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Significance Statement 

Determining the contribution of the recently discovered completely nitrifying (comammox) 

Nitrospira to global nitrogen cycling necessitates tools for their detection and quantification 

in diverse environments. Herein, we present an assay which enables the simultaneous 20 

detection and quantification of a broad range of clades A and B comammox Nitrospira, a key 

step in understanding their abundance, diversity and distribution in natural and engineered 

environments. We apply this method to groundwater-fed rapid sand filters at 12 drinking 

water treatment plants, and examine the nitrifying communities in these biological filters. 

Our results demonstrate that comammox Nitrospira are dominant nitrifiers in groundwater-25 

fed biofilters.  

 

Summary 

The recent discovery of completely nitrifying Nitrospira demands a re-examination of 

nitrifying environments to evaluate their contribution to nitrogen cycling. To approach this 30 

challenge, tools are needed to detect and quantify comammox Nitrospira. We present 

primers for the simultaneous quantification and diversity assessement of both comammox 

Nitrospira clades. The primers cover a wide range of comammox diversity, spanning all 

available high quality sequences. We applied these primers to 12 groundwater-fed rapid 

sand filters, and found comammox Nitrospira to be abundant in all filters. Clade B 35 

comammox comprise the majority (~75%) of comammox abundance in all filters. 

Nitrosomonadaceae were present in all filters, though at low abundance (mean=1.8%). 

Ordination suggests that temperature impacts the structure of nitrifying communities, and in 



particular that increasing temperature favours Nitrospira. The nitrogen content of the filter 

material, sulfate concentration, and surface ammonium loading rates shape the structure of 40 

the comammox guild in the filters. This work provides an assay for simultaneous detection 

and diversity assessment of clade A and B comammox Nitrospira, expands our current 

knowledge of comammox Nitrospira diversity, and demonstrates a key role for comammox 

Nitrospira in nitrification in groundwater-fed biofilters. 

 45 

Introduction 

The conventional understanding of nitrification since its discovery in the 1890s is that 

it is a two-step process carried out by distinct groups of chemolithoautotrophic nitrifiers: 

Ammonia oxidizers and nitrite oxidizers. The repertoire of nitrifiers was expanded in 2005 

with the discovery of ammonia oxidizing archaea (AOA)(Könneke et al., 2005), but this still 50 

did not challenge the prevailing perception that labour was divided in nitrification. Though 

the reasons for this observed division of labour were unclear, it was predicted that a 

complete nitrifier could theoretically exist, and would thrive in surface attached 

environments with low ammonium loading (Costa et al., 2006).  The simultaneous discovery 

of comammox Nitrospira by a number of groups (Daims et al., 2015; Pinto et al., 2015; van 55 

Kessel et al., 2015; Palomo et al., 2016) disrupts our long-held understanding of nitrification. 

The low prevalence of comammox Nitrospira in most environments examined to date 

(Pjevac et al., 2017), combined with their resistance to cultivation, explains how these 

organisms were overlooked for so long. The sole enrichments of comammox bacteria come 

from environments where they made up relatively small fractions of the original 60 

communities (Daims et al., 2015; van Kessel et al., 2015). This begs the question: Do 

comammox Nitrospira play a significant role in nitrogen cycling, or are they typically found 



only in low abundance in diverse environments? We know very little about the ecology of 

comammox bacteria and their global contribution to ammonia oxidation. To begin to 

investigate these questions, tools to detect and quantify comammox Nitrospira are required. 65 

Evidence from metagenomic sequencing suggests that comammox Nitrospira are one 

of the most dominant taxa at Islevbro waterworks in Zealand, Denmark (Palomo et al., 2016). 

Amplicon-based sequencing of the 16S rRNA gene in additional groundwater-fed rapid sand 

filters (RSF) reveal that Nitrospira spp. are abundant in many examined RSFs, though 

whether these include comammox is heretofore unknown (Albers et al., 2015; Gülay et al., 70 

2016). Interestingly, these filters represent exactly the type of environment which Costa et al. 

(2006) predicted comammox would thrive in, namely, surface attached communities 

exposed to low ammonium loading. In this work, we examined the microbial communities of 

a range of RSFs and report on the abundance, diversity and composition of nitrifiers, 

including comammox Nitrospira, using qPCR and amplicon sequencing. We present a new 75 

high coverage qPCR assay for the amoA gene of Nitrospira - the first to simultaneously target 

both comammox Nitrospira clades A and B as verified by clone library and amplicon 

sequencing. Lastly, to gain insight into the ecology of comammox Nitrospira, we assessed 

the contribution of physicochemical and operational parameters of the filters to the 

composition of the nitrifying communities and the comammox Nitrospira guild, and 80 

examined the ratios of nitrifying guilds to identify relationships between nitrifiers. As the 

filters and source aquifers share similar characteristics with previously examined filters, we 

hypothesized that total Nitrospira and comammox Nitrospira would be abundant in all filters, 

but that variations in influent loading characteristics and physicochemical features of the 

filter environment would play a role in shaping the Nitrospira diversity in individual filters. 85 

 



Results 

Amplification of comammox amoA  

Primers for the amplification and quantification of comammox amoA clades A and B 

were designed based on amoA genes from enriched or high quality metagenome-derived 90 

genomes of comammox organisms. Clone library sequencing resulted in the recovery of 19 

unique sequences (from 21 clones), corresponding to 14 clade A and 5 clade B comammox 

amoA sequences. Comammox amoA amplicons from 12 waterworks were then sequenced 

by Illumina MiSeq, resulting in 88 unique amoA gene fragments, 41 from clade A, and 47 

from clade B. When applying these primers to the quantification of Nitrospira amoA genes, 95 

the standard curve of the reaction was linear between 10- 109 copies/reaction, so as few as 

10 copies can theoretically be quantified (Figure S1). However, inspection of melt curves 

(Figure S2) showed that noise existed in samples with low copy numbers and that reliable 

quantification of between 100-1000 or more copies is possible in environmental samples. 

Although this points towards non-specific amplification, additional bands were never 100 

observed when amplicons were run on an agarose gel (Figure S3). Primer coverage was 

evaluated in silico using a database of 48 amoA Nitrospira sequences (not including clones 

from this study) of the correct gene region obtained from isolates or enriched strains, 

metagenome-derived genomes and metagenomes (Figure S4). When allowing for up to two 

mismatches, both primers covered all sequences. In the analysis of clone sequences only, all 105 

but one of the clone sequences were amplified when two mismatches were allowed, 

suggesting that coverage estimates from in silico analysis are conservative as in situ 

amplification can extend beyond two mismatches. 

 

Filter communities 110 



The nitrifying communities of 12 waterworks were characterized by sequencing of 

16S rRNA Bacteria, nxrB Nitrospira and amoA Nitrospira gene amplicons as well as by qPCR-

based quantification of 16S rRNA genes of Bacteria, AOB, and Nitrospira, nxrB of Nitrospira 

and Nitrobacter and amoA of Nitrospira and AOA (Table 1). Though variations were observed 

even between biological replicates of the same filter, as observed previously (Gülay et al., 115 

2016), the microbial communities of all filters shared similar compositions. Total cell 

numbers varied substantially between filters, from 4.5x107-1.2 x1010/g of filter material 

(median 2.6x109/g).  The after-filter at DWTP-7 contained unusually low cell numbers 

(4.5x107/g), which is likely because the majority of biological activity occurs in the long (2.3 

m) pre-filter at this waterworks. The remaining filters had much higher total cell numbers 120 

(Figure 1A). Nitrifiers made up between 24- 59% of the communities in all filters with the 

exception of DWTP-11 pre-filter (5.2%) (Figure 1B). Pre-filters are commonly believed to be 

mainly the site of abiotic iron oxidation and precipitation (Tatari et al., 2017), and this 

appears to be corroborated based on the relatively lower density of nitrifiers in DWTP-11. 

Nitrospira spp. represented the vast majority of nitrifying bacteria in the filter communities 125 

with 112 ASVs, and made up an average of 34% of filter communities. This high abundance is 

reflected in both qPCR and sequence data (Figure 1AB). In select filters, amplicon sequencing 

and qPCR indicated that Nitrospira spp. comprised a smaller proportion of the community 

(DWTP-9 (16.1%), and DWTP-11 pre-filter (4.8%)), but in the remaining filters, Nitrospira 

made up between 24.2% (DWTP-12) and 58.8% (DWTP-2) of the microbial communities. 130 

Quantification of Nitrospira spp. by qPCR of the 16S rRNA and nxrB genes generally resulted 

in similar estimates of Nitrospira abundance, although the ratios within samples varied 

somewhat, which may be due to variation in coverage of the primer sets and the copy 

number of nxrB in the Nitrospira present in different filters (Figure 1A). We assumed a 



genomic copy number of one nxrB per Nitrospira spp., as metagenomic analysis revealed 135 

that the dominant Nitrospira spp. at DWTP-8 each harboured a single nxrB gene (Palomo et 

al. 2017), however some Nitrospira spp. can harbour up to six copies of nxrB (Pester et al., 

2014). Relative to qPCR of nxrB and Nitrospira 16S rRNA, Illumina sequencing of universal 

Bacteria 16S rRNA gene amplicons tended to overestimate the abundance of Nitrospira 

(Figure 1C). AOB from the family Nitrosomonadaceae were present in all filters, though 140 

generally comprised less than 2.5% of the communities according to both qPCR and 

sequence data (Figure 1AD).  Of 60 ASVs, 33 were classified as Nitrosomonas or Nitrosospira 

spp. while the others were not classified below the family level. Nitrosomonadaceae 

abundance was particularly high in DWTP-9 (7.8%), and DWTP-10 (7.3%). Interestingly, 

DWTP-9 was a filter in which Nitrospira abundance was considerably lower relative to other 145 

filters, suggesting that AOB may play a larger role in ammonia oxidation in this filter. No 

sequences affiliated with Nitrosococcus were detected. Thaumarchaeota (AOA; 2 ASVs) were 

detected at very low levels in sequence data (0.09% of total reads), though one or more 

ASVs were present in half of the DWTPs. Similar relative abundance levels were detected by 

qPCR, with an average absolute cell number of 1.1x106/g of filter material (Figure 1D). With 150 

respect to other NOB, 6 ASVs affiliated with Nitrotoga spp. were observed in DWTP-2, 8, 9, 

and 12 at low abundance (<0.6%). No sequences were affiliated with Nitrobacter despite 

their detection by qPCR at around 1% of most communities (Figure 1D). Within the phylum 

Planctomycetes, several ASVs affiliated with anammox (order Ca. Brocadiales), but were 

detected at low levels (<0.06%) at only a few DWTPs (DWTP-8, 11, 12).  155 

 

Comammox Nitrospira are the dominant nitrifers 



Sequencing and taxonomic assignment of nxrB genes of Nitrospira spp. reveals that 

the filters are dominated by Lineage 2 Nitrospira (Figure 2A; 131 ASVs). Lineage 1 (8 ASVs) 

were present in DWTPs 2,5 and 8, while Lineage 4 (3 ASVs) was observed in DWTP-8 and 10. 160 

Eight unassigned ASVs were present at low abundance in DWTP-1 and 12. Though the high 

abundance of Nitrospira spp. in groundwater-fed RSFs was expected in accordance with 

previous work (Albers et al., 2015; Gülay et al., 2016), nothing is known about the diversity 

and abundance of comammox Nitrospira in the filters. To gain an idea of the relative 

proportion of comammox in the Nitrospira community, and to assess the accuracy of the 165 

newly designed amoA Nitrospira primers, we examined the taxonomic affiliation of 16S rRNA 

and nxrB amplicon sequences from the filters (Table S1 & S2). The classification of 

comammox based on 16S rRNA and nxrB is not robust due to high similarity of these genes 

in comammox and non-comammox Nitrospira, and has been applied here only as it was the 

sole means we could conceive of to evaluate amoA primer performance in real samples. 170 

Using strict similarity cutoffs with comammox reference sequences as criteria to consider 

our ASVs as comammox, (100% for 16S rRNA and 98% for nxrB), comammox comprise a 

minimum of 78% (16S rRNA) and 28% (nxrB) of the Nitrospira abundance in all filters (Table 

S1 & S2). The nxrB-based estimation is likely very conservative, as almost one third (40 of 

150 ASVs) of the nxrB amplicon sequences did not affiliate closely (<91% identity) to any 175 

reference sequences, and the number of reference nxrB sequences available for comammox 

is low. However 16S rRNA gene based estimates are in accordance with the qPCR data from 

the newly described Nitrospira amoA primers which, when normalized by total cell numbers 

of Nitrospira (from 16S rRNA and nxrB gene qPCR), indicate that comammox make up 

between 28-100% of Nitrospira in the filters (Figure 1AB). Sequencing of amoA amplicons 180 

indicates that clade B comammox Nitrospira are more abundant than clade A, making up 



around 75% of comammox abundance in most filters (Figure 2B).  Despite this, there are 

both clade A and B ASVs that have high abundance in the majority of the filters, though in 

general, clade A appear to be less widespread across the filters (Figure 3). Phylogenetic 

analysis of amoA sequences revealed a novel group of comammox within clade A that was 185 

present in a few filters for which no reference or clone sequences exist. This group’s amoA is 

more closely related to canonical AOB than other known clade A comammox (Figure 4). 

Ratios of nitrifying guilds were examined using qPCR data to identify dependencies 

between nitrifying groups. Linear regression showed a weak relationship between NOB and 

AOP cell numbers, (NOB=2.5 x AOP, R2 adj = 0.16, p = 0.045). Unexpectedly, a strong 190 

relationship was observed between comammox Nitrospira and NOB (NOB=0.74 x 

Comammox, R2adj = 0.70, p = 1.5x10-6) (Figure S5).  

Impacts of physicochemical and operational parameters on nitrifying community 

In order to explore the factors associated with the structure of the nitrifying 

communities of the filters and the success of comammox Nitrospira in these communities, 195 

we performed constrained ordination of the nitrifying communities, using 16S rRNA of 

nitrifiers and amoA Nitrospira sequence data together with physicochemical composition of 

the influent water and filter material and operational parameters (Table S3).  Constrained 

ordination models were built using stepwise selection of variables. Temperature was the 

sole significant variable (p = 0.025) explaining variation in the nitrifying communities, 200 

explaining 9.4% of the variation. Increasing temperature appeared to be associated with 

increasing diversity of Nitrospira spp. in the filters (Figure 5A). Little explanatory power was 

provided by the measured physicochemical parameters to explain variation between the 

nitrifying communities. However, in ordination modelling of the comammox Nitrospira guild, 

the sulfate content of the water, surface ammonium loading rate (SLR), nitrogen content of 205 



the filter material and NVOC, were significant variables in addition to temperature explaining 

20.5%, 13.7%, 13.4%, 11.5% and 10.4% of the variability respectively (Figure 5B, Table 2). 

The ammonium concentration in the water and calcium concentration in the filter material 

were also found to be significant explanatory variables (p < 0.04) but were not included in 

the ordination models due to co-linearity with other variables (Figure S6). Pearson 210 

correlations and linear regression were also used to relate the absolute abundance of 

nitrifying groups with physicochemical and operational parameters. The strongest 

correlation observed was between copper concentration in the influent water and 

comammox Nitrospira and Nitrospira cell numbers estimated from 16S rRNA qPCR (R2 = 0.63 

for both) (Figure S7, Table S4). 215 

 

Discussion 

Based on kinetic theory of optimal pathway length, Costa et al. (2006) predicted the 

existence of complete nitrifiers ten years before their discovery. They predicted that these 

organisms would thrive in surface attached communities subject to low ammonium loading 220 

where slow growing, high yield organisms could flourish. Groundwater-fed RSFs represent 

just such an environment, and the abundance of comammox Nitrospira there confirms that 

this environment provides an ideal ecological niche for them.  Similarly, comammox 

Nitrospira have been detected in relatively high abundance in other drinking water filters, 

drinking water distribution systems and freshwater aquaculture filters (Pinto et al., 2015; 225 

Bartelme et al., 2017; Wang et al., 2017). Developing an understanding of these organisms 

and their relevance to global nitrogen cycling requires investigations into their prevalence 

and contributions to nitrification in diverse environments. In order to facilitate these efforts, 



we developed a method to detect and quantify diverse comammox Nitrospira of clades A 

and B, and applied this method to a selection of RSFs. 230 

These amoA primers cover the complete range of known comammox Nitrospira 

diversity, with amplicons clustering with known reference sequences as well as presenting 

newly identified sequences that cluster within both clades A and B (Figure 4). Complete 

coverage of all sequences in a database of 48 Nitrospira amoA gene sequences when 

allowing for 2 mismatches suggests excellent coverage of Nitrospira amoA with these 235 

primers (Figure S4).  One branch of amoA sequences within clade A did not cluster with any 

reference sequences, and falls between Ca. N. nitrosa and Betaproteobacterial ammonia 

oxidizers (Figure 4). This cluster was present in low abundance and in few filters, but is not 

believed to be chimeric, as it clusters closely with other clade A sequences and these ASVs 

were observed in several samples (Figure 3). It is difficult to assess whether the newly 240 

designed Nitrospira amoA primers over- or underestimate comammox Nitrospira abundance, 

though comammox cell numbers estimated by the assay tended to be lower or equivalent to 

those estimated from 16S rRNA and nxrB Nitrospira genes, making these estimates appear 

reasonable. Comammox genomes assembled to date contain either one or two amoA genes, 

however there could be a greater degree of variation in amoA copy number, which would 245 

alter the estimation of comammox cell number based on amoA in the filter communities 

(Figure 1).  It can also not yet be evaluated whether the assay is biased towards a specific 

clade, as the true relative abundance of clades A and B in the sampled RSFs is not clear. 

Enrichment and genome assembly of additional comammox Nitrospira and further 

investigation into the breadth of comammox diversity will provide additional insights into 250 

the coverage of the qPCR assay. Several other primers for the detection of comammox have 

been developed. One approach uses a two-step method with primers that have broad 



coverage of copper-containing membrane-bound monoxygenases (CuMMOs) combined with 

a newly designed specific primer for comammox (Wang et al., 2017). While this method has 

a broad coverage for CuMMOs, it does not have good coverage of comammox amoA, and 255 

due to its two-step nature, is not amenable to quantification. Another set of primers has 

high coverage and specificity, but requires separate primer sets for clade A and clade B 

(Pjevac et al., 2017). A third group has combined a previously designed pmoA primer with a 

newly designed comammox specific primer. The coverage of this primer was not 

investigated, and the study amplified only a single comammox sequence. Whether this was 260 

due to low coverage of the primers, or low diversity of comammox in the examined samples 

is not clear (Bartelme et al., 2017). Thus, we believe that our primers fill an important gap, 

providing broad coverage amplification and quantification of both comammox clades with a 

single primer set. 

The nitrifying communities of all filters were dominated by the phylum Nitrospirae. 265 

Members of the Nitrospirae were mostly from the genus Nitrospira (112/123 ASVs), and 

these are believed to catalyse either complete nitrification or nitrite oxidation (Figure 1). 

Analysis of nxrB gene sequences from the filter communities indicate that the majority of 

the Nitrospira present are from Lineage 2 (Figure 2A), and classification of nxrB sequences 

(at > 98% nucleotide identity to reference sequences) indicates that a minimum of 28% of 270 

the Nitrospira affiliate with comammox Nitrospira, while qPCR results from 16S rRNA and 

amoA from Nitrospira suggests that this value is much higher (40-100%) (Tables S2 & S3).  

Nitrosomonadaceae, dominated by Nitrosomonas spp. were present in all filters but 

generally in low abundance (<2.5%). A very small proportion (<0.06%) of AOA were present 

in some filters. Nitrobacter spp., while not detected in sequence analysis, were detected by 275 

qPCR, which suggested that their abundance was similar, or slightly lower than that of AOB 



(Figure 1D). Inter-filter variation was observed in the nitrifying communities. In certain filters, 

notably DWTP-9 and 12, lower Nitrospira abundance was associated with higher 

Nitrosomonadaceae. In addition, DWTP-12 also had a larger proportion of Nitrotoga spp. 

than any other filter. These observations suggest that functional redundancy exists in the 280 

filters, and that a functional nitrifying community was present in all filters. While the 

community structures were similar to those in previously examined filters, our study found a 

somewhat higher fraction of Nitrospira than one previous study (Albers et al., 2015) but is in 

line with Nitrospira abundances in a second study (Gülay et al., 2016). Nitrosomonadaceae 

estimates are consistent with results from both studies and neither detected Nitrobacter spp. 285 

in amplicon data. Interestingly, the same primers and sequencing platforms (454 

pyrosequencing) were used in these two studies, ruling out possibilities of primer bias to 

explain diverging Nitrospira estimates. Sequencing depth was greater (by at least 2 fold) in 

the second study. However these results likely suggest that different filters contain varying 

abundances of Nitrospira spp. Several different filter types were investigated in the present 290 

study including pre-filters (PF) (DWTP-7-PF and DWTP-11), single filters (SF) (DWTP-1-3 and 

12) and after-filters (AF) (DWTP-4-10). In groundwater-fed RSFs, PFs are generally presumed 

to be the major site of abiotic reactions such as iron oxidation and precipitation, and 

generally contain a larger grain size, while AFs are considered the main site of nitrification, 

and contain smaller grain sizes (Tatari et al., 2017). The low abundance of nitrifiers at DWTP-295 

11 agrees with a dominant abiotic role for PFs, but the large nitrifying community at DWTP-

7-PF does not support this. However, DWTP-7 is a special case where the PF is particularly 

deep (2.3 m) and is the main site of ammonium removal (Søborg et al., 2015).  

Based on experimental observations and energy conservation ratios, the ratio of AOP 

to NOB in a nitrifying reactor is around 2:1 (Winkler et al., 2012). Until their discovery, the 300 



presence of comammox Nitrospira would result in an apparent overabundance of NOB, 

which would typically be attributed to a nitrification-denitrification loop, or a so-called ping-

pong effect (Winkler et al., 2012). Based on the stoichiometry of nitrification and the 

presumed metabolisms of comammox, AOP and NOB, in an environment containing all three 

guilds it is expected that that there would not be a fixed ratio of comammox to AOP and 305 

NOB, while the ratios of AOP and NOB would remain as expected. We calculated ratios of 

these three groups across the rapid sand filters based on qPCR data where all groups were 

quantifiable and conducted linear regression of the relative abundance of nitrifying guilds 

(Figure S5). A weak linear relationship was observed between AOP and NOB (NOB= 2.5 x 

AOP, R2 adj = 0.16, p = 0.045), and NOB are much more abundant than expected if all energy 310 

comes from nitrite produced by AOP. In addition, a strong relationship exists between 

comammox Nitrospira and NOB (NOB= 0.74 x Comammox, R2 adj = 0.70, p = 1.49x10-6, 

Figure S5). These observations do not follow expectations based on the assumptions that 

comammox Nitrospira oxidize ammonium completely to nitrate and that canonical AOB and 

NOB then share the ammonium not oxidized by comammox Nitrospira. Several factors could 315 

contribute to these observations. The first is that the newly designed primers underestimate 

the number of comammox, and that a portion of the organisms considered to be NOB are 

actually comammox. However, this would require a very large underestimation of 

comammox by these primers to return the AOB:NOB ratio close to 2:1.  The presence of a 

nitrification-denitrification loop is certainly a possibility in these environments – a number of 320 

the abundant organisms in these filters such as members of the Bacteroidetes, and 

Chloroflexi are potentially capable of nitrate reduction, which could provide additional 

nitrite for NOB. Some NOB may also have diverse metabolic capabilities, and are not solely 

oxidizing nitrite, as has been found in some Nitrospira (Koch et al., 2014, 2015), though the 



potential alternate substrates that would provide sufficient energy in these filters are 325 

unclear. A fourth possibility, that explains the strong relationship between NOB and 

comammox is that comammox Nitrospira support the growth of NOB by providing them with 

a fraction of the nitrite they produce. This would be consistent with the observed transient 

accumulation of up to 30% of the nitrite in enriched cultures of Ca. Nitrospira inopinata 

during ammonia oxidation (Daims et al., 2015). At micromolar ammonium concentrations, 330 

which are reflective of the concentrations in the top of most of the filters, nitrite 

accumulation was lower, but was still substantial (15-20%). This suggests that comammox 

Nitrospira may feed canonical NOB, thereby promoting their growth. There is no clear 

reason for a metabolic dependency of, or benefits of cooperation for, comammox with NOB, 

and it is possible that this phenomenon is due solely to the diffusion of nitrite out of the 335 

periplasmic space (where it is generated) during nitrification. In Ca. Nitrospira inopinata, the 

only comammox organism for which data is available, the affinity for nitrite is three orders of 

magnitude lower than that of ammonia (Km= 449.2 µM) (Kits et al., 2017), and is 

substantially lower compared with characterized canonical nitrite-oxidizing Nitrospira (Km= 

9-27 µM) (Nowka et al., 2015). This relatively lower affinity for nitrite than ammonia in 340 

comammox suggests that nitrite could accumulate in the periplasm of comammox during 

nitrification, and subsequently diffuse outside of the cell where it could be used by nearby 

NOB. In-situ visualization of nitrifying biofilms would indicate if NOB are found in close 

association with comammox Nitrospira in order to take advantage of nitrite diffusion. This 

would provide an additional explanation for the frequent co-existence of different Nitrospira 345 

spp. in diverse environments (Gruber-Dorninger et al., 2015; Gülay et al., 2016).  

Due to the high similarities in physicochemical parameters and microbial 

communities between filters, correspondence analysis did not provide strong links between 



physicochemical parameters and the total nitrifying community or comammox Nitrospira 

guild structure (Figure 5, Table 2). However, our analysis does suggest that temperature 350 

influences the structure of the nitrifying community (Figure 5A). Temperatures in 

groundwater-fed RSFs tend to be low, and are fairly consistent year-round due to low 

fluctuations in subsurface temperature. The temperature in the studied filters ranged from 

8.6-13.2˚C, which creates a selective pressure for organisms that are active and growing at 

low temperature. Increasing temperature appears to have a positive effect on Nitrospira 355 

spp., though we could not distinguish between comammox and nitrite-oxidizing taxa (Figure 

5A). In addition to temperature, the sulfate content of the influent water, surface 

ammonium loading rate, nitrogen content of the filter material and NVOC, play significant 

roles in shaping the comammox Nitrospira guild in RSFs. However, there was no clear clade-

specific separation within comammox Nitrospira based on these variables. As all source 360 

waters are freshwater, sulfate was extremely low in all environments (<25 mg/L), so it was 

interesting to find that it was an important explanatory variable in shaping the comammox 

guild, even at such low concentrations. Notably, while comammox Nitrospira have been 

detected in brackish lakes and marine sediments (van Kessel et al., 2015; Pjevac et al., 2017), 

they have mainly been described in freshwater environments (Pinto et al., 2015; Palomo et 365 

al., 2016; Y. Wang et al., 2017) and have not been detected in marine environments (Daims 

et al., 2015). Thus, it is possible that sensitivity to sulfate varies across the comammox 

Nitrospira, even at the low concentrations observed in freshwater environments. 

Investigations of sulfur metabolism in comammox genomes may shed light on their 

sensitivity to sulfate. Ammonium is presumed to be the primary biological substrate in the 370 

majority of the filters examined here, so the impact of the surface ammonium loading rate 

on community structure was not surprising. Low ammonium flux is one of the factors 



predicted to select for comammox based on the kinetic theory of optimal pathway length 

(Costa et al., 2006), and our observations suggest that this factor is important even within 

the comammox guild, suggesting that there may be differential response to ammonium 375 

loadings within comammox, though no clade-specific differentiation was observed. 

Ammonium concentration, which was also observed to be significant in explaining the 

structure of the comammox community but was not included in the associated model, is 

strongly correlated with the surface ammonium loading rate (Figure S6). The majority of 

nitrogen in the filter material is found in amino form (around 70% in all filters). High 380 

resolution scanning of the carbon (C1s), nitrogen (N1s), and oxygen (O1s) regions points 

towards the presence of amino acids and/or protein at all measured depths of the mineral 

coatings (Figure S8). It is possible that proteins or amino acids are produced during biofilm 

formation by comammox Nitrospira spp., explaining the relationship between comammox 

and filter material nitrogen. Alternately, they may be produced by other community 385 

members, but are responded to by certain comammox Nitrospira. The excretion of proteins 

and amino acids during biofilm formation has been observed previously in diverse taxa 

(Flemming and Wingender, 2010). NVOC explained significant variation only in the 

comammox community. The presence of mixotrophy within the genus Nitrospira (Watson et 

al., 1986; Daims et al., 2001; Spieck et al., 2006) suggests that some comammox Nitrospira, 390 

like their nitrite-oxidizing counterparts, could be capable of mixotrophic growth, resulting in 

selection of specific strains based on organic carbon availability. Investigation of additional 

filters with more variable microbial communities and physicochemical parameters may 

provide further information to support or refute these observations and provide stronger 

links between environmental parameters and comammox Nitrospira ecology. Physiological 395 

analysis of enriched or pure strains, as well as genomic analysis of comammox Nitrospira will 



provide further insight into the role of these features in comammox Nitrospira. Linear 

regression between the abundance of nitrifying clades with physicochemical parameters 

resulted in a significant linear relationship between comammox abundance and the copper 

content of the water, though copper was not identified as an important factor in ordination 400 

analysis. As copper is an essential co-factor in the ammonia monooxygenase enzyme, it is 

not surprising that it could limit the growth of ammonia oxidizers. Recovery of nitrification 

activity in poorly functioning RSFs after copper dosing has been previously observed 

(Wagner et al., 2016).  

Despite having been only recently described, the wide environmental distribution of 405 

comammox Nitrospira as detected in metagenomic databases suggests that comammox 

Nitrospira likely make a significant contribution to global nitrogen cycling (Daims et al., 2015). 

The developed primers for the amoA gene of comammox Nitrospira exhibit good coverage 

of both clades A and B, and enabled the quantification and characterization of comammox 

Nitrospira across 12 DWTPs. Comammox Nitrospira are by far the most abundant nitrifiers in 410 

all groundwater-fed RSFs examined. Though the specific activity of comammox Nitrospira in 

the filters is not known, they likely play a major role in nitrification in the filters as the 

abundance of other ammonia and nitrite oxidizers was comparatively low. Furthermore, a 

relationship between the abundance of comammox and NOB suggests that comammox 

Nitrospira oxidize a greater proportion of ammonia entering the filters than AOP, and may 415 

directly support the growth of NOB.  Future work involving isotope labelling, and enrichment 

and isolation of comammox Nitrospira will provide clarity as to their specific nitrification 

activity, and their contribution to global nitrogen cycling. 

 

Experimental Procedures 420 



Sampling 

The twelve drinking water treatment plants (DWTPs) are geographically distributed 

across Denmark (Figure S9). Physicochemical characteristics of influent, effluent water and 

sand were obtained through direct measurement or from the JUPITER database 

(www.geus.dk/DK/data-maps/jupiter/Sider/default.aspx) (Table S3). Filter material (15 mL) 425 

was collected from 2 locations at the top of the filters using a 1% hypochlorite-wiped 

stainless steel grab sampler. Single sand samples were collected from DWTP-7, 9, 10, 11, 12. 

Filter material was immediately placed into cryotubes, immersed in liquid nitrogen, and 

stored at -80 °C for further analysis. Liquid grab samples were collected from i) the pre-filter 

influent from the aeration steps ii) the after-filter influent from the after-filter cascade and iii) 430 

the effluent tap at the end of the after-filter. Liquid samples were collected in 1 L glass 

bottles and were filter sterilized (0.2 µm) into polypropylene bottles for specific chemical 

analyses. Samples for ICP-MS/ OES were immediately acidified (65% nitric acid, Merck, 

Suprapur). Liquid samples were transported on ice and stored at -20 °C until further analysis.  

Chemical analysis of influent and effluent water and filter material 435 

Ammonium was measured using a standard colorimetric salicylate and hypochlorite 

method (Bower and Holm-Hansen, 1980). Nitrite was analysed using a standard method 

adapted from Grasshoff et al. (1983). Nitrate and sulfate were measured by ion 

chromatography according to AWWA-WEF method 4110 (Eaton et al., 1998). Metal content 

in water was determined by ICP-MS (Fe, Mn, Cu, Zn, P, Mg, Co, and Ni; 7700x, Agilent 440 

Technologies), or ICP-OES (Ca; Varian, Vista-MPX CCD Simultaneous ICP-OES). Dissolved 

oxygen and pH were measured with a handheld meter (WTW, Multi 3430, with FDO® 925 

and SenTix® 940 probes). NVOC analysis was performed using a wet chemical TOC-analyser 

TOC-V WP (Shimadzu, Kyoto, Japan). Dried sand samples (60°C, 16 hours) were used for 



mineral coating characterization and elemental composition by X-ray photoelectron 445 

spectroscopy (XPS, K-Alpha, Thermo Scientific, USA). Triplicate sand grains were analysed 

under vacuum with a monochromated Al-Kα X-ray source and an X-ray spot size of 400 µm.  

Nitrospira amoA qPCR primer and assay design 

To design primers for amoA Nitrospira, DNA sequences for all high quality Nitrospira 

amoA genes available at that time (n = 8) were collected and aligned using T-coffee 450 

(Notredame et al., 2000). Alignments were manually curated, and regions of homology 

between sequences were further examined as candidate regions for primer design. The 

criteria used to evaluate and develop primer sets were that the primer region was between 

16 and 24 nucleotides long with a GC content close to 50%, contained minimal secondary 

structure and a minimal number of non-homologous bases between sequences in the 455 

alignment including no non-matching bases within 4 bases of the 3’ end. In cases of non-

matching nucleotides, the possibility of improving primer coverage by using degenerate 

bases was examined, maximizing the use of degenerate bases that would result in the 

highest likelihood of amplification of all sequences. Candidate primers that would result in 

amplicons of 100 to 350 bp were examined for compatibility (minimal Tm difference and 460 

tendency for dimer formation). To evaluate specificity, primer sets were searched against 

the NCBI non-redundant nucleotide database. No non-specific binding results were detected 

for the final primer set. Primers Ntsp-amoA 162F (GGATTTCTGGNTSGATTGGA) and Ntsp-

amoA 359R (WAGTTNGACCACCASTACCA) were synthesized and tested in vitro against 

strains of E. coli (TOP10, Invitrogen), Pseudomonas putida KT2440, Clostridium thermocellum, 465 

Methanoculleus bourgensis and Meliobacter roseus as well as a number of bioreactor and 

environmental samples (nitritation anammox reactors, DWTPs, denitrifying reactors).  The 

annealing temperature was optimized using gradient PCR (46°C-50°C) with negative and 



positive control samples. With the final amplification protocol, single bands of the expected 

size were observed only in positive samples.  A clone library was made by pooling amplicons 470 

from 3 DWTPs (DWTP-8, 12 and Glostrup waterworks, Zealand), which were used in a TOPO 

TA cloning reaction according to manufacturer’s instructions (Invitrogen). Thirty positive 

clones were picked and were amplified with amoA Nitrospira and M13 primer sets, all 

resulting in the expected band size. From these clones, 21 plasmids were purified using the 

Qiagen Plasmid MiniPrep kit (QIAGEN, Germany) and sequenced by Macrogen Inc. on an 475 

ABI3730XL sequencer from the M13R primer (Amsterdam, NL).  Plasmids were subsequently 

used for standard curves for absolute quantification by qPCR. The standard curve is linear 

between 10- 109 copies/reaction and the efficiency of the assay was around 105%. PCR 

reactions were carried out in a volume of 25 µL consisting of 5X Phusion HF buffer (Thermo 

Fisher), 0.5 µL of 10 mM dNTPs (Sigma), 500 nM of each primer, 0.25 µL of Phusion DNA 480 

polymerase (ThermoFisher) and 1 µL of DNA template in DNA/RNA free water with the 

following thermocycling protocol: 95°C for 10 min, followed by 25 cycles of 95°C for 45 s, 

48°C for 30 s, 72°C for 45 s, and final extension at 72 °C for 7 min. Gene fragments of 

Nitrospira amoA from clones have been deposited in Genbank (MF073209-MF073227). A 

database of available amoA Nitrospira sequences was constructed using published reference 485 

sequences and mining of the IMG database. Phylogenetic trees were constructed using 

known Nitrospira and Nitrosomonas amoA sequences to distinguish Nitrospira amoA 

sequences (Figure S4). Primer coverage was assessed in silico using R package BioStrings. 

DNA extraction and qPCR 

DNA was extracted from 0.5 g of sand material using the MP FastDNA Spin Kit (MP 490 

Biomedicals LLC, Solon, USA) as described (Palomo et al., 2016). DNA concentration and 

quality was measured by NanoDrop (NanoDrop Technologies, Wilmington, USA). Gene copy 



numbers of 16S rRNA from total Bacteria, AOB, and Nitrospira, amoA from Archaea, and 

Nitrospira, and nxrB from Nitrospira and Nitrobacter were estimated by qPCR (Table 1). 

Reactions were carried out on a Chromo4 thermocycler (Bio-Rad) in a total volume of 25 µL 495 

containing 10 ng of DNA, 12.5 µL of 2x iQ SYBR Green Supermix (Bio-Rad), and 500 nM of 

each primer in DNA/RNA free water.  Gene copies were quantified by comparison to a 

standard curve constructed with plasmid dilutions at known copy numbers. Copy numbers of 

16S rRNA from Bacteria were converted to cell numbers based on the average 16S rRNA 

gene copy number per organism in each sample by comparing 16S rRNA amplicon data to 500 

the rrnDB database (Stoddard et al., 2015) and calculating the average copy number per 

sample (R script available at https://github.com/ardagulay). Other qPCR data were corrected 

using the following assumptions: Nitrobacter spp. contain 2 copies of nxrB, while Nitrospira 

spp. contain one copy. A single copy of amoA per genome is present in Nitrospira and AOA, 

and similarly a single copy of 16S rRNA is present in Nitrospira and AOB.  505 

Amplicon sequencing and analysis 

DNA was amplified using primers for 16S rRNA total Bacteria, nxrB Nitrospira and 

amoA Nitrospira (Table 1). Library preparation and Illumina MiSeq sequencing was carried 

out by DMAC (DTU Multi-Assay Core Facility, Kgs Lyngby, DK). Illumina data was analysed in 

USEARCH to examine quality in order to optimize trimming procedures (Edgar, 2010). 510 

Quality control, trimming, merging of paired ends, and error correction were performed in 

DADA2, which outputs the abundance of error-corrected amplicon sequence variants (ASVs) 

rather than clustering as in an OTU-based approach (Callahan et al., 2016). Comparison of 

ASVs with the SILVA SSU database v123 was used for taxonomic assignment of 16S rRNA 

genes, while custom databases were used for taxonomic assignment of nxrB and amoA of 515 

Nitrospira. Further analysis was carried out in R package phyloseq (2012; McMurdie et al., 



2013). Ratios of nitrifiers were calculated using qPCR data – NOB abundance was inferred by 

subtracting Nitrospira amoA copy numbers from Nitrospira nxrB copy numbers and adding 

Nitrobacter cell numbers. AOP were inferred by adding AOB 16S rRNA copy numbers and 

AOA amoA copy numbers. Amplicon data are available under PRJNA399693 (Table S5). 520 

Statistical analysis 

Constrained correspondence analysis (CCA) with variation partitioning, linear 

regression and correlation analyses were performed in R package vegan (Oksanen et al., 

2017) . CCA was performed using ASV abundances of 16S rRNA of the nitrifying fraction of 

the community, (family Nitrosomonadaceae, Can. Nitrotoga, Can. Nitrosoarchaeum, and 525 

genus Nitrospira) or amoA amplicons together with filter operational parameters and 

physicochemical data of influent water and filter material. Libraries were normalized to 

relative abundance. In the analysis of the comammox Nitrospira guild structure, all amoA 

ASVs were used in the analysis, but libraries were rarefied to even depth (30799 reads). CCA 

was performed to determine the importance of each variable, and a constrained ordination 530 

model was built using stepwise selection of variables with ordistep. Variable significance was 

determined by permutation tests (200 permutations) with anova.cca in vegan.   
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Figure 1. Characterization of nitrifying communities from 12 groundwater-fed RSFs based 

on a) qPCR and b) 16S rRNA gene amplicon sequencing. c) Comparison of Nitrospira 

relative abundance by qPCR and 16S rRNA amplicon sequencing. d) Comparison of AOB, 680 

AOA (amoA) and Nitrobacter (nxrB) relative abundance based on qPCR and 16S rRNA 

amplicon sequencing. In c) and d) qPCR cell numbers were normalized to relative 

abundance based on 16S rRNA Bacteria-derived cell numbers 

 

Figure 2. Relative abundances of Nitrospira spp. ASVs by a) lineage, based on nxrB 685 

sequencing, b) comammox clade based on amoA sequencing 



 

Figure 3. Heatmap showing the relative fractional abundance of amoA Nitrospira amplicon 

sequences across eleven waterworks. 



 690 



Figure 4. Maximum likelihood tree of amoA Nitrospira amplicons and reference nucleotide 

sequences and clone sequences from this study. Sequences were subject to frameshift 

correction and codons were aligned using DECIPHER. Phylogenetic analysis was performed 

in MEGA7. Bootstrap values greater than 60 are shown. The tree was rooted using amoA 

sequences from Nitrosomonas europaea, Nitrosomonas eutropha and Nitrosomonas sp. 695 

Is79A3 



 

Figure 5. Constrained correspondence analysis of microbial communities based on a) 

nitrifying communities based on 16S rRNA sequencing (CCA1 and CA1). CCA1 is constrained 

by temperature, increasing from left to right.  b) Nitrospira amoA sequencing (CCA1 and 700 

CCA2) 



 

Table 1. Primers and thermocycling protocols used in this study 

Gene target Primer name Sequence Ta 
(°C) 

Reference 

16S Bacteria1 
(Sequencing) 

Bakt 341F 
Bakt 805R 

CCTAYGGGRBGCASCAG 
GGACTACNNGGGTATCTAAT 

56 (Yu et al., 
2005) 

16S Bacteria1 
(qPCR) 

1055F 
1392R 

ATGGCTGTCGTCAGCT 
ACGGGCGGTGTGTAC 

55 (Ferris and 
Muyzer, 1996) 
(Lane, 1991) 

16S AOB1 CTO189FA/B 
CTO189FC 
RT1R 

GGAGRAAAGCAGGGGATCG 
GGAGGAAAGTAGGGGATCG 
CGTCCTCTCAGACCARCTACTG 

60 (Kowalchuk et 
al., 1997) 
(Hermansson 
and Lindgren, 
2001) 

16S 
Nitrospira1 

Nspra675F 
Nspra746R 

GCGGTGAAATGCGTAGAKATCG 
TCAGCGTCAGRWAYGTTCCAGAG 

64 (Graham et al., 
2007)  

amoA AOA3 CrenamoA23F 
CrenamoA616R 

ATGGTCTGGCTWAGACG 
GCCATCCATCTGTATGTCCA 

55 (Tourna et al., 
2008) 

amoA 
Nitrospira2 

Ntsp-amoA 
162F 
Ntsp-amoA 
359R  

GGATTTCTGGNTSGATTGGA 
WAGTTNGACCACCASTACCA 

48 This study 

nxrB 
Nitrospira4 

nxrB169F 
nxrB638R 

TACATGTGGTGGAACA 
CGGTTCTGGTCRATCA 

56.2 (Pester et al., 
2014) 

nxrB 
Nitrobacter5 

NxrB-1R 
NxrB-1F 

CCGTGCTGTTGAYCTCGTTGA 
ACGTGGAGACCAAGCCGGG 

55 (Vanparys et 
al., 2007) 

1 For thermocycling protocol see 1Gulay et al., 2016; 4Pester et al., 2014, 3Tourna et al., 2008 
2Thermocycling protocol: 94°C 5:00, 40 cycles of 94°C 30s, 48°C 30s, 72°C 1:00, melt curve 705 
(70°C -95°C) 0.2°C/s gradient 
5Thermocycling protocol: 95°C 10:00, 40 cycles of 95°C 1:00, Ta 1:00, 72°C 2:00, melt curve 
(70°C -95°C) 0.2°C/s gradient 
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Table 2. Variability explained (fractional) and significance of filter operational parameters 
and physicochemical features of water and filter material on microbial community 
structure 
Variable 16S rRNA Nitrifiers amoA Nitrospira 

 

Variation 
explained p 

Variation 
explained p 



Sulfate (water) 0.060 0.284 0.205 0.001* 

Ca (filter material) 0.035 0.730 0.14 0.008 

Surface ammonium loading rate 0.024 0.926 0.137 0.016* 

N (filter material) 0.093 0.053 0.134 0.017* 

Ammonium (water) 0.033 0.833 0.121 0.039 

NVOC 0.027 0.914 0.115 0.042* 

Temperature 0.094 0.025* 0.104 0.065* 

Ca (water) 0.082 0.093 0.099 0.105 

Fe (filter material) 0.036 0.724 0.097 0.117 

O (filter material) 0.035 0794 0.082 0.192 

DO 0.037 0.665 0.073 0.265 

C (filter material) 0.031 0.847 0.072 0.321 

Fe (water) 0.038 0.684 0.067 0.392 

Mn (filter material) 0.029 0.857 0.066 0.423 

P (filter material) 0.059 0.322 0.059 0.504 

Cu (water) 0.027 0.858 0.056 0.522 

Mn (water) 0.052 0.389 0.037 0.700 

Nitrite (water) 0.068 0.341 0.038 0.718 

Si (filter material) 0.026 0.842 0.037 0.734 

Phosphorus (water) 0.069 0.206 0.037 0.820 

Flow rate 0.040 0.683 0.018 0.988 

Total inertia 2.2548 

 

1.6449 

 Inertia explained by all variables 2.2437 

 

1.6434 

 Inertia explained by significant 
variables 0.211 

 

1.2905 

 Inertia explained by model 0.211 

 

1.101 

 *parameters included in the ordination model  
Ca (filter material) and NH4 were not included in the model due to high co-linearity with 715 
other variables (Figure S4) 
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Figure S1. Representative standard curve (from 101 to 108 copies) from amoA Nitrospira 

qPCR 720 

Figure S2. Melting curves of amoA Nitrospira qPCR product from DWTP-1 (high abundance), 
DWTP-8 (medium abundance) and standard (from 101 to 108 copies) 
Figure S3. Representative amoA Nitrospira PCR products visualized on a 0.7% agarose gel 

Figure S4. Phylogenetic tree of sequences used to assess primer coverage 

Figure S5. Linear regression of a) AOP and NOB and b) comammox and NOB  725 

Figure S6. Spearman correlation matrix of explanatory variables used in ordination 

analysis 

Figure S7. Pearson correlation matrix of physicochemical/ operational variables with qPCR 

data 

Figure S8.  Sample X-ray photoelectron spectroscopy (XPS) analysis of the filter material 730 

from the DWTP-5 indicative of the consistent peak patterns observed. a) Complete scan 

with the primary elements identified; b) Carbon C1s high-resolution scan; c) Nitrogen N1s 

high-resolution scan; and d) Oxygen O1s high-resolution scan. Of particular importance are 

the peaks found at 284.3, 286.5, 288.0, 400.0, 400.8, and 531.6 (labelled within the plots) 

that are assumed to correspond to the presence of proteins in the filter material. 735 

Figure S9. Geographic locations of the investigated waterworks 

Figure S10. Constrained correspondence analysis of microbial communities based on a) 16S 

rRNA Bacteria (CA2 and CA3) and b) amoA Nitrospira sequencing, CCA3 and CCA4 and d) 

CCA5 and CA1 

 740 

Table S1. Similarity of comammox classified Nitrospira nxrB gene ASVs to closest reference 

sequences 

Table S2. Classification of 16S Nitrospira amplicons to comammox reference sequences 



Table S3. Physicochemical and operational parameters of the investigated rapid sand 

filters 745 

Table S4. Linear regression of physicochemical/ operational parameters with qPCR data for 

significant (p <0.01) Pearson correlations 

Table S5. Details of amplicon sequencing datasets 
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