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We present a laboratory demonstration of the Kramers-Kronig relation between the resonant
absorption and refractive index in rubidium gas. Our experiment uses a rubidium vapor cell in one
arm of a simple Mach-Zehnder interferometer. As the laser frequency is scanned over an atomic
resonance, the interferometer output is affected by variations of both the absorption and refractive
index of the gas with frequency, all of which can be calculated in a straightforward manner.
Changing the vapor density and interferometer phase produces a family of different output signals.
The experiment was performed using a commercially available tunable diode laser system that was
designed specifically for the undergraduate physics laboratory. As a teaching tool this experiment is
reliable, fun, and instructive, while it also introduces the student to some sophisticated and
fundamental physical concepts. © 2006 American Association of Physics Teachers.
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I. INTRODUCTION

Tunable lasers are useful tools for teaching atomic and
optical physics, because they provide a bright source of
variable-frequency, monochromatic light for probing atomic
transitions. The advent of tunable diode lasers has made it
economically feasible to bring these tools into the under-
graduate laboratory,F4 and TeachSpin5 has recently intro-
duced a laser system designed specifically for physics teach-
ing. Saturated-absorption spectroscopy is the standard
undergraduate lab experiment using tunable diode lasers, but
many others are possible. To fully exploit these laser sys-
tems, the instructor needs a range of experiments that can be
done without the need for much additional (usually expen-
sive) optical hardware. We describe one such experiment that
explores the optical properties, both absorption and refrac-
tive index, of an atomic gas at optical frequencies near an
atomic transition. It uses essentially the same hardware as
saturated-absorption spectroscopy, yet it demonstrates much
different physics. Furthermore, our experiment is more quan-
titative than saturated-absorption spectroscopy in that the ob-
served spectra can be accurately calculated in advance.

The underlying physics of this experiment is that the ab-
sorption and refractive index in an atomic gas are related via
the Kramers—Kroni% relation, which is described in several
popular textbooks.® Optical absorption near an atomic reso-
nance is straightforward to observe by measuring the light
transmitted through a gas cell as a function of laser fre-
quency. Measuring changes in the index of refraction of a
vapor can be more challenging, because even a sizable total
absorption produces an optical phase lag of only a few radi-
ans.

We approached this problem by placing a vapor cell in one
arm of a Mach-Zehnder interferometer and scanning the laser
frequency over the atomic resonance. Both the absorption
and index variations contribute to the overall interferometer
signal, which we model to compare with experiment.

We have found that all three aspects of this experiment—
understanding the optical properties of an atomic gas, mod-
eling the rather complex interferometer signal, and setting up
the hardware—have significant pedagogical value. All three
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aspects are challenging, but can be readily accomplished
with some effort. The remainder of this paper describes the
theory and experiment in detail.

II. A CLASSICAL ATOMIC MODEL

The first step in this experiment is to calculate the relation
between the resonant absorption and the refractive index in a
rubidium vapor and to apply it to our laboratory interferom-
eter. We examine this relation only for the specific case of an
atomic gas, which is simpler to derive than the general
Kramers-Kronig relation, making the physics easier to com-
prehend.

We begin by considering atoms at rest in the laboratory
frame. We use a simple, semi-classical model of a rubidium
atom, namely, that of a single electron bound by a harmonic
force, acted upon by the electric field of an incident laser.
Although crude, this model allows us to derive the basic
optical properties of a gas of atoms near an atomic reso-
nance. In this picture, the equation of motion for the electron
around the atom is

m[xX + yx + w%x]:—eE(x,t), (1)

where x is the position of the electron along the electric field
direction, m is the electron mass (we assume the nucleus has
effectively infinite mass compared to the electron), e is the
magnitude of the electron charge, y is a phenomenological
damping term, and wy is the usual resonant frequency of the
simple harmonic motion. If the electric field varies in time as
Ee™'® then the dipole moment contributed by a single atom
is

p=—ex= (ez/m)(wg— 0’ —iwy)'E=¢yx,E, (2)

where y, is the electric susceptibility. If there are N atoms
per unit volume, then the (complex) dielectric constant of the
gas is given by

4mNfe*Im

e(w)ey=1+4my, =1+ —t
(@e X (w%—wz—iwy)

3)

where f is the oscillator strength of the transition. The oscil-
lator strength is of order unity for strong transitions such as
the S— P rubidium lines, and is much smaller for forbidden
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Fig. 1. Plot of the absorption ny« and refractive index change ny—1 for a gas
near an atomic resonance (arbitrary units).

atomic transitions. Both the oscillator strength and the damp-
ing factor vy are difficult to calculate for multielectron atoms,
which requires a considerable amount of detailed atomic
physics.

Maxwell’s equations for a propagating electromagnetic
wave give

PE
V’E - MGW =0. 4)

We define an index of refraction n=c/v=\eu/ €y, where v
is the speed of wave propagation. If we assume u/puy=1
and Eq. (3) for the dielectric constant €/ €,, we find a com-
plex index of refraction that we write as

n= V’T%:no(l +ik), (5)

where n, and « are real (frequency-dependent) quantities.
Equation (5) in the limit of low atomic density gives

aNfe*Awlwgm — iTNfye*2wgm
n(w) =1- 2 2 (6)
Aw® + V4 Aw’ + V14
Hence,
mAwNfe*mo,
Re(n)=nyg=1- ALl (7)
aNT fe*lmeo,
Im(n) = ngk = TFZO (8)

where Aw=w-wy and I'=y/2. These functions are plotted
in Fig. 1. Note that far from resonance the index of refraction
increases with increasing frequency, which is called normal
dispersion. Near resonance the index decreases with w,
which is called anomalous dispersion. (It is helpful to point
out this behavior to students, as it helps them avoid sign
errors when doing the calculation.)

Note also that there exists a relation between the index of
refraction and the absorption of the gas

ny—1=-2Awnyxly= - Awnyx/T", 9)

which is independent of the vapor density and oscillator
strength of the atomic transition. This relation, showing that
no(v) and «(v) can be derived from one another, is an ex-
ample of the more general Kramers-Kronig relation. A full
quantum mechanical treatment also yields the same relation
for the absorption and refractive index of a gas near an
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Fig. 2. The basic experimental setup, consisting of a rubidium vapor cell in
one arm of a Mach-Zehnder interferometer. The dotted lines represent 50:50
beamsplitters. The input laser scans across a (Doppler broadened) rubidium
absorption line.

atomic resonance. Our goal here is not to explore the math-
ematical subtleties of the Kramers-Kronig relation, but rather
to describe a simple experiment that allows the student to
observe both the absorption and index of refraction varia-
tions of rubidium gas around the §— P resonance lines.

III. AN INTERFEROMETER EXPERIMENT

We use the experimental setup shown schematically in
Fig. 2, which consists of a rubidium vapor cell in one arm of
a Mach-Zehnder interferometer.® The input laser light is first
split by a beamsplitter (we will assume both beamsplitters in
the interferometer are lossless 50:50 beamsplitters), and the
two beams travel down different paths through the interfer-
ometer. They are recombined at the second beamsplitter, and
the light intensity in one direction is measured with a photo-
detector. The intensity seen at the photodiode is sensitive to
both the amplitudes and the relative phases of the two beams
as they interfere at the second beamsplitter. In our experi-
ment the photodiode output is recorded as the laser is
scanned across a rubidium absorption line.

For a linearly polarized electromagnetic wave propagating
through an atomic vapor (with the atoms at rest), we can
write the electric field as

E(Z, t) — Eoe—i(wt—nkz) — Eoe—knoxze—i[wt—knoz] , (10)

where k=w/c. In the absence of the rubidium cell it is
straightforward to show that the output power hitting the
photodiode is given by

I 1, . ‘
= Z|e”‘L1 + 22 =1 + cos(kAL) /2, (11)
0

where L; and L, are the lengths of the two separate paths
through the interferometer and AL=L,—L,. The argument of
the cosine can be written as kAL=(ko+Ak)AL, where kg
=wy/c and Ak=Aw/c is the change in k as the laser fre-
quency is scanned over the rubidium resonance. We can
make the simplifying approximation that kAL =kyAL as long
as AkAL< 1. In practice, we will scan the laser over the
Doppler-broadened rubidium absorption feature, so Ak
=< (2m/c) X (2 GHz). In this case the approximation holds as
long as AL< 1.5 cm, which is fairly easy to accomplish
when setting up the interferometer.
With this equal-path-length approximation we have
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Fig. 3. Photodiode output versus kAL, where k=w/c=2m/\ for a perfect
Mach-Zehnder interferometer with no rubidium cell at fixed laser frequency.

L =[1+ cos(koAL)]/2, (12)
Iy

which is plotted in Fig. 3. For future reference, we have
labeled points A through D in the phase of the interferometer
in Fig. 3.

Next consider the effect of the rubidium cell on the propa-
gation of a laser. From Eq. (10) the total phase shift and
absorption upon passing through the cell is

e—knOKAzeiknoAz — e—knokAzeikAzeik(nO— 1)Az — e—’reikAzei(?’ (13)

where Az is the length of the cell. The factor ¢*2¢ in this
expression is the free-space propagation factor. The ¢~ 7 fac-
tor comes from attenuation in the cell, with 7=knyxAz.

In the absence of Doppler broadening, Eq. (8) becomes

(14)

where 7, is the absorption at the line center. The e’ factor is
the additional phase shift from the refractive index of the
rubidium atoms, with

Tol'Aw

=k(ng- DAz =— —S——

(15)

Thus with the rubidium cell in the interferometer the photo-
diode output will be given by
I 1 . o
R _|etkL1 + e—TelkLzel5|2 (16&)
Iy

=[1+e7 27+ 2e "cos(koAL + 5)]/4, (16b)
where 7and & are given by Egs. (14) and (15) (in the absence
of Doppler broadening). Note that if the rubidium density is
zero, then 7=6=0. and we have the same result as before.

In our teaching lab, we stop the calculation here and have
the students plot 1/1,, which is equal to the photodiode signal
as a function of Aw as one scans over an atomic resonance,
where they use different values for the interferometer phase
koAL and different values for the absorption optical depth 7.
The resulting family of plots are in qualitative agreement
with experimental spectra if we assume a linewidth ' that
is roughly equal to the Doppler width of the atoms.
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IV. INCLUDING DOPPLER BROADENING

To obtain better agreement between experiment and theory
we must include the effects of Doppler broadening. We begin
by assuming a Gaussian distribution for the atomic velocities
along the z (laser beam) direction

e‘”zlvgdv, (17)

1
P(v)dv=—+=
\“"FTU()

where

[2kgT
Vo= ]/:: . (18)

It is useful to incorporate the Doppler shift immediately
and write the distribution function in terms of an angular
frequency shift

1
P(Q)dQ = ——e21%40), (19)
NE O
where
2 2kpT
Qp= =258 (20)
)\0 m

For the rubidium transition at 780 nm (ignoring the mass
difference between isotopes) Eq. (20) yields

T 172
Q2= 0.31(—) GHz. (21)
300 K

With this distribution function we can write the Doppler-
broadened absorption as

I OO
o(Aw) = Lﬁ PO o o (22)

The Lorentzian factor in the integrand is much more sharply

peaked than the Gaussian (I'<();), so we can write P({))
= P(-Aw)=P(Aw) and take it out of the integral, giving

o(Aw) = P(Aw) T

———d() 23
L (Aw+ Q) +T2 (232)

=P(Aw)mrl" = 7p0g(Aw/Q)y), (23b)
where TDOZTQV/'J_TI‘/ Qg and g(x) = e
For the & integral we have
* (Aw+ Q)7
Op(Aw) =— PQ)————————5dQ 24
p(Aw) f_m ( )(Aw+Q)2+F2 (24a)
ETOJOC —(y - Ao/ Y
=— 22| - Awy d (24b)
Vi) v+
ZTDafg(Aa)/Qo) N (24C)
where £=TI"/(),, and
1~ o2 Y
fg(x):—;f_xe o >y2+§2dy. (25)

Although f(x) is well-behaved for small &, we have not been
able to find an analytical expression for this function in the
limit £— 0, so we evaluated the function numerically.
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Fig. 4. Optical layout for the experiment. The ND 2 filter has =1% trans-
mission and is in place to keep the atomic transition from saturating. The
negative lens broadens the beam, making the interference fringes more
visible.

We substitute the results for 7,(Aw) and Sp(Aw), Egs.
(23b) and (24c), respectively, into Eq. (16b) to obtain an
expression for the measured interferometer signal //1,, where
I, is the off-resonance intensity at maximum brightness
[when cos(kyAL)=1]. The calculated signals are discussed in
the following along with the experimental results.

V. THE EXPERIMENT

The optical setup for this experiment is shown in Fig. 4.
The laser was a commercial s.ys.tem5 that consists of a
temperature-controlled,  grating-stabilized, = wavelength-
tunable diode laser with a linewidth of less than 1 MHz.
Such a narrow linewidth is not necessary for this experiment
because the narrowest spectral features we see are about
50 MHz. The rubidium cell, which is part of the commercial
system, was 2.5 cm long and was temperature regulated with
a range of 25—100 °C. Precise temperature regulation is not
needed for the experiment, but the results are more visually
appealing if there is a substantial optical density in the cell.
Frequency scans of the laser were typically done at about
10 Hz.

The optics were first set up with the laser far off resonance
to obtain high-contrast interferometer fringes while the laser
was not being scanned. The negative lens in front of the
photodiode increased the size of the beam to make the
fringes more visible and ensured that the photodiode does
not average over more than a small fraction of a fringe. The
fringes were viewed using a video camera while aligning the
interferometer. We found it very useful to frequently block
and unblock one arm of the interferometer to gauge the over-
lap of the beams. Once aligned, we tested the quality of the
interferometer by gently wiggling one of the folding mirrors
with a finger while viewing the photodiode output on an
oscilloscope, which yielded traces similar to that shown in
Fig. 5. When properly aligned, the fringe contrast defect
Iin/ Inax 18 close to zero. We have not fully explored the
effect of an intensity imbalance between the two interferom-
eter paths, but we have found it easy to produce satisfactory
fringes even with the imbalance caused by the additional
reflections from the cell windows. We also took some care to
make the two path lengths of the interferometer nearly iden-
tical, given the criterion AL< 1.5 cm described previously.
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Fig. 5. A single-sweep oscilloscope trace showing the interferometer output
as a function of time as a folding mirror was being gently wiggled back and
forth. Traces like the one shown here were used to check the alignment of
the interferometer and to make sure the fringe contrast defect /,;,/1,,, Was
small.

Again we found that path length differences as high as a
centimeter or two do not qualitatively alter the interferometer
signal.

Blocking one arm of the interferometer while scanning the
laser yielded an overall rubidium absorption spectrum simi-
lar to that shown in Fig. 6, which shows the transmission
through the cell along with a frequency calibration trace as
the laser was scanned. Note the absorption filter in Fig. 4,
which is needed to prevent the laser from saturating the tran-
sition.

The calibration signal in Fig. 6 shows the light transmitted
through a confocal Fabry-Pérot cavity with an effective free-
spectral range (=c/4€, where € is the mirror spacing) of
378 MHz. We see from this trace that there is a slightly
nonlinear relation between the laser scan (the voltage to a
piezoelectric stack driving the external feedback grating in
the laser head) and the frequency of the output light. For the
remainder of the experiment we focused on a 2.5 GHz scan
around the third absorption feature seen in Fig. 6. We used
the data in this plot to convert the laser scan to frequency

6} AVEE

I

0 C. 1 1 1 3
200 400 600 800 1000
Laser Scan (arbitrary units)

Intensity

Fig. 6. Top trace: Absorption of a laser beam passing through a rubidium
vapor cell, as the laser scans across the rubidium absorption lines near
780 nm. The first and last absorption dips are from 8Rb and the middle two
are from **Rb. Bottom trace: Light intensity transmitted through a confocal
Fabry-Perot cavity with an effective free-spectral range of 378 MHz.
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Fig. 7. Interferometer output I/, as a function of laser frequency and inter-
ferometer phase with a rubidium cell temperature of 90 °C. The scan was
centered on the third absorption feature seen in Fig. 6. The theory plots were
generated using a single value of 7,,,=27, which was adjusted to match the
experimental curves. The absorption plot at the top left was taken with one
arm of the interferometer blocked. Curves A-D refer to the phase points
labeled in Fig. 3. We obtained overall good qualitative agreement between
experiment and theory, especially near the line center. At the edges of the
scans the data are corrupted by contamination from nearby absorption fea-
tures (which were not included in the theoretical curves). Note that /1, goes
to 0.25 at the line center, because the beam incident on the rubidium cell is
almost completely blocked by absorption.

units, ignoring the slight nonlinearity of the scan. We could
also simply use the spacing between the absorption features,
which gives sufficient accuracy for comparing with calcula-
tions.

We recorded several spectra using the following proce-
dure: (1) Set the rubidium cell temperature and let it stabi-
lize. (2) Block one arm of the interferometer and record a
plain rubidium absorption spectrum. (3) Unblock both inter-
ferometer arms and record spectra at the four interferometer
positions A—D shown in Fig. 3. The phase of the interferom-
eter, koAL, was adjusted by applying a small force to the
surface of the optical table, thus bending it slightly and
changing AL. Theoretical curves were generated by choosing
a single value of 7 to give the best qualitative fit to the data
for each temperature. Figures 7-9 show comparisons of ex-
perimental and theoretical scans at three rubidium cell tem-
peratures.

As can be seen in Figs. 7-9, this demonstration gives good
qualitative agreement between theory and experiment. In
these plots the measured intensity was normalized to fit the
theoretical curves. The absorption and full interferometer
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Fig. 8. Same as Fig. 7, but with a rubidium cell temperature of 70 °C and
Tpo=4.5.

curves were normalized independently, although the same
normalization factor was used for curves A-D at each of the
three temperatures.

To understand the physics in these plots, consider the case
where the rubidium density is high (see Fig. 7). The absorp-
tion profile (top panel, where one arm of the intereferometer
was blocked) shows that essentially no laser light passes
through the cell near resonance, thus yielding a flat-bottomed
absorption curve. At higher cell temperatures, the absorption
profile broadens further. The experimental plot shows a
neighboring absorption feature not seen in the theory plot,
which comes from the other rubidium isotope (see Fig. 6),
which was not included in the calculation.

When both arms of the interferometer are unblocked (re-
maining plots in Fig. 7), the relative intensity /I, goes to
0.25 on resonance when the rubidium density is high, regard-
less of the phase koAL of the interferometer. This reduction
occurs because there is almost total absorption in the cell on
resonance, which has the same effect as blocking that arm of
the interferometer. With the cell arm effectively blocked on
resonance, the light level is reduced 50% by the first beam-
splitter and another 50% by the second beamsplitter, yielding
a total transmission of 0.25.

Away from resonance the signal is determined by a com-
plex interplay of absorption and phase shift in the interfer-
ometer, which was derived previously and is calculated in
detail from Eq. (16a). Note, from comparing Eqgs. (14) and
(15), that Hw)~1/Aw® and &w)~1/Aw far from reso-
nance. This dependence means that the phase shift contribu-
tion to the interferometer becomes more important than the
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Fig. 9. Same as Fig. 7, but with a rubidium cell temperature of 45 °C and
Tpo=0.35.

absorption as one looks further from resonance. The phase
shift term yields the distinct oscillatory behavior seen in Fig.
7 on either side of the atomic resonance.

The agreement between theory and experiment begins to
break down at the edges of our scans, mainly because of
contamination from neighboring rubidium resonances. This
contamination is most prevalent in the phase & at high ru-
bidium densities. Using isotopically pure rubidium would
greatly reduce this contamination, but this use would make
the experiment more expensive.

Finally, we found that the ratios of the three values of 75,
extracted from the data plots were not in good quantitative
agreement with what would be expected from the cell tem-
peratures. This discrepancy was because the temperature
regulation of our rubidium cell was fairly crude. The tem-
perature was not uniform across the cell, and the measured
temperature was not equal to the coldest point on the cell.
These limitations could be reduced by better cell design with
a more uniform cell temperature.
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VI. CONCLUSIONS

We have been using this experiment in our Advanced
Physics Laboratory (for senior physics majors) for several
years with good effect. It is straightforward to set up, can be
done in an afternoon, and it nearly always works well.
Watching the oscilloscope trace while pushing on the table
(to change AL in real time) is especially enlightening for
students. Qualitatively, the signal is insensitive to misalign-
ment of the interferometer, imbalance in the beams, and
other experimental limitations. The Mach-Zehnder interfer-
ometer does not reflect light back into the diode (in contrast
to a Michelson interferometer), and therefore does not pro-
duce unwanted optical feedback effects that can destabilize
the laser frequency. The calculation is challenging, but do-
able, and it teaches many important concepts in optical and
atomic physics.

The fact that the student can calculate the interferometer
output in some detail before going into the lab is one of the
experiment’s strong points. It is not necessary to include
Doppler broadening to achieve satisfactory qualitative agree-
ment between theory and experiment, and omitting this step
simplifies the calculations considerably. The experiment is a
good complement to saturated-absorption spectroscopy for
teaching interesting physics using tunable diode lasers, and
the two experiments can be done using mostly the same
equipment.
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