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I. VISUALIZING SIMULATED DYNAMICS (FIG. 3B, VIDEO)

FIG. S1. Snapshot of the simulated dynamics from Fig. 3b of the main text. For the animation,

see the included video 1.

II. LIGHT-INDUCED FORCE AND TORQUE ON A STRUCTURE WITH A

UNIT CELL

We consider an electromagnetic wave impinging on a structure with a unit cell in the x-y
plane, as shown in Fig. S2. The contribution to the total force and torque from the elements
enclosed by the highlighted surface S can be expressed as [1]

F =

∫
∂S

(T · n̂)dA, Q =

∫
∂S

r × (T · n̂) dA

where the stress tensor is defined as Tij = ϵ0
(
EiEj − 1

2
|E|2 δij

)
+ 1

µ0

(
BiBj − 1

2
|B|2 δij

)
, and

n̂ is the unit vector normal to the surface. We assume that the lateral (x-y) extent of the
structure is much greater than its transverse (z) extent, such that the dominant contribution
to the stress tensor comes from the two faces of the integrating box parallel to the x-y plane.
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FIG. S2. Schematic of a portion of a large (e.g. macroscopic) structure that has a locally repeating

unit cell.

For the force, we proceed to write

F =

∫
∂S

dxdyT(x, y) · n̂

=
∑
i,j

∫ i∆x

(i−1)∆x

dx

∫ j∆y

(j−1)∆y

dyT(x, y) · n̂

where we decompose the surface integral over the sum of the unit cell integrals (as depicted
in Fig. S2). We assume the beam width is much larger than the unit cell (of size ∆x×∆y, at
position i, j). Expressing x ≡ (i− 1)∆x+xϵ, and y ≡ (j− 1)∆y+ yϵ, such that xϵ ∈ [0,∆x]

(and similarly yϵ), we see that periodicity implies that T(x, y) is equal to T(xϵ, yϵ). Hence

F =
∑
i,j

∫ i∆x

(i−1)∆x

dxϵ

∫ j∆y

(j−1)∆y

dyϵT(xϵ, yϵ) · n̂

We observe that the second part in equation above is just the force on the unit cell of the
structure (F u.c.), specifically

F =
∑
i,j

F u.c =

∫
dxdy P u.c

with P u.c. = F u.c./(∆x∆y) being the pressure on the unit cell. In this analysis, we assumed
periodic boundary conditions for the electromagnetic field at the unit cell boundaries. We
apply the same approach for torque evaluation. For example,

Qz =

∫
∂S

(xTy − yTx) dxdy
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such that

Qz =
∑
i,j

∫
u.c.

[((i− 1)∆x+ xϵ)Ty − ((j − 1)∆y + yϵ)Tx]

=
∑
i,j

[
(i− 1)∆x

∫
u.c.

Ty − (j − 1)∆y

∫
u.c.

Tx +

∫
u.c.

(xϵTy − yϵTx)

]
where

∫
u.c.

denotes the integral over the unit cell. The expression above then becomes

Qz =
∑
i,j

[
(i− 1)∆xF u.c.

y − (j − 1)∆yF u.c.
x

]
+
∑
i,j

Qu.c.
z

where F u.c., Qu.c. denote the force/torque on the unit cell. In this expression, we note a
contribution to the torque generated by the radiation pressure force (and its corresponding
arm), as well as the sum of the unit-cell torques. To get the relevant scaling, we assume the
macroscopic structure boundaries along x, y extend from [−D/2, D/2]. Converting the sum
into an integral, we recover

Qz ∼
∫∫ D/2

−D/2
dxdy [xPy − yPx] +

∫∫ D/2

−D/2
dxdyqu.c.z

where qu.c.z ≡ Qu.c.
z /(∆x∆y). With a change of variables x′ = x/D (and similarly for y′), it

follows
Qz ∼ D3

∫∫ 1/2

−1/2

dx′dy′ [x′Py − y′Px] +D2

∫∫ 1/2

−1/2

dx′dy′qu.c.z

From here, we observe that the radiation pressure force contribution to the torque dominates
at macroscopic structure sizes (D ≫ ∆x,∆y). We derive similar expressions for the x, y
contributions to the torque, to obtain:

Qx ∼ D3

∫∫ 1/2

−1/2

dx′dy′[y′Pz − z′Py] +D2

∫∫ 1/2

−1/2

dx′dy′qu.c.x

Qy ∼ D3

∫∫ 1/2

−1/2

dx′dy′[−x′Pz + z′Px] +D2

∫∫ 1/2

−1/2

dx′dy′qu.c.y

In our subsequent analysis, we assume the first (∝ D3) terms in the torque expressions are
the dominant ones.

III. METASURFACE ELEMENT FOR PASSIVE STABILIZATION (MEPS)

The change of momentum ∆p⃗ of incident light can be expressed as:

∆p⃗ = p⃗R + p⃗T − p⃗0
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FIG. S3. (a) A diffracting metasurface can generally refract incident light in multiple directions.

By collecting the relevant diffracting orders, the total light-induced pressure can be determined.

(b) A metasurface element for passive stabilization (MEPS) that comprises two such diffracting

metasurfaces placed side-by-side, where one is flipped to achieve mirror symmetry with respect to

the center of mass (CM). Here, the two parts are “L” (blue) and “R” (red).

where subscripts R, T , and 0 corresponds to reflected, transmitted, and incident light,
respectively. For the choice of materials and the operating wavelength regime analyzed
in this work, the absorption in the structure will be negligible. Since the exerted force
is proportional to the change of momentum F = −∆p⃗

∆t
, and ∆p = I

c
∆t (where I is the

intensity) we can express the total pressure (p) that light exerts on the structure. The
pressure depends on the tilt angle (θ) and can be decomposed into its x- and z- components,
as

px(θ) = −I0
c

[∑
m ̸=0

tm sin(βm − θ) +

(
r0 sin(2θ) +

∑
m ̸=0

rm sin(βm + θ)

)]
(S1)

pz(θ) = −I0
c

[
−t0 +

∑
m ̸=0

−tm cos(βm − θ) +

(
r0 cos(2θ) +

∑
m ̸=0

rm cos(βm + θ)

)
+ 1

]
where r and t correspond to the reflection and transmission coefficients of the relevant orders
(and depend on the tilt angle θ). Given the pressure on the unit cell of a uniform structure
(Fig. S3a), we can calculate the total force and torque on a MEPS that comprises two such
components placed side-by-side, with mirror symmetry with respect to the center of mass
(Fig. S3b). When the center of mass is displaced by x from the beam axis and the structure
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tilted by angle θ, we write the total force on the MEPS as

Fx,z(x, θ) = FL
x,z(x, θ) + FR

x,z(x, θ) (S2)

where the superscripts L and R correspond to the respective halves of the MEPS (shown
colored in blue and red in Fig. S3b). Because the two halves consist of mirror-image unit
cells, the following relations apply:

FL
z (±θ) = FR

z (∓θ) (S3)

FL
x (±θ) = −FR

x (∓θ)

Assuming a Gaussian incident beam with intensity I(x) = I0e
−2x2/w2 (where w is the

beam waist), we can express the forces (per unit depth in the y-direction) as

FL
x,z(x, θ) =

∫ D/2

0

ds cos(θ)pLx,z(θ)e
−2(x+s cos(θ))2/w2 (S4)

FR
x,z(x, θ) =

∫ D/2

0

ds cos(θ)pRx,z(θ)e
−2(x−s cos(θ))2/w2

where D is the diameter, and the expressions for pL,Rx,z (θ) are determined from Eqs. (S1).
Similarly, we can express the torque on the MEPS (per unit depth in the y-direction) as

τy(x, θ) =

∫ D/2

0

ds cos(θ)s
[
− sin(θ)pLx (θ)− cos(θ)pLz (θ)

]
e−2(x+s cos(θ))2/w2

+

+ ds cos(θ)s
[
+sin(θ)pRx (θ) + cos(θ)pRz (θ)

]
e−2(x−s cos(θ))2/w2 (S5)

In this analysis we assume w ≫ ds, such that the beam intensity is approximately constant
across the ds element; furthermore, we assume ds ≫ d (where d is the period), such that
the element ds contains a large number of unit cells to be considered as a periodic array
itself.

In Fig. (S4), we compare the numerical values for the normalized force/torque from Fig. 2
of the main text obtained with two distinct approaches. Solid lines show the values calculated
using the photon momentum balance approach from Eqs. (S2-S5). On the other hand,
crosses show the same values calculated via the Maxwell stress tensor along the bounding box
that encloses the unit cell. Both sets of calculations are performed using the finite-element-
method solver COMSOL Multiphysics. We observe excellent correspondence between the
two approaches.
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FIG. S4. Comparing the force/torque obtained by photon momentum balance (PMB) from Eqs.

(S2-S5), and the Maxwell stress tensor (MST). For the latter case, the stress tensor is integrated

around a bounding box that encloses the unit cell (shown on the right). The two methods show

excellent agreement.

To highlight the most important aspects of the dynamics, we now restrict our analysis to
the x-z plane (where the only rotation considered is the one about the y-axis), and assume
no z-dependence of the light intensity along the structure. From the expressions for the net
force and torque, we can write the coupled equations of motion

m
d2z

dt2
= Fz(x, θ)−mg

m
d2x

dt2
= Fx(x, θ) (S6)

I
d2θ

dt2
= τy(x, θ)

where m is the total mass, and I = γmD2 is the moment of inertia with respect to the center
of mass. In general, γ is a scalar that depends on the macroscopic shape of the MEPS.
Because our analysis focuses on the dynamics in the x-z plane, we assume uniformity in
the y-direction, as well as uniform mass distribution along the structure: hence, γ = 1/12

(for rotation around the y-axis), and m is the mass of the MEPS per unit depth in the
y-direction.

It is convenient to express all lengths in this problem in the units of the MEPS diameter
D. To that effect, we adopt the convention of primed variables, where l′ ≡ l/D for any
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length variable l. With this in mind, the expressions for the force and the torque (S6)
become

Fz(x, θ) =
I0D

c

∫ 1/2

0

ds′ cos(θ)
[
p′Lz (θ)e

−2(x′+s′ cos(θ))2/w′2
+ p′Rz (θ)e−2(x′−s′ cos(θ))2/w′2

]
Fx(x, θ) =

I0D

c

∫ 1/2

0

ds′ cos(θ)
[
p′Lx (θ)e

−2(x′+s′ cos(θ))2/w′2
+ p′Rx (θ)e−2(x′−s′ cos(θ))2/w′2

]
τy(x, θ) =

I0D
2

c

∫ 1/2

0

ds′ cos(θ)s′
[
− sin(θ)p′Lx (θ)− cos(θ)p′Lz (θ)

]
e−2(x′+s′ cos(θ))2/w′2

+

+ ds′ cos(θ)s′
[
sin(θ)p′Rx (θ) + cos(θ)p′Rz (θ)

]
e−2(x′−s′ cos(θ))2/w′2

where we define the normalized (unitless) pressure p′x,z ≡ (c/I0)px,z (S1), and assume the
radiation pressure dominates over the weight. Similarly, the equations of motion (S6) trans-
form to

d2z′

dt′2
=

∫ 1/2

0

ds′ cos(θ)
[
p′Lz (θ)e

−2(x′+s′ cos(θ))2/w′2
+ p′Rz (θ)e−2(x′−s′ cos(θ))2/w′2

]
= fz′(x

′, θ)

d2x′

dt′2
=

∫ 1/2

0

ds′ cos(θ)
[
p′Lx (θ)e

−2(x′+s′ cos(θ))2/w′2
+ p′Rx (θ)e−2(x′−s′ cos(θ))2/w′2

]
= fx′(x

′, θ)

d2θ

dt′2
=

1

γ

∫ 1/2

0

ds′ cos(θ)s′
[
− sin(θ)p′Lx (θ)− cos(θ)p′Lz (θ)

]
e−2(x′+s′ cos(θ))2/w′2

+

+ ds′ cos(θ)s′
[
sin(θ)p′Rx (θ) + cos(θ)p′Rz (θ)

]
e−2(x′−s′ cos(θ))2/w′2

= fθ(x
′, θ)

where we introduce the normalized time t′ ≡ t/
√
mc/I0 and define the expressions on the

right hand side to be fz′ , fx′ , fθ, respectively. Note that the quantity mc/I0 has units of
[s2], since we assume m is the mass per unit depth in the y-direction. Consequently the
scaled equations of motion are dimensionless. For the remainder of this section, we drop the
primed notation for dimensionless variables.

In the equations of motion, we observe that rotation and translation are coupled. For
this transverse motion, we write the equations of the system in vector form du/dt = f(u)
where u = (x, θ, v, ω)T and f = (v, ω, fx, fθ)

T . From the expressions for fx,z, we observe that
the origin u0 = 0, is an equilibrium point of the system, since f(u0) = 0. We calculate the
Jacobian matrix f′(u0) as

f′(u0) =


0 0 1 0

0 0 0 1

∂fx/∂x ∂fx/∂θ 0 0

∂fθ/∂x ∂fθ/∂θ 0 0



∣∣∣∣∣∣∣∣∣∣∣
u0

≡


0 0 1 0

0 0 0 1

fxx fxθ 0 0

fθx fθθ 0 0



∣∣∣∣∣∣∣∣∣∣∣
u0

(S7)
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where we use the shorthand fij ≡ ∂fi/∂j, for convenience. The four eigenvalues Λ1−4 of the
Jacobian are given by

Λ1−4 = ± 1√
2

√
fxx + fθθ ±

√
(fxx − fθθ)2 + 4fθxfxθ

We seek the condition where no eigenvalue has a positive real part. Due to the symmetry
of the expression above (and the lack of any damping terms in this particular treatment),
this is equivalent to requiring eigenvalues be purely imaginary (marginally stable). For this
to be true, the following three conditions c1,2,3 need to be satisfied:

c1 ≡ (fxx − fθθ)
2 + 4fθxfxθ > 0

c2 ≡ − (fxx + fθθ) > 0 (S8)

c3 ≡ fxxfθθ − fθxfxθ > 0

For the structure shown in Fig. 2 of the main text, we numerically evaluate the gradients
to obtain: ∂fx/∂x = −0.0853, ∂fx/∂θ = 2.05, ∂fθ/∂x = −0.638, ∂fθ/∂θ = −4.54, all
evaluated at the origin u0. By inspection, we deduce the eigenvalues of the Jacobian matrix
f′(u0) to be Λ1,3 ≈ ±2.05i, and Λ2,4 ≈ ±0.63i. The imaginary nature of the eigenvalues also
points to oscillations in the system with relevant frequencies Ωi = Im(Λi). Physically, this
corresponds to first order to a structure oscillating around the center axis of the beam, while
accelerating in the z-direction. Fig. S5 compares the actual and the fitted values of fx,θ.

FIG. S5. Comparison between the actual and the fitted values of fx,θ.
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Accurately identifying the boundaries of the basin of attraction for this 4-parameter,
coupled, non-linear problem is non-trivial. To get some sense of the subset of allowable
parameters that give rise to bounded dynamics over analyzed timescales, here we perform a
sweep over a range of both initial displacements and tilts. As one example, we set the initial
displacement to be ∈ [−0.5D, 0.5D] and tilt ∈ [−10%, 10%], with respective steps of 0.1D
and 2%, for a total of 121 dynamical simulations. Each dynamical simulation is evolved up
to time t = 103t0 (where the normalized time step is t0 =

√
mlc/I0), and we observe stable

dynamics with bounded amplitudes of motion.
We repeat this sweep while adding a small amount of white noise (1% deviation) to the

light intensity as a potential variation in the laser power. Over the analyzed time-scales
(∼103t0), we observe similar bounded dynamics. We remark that the impact of such noise
on self-stabilizing properties of nanophotonic structures is generally complex. It depends on
many factors, including the intensity and spectral profile of the noise as well as the shape
and power of the incident light beam, and affects the spatial and temporal scales for bounded
dynamics [37].

FIG. S6. Numerically evolving dynamical equations of motion for different values of the beam

widght (w) and the initial transverse displacement of the structure (x0). Here, D is the diameter

of the structure. We assume the structure is not tilted initially. Area in green correspons to tilt

not exceeding 20%.

As discussed in the main text, self-restoring behavior of the structure is influenced by its
size relative to the width of the illuminating beam. In Fig. S6, we show the map of the
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beam width (w) and the initial displacement (x0) needed to ensure the structure will not
exceed a set tilt tan θS. Here, we choose set tilt of ∼20% to be approximately consistent
with the domain of linear behavior for the force and the torque (Fig. 2c).

We discuss how the introduction of damping can assist with asymptotic stability of motion
around the beam axis. Without specifying a particular physical damping mechanism, we
assume a linear dependence of damping force on velocity gx = µtvx, and the damping torque
on angular velocity gθ = µrω (similar to e.g. Stokes drag). Here, coefficients µt, µr (for
translational and rotational motion, respectively) are assumed to be appropriately scaled to
make gx,θ consistent with the normalized forces and torques in (S7).

Adding these damping terms to the previously evaluated Jacobian elements for our struc-
ture, we sweep the values of µt,r, to find the paramter space where the dynamics is asymptot-
ically stable (i.e. every eigenvalue has strictly negative real part). This is shown in Fig. S7.
In addition to the expected condition µt,r < 0, we also find that the domain for asymptotic
stability appears to be bounded on the top, and to the right. The bounding relationships
can be numerically approximated as µt < 0.07µr (top) and µt > 9.5µr − 141µ2

r (right), and
point to considerations for incorporating damping into this system.

FIG. S7. Parameter space corresponding to asymptotic stability of the beam axis (green) for a

range of damping coefficients for translation (µt) and rotation (µr).
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IV. COMPOSITE STRUCTURE: EQUATIONS OF MOTION

We assume the position and the orientation of the composite, rigid-body structure is
described by its center of mass coordinates r = (x, y, z), and its orientation by the three
Euler angles α = (ψ, θ, ϕ). Here, we use the 1-2-3 (also known as x-y′-z′′) convention of
rotations in the following sequence: (1) rotation about the x-axis by angle ϕ; (2) rotation
about the new position of the y-axis by angle θ; (3) rotation about the new position of the
z-axis by angle ψ. For this set of transformations, the direction cosine matrix HB

I is [2]

HB
I (α) =


cosψ cos θ cosψ sin θ sinϕ+ sinψ cosϕ − cosψ sin θ cosϕ+ sinψ sinϕ

− sinψ cos θ − sinψ sin θ sinϕ+ cosψ cosϕ sinψ sin θ cosϕ+ cosψ sinϕ

sin θ − cos θ sinϕ cos θ cosϕ


We express the equations for kinematics and dynamics as [2]:

ṙ = v

α̇ = LI
Bω

v̇ =
1

m
F (r,α)− g

ω̇ = I−1 [−ω × Iω + τ (r,α)]

where the translational quantities (r,v,F ) are expressed in the light beam frame, and

α̇ =


ψ̇

θ̇

ϕ̇

 =


− cosψ tan θ sinψ tan θ 1

sinψ cosψ 0

cosψ sec θ − sinψ sec θ 0



ωx

ωy

ωz

 = LI
Bω

relates the time derivative of the Euler angles to the components of the angular velocity.
Assuming the moment of inertia tensor is diagonal, with Ix, Iy, Iz the principal moments of
inertia, we can simplify the Euler equation above to obtain:

Ixω̇x = τx − (Iz − Iy)ωyωz

Iyω̇y = τy − (Ix − Iz)ωxωz

Izω̇z = τz − (Iy − Ix)ωxωy

As before, we focus on self-restoring behavior transverse to the light beam. We assume
the beam depth of focus is large enough that the variation of the beam intensity along
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the z-axis is negligible, and ignore the gravitational term. With this in mind, the motion
along the z-axis is independent of the coupled translation (along x-y) and rotation (ψ, θ, ϕ),
and we write the ten-dimensional state vector as u = (r,α,v,ω), where r = (xc, yc), and
v = (vx, vy) are the position and the velocity of the center of mass. Near the origin u = 0,
we can linearize to obtain α̇ ≈ ω and ω̇ ≈ I−1τ .

The schematic of a proof-of-concept structure illustrated in Fig. 4 is shown in more
detail in Fig. S8. We assume two different building-block designs, “a” shown in blue and
“b” shown in orange, are used to define six separate regions of the structure (1-6 as shown in
Fig. S8). The proof-of-concept structure has an overall diameter of D along both the x and
the y axes, and the boundary between region “a” and region “b” is at position ±sxD, where
parameter sx ∈ [0, 1

2
]. Given the order of the Euler angle rotations, when the composite

FIG. S8. Top view of the composite structure from Fig. 4 of the main text that combines two

MEPS elements, one for region “a” and the other for region “b”. The structure has an overall

diameter D along both the x and the y axis. The elements in structure “b” are rotated by angle δ

to provide yaw (ψ) torque. Parameters of the structure are given in Methods.

structure is oriented at an angle α = (ψ, θ, ϕ), we can transform the polarization vector into
each of the j = 1, 2, . . . 6 regions as:

Ej = HB
I (ψ + βj, θ, ϕ)EI

13



where β1,2,...6 = 0, π, π
2
+ δ, π

2
− δ, 3π

2
− δ, 3π

2
+ δ. Similar relationship applies to transforming

the k vector. In the reference frame of the laser, we assume the incident beam of light
is polarized along the y-axis, EI = E0(0, 1, 0), and propagates along the negative z-axis,
kI = k0(0, 0,−1).

The beam of light induces pressure on region j, which we denote as p′
j in its own frame.

Relative to body coordinates (xb, yb), this pressure can be expressed as pj = C(βj)p
′
j, where

C(βj) =


cos βj − sin βj 0

sin βj cos βj 0

0 0 1


Given these, we can, per our earlier derivation, calculate the optically induced force and
torque on each region as a function of the orientation (α) and the lateral position of the
center of mass (xc, yc) as:

Fj(xc, yc,α) = η

∫∫
dxbdyb pj(α) I(r(xc, yc, xb, yb))

and
τj(xc, yc,α) = η

∫∫
dxbdyb (xb, yb, 0)

T × pj(α) I(r(xc, yc, xb, yb))

where η = cos(θ) cos(ϕ) accounts for the projected area, and I(r) = (I0/c)exp(−2 |r|2 /w2)

is the spatial variation of the beam intensity. Note that pj(α) are different for different j,
so multiple EM simulations are needed for a single orientation α. An element at position
xb, yb (in the body frame) has beam frame transverse coordinates given by:

r(xc, yc, xb, yb) =


xc

yc

0

+ HI
B(α)


xb

yb

0


Finally, in the equation above, the limits of the double integral correspond to the region
boundaries. For example, region 1 spans [sx,

1
2
]D and [−1

2
, 1
2
]D along the x and the y axis,

respectively. Summing the contributions from each region of the structure and converting
to the beam frame, we obtain the total force F =

∑
j Fj and torque τ =

∑
j τj, which are

the inputs used in equations for the kinematics and dynamics.
For the structure shown in Fig. (S8), we assume the mass per unit area of regions (a)

and (b) is denoted by χa and χb, respectively. From this, we can express the total mass of
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the structure as
m = 2 [χa(1/2− sx) + χbsx]D

2

where sx denotes the position of the boundary that separates regions (a) and (b). Similarly,
the moments of inertia with respect to the three (body) axes can be calculated

Ix = [χa(1/2− sx) + χbsx]
D4

6

Iy =

[
χa
12

+ 2(χb − χa)
s3x
3

]
D4

Iz = Ix + Iy

For the case of sx = 1/4 (regions a and b have the same area), expressions above simplify:

m = (χa + χb)
D2

2

Ix = (χa + χb)
D4

24

Iy = (7χa + χb)
D4

96

We now derive the expressions for mass-per-unit-area quantities χa/b. The mass of a unit
cell depicted in Fig. 2 can be expressed as

mu.c. = d2 [tρs + (w1 + w2)hρe]

where d is the period, ρs is the mass density of the substrate layer (silica), and ρe the density
of the resonating elements (silicon). From here it follows that the mass per unit area χ of
such a structure is simply

χ = tρs + (w1 + w2)hρe

Using the values of ρs ≈ 2.2g/cm3 (silica), and ρe ≈ 2.3g/cm3 (silicon), as well as the design
parameters (t, h, w1,2), we get the ratio of the area densities, namely

χa
χb

≈ 1.12

Substituting these above, we get the moments of inertia about the principal axes to be
Ix =

1
12
mD2, Iy ≈ 1.04

12
mD2, and Iz = Ix + Iy ≈ 2.04

12
mD2.

Once we know the total force and torque we can, as before, make the equations of motion
dimensionless. We introduce the dimensionless quantities for the position coordinate x′ ≡
x/D (similar for y′, z′) to introduce normalized force (fx,y,z) and torque (fϕ,θ,ψ) as

Fx,y,z =
I0D

2

c
fx,y,z and τx,y,z =

I0D
3

c
fϕ,θ,ψ

15



as well as normalized time t′ ≡ t/
√
mc/I0D. As before, we can express the time-evolution

of the system as du/dt = f(u), where u = (r,α,v,ω) is the state vector. This set of
differential equations is numerically evolved in time to compute the dynamics of the system
(in the propulsion regime, where the radiation pressure force dominates over the weight).
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