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Unification modulo theories

Treat certain properties of function symbols not by adding
equational axioms to the first-order theory, but by special [Plotkin, 1972]

unification algorithms. AC  [Peterson, Stickel; 1981]
[McCune; 1997]

most general : complete set

unifier of unifier
Complications:
e complete sets may be infinite, A
e minimal complete sets may not even exist, Al
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Unification under Associativity and Idempotenc
of Type Nullary*

MANFRED SCHMIDT-SCHAUSS
Universitdt Kaiserslautern; 6750 Kaiserslautern, F.R. Germany
(UUCP: seismo! unido! uklirb! schauss)

(Received 31 January 1986)

Abstract. It is shown. that there exist a unification problem (s = 1) ., for which the set of solution
associativity and idempotence is not empty. But uUZ (s, 1), the complete and minimal subset of
of solutions does not exist, i.e. 4 + 7 is of type nullary. This is the first known standard first ordei
with this unpleasant feature.

Key words. Unification, Equational Theories, Idempotent Semigroups

1. Introduction

Unification theory is concerned with the problem to find solutions for an eq
{s = t). where s and ¢ are terms. Solutions of {s = t) are substitutions ¢
as = ot. The substitution o is called a unifier for s and ¢.

An extension of this problem is the T-unification problem: Given a set of equ
T we say two terms 7, and 7, are equal w.r.t. T, denoted as 1, =, 1,,iff 1, = 1,104
follows from 7. A T-unification problem {s = 1), is the problem to find solut
such that g5 =; at.

The set of all unifying substitutions (i.e. of all solutions) of {s = 1);is denc
UZ,(s, 1). In many cases, the set of all solutions UX,(s, 7) can be generated f
minimal subset of solutions, the set of general unifiers uUZ (s, t), which is defi
follows: We say the substitution ¢ is more general than 7 on the set of variat
(t <, o] W])iff there exists a substitution 4, such that tx =, lox forall x e ¥
set uUZ (s, 1) is characterized by three conditions:

(1) correctness: puUZ, (s, 1) < UZ,(s, 1)
(i1) completeness: V0 € UZ (s, 1)30 € pUZ (s, 1) 0 <, o[W]
(iii) minimality: Vo, 1€ pUZ (s, )0 <, t[W] =0 = 1.

where W ="
where W =

Journal of Automated Reasoning 2 (1986) 283--286. 28
1 1986 by D. Reidel Publishing Company.

The Theory of Idempotent Semigroups is of
Unification Type Zero

FRANZ BAADER
Institut fir Mathematische Maschinen und Datenverarbeitung | Martensstrafe 3, 8250 Erlangen,
West Germany

(Received 20 May 1986)

1. E-Unification

Let £ be a set of equations and = . the equality of terms induced by E. A substitutio
0 is called an E-unifier for the pair of terms s, ¢ iff s0 = t0. The set of all E-unifier
for s and ¢ is denoted by UZ (s, 1).

We define a quasi-ordering <, on UZ (s, 1) by

0, < 0,: & There exists a substitution 4 satisfying x8, =, x6,4 for all varia
bles x occurring in s or 1.

[n this case 6, is called an instance of 6,.

We write 0, =, 0, iff x8), =, x8, for all variables x occurring in s or r.

A set of most general E-unifiers uUZ ;(s. t) for the unification problem (s =, )i
defined as
(1) pUZE, < UZ,.

(2) For all 8 € UZ, there exists a 0 € pUZ, such that § <, 0.
(3) Forall 8,, 6, in pUZ, 6, <, 0, implies 0, = 6,.

Equational theories may be classified according to the cardinality or the existenc
of uUZ; as follows:

(1) If pUZ (s, 1) exists for all terms s, r and has at most one element then E is calle
unitary.

(2) If uUZ (s, 1) exists for all terms s, ¢ and has finite cardinality then E is calle
Sfinitary.

(3) If uUZ (s, 1) exists for all terms s, t and for some terms u, v pUZ (u, v) is infinit
then E is called infinitary.

(4) If for some terms s, ¢ uUZ (s, 1) does not exist then E is said to be of unificatio
type zero.

In this paper it will be shown that the theory of idempotent semigroup
Al = {(xy)z = x(yz), ¥ = x} is of unification type zero. This seems to be the firs
natural example of a first order theory of this type which is not an artificial constructio
as in [3].



Unification modulo theories

Dresden

Treat certain properties of function symbols not by adding
equational axioms to the first-order theory, but by special [Plotkin, 1972]

unification algorithms. AC  [Peterson, Stickel; 1981]
[McCune; 1997]

most general : complete set

unifier of unifier
Complications:
e complete sets may be infinite, A
e minimal complete sets may not even exist, Al

e complete sets may be finite, but quite large, AC

[Kapur, Narendran; LICS 1992]
Double-exponential complexity of computing a complete set
of AC-unifiers

© Franz Baader



Unification modulo theories
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Treat certain properties of function symbols not by adding
equational axioms to the first-order theory, but by special [Plotkin, 1972]

unification algorithms. AC  [Peterson, Stickel; 1981]
[McCune; 1997]

most general : complete set

unifier of unifier
Complications:
e complete sets may be infinite, A
e minimal complete sets may not even exist, Al

e complete sets may be finite, but quite large, AC

e the combination problem. [Stickel; 1981] AC
[Fages; 1984]

[Schmidt-Schau}; 1989]  general
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Unification modulo theories

Treat certain properties of function symbols not by adding

equational axioms to the first-order theory, but by special [Plotkin, 1972]

unification algorithms. AC [Peterson, Stickel: 1981]
[McCune; 1997]

most general : complete set
of unifier

unifier

Complications:

Al unifiability
C constraints
e the combination problem. [Stickel; 1981] AC @

[Fages; 1984 ]
[Schmidt-SchauB3; 1989] general new challenge
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Unification in the Union of Disjoint Equational

Theories: Combining Decision Procedures ,
Difference to

Franz Baader Klaus U. Schulz Nelson-Oppen combination:
DFKI CIS
Stuhlsatzenhausweg 3 University Munich, Leopoldstr. 139
6600 Saarbriicken 11, Germ 8000 Munchen 40, G 1: .
DTN Ty ey . pnchen =, ernany Solvability of equations
e-mail: baader@dfki.uni-sb.de e-mail: schulz@cis.uni-muenchen.dbp.de | Unification
in the [/-free algebra
Abstract
Most of the work on the combination of unification algorithms for the union of VEISus
disjoint equational theories has been restricted to algorithms which compute
finite complete sets of unifiers. Thus the developed combination methods usu-
ally cannot be used to combine decision procedures, i.e., algorithms which just Solvablhty of equations
decide solvability of unification problems without computing unifiers. In this . _
paper we describe a combination algorithm for decision procedures which works in some model of E Nelson Oppen

for arbitrary equational theories, provided that solvability of so-called unifica-
tion problems with constant restrictions—a slight generalization of unification
problems with constants—is decidable for these theories. As a consequence
of this new method, we can for example show that general A-unifiability, i.e.,
solvability of A-unification problems with free function symbols, is decidable.
Here A stands for the equational theory of one associative function symbol.

Our method can also be used to combine algorithms which compute finite
complete sets of unifiers. Manfred Schmidt-Schaufl’ combination result, the
until now most general result in this direction, can be obtained as a consequence
of this fact. We also get the new result that unification in the union of disjoint
equational theories is finitary, if general unification—i.e., unification of terms
with additional free function symbols—is finitary in the single theories.

CADE 1992
UNIF 1991

Dresden © Franz Baader
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Unification in the Union of Disjoint Equational

Theories: Combining Decision Procedures

FRANZ BAADER' AND KLAUS U. SCHULZ?

TLqu Theoretical Computer Science, RWTH Aachen, Ahornstr.55, 5207/ Aachen, Germany

iCIS, University of Munich, Wagmiillerstr.23,80538 Miinchen, Germany

(Received 15 November 1993)

Most of the work on the combination of unification algorithms for the union of disjoint
equational theories has been restricted to algorithms that compute finite complete sets
of unifiers. Thus the developed combination methods usually cannot be used to combine
decision procedures, i.e., algorithms that just decide solvability of unification problems
without computing unifiers. In this paper we describe a combination algorithm for de-
cision procedures that works for arbitrary equational theories, provided that solvability
of so-called unification problems with constant restrictions—a slight generalization of
unification problems with constants—is decidable for these theories. As a consequence
of this new method, we can, for example, show that general A-unifiability, i.e., solvability
of A-unification problems with free function symbols, is decidable. Here A stands for the
equational theory of one associative function symbol.

Our method can also be used to combine algorithms that compute finite complete
sets of unifiers. Manfred Schmidt-Schauf’ combination result, the until now most general
result in this direction, can be obtained as a consequence of this fact. We also obtain
the new result that unification in the union of disjoint equational theories is finitary, if
general unification—i.e., unification of terms with additional free function symbols—is
finitary in the single theories.

© 1996 Academic Press Limited

© Franz Baader



Unification in the Union of Disjoint Equational
Theories: Combining Decision Procedures

FRANZ BAADER' AND KLAUS U. SCHULZ?

The combination algorithm applies

e several nondeterministic polynomial guessing steps to

e produce|unification problems|in the component theories

e that can be solved separately. \

\

with linear constant restrictions

The following statements are equivalent for an equational theory F:
e [-unification with additional free function symbols is decidable.
e [/-unification with linear constant restrictions is decidable.

e The positive theory of F is decidable.

Going from F-unification (with constants) to /~-unification with linear con-
stant restrictions can increase the complexity considerably, and may even
cause undecidability.

Dresden © Franz Baader
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ELSEVIER Information Processing Letters 67 (1998) 215-220
On the complexity of Boolean unification
Franz Baader *!
LuFg Theoretical Computer Science, RWTH Aachen, Ahornstrafie 55, 52074 Aachen, Germany
Received 11 June 1997
Communicated by H. Ganzinger
Abstract

Unification modulo the theory of Boolean algebras has been investigated by several autors. Nevertheless, the exact complexity
of the decision problem for unification with constants and general unification was not known. In this research note, we show that
the decision problem is Hf -complete for unification with constants and PSPACE-complete for general unification. In contrast,
the decision problem for elementary unification (where the terms to be unified contain only symbols of the signature of Boolean
algebras) is “only” NP-complete. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Computational complexity; Automatic theorem proving

1. Introduction

Boolean unification, i.e., unification modulo the the-
ory of Boolean algebras or rings, has been consid-
ered by several authors [5,15,14]. On the one hand,
this problem is of interest for research in unifica-
tion theory since, unlike theories such as associativity-
commutativity, the theory of Boolean algebras is uni-
tary even for unification with constants (where the
terms to be unified may contain additional free con-
stant symbols). In addition, well-known results from
mathematics [2,13,17] can be used to compute the
most general unifier of a given (solvable) unifica-
tion problem. General Boolean unification (where the
terms to be unified may contain additional free func-
tion symbols) is still finitary, but no longer unitary
[18]. From a practical point of view, a Prolog system
enhanced by Boolean unification can, e.g., be used to
support hardware verification and design tasks {5,19].

* Partially supported by the EC Working Group CCL II.
! Email: baader@informatik.rwth-aachen.de.

0020-0190/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved.

PII: S0020-0190(98)00106-9

The emphasis in the work on Boolean unification
was on developing algorithms that compute a most
general unifier for unification problems with constants
[5,15,14], or finite complete sets of unifiers for gen-
eral unification problems [18,3]. Of course, such al-
gorithms can also be used to decide solvability of a
given unification problem. However, the complexity
of a decision procedure obtained this way need not be
optimal. In fact, to the best of our knowledge, the ex-
act complexity of the decision problem for Boolean
unification has only been proved for elementary uni-
fication, where it is easily seen to be NP-complete.
For unification with constants, H{ complexity is men-
tioned (without a complete proof) in [10].

In this research note, we will determine the com-
plexity of the decision problem for the following kinds
of Boolean unification problems: unification problems
with constants, unification problems with linear con-
stant restrictions (which were introduced in the con-
text of combination of unification algorithms {1]), and
general unification problems. To be more precise, we

J Autom Reasoning (2012) 48:363-390
DOI 10.1007/s10817-010-9201-2

E-unification with Constants vs. General E-unification

Jan Otop

Received: 8 November 2008 / Accepted: 8 August 2010 / Published online: 21 August 2010
© Springer Science+Business Media B.V. 2010

Abstract We present a solution to Problem #66 from the RTA open problem
list. The question is whether there exists an equational theory E such that E-
unification with constants is decidable but general E-unification is undecidable. The
answer is positive and we show such a theory. The problem has several equivalent
formulations, therefore the solution has many consequences. Our result also shows,
that there exist two theories E; and E, over disjoint signatures, such that Ei-
unification with constants and FE,-unification with constants are decidable, but
(Ey U Ej)-unification with constants is undecidable.

Keywords E-unification with constants - General E-unification -
Combination problem

1 Introduction

The aim of the combination problem for unification is to find a procedure which using
an E;-unification algorithm and an E;-unification algorithm constructs an (E; U E;)-
unification algorithm. The combination problem was intensively studied by many
researchers. The main question is which theories admit a combination procedure.
Many results were published for particular types of theories (simple, regular and
collapse free, etc.). These results are summarized in [6]. Schmidt-Schauss presented a
more general result in [12]. He has not restricted theories to have any particular type,
instead he showed that all equational theories E;, E, over disjoint signatures that
have decidable constant elimination problems admit a combination procedure. This
result was improved by Baader and Schulz in [3, 4]. They showed that all equational
theories E;, E, over disjoint signatures having decidable E;- and E,-unification

J. Otop (X))

Institute of Computer Science, University of Wroctaw,
ul. Joliot-Curie 15, 50-383, Wroctaw, Poland

e-mail: jotop@cs.uni.wroc.pl



Jacques Herbrand

sketched a unification algorithm akin to the
transformation-based algorithm by
Martelli-Montanari.

In the considered setting without Skolemization,
he would have actually needed

linear constant restrictions to express

the quantifier prefix.

Jae fues Hennraxo faun cenfre)

https://www.mathouriste.eu/Herbrand/Herbrand.html
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AC and friends

AC-unification (with constants) can be reduced to solving

linear diophantine equations, i.e., linear equations in the semi-

[Stickel; 1975]
ring of natural numbers.

[Livesey, Siekmann; 1975]

Term Rewriting
and All That

Franz Baader

Tobias Nipkow

Dresden © Franz Baader



AC and friends

AC-unification (with constants) can be reduced to solving
linear diophantine equations, i.e., linear equations in the semi- [Stickel; 1975]

ring of natural numbers. [Livesey, Sickmann; 1975]

Linear constant restrictions can easily be expressed by additional equations.

Can be generalized to the class of commutative/monoidal theories, [Baader; 1989]
where unification corresponds to solving linear equations in a [Nutt; 1990]

corresponding semiring. [Baader, Nutt; 1996]

Allows us to apply known approaches for solving equations from (computer)
algebra (ILP, Grobner bases, . ..) to decide unifiability and compute unifiers.

Dresden © Franz Baader
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Unification in Commutative Theories, Hilbert’s Basis
Theorem, and Grobner Bases

FRANZ BAADER

German Research Center for Artificial Intelligence (DFKI), Saarbriicken, Germany

Abstract. Unification in a communitative theory E may be reduced to solving linear equations in
the corresponding semiring S(E) [37]. The unification type of E can thus be characterized by
algebraic properties of S(E). The theory of Abelian groups with n commuting homomorphisms
corresponds to the semiring Z[ X|...., X, ]. Thus, Hilbert’s Basis Theorem can be used to show
that this theory is unitary. But this argument does not yield a unification algorithm. Linear
equations in Z[X,,.... X,] can be solved with the help of Gribner Basc methods, which thus
provide the desired algorithm. The theory of Abelian monoids with a homomorphism is of type
zero [4]. This can also be proved by using the fact that the corresponding semiring, namely N[.X],
is not Noetherian. Another example of a semiring (even ring) that is not Noctherian is the ring
Z{X|...., X,). where X|,....X, (n>1) are noncommuting indeterminates. This semiring
corresponds to the theory of Abelian groups with 7 noncommuting homomorphisms. Surprisingly,
by construction of a Grobner Base algorithm for right ideals in Z{X,.... X7, it can be shown
that this theory 1s unitary unifying.

Categories and Subject Descriptors: F.2.1 [Analysis of Algorithms and Problem Complexityl:
Numerical Algorithms and Problems—computations on polynonuals; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms and Problems—computations on discrete
structures; pattern matching; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical
Logic—mechanical theorem proving; 1.1.2 [Algebraic Manipulation]: Algorithms—algebraic algo-
rithms: 1.2.3 [Artificial Intelligence]: Deduction and Theorem Proving—resolution

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Equational reasoning, Grébner bases, unification

1. Introduction

E-unification is concerned with solving term equations modulo an equational
theory E. More formally, let E be an equational theory and = be the
equality of terms, induced by E. An E-unification problem I is a finite set of
equations (s, = t; 1 <i < n)z where s, and ¢, are terms. A substitution 6 is
called an E-unifier of I' iff 5,0 = 1,0 for each i,i = 1,...,n. The set of all
E-unifiers of I' is denoted by Ug(T).

This research was carried out while the author was a member of IMMD1, University of Erlangen.
Author’s address: German Research Center for Artificial Intelligence (DFKI), Stuhlsatzenhausweg
3. D-6600 Saarbriicken 11, Germany.

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwisc, or to republish, requires a fee and/or
specific permission.

© 1993 ACM 0004-5411 /93 /0700-0477 $01.50

Journal of the Association for Computing Machinery, Vol 40, No 3, July 1993, pp 477-503
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AC and friends

AC-unification (with constants) can be reduced to solving
linear diophantine equations, i.e., linear equations in the semi- [Stickel; 1975]

ring of natural numbers. [Livesey, Sickmann; 1975]

Linear constant restrictions can easily be expressed by additional equations.

Can be generalized to the class of commutative/monoidal theories, [Baader; 1989]
where unification corresponds to solving linear equations in a [Nutt; 1990]

corresponding semiring. [Baader, Nutt; 1996]

Allows us to apply known approaches for solving equations from (computer)
algebra (ILP, Grobner bases, .. .) to decide unifiability and compute unifiers.

Commutative/monoidal theories may still have unification type zero.

ACUIh

axiomatizes equivalence in the Description Logic F L.

Dresden © Franz Baader
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Terminological Cycles in KL-ONE-based Knowledge Representation
Languages!

F ranz Baader

German Research Center for Artificial Intelligence
Projektgruppe WINO, Postfach 2080
D-6750 Kaiserslautern, West Germany
baader@uklirb.uucp

Abstract
Cyclic definitions are often prohibited in terminological
juluwu:usc u:yu:)cjuauuu ;anguages because, from a
theoretical point of view, their semantics is not clear
and, from a practical point of view, existing inference
algorithms may go astray in the presence of cycies In

thic naner we chall concider terminalaoical cvuclec in a
s paper, we sinail consiger lerminoiogica: Cycies 1 a

very small KL-ONE-based language. For this language,
the effect of the three types of semantics introduced by

(Nebel 1987,1989,198%9a) can be completely described
with the help of finite antomata. These descriptions pro-
vide a rather intuitive understanding of termmologles
with cyclic definitions and give insight into the essen-
iial feaiures of the respeciive semantics. In addition, one
obtains algorithms and complexity results for subsump-
tion determination. As it stands, the greatest fixed-point

semantics comes off best. The characterization of this

' . .
semantics is easv and has an obhvious intuitive
semanlics 1s easy and nas an oobvicus ntuihwv

interpretation. Furthermore, important constructs — such
as value-restriction with respect to the transitive or

ICLICKIVﬂ‘IId.IlblLlVC: LiuSuu: Ul a IU.IC -— call Udblly UC:
expressed.

language. They proposed add cyclic definitions which
are inierpreied by leasi fixed-point semaniics. This was
i study of f:ypﬂ-nnmt

algo the startine noint for an
ng pomnt for ar

extensions of first-order logic (see e.g., (Gurewch &
Shelah 1986)).
A thorough investigation of cycles in terminological

(9313114

r]() lcuge GCercn[dl.lUﬂ ldngudgeb Cdan De lounu lll UNCUCI.
1987.1989 1989a). Nebel considered three different kinds

LI\J T9a 707y 7070 ) ANVUVE VVIAISAUVA VIS WAV WALAVA ViLL Dasiues

of semantics — namely, least fixed-point semantics,
greatest fixed-point semantics, and what he called descrip-
tive semantics — for cyclic definitions in his language
ACTF. Buti, due to the fact that this language is relatively

ctrnno hp does not nrn\nrln a deen Inmnhr lntn thp mean-
k’uvll& AW WBUWILD AR t} y

ing of cycles with respect to these three types of
semantics. For the two fixed-point semantics, Nebel ex-
plicates his point just with a few examples. The meaning

s 1

of uescripuve semantics — which, in Nebel’s opinion,
comes “closest to the intuitive understandine of termino-

WRURIIUDS WAUDVIIL LU WAV AL10WBALA VW WAiswR Suliaansaaa O Vi vvaRiaaa

logical cycles” ((Nebel 1989a), p. 124) — is treated more
thoroughly. But even in this case the results are not quite
satisfactory. For example, the decidability of subsumption

© Franz Baader



Description Logics Al that is explainable by design

Family of Knowledge Representaion languages of varying expressive power and

complexity of reasoning that are tailored towards certain application domains.

P — 2NExpTime Semantic Web
Mechanical Engineering

Chemical Process Engineering
Biology and Medicine

Dresden © Franz Baader



Description Logics Al that is explainable by design

Family of Knowledge Representaion languages of varying expressive power and

complexity of reasoning that are tailored towards certain application domains.

Decidable fragments of first-order logic often contained in the guarded fragment

or the two-variable fragment (with counting).

Explainable by design

e Entailments can in principle be explained using a proof
in an appropriated calculus.

DL entailments often need only a few axioms from the usually large KBs,

and mostly have rather small proofs.
Axiom Pinpointing

e Non-entailments can in principle be explained using a finite counter-model.

DLs often have the finite model property.

Dresden © Franz Baader



Explainable by dBSigIl in principle yes, but ...

DL proofs may still be too long or too complicated to be understood by

a (non-expert) user.

e How to compute “good” proofs? CADE 2021 / LPAR 2020
e How to visualize proofs? DL 2020 and VOILA 2020
e User studies XLoKR 2020

Generating large DL knowledge bases usually requires considerable
manual efforts by knowledge engineers and domain experts. Distel 2011

Borchmann 2014

e Generating DL KBs from finite interpretations Kriegel 2019

e Generating medical ontologies from text J. Biomedical Semantics, 2015

e Repairing DL KBs CADE 2021 ISWC 2020

JELIA 2019 KR 2018

Dresden © Franz Baader
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