  with  square  plates  of  thin  wood  whose 

grain  ran  parallel  to  one  pair  of  sides,  Wheatstone^  found  that 
the  pitch  of  the  vibrations  was  different  according  as  the  ap- 

proximately straight  nodal  lines  were  parallel  or  perpendicular 
to  the  fibre  of  the  wood.  This  effect  depends  on  a  variation 
in  the  flexural  rigidity  in  the  two  directions.  The  two  sets  of 
vibrations  having  different  periods  cannot  be  combined  in  the 
usual  manner,  and  consequently  it  is  not  possible  to  make  such 
a  plate  of  wood  vibrate  with  nodal  diagonals.  The  inequality 
of  periods  may  however  be  obviated  by  altering  the  ratio  of  the 
sides,  and  then  the  ordinary  mode  of  superposition  giving  nodal 
diagonals  is  again  possible.     This  was  verified  by  Wheatstone. 

A  further  application  of  the  principle  of  superposition  is  due 

to  Konig*.  In  order  that  two  modes  of  vibration  may  combine, 
it  is  only  necessary  that  the  periods  agree.  Now  it  is  evident 
that  the  sides  of  a  rectangular  plate  may  be  taken  in  such  a 
ratio,  that  (for  instance)  the  vibration  with  two  nodes  parallel 
to  one  pair  of  sides  may  agree  in  pitch  with  the  vibration  having 
three  nodes  parallel  to  the  other  pair  of  sides.  In  such  a  case 
new  nodal  figures  arise  by  composition  of  the  two  primary  modes 
of  vibration. 

232.  When  the  plate  whose  vibrations  are  to  be  considered 
is  naturally  curved,  the  difficulties  of  the  question  are  generally 
much  increased.  But  there  is  one  case  in  which  the  complication 
due  to  curvature  is  more  than  compensated  by  the  absence  of  a 
free  edge ;  and  this  case  happens  to  be  of  considerable  interest,  as 
being  the  best  representative  of  a  bell  which  admits  of  simple 
analytical  treatment. 

A  long  cylindrical  shell  of  circular  section  and  uniform  thick- 
ness is  evidently  capable  of  vibrations  of  a  flexural  character 

in  which  the  axis  remains  at  rest  and  the  surface  cylindrical, 

while  the  motion  of  every  part  is  perpendicular  to  the  generating 
lines.  The  problem  may  thus  be  treated  as  one  of  two  dimensions 
only,  and  depends  upon  the  consideration  of  the  potential  and 
kinetic  energies  of  the  various  deformations  of  which  the  section 
is  capable.  The  same  analysis  also  applies  to  the  corresponding 
vibrations  of  a  ring,  formed  by  the  revolution  of  a  small  closed 
area  about  an  external  axis  (§  192  a). 

1  Phil  Trans,  1833. 

3  Pogg.  ̂ 7171. 1884,  czxii.  p.  288. 
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The  cylinder,  or  ring,  is  susceptible  of  two  classes  of  vibrations 
depending  respectively  on  extensibility  and  flexnral  rigidity,  and 
analogous  to  the  longitudinal  and  lateral  vibrations  of  straight 
bars.  When,  however,  the  cylinder  is  thin,  the  forces  resisting 

bending  become  small  in  comparison  with  those  by  which  ex- 
tension is  opposed;  and,  as  in  the  case  of  straight  bars,  the 

vibrations  depending  on  bending  are  graver  and  more  important 
than  those  which  have  their  origin  in  longitudinal  rigidity. 
In  the  limiting  case  of  an  infinitely  thin  shell  (or  ring),  the 
flexural  vibrations  become  independent  of  any  extension  of  the 

circumference  as  a  whole,  and  may  be  calculated  on  the  sup- 
position that  each  part  of  the  circumference  retains  its  natural 

length  throughout  the  motion. 

But  although  the  vibrations  about  to  be  considered  are 
analogous  to  the  transverse  vibrations  of  straight  bars  in  respect 
of  depending  on  the  resistance  to  flexure,  we  must  not  fall  into 
the  common  mistake  of  supposing  that  they  are  exclusively 
normal.  It  is  indeed  easy  to  see  that  a  motion  of  a  cylinder  or 
ring  in  which  each  particle  is  displaced  in  the  direction  of  the 
radius  would  be  incompatible  with  the  condition  of  no  extension. 
In  order  to  satisfy  this  condition  it  is  necessary  to  ascribe  to 
each  part  of  the  circumference  a  tangential  as  well  as  a  normal 

motion,  whose  relative  magnitudes  must  satisfy  a  certain  differ- 
ential equation.  Our  first  step  will  be  the  investigation  of  this 

equation. 

233.  The  original  radius  of  the  circle  being  a,  let  the  equi- 
librium position  of  any  element  of  the  circumference  be  defined 

by  the  vectorial  angle  0,  During  the  motion  let  the  polar  co- 
ordinates of  the  element  become 

r  =  a  +  Sr,     <f>='0  +  80. 

If  ds  represent  the  arc  of  the  deformed  curve  corresponding  to  add, 
we  have 

(dsy  =  (ad0y  =  (dSry  +  r^(d0  +  dS0y ; 

whence  we  find,  by  neglecting  the  squares  of  the  small  quantities 
8r,  80, 

Br     dS0     ̂  

T^W='   <!)• 
as  the  required  relation. 
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In  whatever  manner  the  original  circle  may  be  deformed  at 

time  t,  Sr  may  be  expanded  by  Fourier's  theorem  in  the  series 

Sr  =  a  {^icos  ̂   +  5isin  ̂   +  iljCos  2^  +  5asin  2^+ ... 

'\'AtCos80-\-Btsm80+...}   (2), 

and  the  corresponding  tangential  displacement  required  by  the 
condition  of  no  extension  will  be 

A  B 
S0=^-'A,sm0  +  B,cos0+...   ''Siu80+  —  coQ80-   (3), 8  8 

the  constant  that  might  be  added  to  80  being  omitted. 

If  <rad0   denote  the  mass  of  the  element  ad0,  the  kinetic 

energy  T  of  the  whole  motion  will  be 

+  (l  +  i)  (i.'  +  M  +  ...|   (4), 
the  products  of   the  co-ordinates  Ag,  B,  disappearing  in  the 
integration. 

We  have  now  to  calculate  the  form  of  the  potential  energy  V. 
Let  p  be  the  radius  of  curvature  of  any  element  ds ;  then  for  the 

corresponding  element  of  V  we  may  take  ̂ Bd8  {S  (1/p)}*,  where 
S  is  a  constant  depending  on  the  material  and  on  the  thickness. 
Thus 

Now 

and 

=  i5a  r7s-Yrfd    (5). 

llp  =  u  +  d^u/d<f>^, 

M  =  -  =  -  {1  —  ill  cos  <^  —  -Bi  sin  <^  —  . . . }, 

for  in  the  small  terms  the  distinction  between  <^  and  0  may  be 
neglected. 

Hence 

8  -  =  -  2  1  («» -  1 )  (^,  cos  «^  +  5,  sin  «<^) }, 

p     a R.  25 
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and 

F=  ̂ r {2 («» - 1)  (A, COS sd  +  B, sin 80)Yde 

=  TT  ̂  2  («« -  !)•  (4.' +  5.»)   (6). 

in  which  the  summation  extends  to  all  positive  integral  values 
of  8. 

The  term  for  which  «  =  1  contributes  nothing  to  the  potential 
energy,  as  it  corresponds  to  a  displacement  of  the  circle  as  a  whole, 
without  deformation. 

We  see  that  when  the  configuration  of  the  system  is  defined  as 

above  by  the  co-ordinates  Ai,  Bi,  &c.,  the  expressions  for  T  and  V 
involve  only  squares;  in  other  words,  these  are  the  normal  co- 

ordinates, whose  independent  harmonic  variation  expresses  the 
vibration  of  the  system. 

If  we  consider  only  the  terms  involving  cos  80,  sin  80,  we  have 
by  taking  the  origin  of  0  suitably, 

Sr  =  aA,coa80,      80^   ^sin«^   (7), 8 

while  the   equation  defining  the  dependence   of  A,  upon    the 
time  is 

<ra»(l  +  A)i.  +  ̂(s._l)M.  =  0   ....(8), 

from  which  we  conclude  that,  if  A,  varies  as  cos  (pt  —  e), 

This  result  was  given  by  Hoppe  for  a  ring  in  a  memoir  pub- 
lished in  Crelle,  Bd.  63, 1871.  His  method,  though  more  complete 

than  the  preceding,  is  less  simple,  in  consequence  of  his  not  re- 
cognising explicitly  that  the  motion  contemplated  corresponds  to 

complete  inextensibility  of  the  circumference. 

[In  the  application  of  (9)  to  a  ring  we  have,  §  192  a, 

where  q  is  Young's  modulus,  p  the  volume  density,  and  c  the 
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radius  of  the  circular  section.      For  the   cylindrical  shell,  (18) 
§  235  fir, 

B         4mnh*  ,     . 

^"3(m  +  w)p   ^     ̂' 
2h  denoting  the   thickness,  and  m,  n  the  elastic  constants  in 

Thomson  and  Tait's  notation.] 

According  to  Chladni  the  frequencies  of  the  tones  of  a  ring 
are  as 

3*  :  5»  :  7«  :  9^  ....;.... 

If  we  refer  each  tone  to  the  gravest  of  the  series,  we  find  for 
the  ratios  characteristic  of  the  intervals 

2-778,     5-445,     9,  13-44,  &c. 

The  corresponding  numbers  obtained  from  the  above  theoretical 
formula  (9),  by  making  8  successively  equal  to  2,  3,  4,  &c.,  are 

2-828,     5-423,     8-771,     1287,  &c., 

agreeing  pretty  nearly  with  those  found  experimentally. 

[Observations  upon  the  tones  of  thin  metallic  cylinders,  open 
at  one  end,  have  been  made  by  Fenkner  \  Since  the  pitch  proved 
to  be  very  nearly  independent  of  the  height  of  the  cylinders,  the 

vibrations  may  be  regarded  as  approximately  two-dimensional. 
In  accordance  with  (9),  (11),  Fenkner  found  the  frequency  propor- 

tional to  the  thickness  directly,  and  to  the  square  of  the  radius 
inversely.  As  regards  the  sequence  of  tones  from  a  given 

cylinder  ̂   the  numbers,  referred  to  the  gravest  («  =  2)  as  unity, 

were  267,  o'OO,  8*00,  12*00,  &c.  The  agreement  with  (9)  would 
be  improved  if  these  numbers  were  raised  by  about  -^  part, 
equivalent  to  an  alteration  in  the  pitch  of  the  gravest  tone. 

The  influence  of  rotation  of  the  shell  about  its  axis  has  been 

examined  by  Bryan'.  It  appears  that  the  nodes  are  carried 
round,  but  with  an  angular  velocity  less  than  that  of  the  rotation. 
If  the  latter  be  denoted  by  g>,  the  nodal  angular  velocity  is 

«»-l     , 

S*  +  l      -■ 

1  Wied.  Ann.  vol.  8,  p.  186,  1879. 
s  Melde,  Akustik,  Leipzig,  1883,  p.  223. 
8  Proc.  Camb,  Phil.  Soc.  vol.  vn.  p.  101, 1890. 

26—2 
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234.  When  «  =  1,  the  frequency  is  zero,  as  might  have  been 
anticipated.  The  principal  mode  of  vibration  corresponds  to  «  =  2, 

and  has  four  nodes,  distant  from  each  other  by  90*.  These  so- 
called  nodes  are  not,  however,  places  of  absolute  rest,  for  the 
tangential  motion  is  there  a  maximum.  In  fact  the  tangential 
vibration  at  these  points  is  half  the  maximum  normal  motion. 

In  general  for  the  8^  term  the  maximum  tangential  motion  is 
(1/^)  of  the  maximum  normal  motion,  and  occurs  at  the  nodes  of 
the  latter. 

When  a  bell-shaped  body  is  sounded  by  a  blow,  the  point  of 
application  of  the  blow  is  a  place  of  maximum  normal  motion 
of  the  resulting  vibrations,  and  the  same  is  true  when  the 

vibrations  are  excited  by  a  violin-bow,  as  generally  in  lecture- 
room  experiments.  Bells  of  glass,  such  as  finger-glasses,  are 
however  more  easily  thrown  into  regular  vibration  by  friction  with 
the  wetted  finger  carried  round  the  circumference.  The  pitch  of 
the  resulting  sound  is  the  same  as  of  that  elicited  by  a  tap  with 

the  soft  pai-t  of  the  finger;  but  inasmuch  as  the  tangential  motion 
of  a  vibrating  bell  has  been  very  generally  ignored,  the  production 
of  sound  in  this  manner  has  been  felt  as  a  difficulty.  It  is  now 
scarcely  necessary  to  point  out  that  the  eflfect  of  the  friction  is  in 
the  first  instance  to  excite  tangential  motion,  and  that  the  point 
of  application  of  the  friction  is  the  place  where  the  tangential 
motion  is  greatest,  and  therefore  where  the  normal  motion 
vanishes. 

236.  The  existence  of  tangential  vibration  in  the  case  of  a  bell 

was  verified  in  the  following  manner.  A  so-called  air-pump  re- 
ceiver was  securely  fastened  to  a  table,  open  end  uppermost,  and  set 

into  vibration  with  the  moistened  finger.  A  small  chip  in  the  rim, 
reflecting  the  light  of  a  candle,  gave  a  bright  spot  whose  motion 
could  be  observed  with  a  Coddington  lens  suitably  fixed.  As  the 

finger  was  carried  round,  the  line  of  vibration  was  seen  to  re- 
volve with  an  angular  velocity  double  that  of  the  finger;  and 

the  amount  of  excursion  (indicated  by  the  length  of  the  line  of 
light),  though  variable,  was  finite  in  every  position.  There  was, 
however,  some  difficulty  in  observing  the  correspondence  between 
the  momentary  direction  of  vibration  and  the  situation  of  the  point 
of  excitement.  To  effect  this  satisfactorily  it  was  found  necessary 
to  apply  the  friction  in  the  neighbourhood  of  one  point.  It  then 
became  evident  that  the  spot  moved  tangentially  when  the  bell  was 
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excited  at  points  distant  therefrom  0, 90, 180,  or  270  degrees ;  and 
normally  when  the  friction  was  applied  at  the  intermediate  points 
corresponding  to  45, 135,  226  and  315  degrees.  Care  is  sometimes 
required  in  order  to  make  the  bell  vibrate  in  its  gravest  mode 
without  sensible  admixture  of  overtonea 

If  there  be  a  small  load  at  any  point  of  the  circumference, 

a  slight  augmentation  of  period  ensues,  which  is  different  accord- 
ing as  the  loaded  point  coincides  with  a  node  of  the  normal  or 

of  the  tangential  motion,  being  greater  in  the  latter  case  than 
in  the  former.  The  sound  produced  depends  therefore  on  the 
place  of  excitation;  in  general  both  tones  are  heard,  and  by 
interference  give  rise  to  beatSy  whose  frequency  is  equal  to  the 

difference  between  the  frequencies  of  the  two  tones.  This  phe- 
nomenon may  often  be  observed  in  the  case  of  large  bells. 

236  a.  In  determining  the  number  of  nodal  meridians  (2«) 

corresponding  to  any  particular  tone  of  a  bell,  advantage  may  be 

taken  of  beats,  whether  due  to  accidental  irregularities  or  intro- 
duced for  the  purpose  by  special  loading  (compare  §§  208, 209).  By 

tapping  cautiously  round  a  circle  of  latitude  the  places  may  be  in- 
vestigated where  the  beats  disappear,  owing  to  the  absence  of  one 

or  other  of  the  component  tones.  But  here  a  decision  must  not 
be  made  too  hastily.  The  inaudibility  of  the  beats  may  be  favoured 

by  an  unsuitable  position  of  the  ear  or  of  the  mouth  of  the  re- 
sonator used  in  connection  with  the  ear.  By  travelling  round, 

a  situation  is  soon  found  where  the  observation  can  be  made  to 

the  best  advantage.  In  the  neighbourhood  of  the  place  where  the 
blow  is  being  tried  there  is  a  loop  of  the  vibration  which  is  most 
excited  and  a  (coincident)  node  of  the  vibration  which  is  least 
excited.  When  the  ear  is  opposite  to  a  node  of  the  first  vibration, 
and  therefore  to  a  loop  of  the  second,  the  original  inequality  is 
redressed,  and  distinct  beats  may  be  heard  even  though  the 
deviation  of  the  blow  from  a  nodal  point  may  be  very  small.  The 
accurate  determination  in  this  way  of  two  consecutive  places  where 
no  beats  are  generated  is  all  that  is  absolutely  necessary  for  the 
purpose  in  view.  The  ratio  of  the  entire  circumference  of  the 
circle  of  latitude  to  the  arc  between  the  points  in  question  is  in 
fact  4«.  Thus,  if  the  arc  between  consecutive  points  proved  to 

be  45°,  we  should  infer  that  we  were  dealing  with  the  case  of  «  =  2, 
in  which  the  deformation  is  elliptical.  As  a  greater  security 
against  error,  it  is  advisable  in  practice  to  determine  a  larger 
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number  of  points  where  no  beats  occur.  Unless  the  deviation 
from  symmetry  be  considerable,  these  points  should  be  uniformly 
distributed  along  the  circle  of  latitude  ̂  

In  the  above  process  for  determining  nodes  we  are  supposed  to 
hear  distinctly  the  tone  corresponding  to  the  vibration  under 
investigation.  For  this  purpose  the  beats  are  of  assistance  in 
directing  the  attention;  but  in  dealing  with  the  more  difficult 
subjects,  such  as  church  bells,  it  is  advisable  to  have  recourse  to 

resonators.  A  set  of  v.  Helmholtz's  pattern,  as  manufactured  by 
Konig,  are  very  convenient.  The  one  next  higher  in  pitch  to 
the  tone  under  examination  is  chosen  and  tuned  by  advancing  the 
finger  across  the  aperture.  Without  the  security  afforded  by 
resonators,  the  determination  of  the  octave  is  very  uncertain. 

The  only  class  of  bells,  for  which  an  approximate  theory  can 
be  given,  are  those  with  thin  walls,  §§  233,  235  c.  Of  such  the 

following  glass  bells  may  be  regarded  as  examples  : — 

I.  c',      e"t?,    &'% 
II.  a,      c'%    V\ 

in.    f%  6". 
The  value  of  s  for  the  gravest  tone  was  2,  for  the  second  3, 

and  for  the  third  tone  4. 

Similar  observations  have  been  made  upon  a  so-called  hemi- 
spherical bell,  of  nearly  uniform  thickness,  and  weighing  about  3 

cwt.     Four  tones  could  be  plainly  heard, 

e^   f%    e",    h", 
the  pitch  being  taken  from  a  harmonium.  The  gravest  tone  has  a 
long  duration.  When  the  bell  is  struck  by  a  hard  body,  the 
higher  tones  are  at  first  predominant,  but  after  a  time  they  die 
away,  and  leave  e^  in  possession  of  the  field.  If  the  striking  body 
be  soft,  the  original  preponderance  of  the  higher  elements  is  less 
marked. 

By  the  method  described  there  was  no  difficulty  in  shewing 
that  the  four  tones  correspond  respectively  to  «  =  2,  3,  4,  5.  Thus 
for  the  gravest  tone  the  vibration  is  elliptical  with  4  nodal  meri- 

dians, for  the  next  tone  there  are  6  nodal  meridians,  and  so  on. 

^  The  bells,  or  gODgs,  as  they  are  sometimes  caUed,  of  striking  clocks  often  give 
disagreeable  beats.  A  remedy  may  be  found  in  a  suitable  rotation  of  the  beU  round 
its  axis. 
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Tapping  along  a  meridian  shewed  that  the  sounds  became  less 
clear  as  the  edge  was  departed  from,  and  this  in  a  continuous 
manner  ¥dth  no  suggestion  of  a  nodal  circle  of  latitude.  A  question 
to  which  we  shall  recur  in  connection  with  church  bells  here 

suggests  itself.  Which  of  the  various  coexisting  tones  characterizes 
the  pitch  of  the  bell  as  a  whole  ?  It  would  appear  to  be  the  third 
in  order,  for  the  founders  gave  the  pitch  as  E  natural. 

In  church  bells  there  is  great  concentration  of  metal  at  the 

*^  sound-bow  "  where  the  clapper  strikes,  indeed  to  such  an  extent 
that  we  can  hardly  expect  much  correspondence  with  what  occurs 
in  the  case  of  thin  uniform  bells.  But  the  method  already 
described  suffices  to  determine  the  number  of  nodal  meridians  for 

all  the  more  important  tones.  From  a  bell  of  6  cwt.  by  Mears 
and  Stainbank  6  tones  could  be  obtained,  viz. : 

«'.     c",     /"+,     6"t>.     d'",     /'". 
(4)    (4)      (6)        (6)       (8) 

The  pitch  of  this  bell  as  given  by  the  makers  is  df\  so  that  it 
is  the  fifth  in  the  above  series  of  tones  which  characterizes  the 

bell.  The  number  of  nodal  meridians  in  the  various  components 
is  indicated  within  the  parentheses.  Thus  in  the  case  of  the  tone 

e'  there  are  4  nodal  meridians.  A  similar  method  of  examination 
along  a  meridian  shewed  that  there  was  no  nodal  circle  of  latitude. 
At  the  same  time  differences  of  intensity  were  observed.  This 
tone  is  most  fully  developed  when  the  blow  is  delivered  about 
midway  between  the  crown  and  the  rim  of  the  bell. 

The  next  tone  is  c".  Observation  shewed  that  for  this  vibra- 
tion also  there  are  four,  and  but  four,  nodal  meridians.  But  now 

there  is  a  well-defined  nodal  circle  of  latitude,  situated  about  a 
quarter  of  the  way  up  from  the  rim  towards  the  crown.  As  heard 
with  a  resonator,  this  tone  disappears  when  the  blow  is  accurately 
delivered  at  some  point  of  this  circle,  but  revives  with  a  very  small 

displacement  on  either  side.  The  nodal  circle  and  the  four  meri- 
dians divide  the  surface  into  segments,  over  each  of  which  the 

normal  motion  is  of  one  sign. 

To  the  tone  /"  correspond  6  nodal  meridians.  There  is  no 
well-defined  nodal  circle.  The  sound  is  indeed  very  fiednt  when 
the  tap  is  much  displaced  from  the  sound-bow;  it  was  thought 
to  fall  to  a  minimum  when  a  position  about  half-way  up  was 
reached. 
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The  three  graver  tones  are  heard  loudly  fix)m  the  sound-bow. 
But  the  next  in  order,  V]>,  is  there  scarcely  audible,  unless  the 
blow  is  delivered  to  the  rim  itself  in  a  tangential  direction.  The 

maximum  effect  occurs  about  half-way  up.  Tapping  round  the 
circle  revealed  6  nodal  meridiana 

•       ^^ 

The  fifth  tone,  d'",  is  heard  loudly  from  the  sound-bow,  but 
soon  falls  off  when  the  locality  of  the  blow  is  varied,  and  in  the 

upper  three-fourths  of  the  bell  it  is  very  faint.    No  distinct  circular 
node  could  be  detected.    Tapping  round  the  circumference  shewed 
that  there  were  8  nodal  meridians. 

The  highest  tone  recorded,  /'",  was  not  easy  of  observation, 
and  the  mode  of  vibration  could  not  be  fixed  satisfactorily. 

Similar  results  have  been  obtained  fi:om  a  bell  of  4  cwt.,  cast 

by  Taylor  of  Loughborough  for  Ampton  church.  The  nominal 
pitch  (without  regard  to  octave)  was  d,  and  the  following  were  the 
tones  observed : — 

e1^-2,      d"~6,     /'  +  4,      6"b— 6",      d'",      g"\ 
(4)  (4)  (6)  (6)  (8) 

In  the  specification  of  pitch  the  numerals  following  the  note 
indicate  by  how  much  the  frequency  for  the  bell  differed  ftx)m 
that  of  the  harmonium  employed  as  a  standard.  Thus  the  gravest 
tone  e]>  gave  2  beats  per  second,  and  was  flat.  When  the  number 
exceeds  3,  it  is  the  result  of  somewhat  rough  estimation,  and 
cannot  be  trusted  to  be  quite  accurate.  Moreover,  as  has  been 
explained,  there  are  in  strictness  two  frequencies  under  each 
head,  and  these  often  differ  sensibly.  In  the  case  of  the  4th  tone, 

6"b — 6"  means  that,  as  nearly  as  could  be  judged,  the  pitch  of  the 
bell  was  midway  between  the  two  specified  notes  of  the 
harmonium. 

Observations  in  the  laboratory  upon  the  above-mentioned  bells 
having  settled  the  modes  of  vibration  corresponding  to  the  five 
gravest  tones,  other  bells  of  the  church  pattern  could  be  suflSciently 
investigated  by  simple  determinations  of  pitch.  The  results  are 
collected  in  the  following  tabled  and  include,  besides  those  already 
given,  observations  upon  a  Belgian  bell,  the  property  of  Mr 
Haweis,  and  upon  the  five  bells  of  the  Terling  peal.     As  regards 

1  On  Bells,  Phil,  Mag.,  vol.  29,  p.  1,  1S90. 
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the  nominal  pitch  of  the  latter  bells,  several  observers  concurred 
in  fixing  the  notes  of  the  peal  as 

ft  5*»  ̂ %  &>  cj{, 

no  attention  being  paid  to  the  question  of  the  octave. 

Mean, Amptom, 
1888. 

Balgum 
TIaII 

Terling  (5),iTerling  (4),  Terling  (8),  Terling  (2),  Terling  (1), 
Osbom,    1    Hears,        Graye,       Oardner,     Warner, xooo. 001I« 1788.           1810. 1628. 1728. 1868. 

Actual  Pitch  by  Uarmonium. 

e' 

e't?-2 «r-4      i7-3 
a+3 

ajf+3 (f-e 
<f  +  2 

c"
 

cf'-6 c"»-«r'    /-4 

5^»-4 

a'+6 

a'tf-6 

6'  +  2 

/"  + /'+4 /"+!    1    o'+6 

fc'+e ^'»+4 <f'+8 

e" 

6"t? 
h"^-h" a"-6       «r'-3 

^'»-«" 

«"+6 

<7"»+ao) 
5^'»+4 

d" 

d"
 

/'»-2 5^'»-6 

«"» 

6"+2 
C"tf+3 

r 

f'
 

Pitch  referred  to  fifth  tone  as  c. 

d 
cJP-2 

ctf-3 
cJP+3 

c+3 
et?-6 ctf+2 6t? c-6 

ctf-4 

c-4 6t?+6 6-6 6t?+2 
et?  + .   ct?+4 et?+6 «t?+6 

ct?  +  4 el? +8 

et? 

at? 
at? -a at?-3 

9-SfS 

/tt+6 

a+8 

^+4 

c c <r-2 c-6 c 
c-f2 

c+3 

Examination  of  the  table  reveals  the  remarkable  fact  that 

in  every  case  of  the  English  bells  it  is  the  5th  tone  in  order 
which  agrees  with  the  nominal  pitch,  and  that,  with  the  exception 
of  Terling  (4),  no  other  tone  shews  such  agreements  Moreover, 
as  appeared  most  clearly  in  the  case  of  the  bell  cast  by  Mears  and 
Stainbank,  the  nominal  pitch,  as  given  by  the  makers,  is  an  octave 
below  the  only  corresponding  tone. 

The  highly  composite,  and  often  discordant,  character  of  the 
sounds  of  bells  tends  to  explain  the  discrepancies  sometimes 
manifested  in  estimations  of  pitch.  Mr  Simpson,  who  has  devoted 
much  attention  to  the  subject,  has  put  forward  strong  arguments 
for  the  opinion  that  the  Belgian  makers  determine  the  pitch  of 
their  bells  by  the  tone  2nd  in  order  in  the  above  series,  so  that 
for  instance  the  pitch  of  Terling  (3)  would  be  a  and  not  at.  In 
subordination  to  this  tone  they  pay  attention  also  to  the  next 
(the  3rd  in  order),  classifying  their  bells  according  to  the  character 

^  In  this  oomparison  the  gravest  tone  is  disregarded. 
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of  the  third,  whether  major  or  minor,  so  compounded.  Thus 

in  TerUng  (3)  the  interval,  a'  to  c"  ,  is  a  mxijor  third.  The  com- 
parative neglect  with  which  the  Belgians  treat  the  5th  tone, 

regarded  almost  exclusively  by  English  makers,  may  perhaps  be 
explained  by  a  less  prominent  development  of  this  tone  in  Belgian 
bells,  and  by  a  difference  in  treatment.  When  a  bell  is  sounded 
alone,  or  with  other  bells  in  a  comparatively  slow  succession, 
attention  is  likely  to  concentrate  itself  upon  the  graver  and  more 
persistent  elements  of  the  sound  rather  than  upon  the  acuter 
and  more  evanescent  elements,  while  the  contrary  may  be 
expected  to  occur  when  bells  follow  one  another  rapidly  in  a  peal. 

In  any  case  the  false  octaves  with  which  the  Table  abounds 
are  simple  facts  of  observation,  and  we  may  well  believe  that  their 
correction  would  improve  the  general  effect.  Especially  should 
the  octave  between  the  2nd  tone  and  the  5t^  tone  be  made  true. 

Probably  the  lower  octave  of  the  gravest,  or  hunirnote,  as  it  is 
called  by  English  founders,  is  of  less  importance.  The  same  may 
be  said  of  the  fifth,  given  by  the  4th  tone  of  the  series,  which 
is  much  less  prominent.  The  variations  recorded  in  the  Table 
would  seem  to  shew  that  no  insuperable  obstacle  stands  in  the 
way  of  obtaining  accurate  harmonic  relations  among  the  various 
tones. 

No  adequate  explanation  has  been  given  of  the  form  adopted 
for  church  belLs.  It  appears  both  from  experiment  and  from  the 
theory  of  thin  shells  that  this  form  is  especially  stiff,  as  regards  the 

principal  mode  of  deformation  {s  =  2),  to  forces  applied  normally 
and  near  the  rim.  Possibly  the  advantage  of  this  form  lies  in  its 
rendering  less  prominent  the  gravest  component  of  the  sound, 
or  the  hum-note. 



CHAPTER  Xa. 

CUBVED  PLATES  OB  SHELLS. 

236  6.  In  the  last  chapter  (§§  232,  233)  we  have  considered 

the  comparatively  simple  problem  of  the  vibration  in  two  dimen- 
sions of  a  cylindrical  shell,  so  far  at  least  as  relates  to  vibrations 

of  a  flexural  character.  The  shell  is  supposed  to  be  thin,  to  be 
composed  of  isotropic  material,  and  to  be  bounded  by  infinite 
coaxal  cylindrical  surfaces.  It  is  proposed  in  the  present  chapter 
to  treat  the  problem  of  the  cylindrical  shell  more  generally,  and 
further  to  give  the  theory  of  the  flexural  vibrations  of  spherical 
shells. 

In  considering  the  deformation  of  a  thin  shell  the  most 
important  question  which  presents  itself  is  whether  the  middle 
surface,  viz.  the  surface  which  lies  midway  between  the  boundaries, 
does,  or  does  not,  undergo  extension.  In  the  former  case  the 
deformation  may  be  called  extensional,  and  its  potential  energy  is 
proportional  to  the  thickness  of  the  shell,  which  will  be  denoted 
by  2A.  Since  the  inertia  of  the  shell,  and  therefore  the  kinetic 
energy  of  a  given  motion,  is  also  proportional  to  A,  the  frequencies 
of  vibration  are  in  this  case  independent  of  h,  §  44.  On  the 

other  hand,  when  no  line  traced  upon  the  middle  surface  under- 
goes extension,  the  potential  energy  of  a  deformation  is  of  a 

higher  order  in  the  small  quantity  h.  If  the  shell  be  conceived 

to  be  divided  into  laminae,  the  extension  in  any  lamina  is  pro- 
portional to  its  distance  from  the  middle  surface,  and  the  con- 
tribution to  the  potential  energy  is  proportional  to  the  square 

of  that  distance.  When  the  integration  over  the  thickness 

is  carried  out,  the  whole  potential  energy  is  found  to  be  propor- 
tional to  h\     Vibrations  of  this  kind  may  be  called  inextensional, 



396  CURVED  PLATES  OR  SHELLS.        [235  6. 

or  flexural,  and  (§  44)  their  frequencies  are  proportional  to  h,  so 
that  the  sounds  become  graver  without  limit  as  the  thickness  is 
reduced. 

Vibrations  of  the  one  class  may  thus  be  considered  to  depend 
upon  the  term  of  order  h,  and  vibrations  of  the  other  class  upon 

the  term  of  order  A*,  in  the  expression  for  the  potential  energy. 
In  general  both  terms  occur ;  and  it  is  only  in  the  limit  that  the 
separation  into  two  classes  becomes  absolute.  This  is  a  question 
which  has  sometimes  presented  difficulty.  That  in  the  case  of 

extensional  vibrations  the  term  in  h*  should  be  negligible  in 
comparison  with  the  term  in  h  seems  reasonable  enough.  But 
is  it  permissible  in  dealing  with  the  other  class  of  vibrations  to 

omit  the  term  in  h  while  retaining  the  term  in  A'  ? 

The  question  may  be  illustrated  by  considei-ation  of  a  statical 
problem.  It  is  a  general  mechanical  principle  (§  74)  that,  if  given 
displacements  (not  sufficient  by  themselves  to  determine  the 

I  configuration)  be  produced  in  a  system  originally  in  equilibrium 
by  forces  of  corresponding  types,  the  resulting  deformation  is 
determined  by  the  condition  that  the  potential  energy  shall  be 
as  small  as  possible.  Apply  this  principle  to  the  case  of  an  elastic 
shell,  the  given  displacements  being  such  as  not  of  themselves  to 

involve  a  stretching  of  the  middle  surface.  The  resulting  defor- 
mation will,  in  general,  include  both  stretching  and  bending,  and 

any  expression  for  the  energy  will  be  of  the  form 

Ah  (extension)*  +  Bh^  (bending)'   (1). 

This  energy  is  to  be  as  small  as  possible.  Hence,  when  the 
thickness  is  diminished  without  limit,  the  actual  displacement 
will  be  one  of  pure  bending,  if  such  there  be,  consistent  with 
the  given  conditions. 

At  first  sight  it  may  well  appear  strange  that  of  the  two  terms 
the  one  proportional  to  the  cube  of  the  thickness  is  to  be  retained, 
while  that  proportional  to  the  first  power  may  be  neglected.  The 
fact,  however,  is  that  the  large  potential  energy  that  would 
accompany  any  stretching  of  the  middle  surface  is  the  very  reason 
why  such  stretching  does  not  occur.  The  comparative  largeness 
of  the  coefficient  (proportional  to  h)  is  more  than  neutralized  by 
the  smallness  of  the  stretching  itself,  to  the  square  of  which  the 

energy  is  proportional. 
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An  example  may  be  taken  from  the  case  of  a  rod,  clamped  at 
one  end  A,  and  deflected  by  a  lateral  force ;  it  is  required  to  trace 
the  effect  of  constantly  increasing  stiffness  of  the  part  included 
between  A  and  a  neighbouring  point  B,  In  the  limit  we  may 
regard  the  rod  as  clamped  at  B,  and  neglect  the  energy  of  the 
part  A  By  in  spite  of,  or  rather  in  consequence  of,  its  infinite 
stiflhess. 

It  would  thus  be  a  mistake  to  regard  the  omission  of  the  term 
in  A  as  especially  mysterious.     In  any  case  of  a  constraint  which 
is  supposed  to  be  giudually  introduced  (§  92  a),  the  vibrations  ̂  
tend  to  arrange  themselves  into  two  classes,  in  one  of  which  the 
constraint  is  observed,  while  in  the  other,  in  which  the  constraint 

is  violated,  the  frequencies  increase  without  limit.     The  analogy 
with  the  shell  of  gradually  diminishing  thickness  is  complete  if  « 

we  suppose  that  at  the  same  time  the  elastic  constants  are  in- 
creased in  such  a  manner  that  the  resistance  to  bending  remains 

unchanged.     The  resistance  to  extension  then  becomes  infinite, 

and  in  the  limit  one  class  of  vibrations  is  purely  inextensional,  or  ' flexural. 

In  the  investigation  which  we  are  about  to  give  of  the  ' 
vibrations  of  a  cylindrical  shell,  the  extensional  and  the  in- 

extensional classes  will  be  considered  separately.  It  would 

apparently  be  more  direct  to  establish  in  the  first  instance  a 
general  expression  for  the  potential  energy  complete  as  &r  as 

the  term  in  A',  from  which  the  whole  theory  might  be  deduced. 
Such  an  expression  would  involve  the  extensions  and  the  curva- 

tures of  the  middle  surface.  It  appears,  however,  that  this  method 
is  difficult  of  application,  inasmuch  as  the  potential  energy  (correct 

to  h?)  does  not  depend  only  upon  the  above-mentioned  quantities, 
but  also  upon  the  manner  of  application  of  the  normal  forces, 
which  are  in  general  implied  in  the  existence  of  middle  surface 

extensions*. 

236  c.  The  first  question  to  be  considered  is  the  expression  of 
the  conditions  that  the  middle  surface  remain  unextended,  or  if 
these  conditions  be  violated,  to  find  the  values  of  the  extensions  in 

terms  of  the  displacements  of  the  various  points  of  the  sui-face. 

^  On  the  Uniform  Deformation  in  Two  Dimensioips  of  a  Cylindrical  Shell,  with 
Application  to  the  General  Theory  of  Deformation  of  Thin  Sheila.  Proe.  Math, 
Soc,  vol.  zz.  p.  872,  18S9. 
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We  ¥dll  suppose  in  the  first  instance  merely  that  the  surface  is  of 
revolution,  and  that  a  point  is  determined  by  cylindrical  co-ordi- 

nates z,  r,  <l>.  After  deformation  the  co-ordinates  of  the  above 
point  become  z  +  Bz,  r  +  Br,  ̂   +  S^  respectively.  If  ds  denote 
an  element  of  arc  traced  upon  the  surface, 

(ds  +  dSsY  =  (dz  +  dSzy  +  (r  +  &-)«  (d<f>  +  dS<l>y  +  (dr  +  dSr)\ 
so  that 

dsd8&=-dzdSz  +  r^if>dS<l>  +  rSr  (d<l>y  +  dr  dBr   (1). 

In  this  we  regard  z  and  ̂   as  independent  variables,  so  that,  for 
example, 

,c,       dBz  J      dhz  J , 

diT  dj* while  dr  =  ̂ dz  +  ̂   d^, 

in  which  by  hypothesis  dr/d<j>  =  0.    Accordingly 

ds      {dBYidz'*'  dz  dz  \  ̂  (day  \     d<f>  ̂      j 

(2). 
dzd<l>  (dSz        dS(f)     dr  dBr 

(ds)*  \d^  dz      dzd<f>) 

in  which  dSs/ds  represents  the  extension  of  the  element  ds.  If 

there  be  no  extension  of  any  ai-c  traced  upon  the  surface,  (2)  must 
vanish  independently  of  any  relations  between  dz  and  d<^.     Hence 

dz      dz  dz 

(5)- 

d8z        dS<l>  dr  dSr  _  ̂ 
d<f>  dz  dz  d<f> 

From  these,  by  elimination  of  Br, 

dBz     dr  d  f  dB4>\  _  ̂  

dz      dzdz\  d<i> )       ' 

dSz        dS<f>  drd^B<f,_ 

d4>         dz  dz  d^"        ' 
and  again,  by  elimination  of  hz, 

dz\     dz)  dz' d<l>'          ^^- 



235  c.]  CONDITIONS  OP  INEXTENSION.  399 

If  the  distribution  of  thickness  and  the  form  of  the  boundary 
or  boundaries  be  symmetrical  with  respect  to  the  axis,  the  normal 
functions  of  the  system  are  to  be  found  by  assuming  B<f>  to  be 
proportional  to  cos  8(f>,  or  sin  8<f>,  The  equation  for  8<t>  may  then 
be  put  into  the  form 

"U'-w)*^"^^"   ">■ 

It  will  be  seen  that  the  conditions  of  inextension  go  a  long  way 
towards  determining  the  form  of  the  normal  functions. 

The  simplest  application  is  to  the  case  of  a  cylinder  for  which 
r  is  constant,  equal  say  to  a.     Thus  (3),  (4),  (5),  (7)  become  simply 

dBz     ̂         ̂     .     d8<b     ̂        dBz      „d8<b     ̂         ,^. 
,-=0,        Sr  +  a-v^  =  0,       :rr  +  a'-5T^0   (8), 
dz       '  d<f>        *       d<f>  dz 

  (9). 
^-0 

dz'  
' 

By  (9),  if  S<f>  oc  C08  8<t>,  we  may  take 

aS<f>  =  (Aga -h  Bgz)  cos  8<f>   (10), 

and  then,  by  (8),  8r  =  8  (Aga  +  B^z)  sin  8^    (11), 

8z  =:- sr^ Bga  sin  8<f>    (12). 

Corresponding  terms,  with  fresh  arbitrary  constcmts,  obtained  by 

>vriting  8<f}  4-  Jtt  for  8<f>,  may  of  course  be  added.  If  jB,  =  0,  the 
displacement  is  in  two  dimensions  only  (§  233). 

If  an  inextensible  disc  be  attached  to  the  cylinder  at  2r  =  0,  so 
as  to  form  a  kind  of  cup,  the  displacements  8r  and  8^  must  vanish 

for  that  value  of  z,  exception  being  made  of  the  case  8  =  1.  Hence 
Ag  =  0,  and 

a8<f>  =  BgZCos8^,  8r  =  8 BgZ sin 8^,  8-?  =  — «"*^£,asin«^...(13). 

Again,  in  the  case  of  a  cone,  for  which  r  =  tan  y .  z,  the  equa- 
tions (3),  (4),  (5),  (7)  become 

(14), 
dSz  ,  ̂        d8r     ̂          .         d8<f>  ,  ̂       ̂ \ 

Tz'^^^'^^Tz^^'      ;.tan7^  +  8r  =  0^ 

^  +  ̂ Han^7#^  +  tan7^=0 
d<f)  dz  '  d<f>         J 
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If  we  take,  as  usual,  B^  oc  cos  8^,  we  get  as  the  solution  of  (15) 

8<f>  ̂  (A, +  Bt2r^)  cos  8<f>   (16), 

and  corresponding  thereto 

Sr  =  8  tSLU  y  (AgZ -{•  Bg)  sin  8<f)   (17), 

8z  =  tan»  7  [^-^  jB,  -  «  (A,z  +  5,)]  sin  «i^   (18). 

If  the  cone  be  complete  up  to  the  vertex  at  £^ »  0,  £«  =  0,  so  that 

S<f>  =  As  cos  8(f)   (19), 

Sr  =  8Agr^n8<f>   (20), 

8-8^  =  — «il,tan7rsin«^   (21). 

For  the  cone  and  the  cylinder,  the  second  term  in  the  general 
equation  (7)  vanishes.  We  shall  obtain  a  more  extensive  class  of 
soluble  cases  by  supposing  that  the  surface  is  such  that 

cPr 
r* -j-^  =  constant    (22), 

an  equation  which  is  satisfied  by  surfaces  of  the  second  degree  in 

general.     If 

a'  +  P  =  l   (23). 

we  shall  find  r*-=-^=: — -    (24); 

and  thus  (7)  takes  the  form 

d^-^«*  =  0    (25), 

if  B<f)  oc  cos  8<f>,  and  a  is  defined  by 

a=Jr-2d2r   (26), 
or  in  the  present  case 

«  =  26-'^°«a-.   (27). 
The  solution  of  (25)  is 

H^^y-^^Th-*   ^^>- 
The  corresponding  values  of  Sr  and  Bz  are  to  be  obtained  from  (4) 
and  (5). 
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If  the  surface  be  complete  through  the  vertex  ̂   =  a,  the  term 
multiplied  by  B  must  disappear.  Thus,  omitting  the  constant 
multiplier,  we  may  take 

S*  =  (^)''co8«^     (29); whence,  by  (4),  (5), 

or  =»  —  ;— — ~— T  sm  «<^   (30). 

8z  =  (8z  +  a)^^^^^^sm8il>   (31). 
a\a  +  z)^        ̂   ^    ̂ 

If  we  measure  z'  from  the  vertex,  z'^a  —  z,  and  we  may  write 

S<f>=(^JooBS(f>   (32), 

Sr=:8r(^X  sin  8<l>   (33), 

Bz 
=  -S/  =  lV(«  +  l)a-5/U^ysin«<^    (34). 

For  the  pambola,  a  and   b  are   infinite,   while   b^/a  =  2a,  and 
r^  =  4sa'z\     Thus  we  may  take^ 

S^  =  r*cos«<^,   Sr  =  ̂ +^ sin 5<^,  8^  =  — 2(«  + l)aVsin«^...(35). 
We  will  now  take  into  consideration  the  important  case  of  the 

sphere,  for  which  in  (23)  b  =  a.  Denoting  by  0  the  angle  between 
the  radius  vector  and  the  axis,  we  have  z  =  a  cos  0,r  =  a  sin  0,  and 
thus  from  (29),  (30),  (31) 

8<^  =  cos  5<^  tan*  i^   (36), 

Sr/a  =  8  sin  8<t>  sin  0  tan*  ̂ 0   (37), 

82r/a  =  (1  +  «  cos  ̂ )  sin  50  tan*  i^   (38). 

The  other  terms  of  the  complete  solution,  corresponding  to 
(28),  are  to  be  obtained  by  changing  the  sign  of  8, 

In  the  above  equations  the  displacements  are  resolved  parallel 

and  perpendicular  to  the  axis  ̂   =  0.  It  would  usually  be  more 
convenient  to  resolve  along  the  normal  and  the  meridian.  If  the 
components  in  these  directions  be  denoted  by  w  and  aB0,  we  have 

1^  =  Sr  sin  ̂   -f  Bz  cos  0,     aS0  =  Br  cos  0  —  8z&m0; 

1  On  the  Infinitesimal  Bending  of  Sorfaoes  of  Revolution.    Proc.  Math,  Soc., 
vol.  xui.  p.  4, 1881. 

R.  26 
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SO  that  altogether 

S<f>^co8  8<t>[AstsLn*^d-\'BsCoV^e]   (39), 

B0  =  - sin  8<f}  sine  [A,  tB.n'l^d'-Bs  cot' ^6]   (40), 

iv/a  =  sin  s^  [As  (s  +  cos  d)  tan*  1^0  +  jB,  («  —  cos  0)  cot*  1^0] . .  .(41). 
To  the  above  may  be  added  terms  derived  by  writing  ̂ ^  +  ̂  

for  8<f>,  and  changing  the  arbitrary  constants. 

235  d.     We  now  proceed  to  apply  the  equations  of  §  235  c  to 
the  principal  extensions  of  a  cylindrical  surface,  with  a  view  to  the 
formation  of  the  expression  for  the  potential  energy.     The  axial 
and  circumferential  extensions  will  be  denoted  respectively  by  e^, 
62,  and  the  shear  by  w.     The  first  of  these  is  given  by  (2)  §  235  c, 

if  we  suppose  that  d<f>  =  0,  dz/ds  =  1.     Since  in  the  case  of  a 

cylinder  dr/dz  =  0,  we  find 
dBz 

'^^dz   ^^>- 
In  like  manner 

e.=  ̂%^if   (2). 
The  value  of  the  shear  may  be  arrived  at  by  considering  the 

diflFerence  of  extensions  for  the  two  diagonals  of  an  infinitesimal 
square  whose  sides  are  dz  and  ad^.    It  is 

a  d<f>  dz        ^' 
The  next  part  of  the  problem,  viz.  the  expression  of  the  potential 

energy  by  means  of  e,,  e.^,  w,  appertains  to  the  general  theory  of 
elasticity,  and  can  only  be  treated  here  in  a  cursory  manner.  But 
it  may  be  convenient  to  give  the  leading  steps  of  the  investigation, 
referring  for  further  explanations  to  the  treatises  of  Thomson  and 
Tait  and  of  Love.  In  the  notation  of  the  former  {Natural 
Philosophy,  §  694)  the  general  equations  in  three  dimensions  are 

na  =  /S,     ?i6  =  r,     nc^U   (4), 

.lf/=Q-cr(i?  +  P)l   (5), 

%  =  i2-(r(P-fQ)J 

^'^e'-e  '=    2m~    <^>'- 

^  3/  is  Yonng's  modulug,  v  is  Poisson's  ratio,  n  is  the  constant  of  rigidity,  and 
(m  -  \n)  that  of  compressibility. 
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The  energy  to,  corresponding  to  unit  of  volume,  is  given  by 

+  2(m-n)(/(7  4-5r6+e/)  +  n(a^  +  6»  +  c^)   (7). 
In  the  application  to  a  lamina,  supposed  parallel  to  the  plane 

xy,  we  are  to  take  iZ  =  0,  S  =  0,  T  =  0,  so  that 

<7  =  -a^-^,     a  =  0,     6  =  0   (8). 

Thus  in  terms  of  the  extensions  e,  f,  parallel  to  x,  y,  and  of  the 
shear  c,  we  get 

u;  =  n{e»  +  /«  +  '^7''(e+/)=  +  ic4   (9). 

This  is  the  energy  reckoned  per  unit  of  volume.  In  oi"der  to 
adapt  the  expression  to  our  purposes,  we  must  multiply  it  by  the 
thickness  (2A).  Hence  as  the  energy  per  unit  area  of  a  shell 

of  thickness  2h,  we  may  take  in  the  notation  adopted  at  the  com- 
mencement of  this  section. 

2nh^ 

(10). 
This  expression  may  be  applied  to  curved  as  well  as  to  plane 

plates,  for  any  modification  due  to  curvature  must  involve  higher 
powers  of  A.     The  same  is  true  of  the  energy  of  bending. 

236  e.     We  are   now  prepared  for  the  investigation  of  the 
extensional  vibrations  of  an  infinite  cylindrical  shell,  assumed  to 
be  periodic  with  respect  both  to  z  and  to  <f>.    It  will  be  convenient 
to  denote  by  single  letters  the  displacements  parallel  to  z,  <^,  r ; 
we  take 

Sz=  u,     aS^  =  v,     Sr^tu   (1). 

These  functions  are  to  be  assumed  proportional  to  the  sines  or 
cosines  o{  jz/a  and  8<f>,  Various  combinations  may  be  made,  of 

which  an  example^  is 

u=U  cos  8<t>  cos  jz/a,    v  =  F  sin  s<f>  sin  jz/a, » 

w==  W  cos  s<l>  sin  jz/a   (2); 
sothat(l),  (2),  (3),§235d 

a.€i  =  -'jUcoss<f>smjz/a   (3), 

a.€2  =  (W  +  8V)coss<f>  sin  jz/a   (4), 

a.'Gj  =  (— sU  ■]'  jV)  sin  8<f>  cos  jz/a   (5). 

^  Additions  of  Jr  to  «0,  or  to  jz/a,  or  to  both,  may  of  course  be  made  at  pleasure. 

26—2 
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The  potential  energy  per  unit  area  is  thus  (10)  §  235  d 

2nha--^lcos^s<f>8m^jz/aijW^-^(W  +  8Vy'^^^^ 

+  i8in«^cos«>/a(-«Cr  +  jF)*l   (6). 

Again,  if  p  be  the  volume  density,  the  kinetic  energy  per  unit 
of  area  is 

ph\  [--Tr)  cos' «<^ cos' j>/a  +  f-jT-)  sin'^i^sin'j-^/a 

-^ j  cos'  8^  sin' j^/a     (7). 

In  the  integration  of  (6),  (7)  with  respect  to  z  and  ̂ ,  J  is  the 

mean  value  of  the  square  of  each  sine  or  cosine.^  We  may  then 

apply  Lagrange's  method,  regarding  U,  V,  W  as  independent 
generalized  co-ordinates.  If  the  type  of  vibration  be  cospt, 
and  p^p/n  =  k^,  the  resulting  equations  may  be  written 

{2(i\r+l)j'  +  «'-ifc'a'}  Cr-(2i\r+l)>F-2i^jTf  =  0...(8), 

-(2JV'+ l)>Cr+ { j'+ 2(iV^+ ly- A;'a'}  F+ 2(i\r+ l)«Tr  =  0...(9), 
-2i«5cr+2(i\r+i)5F+{2(i\r+i)-jfc'a'|Tr=o...(io), 

where  JVr  =  ̂_r_?   (H), 

The  frequency  equation  is  that  expressing  the  evanescence  of 
the  determinant  of  this  triad  of  equations.  On  reduction  it  may 
be  written 

[Jfa'  -  i^  -  a*]  [i^a^  [Ar^a'  -  2  (iV  +  1)  ( j'  +  s*  +  1)] 

+  4(2i\r+  1)  j'}  +  4  (2iV^+  l)jV  =  0   (12).' 
These  equations  include  of  course  the  theory  of  the  extensional 

vibrations  of  a  plane  plate,  for  which  a  =  oo .  In  this  application 
it  is  convenient  to  write  o^  =  y,  s/a  =  ̂ ,  j/a  =  7.  The  displace- 

ments are  then 

w=  Ucosfiycosyz,    v  =  V sin jSy sin yz,    w  =  W cos jSt/sinyz ...(13). 

^  In  the  physical  problem  of  a  simple  cylinder  the  range  of  integration  for  ̂   ia 
from  0  to  2t  ;  but  mathematically  we  are  not  confined  to  one  revolution.  We  may 
conceive  the  sheU  to  consist  of  several  superposed  convolutions,  and  then  s  is  not 
limited  to  be  a  whole  number. 

'  Note  on  the  Free  Vibrations  of  an  infinitely  long  Cylindrical  Shell.  Proe, 
Roy.  Soc.,  vol.  45,  p.  446,  1S89. 
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When  a  is  made  infinite  while  ̂ ,  7  remain  constant,  the 

equations  (10),  (8),  (9)  ultimately  assume  the  form  Tr=  0,  and 

{2(iV+l)7«  +  ̂ -ifc»}Cr-(2iV'+l)7/3F=0...(14), 
-  {2N  +  1)  7)8Cr -h  {7«  +  2  {N+  1)  /8«  -  *»}  F-  0 .. .(15) ; 

and  the  determinantal  equation  (12)  becomes 

A;«[jfca«^-.y3a][i2^2(iV+l)(7'  +  )8«)]  =  0   (16). 

In  (16),  as  was  to  be  expected,  h^  appears  as  a  function  of 

()8*  +  y).  The  first  root  A:*  =  0  relates  to  flexural  vibrations, 
not  here  regarded.     The  second  root  is 

h^^^  +  rf   (17), 

or  p'^-A^-^i")   (18). 

At  the  same  time  (14)  gives 

ryCr-)8F=0   (19). 

These  vibrations  involve  only  a  shearing  of  the  plate  in  its  own 

plane.  For  example,  if  7  =  0,  the  vibration  may  be  repre- 
sented by 

n  =  cos  ̂ y  cos  p^,     vssO,    w^O   (20). 
The  third  root  of  (16) 

A:>  =  2(i\r+l)(^  +  7')  =  -^(/3»  +  7»)   (21) 

gives  »2=   '-   '-   (22). 
°  ^      m-^n      p  ^     ̂ 

The  corresponding  relation  between  U  and  F  is 

;3Cr+7F=0   (23). 

A  simple  example  of  this  case  is  given  by  supposing  in  (13), 
(23),  /3  =  0.    We  may  take 

w  =  cos72r  cosp^,     t;  =  0,    w^O   (24), 

the  motion  being  in  one  dimension. 

Reverting  to  the  cylinder  we  will  consider  in  detail  a  few 
particular  cases  of  importance.  The  first  arises  when  j  =  0,  that  is, 
when  the  vibrations  are  independent  of  z.  The  three  equations 
(8),  (9),  (10)  then  reduce  to 

(«2-A»aOI7=0   (25), 

{2(i\r-hl)«^-A;*a»}F  +  2(iV+l)«Tf  =  0   (26), 

2(iV+l)«F+{2(J^  +  l)-ifc»a«}Tr=0   (27); 
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and  they  may  be  satisfied  in  two  ways.  Fii-st  let  F=  F'=  0 ;  then 
U  may  be  finite,  provided 

^-h^a^  =  0   (28). 

The  corresponding  type  for  u  is 

u  =coss(l>  COS pt   (29), 

where  p^  =  — ^   (30). 

In  this  motion  the  material  is  sheared  without  dilatation  of  area 

or  volume,  every  generating  line  of  the  cylinder  moving  along 

its  own  length.  The  frequency  depends  upon  the  cii*cumferential 
wave-length,  and  not  upon  the  curvature  of  the  cylinder. 

The  second  kind  of  vibrations  are  those  for  which  C/'  =  0,  so 
that  the  motion  is  strictly  in  two  dimensions.  The  elimination  of 
the  ratio  V/  W  from  (26),  (27)  gives 

A;2a2{i«a^-2(JVr+l)(l+5»)}  =  0   (31), 

as  the  frequency  equation.  The  first  root  is  A:*  =  0,  indicating 
infinitely  slow  motion.  The  modes  in  question  are  flexural,  for 
which,  according  to  our  present  reckoning,  the  potential  energy 
is  evanescent.  The  corresponding  relation  between  V  and  W  is 

by  (26) 

«F+F  =  0   (32), 
giving  in  (3),  (4),  (5), 

€i  =  0,     €2=0,     w  =  0. 

The  other  root  of  (31)  is 

Ar*a*  =  2(i\r-hl)(l+s2)   (33), 

or  j9*  =  — ;         (34); 

while  the  relation  between  V  and  W  is 

F-«TF  =  0   (35). 

The  type  of  the  motion  may  be  taken  to  be 

u  =  0,     v^^ssinsif)  cos  pt,    w  =  cos  s<f)  cos  pt   (36). 

It  will  be  observed  that  when  8  is  very  large,  the  flexural 

vibrations  (32)  tend  to  become  exclusively  radial,  and  the  exten- 
sional  vibrations  (35)  tend  to  become  exclusively  tangential. 



235  e.]  EXTENSIONAL   VIBRATIONS.  407 

Another  important  class  of  vibrations  are  those  which  are 

chai*acterized  by  symmetry  round  the  axis,  for  which  accordingly 
5  =  0.    The  general  frequency  equation  (12)  reduces  in  this  case  to 

{i^a«-j»}{Jfc^a»[Jfc^a«--2(iV+l)(j^  +  l)]  +  4(2iV'-fl)j*}  =  0 ...(37). 

Con*esponding  to  the  first  root  we  have  U=0,  Tr  =  0,  as  is 
readily  proved  on  reference  to  the  original  equations  (8),  (9),  (10) 

with  5=0.  The  vibrations  are  the  purely  torsional  ones  repre- 
sented by 

t^  =  0,    V  =  sin  (jz/a)  cos  pt,     w  —  0   (38), 

where  !>'  =  —,   (39). 

The  frequency  depends  upon  the  wave-length  parallel  to  the 
axis,  and  not  upon  the  radius  of  the  cylinder. 

The  remaining  roots  of  (37)  correspond  to  motions  for  which 

F=0,  or  which  take  place  in  planes  passing  through  the  axis. 
The  general  character  of  these  vibrations  may  be  illustrated  by 

the  case  where  j  is  small,  so  that  the  wave-length  is  a  large 
multiple  of  the  radius  of  the  cylinder.  We  find  approximately 
from  the  quadratic  which  gives  the  remaining  roots 

t.„..a<!|^n...   («,. 
The  vibrations  of  (40)  are  almost  purely  radial.  If  we  suppose 

that  j  actually  vanishes,  we  fall  back  upon 

A?*a'  =  2(i\r+1)   (42), 

and  p«=  ---  _   (43)1, 

obtainable  from  (33),  (34)  on  introduction  of  the  condition  «  =  0. 

The  type  of  vibration  is  now 

w  =  0,    t;  =  0,    w  =  cos  pt   (44). 

^  This  equation  was  first  given  by  Love  in  a  memoir  "On  the  smaU  Free 
Vibrations  and  Deformation  of  a  thin  Elastic  Shell,"  Phil,  Trans,,  vol.  179  (1888), 
p.  628. 
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On  the  other  hand,  the  vibrations  of  (41)  are  ultimately  purely 
axial.    As  the  type  we  may  take 

u  =  co8Jz/a  .C08  pt,    v^O,    w  =  -^ —  J  sin  j^/d .  cos  p^ . . .  (45), 

,                                          ,     3m  —  n  nj* where  ©*  =   —^    (46). 
^  m      pa^  ^     ̂  

Now,  if  }  denote  Young's  modulus,  we  have,  §  214, 
g  =  n  (3m  —  n)/m, 

sothat  p'=^|   (47). 
Thus  u  satisfies  the  equation 

dhi  _  q  d*u 

which  is  the  usual  formula  (§  150)  for  the  longitudinal  vibrations 
of  a  rod,  the  fact  that  the  section  is  here  a  thin  annulus  not 

influencing  the  result  to  this  order  of  approximation. 

Another  particular  case  worthy  of  notice  arises  when  8^1,  so 
that  (12)  assumes  the  form 

ifc«a«(*'a'-j'-l)[*"a'-2(i«^+l)(j«  +  2)] 

+  4j«  (A^a*  -  j«)  (2i\r+ 1)  =  0. .  .(48). 

As  we  have  already  seen,  if  j  be  zero,  one  of  the  values  of  k^ 

vanishes.  If  j  be  small,  the  corresponding  value  of  A:*  is  of  the 
order  j*.     Equation  (48)  gives  in  this  case 

A'a'  =  ̂̂ ^l^-'   (49); 
or  in  terms  of  p  and  q, 

The  type  of  vibration  is 

ti  =  0 

^  =  2$   (««)• 

t;  =  8in^sinj>/a.cos/}^     I   (51), 
w  =  —  cos  <f>  sin  jz/a .  cos  pt  j 

and  corresponds  to  the  flexural  vibrations  of  a  rod  (§  163).     In 
(51)  V  satisfies  the  equation 

d^     qa^  ̂ ^  —  0 

d^'*"2pd^~   ' 
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in  which  ̂ a^  represents  the  square  of  the  radius  of  g}rration  of  the 
section  of  the  cylindrical  shell  about  a  diameter. 

This  discussion  of  particular  cases  may  sufiSce.  It  is  scarcely 
necessary  to  add,  in  conclusion,  that  the  most  general  deformation 
of  the  middle  surface  can  be  expressed  by  means  of  a  series  of  such 

as  are  periodic  with  respect  to  z  and  <^,  so  that  the  problem  con- 
sidered is  really  the  most  general  small  motion  of  an  infinite 

cylindrical  shell 

The  extensional  vibrations  of  a  cylinder  of  finite  length  have 

been  considered  by  Love  in  his  Theory  of  Elasticity^  (1893),  where 
will  also  be  found  a  full  investigation  of  the  general  equations  of 
extensional  deformation. 

236/.  When  a  shell  is  deformed  in  such  a  manner  that  no 
line  traced  upon  the  middle  surface  changes  in  length,  the  term  of 
order  h  disappears  from  the  expression  for  the  potential  energy, 
and  unless  we  are  content  to  regard  this  function  as  zero,  a 
further  approximation  is  necessary.  In  proceeding  to  this  the 
first  remark  that  occurs  is  that  the  quality  of  inextension  attaches 
only  to  the  central  lamina.  Consider,  for  example,  a  portion  of  a 
cylindrical  shell,  which  is  bent  so  that  the  original  curvature  is 
increased.  It  is  evident  that  while  the  middle  lamina  remains 

unextended,  those  laminae  which  lie  externally  must  be  stretched, 
and  those  that  lie  internally  must  be  contracted.  The  amount  of 
these  stretchings  and  contractions  is  proportional  in  the  first  place 
to  the  distance  from  the  middle  surface,  and  in  the  second  place  to 
the  change  of  curvature  which  the  middle  surface  undergoes.  The 
potential  energy  of  bending  is  thus  a  question  of  the  curvatures  of 
the  middle  surface.  Displacements  of  translation  or  rotation,  such 
as  a  rigid  body  is  capable  of,  may  be  disregarded. 

In  order  to  take  the  question  in  its  simplest  form,  let  us  refer 
the  original  surface  to  the  normal  and  principal  tangents  at  any 

point  P  as  axes  of  co-ordinates,  and  let  us  suppose  that  after 
deformation  the  lines  in  the  sheet  originally  coincident  with  the 
principal  tangents  are  brought  back  (if  necessary)  so  as  to  occupy 
the  same  positions  as  at  first.  The  possibility  of  this  will  be 

apparent  when  it  is  remembered  that,  in  virtue  of  the  inexten- 
sion of  the  sheet,  the  angles  of  intersections  of  all  lines  traced 

^  Also  Phil.  Tratii.  vol.  179  a,  1888. 
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upon  it  remain  unaltered.    The  equation  of  the  original  surface  in 
the  neighbourhood  of  the  point  being 

.-t(f+f)   (1), \Pi     Pi/ 

that  of  the  deformed  surface  may  be  written 

"^      +-i^+2T^l   (2). 

-ifcl 

Spi       Pi  +  S/>a 

In  strictness  (pi  -f  Spi)~S  (p^  +  ̂Pi)"^  are  the  curvatures  of  the 
sections  made  by  the  planes  a?,  y ;  but  since  the  principal  curvatures 
are  a  maximum  and  a  minimum,  they  represent  in  general  with 
sufficient  accuracy  the  new  principal  curvatures,  although  these 
are  to  be  found  in  slightly  different  planes.  The  condition  of 
inextension  shews  that  points  which  have  the  same  x,  y  in  (1) 

and  (2)  are  corresponding  points ;  and  by  Gauss's  theorem  it  is 
further  necessary  that 

^^  +  ̂̂   =  0   (3). 
Pi  pi 

It  thus  appears  that  the  energy  of  bending  will  depend  in 
general  upon  two  quantities,  one  giving  the  alterations  of  principal 
curvature,  and  the  other  r  depending  upon  the  shift  (in  the 
material)  of  the  principal  planes. 

The  case  of  a  spherical  surface  is  in  some  respects  exceptional. 
Previously  to  the  bending  there  are  no  planes  marked  out  as 
principal  planes,  and  thus  the  position  of  these  planes  after 
bending  is  of  no  consequence.  The  energy  depends  only  upon 

the  alterations  of  principal  curvature,  and  these  by  Gauss's  theorem 
are  equal  and  opposite,  so  that,  if  a  denote  the  radius  of  the 

sphere,  the  new  principal  radii  are  a  +  Sp,  a  —  Sp.  If  the  equation 
of  the  deformed  surface  be 

2z  =  Aai' +  2Bxy  +  Cy-   (4). 

we  have  (a  +  8p)~^  +  (a  —  Bp)"^  =  il  +  C, 

so  that  (S-y^iiA^Cy  +  B'   (5). 

We  have  now  to  express  the  elongations  of  the  various  laminae 

of  a  shell  when  bent,  and  we  will  begin  with  the  case  where  t  =  0, 
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that  is,  when  the  principal  planes  of  curvature  remain  unchanged. 
It  is  evident  that  in  this  case  the  shear  c  vanishes,  and  we  have  to 

deal  only  with  the  elongations  e  and /parallel  to  the  axes,  §  235  d. 

In  the  section  by  the  plane  of  zx,  let  s,  s'  denote  corresponding 
infinitely  small  arcs  of  the  middle  surface  and  of  a  lamina  distant 

h  from  it.     If  -i^  be  the  angle  between  the  terminal  normals, 

8  =  p^yjr,  s'  =  {pi  -f  A)  '<^,  s'  —  s  =  A^/r.     In  the  bending,  which  leaves 
s  unchanged, 

8s'  =  /tS^  =  /i8S(l/pi). 

Hence  e  =  Ss'/s'  =  A  8  ( 1  /pi), 
and  in  like  manner  /=  AS(l//}s).  Thus  for  the  energy  U  per  unit 
area  we  have 

[\    pJ       \    pJ       m  +  nx    pi        p^J ) 

and  on  integration  over  the  whole  thickness  of  the  shell  (2A) 

U^^^\(Bl.)\(B^)\'!^U^  +  B^yl   (6). 3     i\    pJ       \   PiJ      m  +  n\   pi        pJ  ) 

This  conclusion  may  be  applied  at  once,  so  as  to  give  the  result 
applicable  to  a  spherical  shell;   for,  since  the  original  principal 
planes  are  arbitrary,  they  can  be  taken  so  as  to  coincide  with  the 

principal  planes  after  bending.     Thus   t  =  0;    and  by  Gauss's theorem 

8(1/^0  + 8  (1/P2)  =  0, 

so  that  Cr  =  ̂'(siy   (7), 
where  B(l/p)  denotes  the  change  of  principal  curvature.  Since 

e  =  — /  5^  =  0,  the  various  laminae  are  simply  sheared,  and  that  in 
proportion  to  their  distance  from  the  middle  surface.  The  energy 
is  thus  a  function  of  the  constant  of  rigidity  only. 

The  result  (6)  is  applicable  directly  to  the  plane  plate;  but 
this  case  is  peculiar  in  that,  on  account  of  the  infinitude  of  pi,  p^ 
(3)  is  satisfied  without  any  relation  between  Spi  and  Sp^.  Thus  for 
a  plane  plate 

2nhUl       1      m-w/1       IV)  /ox 

where  l/pi,  l/pa,  are  the  two  independent  principal  curvatures  after 
bending  ̂  

1  This  will  be  fonnd  to  agree  with  the  valae  (2)  §  214,  expressed  in  a  different 
notation. 

u= 
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We  have  thus  far  considered  r  to  vanish;  and  it  remains  to 

investigate  the  effect  of  the  deformations  expressed  by 

S^  =  Ta:y  =  iT(f«-i7»)   (9), 

where  f  ,  tf  relate  to  new  axes  inclined  at  45 ""  to  those  of  x,  y.  The 
curvatures  defined  by  (9)  are  in  the  planes  of  f,  i;,  and  are  equal 
in  numerical  value  and  opposite  in  sign.  The  elongations  in  these 
directions  for  any  lamina  within  the  thickness  of  the  shell  are  hr^ 

-  At,  and  the  corresponding  energy  (as  in  the  case  of  the  sphere 
just  considered)  takes  the  form 

U'  =  ̂    (10). 

This  energy  is  to  be  added*  to  that  already  found  in  (6);  and 
we  get  finally 

2nA» U^ 

as  the  complete  expression  of  the  energy,  when  the  deformation  is 
such  that  the  middle  surface  is  unextended.  We  may  interpret  t 

by  means  of  the  angle  x*  through  which  the  principal  planes  are 
shifted;  thus 

^  =  2x(J-7)   (12)- 

236  g.  We  will  now  proceed  with  the  calculation  of  the 
potential  energy  involved  in  the  bending  of  a  cylindrical  shell. 

The  problem  before  us  is  the  expression  of  the  changes  of  prin- 
cipal curvature  and  the  shifts  of  the  principal  planes  at  any  point 

P  {z,  <f>)  of  the  cylinder  in  terms  of  the  displacements  u,  v,w.  As  in 

§  235  /,  take  as  fixed  co-ordinate  axes  the  principal  tangents  and 
normal  to  the  undisturbed  cylinder  at  the  point  P,  the  axis  of  x 
being  parallel  to  that  of  the  cylinder,  that  of  y  tangential  to  the 
circular  section,  and  that  of  ̂   normal,  measured  inwards.  If,  as  it 

will  be  convenient  to  do,  we  measure  z  and  <f>  from  the  point  P,  we 

may  express  the  undisturbed  co-ordinates  of  a  material  point  Q  in 
the  neighbourhood  of  P,  by 

x  =  z,        y  =  a<f>,        ̂   =  ia<^'   (1). 

^  There  are  clearly  no  terms  involving  the  prodnots  of  r  with  the  changes  of 

principal  curvature  S{p^~^),  B{pf^);  for  a  change  in  the  sign  of  r  can  have  no 
influence  upon  the  energy  of  the  deformation  defined  by  (2). 
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During  the  displacement  the  co-ordinates  of  Q  will  receive  the 
increments 

u,    W7  sin  ̂   + 1;  cos  ̂ ,     —w  cos  ̂   +  v  sin  (f) ; 
so  that  after  displacement 

x^zz-hu,  y  —  a4>-\-  w<f>  +  v  (1  —  J^*), 

or,  if  u,  V,  w  be  expanded  in  powers  of  the  small  quantities  z,  <f>, 
du        du   , 

i          J             dv         dv   , 

y  =  a<f>  +  vJ,<f>  +  v,  +  ̂ ^z  +  ̂ ^^4>+     (3). 

dv    ,      dv  ., 

+  dF/*-^#/'   W' 
Wo»  Vo> .  •  •  being  the  values  of  t^,  v  at  the  point  P. 

These  equations  give  the  co-ordinates  of  the  various  points  of 
the  deformed  sheet.  We  have  now  to  suppose  the  sheet  moved  as 
a  rigid  body  so  as  to  restore  the  position  (as  far  as  the  first  power 
of  small  quantities  is  concerned)  of  points  infinitely  near  P,  A 
purely  translatory  motion  by  which  the  displaced  P  is  brought 
back  to  its  original  position  will  be  expressed  by  the  simple 
omission  in  (2),  (3),  (4)  of  the  terms  Uq,  v©,  Wq  respectively,  which 
are  independent  of  z,  <f>.  The  eflfect  of  an  arbitrary  rotation  is 

represented  by  the  additions  to  x,  y,  ̂  respectively  of  ya^  —  fo),, 
fwi  —  a?ft)3,  xa)^  —  ycoi ;  where  for  the  present  purpose  a>i,  cd^,  0)3  are 
small  quantities  of  the  order  of  the  deformation,  the  square  of 
which  is  to  be  neglected  throughout.  If  we  make  these  additions 
to  (2),  &c.,  substituting  for  x,  y,  f  in  the  terms  containing  0  their 
approximate  values,  we  find  so  far  as  the  first  powers  of  z,  <\> 

du         du  ,  ,      , 

.  ,  ,  dv     ,   dv   , 

^,         dw         dw  .   ̂        .    ,  , 
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[235  gr. Now,  since  the  sheet  is  assumed  to  be  unextended,  it  must  be 

possible  so  to  determine  cdi,  «2»  <^s  that  to  this  order  x^z,  y  =  a<f>, 
f=0.     Hence du  ^ 

+  acDs  =  0, 
du dzo 

dv  ^ 

d<f>c 

dv      ̂  

i^oH-:r.  =0, 

dw  - 
-rr  ""  ̂ 0  +  OKi)i  =  0. 

(i<f>o 

The  conditions  of  inex tension  are  thus  (if  we  drop  the  suflBces 
as  no  longer  required) 

dz       • 

dv      - du        ̂ ^  _  A 

d(f)       dz 
(5), 

which  agree  with  (8)  §  235  c. 

Returning  to  (2),  &c.,  as  modified  by  the  addition  of  the  trans- 
latory  and  rotatory  terms,  we  get 

x^z+  terms  of  2nd  order  in  z,  <f>, 

dHv 

?  =  ia<^^  +  i«;o<A'-i^^^»- 

dy 

dZf4<f>t 

z<f> 

,  d^w  ,^      dv     .      dv    ,^ 

or  since  by  (5)  d^w/dz^  =  0,  and  dv/d<f>  =  —  w. 
dHv dHu dv 

The  equation  of  the  deformed  surface  after  transference  is  thus 

^^xy [I  dv      1    d'w  1 

r+y' 
2a  ■■2a^

^^ 

a  dzo     a  dZi^(}>Q 

Comparing  with  (2)  §  235/ we  see  that 

1^  dhu) 
2a*  d^o'J 

. . . .  (6). 

8-  =  0, 

Pi so  that  by  (11)  §  235/ 

.1  \  (    ̂ d'w\ 
1  (dv      dhu  \ 

d<f>y' 

_  1  Idv      a*w  \     ̂ . 

~a[di~d^)"'^'^' 

„_  4wA«  (    m     1  /       d'wy     (dv      d'^w  V) 

~  3a^  [m  +  n  a*  V     dtfy')  "*"  U^     d^)  J    ^  ̂' 
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This  is  the  potential  energy  of  bending  reckoned  per  unit  of 

area.    It  can,  if  desired,  be  expressed  by  (5)  entirely  in  terms  of  v^. 

We  will  now  apply  (8)  to  calculate  the  whole  potential  energy 
of  a  complete  cylinder,  bounded  by  plane  edges  z=±l,  and  of 
thickness  which,  if  variable  at  all,  is  a  function  of  z  only.  Since 
u,  V,  w  are  periodic  when  (f)  increases  by  27r,  their  most  general 
expression  in  accordance  with  (5)  is  [compare  (10),  &c.,  §  235  c] 

v  =  2  [(Aga  H-  Bgz)  cos  «<^  —  (^/a  H-  B/z)  sin  8(f>]   (9), 

w  =  X[8  (Aga  +  Bgz)  sin  s<f>-\-s  (Aga  H-  B/z)  cos  s<f>] ....  (10), 

i^  =  2  [—  s^^Bga  sin  8<t>  —  s''^B/a  cos  «0]   (11), 
in  which  the  summation  extends  to  all  integral  values  of  8  from  0 

to  00 .  But  the  displacements  corresponding  to  5  =  0,  8=1  are 
such  as  a  rigid  body  might  undergo,  and  involve  no  absorption  of 
energy.  When  the  values  of  u,  v,  w  are  substituted  in  (8)  all  the 
terras  containing  products  of  sines  or  cosines  with  different  values 
of  8  vanish  in  the  integration  with  respect  to  <f>,  as  do  also  those 
which  contain  cos  8<f>  sin  8(f>,     Accordingly 

Jo  ^        3a    l_m  +  n  a*     ̂  

{{Aga  +  Bgzy  +  (Ag'a  +  B/zf]  +  2 (^ -  1)^ (5.'  +  B/')\  . . .(12). 

Thus  far  we  might  consider  A  to  be  a  function  of  z ;  but  we  will 
now  treat  it  as  a  constant.  In  the  integration  with  respect  to  z 
the  odd  powers  of  z  will  disappear,  and  we  get  as  the  energy  of  the 
whole  cylinder  of  radius  a,  length  21,  and  thickness  2A, 

+  ̂̂ (5,^H-5/o}+5,^  +  5/^]   (13), 
in  which  5=2,  3,  4,.... 

The  expression  (13)  for  the  potential  energy  suffices  for  the 
solution  of  statical  problems.  As  an  example  we  will  suppose 
that  the  cylinder  is  compressed  along  a  diameter  by  equal  forces 

F,  applied  at  the  points  z  =  Zi,  <^  =  0,  <f>^ir,  although  it  is  true 
that  so  highly  localised  a  force  hardly  comes  within  the  scope  of 

^  From  the  general  equations  of  Mr  Love's  memoir  already  cited  a  concordant 
result  may  be  obtained  on  introduction  of  the  appropriate  conditions. 
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the  investigation,  in  consequence  of  the  stretchings  of  the  middle 
surface,  which  will  occur  in  the  immediate  neighbourhood  of  the 
points  of  application  ̂  

The  work  done  upon  the  cylinder  by  the  forces  F  during  the 
hypothetical  displacement  indicated  by  hA,,  &c.,  will  be  by  (10) 

-  FSj?  {ahAJ  +  z,iB,')  (1  +  cos  w), 
so  that  the  equations  of  equilibrium  are 

^^"=0,  4  =  0. 
dAg       *  dBg 

T .  /  =  -  (1  +  cos  sw)  saF,         j^,  =  -  (1  4-  cos  sir)  sziF. 

Thus  for  all  values  of  8, 

and  for  odd  values  of  s,       Ag  =  B,  =  0. 
But  when  8  is  even, 

m  +  u     •         SimhHis'-ir    ^^*^' 

(m  +  n3a«"^    I    •  ""     SirnhH {i^ -^ ly   ^^'^^• 
and  the  displacement  w  at  any  point  {z,  (f>)  is  given  by 

w  =  2  (A::a  +  B^z)  cos  2<^  +  4  {A^a  +  B^z)  cos  4<^  +  . .  .(16), 
where  A^y  B./,  -4/,...  are  detennined  by  (14),  (15). 

A  further  discussion  of  this  solution  >vill  be  found  in  the 

memoir^  from  which  the  preceding  results  have  been  taken. 
We  will  now  proceed  with  the  calculation  for  the  firequencies 

of  vibration  of  the  complete  cylindrical  shell  of  length  21.  If  the 

volume-density*  be  p,  we  have  as  the  expression  of  the  kinetic 
energy  by  means  of  (9),  (10),  (11), 

T  =  i .  2Ap .  jj(u'  +  v-  +  w^)  ad<f>dz 

=  27rphla  S  [a^  (1  +  ̂ )  (i,  +  A/^) 

+  W  (1  +  «0  +  s-^a']  (B,'  -h  5/0}   (17). 
^  Whatever  the  curvature  of  the  surface,  an  area  upon  it  may  be  taken  so  small 

as  to  behave  like  a  plane,  and  therefore  bend,  in  violation  of  Gauss's  condition, 
when  Eubjected  to  a  force  which  is  so  nearly  discontinuous  that  it  varies  sensibly 
within  the  area. 

»  Proc,  Roy,  Soc.  vol  45,  p.  105,  1888. 
3  This  can  scarcely  be  confused  with  the  notation  for  the  curvature  in  the 

preceding  parts  of  the  investigation. 
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From  the  expressions  for  V  and  T  in  (13),  (17)  the  types  and 
frequencies  of  vibration  can  be  at  once  deduced.  The  fact  that 
the  squares,  and  not  the  products,  of  A,,  B,,  are  involved,  shews 

that  these  quantities  are  really  the  normal  co-ordinates  of  the 
vibrating  system.     If -4„  or  A/,  vary  as  cosp^,  we  have 

^'      *m-hn/>a*  ̂   +  1      ^^^^• 
This  is  the  equation  for  the  frequencies  of  vibration  in  two 

dimensions,  §  233.  For  a  given  material,  the  frequency  is  pro- 
portional directly  to  the  thickness  and  inversely  to  the  square 

on  the  diameter  of  the  cylinder^ 

In  like  manner  if  £,,  or  B,\  vary  as  coap,%  we  find 

1      3a'mH-n ,         mn     A«  (^-g)'        71'     m 

P'  '^m-^-npa'  «»  +  l  3a«    "    ^^^* 
(«*  +  «»)> 

If  the  cylinder  be  at  all  long  in  proportion  to  its  diameter,  the 
difference  between  p,  and  p,  becomes  very  small.  Approximately 
in  this  case 

l>./i'.  =  l  +  2^,(--^-  -^   (20); 
or,  if  we  take  m  =  2n,  s  =  2, 

236  A.  We  now  pass  on  to  the  consideration  of  spherical 
sheila  The  general  theory  of  the  extensional  vibrations  of  a 

complete  shell  has  been  given  by  Lamb*,  but  as  the  subject  is 
of  small  importance  from  an  acoustical  point  of  view,  we  shall 
limit  our  investigation  to  the  very  simple  case  of  symmetrical 
radial  vibrations. 

If  w  be  the  normal  displacement,  the  lengths  of  all  lines  upon 

the  middle  surface  are  altered  in  the  ratio  (a  +  w):  a.  In  calcu- 
lating the  potential  energy  we  may  take  in  (10)  §  235  d 

€i  =  €a  =  w/a,    w  =  0 ; 

^  There  is  nothing  in  these  laws  special  to  the  cylinder.  In  the  case  of  similar 
shells  of  any  form,  vibrating  by  pore  bending,  the  frequency  will  be  as  the  thick- 

nesses and  inversely  as  corresponding  areas.  If  the  similarity  extend  also  to  the 
thickness,  then  the  frequency  is  inversely  as  the  linear  dimension,  in  accordance 
with  the  general  law  of  Canchy. 

'  Proc.  Lond,  Math.  8oe,  xiv.  p.  50, 18S2. 

R.  27 
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80  that  the  energy  per  unit  area  is 

.   ,  3m  —  n  w;^ 4ink   ;   r, m  +  n   or 

or  for  the  whole  sphere 

F=4^a».'4nA     (1). 

Also  for  the  kinetic  energy,  if  p  denote  the  volume  density, 

r=i.47ra«.2A.p.t(;'   (2). 

Accordingly  if  w  =  TT  cos  pt,  we  have 

4yi3m-n 

^  "aV  m  +  n   ^^^' 
as  the  equation  for  the  frequency  (p/^ir). 

As  regards  the  general  theory  Prof  Lamb  thus  summarizes  his 

results.  "The  fundamental  modes  of  vibration  fall  into  two 
classes.  In  the  modes  of  the  First  Class,  the  motion  at  every 
point  of  the  shell  is  wholly  tangential.  In  the  nth  species  of 
this  class,  the  lines  of  motion  are  the  contour  lines  of  a  surface 

harmonic  Sn  (Ch.  xvii.),  and  the  amplitude  of  vibration  at  any 
point  is  proportional  to  the  value  of  dSn/de,  where  de  is  the  angle 
subtended  at  the  centre  by  a  linear  element  drawn  on  the  surface 
of  the  shell  at  right  angles  to  the  contour  line  passing  through  the 
point.     The  frequency  {pl^ir)  is  determined  by  the  equation 

k»a^  =  (M-l)(ri  +  2)   (i), 

where  a  is  the  radius  of  the  shell,  and  k^=p^pjn,  if  p  denote  the 

density,  and  n  the  rigidity,  of  the  substance." 

"  In  the  vibrations  of  the  Second  Class,  the  motion  is  partly 
radial  and  partly  tangential.  In  the  nth  species  of  this  class  the 
amplitude  of  the  radial  component  is  proportional  to  Sn,Si  surface 
harmonic  of  order  n.  The  tangential  component  is  everywhere  at 
right  angles  to  the  contour  lines  of  the  harmonic  Sn  on  the  surface 
of  the  shell,  and  its  amplitude  is  proportional  to  AdSn/de,  where 

A  is  a  certain  constant,  and  de  has  the  same  meaning  as  before." 
Prof.  Lamb  finds 

A 

k'a'-4rf 

2^(71+1)7 
  

^^^^' 
where  k  retains  its   former  meaning,  and  7  =  (1  +  <r)/(l  —  a),  a 
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denoting  Poisson's  ratio.  "  Corresponding  to  each  value  of  n  there 
are  two  values  of  k*a*,  given  by  the  equation 

k*a* -  k=*a« {(n«  +  n  + 4)7  + n»  +  n- 2} +4  (71=*  + n- 2) 7  =  0...(iii). 

Of  the  two  roots  of  this  equation,  one  is  <  and  the  other  >  4sy.  It 
appears,  then,  from  (ii)  that  the  cofresponding  fundamental  modes 
are  of  quite  different  characters.  The  mode  corresponding  to  the 

lower  root  is  always  the  more  important." 

"  When  n  =  1,  the  values  of  k'^'a^  are  0  and  67.  The  zero  root 
corresponds  to  a  motion  of  translation  of  the  shell  as  a  whole 
parallel  to  the  axis  of  the  harmonic  Si.  In  the  other  mode  the 

radial  motion  is  proportional  to  cos  0,  where  0  is  the  co-latitude 
measured  from  the  pole  of  Si ;  the  tangential  motion  is  along  the 

meridian,  and  its  amplitude  (measured  in  the  direction  of  0  in- 

creasing) is  proportional  to  ̂   sin  0J* 

*'  When  n  =  2,  the  values  of  ka  corresponding  to  various  values 
of  a-  are  given  by  the  following  table : — 

a  =  0 

cr  =  i 
c-  =  fV 

-i 

cr  =  i 
1-215 
5-703 M20 3-570 

1-176 
4-391 M85 4-601 

1-190 
4-752 

The  most  interesting  variety  is  that  of  the  zonal  harmonic. 

Making  jS=^(3cos^^— 1),  we  see  that  the  polar  diameter  of 
the  shell  alternately  elongates  and  contracts,  whilst  the  equator 
simultaneously  contracts  and  expands  respectively.  In  the  mode 

con-esponding  to  the  lower  root,  the  tangential  motion  is  towards 
the  poles  when  the  polar  diameter  is  lengthening,  and  vice  versd. 
The  reverse  is  the  case  in  the  other  mode.  We  can  hence  under- 

stand the  great  difference  in  fi-equency." 

Prof.  Lamb  calculates  that  a  thin  glass  globe  20  cm.  in 
diameter  should,  in  its  gravest  mode,  make  about  5350  vibrations 

per  second. 

As  regards  inextensional  modes,  their  form  has  already  been 
determined,  (39)  &c.  §  235  c,  at  least  for  the  case  where  the 
bounding  curve  and  the  thickness  are  symmetrical  with  respect 
to  an  axis,  and  it  will  further  appear  in  the  course  of  the  present 
investigation.     What  remains  to  be  effected  is  the  calculation  of 

27—2 
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the  potential  energy  of  bending  corresponding  thereto,  as  depend- 
ent upon  the  alterations  of  curvature  of  the  middle  surface.  The 

process  is  similar  to  that  followed  in  §  235^  for  the  case  of  the 
cylinder,  and  consists  in  finding  the  equation  of  the  deformed 
surface  when  referred  to  rectangular  axes  in  and  perpendicular 
to  the  original  surface. 

The  two  systems  of  co-ordinates  to  be  connected  are  the  usual 
polar  co-ordinates  r,  0,  <f>,  and  rectangular  co-ordinates  x,  y,  f, 
measured  from  the  point  P,  or  (a,  0o,  ̂ ),  on  the  undisturbed 
sphere.  Of  these  x  is  measured  along  the  tangent  to  the 
meridian,  y  along  the  tangent  to  the  circle  of  latitude,  and  (f 
along  the  normal  inwards. 

Since  the  origin  of  ̂   is  arbitrary,  we  may  take  it  so  that 
^0  =  0.    The  relation  between  the  two  systems  is  then 

X  ==  r  {"8X11(0  —  00)-^  sin  0  cos  0o(l  — cos  <t>)}   (4), 

y^rsindsin^     (5), 

f  =  —  r  {cos  (0  —  ̂o)  —  sin  0o  sin  ̂   (1  —  cos  <^)}  -h  a . . .  .(6). 

If  we  suppose  r^a,  these  equations  give  the  rectangular 

co-oi-dinates  of  the  point  (a,  0,  <^)  on  the  undisturbed  sphere. 
We  have  next  to  imagine  this  point  displaced  so  that  its  polar 

co-ordinates  become  a  +  Sr,  0'\-h0,  <^  +  &^,  and  to  substitute  these 
values  in  (4),  (5),  (6),  retaining  only  the  first  power  of  Sr,  S0,  80. 
Thus 

a?  =  (a  H-  Sr)  {—  sin  {0  —  ̂o)  +  si^i  0  cos  0^  (1  —  cos  <f>)} 

H-  aS0  {—  cos  (^  —  ̂o)  +  cos  ̂   cos  ̂ o (1  —  cos  <^)} 

-f  aS<^sin^cos^osin<^   (7), 

y  s  (a  +  Br)  sin  d  sin  (^ 

+  aS0  cos  0  sin  <f>  +  aS<f>  sin  0  cos  <f>    (8), 

^^a-(a  +  &r)  {cos  {0  -  ̂o)  -  sin  0o  sin  ̂   (1  -  cos  0)} 

H-  aS0  {sin  (0  -  ̂o)  +  sin  ̂ o  cos  ̂   (1  —  cos  <^)} 

+  aS<^  sin  ̂ 0 sin  0sin<f>   (9). 

These  equations  give  the  co-ordinates  of  any  point  Q  of  the  sphere 
after  displacement ;  but  we  shall  only  need  to  apply  them  in  the 
case  where  Q  is  in  the  neighbourhood  of  P,  or  (a,  00,  0),  and  then 

the  higher  powers  of  (0  —  ̂o)  and  <^  may  be  neglected. 
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In  pursuance  of  our  plan  we  have  now  to  imagine  the  displaced 
and  deformed  sphere  to  be  brought  back  as  a  rigid  body  so  that 
the  parts  about  P  occupy  as  nearly  as  possible  their  former 
positions.  We  are  thus  in  the  first  place  to  omit  from  (7),  (8), 

(9)  the  terms  (involving  S)  which  are  independent  of  {6  —  0o),  <f>» 
Further  we  must  add  to  each  equation  respectively  the  terms 
which  represent  an  arbitrary  rotation,  viz. 

y  ©8  —  {©a ,     f 0)1  —  a:G)8 ,     aeo^  —  y  ©i , 

determining  (»i,  o),,  0)3  in  such  a  manner  that,  so  far  as  the  first 

powers  of  {0  —  ̂0),  <f>,  there  shall  be  coincidence  between  the  original 
and  displaced  positions  of  the  point  Q. 

If  we  omit  all  terms  of  the  second  order  in  (^  —  ̂0)  and  <f>,  we 
get  from  (7)  Ac. 

oo  =  -a(0-0o)-Bro{O'-0o) 

[S0o]'\'^{0-0o)-¥j^<f>\  +  aS<{>oSm0oCos0o.<l>...  (10), 

y  =  a  sin  ̂0  •  <^  +  Sro  sin  ̂0  •  <^  +  (^^0o  cos  0o .  (f) 

+  aB<f>oCOB0o{0-0o)   (11), 

f=t-Ki-g(*-«.)-^* 
+  aB0o{0-0o)  +  aB(t>oSm^0o.<f>   (12), 

Bvq  &c.  representing  the  values  appropriate  to  P,  where  (0  —  ̂0) 
and  (}>  vanish.  The  translation  of  the  deformed  surface  necessary 

to  bring  P  back  to  its  original  position  is  represented  by  the 
omission  of  the  terms  included  in  square  brackets.  The  arbitrary 
rotation  is  represented  by  the  additions  respectively  of 

a  sin  ̂0  •  <A  •  ®8>      a  (^  —  ̂0)  «8,      -  a  (^  -  ̂0)  Wa  —  ct  sin  ̂0  •  <^  •  Wi  5 
and  thus  the  destruction  of  the  terms  of  the  first  order  requires 
that 

Srla  +  dB0/d0^O   (13), 

-  d8^/d<^  +  sin  ̂   cos  ̂   S<^  H-sin  ̂   ©8  =  0   (14); 

sin  ̂   dS<^/d^  +  cos  ̂   S<^  +  0)8  =  0   (15), 

(Sr/a)  sin  ̂   +  8^  cos  ̂   +  sin  ̂   dS^/(ii^  =  0   (16); 

-d8(r/a)/d^  +  S^-o),  =  0   (17), 

-dS(r/a)/d<^  +  8in»^S<^- sin  ̂ 0)1=0   (18); 
the  suffixes  being  omitted. 
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These  six  equations  determine  (o^^  o),,  o),,  giving  as  the  three 
conditions  of  inextension 

Sr/a  +  dh0/d0^O   (19), 

dS0/dit>  +  sin^ 0 dB4>/d0  ==  0   (20), 

Sr/a  +  cot  ̂   S^  +  d8<^/d<^  =  0   (21). 

From  (19),  (20),  (21),  by  elimination  of  Sr, 

or,  since  sin  0  d/d0  =  d/d  log  tan  ̂ , 

d<^Une/     dlogtani^     "   
^^*^' 

d4>      dlogtani^Vsin^y          ^"^* 
From  (24),  (25)  we  see  that  both  S^  and  B0/am0  satisfy  an 

equation  of  the  second  order  of  the  same  form,  viz. 

d^u              d*u  __ 

d  (log  tan  ̂ 0y  "^  d^« "  "   
^^^^• 

If  the  material  system  be  symmetrical  about  the  axis,  tt  is  a 

periodic  function  of  (f>,  and  can  be  expanded  by  Fourier's  theorem 
in  a  series  of  sines  and  cosines  of  (f>  and  its  multiples.  Moreover 

each  term  of  the  series  must  satisfy  the  equations  independently. 
Thus,  if  u  varies  as  cos  «0,  (26)  becomes 

diloglw-"'^-^   (27); 
whence  u  =  ̂'  tan'  ̂ ^  +  5^  cot*  ̂ ^   (28), 

where  A'  and  R  are  independent  of  0.    If  we  take 

S<^  =  cos  «<^  [il,  tan' i^  +  5,  cot' i^]   (29), 

we  get  for  the  corresponding  value  of  S0  from  (24) 

S^/sin^  =  -sin«<^[il,tan'i^-5,cot'i^]   (30); 

and  thence  from  (21) 

&r/a  =  sin  8<{>  [A,  (s  +  cos  0)  tan'  ̂ 0  +  3,(8-  cos  0)  cot'  ̂ 0] . .  .(31), 

as  in  (39),  (40),  (41)  §  235  c. 
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The  second  solution  (in  Bg)  may  be  derived  from  the  first  (in  Ag) 

in  two  ways  which  are  both  worthy  of  notice.  The  manner  of  deri- 
vation from  (27)  shews  that  it  is  sufficient  to  alter  the  sign  of  8, 

tan*^^  becoming  cot'^O,  sin«<^  becoming  —  sin  8(f>,  while  cos  8<f> 
remains  unchanged.  The  other  method  depends  upon  the  con- 

sideration that  the  general  solution  must  be  similarly  related  to 
the  two  poles.  It  is  thus  legitimate  to  alter  the  first  solution  by 

writing  throughout  (tt  —  0)  in  place  of  0,  changing  at  the  same 
time  the  sign  of  S0, 

If  we  suppose  «  =  1,  we  get 

sin  ̂ S^  =  cos  <^  [ill  -h  -Bi  —  (-^i  —  A)  cos  0], 

8^  =  -  sin  ̂   [^1  -  5i  -  (A  +  A)  cos  ̂ ], 

Sr/a  =  sin  <^  [(A^  +  B^)  sin  0], 

The  displacement  proportional  to  (Ai  —  Bi)  is  a  rotation  of  the 
whole  surface  as  a  rigid  body  round  the  axis  0  =  ̂ ,  <^  =  0 ;  and 
that  proportional  to  (Ai  +  Bi)  represents  a  translation  parallel  to 

the  axis  0^^,  <^  =  ̂ 7r.  The  complementary  translation  and 
rotation  with  respect  to  these  axes  is  obtained  by  substituting 

<^  H-  ̂TT  for  <^. 

The  two  other  motions  possible  without  bending  correspond  to 
a  zero  value  of  8,  and  are  readily  obtained  from  the  original 

equations  (19),  (20),  (21).  They  are  a  rotation  round  the  axis 

^  =  0,  represented  by 

B0  =  0,     S<^  =  const.,     Sr  =  0, 

and  a  displacement  parallel  to  the  same  axis  represented  by 

or  S<^  =  0,        S^s=78in^,       Sr  =  ̂ ya  cos  0, 

If  the  sphere  be  complete,  the  displacements  just  considered, 

and  corresponding  to  «  =  0,  1,  are  the  only  ones  possible.  For 
higher  values  of  8  we  see  from  (31)  that  Sr  is  infinite  at  one  or 
other  pole,  unless  Ag  and  Bg  both  vanish.  In  accordance  with 

Jellet's  theorem'  the  complete  sphere  is  incapable  of  bending. 
If  neither  pole  be  included  in  the  actual  surface,  which  for 

example  we  may  suppose  bounded  by  circles  of  latitude,  finite 

1  *<0n  the  Properties  of  Inextensible  Surfaces,"  Iriih  Acad,  Trant.,  vol.  22, 
p.  179. 1S66. 



424  CURVED  PLATES  OR  SHELLS.        [235  A. 

values  of  both  A  and  B  are  admissible,  and  therefore  necessary  for 
a  complete  solution  of  the  problem.  But  if,  as  would  more  often 

happen,  one  of  the  poles,  say  ̂  =  0,  is  included,  the  constants  B 
must  be  considered  to  vanish.  Under  these  circumstances  the 
solution  is 

S^  =  Ag  tan'  ̂ d  cos  8<f>  \ 
S^  =  -  ̂ ,  sin  ̂   tan*  i^  sin  «<^  I   (32), 

Sr  =  -4,a  («  +  cos  0)  tan*  \0  sin  «<^  J 

to  which  is  to  be  added  that  obtained  by  writing  8<^  +  ̂tt  for  «<^, 
and  changing  the  arbitraiy  constant 

From  (32)  we  see  that,  along  those  meridians  for  which 

sin  8if>  =■  0,  the  displacement  is  tangential  and  in  longitude  only, 
while  along  the  intermediate  meridians  for  which  cos  8^  =  0,  there 
is  no  displacement  in  longitude,  but  one  in  latitude,  and  one 
normal  to  the  surface  of  the  sphere. 

Along  the  equator  0  =  ̂tt, 

S<^  =  Af  cos  «<^,       Z0  =  '-Ag  sin  «<^,       irfa  =  Ag8  sin  «0, 

so  that  the  maximum  displacements  in  latitude  and  longitude  are 

equal. 

Reverting  now  to  the  expressions  for  x,  y,  5'  in  (7),  (8),  (9), 
with  the  addition  of  the  translatory  and  rotatory  terms  by  which 
the  deformed  sphere  is  brought  back  as  nearly  as  possible  to  its 

original  position,  we  know  that  so  far  as  the  terms  of  the  first 

order  in  {0  —  ̂o)  and  <^  are  concerned,  they  are  reduced  to 

a;  =  -  a  (^  -  ̂o),       y  =  a  sin  0^.4>,       (;=  0   (33). 

These  approximations  will  suffice  for  the  values  of  x  and  y ;  but 
in  the  case  of  ̂   we  require  the  expression  complete  so  as  to 

include  all  terms  of  the  second  order.  The  calculation  is  straight- 
forward.    For  any  displacement  such  as  Sr  in  (9)  we  write 

The  additional  rotatoiy  terms  are  by  (17),  (18) 

^  r»  —adeji^y  io  sin  d.d^r '""  ̂'^ 
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In  these  we  are  to  retain  only  those  terms  in  x,  y,  which  are  of  the 
second  order  and  independent  of  S,  so  that  we  may  write 

X  =  ̂a<f>^  sin  ̂ o  cos  Oq,    y  =  a  (^  -  ̂o)  <t>  cos  ̂ o- 

In  the  complete  expression  for  ̂   as  a  quadratic  function  of 

{0  —  ̂o)  and  (f)  thus  obtained,  we  substitute  x  and  y  from  (33). 
The  final  equation  to  the  deformed  sur£Etce,  after  simplification  by 
the  aid  of  (19),  (20),  (21),  may  be  written 

^^  r       Sr_ld«Sr)         xy     (     1  d?hr      cot^dgr] 
^     2a|        a      a  d^j      asin^l     adOd^^    a     d^] 

y];  f  '_  Sr  _  cot^  d8r  _      1      d^h-} 

■^2af      a        a     d0      asm^d  d4>^\   ^•**^' 
the  suffixes  being  now  unnecessary. 

Taking  the  value  of  Br/a  from  (32)  we  get 

Sr     Id^Sr        «»-5 
  j^  =  — -r-7-2, -dg  tan*  *^  sm  «6   (3o), 

1       d^hr        cos^   dlr        «*-«  -   .     ..^  .        ,«^. 
  ^/,:j>jjrTH   •  o/i"Ti  ="  .-rz-4»^i^  i^cos«6....(36),   . 

asm0d0d<f>     a  sin^  0  d<f>         sm**^  *  r       \     /> 

Sr     cot^dSr  1       d^Sr     s^-8  .  ̂      ,,^  .      .     ,^,_.   -j^   r-r-a  v::-  =  -r-r-^-4gtanH^sm«6...(37). 
a        a     d0      a  sm»  ̂   d<f>^      sin*  ̂   -*  ir    \     / 

To  obtain  the  more  complete  solution  corresponding  to  (31),  we 
have  only  to  add  new  terms,  multiplied  by  Bg,  and  derived  from 
the  above  by  changing  the  sign  of  8,  As  was  to  be  expected,  the 
values  in  (35)  and  (37)  are  equal  and  opposite. 

Introducing  the  values  now  found  into  (5)  §  235  /,  we  obtain 
as  the  square  of  the  change  of  principal  curvature  at  any  point 

(S  -X  =  ~^^l  [AJ"  tan*  i0  +  B,^  cot»  ̂ 0  -  2A,B,  cos  28<t>} . .  .(38). 

It  should  be  remarked  that,  if  either  A,  or  Bg  vanish,  (38)  is 

independent  of  <^,  so  that  the  change  of  principal  curvature  is  the 
same  for  all  points  on  a  circle  of  latitude,  and  that  in  any  case 
(38)  becomes  independent  of  the  product  AgBg  after  integration 
round  the  circumference.  The  change  of  curvature  vanishes  if 

8  =  0fOx;  8=^1,  the  displacement  being  that  of  which  a  rigid  body 
is  capable. 

Equations  (35)  &c.  shew  that  along  the  meridians  where  S^ 

vanishes  (cos«^  =  0)  the  principal  planes  of  curvature  are  the 
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meridian  and  its  perpendicular,  while  along  the  meridians  where 
Sr  vanishes,  the  principal  planes  are  inclined  to  the  meridian  at 

angles  of  45°. 
The  value  of  the  square  of  the  change  of  curvature  obtained  in 

(38)  corresponds  to  that  assumed  for  the  displacements  in  (29)  &c., 
and  for  some  purposes  needs  to  be  generalised.  We  may  add 

terms  with  coefficients  A,'  and  B,  corresponding  to  a  change 
of  8<^  to  («<^  +  i7r),  and  there  is  further  to  be  considered  the 
summation  with  respect  to  8.  Putting  for  brevity  t  in  place  of 

tan^d,  we  may  take  as  the  complete  expression  for  [S  (!//>)]', 

\^^S-0  ̂̂ "^'^ "^  ̂'^'^ ^'"^ **  "^ ^^'^  ■*■  ^''^'^  ̂'"^  (** "^  ̂""^^1' 

+  [S  -^^^  [{A,i^  -  Bst-*)  cos  «<^  +  (il.V  -  5/e-)  cos  {84>  +  \iryX . 

When  this  is  integrated  with  respect  to  <j>  round  the  entire 

circumference,  all  products  of  the  generalised  co-ordinates  J.«,  B^, 
Ai,  Bi  disappear,  so  that  (7)  §  235/ we  have  as  the  expression  for 
the  potential  energy  of  the  surface  included  between  two  paitiUels 
of  latitude 

F  =  27r2  (j9»  -  8f  (h 8in-»  0  {{A,'  +  A,'')  t^ 

+  (B,'  +  B,'')t-^}d0   (39), 

where  H^^nh^   (40). 

In  the  following  applications  to  spherical  surfeu^es  where  the 

pole  ̂   =  0  is  included,  we  may  omit  the  terms  in  B\  and,  if 
the  thickness  be  constant,  H  may  be  removed  from  under  the 
integral  sign.     We  have 

d0^^..  sin^=    2^ 
so  that 

fit  /  A^*— «        9/2»        ̂ +2  \ 

j^sin-  dfdd = i  j  (1  +  e')« «»-« «i<«  =  i  (-' -J- + fi-  +  i_J. .  .(41^. 
In  the  case  of  the  hemisphere  t  =  1,  and  (41)  assumes  the  value 

2«»-l ,(42). 

4(s»-«)  
 

Hence  for  a  hemisphere  of  uniform  thickness 

F=  \irHt  («•  -  «)  (2«>  -  1)  (4,>  +  A:^)   (43). 
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If  the  extreme  value  of  ̂   be  60°,  instead  of  90°,  we  get  in 
place  of  (42) 

4.3'+»(5»-5)   ^     '' 

and         V  =  iirHX  3-<*+»)  (s'  -  a)  {8^  +  4«  -  3)  (A,^  4-  ̂;«). .  .(45). 

These  expressions  for  F,  in  conjunction  with  (32),  are  sufficient 
for  the  solution  of  statical  problems,  relative  to  the  deformation  of 
infinitely  thin  spherical  shells  under  the  action  of  given  impressed 
forces.  Suppose,  for  example,  that  a  string  of  tension  F  connects 
the  opposite  points  on  the  edge  of  a  hemisphere,  represented  by 

^  =  i^>  <^  =  ̂TT  or  |7r,  and  that  it  is  required  to  find  the  deforma- 
tion. It  is  evident  from  (32)  that  all  the  quantities  A/  vanish, 

and  that  the  work  done  by  the  impressed  forces,  coiTCsponding  to 
the  deformation  BA,,  is 

—  SAgds  (sin  i^sir  +  sin  fwr}  F. 

If  8  be  odd  this  vanishes,  and  if  s  be  even  it  is  equal  to 

—  2BAsa8  sin  ̂ stt.F. 

Hence  if  s  be  odd  Ag  vanishes ;  and  by  (43),  if  a  be  even, 

dF/dil,  =  7rir(a'-«)(25*-l)^,  =  -2(Wsini«7r.F; 

whence  ^  -  -         2a^sin  jsir 

By  (46)  and  (32)  the  deformation  is  completely  determined. 

If,  to  take  a  case  in  which  the  force  is  tangential,  we  suppose 
that  the  hemisphere  rests  upon  its  pole  with  its  edge  horizontal, 
and  that  a  rod  of  weight  W  is  laid  symmetrically  along  the 
diameter  O^^w,  we  find  in  like  manner 

^•"•7rir(*^-«)(2«^-.l)   ^*^^ 
for  all  even  values  of  «,  and  -4,  =  0  for  all  odd  values  of  a. 

We  now  proceed  to  evaluate  the  kinetic  energy  as  defined  by 
the  formula 

in  which  <r  denotes  the  surfeu^e  density,  supposed  to  be  uniform. 
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If  we  take  the  complete  value  of  S(f>  from  (29),  as  supplemented  by 
the  terms  in  A,\  B,,  we  have 

J"  =  2  [cos  8<f>  (A,tf  +  B,tr*)  +  cos  («<^  +  ̂tt)  (i/t*  +  £/«-•)]. 
When  this  expression  is  squared  and  integrated  with  respect 

to  (f>  round  the  entire  circumference,  all  products  of  letters  with  a 
different  su£Sx,  and  all  products  of  dashed  and  undashed  letters 

even  with  the  same  su£Sx,  will  disappear.  Hence  replacing  cos*  8<l> 
&c.  by  the  mean  value  i,  we  may  take 

sm 

•    • 
in»  0  (^y  =  i  sin»  ̂   2  (A.*  +  i;«)  e« 

+  i  sin^  0  X  {B,'  +  B;«)  ir^  +  sin«  0 1  {A,B,  +  A^B.y 

The  mean  value  (30)  of  (dB0ldty  is  the  same  as  that  just 

written  with  the  substitution  throughout  of  —  £  for  B,  so  that  we 
may  take 

+  sin»^2(^,«  +  ̂;»)r"   (49), 

as  the  mean  available  for  our  present  purpose.  In  (49)  the 
products  of  the  symbols  have  disappeared,  and  if  the  expression 
for  the  kinetic  energy  were  as  yet  fully  formed,  the  co-ordinates 
would  be  shewn  to  be  normcU.  But  we  have  still  to  include  that 

part  of  the  kinetic  energy  dependent  upon  dBr/dt  As  the  mean 
value,  applicable  for  our  purpose,  we  have  from  (31) 

( f£f = i  2  (i.» + i;«)  (« + cos  ey  p 

+ i  2  (£,» + B,'*)  (8  -  COS  eyir^ 

+  2  (A,B.  +  A.'B,')  («» -  COS'  ̂ )   (50). 
The  expressions  (49)  and  (oO)  have  now  to  be  added.  If  we  set 
for  brevity 

/
'
 

tan"  i0  {(8  +  cos  «)« +  2  sin''  0}  sin  0d0^/{8)   (51), 

or  putting  x  —  l-h  cos  0, 
•»  /2  -  x\» 

A8)^f(^)'{(8-iy-^2xi8+l)-a^]dx   (52), 
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we  get 

T  =  \iraa^  [lf{8)  (i,«  +  i/»)  +  2/(-  s)  W  +  ̂Z^) 

+  22[(««-cos»^)8m^d5(i,^.  +  i;£/)}   (53). 

It  will  be  seen  that,  while  V  in  (39)  is  expressible  by  the 

squares  only  of  the  co-ordinates,  a  like  assertion  cannot  in  general 
be  made  of  T,  Hence  J.,,  £,  &c.  are  iwt  in  general  the  normal 

co-ordinates.  Nor  could  this  have  been  expected.  If,  for  example, 
we  take  the  case  where  the  spherical  surface  is  bounded  by  two 
circles  of  latitude  equidistant  from  the  equator,  symmetry  shews 

that  the  normal  co-ordinates  are,  not  A  and  B^  but  {A  +  B)  and 
{A  -  B).     In  this  case  /(-  8)  =/(«). 

A  verification  of  (53)  may  readily  be  obtained  in  the  particular 

case  of  «  =  1,  the  surface  under  consideration  being  the  entire 
sphere.     Dropping  the  dashed  letters,  we  get 

T  =  \yraa'  [^  (i,»  +  A')  +  %AA] 

=  i7r<ra*{  4(i,  +  4)«  +  f (i, - £,)«}   (54). 

In  this  case  the  displacements  are  of  the  purely  translatory  and 
rotatory  tjrpes  already  discussed,  and  the  coiTectness  of  (54)  may 
be  confirmed. 

Whatever  may  be  the  position  of  the  circles  of  latitude  by 
which  the  surfieuse  is  bounded,  the  true  t}rpes  and  periods  of 

vibration  are  determined  by  the  application  of  Lagrange's  method 
to  (39),  (53). 

When  one  pole,  e.g.  ̂  =  0,  is  included  within  the  surface,  the 
co-ordinates  B  vanish,  and  ̂ «,  A^  become  the  normal  co-ordinates. 
If  we  omit  the  dashed  letters,  the  expression  for  T  becomes 
simply 

T^\iraa''Lf{8)A,^   (55). 

From  (43),  (55)  the  frequencies  of  free  vibrations  for  a  hemi- 
sphere are  immediately  obtainable.    The  equation  for  A,  is 

aa^f{8)A,'\-H{^-8){2^-l)A,^0   (56); 

so  that,  if  Af  vary  as  cos  j),t, 

ir(^-^)j2^-l)^2nA»   (^-^)(2^-l)         ,  .. 
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if  we  introduce  the  value  of  H  from  (40),  and  express  a  by  means 
of  the  volume  density  p. 

In  like  manner  for  the  saucer  of  120°,  from  (44), 

^_^(^-^)(8^+4^^3) 

P'   aa^f{8),  3*^^     ^^^)- 
The  values  of  f(s)  can  be  calculated  without  difficulty  in  the 

various  cases.     Thus,  for  the  hemisphere, 

'2 

x-^  (4  -  4^  +  ̂  )  (1  4-  6a?  -  ̂ )  da? /(2)=f 
.'1 

so  that 

=  20  log  2 -12J  =  1-52961, 

/(3)  =  57^  -  80  log  2  =  1-88156, 

/(4)  =  200  log  2  -  136J  =  2-29609,  &c. ; 

i).=  -i^  X  5-2400,     p3  =  '^  X  14-726,     p,  =  -^  x  28462. 

In  experiment,  it  is  the  intervals  between  the  various  tones 
with  which  we  are  most  concerned.     We  find 

j?,/p,  =  2-8102,     j3,/p,  =  5-4316   (59). 

In  the  case  of  glass  bells,  such  as  are  used  with  air-pumps, 
the  interval  between  the  two  gravest  tones  is  usually  somewhat 

smaller ;  the  representative  fraction  being  nearer  to  2-5  than  2-8. 

For  the  saucer  of  120°,  the  lower  limit  of  the  integral  in  (52) 
is  f ,  and  we  get  on  calculation 

/(2)  = -12864,    /(3)  = -054884, 

giving  p,  =  J^  X  7-9947,     p,=  'f— x  20'9U, 

P3:;>2  =  2-6157. 
The  pitch  of  the  two  gravest  tones  is  thus  decidedly  higher  than 
for  the  hemisphere,  and  the  interval  between  them  is  lees. 

With  reference  to  the  theory  of  tuning  bells,  it  may  be  worth 
while  to  consider  the  effect  of  a  small  change  in  the  angle,  for  the 
case  of  a  nearly  hemispherical  bell     In  general 

4ir  (jj»  -  Bf  I  sin-»  0  tan**  ̂ 0  d0 
Ps'  =   p   is   ...  (60). 

aV  I  tan"  ̂ 0  [(s  +  cos  0y  +  2  sin«  0}  sin  0d0 
•   A 
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If  5  =  ̂«ir  +  8^,  and  P,  denote  the  value  of  /),  for  the  exact  hemi- 
sphere, we  get  from  previous  results 

Thus 

;>.' =  P^l  4- S^  If? -,:^g)]  =  p.' (1 -20  S^). 
shewing  that  an  increase  in  the  angle  depresses  the  pitch.     As  to 
the  interval  between  the  two  gravest  tones,  we  get 

©' =(S/^^'^  •'''">• 

p. 

shewing  that  it  increases  with  0.     This  agrees  with  the  results 

given  above  for  0  =  60°. 

The  fact  that  the  form  of  the  normal  functions  is  independent 
of  the  distribution  of  density  and  thickness,  provided  that  they 
vary  only  with  latitude,  allows  us  to  calculate  a  great  variety  of 
cases,  the  difficulties  being  merely  those  of  simple  integration.  If 

we  suppose  that  only  a  narrow  belt  in  co-latitude  0  has  sufficient 
thickness  to  contribute  sensibly  to  the  potential  and  kinetic 
energies,  we  have  simply,  instead  of  (60), 

P'       a*a  {(s  +  cos  0y  +  2  sin*  d]   ^^  ̂' 

whence  ^  =  4,/l«±i^^^^:i^i   (63). 
Pa  V    Ul+ecoS^-COS^^j  ^      ̂ 

The  ratio  varies  very  slowly  from  3,  when  ̂   =  0,  to  2*954,  when 

« 

If  2A  denote  the  thickness  at  any  co-latitude  0,  Hoch\  aoc  h, 
I  have  calculated  the  ratio  of  frequencies  of  the  two  gravest  tones 
of  a  hemisphere  on  the  suppositions  (1)  that  A  x  cos  d,  and  (2)  that 
/i  X  (1  +  cos  0),  The  formula  used  is  that  marked  (60)  with  H  and  <r 

under  the  integral  signs.  In  the  first  case,  Pz:pi=  1*7942,  diflFering 
greatly  from  the  value  for  a  uniform  thickness.  On  the  second 
more  moderate  supposition  as  to  the  law  of  thickness, 

p, :  Pa  =  2-4591,     P4 :  Pa  =  4-4837. 
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It  would  appear  that  the  smallness  of  the  interval  between  the 
gravest  tones  of  common  glass  bells  is  due  in  great  measure  to  the 
thickness  diminishing  with  increasing  0, 

It  is  worthy  of  notice  that  the  curvature  of  deformation  8  (p~0» 
which  by  (38)  varies  as  sin"*  ̂   tan' J^,  vanishes  at  the  pole  for 
9  =  3  and  higher  values,  but  is  finite  for  «  =  2. 

The  present  chapter  has  been  derived  very  largely  from 
various  published  memoirs  by  the  author^  The  methods  have 
not  escaped  criticism,  some  of  which,  however,  is  obviated  by 
the  remark  that  the  theory  does  not  profess  to  be  strictly 
applicable  to  shells  of  finite  thickness,  but  only  to  the  limiting 
case  when  the  thickness  is  infinitely  small.  When  the  thickness 
increases,  it  may  become  necessary  to  take  into  account  certain 

"  local  perturbations  "  which  occur  in  the  immediate  neighbourhood 
of  a  boundary,  and  which  are  of  such  a  nature  as  to  involve 
extensions  of  the  middle  surface.  The  reader  who  wishes  to 

pursue  this  rather  difficult  question  may  refer  to  memoirs  by 

Love',  Lamb',  and  Basset*.  From  the  point  of  view  of  the  present 
chapter  the  matter  is  perhaps  not  of  great  importance.  For  it 
seems  clear  that  any  extension  that  may  occur  must  be  limited  to 
a  region  of  infinitely  small  arec^  and  affects  neither  the  types  nor 
the  frequencies  of  vibration.  The  question  of  what  precisely 
happens  close  to  a  free  edge  may  require  further  elucidation,  but 
this  can  hardly  be  expected  fix)m  a  theory  of  thin  shells.  At 

points  whose  distance  from  the  edge  is  of  the  same  order  as  the 
thickness,  the  characteristic  properties  of  thin  shells  are  likely  to 

disappear. 

^  Proe,  Land,  Math.  Soe.,  ziii.  p.  4, 1S81 ;  xx.  p.  872, 1889 ;  Proe.  Roy.  Soe.,  vol. 
45,  p.  105,  1888 ;  vol.  45,  p.  443,  1888. 

»  Phil.  Trans.,  179(a),  p.  491,  1888;  Proe.  Boy.  Soc.,  vol.  49,  p.  100,  1891; 
Theory  of  Elasticity ,  ch.  xxi. 

<  Proe.  Lond.  Math.  Soc.,  voL  xxi.  p.  119,  1890. 
4  Phil.  Trans.  181  (a),  p.  433,  1890;  Am.  Math.  Joum.,  vol  xvi.  p.  254,  1894. 



CHAPTER  Xb. 

ELECTRICAL   VIBRATIONS. 

236  i.  The  introduction  of  the  telephone  into  practical  use, 
and  the  numerous  applications  to  scientific  experiment  of  which 
it  admits,  bring  the  subject  of  alternating  electric  currents 
within  the  scope  of  Acoustics,  and  impose  upon  us  the  obligation 
of  shewing  how  the  general  principles  expounded  in  this  work  may 
best  be  brought  to  bear  upon  the  problems  presenting  themselves. 
Indeed  Electricity  affords  such  excellent  illustrations  that  the 
temptation  to  use  some  of  them  has  already  (^  78,  92  a,  111  6) 
proved  irresistible.  It  will  be  necessary,  however,  to  take  for 
granted  a  knowledge  of  elementary  electrical  theory,  and  to  abstain 
for  the  most  part  from  pursuing  the  subject  in  its  application  to 
vibrations  of  enormously  high  frequency,  such  as  have  in  recent 
years  acquired  so  much  importance  from  the  researches  initiated 
by  Lodge  and  by  Hertz.  In  the  writings  of  those  physicists  and  in 
the  works  of  Prof.  J.  J.  Thomson^  and  of  Mr  O.  Heaviside'  the 
reader  will  find  the  necessary  information  on  that  branch  of  the 
subject. 

The  general  idea  of  including  electrical  phenomena  under  those 
of  ordinary  mechanics  is  exemplified  in  the  early  writings  of  Lord 

Kelvin ;  and  in  his  "  Dynamical  Theory  of  the  Electro-magnetic 

Field'"  Maxwell  gave  a  systematic  exposition  of  the  subject  from 
this  point  of  view. 

^  Recent  Researches  in  Electricity  and  Magnetism^  1893. 
2  Electrical  Papers,  1892. 
3  Phil,  Trans,  vol.  155,  p.  459, 1865 ;  Collected  Works,  vol.  1,  p.  526. 
K  28 
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236  J.  We  commence  with  the  consideration  of  a  simple 

electrical  circuit,  consisting  of  an  electro-magnet  whose  terminals 

are  connected  with  the  poles  of  a  condenser,  or  leyden^,  of  capacity 
C.  The  electro-magnet  may  be  a  simple  coil  of  insulated  wire,  of 
resistance  It,  and  of  self-induction  or  inductance  L,  If  there  be  an 
iron  core,  it  is  necessary  to  suppose  that  the  metal  is  divided  so  as 
to  avoid  the  interference  of  internal  induced  currents,  and  further 

that  the  whole  change  of  magnetism  is  small'.  Otherwise  the 
behaviour  of  the  iron  is  complicated  with  hysteresis,  and  its  effect 
cannot  be  represented  as  a  simple  augmentation  of  Z.  Also  for 
the  present  we  will  ignore  the  hysteresis  exhibited  by  many  kinds 
of  leydens. 

If  X  denote  the  charge  of  the  leyden  at  time  t,  x  is  the 

current,  and  if  EiCO^pt  be  the  imposed  electro-motive  force,  the 

equation  is 
Lx-k-Rx-^xjC^^E^Qo&pt   (1). 

The  solution  of  (1)  gives  the  theory  oi forced  electrical  vibrations ; 
but  we  may  commence  with  the  consideration  of  the  free  vibra- 

tions corresponding  to.  JFi  =  0.  This  problem  has  already  been 
treated  in  §  45,  from  which   it  appears  that  the  currents  are 
oscillatory,  if 

R<2^f(LIC)   (2). 

The  fiEtct  that  the  discharges  of  leydens  are  often  oscillatory  was 
suspected  by  Henry  and  by  v.  Helmholtz,  but  the  mathematical 

theory  is  due  to  Kelvin*. 

When  R  is  much  smaller  than  the  critical  value  in  (2),  a  large 
number  of  vibrations  occur  without  much  loss  of  amplitude,  and 
the  period  t  is  given  by 

T  =  27rV(Ci)   (3). 

In  (2),  (3)  the  data  may  be  supposed  to  be  expressed  in  c.  G.  s. 

electro-magnetic  measure.  If  we  introduce  practical  units,  so 

that  L',  R\  C  represent  the  inductance,  resistance  and  capacity 
reckoned  respectively  in  earth-quadrants  or  henrys,  ohms,  and 

microfarads*,  we  have  in  place  of  (2) 

iZ' <  2000  V(i7<?')   (2'), 

1  This  term  has  been  approved  by  Lord  Kelvin  (*'  On  a  New  Form  of  Air  Leyden 
A'C.*'  Proc,  Roy.  Soc,  vol.  62,  p.  6,  1892). 

>  Phil  Mag,,  vol.  23.  p.  225, 1887. 

>  "  On  Transient  Electric  Currents,"  Phil.  Mag.,  June,  1868. 

*  Ohm=10®,  henry=10»,  microfarad =10"". 
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and  in  place  of  (3) 

T  =  27r.l0-V(O'i')   (3'). 
With  ordinary  appliances  the  value  of  t  is  very  small ;  but  by 

including  a  considerable  coil  of  insulated  wire  in  the  discharging 

circuit  of  a  leyden  composed  of  numerous  glass  plates  Lodge  ̂   has 
succeeded  in  exhibiting  oscillatory  sparks  of  periods  as  long  as 

T^  second. 

If  the  leyden  be  of  infinite  capacity  or,  what  comes  to  the 

same  thing,  if  it  be  short-circuited,  the  equation  of  free  motion 
reduces  to 

Lx  +  Rx^O   (4); 

whence  x  =  cho€r<^i^^*   (5)», 

Xo  representing  the  value  of  x  when  f  =  0.  The  quantity  L/R  is 
sometimes  called  the  time-constant  of  the  circuit,  being  the  time 
during  which  free  currents  fall  oflF  in  the  ratio  of  ̂  :  1. 

Returning  to  equation  (1),  we  see  that  the  problem  falls  under 
the  general  head  of  vibrations  of  one  degree  of  freedom,  discussed 

in  §  46.  In  the  notation  there  adopted,  w'  =  ((7i)~^  k^R/L, 
E^Ei/L]  and  the  solution  is  expressed  by  equations  (4)  and  (5). 
It  is  unnecessary  to  repeat  at  length  the  discussion  already  given, 
but  it  may  be  well  to  call  attention  to  the  case  of  resonance, 
where  the  natural  pitch  of  the  electrical  vibrator  coincides  with 

that  of  the  imposed  force  {p^LC=l).  The  first  and  third  terms 
then  (§  46)  compensate  one  another,  and  the  equation  reduces  to 

Rx:=EiC03pt   (6). 

In  general,  if  the  leyden  be  short-circuited  (0=  x  ), 

El 

^  "^  L'p"  +  if»  ̂̂   oospt+pL  
sin  pt]   (7); 

so  that,  if  p  much  exceed  R/L,  the  current  is  greatly  reduced  by 

self-induction.  In  such  a  case  the  introduction  of  a  leyden  of 

suitable  capacity,  by  which  the  self-induction  is  compensated, 

results  in  a  large  augmentation  of  current*.  The  imposed  electro- 
motive force  may  be  obtained  fix)m  a  coil  forming  part  of  the 

circuit  and  revolving  in  a  magnetic  field. 

1  Proc,  Roy.  Intt.,  March,  1889. 
^  Helmholtz,  Pogg.  Ann.j  Lxxzni.,  p.  505, 1851. 

s  Maxwell,   **  Experiment  in  Magneto-Electric  Indaction,'*  Phil  Mag,^  May, 
1868. 

28—2 
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23S^'.  We  commenoe  with  the  consideration  of  a  simple 
electrical  circuit,  consisting  of  an  electro-magnet  whose  terminals 

are  connected  with  the  poles  of  a  condenser,  or  leaden',  of  capacity 
C.  The  electro'magnet  may  be  a  simple  coil  of  insulated  wire,  of 
resistance  R,  and  of  self-induction  or  inductance  L.  If  there  be  an 
iron  core,  it  is  necessary  to  suppose  that  the  metal  is  divided  so  as 
to  avoid  the  interference  of  internal  induced  currents,  and  further 

that  the  whole  change  of  magnetism  is  small*.  Otherwise  the 
behaviour  of  the  iron  is  complicated  with  hystereais,  and  its  effect 

cannot  be  represented  as  a  simple  augmentation  of  L.  Also  for 

the  present  we  will  ignore  the  hysteresis  exhibited  by  many  kinds 
of  leydens. 

If  w  denote  the  charge  of  the  leyden  at  time  t,  x  ia  the 

current,  and  if  EjCoapt  be  the  imposed  electro-motive  force,  the 

equation  is 
Lx  +  R£  +  x/C=E,coBpt   (1). 

The  solution  of  (1) gives  the  theory  oi forced  electrical  vibrations; 

but  we  may  commence  with  the  consideration  of  the  free  vibra- 

tions corresponding  to  £,  =  0.  This  problem  has  already  been 
treated  in  §  43,  ivom  which  it  appears  that  the  currents  are 

osciUatory,  if 
B<2V(i/C)   (2). 

The  fact  that  the  discharges  of  leydens  are  often  oscillatory  was 

suspected  by  Henry  and  by  v.  Helmholtz,  but  the  mathematical 

theory  is  due  to  Kelvin'. 
When  R  is  much  smaller  than  the  critical  value  in  (2),  a  lai^ 

number  of  vibrations  occur  without  much  loss  of  amplitude,  and 

the  period  t  is  given  by 
T~2v^(CL)   (3). 

In  (2),  (3)  the  data  may  be  supposed  to  be  expressed  in  aQ.8. 

electro-magnetic  measure.  If  we  introduce  practical  units,  so 

that  L',  R',  C  represent  the  inductance,  resistance  and  capacity 
reckoned  respectively  in  earth-quadrants  or  hesrys,  ohms,  ud 

microfarads*,  we  have  in  place  of  (2) 

R'<2000'J{L'IG')   

1  This  term  bu  been  approved  by  Lord  KbItId  ("  On  a  h'e«  Furm  of  Air 
4e."  Proe.  Roy.  Soc.,  vol.  52,  p.  6,  1892). 

•  Phil.  Mag.,  vol.  23,  p.  M5,  1887. 

>  "On  Irauiient  Eleotric  Cucrente,"  Phil,  ilag^  Jvbm,  1858. 

*  Ohm  =  I0*,  henty  =  10»,  microfarads  10"". 
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and  in  place  of  (3) 

T  =  27r.lO-'V(C'i;'>   (3'). 
With  ordinary  appliances  the  value  of  t  is  very  small ;  but  by 

iDCluding  a  considerable  coil  of  insulated  wire  in  the  dischar^ng 

circuit  of  a  leyden  composed  of  numerous  glass  plates  Lodge'  has 
succeeded  in  exhibiting  oscillatory  sparks  of  periods  as  long  as 

jj,  second. 
If  the  leyden  be  of  infinite  capacity  or,  what  comes  to  the 

same  thing,  if  it  be  short-circuited,  the  equation  of  free  motion 
reduces  to 

LS  +  Ri~Q   (4); 

whence  i  =  jroe~**"'"   (5)*, 

it  representing  the  value  of  a:  when  f  =  0.  The  quantity  LfR  is 

sometimes  called  the  time-constant  of  the  circuit,  being  the  time 
during  which  free  currents  fell  off  in  the  ratio  of  e  :  1. 

Returning  to  equation  (1),  we  see  that  the  problem  falls  under 
the  general  head  of  vibrations  of  one  degree  of  freedom,  discussed 

in  §  46.  In  the  notation  there  adopted,  7i'  =  (C7L)-',  k^S/L, 
E^EijL;  and  the  solution  is  expressed  by  equations  (4)  and  (5). 
It  is  unnecessary  to  repeat  at  length  the  discussion  already  given, 

but  it  may  be  well  to  call  attention  to  the  case  of  resonance, 
where  the  natural  pitch  of  the  electrical  vibrator  coincides  with 

that  of  the  imposed  force  (p-LC—l).  The  first  and  third  terms 
then  <|  46)  compensate  one  another,  and  the  equation  reduces  to 

Ri  =  E,coapt   (6). 

In  general,  if  the  leyden  be  short-circuited  (0=  oo  ), 

A'j—rg.lRoospt+pLsinpt]   (7); 

80  that,  if  p  much  exceed  R/L,  the  current  is  greatly  reduced  by 
self-induction.  In  such  a  case  the  introduction  of  a  leyden  of 

suitable  capacity,  \iy  which  the  self-induction  is  compensated, 

results  in  a  large  augmentation  of  eunent*  The  imposed  electro- 

mol'ive  force  mM^m||^^^^mg^  forming  part  of  the I  circuit  and  revoS 

1 
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In  any  circuit,  where  vibrations,  whether  forced  or  free,  pro- 

portional to  cos  pt  are  in  progress,  we  have  a?  =  — ^a:,  and  thus  the 
terms  due  to  self-induction  and  to  the  leyden  enter  into  the 
equation  in  the  same  manner.  The  law  is  more  readily  expressed 
if  we  use  the  stiffiiess  /i,  equal  to  1/(7,  rather  than  the  capacity 
itself.  We  may  say  that  a  stiffness  /i  compensates  an  inductance 

Z,  if  fi^p^L,  and  that  an  additional  inductance  AZ  is  compensated 
by  an  additional  stiffness  A/i,  provided  the  above  proportionality 
hold  good.  This  remark  allows  us  to  simplify  our  equations  by 
omitting  in  the  first  instance  the  stiffness  of  leydens.  When  the 
solution  has  been  obtained,  we  may  at  any  time  generalise  it 

by  the  introduction,  in  place  of  Z,  of  Z  —  /fp"*,  or  Z  —  (p^CyK  In 
following  this  course  we  must  be  prepared  to  admit  negative 
values  of  Z. 

236  k.  We  will  next  suppose  that  there  are  two  independent 
circuits  with  coefficients  of  self-induction  Z,  N,  and  of  mutual 
induction  Jlf ,  and  examine  what  will  be  the  effect  in  the  second 

circuit  of  the  instantaneous  establishment  and  subsequent  main- 
tenance of  a  current  x  in  the  first  circuit.  At  the  first  moment 

the  question  is  one  of  the  function  T  only,  where 

r  =  iZ^  +  i¥iy  +  iiVy«   (1); 

and  by  Kelvin's  rule  (§  79)  the  solution  is  to  be  obtained  by 
making  (1)  a  minimum  under  the  condition  that  x  has  the  given 
value.     Thus  initially 

^  •  /ox 

Vo^-^^   (2); 

and  accordingly  (§  235  j)  after  time  t 

y   ^i^-^^/W   (3), 

if  S  be  the  resistance  of  the  circuit.  The  whole  induced  current, 

as  measured  by  a  ballistic  galvanometer,  is  given  by 

/ 
ydt=-^^   (4), 
0  S 

in  which  N  does  not  appear.  The  current  in  the  secondary  circuit 
due  to  the  cessation  of  a  previously  established  steady  current  x  in 
the  primary  circuit  is  the  opposite  of  the  above. 

A  curious  property  of  the  initial  induced  current  is  at  once 

evident  from  Kelvin's  theorem,  or  from  equation  (2).    It  appears 
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that,  if  M  be  given,  the  initial  current  is  gi-eatest  when  N  is  least. 
Further,  if  the  secondary  circuit  consist  mainly  of  a  coil  of  n  turns, 
the  initial  current  increases  with  diminishing  n.  For,  although 

Mxn,  Nccn^\  and  thus  yoccl/n.  In  fact  the  small  current 
flowing  through  the  more  numerous  convolutions  has  the  same 
effect  as  regards  the  energy  of  the  iield  as  the  larger  current  in  the 
fewer  convolutions.  This  peculiar  dependence  upon  n  cannot  be 
investigated  by  the  galvanometer,  at  least  without  commutators 
capable  of  separating  one  part  of  the  induced  current  from  the 
rest ;  for,  as  we  see  from  (4),  the  galvanometer  reading  is  affected 
in  the  reverse  direction.  It  is  possible  however  to  render  evident 
the  increased  initial  current  due  to  a  diminished  n  by  observing 
the  magnetizing  effect  upon  steel  needles.  The  magnetization 
depends  mainly  upon  the  initial  maximum  value  of  the  current, 
and  in  a  less  degree,  or  scarcely  at  all,  upon  its  subsequent 
duration,  ̂  

The  general  equations  for  two  detached  circuits,  influencing 
one  another  only  by  induction,  may  be  obtained  in  the  usual 
manner  from  (1)  and 

F^iRx'  +  ̂Sy'   (5). 

Thus  Lx  +  My  +  Rx^X) 

Mx-¥Ny  +  Sy=Y]   
^^^• 

These  equations,  in  a  more  general  form,  are  considered  in 

§  116.  If  a  harmonic  force  X  =  e^P^  act  in  the  first  circuit,  and 
the  second  circuit  be  free  from  imposed  force  (F  =  0),  we  have  on 
elimination  of  y 

shewing  that  the  reaction  of  the  secondary  circuit  upon  the  first  is 
to  reduce  the  inductance  by 

P'p^N^'+S^   ^^^'^ 
and  to  increase  the  resistance  by 

P  p'N'  +  S'   ^^^• 

*  PhU,  Mag.,  vol.  38,  p.  1,  1869;  vol.  39,  p.  428,  1870. 
'  Maxwell,  Phil.  Trant.,  voL  165,  p.  459,  1865,  where,  however,  J/«  is  mis- 

printed M. 
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The  formulae  (8)  and  (9)  may  be  applied  to  deal  with  a  more 
general  problem  of  considerable  interest,  which  arises  when  (as  in 

some  of  Henry's  experiments)  the  secondary  circuit  acts  upon  a 
third,  this  upon  a  fourth,  and  so  on,  the  only  condition  being  that 
there  must  be  no  mutual  induction  except  between  immediate 
neighbours  in  the  series.  For  the  sake  of  distinctness  we  will 
limit  ourselves  to  four  circuits. 

In  the  fourth  circuit  the  current  is  due  ex  hypothesi  only  to 
induction  from  the  third.  Its  reaction  upon  the  third,  for  the  rate 
of  vibration  under  contemplation,  is  given  at  once  by  (8)  and  (9) ; 
and  if  we  Use  the  complete  values  applicable  to  the  third  circuit 
under  these  conditions,  we  may  thenceforth  ignore  the  foiurth 
circuit.  In  like  manner  we  can  now  deduce  the  reaction  upon 
the  secondary,  giving  the  effective  resistance  and  inductance  of 
that  circuit  under  the  influence  of  the  third  and  fourth  circuits  ; 

and  then,  by  another  step  of  the  same  kind,  we  may  arrive  at  the 
values  applicable  to  the  primary  circuit,  under  the  influence  of  all 
the  others.  The  process  is  evidently  general ;  and  we  know  by 
the  theorem  of  §  111  6  that,  however  extended  the  train  of  circuits, 
the  influence  of  the  others  upon  the  first  must  be  to  increase  its 

effective  resistance  and  diminish  its  effective  inertia,  in  greater 
and  greater  degree  as  the  frequency  of  vibration  increcises. 

In  the  limit,  when  the  frequency  increases  indefinitely,  the 

distribution  of  currents  is  determined  by  the  induction-coefficients, 
irrespective  of  resistance,  and,  as  we  shall  see  presently,  it  is  of 
such  a  character  that  the  currents  are  alternately  opposite  in  sign 
as  we  pass  along  the  series. 

235  L  Whatever  may  be  the  number  of  independent  currents, 
or  degrees  of  freedom,  the  general  equations  are  always  of  the 
kind  already  discussed  §§  82,  103,  104,  viz. 

d  dT    dF    dV ^  y  .-. 

dtdx     di     dx  "        ^  ̂' 

where  T,  F,  Fare  (§  82)  homogeneous  quadratic  functions.  In  (1) 

the  co-ordinates  x^,  x^, ...  denote  the  whole  quantity  of  electricity 
which  has  passed  at  time  t,  the  currents  being  Xi,  x^,  &c.  When 

F=0,  it  is  simpler  to  express  the  phenomena  by  means  of  the 
currents.    Thus,  in  the  problem  of  steady  electric  flow  where  all 



235  Z.]  INITIAL   CURRENTS.  439 

the  quantities  Xy  representing  electro-motive  forces,  are  constant, 
the  currents  are  determined  directly  by  the  linear  equations 

dF/ddk^X,,    dFldx,^X^,Sic   (2). 

On  the  other  hand  when  the  question  under  consideration  is 

one  of  initial  impulsive  effects,  or  of  forced  vibrations  of  ex- 
ceedingly high  frequency,  everything  depends  upon  T,  and  the 

equations  reduce  to 

d  djL      -^       d  dT     **     p  ^^ivv 

As  an  example  we  may  consider  the  problem,  touched  upon  at 

the  close  of  §  235  k,  of  a  train  of  circuits  where  the  mutual  induc- 
tion is  confined  to  immediate  neighbours,  so  that 

r=  ̂ ix^  -I-  iaaa?a*  +  \an^%  +  •  •  • 

coefficients  such  as  ai„  014,  o^  not  appearing.     If  o^  be  given, 
either  as  a  current  suddenly  developed  and  afterwards  maintained 
constant,  or  as  a  harmonic  time  function  of  high  frequency,  while 
no  external  forces  operate   in   the  other  circuits,  the  problem 
is  to  determine  x^,  x^,  &c.  so  as  to  make  T  as  small  as  possible, 
§  79.    The  equations  are  easily  written  down,  but  the  conclusion 
aimed  at  is  perhaps  arrived  at  more  instnictively  by  consideration 
of  the  function  T  itself.    For,  T  being  homogeneous  in  Xi,X2,  &c., 
we  have  identically 

rtm        dT        dT  ,»v 

2r=..3^+x,^+   ('')• 
And,  since  when  T  is  a  minimum,  dT/dx^,  dT/dx^y  &c,  all  vanish, 

But  if  a?,,  x^,  &C.,  had  all  been  zero,  2T  would  have  been  equal  to 
OiiXi^  It  is  clear  therefore  that  ai^XiX^  is  negative ;  or,  as  a,,  is 
taken  positive,  the  sign  of  x^  is  the  opposite  to  that  of  Xi, 

Again  supposing  Xi,  x^  both  given,  we  must,  when  T  is  a 
minimum,  have  dT/dx^,  dT/dx^,  &c.,  equal  to  zero,  and  thus 

Z^min.  =  chi^'  +  2auXiX^  +  d^x^  +  2a«a:2«8. 

As  before,  2,T  might  have  been 

OiiO?!*  -I-  iOr^^X^X^  +  CLnX^, 

>  The  dots  are  omitted  as  mmecesaary. 
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simply.  The  minimum  value  is  necessarily  less  than  this,  and 
accordingly  the  signs  of  x^  and  a?,  are  opposite.  This  argument 
may  be  continued,  and  it  shews  that,  however  long  the  series  may 
be,  the  induced  currents  are  alternately  opposite  in  sign^  a  result 
in  harmony  with  the  magnetizations  observed  by  Henry. 

In  certain  cases  the  minimum  value  of  T  may  be  very  nearly 
zero.  This  happens  when  the  coils  which  exercise  a  mutual 
inductive  influence  are  so  close  throughout  their  entire  lengths 
that  they  can  produce  approximately  opposite  magnetic  forces  at 
all  points  of  space.  Suppose,  for  example,  that  there  are  two 
similar  coils  A  and  -B,  each  wound  with  a  double  wire  (Ai,  -4$), 
(Bi,  -Bo),  and  combined  so  that  the  primary  circuit  consists  of  -4i, 
the  secondary  of  A^  and  Bi  joined  by  inductionless  leads,  and  the 
tertiary  of  -Bj  simply  closed  upon  itself.  It  is  evident  that  T  is 

made  approximately  zero  by  taking  a?2  =  — ir^  and  0?,  =  — a-jsa?!. 
The  argument  may  be  extended  to  a  train  of  such  coils,  however 
long,  and  also  to  cases  where  the  number  of  convolutions  in 
mutually  reacting  coils  is  not  the  same. 

In  a  large  class  of  problems,  where  leyden  effects  do  not  occur 
sensibly,  the  course  of  events  is  determined  by  T  and  F  simply. 
These  functions  may  then  be  reduced  to  sums  of  squares ;  and  the 

typical  equation  takes  the  form 

ax  +  bi=^X   (6). 

If  X  =  0,  that  is  if  there  be  no  imposed  electro-motive  forces,  the 
solution  is 

i^d^^e-^ia   (7) 

Thus  any  system  of  initial  currents  flowing  whether  in  detached 
or  connected  linear  conductors,  or  in  solid  conducting  masses,  may 

be  resolved  into  "  normal "  components,  each  of  which  dies  down 
exponentially  at  its  own  proper  rate. 

A  general  property  of  the  "persistences,"  equal  to  a/6,  is 
proved  in  §  92  a.  For  example,  any  increase  in  permeability,  due 

to  the  introd\iction  of  iron  (regarded  as  non-conducting),  or  any 
diminution  of  resistance,  however  local,  will  in  general  bring  about 

a  rise  in  the  values  of  all  the  persistences'. 
In  view  of  the  discussions  of  Chapter  v.  it  is  not  necessary  to 

dwell  upon  the  solution  of  equations  (1)  when  X  is  retained.     The 

1  Phil  Mag.,  vol.  38,  p.  18,  1869. 
2  Brit.  Astoc.  Report,  1885,  p.  911. 
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reciprocal  theorem  of  §  109  has  many  interesting  electrical  appli- 
cations ;  but,  after  what  has  there  been  said,  their  deduction  will 

present  no  difficulty. 

236  7/1.  In  §  111  b  one  application  of  the  general  formulae  to 
an  electrical  system  has  already  been  given.  As  another  example, 
also  relating  to  the  case  of  two  degrees  of  freedom,  we  may  take 
the  problem  of  two  conductors  iii  jmrallel.  It  is  not  necessary  to 
include  the  influence  of  the  leads  outside  the  points  of  bifurcation; 
for  provided  that  there  be  no  mutual  induction  between  these  parts 
and  the  remainder,  their  inductance  and  resistance  enter  into  the 

result  by  simple  addition. 

Under  the  sole  operation  of  resistance,  the  total  current  a.\ 
would  divide  itself  between  the  two  conductors  (of  resistances  R 
and  S)ivL  the  parts 

S  ,      R 

R  +  S""'  ̂"""^  R  +  S""'' 

and  we  may  conveniently  so  choose  the  second  co-ordinate  that 
the  currents  in  the  two  conductors  are  in  general 

^-^-;y^i  +  ̂ ,  and   ̂ -^^i-^, 

a?i  still  representing  the  total  current  in  the  leads.  The  dissi- 
pation-function, found  by  multiplying  the  squares  of  the  above 

currents  by  ̂ R,  ̂ S  respectively,  is 
Da 

F  =  ̂j^_^^x,^  +  i(R  +  S)x,'   ^^>- 

Also,  L,  M,  N  being  the  induction  coefficients  of  the  two 
branches, 

■'"*        {R+sy      '''' 

Thus,  in  the  notation  of  §  111  6, 

_  LS^^MRS  +  NR'  _  (L^M)S  +  (M^N)R 
^^"  {R-^-Sy        ~'      ̂ ""  R  +  8 

ill  =  ji^g*        ̂ 13  =  0,        6a  =  12  +  5. 
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Accordingly  by  (5),  (8)  §  111  6, 

^,_LS'  +  2MRS  +  NR'     {{L^M)S  +  (M-'N)R\* 
(R  +  Sy  {R  +  Sy{L^2M  +  N) 

{(L^M)8-^(M^N)R]^ 

^(L^2M-\'N)[{R  +  Sy+i^(L-2M+Ny}"'^  ^' 
These  are  respectively  the  effective  resistance  and  the  effective 

inductance  of  the  combination ^  It  is  to  be  remarked  that 

(L  —  2M+N')  is  necessarily  positive,  representing  twice  the  kinetic 
energy  of  the  system  when  the  currents  in  the  two  conductors 
are  +  1  and  —  1. 

The  expressions  for  R  and  L'  may  be  put  into  a  form*  which 
for  many  purposes  is  more  convenient,  by  combining  the  com- 

ponent fractional  terms.     Thus 

J., _  RS(R  +  S)-^p^{R(M-'Ny  +  S(L^My}  , 

(R  +  Sy-^p'{L-^2M-¥Ny    ^  ̂' 

(R+sy+p'(L-2M+Ny  •••^  ̂' 
in  which  (LN  —  M^)  is  positive  by  virtue  of  the  nature  of  T. 

As  p  increases  from  zero,  we  know  by  the  general  theorem 

§  111  6,  or  from  the  particular  expressions  (3),  (4),  that  Rf  con- 

tinually increases  and  that  L'  continually  decreases. 
When  p  is  very  small, 

p,      RS  ,,     LS'  +  2MRS±NR^  ... 

.         ̂ ^rTs'      ̂ ^        W+sy          ^^^- 
In  this  case  the  distribution  of  the  main  current  between  the 

conductors  is  determined  by  the  resistances,  and  (§  111  b)  the  values 

of  R  and  L'  coincide  respectively  with  2F/xi\  2T/xi\  The  resist- 
ance is  manifestly  the  same  as  if  the  currents  were  steady. 

On  the  other  hand,  when  p  is  very  great, 

^,     R(M^Ny-^8(L-My  LN^M^ 

In  this  case  the  distribution  of  currents  is  independent  of  the 

resistances,  being  determined  in  accordance  with  Kelvin's  theorem 
1  PhiL  Mag,,  vol.  21.  p.  877,  18S6. 
>  J.  J.  Thomson,  loc.  cit.  §  421. 
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in  such  a  manner  that  the  ratio  of  the  currents  in  the  two  con- 

ductors is  (J\r—  -10  '  (^  ""  ̂ )'  ̂   when  p  is  small,  the  values  in 
(6)  coincide  with  2Flx,\  ̂ .Tjx^K 

When  the  two  wires  composing  the  conductors  in  parallel  are 

wound  closely  together,  the  energy  of  the  field  under  high  fre- 
quency may  be  very  small.  There  is  an  interesting  distinction  to 

be  noted  here  dependent  upon  the  manner  in  which  the  con- 
nections are  made.  Consider,  for  example,  the  case  of  a  bundle 

of  five  contiguous  wires  wound  into  a  coil,  of  which  three  wires, 
connected  in  series  so  as  to  have  maximum  inductance,  constitute 

one  of  the  branches  in  parallel,  and  the  other  two,  connected 
similarly  in  series,  constitute  the  other  branch.  There  is  still  an 
alternative  as  to  the  manner  of  connection  of  the  two  branches. 

If  steady  currents  would  circulate  opposite  ways  (if  negative),  the 
total  current  is  divided  into  two  parts  in  the  ratio  3  :  2,  in  such  a 
manner  that  the  more  powerful  current  in  the  double  wire  nearly 
neutralises  at  external  points  the  magnetic  effects  of  the  less 
powerful  current  in  the  triple  wire,  and  the  total  energy  of  the 
system  is  very  small.  But  now  suppose  that  the  connections  are 
such  that  steady  currents  would  circulate  the  same  way  in  both 

branches  {M  positive).  It  is  evident  that  the  condition  of  mini- 
mum energy  cannot  be  satisfied  when  the  currents  are  in  the  same 

direction,  but  requires  that  the  smaller  current  in  the  triple  wire 
should  be  in  the  opposite  direction  to  that  of  the  larger  current  in 
the  double  wire.  In  fact  the  currents  must  be  as  3  to  —  2 ;  so 
that  (since  on  the  same  scale  the  total  current  is  unity)  the 
component  currents  in  the  branches  are  both  numerically  greater 
than  the  total  current  which  is  algebraically  divided  between 
them.  And  this  peculiar  feature  becomes  more  and  more  strongly 
marked  the  nearer  L  and  N  approach  to  equality^ 

The  unusual  development  of  currents  in  the  branches  is,  of 
course,  attended  by  an  augmented  effective  resistance.  In  the 
limiting  case  when  the  m  convolutions  of  one  branch  are  supposed 

to  coincide  geometrically  with  one  another  and  with  the  n  convo- 
lutions of  the  second  branch,  we  have 

and  from (6)  R='^'^-^^   (7). 
(m  —  n)* 

1  PhiL  Mag.,  vol.  21,  p.  876,  1SS6. 
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an  expression  which  increases  without  limit,  as  m  and  n  approach 
to  equality. 

The  fact  that  under  certain  conditions  the  currents  in  both 

branches  of  a  divided  circuit  may  exceed  the  current  in  the  mains 
has  been  verified  by  direct  experiments  Each  of  the  three 

currents  to  be  compared  traversed  short  lengths  of  similar  German- 
silver  wire,  and  the  test  consisted  in  finding  what  lengths  of  this 
wire  it  was  necessaiy  in  the  various  cases  to  include  between  the 
terminals  of  a  high  resistance  telephone  in  order  to  obtain  sounds 
of  equal  intensity.  The  variable  currents  were  derived  from  a 
battery  and  scraping  contact  apparatus  (§  235  r),  directly  included 
in  the  main  circuit. 

The  general  formulae  (3'),  (4')  undergo  simplification  when  the 
conductors  in  parallel  exercise  no  niutual  induction.     Thus,  when 

_  RS(R  +  S)+ p'(RN'  +  SD) 

(9). 
If  further  iV^  =  0,  (8)  and  (9)  reduce  to 

S[R{R^8)  +  l^D]  _  LS^ 

(R  +  Sy-^-p'L'    /  (R  +  Sy-^p'L^'"^^^^' 

The  peculiar  features  of  the  combination  are  brought  out  most 
strongly  when  S,  the  resistance  of  the  inductionless  component,  is 
great  in  comparison  with  R.  In  that  case  if  the  current  be  steady 
or  slowly  vibrating,  it  flows  mainly  through  R,  while  the  resistance 
and  inductance  of  the  combination  approximate  to  R  and  L  respec- 

tively ;  but  if  on  the  other  hand  the  current  be  a  rapidly  vibrating 
one,  it  flows  mainly  through  S,  so  that  the  resistance  of  the  combi- 

nation approximates  to  S,  and  the  inductance  to  zero.  These 

conclusions  are  in  agi'eement  with  (10). 

If  the  branches  in  parallel  be  simple  electro-magnets,  L  and  N 
are  necessarily  positive,  and  the  numerator  in  (9)  is  incapable  of 
vanishing.  But,  as  we  have  seen,  when  leydens  are  admitted,  this 
restriction  may  be  removed.  An  interesting  case  arises  when  the 
second  branch  is  inductionless,  and  is  interrupted  by  a  leyden  of 

1  Phil,  Mag.,  vol.  22,  p.  495,  1886. 
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capacity  (7,  so  that  i\r=  — (Cj»^)-\  while  at  the  same  time  R^S. 
The  latter  condition  reduces  the  numerator  in  (9)  to 

Thus  L'  vanishes,  (i)  when  LCp^  =  1,  and  (ii)  when  CR^  =  L.  The 
first  alternative  is  the  condition  that  the  loop  circuit,  considered 
by  itself,  should  be  isochronous  with  the  imposed  vibrations. 

The  second  expresses  the  equality  of  the  time-constants  of  the  two 
branches.  If  they  be  equal,  the  combination  behaves  like  a  simple 
resistance,  whatever  be  the  character  of  the  imposed  electro- 

motive forced 

235  n.  When  there  are  more  than  two  conductors  in  parallel, 
the  general  expressions  for  the  equivalent  resistance  and  induc- 

tance of  the  combination  would  be  very  complicated ;  but  a  few 
particular  cases  are  worthy  of  notice. 

The  first  of  these  occurs  when  there  is  no  mutual  induction 

between  the  members.  If  the  quantities  relating  to  the  various 
branches  be  distinguished  by  the  suffixes  1,  2,  3, ...,  and  if  E  be 
the  difference  of  potentials  at  the  common  terminals,  we  have 

E  =  (ipLi  +  Ri)  Xi  =  (ipL^  +  K)  X2=   (1); 

by  which  R  and  L'  are  determined.     Thus,  if  we  write 

^  R'  +  p'D       '        ̂   R^-^-fD            ^'^^^ 
we  have  from  (2) 

,'         A                   ,           B 

^'"  A^^W'         ̂ '"A'  +  P^B'   ^*^- 
Equations  (3)  and  (4)  contain  the  solution  of  the  problem^ 

When  p  =  0, 

When  on  the  other  hand  p  is  very  great, 

1{RL-^                     1 

^'{t(L-")Y'  "^{L-')    ^  ̂* 

^  Chrystal,    **0n  the  Differential  Telephone,"  FMn.  Tram,,  vol.   29,  p.  616, 
ISSO. 

>  Phil,  Mag.,  vol.  21,  p.  879,  18S6. 
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From  this  it  appears  that  a  want  of  balance  depending  on  Oi^ 
cannot  compensate  for  the  action  of  the  third  circuit,  so  as  to 
produce  silence  in  the  secondary  circuit,  unless  6,  be  negligible 

in  comparison  with  pa^,  that  is  unless  the  time-constant  of  the 
third  circuit  be  very  great  in  comparison  with  the  period  of  the 
vibration.  Otherwise  the  effects  are  in  different  phases,  and 
therefore  incapable  of  balancing. 

We  will  now  introduce  a  fourth  circuit,  and  suppose  that  the 
primary  and  secondary  circuits  are  accurately  conjugate,  so  that 
Oia  =  0,  and  also  that  the  mutual  induction  0,4  between  the  third 
and  fourth  circuits  may  be  neglected.     Then 

ip  {a^x.i  +  a^x^  +  h^x^  ==  —  ipa^zXi, 

ip  {a4sX.2  +  a^x^)  +  b^x^  =  —  ipOi^Xi ; 
whence 

p'a,^^ ipau-\-hS 

It  appears  that  two  conditions  must  be  satisfied  in  order  to 
secure  a  balance,  since  both  the  phases  and  the  intensities  of  the 

separate  effects  must  be  the  same.  The  first  condition  requires 

that  the  time-constants  of  the  third  and  fourth  circuits  be  equal, 
unless  indeed  both  be  very  great,  or  both  be  very  small,  in  com- 

parison with  the  period.  If  this  condition  be  satisfied,  balance 
ensues  when 

^i.^  +  ̂?^-»*  =  0   (4); 

and  it  is  especially  to  be  noted  that  the  adjustment  is  independent 

of  pitch,  so  that  (by  Fourier's  theorem)  it  suffices  whatever  be  the 
nature  of  the  variable  currents  operative  in  the  primary. 

As  regards  the  position  of  the  third  and  fourth  circuits,  usually 
represented  by  coins  in  illustrative  experiments,  it  will  be  seen 

from  the  symmetry  of  the  right-hand  member  of  (3)  that  the 
middle  position  between  the  primary  and  secondary  coils  is  suit- 

able, inasmuch  as  the  product  a^^a^^  is  stationary  in  value  when 
the  coin  is  moved  slightly  so  as  to  be  nearer  say  to  the  primary 
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and  further  from  the  secondary  ̂   Approximate  independence  of 
other  displacements  is  secured  by  the  geometrical  symmetry  of  the 
coils  round  the  axis. 

235  p.  For  the  accurate  comparison  of  electrical  quantities 

the  "bridge"  arrangement  of  Wheatstone  is  usually  the  most 
convenient,  and  is  equally  available  with  the  galvanometer  in  the 
case  of  steady  or  transitory  currents,  or  with  the  telephone  in  the 
case  of  periodic  currents.  Similar  effects  may  be  obtained  in  most 
cases  without  a  bridge  by  the  employment  of  the  differential 

galvanometer  or  the  differential  telephone*. 

In  the  ordinary  use  of  the  bridge  the  four  members  a,  b,  c,  d 
combined  in  a  quadrilateral  Fig.  (53  a)  are 

simple  resistances.     The  battery  branch/  l^  ̂ 
joins  one  pair  of  opposite  comers,  and  the 

indicating  instrument  is  in  the  "bridge" 

e  joining  the  other  pair.  "  Balance  "  is 
obtained,  when  ad  =  be.  But  for  our 

purpose  we  have  to  suppose  that  any 
member,  e.g.  a,  is  not  merely  a  resistance, 

or  even  a  combination  of  resistances.  It  may  include  an  electro- 
magnet, and  it  may  be  interrupted  by  a  leyden.  But  in  any  case, 

so  long  AS  the  current  x  is  strictly  harmonic,  proportional  to  e**^*, 
the  general  relation  between  it  and  the  difference  of  potentials  V 
at  the  extremities  is  given  by 

V=(ai'\-ia^)x   (1), 

where  a,  and  ia,  are  the  real  and  imaginary  parts  of  a  complex 
coefficient  a,  and  are  functions  of  the  frequency  pl27r.  In  the 
particular  case  of  a  simple  conductor,  endowed  with  inductance  L, 
Oi  represents  the  resistance,  and  a^  is  equal  to  pL.  In  general,  ctj 

is  positive;  but  a^  may  be  either  positive,  as  in  the  above  ex- 
ample, or  negative.  The  latter  case  arises  when  a  resistance  R  is 

interrupted  by  a  leyden  of  capacity  C,  Here  ai  =  -B,  Oj  =  —  l/pC, 
If  there  be  also  inductance  Z, 

Qi^R,      a^^pL-l/pC   (2). 

As  we  have  already  seen,  §  235  j,  a^  may  vanish  for  a  particular 
frequency,  and  the  combination  is  then  equivalent  to  a  simple 

1  See  Lodge,  Phil  Mag,,  vol.  9,  p.  123,  18S0. 
'  Chrystal,  Edin.  Traru,,  loc,  cit. 

R.  y  29 

^ 
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resistance.     But  a  variation  of  frequency  gives  rise  to  a  positive 
or  negative  aj. 

In  all  electrical  problems,  where  there  is  no  mutual  induction, 
the  generalized  quantities,  a,  6,  &c.,  combine,  just  as  they  do  when 
they  represent  simple  resistances^     Thus,  if  a,  a  be  two  complex 
quantities  representing  two  conductors  in  series,  the  corresponding 
quantity  for  the  combination  is  {a  +  a).     Again,  if  a,  a  represent 
two  conductors  in  parallel,  the  reciprocal  of  the  resultant  is  given 
by  addition  of  the  reciprocals  of  a,  a.    For,  if  the  currents  be  a?,  x\ 
corresponding   to   a  difference   of  potentials  V  at  the   common 
terminals, 

V^ax  —  ax\ 

so  that  x-^x  ̂   ̂(1/^  +  V^')- 

In  the  application  to  Wheatstone's  combination  of  the  general 
theory  of  forced  vibrations,  we  will  limit  the  impressed  forces  to 
the  battery  and  the  telephone  branches.  If  x,  y  be  the  currents 

in  these  branches,  X,  Y  the  corresponding  electro-motive  forces, 
we  have,  §  107,  linear  relations  between  Xy  y,  and  X,  F,  which  may 
be  written 

X^Ax-¥By 
Y=Bx  +  Cy 

I   (3), 
the  coeflBcient  of  y  in  the  first  equation  being  identical  with  that 
of  X  in  the  second  equation,  by  the  reciprocal  property.  The  three 
constants  A,B^C  are  in  general  complex  quantities,  functions  of/). 

The  reciprocal  relation  may  be  interpreted  as  follows.      If 

7  =  0,  5a:  +  (7y  =  0,  and 

y^B^^Ac   ^^>- 

In  like  manner,  if  we  had  supposed  X  =  0,  we  should  have 
found 

""'W^TaC   ^^^' 

shewing  that  the  ratio  of  the  current  in  one  member  to  the  electro- 
motive force  operative  in  the  other  is  independent  of  the  way  in 

which  the  parts  are  assigned  to  the  two  members. 

1  For  a  more  complete  discussion  of  this  subject  see  Heaviside  **  On  Resistance 
and  Conductance  Operators,"  PhiL  Mag,,  vol  24,  p.  479, 1887 ;  Electrical  Papers, 
vol.  n.,  p.  355. 

V 
\ 
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We  have  now  to  determine  the  constants  A,  J5,  C  in  terms  of 

the  electrical  properties  of  the  system.  If  y  be  maintained  zero 

by  a  suitable  force  F,  the  relation  between  x  and  X  is  X  =  Ax. 
A  therefore  denotes  the  (generalized)  resistance  to  any  electro- 

motive force  in  the  battery  member,  when  the  telephone  member  is 
open.  This  resistance  is  made  up  of  /,  the  resistance  in  the 

battery  member,  and  of  that  of  the  conductors  a-^c^  6  +  d, 
combined  in  parallel.     Thus 

^=/+(«_±«HL+_^)   (6). 
In  like  manner 

^^^^(a.f6)(c4-d)   a-^-o-hc  +  d  ^  ' 

To  determine  B  let  us  consider  the  force  Y  which  must  act 

in  e  in  order  that  the  current  through  it  may  be  zero,  in  spite 

of  the  operation  of  X.  We  have  Y^Bx,  The  total  current  x 

flows  partly  along  the  branch  (a -he),  and  partly  along  (6-l-(i). 
The  current  through  (a -he)  is 

x\{a  -f  c)                  {b'^d)x_ 

l/(a-hc)  +  l/(6-hd)     a  +  6-hc  +  d   ^  ̂' 

and  that  through  (6  +  d)  is 

The  difference  of  potentials  at  the  terminals  of  «,  supposed  to 
be  interrupted,  is  thus 

c  (6  +  d)  a;  —  d  (a  -h  c)  a? 

a+6+c+d  ' 

and  accordingly  £=_J|^^   (10). 

By  (6),  (7),  (10)  the  relationship  of  X,  Fto  a?,  y  is  completely 
determined. 

The  problem  of  the  bridge  requires  the  determination  of  the 

current  y  as  proportional  to  X,  when  F=0,  that  is  when  no 
electro-motive  force  acts  in  the  bridge  itself;  and  the  solution  is 
given  at  once  by  the  introduction  into  (4)  of  the  values  of -4,  5,  C 
from  (6),  (7),  (10). 

If  there  be  an  approximate  "  balance,"  the  expression  simplifies. 
For  (6c  —  ad)  is  then  small,  and  5*  may  be  neglected  relatively  to 

29—2 
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AC  in  the  denominator  of  (4).  Thus,  as  a  sufficient  approximation 
in  this  case,  we  may  write 

y.^A   (1^)  an 
X""     AC"     (6)x(7)   ^     ̂• 

The  following  interpretation  of  the  process  leads  very  simply 
to  the  approximate  form  (11),  and  is  independent  of  the  general 

theory.  Let  us  first  inquire  what  electro-motive  force  is  necessary 
in  the  telephone  member  to  stop  any  current  through  it.  If  such 
a  force  act,  the  conditions  are,  externally,  the  same  as  if  the 
member  were  open ;  and  the  current  x  in  the  battery  member  due 
to  a  force  equal  to  X  in  that  member  is  X/A,  where  A  is  written 

for  brevity  as  representing  the  right-hand  member  of  (6).  The 
difference  of  potentials  at  the  terminals  of  e,  still  supposed  to  be 
open,  is  found  at  once  when  x  is  known.     It  is  given  by 

cx(8)«dx(9)  =  5ar, 

where  B  is  defined  by  (10).  In  terms  of  X  the  difference  of 
potentials  is  thus  BXjA.  If  e  be  now  closed,  the  same  fraction 

expresses  the  force  necessary  in  e  in  order  to  prevent  the  genera- 
tion of  a  current  in  that  member. 

The  case  with  which  we  have  to  deal  is  when  X  acts  in  /and 
there  is  no  force  in  e.  We  are  at  liberty,  however,  to  suppose  that 
two  opposite  forces,  each  of  magnitude  BX/A,  act  in  e.  One  of 
these,  as  we  have  seen,  acting  in  conjunction  with  X  in/,  gives  no 

current  in  e ;  so  that,  since  electro-motive  forces  act  independently 
of  one  another,  the  actual  cuirent  in  e,  closed  without  internal 

electro-motive  force,  is  simply  that  due  to  the  other  component. 
The  question  is  thus  reduced  to  the  determination  of  the  current 
in  e  due  to  a  given  force  in  that  member. 

So  far  the  argument  is  rigorous ;  but  we  will  now  suppose  that 
we  have  to  deal  with  an  approximate  balance.  In  this  case  a  force 
in  e  gives  rise  to  very  little  current  in  /  and  in  calculating  the 
current  in  e,  we  may  suppose /to  be  broken.  The  total  resistance 
to  the  force  in  e  is  then  given  simply  by  C  of  equation  (7),  and  the 

approximate  value  for  y  is  derived  by  dividing  —  BX/A  by  C,  as 
we  found  in  (11). 

A  continued  application  of  the  foregoing  process  gives  y/X  in 
the  form  of  an  infinite  geometric  series : — 

^  =  - 
B 

,      B'        B'  )  B 

Z"     AC\   '^ AC     A'C'^  '"]  " B'-'AC' 

\ 

%. 
\ 



235  p.]  APPROXIMATE   BALANCE.  453 

This  is  the  rigorous  solution  already  found  in  (4) ;  but  the  first 
term  of  the  series  suffices  for  practical  purposes. 

The  form  of  (11)  enables  us  at  once  to  compare  the  effects  of 
increments  of  resistance  and  of  inductance  in  disturbing  a  balance. 

For  let  ad  =  be,  and  then  change  d  to  d  +  d\  where  d'  =  di'  +  id^. 
The  value  of  y/X  Ls  propoitional  to  d',  and  the  amplitude  of  the 
vibratory  current  in  the  bridge  is  proportional  to  mod.  d\  that  is, 

bo  VW^  +  da'^.  Thus  di',  dj'  are  equally  efficacious  when  nu- 
merically equals  In  most  cases  where  a  telephone  is  employed, 

the  balance  is  more  sensitive  to  changes  of  inductance  than  to 
changes  of  resistance. 

In  the  use  of  the  Wheatstone  balance  for  purposes  of  measure- 
ment, it  is  best  to  make  a  equal  to  c.  The  equality  of  b  and  d  can 

then  be  tested  by  interchange  of  a  and  c,  independently  of  the 
exactitude  of  the  equality  of  these  quantities.  Another  advantage 
lies  in  the  fact  that  balance  is  independent  of  mutual  induction 
between  a  and  c  or  between  b  and  d. 

235  q.  In  the  formulae  of  §  235  p  it  has  been  assumed  that 
there  is  no  mutual  induction  between  the  various  members  of  the 

combination.  The  more  general  theory  has  been  considered  very 

fully  by  Heaviside',  but  to  enter  upon  it  would  lead  us  too  far. 
It  may  be  well,  however,  to  sketch  the  theory  of  the  arrangement 
adopted  by  Hughes,  which  possesses  certain  advantages  in  dealing 

with  the  electrical  properties  of  wires  in  short  lengths'. 

The  apparatus  consists  of  a  Wheatstone's  quadrilateral,  Fig.  53  6, 
with  a  telephone  in  the  bridge,  one  of  the 

sides  of  the  quadrilateral  being  the  wire  ^^^*  ̂^  ̂  
or  coil  under  examination  (P),  and  the 
other  three  being  the  parts  into  which  a 

single  German-silver  wire  is  divided  by 
two  sliding  contacts.  If  the  battery- 
branch  (B)  be  closed,  and  a  suitable  in- 

terrupter be  introduced  into  the  telephone- 
branch  (T),  balance  may  be  obtained  by 
shifting  the  contacts.  Provided  that  the 

interrupter    introduces    no    electro-motive 

^  '*0n  the  Bridge  Method  in  its  Application  to  Periodic  Electric  Carrents.*' 
Proc,  Roy,  Soc,  vol.  49,  p.  208,  1891. 

2  ''On  the  Self-induction  of  Wires,"  Part  VI.;  P/it7.  Jf a^. ,  Feb.  1887;  Electrical 
Papen,  1892,  vol.  ii.,  p.  281. 

'    Journ.  Tel,  Eng,,  vol.  xv.  (1886)  p.  1 ;  Proc,  Roy,  Soc,  vol.  xl.  (1886)  p.  451. 

f\ 
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force  of  its  own^,  the   balance   indicates   the   proportionality  of 
the  four  resistances.     If  P  be   the  unknown   resistance   of  the 

conductor  under  test,  Q,  R  the  resistances  of  the  adjacent  parts  of 
the  divided  wire,  S  that  of  the  opposite  part  (between  the  sliding 

contacts),  then,  by  the  ordinary  rule,  PS=  QR;  while  Q,  R,  S  are 
subject  to  the  relation 

Q-^R  +  S^W, 

W  being  a  constant.  If  now  the  interrupter  be  transferred  from 

the  telephone  to  the  battery-branch,  the  balance  is  usually  dis- 
turbed on  account  of  induction,  and  cannot  be  restored  by  any 

mere  shifting  of  the  contacts.  In  order  to  compensate  the 
induction,  another  influence  of  the  same  kind  must  be  intro- 

duced. It  is  here  that  the  peculiarity  of  the  apparatus  lies.  A 
coil  (not  shewn  in  the  figure)  is  inserted  in  the  battery  and  another 

in  the  telephone-branch  which  act  inductively  upon  one  another, 
and  are  so  mounted  that  the  effect  may  be  readily  varied.  The 
two  coils  may  be  concentric  and  relatively  movable  about  the 
common  diameter.  In  this  case  the  action  vanishes  when  the 

planes  are  perpendicular.  If  one  coil  be  verj'  much  smaller  than 
the  other,  the  coefficient  of  mutual  induction  M  is  proportional  to 
the  cosine  of  the  angle  between  the  planes.  By  means  of  the 
two  adjustments,  the  sliding  of  the  contacts  and  the  rotation  of  the 
coil,  it  is  usually  possible  to  obtain  a  fair  silence. 

Hughes  interpreted  his  observations  on  the  basis  of  an  as- 
sumption that  the  inductance  of  P  was  represented  by  M,  irre- 

spective of  resistance,  and  that  the  resistance  to  variable  currents 
could  (as  in  the  case  of  steady  currents)  be  equated  to  QR/S. 
But  the  matter  is  not  quite  so  simple.  The  true  formulae  are, 
however,  readily  obtained  for  the  case  where  the  only  sensible 
induction  among  the  sides  of  the  quadrilateral  is  the  inductance  L 
of  the  conductor  P, 

Since  there  is  no  current  through  the  bridge,  there  must  be 
the  same  current  (x)  in  P  and  in  one  of  the  adjacent  sides  (say)  iJ, 

and  for  a  like  reason  the  same  cunent  y  in  Q  and  S,  The  differ- 
ence of  potentials  at  time  t  between  the  junction  of  P  and  R  and 

the  junction  of  Q  and  S  may  be  expressed  by  each  of  the  three 

following  equated  quantities : — 

^  A  condition  not  always  satisfied  in  practice. 

i 
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Introducing  the  assumption  that  all  the  quantities  vary  har- 
monically with  frequency  p/27r,  and  eliminating  the  ratio  y  :  a?,  we 

find  as  the  conditions  required  for  silence  in  the  telephone 

QR^SP  =  fML   (1), 

M(P  +  Q  +  R'^S)^SL   (2). 

It  will  be  seen  that  the  ordinary  resistance  balance  (SP  =  QR) 
is  departed  from.  The  change  here  considered  is  peculiar  to  the 
apparatus  and,  so  far  as  its  influence  is  concerned,  it  does  not 
indicate  a  real  alteration  of  resistance  in  the  wire.  Moreover, 

since  p  is  involved,  the  disturbance  depends  upon  the  rapidity  of 
vibration,  so  that  in  the  case  of  ordinary  mixed  sounds  silence  can 
be  attained  only  approximately.  Again,  from  the  second  equation 
we  see  that  M  is  not  in  general  a  correct  measure  of  the  value 
oiL\ 

If,  however,  P  be  known,  the  application  of  (2)  presents  no 
diflSculty.  In  many  cases  we  may  be  sure  beforehand  that  P, 
viz.  the  effective  resistance  of  the  conductor,  or  combination  of 
conductors,  to  the  variable  currents,  is  the  same  as  if  the  currents 

were  steady,  and  then  P  may  be  regarded  as  known.  But  there 
are  other  cases, — some  of  them  will  be  alluded  to  below — in 
which  this  assumption  cannot  be  made;  and  it  is  impossible  to 
determine  the  unknown  quantities  L  and  P  from  (2)  alone.  We 
may  then  fall  back  upon  (1).  By  means  of  the  two  equations 
P  and  L  can  always  be  found  in  terms  of  the  other  quantities. 
But  among  these  is  included  the  frequency  of  vibration ;  so  that 
the  method  is  practically  applicable  only  when  the  interrupter  is 
such  as  to  give  an  absolute  periodicity.  A  scraping  contact, 

otherwise  very  convenient,  is  thus  excluded;  and  this  is  un- 
doubtedly an  objection  to  the  method. 

If  the  member  P  be  without  inductance,  but  be  interrupted  by 
a  leyden  of  capacity  C,  the  same  formulae  may  be  employed,  with 

substitution  of  —  1/p'C  for  L.  Equation  (1)  then  gives  a  measure 
of  C  which  is  independent  of  the  frequency. 

236  r.  The  success  of  experiments  with  this  kind  of  apparatus 
depends  very  largely  upon  the  action  of  the  interrupter  by  which 
the  currents  are   rendered   variable.     When    periodicity  is  not 

*  "Disoassion  on  Prof.  Hughes'  Address."    Journ.  TeL  Eng.,  vol.  xv.,  p.  54, 
Feb.,  18S6. 
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necessary,  a  scraping  contact,  actuated  by  a  clock  or  by  a  small 
motor,  answers  very  well;  but  it  is  advisable,  following  Lodge 
and  Hughes,  so  to  arrange  matters  that  the  current  is  suspended 
altogether  at  short  intervals.  The  faint  scraping  sound,  heard  in 
the  neighbourhood  of  a  balance,  is  more  certainly  identified  when 
thus  rendered  intermittent. 

But  for  many  of  the  most  interesting  experiments  a  scraping 
contact  is  unsuitable.  When  the  inductance  and  resistance  under 

observation  are  rapidly  varying  functions  of  the  frequency,  it  is 
evident  that  no  sharp  results  are  possible  without  an  interrupter 

giving  a  perfectly  regular  electrical  vibration.  With  proper  appli- 
ances an  absolute  silence,  or  at  least  one  disturbed  only  by  a  slight 

sensation  of  the  octave  of  the  principal  tone,  can  be  arrived  at 
under  circumstances  where  a  scraping  contact  would  admit  of  no 

approach  to  a  balance  at  all. 

Tuning-forks,  driven  electromagnetically  with  liquid  or  solid 
contacts  (§  64),  answer  well  so  long  as  the  frequency  required 
does  not  exceed  (say)  300  per  second ;  but  for  experiments  with  the 
telephone  we  desire  frequencies  of  from  500  to  2000  per  second. 
Good  results  may  be  obtained  with  harmonium  reed  interrupters, 
the  vibrating  tongue  making  contact  once  during  each  period 
with  a  stop,  which  can  be  adjusted  exactly  to  the  required  position 

by  means  of  a  screws 

But  perhaps  the  best  interrupter  for  use  with  the  telephone  is 
obtained  by  taking  advantage  of  the  instability  of  a  jet  of  fluid. 
If  the  diameter  and  the  speed  be  chosen  suitably,  the  jet  may  be 

caused  to  resolve  itself  into  drops  under  the  action  of  a  tuning- 
fork  in  a  perfectly  regular  manner,  one  drop  corresponding  to 
each  complete  vibration  of  the  fork.  Each  drop,  as  it  passes, 
may  be  made  to  complete  an  electric  circuit  by  squeezing  itself 
between  the  extremities  of  two  fine  platinum  wires.  If  the 

electro-motive  force  of  the  battery  be  pretty  high,  and  if  the 
jet  be  salted  to  improve  its  conductivity,  suflScient  current  passes, 

especially  if  the  aid  of  a  small  step-down  transformer  be  invoked. 
Finally  the  apparatus  is  made  self-acting  by  bringing  the  fork 
under  the  influence  of  an  electro-magnet,  itself  traversed  by  the 
same  intermittent  current.  Such  an  apparatus  may  be  made  to 
work  with  frequencies  up  to  2000  per  second,  and  it  possesses 

many  advantages,  among  which  may  be  mentioned  almost  icbsolute 

1  Phil.  Mag,,  vol.  22,  p.  472,  1SS6. 
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constancy  of  pitch,  and  the  avoidance  of  loud  aerial  disturbance. 

The  principles  upon  which  the  action  of  this, interrupter  depends 
will  be  further  considered  in  a  subsequent  chapter. 

236^.  Scarcely  less  important  than  the  interrupter  are  the 

arrangements  for  measuring  induction,  whether  mutual  induc- 
tion, as  required  in  §  235  g,  or  self-induction.  Inductometers,  as 

Heaviside  calls  them,  may  be  conveniently  constructed  upon 
the  pattern  of  Hughes.  A  small  coil  is  mounted  so  that  one 
diameter  coincides  with  a  diameter  of  a  larger  coil,  and  is 
movable  about  that  diameter.  The  mutual  induction  M  between 

the  two  circuits  depends  upon  the  position  given  to  the  smaller 
coil,  which  is  read  by  a  pointer  attached  to  it,  and  moving  over  a 
graduated  circle.  If  the  smaller  coil  were  supposed  to  be  infinitely 

small,  the  value  of  if,  as  has  already  been  stated,  would  be  pro- 
portional to  the  sine  of  the  displacement  from  the  zero  position 

(if  =sO).  But  an  approximation  to  this  state  of  things  is  not 
desirable.  If  the  mean  radius  of  the  small  coil  be  increased  until 

it  amounts  to  '55  of  that  of  the  larger,  not  only  is  the  efiBciency 
much  enhanced,  but  the  scale  of  M  is  brought  to  approximate 
coincidence,  over  almost  the  whole  practical  range,  with  the  scale 
of  degrees^  The  absolute  value  of  each  degree  may  be  arrived  at 
in  various  ways,  perhaps  most  simply  by  adjusting  the  mutual 
induction  of  the  instrument  to  balance  a  standard  of  mutual 
induction 

For  experiments  upon  the  plan  of  §  235  q  the  one  coil  is 
included  in  the  telephone  and  the  other  in  the  battery  branch, 
but  when  the  object  is  to  secure  a  variable  and  measurable 
inductance,  the  two  coils  are  connected  in  series.  The  inductance 
of  the  combination  is  then  X  +  2if+JV,  of  which  the  first  and 

third  terms  are  independent  of  the  relative  position  of  the  coils. 

236  t  Good  results  by  the  method  of  §  235  q  have  been 

obtained  by  Weber",  and  by  the  author'  using  a  reed  interrupter 
of  frequency  1050  per  second ;  but  the  fact  that  inductance  and 

resistance  are  mixed  up  in  the  measurements  is  a  decided  draw- 
back, if  it  be  only  because  the  readings  require  for  their  interpre- 
tation calculations  not  readily  made  upon  the  spot. 

1  Phil.  Mag.,  vol.  22,  p.  498,  1886. 
3  Electrical  Review,  April  9,  Jalj  9,  1886. 
'  PhiU  Mag.,  loe.  ciU 
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The  more  obvious  arrangement  is  one  in  which  both  the 
induction  and  the  resistance  of  the  branch  containing  the  subject 
under  examination  are  in  every  case  brought  up  to  the  given 
totals  necessary  for  a  balance.  To  carry  this  out  conveniently  we 
require  to  be  able  to  add  inductance  without  altering  resistance, 

and  resistance  without  altering  inductance,  and  both  in  a  measur- 
able degree.  The  first  demand  is  easily  met.  If  we  include  in 

the  circuit  the  two  coils  of  an  inductometer,  connected  in  series, 

the  inductance  of  the  whole  can  be  varied  in  a  known  manner  by 
rotating  the  smaller  coil.  On  the  other  hand  the  introduction,  or 
removal,  of  resistance  without  alteration  of  inductance  cannot  well 

be  carried  out  with  rigour.  But  in  most  cases  the  object  can  be 

sufficiently  attained  with  the  aid  of  a  resistance-slide  of  thin 
German-silver  wire  which  may  be  in  the  form  of  a  nearly  close 
loop. 

In  the  Wheatstone*s  quadrilateral,  as  arranged  for  these  ex- 
periments, the  adjacent  sides  -R,  S  may  be  made  of  similar  wires 

of  German  silver  of  equal  resistance  (^  ohm).  If  doubled  they 
give  rise  to  little  induction,  but  the  accuracy  of  the  method  is 
independent  of  this  circumstance.  The  side  P  includes  the 
conductor,  or  combination  of  conductors,  under  examination,  an 

inductometer,  and  the  resistance-slide.  The  other  side,  Q,  must 

possess  resistance  and  inductance  greater  than  any  of  the  con- 
ductors to  be  compared,  but  need  not  be  susceptible  of  ready  and 

measurable  variations.  In  order  to  avoid  mutual  induction  be- 

tween the  branches,  P  and  Q  should  be  placed  at  some  distance 
away,  being  connected  with  the  rest  of  the  apparatus  by  leads  of 
doubled  wire. 

It  will  be  evident  that  when  the  interrupter  acts  in  the 
battery  branch,  balance  can  be  obtained  at  the  telephone  in  the 
bridge  only  under  the  conditions  that  both  the  inductance  and 

the  resistance  in  P  are  equal  in  the  aggi'egate  to  the  correspond- 
ing quantities  in  Q.  Hence  when  one  conductor  is  substituted  for 

another  in  P,  the  alterations  demanded  at  the  inductometer  and 

in  the  slide  give  respectively  the  changes  of  inductance  and  of 
resistance.  In  this  arrangement  inductance  and  resistance  are 
well  separated,  so  that  the  results  can  be  interpreted  without 
calculation;  but  the  movable  contacts  of  the  slide  appear  to 
introduce  uncertainty  into  the  determination  of  resistance. 

In  order  to  get  rid  of  the  objectionable  movable  contacts 
some  sacrifice  of  theoretical  simplicity  seems  unavoidable.     We 
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can  no  longer  keep  the  total  resistances  P  and  Q  constant ;  but  by 

reverting  to  the  arrangement  adopted  in  a  well-known  form  of 

Wheatstone's  bridge,  we  cause  the  resistances  taken  from  P  to  be 
added  to  Q,  and  vice  versa.  The  transferable  resistance  is  that  of 

a  straight  wire  of  German-silver,  with  which  one  telephone  ter- 
minal makes  contact  at  a  point  whose  position  is  read  off  on  a 

divided  scale.  Any  uncertainty  in  the  resistance  of  this  contact 
does  not  influence  the  measurements. 

Fig.  53  c. 

The  diagram  Fig.  (53  c)  shows  the  connection  of  the  parts.  One 
of  the  telephone  terminals  Tgoes  to  the  junction  of  the  {\  ohm) 
resistances  R  and  S,  the  other  to  a  point  upon  the  divided  vdre. 
The  branch  P  includes  one  inductometer  (with  coils  connected  in 

series),  the  subject  of  examination,  and  part  of  the  divided  wire. 
The  branch  Q  includes  a  second  inductometer  (replaceable  by  a 
simple  coil  possessing  suitable  inductance),  a  rheostat,  or  any 

resistance  roughly  adjustable  from  time  to  time,  and  the  re- 
mainder of  the  divided  wire.  The  battery  branch  By  in  which  may 

also  be  included  the  interrupter,  has  its  terminals  connected,  one 
to  the  junction  of  P  and  R,  the  other  to  the  junction  of  Q  and  8, 
When  it  is  desired  to  use  steady  currents,  the  telephone  can  of 
course  be  replaced  by  a  galvanometer. 

In  this  arrangement,  as  in  the  other,  balance  requires  that  the 
branches  P  and  Q  be  similar  in  respect  both  of  inductance  and  of 
resistance.  The  changes  in  inductance  due  to  a  shift  in  the 

movable  contact  may  usually  be  disregarded,  and  thus  any  alte- 
ration in  the  subject  (included  in  P)  is  measured  by  the  rotation 

necessitated  at  the  inductometer.  As  for  the  resistance,  it  is 

evident  that  (R  and  8  being  equal)  the  value  for  any  additional 
conductor  interposed  in  P  is  measured  by  twice  the  displacement 
of  the  sliding  contact  necessary  to  regain  the  balance. 

Experimental  details  of  the  application  of  this  method  to  the 
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measurement  of  various  combinations  will  be  found  in  the  paper* 
from  which  the  above  sketch  is  derived.  Among  these  may  be 

mentioned  the  verification  of  Maxwell's  formulae,  (8),  (9)  §  235  A', 
as  to  the  influence  of  a  neighbouring  circuit,  especially  in  the 
extreme  case  where  the  equivalent  inductance  is  almost  destroyed, 
and  of  the  formula  (10)  §  235  vi  relating  to  the  behaviour  of  an 

electro-magnet  shunted  by  a  relatively  high  simple  i-esistance. 
But  the  most  interesting  in  many  respects  is  the  application  to 
the  phenomena  presently  to  be  considered,  where  the  conductors 
in  question  are  no  longer  approximately  linear  but  must  be 
regarded  as  solid  masses  in  which  the  currents  are  distributed  in 
a  manner  that  needs  to  be  determined  by  general  electrical 
theoiy. 

As  has  already  been  remarked  more  than  once,  a  leyden  may 

always  be  supposed  to  be  included  in  the  circuit,  the  stiffness 
thereof  having  the  effect  of  a  negative  inductance.  If  there  be  no 
hysteresis  in  the  action  of  the  leyden,  the  whole  effect  is  thus 
represented ;  but  when  the  dielectric  employed  is  solid,  it  appears 
that  dissipative  loss  cannot  be  avoided.  The  latter  effect  manifests 
itself  as  an  augmentation  of  apparent  resistance,  indistinguishable, 
unless  the  frequency  be  varied,  from  the  ordinary  resistance  of  the 
leads.  A  similar  treatment  may  be  applied  to  an  electrolytic  cell, 
the  stiffness  and  resistance  being  presumably  both  functions  of  the 
frequency. 

236  u.  It  was  proved  by  Maxwell*  that  a  perfectly  con- 
ducting sheet,  forming  a  closed  or  an  infinite  surface,  acts  as  a 

magnetic  screen,  no  magnetic  actions  which  may  take  place  on 
one  side  of  the  sheet  producing  any  magnetic  effect  on  the  other 

side.  "  In  practice  we  cannot  use  a  sheet  of  perfect  conductivity ; 
but  the  above  described  state  of  things  may  be  approximated  to 

in  the  case  of  periodic  magnetic  changes,  if  the  time-constants  of 

the  sheet  circuits  be  large  in  comparison  with  the  periods  of  t'he 

changes." 
"The  experiment  is  made  by  connecting  up  into  a  primary 

circuit  a  battery,  a  microphone-clock,  and  a  coil  of  insulated  wire. 
The  secondary  circuit  includes  a  parallel  coil  and  a  telephone. 
Under  these  circumstances  the  hissing  sound  is  heard  almost  as 
well  as  if  the  telephone  were  inserted  in  the  primary  circuit 

*  Phil.  Mag.f  loc,  cit, 

2  Electricity  and  Magnititm,  1S78,  §  655. 



235  t^.]        ELECTROMAGNETIC  SCREEN.  461 

itself.  But  if  a  large  and  stout  plate  of  copper  be  interposed 
between  the  two  coils,  the  sound  is  greatly  enfeebled.  By  a  proper 
choice  of  battery  and  of  the  distance  between  the  coils,  it  is  not 
difficult  so  to  adjust  the  strength  that  the  sound  is  conspicuous  in 

the  one  case  and  inaudible  in  the  other  "^ 

One  of  the  simplest  applications  of  Maxwell's  principle  is  to 
the  case  of  a  long  cylindrical  shell  placed  within  a  coaxal  magnet- 

izing helix.  The  condition  of  minimum  energy  requires  that  such 
currents  be  developed  in  the  shell  as  shall  neutralize  at  internal 
points  the  action  of  the  coil.  Thus,  if  the  conductivity  of  the 
shell  be  sufficiently  high,  the  interior  space  is  screened  from  the 
magnetizing  force  of  periodic  currents  flowing  in  the  outer  helix, 
and  conducting  circuits  situated  within  the  shell  must  be  devoid 
of  induced  currents.  An  obvious  deduction  is  that  the  currents 

induced  in  a  solid  conducting  core  will  be  more  and  more  confined 
to  the  neighbourhood  of  the  surface  as  the  frequency  of  electrical 
vibration  is  increased. 

The  point  at  which  the  concentration  of  current  towards  the 
surface  becomes  important  depends  upon  the  relative  values  of  the 

imposed  vibration-period  and  the  principal  time-constant  of  the 
core  circuit.  If  p  be  the  specific  resistance  of  the  material,  fi  its 
magnetic  permeability,  a  the  radius  of  the  cylinder,  the  expression 
for  the  induction  (c)  parallel  to  the  axis,  during  the  progress  of  the 
subsidence  of  free  currents  in  a  normal  mode,  is 

c^€^^J,{kr)   (1). 

where  k^^^^^!^   (2), P 

and  ka  is  determined  by  the  condition  that 

J,{ka)^0   (3). 

The  roots  of  (3)  are,  §  206, 

2-404,     5-520,     8654,     11-792,  &c., 

so  that  for  the  principal  mode  of  greatest  persistence 

c  =  e^^  Jo  (2-404  r/a)   (4), 

where  ^^J^^^Ip.   (5). 

Acoustical  Observations,  PhiU  Mag.^  vol.  13,  p.  344,  1SS2. 
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For  copper  in  c.o.s.  measure  p  =  1642,  /a=  1,  and  thus 

a» 

T  =  (-X)-  =  gOQnearly\ 

In  the  case  of  iron  we  may  take  as  approximate  values,  /n  =  100, 

^  =  10*.  Thus  for  an  iron  wire  of  diameter  (2a)  equal  to  '33  cm., 
the  value  of  t  is  about  ̂ ^  of  a  second,  and  is  therefore  comparable 
with  the  periods  concerned  in  telephonic  experiments. 

Regarded  from  an  analytical  point  of  view  the  theory  of  forced 
vibrations  in  a  conducting  core  is  equally  simple,  and  was  worked 

out  almost  simultaneously  by  Lamb',  Oberbeck'  and  Heaviside*. 
In  this  case  we  are  to  regard  X  as  given,  equal  (say)  to  tp,  where 

pl^tr  is  the  frequency.  If  I&^*^  be  the  imposed  magnetizing  force, 
the  solution  is 

"7^)'-""'   <«• 
the  value  of  k  being  given  by  (2). 

"  When  the  period  in  the  field  is  long  in  comparison  with  the 
time  of  decay  of  free  currents,  we  have  Jo(i'^)=  1,  nearly,  so  that 
c  is  approximately  constant  and  =/i/  throughout  the  section  of 
the  cylinder.  But,  in  the  opposite  extreme,  when  the  oscillations 

in  the  intensity  of  the  field  are  rapid  in  comparison  with  the  decay 
of  free  currents,  the  induced  currents  extend  only  to  a  small  depth 
beneath  the  surface  of  the  cylinder,  the  inner  strata  (so  to  speak) 
being  almost  completely  sheltered  firom  electromotive  force  by  the 

outer  ones.     Writing  t^  =  (1  —  ifif,  where 

27rAt^ 

we  have,  when  qr  is  large, 

Jo  (At)  =  const,  x  — '- —   , 

approximately,  and  thence 

c  =  /i/ .  'sj{alr) .  e^  <»-«)  +'« t'-^*  [e'^\ 

This  indicates  that   the  electrical  disturbance  in  the   cylinder 

1  ''On  the  Duration  of   Free  Electric  Currents  in  an  Infinite  Condncting 
Cylinder,"  Brit,  Aksoc,  Report  for  1882,  p.  446. 

2  Proc,  Math.  Soc,  vol.  xv.,  p.  189,  Jan.  1884. 
»  Wied,  Ann.,  vol.  xxi.,  p.  672,  Ap.  1884. 
*  EUctrieian^  May,  1884.    Electrical  Papers,  vol.  n.,  p.  868. 
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consists  in  a   series  of  waves  propagated  inwards  with  rapidly 

diminishing  amplitude*.** 
For  experimental  purposes  what  we  most  require  to  know  is 

the  reaction  of  the  core  currents  upon  the  helix,  in  which  alone 
we  can  directly  measure  electrical  effects.     This  problem  is  fully 

treated  by  Heaviside*,  but  we  must  confine  ourselves  here  to  a 
mere  statement  of  results.    These  are  most  conveniently  expressed 
by  the  changes  of  effective  inductance  L  and  resistance  R  due  to 
the  core.     If  m  be  the  number  of  turns  per  unit  length  in  the 

magnetizing  helix,  and  if  hL,  BR  be  the  apparent  alterations  of  L 
and  R  due  to  the  introduction  of  the  core,  also  reckoned  per  unit 

length,  we  have 

8Z  =  4m-7r«a»(/iP-l)' 
SR^^m^TT'a^fjL.pQ       J    

where  P  and  Q  are  defined  by 

P'iQ=^<t>'l<t>   (8), 
the  function  <^  being  of  the  form 

<^(a:)  =  /o(2iV^)  =  l+^+^^i-... +^,^f"    ̂,-f   (9), and  the  argument  x  being 

ipfi.ira^lp   (10). 
If  the  material  composing  the  core  be  non-conducting,  a:  =  0,  and 
therefore 

P  =  l,        Q  =  0. 

Accordingly        SL  =  4mVa«  (m  -  1),        Si2  =  0   (11). 
These  values  apply  also,  whatever   be  the  conductivity  of  the 
core,  if  the  frequency  be  suflSciently  low. 

At  the  other  extreme,  when  jp  =  oo ,  we  require  the  ultimate 
form  of  07<^.  From  the  value  of  Jq  given  in  (10)  §  200,  or  other- 

wise, it  may  be  shewn  that  in  the  limit 

<t>'l4>^x-i   (12), 

so  that  P  =  Q=-— — 1 — _.   (13). 

The  introduction  of  these  values  into  (7)  shews  that  in  the 
limit,  when  the  frequency  is  exceedingly  high, 

SX«-47nVaS        Si2  =  0   (14), 

^  Lamb,  loc,  cit.y  where  is  also  disoassed  the  problem  of  the  currents  induced  by 
the  sudden  cessation  of  a  previously  constant  field. 

*  loc,  ciU 
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as  might  also  have  been  inferred  from  the  consideration  that  the 
induced  currents  are  then  confined  to  the  sur&ce  of  the  core. 

An  example  of  the  application  of  these  formulae  to  an  inter- 
mediate case  and  a  comparison  with  experiment  will  be  found  in 

the  paper  already  referred  to^ 

236  v.  The  application  of  Maxwell's  principle  to  the  case  of 
a  wire,  in  which  a  longitudinal  electric  current  is  induced,  is  less 

obvious;  and  Heaviside'  appears  to  have  been  the  first  to  state 
distinctly  that  the  current  is  to  be  regarded  as  propagated  inwards 
from  the  exterior.  The  relation  between  the  electromotive  force 

E  and  the  total  current  C  had,  however,  been  given  many  years 

earlier  by  Maxwell'  in  the  form  of  a  series.  His  result  is  equi- 
valent to 

^^^tpl/R.A^^-^^~jj^^   (1), 
in  which  R  denotes  the  whole  resistance  of  the  length  I  to 
steady  currents,  /i  the  permeability,  and  />/27r  the  frequency.  The 
function  </>  is  that  defined  by  (9)  §  235  u,  and  il  is  a  constant 

dependent  upon  the  situation  of  the  return  current* 
The  most  convenient  form  of  the  results  is  that  which  we  have 

already  several  times  employed.     If  we  write 

E^RC^ipLV   (2), 

in  which  R'  and  L'  are  real,  these  quantities  will  represent  the 
effective  resistance  and  inductance  of  the  wire.  When  the  argu- 

ment in  (1)  is  small,  that  is  when  the  frequency  is  relatively  low, 
we  thus  obtain 

i7i  =  4+M{i-A^'|,^'+3Ht;^*  +  ...}   (4)». 
1  Phil.  Mag.,  vol.  22,  p.  493,  1886. 

'^  Electrician,  Jan.,  1885 ;  Electrical  Papers,  vol.  i.,  p.  440. 
=»  Phil.  Trans.,  1865 ;  Electricity  and  Magnetism,  vol.  ii.,  §  690. 
*  The  simplest  case  arises  when  the  dielectric,  which  bounds  the  cylindrical 

wire  of  radius  a,  is  enclosed  within  a  second  conducting  mass  extending  outwards 
to  infinity  and  bounded  internally  at  a  cylindrical  surface  r=6.  We  then  have 
^  =2  log (6/a).     See  J.  J.  Thomson,  loc.  cit.,  §  272. 

'  Phil.  Mag.,  vol.  21,  p.  387,  1886.  It  is  singular  that  Maxwell  (loc.  cit.)  seems 
to  have  regarded  his  solution  as  conveying  a  correction  to  the  self-induction  only  of 
the  wire. 
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When  p  is  very  small,  these  equations  give,  as  was  to  be 
expected, 

R^R,  i'=:i(ii+i/i)   (5). 
If  we  include  the  next  terms,  we  recognise  that,  in  accordance 
with  the  general  rule,  L  begins  to  diminish  and  R  to  increase. 

When  p  is  very  great,  we  have  to  make  use  of  the  limiting 
form  of  4>I4>'     As  in  §  235  u, 

<^/</>'  =  (l+i)VapWii)   (6); 
and  thus  ultimately 

R=^s/(hplf^R)   (7), 

r/l=:A'hy/(fiR/2pl)   (8), 

the  first  of  which  increases  without  limit  with  p,  while  the  second 
tends  to  the  finite  limit  A,  corresponding  to  the  total  exclusion  of 
current  from  the  interior  of  the  wire. 

Experiments^  upon  an  iron  wire  about  18  metres  long  and  8*3 
millimetres  in  diameter  led  to  the  conclusion  that  the  resistance 

to  variable  currents  of  frequency  1050  was  such  that  R/R  =  1*9. 
A  calculation  based  upon  (1)  shewed  that  this  result  is  in  harmony 

with  theory,  if  /a  =  99'5.  Such  is  about  the  value  indicated  by 
other  telephonic  experiments. 

236  w.  The  theory  of  electric  currents  in  such  wires  as  are 

commonly  employed  in  laboratory  experiments  is  simple,  mainly  in 
consequence  of  the  subordination  of  electrostatic  capacity.  When 
this  element  can  be  neglected,  the  current  is  necessarily  the  same 
at  all  points  along  the  length  of  the  wire,  so  that  whatever  enters 
a  wire  at  the  sending  end  leaves  it  unimpaired  at  the  receiving 
end.  In  this  case  the  whole  electrical  character  of  the  wire  can 

be  expressed  by  two  quantities,  its  resistance  R  and  inductance  L, 
and  these  may  usually  be  treated  as  constants,  independent  of  the 
frequency.  The  relation  of  the  current  to  the  electromotive  force 
under  such  circumstances  has  already  been  discussed  (7)  §  235  j. 
When  we  have  occasion  to  consider  only  the  amplitude  of  the 
current,  irrespective  of  phase,  we  may  regard  it  as  determined 

by  V[^+l>*^']>  a  quantity  which  is  called  by  Heaviside  the 
impedance.  Thus  in  circuits  devoid  of  capacity  the  impedance  is 
always  increased  by  the  existence  of  L, 

1  Phil.  Mag,,  yol.  22,  p.  4S8,  1886. 

R.  30 
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Circuits  employed  for  practical  telephony  may  often  be  re- 
garded as  coming  under  the  above  description,  especially  when 

the  wires  are  suspended  and  are  of  but  moderate  length.  But 
there  are  other  cases  in  which  electrostatic  capacity  is  the  domi- 

nating feature.  The  theory  of  electric  cables  was  established 

many  years  ago  by  Lord  Kelvin^  for  telegraphic  purposes.  If  8 
be  the  capacity  and  R  the  resistance  of  the  cable,  reckoned  per 
unit  length,  V  and  C  the  potential  and  the  current  at  the  point  z, 
we  have 

SdVldt=^-dCldz,        RC=^dVldz   (1), 

whence  R8dC/dt^d^C/dz^   (2), 

the  well  known  equation  for  the  conduction  of  heat  discussed  by 

Fourier,     On  the  assumption  that  C  is  proportional  to  c*^,  it 
reduces  to 

d»C/d^2={V(ipiifif).(l+i)}»C   (3); 

so  that  the  solution  for  waves  propagated  in  the  positive  direc- 
tion is 

C=Coe-"^^^p^^"cos{pt'-y/(^pRS).z}    (4). 
The  distance  in  traversing  which  the  current  is  attenuated  in  the 
ratio  of  e  to  1  is  thus 

z  =  ̂ (2/pRS)   (5). 

A  very  slight  consideration  of  the  magnitudes  involved  is 
suflScient  to  give  an  idea  of  the  diflBculty  of  telephoning  through  a 
long  cable.  If,  for  example,  the  frequency  {pj^ir)  be  that  of  a 
note  rather  more  than  an  octave  above  middle  c,  and  the  cable  be 
such  as  are  used  to  cross  the  Atlantic,  we  have  in  C.G.S.  measure 

Vi>  =  60,        (iJS)-i  =  2  X  10", 
and  accordingly  from  (5) 

2:  =  3  X  10*  cm.  =  20  miles  approximately. 

A  distance  of  20  miles  would  thus  reduce  the  intensity  of 
sound,  measured  by  the  square  of  the  amplitude,  to  about  a 
tenth,  an  operation  which  could  not  be  repeated  often  vdthout 
rendering  it  inaudible.  With  such  a  cable  the  practical  limit 
would  not  be  likely  to  exceed  fifty  miles,  more  especially  as 
the  easy  intelligibility  of  speech  requires  the  presence  of  tones 
still  higher  than  is  supposed  in  the  above  numerical  exam  pie  ̂ 

*  Proc,  Roy,  Soc.y  1855 ;  Mathematical  and  Phytical  Papers^  vol.  u.  p.  61. 
3  '"  On  Telephoning  through  a  Cable.*'    Brit.  An,  Report  for  1884,  p.  632. 
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236  X,  In  the  above  theory  the  insulation  is  supposed  to  be 

perfect  and  the  inductance  to  be  negligible.  It  is  probable  that 
these  conditions  are  suflSciently  satisfied  in  the  case  of  a  cable, 
but  in  other  telephonic  lines  the  inductance  is  a  feature  of  great 
importance.  The  problem  has  been  treated  with  full  generality 
by  Heaviside,  but  a  slight  sketch  of  his  investigation  is  all  that 
our  limits  permit. 

If  R,  S,  L,  K  he  the  resistance,  capacity  or  permittance,  in- 
ductance, and  leakage-conductance  respectively  per  unit  of  length, 

V  and  C  the  potential-difference  and  current  at  distance  z,  the 
equations,  analogous  to  (1)  §  235  ti;,  are 

Thus,  if  the  currents  are  harmonic,  proportional  to  e*^S 

'^^^(R  +  ipL){K  +  ipS)C.   (2). 
with  a  similar  equation  for  F. 

It  might  perhaps  have  been  expected  that  a  finite  leakage  K 

would  always  act  as  a  complication;  but  Heaviside^  has  shewn 
that  it  may  be  so  adjusted  as  to  simplify  the  matter.  This  case, 
which  is  remarkable  in  itself  and  also  serves  to  throw  light  upon 
the  general  question,  arises  when  R/L  =  K/S.     We  will  write 

ififtr»=l,        R/L=^K/8  =  q   (2), 

where  i;  is  a  velocity  of  the  order  of  the  velocity  of  light.  The 
equation  for  V  is  then  by  (1) 

i^d'V/dz^=:(d/dt-{-qyV   (3); 
or  if  we  take  U  so  that 

V^e-^U   (4), 

v^cPU/dz'  =  d'U/dt^   (5), 

the  well-known  equation  of  undisturbed  wave  propagation  §  144. 

"Thus,  if  the  wave  be  positive,  or  travel  in  the  direction  of 
increasing  z,  we  shall  have,  if /i  (z)  be  the  state  of  V  initially, 

V,^e-^Mz-vt\        C,=  V,ILv   (6). 
If  Fa,  Cj  be  a  negative  wave,  travelling  the  other  way, 

V,^e'^Mz  +  vt\        Cr   V,ILv   (7). 

^  Electrician,  June  17,  18S7.    Electrical  Papers,  vol  xi.  pp.  126,  809. 



468  ELECTRICAL   VIBRATIONS.  [235  X, 

Thus,  any  initial  state  being  the  sum  of  F^  and  Fj  to  make  F, 
and  of  Cx  and  C^  to  make  (7,  the  decomposition  of  an  arbitrarily 
given  initial  state  of  F  and  G  into  the  waves  is  effected  by 

V,^\{V^vLC\         y,^\{V^vLC)   (8). 

We  have  now  merely  to  move  Fj  bodily  to  the  right  at  speed 
V,  and  F,  bodily  to  the  left  at  speed  r,  and  attenuate  them  to  the 

extent  e""^,  to  obtain  the  state  at  time  i  later,  provided  no  changes of  condition  have  occurred.  The  solution  is  therefore  true  for  all 

future  time  in  an  infinitely  long  circuit.  But  when  the  end  of  a 
circuit  is  reached,  a  reflected  wave  usually  results,  which  must  be 

added  on  to  obtain  the  real  result." 

As  in  §  144,  the  precise  character  of  the  reflection  depends 

upon  the  terminal  conditions.  "One  case  is  uniquely  simple. 
Let  there  be  a  resistance  inserted  of  amount  vL.  It  introduces 

the  condition  V  —  vLG  if  at  say  fi,  the  positive  end  of  the  circuit, 
and  V^—vLC  if  at  the  negative  end,  or  beginning.  These  are 
the  characteristics  of  a  positive  and  of  a  negative  wave  respect- 

ively ;  it  follows  that  any  disturbance  arriving  at  the  resistance  is 
at  once  absorbed.  Thus,  if  the  circuit  be  given  in  any  state 
whatever,  without  impressed  force,  it  is  wholly  cleared  of  electrifi- 

cation and  current  in  the  time  l/v  at  the  most,  if  I  be  the  length 
of  the  circuit,  by  the  complete  absorption  of  the  two  waves  into 

which  the  initial  state  may  be  decomposed." 

"  But  let  the  resistance  be  of  amount  R^  at  say  B ;  and  let  Fj 
and  Fj  be  corresponding  elements  in  the  incident  and  reflected 
waves.     Since  we  have 

F,  =  t;ZCx,       V,  —  vLC,,       F,+ F,  =  i2,((7,  + C,)...(9), 

we  have  the  reflected  wave  given  by 

F,     R,^vL 

rr-R^TVL   (10)- 
If  Ri  be  greater  than  the  critical  resistance  of  complete  ab- 

sorption, the  current  is  negatived  by  reflection,  whilst  the  electri- 
fication does  not  change  sign.  If  it  be  less,  the  electrification  is 

negatived,  whilst  the  current  does  not  reverse." 

"Two  cases  are  specially  notable.  They  are  those  in  which 
there  is  no  absorption  of  energy.  If  ̂ =0,  meaning  a  short 
circuit,  the  reflected  wave  of  F  is  a  perverted  and  inverted  copy  of 
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the  incident.     But  if  iJ  =  « ,  representing  insulation,  it  is  G  that 

is  inverted  and  perverted \" 

The  cases  last  mentioned  are  evidently  analogous  to  the  reflec- 
tion of  a  sonorous  aerial  wave  travelling  in  a  pipe.  If  the  end  of 

the  pipe  be  closed,  the  reflection  is  of  one  character,  and  if  it  be 
open  of  another  character.  In  both  cases  the  whole  energy  is 
reflected,  §  257.  The  waves  reflected  at  the  two  ends  of  an  electric 

circuit  complicate  the  general  solution,  especially  when  the  sim- 
plifying condition  (2)  does  not  hold.  But  in  many  cases  of 

practical  interest  they  may  be  omitted  without  much  loss  of 

accuracy.  One  passage  over  a  long  line  usually  introduces  con- 
siderable attenuation,  and  then  the  effect  of  the  reflected  wave, 

which  must  traverse  the  line  three  times  in  all,  becomes  insigni- 
ficant. 

In  proceeding  to  the  general  solution  of  (2)  for  a  positive 

wave,  we  will  introduce,  after  Heaviside,  the  following  abbrevia- 
tions, 

n'LS^l.      R/Lp=/.     K/Sp  =  g   (11). 

In  terms  of  these  quantities  (2)  may  be  written 

cPC/dz^^iP-^-iQyC   (12), where 

P«  or  Q»  =  J  {p/vY  {(1  +/»)*  (1  +f)i  ±  (fg  -  1)} ...  (13). 

Thus,  if  P  and  Q  be  taken  positively,  the  solution  for  a  wave 
travelling  in  the  positive  direction  is 

C-=^Coe'P'cos{pt'Qz)   (14), 

the  current  at  the  origin  being  Cq  cos  pt 

The  cable  formula,  §  235  w,  is  the  particular  case  arrived  at  by 
supposing  in  (13)/=  oo ,  ̂r  =  0,  which  then  reduces  to 

p^^Q^^^pRS   (15). 

Again,  the  special  case  of  equation  (3)  is  derivable  by  putting 
/  =  g  =  q/p'     The  result  is 

P  =  qlv,        Q=p/v   (16). 

If  the  insulation  be  perfect,  g  =  0,  and  (13)  becomes 

P«  or  (?  =  i(p/^)'{(l +/')*?!}   (17). 

^  Heayiside,  Collected  Works^  vol.  n.  p.  312. 
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In  certain  examples  of  long  copper  lines  of  high  conductivity, 
/  may  be  regarded  as  small  so  far  as  telephonic  frequencies  are 
concerned.     Equation  (17)  then  gives 

P=:pf/2v^R/2vL,      Q^pjv   (18). 

For  a  further  discussion  of  the  various  cases  that  may  arise 
the  reader  must  be  referred  to  the  writings  of  Heaviside  already 
cited.  The  object  is  to  secure,  as  far  as  may  be,  the  propagation 
of  waves  without  alteration  of  type.  And  here  it  is  desirable  to 
distinguish  between  simple  attenuation  and  distortion.  If,  as  in 

(16)  and  (18),  P  is  independent  of  p,  the  amplitudes  of  all  com- 
ponents are  reduced  in  the  same  ratio,  and  thus  a  complex  wave 

travels  without  distortion.  The  cable  formula  (15)  is  an  example 
of  the  opposite  state  of  things,  where  waves  of  high  frequency  are 
attenuated  out  of  proportion  to  waves  of  low  frequency.  It  appears 

from  Heaviside's  calculations  that  the  distortion  is  lessened  by even  a  moderate  inductance. 

The  eflFectiveness  of  the  line  requires  that  neither  the  attenua- 
tion nor  the  distortion  exceed  certain  limits,  which  however  it  is 

hard  to  lay  down  precisely.  A  considerable  amount  of  distortion 
is  consistent  with  the  intelligibility  of  speech,  much  that  is 
imperfectly  rendered  being  supplied  by  the  imagination  of  the 
hearer. 

236  y.  It  remains  to  consider  the  transmitting  and  receiving 
appliances.  In  the  early  days  of  telephony,  as  rendered  practical 
by  Graham  Bell,  similar  instruments  were  employed  for  both 

purposes.  Bell's  telephone  consists  of  a  bar  magnet,  or  battery 
of  bar  magnets,  provided  at  one  end  with  a  short  pole-piece 
which  serves  as  the  core  of  a  coil  of  fine  insulated  wire.  In  close 

proximity  to  the  outer  end  of  the  pole-piece  is  placed  a  circular 
disc  of  thin  iron,  held  at  the  circumference.  Under  the  influence 

of  the  permanent  magnet  the  disc  is  magnetized  radially,  the 
polarity  at  the  centre  being  of  course  opposite  to  that  of  the 
neighbouring  end  of  the  steel  magnet. 

The  operation  of  the  instrument  as  a  transmitter  is  readily 
traced.  When  sonorous  waves  impinge  upon  the  disc,  it  responds 
with  a  symmetrical  transverse  vibration  by  which  its  distance 

from  the  pole-piece  is  alternately  increased  and  diminished. 
When  the  interval  is  diminished,  more  induction  passes  through 

the  pole-piece,  and  a  corresponding  electro-motive  force  acts  in 
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the  enveloping  coil.  The  periodic  movement  of  the  disc  thus 
gives  rise  to  a  periodic  current  in  any  circuit  connected  with  the 
telephone  coil. 

The  electro-motive  force  is  in  the  first  instance  proportional 
to  the  permanent  magnetism  to  which  it  is  due;  and  this  law 

would  continue  to  hold,  were  the  behaviour  of  the  pole-piece  and 

of  the  disc  conformable  to  that  of  the  "  soft  iron  *'  of  approximate 
theory.  But  as  the  magnetism  rises,  and  the  state  of  saturation 
is  more  nearly  approached,  the  response  to  periodic  changes  of 
force  becomes  feebler,  and  thus  the  efficiency  falls  below  that 
indicated  by  the  law  of  proportionality.  If  we  could  imagine  the 

state  of  saturation  in  the  pole-piece  to  be  actually  attained,  the 
induction  through  the  coil  would  become  almost  incapable  of 
variation,  being  reduced  to  such  as  might  occur  were  the  iron 
removed.  There  is  thus  a  point,  dependent  upon  the  properties 
of  magnetic  matter,  beyond  which  it  is  pernicious  to  raise  the 
amount  of  the  permanent  magnetism ;  and  this  point  marks  the 
maximum  efficiency  of  the  transmitter.  It  is  probable  that  the 
most  favourable  condition  is  not  fully  reached  in  instruments 
provided  with  steel  magnets;  but  the  considerations  above 

advanced  may  serve  to  explain  why  an  electro-magnet  is  not 
substituted. 

The  action  of  the  receiving  instrument  may  be  explained  on 
the  same  principles.  The  periodic  current  in  the  coil  alternately 
opposes  and  cooperates  with  the  permanent  magnet,  and  thus  the 
iron  disc  is  subjected  to  a  periodic  force  acting  at  its  centre. 
The  vibrations  are  thence  communicated  to  the  air,  and  so  reach 
the  ear  of  the  observer.  As  in  the  case  of  the  transmitter,  the 

efficiency  attains  a  maximum  when  the  magnetism  of  the  pole- 
piece  is  still  far  short  of  saturation. 

The  explanation  of  the  receiver  in  terms  of  magnetic  forces 
pulling  at  the  disc  is  sometimes  regarded  as  inadequate  or  even  as 

altogether  wide  of  the  mark,  the  sound  being  attributed  to  "  mole- 
cular disturbances "  in  the  pole-piece  and  disc.  There  is  indeed 

every  reason  to  suppose  that  molecular  movements  accompany 
the  change  of  magnetic  state,  but  the  question  is  how  do  these 
movements  influence  the  ear.  It  would  appear  that  they  can  do 
so  only  by  causing  a  transverse  motion  of  the  surface  of  the  disc, 
a  motion  from  which  nodal  subdivisions  are  not  excluded. 
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In  support  of  the  "  push  and  pull  theory  "  it  may  be  useful  to 
cite  an  experiment  tried  upon  a  bipolar  telephone.  In  this 

instrument  each  end  of  a  horse-shoe  magnet  is  provided  with  a 
pole-piece  and  coil,  and  the  two  pole-pieces  are  brought  into 
proximity  with  the  disc  at  places  symmetrically  situated  with 
regard  to  the  centre.  In  the  normal  use  of  the  instrument  the 

two  coils  are  permanently  connected  as  in  an  ordinary  horse-shoe 
electro-magnet,  but  for  the  purposes  of  the  experiment  provision 
was  made  whereby  one  of  the  coils  could  be  reversed  at  pleasure 
by  means  of  a  reversing  key.  The  sensitiveness  of  the  telephone 
in  the  two  conditions  was  tested  by  including  it  in  the  circuit  of 
a  Daniell  cell  and  a  scraping  contact  apparatus,  resistance  from  a 
box  being  added  until  the  sound  was  but  just  easily  audible. 

The  resistances  employed  were  such  as  to  dominate  the  self- 
induction  of  the  circuit,  and  the  comparison  shewed  that  the 
reversal  of  the  coil  from  its  normal  connection  lowered  the  sensi- 

tiveness to  current  in  the  ratio  of  11  :  1.  That  the  reduction  was 

not  still  greater  is  readily  explained  by  outstanding  failures  of 

symmetry;  but  on  the  "molecular  disturbance"  theory  it  is  not 
evident  why  there  should  be  any  reduction  at  all. 

Dissatisfaction  with  the  ordinary  theory  of  the  action  of  a 

receiving  telephone  may  have  arisen  from  the  difficulty  of  under- 
standing how  such  very  minute  motions  of  the  plate  could  be 

audible.  This  is,  however,  a  question  of  the  sensitiveness  of  the 

eai',  which  has  been  proved  capable  of  appreciating  an  amplitude 

of  less  than  8  x  10~®cra.^  The  subject  of  the  audible  minimum 
will  be  further  considered  in  the  second  volume  of  this  work. 

The  calculation  a  priori  of  the  minimum  current  that  should 
be  audible  in  the  telephone  is  a  matter  of  considerable  difficulty  ; 
and  even  the  determination  by  direct  experiment  has  led  to 
widely  discrepant  numbers.  In  some  recent  experiments  by  the 
author  a  unipolar  Bell  telephone  of  70  ohms  resistance  was 
employed.  The  circuit  included  also  a  resistance  box  and  an 
induction  coil  of  known  construction,  in  which  acted  an  electro- 

motive force  capable  of  calculation.  Up  to  a  frequency  of  307 
this  could  be  obtained  from  a  revolving  magnet  of  known  moment 
and  situated  at  a  measured  distance  from  the  induction  coil.  For 

the  higher  frequencies  magnetized  tuning-forks,  vibrating  with 
measured    amplitudes,   were   substituted.      In    either    case   the 

^  Proc,  Roy,  Soc,  vol.  xxvi.  p.  248,  1877. 
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resistance  of  the^  circuit  was  increased  until  the  residual  sound 
was  but  just  easily  audible.  Care  having  been  taken  so  to 

arrange  matters  that  the  self-induction  of  the  circuit  was  negli- 
gible, the  current  could  then  be  deduced  from  the  resistance  and 

the  calculated  electro-motive  force  operating  in  the  induction 
coil.  The  following  are  the  results,  in  which  it  is  to  be  under- 

stood that  the  currents  recorded  might  have  been  halved  without 
the  sounds  being  altogether  lost : 

Pitch Source 

Fork 
Revolving  Magnet 

Fork 
Revolving  Magnet 

Fork 

Current  in 10~®  amperes 

2800 
250 

83 49 
32 
15 
7 

4-4 10 

128 
192 
256     . 
307 
320 

384 
512 
640 
768 

The  effect  of  a  given  current  depends,  of  course,  upon  the 
manner  in  which  the  telephone  is  wound.  If  the  same  space  be 
occupied  by  the  copper  in  the  various  cases,  the  current  capable  of 
producing  a  particular  effect  is  inversely  as  the  square  root  of  the 
resistance. 

The  numbers  in  the  above  table  giving  the  results  of  the 

author's  experiments  are  of  the  same  order  of  magnitude  as 
those  found  by  Ferraris^  whose  observations,  however,  related 
to  sounds  that  were  not  pure  tones.  But  much  lower  estimates 

have  been  put  forward.  Thus  Tait'  gives  2  x  10~"  amperes, 
and  Preece  a  still  lower  figure,  6  x  10~".  These  discrepancies, 
enormous  as  they  stand,  would  be  still  further  increased  were 
the  comparison  made  to  refer  to  the  amotmts  of  energy  absorbed. 

According  to  the  calculations  of  the  author  the  above  tabulated 
sensitiveness  to  a  periodic  current  of  frequency  256  is  about  what 

might  reasonably  be  expected  on  the  push  and  pull  theory*.    At 

1  Atti  della  Accad,  d,  Sci.  Di  Torino,  vol.  xiii.  p.  1024,  1S77. 
2  Edin.  Proc,  vol.  ix.  p.  551,  187S. 
3  I  propose  shortly  to  publish  these  calculations. 

1 
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this  frequency,  which  is  below  those  proper  to  the  telephone  plate 
(§  221  a),  the  motion  of  the  plate  is  governed  by  elasticity  rather 
than  by  inertia,  and  an  equilibrium  theory  (§  100)  is  applicable  as 
a  rough  approximation.  The  greater  sensitiveness  of  the  telephone 
at  frequencies  in  the  neighbourhood  of  512  would  appear  to 
depend  upon  resonance  (§  46).  It  is  doubtful  whether  the  much 

higher  sensitiveness  claimed  by  Tait  and  Preece  could  be  re- 
conciled with  theory. 

It  appears  to  be  established  that  the  iron  plate  of  a  telephone 

may  be  replaced  by  one  of  copper,  or  even  of  non-conducting 
material,  without  absolute  loss  of  sound;  but  these  effects  are 

probably  of  a  diflFerent  order  of  magnitude.  In  the  case  of  copper 
induced  currents  may  confer  the  necessary  magnetic  properties. 
For  a  description  of  the  ingenious  receiver  invented  by  Edison 
and  for  other  information  upon  telephonic  appliances  the  reader 

may  consult  Preece  and  Stubbs*  Manual  of  Telephony. 

In  existing  practice  the  transmitting  instrument  depends 

upon  a  variable  contact.  The  first  carbon  transmitter  was  con- 
structed by  Edison  in  1877,  but  the  instruments  now  in  use  are 

modifications  of  Hughes'  microphone  \  A  battery  current  is  led 
into  the  line  through  pieces  of  metal  or  of  carbon  in  loose  juxta- 

position, carbon  being  almost  universally  employed  in  practice. 
Under  the  influence  of  sonorous  vibration  the  electrical  resistance 

of  the  contacts  varies,  and  thus  the  current  in  the  line  is  rendered 

representative  of  the  sound  to  be  reproduced  at  the  receivihg 
end. 

That  the  resistance  of  the  contact  should  vary  with  the 
pressure  is  not  surprising.  If  two  clean  convex  pieces  of  metal 
are  forced  together,  the  conductivity  between  them  is  represented 
by  the  diameter  of  the  circle  of  contact  (§306).  The  relation 
between  the  circle  of  contact  and  the  pressure  with  which  the 
masses  are  forced  together  has  been  investigated  in  detail  by 
Hertz  ̂   His  conclusion  for  the  case  of  two  equal  spheres  is  that 
the  cube  of  the  radius  of  the  circle  of  contact  is  proportional  to 
the  pressure  and  to  the  radii  of  the  spheres.  But  it  has  not  yet 
been  shewn  that  the  action  of  the  microphone  can  be  adequately 
explained  upon  this  principle. 

1  Proc.  Roy.  Soc,  vol.  xxvii.  p.  862,  1878. 
'  Crelle,  Jonm.  Math.  xcn.  p.  156,  1882. 
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ON   PROGRESSIVE   WAVES. 

From  the  Proceedings  of  the  London  Mathematical  Societyy 
Vol.  IX.,  p.  21,  1877. 

It  has  often  been  remarked  that,  when  a  group  of  waves  advances 

into  still  water,  the  velocity  of  the  group  is  less  than  that  of  the  indi- 
vidual waves  of  which  it  is  composed ;  the  waves  appear  to  advance 

through  the  group,  dying  away  as  they  approach  its  anterior  limit. 

This  phenomenon  was,  I  believe,  lirst  explained  by  Stokes,  who  re- 
garded the  group  as  formed  by  tlie  superposition  of  two  infinite  trains 

of  waves,  of  equal  amplitudes  and  of  nearly  equal  wave-lengths,  ad- 
vancing in  the  same  direction.  My  attention  was  called  to  the  subject 

about  two  years  since  by  Mr  Froude,  and  the  same  explanation  then 

occurred  to  me  independently*.  In  my  book  on  the  "Theory  of 

Sound"  (§191),  I  have  considered  the  question  more  generally,  and 
have  shewn  that,  if  V  be  the  velocity  of  propagation  of  any  kind  of 

waves  whose  wave-length  is  X,  and  k  =  27r/X,  then  U,  the  velocity  of 

a  group  composed  of  a  great  number  of  waves,  and  moving  into  an  un- 
disturbed part  of  the  medium,  is  expressed  by 

^-'4P   (.), dk 

*  Another  phenomenon,  also  mentioned  to  me  by  Mr  Froude,  admits  of  a  similar 
explanation.  A  steam-launch  moving  quickly  through  the  water  is  accompanied  by 
a  peculiar  system  of  diverging  waves,  of  which  the  most  striking  feature  is  the 
obliquity  of  the  line  containing  the  greatest  elevations  of  successive  waves  to  the 

wave-fronts.  This  wave  pattern  may  be  explained  by  the  superposition  of  two  (or 
more)  infinite  trains  of  waves,  of  slightly  dififering  wave-lengths,  whose  directions 
and  velocities  of  propagation  are  so  related  in  each  case  that  there  is  no  change  of 
position  relatively  to  the  boat.  The  mode  of  composition  will  be  best  understood  by 
drawing  on  paper  two  sets  of  parallel  and  equidistant  lines,  subject  to  the  above 
condition,  to  represent  the  crests  of  the  component  trains.  In  the  case  of  two  trains 

of  slightly  different  wave-lengths,  it  may  be  proved  that  the  tangent  of  the  angle 
between  the  line  of  maxima  and  the  wave-fronts  is  half  the  tangent  of  the  angle 
between  the  wave-fronts  and  the  boat's  course. 
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or,  as  we  may  also  write  it, 

''^''-'*'-^'   » 

Thus,  if     rxX%  U={l-'n)  V   (3). 

In  fact,  if  the  two  infinite  trains  be  represented  by   cos  k{Vt'-  x) 

and   cos  k'  ( V't  —  x),    their  resultant  is  represented  by 

cos  k{Vt''X)  +  cos  k'  ( V't  -  x), 
which  is  equal  to 

;k'V'-kV       k'^k    1  (k'V'-k-kV      A'  +  Jfc 2  cos (k'V'-kV       k'^k    )  (k'V''¥kV      k-^k    1 

If  k'  -k,  V  -  F  be  small,  we  have  a  train  of  waves  whose  amplitude 
varies  slowly  from  one  point  to  another  between  the  limits  0  and  2, 

forming  a  series  of  groups  separated  from  one  another  by  regions  com- 
paratively free  from  disturbance.  The  position  at  time  t  of  the  middle 

of  that  group,  which  was  initially  at  the  origin,  is  given  by 

{k'r^kV)t^{k'^k)x=0, 

which  shews  that  the  velocity  of  the  group  is  {k'  F'  -  A;  F)  -f  {k*  —  k). 
In  the  limit,  when  the  number  of  waves  in  each  group  is  indefinitely 

great,  this  result  coincides  with  (1). 

The  following  particular  cases  are  worth  notice,  and  are  here  tabu- 
lated for  convenience  of  comparison : — 

F  oc  X,  U=0,  Reynolds*  disconnected  pendulums. 

F  X  X*,  U  =  ̂   F,  Deep-water  gravity  waves. 

V  X  X®,  U  =  F,  Aerial  waves,  «fec. 

F X  X"i,  U  =  ̂ V,  Capillary  water  waves. 

F X  X"^  U=2Vy  Flexural  waves. 

The  capillary  water  waves  are  those  whose  wave-length  is  so  small 
that  the  force  of  restitution  due  to  capillarity  largely  exceeds  that  due 

to  gravity.  Their  theory  has  been  given  by  Thomson  (PhiL  Mag., 

Nov.  1871).  The  fiexural  waves,  for  which  U=2Vy  are  those  cor- 

responding to  the  bending  of  an  elastic  rod  or  plate  ("Theory  of 
Sound,"  g  191). 

In  a  paper  read  at  the  Plymouth  meeting  of  the  British  Association 

(afterwards  printed  in  "Nature,"  Aug.  23,  1877),  Prof.  Osborne 
Reynolds  gave  a  dynamical  explanation  of  the  fact  that  a  group  of 

deep-water  waves  advances  with  only  half  the  rapidity  of  the  indi- 
vidual waves.  It  appears  that  the  energy  propagated  across  any  point, 

when  a  train  of  waves  is  passing,  is  only  one-half  of  the  energy  neces- 
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saiy  to  supply  the  waves  which  pass  in  the  same  time,  so  that,  if  the 

train  of  waves  be  limited,  it  is  impossible  that  its  front  can  be  propa- 
gated with  the  full  velocity  of  the  waves,  because  this  would  imply  the 

acquisition  of  more  energy  than  can  in  fact  be  supplied.  Prof.  Reynolds 
did  not  contemplate  the  cases  where  more  energy  is  propagated  than 
corresponds  to  the  waves  passing  in  the  same  time ;  but  his  argument, 

applied  conversely  to  the  results  already  given,  shews  that  such  cases 
must  exist.  The  ratio  of  the  energy  propagated  to  that  of  the  passing 

waves  is  U '.  V;  thus  the  energy  propagated  in  the  unit  time  is  U :  V 
of  that  existing  in  a  length  F,  or  U  times  that  existing  in  the  unit 

length.     Accordingly 

Energy  propagated  in  unit  time  :  Energy  contained  (on  an  average) 

in  unit  length  =d{kV)  :  dk,     by  (1). 

As  an  example,  I  will  take  the  case  of  small  irrotational  waves  in 
water  of  finite  depth  ̂ .  If  2;  be  measured  downwards  from  the  surface, 

and  the  elevation  (h)  of  the  wave  be  denoted  by 

h  =  11  cos  (nt  —  kx)      (4), 

in  which  n  =  kVj  the  corresponding  velocity-potential  (^)  is 

^  =  -  VII  — j^   -j^i —  sin  (nt  -  kx)     (5). 

This  value  of  <f>  satisfies  the  general  differential  equation  for  irrota- 

tional motion  (v*^  =  0),  makes  the  vertical  velocity  dift/dz  zero  when 
z  =  l,  and  —  cUi/dt  when  z  =  0.     The  velocity  of  propagation  is  given  by 

^  -kl^T6^    ^^^• 
We  may  now  calculate  the  energy  contained  in  a  length  ac,  which  is 

supposed  to  include  so  great  a  number  of  waves  that  fractional  parts 
may  be  left  out  of  account. 

For  the  potential  energy  we  have 

V^  =  gpJlzdzdx  =  yplh^dx  =  ypIP.x    (7). 

For  the  kinetic  energy, 

=yj{*'^)^^'^=yp^''^   W' 
by  (1)  and  (6).     If,  in  accordance  with  the  argument  advanced  at  the 

*  Prof.  Reynolds  considers  the  trochoidal  wave  of  Rankine  and  Fronde,  which 
involves  molecular  rotation. 
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end  of  this  paper,  the  equality  of  Vi  and  T  be  assumed,  the  value  of 

the  velocity  of  propagation  follows  from  the  present  expressions.  The 
whole  energy  in  the  waves  occupying  a  length  x  is  therefore  (for  each 

unit  of  breadth)  V^ -h  T  =  igpll^ ,  x   (9), 

//  denoting  the  maximum  elevation. 

We  have  next  to  calculate  the  energy  propagated  in  time  t  across  a 
plane  for  which  x  is  constant,  or,  in  other  words,  the  work  (  W)  that 
must  be  done  in  order  to  sustain  the  motion  of  the  plane  (considered 
as  a  flexible  lamina)  in  the  face  of  the  fluid  pressures  acting  upon  the 
front  of  it.  The  variable  part  of  the  pressure  (Sp),  at  depth  «,  is 
given  by 

^/^  =  -  P -57  =  -  ̂   ̂^  — ^rr^— cos  (^«  -  ̂)  > 

while  for  the  horizontal  velocity 

^  =  ̂^^      e*^-e-^       cos(n<-Aa;); 

so  that      W^jJBp^dzdt^igpHKVt.^l-^^^i^^'^      (10), 
on  integration.     From  the  value  of  F  in  (6)  it  may  be  proved  that 

and  it  is  thus  verified  that  the  value  of  W  for  a  unit  time 

=   -\i  —  ̂   energy  in  umt  length. 

As  an  example  of  the  direct  calculation  of  U,  we  may  take  the  case 
of  waves  moving  under  the  joint  influence  of  gravity  and  cohesion. 

It  is  proved  by  Thomson  that 

V^  =  l^T'k,   (11), 

where  T'  is  the  cohesive  tension.     Hence 

When  k  is  small,  the  surface  tension  is  negligible,  and  then  Vt^^V; 
but  when,  on  the  contrary,  k  is  large,  U=^V,  as  has  already  been 
stated.  When  TJ^  =  g,  U  =  V,  This  corresponds  to  the  miniiniiTn 
velocity  of  propagation  investigated  by  Thomson. 
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Although  the  argument  from  interference  groups  seems  satisfactory, 

an  independent  investigation  is  desirable  of  the  relation  between 

energy  existing  and  energy  propagated.  For  some  time  I  was  at  a  loss 
for  a  method  applicable  to  all  kinds  of  waves,  not  seeing  in  particular 
why  the  comparison  of  energies  should  introduce  the  consideration  of 

a  variation  of  wave-length.  The  following  investigation,  in  which  the 

increment  of  wave-length  is  imaginary,  may  perhaps  be  considered  to 
meet  the  want : — 

Let  us  suppose  that  the  motion  of  every  part  of  the  medium  is 
resisted  by  a  force  of  very  small  magnitude  proportional  to  the  mass 
and  to  the  velocity  of  the  part,  the  effect  of  which  will  be  that  waves 

generated  at  the  origin  gradually  die  away  as  x  increases.  The  motion, 

which  in  the  absence  of  friction  would  be  represented  by  cos  {nt  —  kx), 

under  the  influence  of  friction  is  represented  by  c"'^  cos  (nt  —  kx), 
where  /i  is  a  small  positive  coefficient.  In  strictness  the  value  of  k  is 
also  altered  by  the  friction;  but  the  alteration  is  of  the  second  order  as 

regards  the  frictional  forces,  and  may  be  omitted  under  the  circum- 
stances here  supposed.  The  energy  of  the  waves  per  unit  length  at 

any  stage  of  degradation  is  proportional  to  the  square  of  the  amplitude, 
and  thus  the  whole  energy  on  the  positive  side  of  the  origin  is  to  the 

energy  of  so  much  of  the  waves  at  their  greatest  value,  t.«.,  at  the 

origin,  as  would  be  contained  in  the  unit  of  length,  as   J^  e~^'  dx  :  I, 

or  as  (2/a)"^  :  1.  The  energy  transmitted  through  the  origin  in  the 
unit  time  is  the  same  as  the  energy  dissipated ;  and,  if  the  frictional 
force  acting  on  the  element  of  mass  m  be  Amv,  where  v  is  the  velocity 

of  the  element  and  h  is  constant,  the  energy  dissipated  in  unit  time  is 
Ji^in^  or  2hT,  T  being  the  kinetic  energy.  Thus,  on  the  assumption 

that  the  kinetic  energy  is  half  the  whole  energy,  we  find  that  the 
energy  transmitted  in  the  unit  time  is  to  the  greatest  energy  existing 

in  the  unit  length  as  h  :  2/i.  It  remains  to  find  the  connection  be- 
tween h  and  fi. 

For  this  purpose  it  will  be  convenient  to  regard  cos  {nt  -  kx)  as  the 

real  part  of  e^^  e***,  and  to  inquire  how  k  is  affected,  when  n  is  given, 
by  the  introduction  of  friction.  Now  the  effect  of  friction  is  repre- 

sented in  the  differential  equations  of  motion  by  the  substitution  of 

d^jdi^  +  hdjdt  in  place  of  d^/dfi,  or,  since  the  whole  motion  is  proportional 
to  e^^,  by  substituting  —  ?i*  +  ihn  for  —  n*.  Hence  the  introduction  of 
friction  corresponds  to  an  alteration  of  n  from  n  to  n  —  ̂ i/i  (the  square 
of  h  being  neglected);  and  accordingly  k  is  altered  from  k  to 

k  —  ̂ Vidkjdn,  The  solution  thus  becomes  g -i* «<**/<«»  ̂ (»<-*»)^  or,  when 

the  imaginary  part  is  rejected,  g-i**<'*/<'»  cos  {nt  -  kx) ;  so  that 
/A  =  ̂ A  dkjdn,  and  h  :  2fi  =  dn/dk.     The  ratio  of  the  energy  transmitted 
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in  the  unit  time  to  the  energy  existing  in  the  unit  length  is  therefore 
expressed  by  dnjdk  or  d  {k  V)ldk,  as  was  to  be  proved 

It  has  often  been  noticed,  in  particular  cases  of  progressive  waves, 
that  the  potential  and  kinetic  energies  are  equal ;  but  I  do  not  call  to 
mind  any  general  treatment  of   the   question.     The   theorem   is   not 

usually  true  for  the  individual  parts  of  the  medium*,  but  must  be 
imderstood  to  refer  either  to  an  integral  number  of  wave-lengths,  or  to 
a  space  so  considerable  that  the  outstanding  fractional  parts  of  waves 

may  be  left  out  of  account.     As  an  example  well  adapted  to  give  in- 
sight into  the  question,  I  will  take  the  case  of  a  uniform  stretched 

circular  membrane  ("  Theory  of  Sound,"  §  200)  vibrating  with  a  given 
niunber  of  nodal  circles  and  diameters.     The  fundamental  modes  are 

not  quite  determinate  in  consequence  of  the  symmetry,  for  any  dia- 
meter may  be  made  nodal.     In  order  to  get  rid  of  this  indeterminate- 

ness,  we  may  suppose  the  membrane  to  carry  a  small  load  attached  to 
it  anywhere  except  on  a  nodal  circle.     There  are  then  two  definite 
fundamental  modes,  in  one  of  which  the  load  lies  on  a  nodal  diameter, 

thus  producing  no  e£fect,  and  in  the  other  midway  between  nodal  dia- 

meters, where   it  produces   a  maximum  effect  ("Theory  of   Sound," 
J5  208).     If  vibrations  of  both  modes  are  going  on  simultaneously,  the 
potential  and  kinetic  energies  of  the  whole  motion  may  be  calculated 
by  simple  additicyn  of  those  of  the  components.     Let  us  now,  supposing 
the  load  to  diminish  without  limit,  imagine  that  the  vibrations  are  of 

equal  amplitude  and  differ  in  phase  by  a  quarter  of  a  period.     The 
result  is  a  progressive  wave,  whose  potential  and  kinetic  energies  are 
the  sums  of  those  of  the  stationary  waves  of  which  it  is  composed. 

For  the  first  component  we  have    7^  =  E  cos'  nt,    T^  =  E  sin'  ivt ;  and 
for   the   second    component,     V^^  E  sin'  n/,    T^=:  E  cos'  lU ;     so    that 
]\+ V.i  =  Ti+ T2- Ey   or   the   potential   and   kinetic   energies  of  the 
progressive  wave  are  equal,  being  the  same  as  the  whole  energy  of 
either  of  the  components.     The  method  of  proof  here  employed  appears 
to  be  sufficiently  general,  though  it  is  rather  difficult  to  express  it  in 

language  which  is  appropriate  to  all  kinds  of  waves. 

*  Atrial  waves  are  an  important  exception. 
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