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Ab s t r a c t  
Mos t of the  work on the  combina tion  of unifica tion a lgorithms  for the  union of 
dis joint e qua tiona l the orie s  ha s  be e n re s tric te d  to  a lgorithms  which compute  
finite  comple te  s e ts  of unifie rs . Thus  the  de ve lope d combina tion  me thods  us u- 
a lly ca nno t be  us e d to  combine  de cis ion proce dure s , i.e ., a lgorithms  which ju s t 
de cide  s olva bility of unifica tion proble ms  without computing  unifie rs . In  th is  
pa pe r we  de s cribe  a  combina tion  a lgorithm for de cis ion proce dure s  which works  
for a rb itra ry e qua tiona l the orie s , provide d th a t s olva bility of s o-ca lle d unifica - 
tion p rob le ms  with  cons ta n t re s tric tio n s --a  s light ge ne ra liza tion of unifica tion 
prob le ms  with  c o n s ta n ts --is  de cida ble  for the s e  the orie s . As  a  cons e que nce  
of this  ne w me thod , we  ca n  for e xa mple  s how th a t ge ne ra l A-unifia bflity, i.e ., 
s olva bility of A-unifica tion proble ms  with fre e  function s ymbols , is  de cida ble . 
He re  A s ta nds  for the  e qua tiona l the ory of one  a s s ocia tive  function s ymbol. 

Our me th o d  ca n a ls o be  us e d to  combine  a lgorithms  which compu te  finite  
comple te  s e ts  of unifie rs . Ma nfre d S chmidt-S cha utf combina tion  re s ult, the  
until now mos t ge ne ra l re s ult in th is  dire ction, ca n  be  ob ta ine d  a s  a  cons e que nce  
of th is  fa ct. We  a ls o ge t the  ne w re s ult th a t unifica tion in the  union o f dis joint 
e qua tiona l the orie s  is  finita ry, if ge ne ra l unifica tion--i.e .,  unifica tion of te rms  
with  a dditiona l fre e  function s ym b o ls --is  fin ita ry in the  s ingle  the orie s . 

1 In tro d u c tio n  

E -u n ific a tio n  is  c o n c e rn e d  with  s o lving  te rm  e q u a tio n s  m o d u lo  a n  e q u a tio n a l th e o ry 
E .  Th e  th e o ry is  ~ca lled "u n ita ry" (ffin ita ry")  if th e  s o lu tio n s  o f a  s ys te m  o f e q u a - 
tions  c a n  a lwa ys  b e  re p re s e n te d  b y one  (fin ite ly m a n y) s o lu tio n (s ).  O th e rwis e  th e  
th e o ry is  o f typ e  "in fin ita ry" o r "ze ro" (s e e  e .g ., [S i89,J K91] fo r a n  in tro d u c tio n  to  
u n ific a tio n  th e o ry).  E q u a tio n a l th e o rie s  which  a re  o f u n ific a tio n  typ e  u n ita ry o r fini- 
ta ry  p la y a n  im p o rta n t  r61e  in a u to m a te d  th e o re m  p ro ve rs  with  "b u ilt in" th e o rie s  
(s e e  e .g ., [P 172,S t85]), in  g e n e ra liz a tio n s  o f th e  Kn u th -Be n d ix a lg o rith m  (s e e  e .g., 
[J K8 6 ,S a 8 7 ]),  a n d  in  logic  p ro g ra m m in g  with  e q u a lity (s e e  e .g ., [J L84]). Th e  re a s o n  
is  th a t  th e s e  a p p lic a tio n s  u s u a lly re q u ire  a lg o rith m s  which  c o m p u te  fin ite  c o m p le te  
s e ts  o f un ifie rs ,  i.e ., fin ite  s e ts  o f un ifie rs  fro m  wh ich  a ll un ifie rs  c a n  b e  g e n e ra te d  
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Most of the work on the combination of unification algorithms for the union of disjoint
equational theories has been restricted to algorithms that compute finite complete sets
of unifiers. Thus the developed combination methods usually cannot be used to combine
decision procedures, i.e., algorithms that just decide solvability of unification problems
without computing unifiers. In this paper we describe a combination algorithm for de-
cision procedures that works for arbitrary equational theories, provided that solvability
of so-called unification problems with constant restrictions—a slight generalization of
unification problems with constants—is decidable for these theories. As a consequence
of this new method, we can, for example, show that general A-unifiability, i.e., solvability
of A-unification problems with free function symbols, is decidable. Here A stands for the
equational theory of one associative function symbol.

Our method can also be used to combine algorithms that compute finite complete
sets of unifiers. Manfred Schmidt-Schauß’ combination result, the until now most general
result in this direction, can be obtained as a consequence of this fact. We also obtain
the new result that unification in the union of disjoint equational theories is finitary, if
general unification—i.e., unification of terms with additional free function symbols—is
finitary in the single theories.

c∞ 1996 Academic Press Limited

1. Introduction

E-unification is concerned with solving term equations modulo an equational theory E.
The theory is called “unitary” (“finitary”) if the solutions of a system of equations can
always be represented by one (finitely many) solution(s). Otherwise the theory is of type
“infinitary” or “zero” [see e.g., Siekmann (1989); Jouannaud and Kirchner (1991); Baader
and Siekmann (1994) for an introduction to unification theory]. Equational theories of
unification type unitary or finitary play an important rôle in automated theorem provers
with “built in” theories (see e.g., Plotkin, 1972; Stickel, 1985), in generalizations of the
Knuth-Bendix algorithm (see e.g., Jouannaud and Kirchner, 1986; Bachmair, 1991), and
in logic programming with equality (see e.g., JaÆar et al., 1987). The reason is that

† E-mail: baader@informatik.rwth-aachen.de
‡ E-mail: schulz@cis.uni-muenchen.de

0747–7171/96/020211 + 33 $18.00/0 c∞ 1996 Academic Press Limited



© Franz BaaderDresden

     � �  � � �  �  

J. Symbolic Computation (1996) 21, 211–243

Unification in the Union of Disjoint Equational
Theories: Combining Decision Procedures

FRANZ BAADER† AND KLAUS U. SCHULZ‡

†LuFg Theoretical Computer Science, RWTH Aachen, Ahornstr.55, 52074 Aachen, Germany

‡CIS, University of Munich, Wagmüllerstr.23,80538 München, Germany

(Received 15 November 1993)

Most of the work on the combination of unification algorithms for the union of disjoint
equational theories has been restricted to algorithms that compute finite complete sets
of unifiers. Thus the developed combination methods usually cannot be used to combine
decision procedures, i.e., algorithms that just decide solvability of unification problems
without computing unifiers. In this paper we describe a combination algorithm for de-
cision procedures that works for arbitrary equational theories, provided that solvability
of so-called unification problems with constant restrictions—a slight generalization of
unification problems with constants—is decidable for these theories. As a consequence
of this new method, we can, for example, show that general A-unifiability, i.e., solvability
of A-unification problems with free function symbols, is decidable. Here A stands for the
equational theory of one associative function symbol.

Our method can also be used to combine algorithms that compute finite complete
sets of unifiers. Manfred Schmidt-Schauß’ combination result, the until now most general
result in this direction, can be obtained as a consequence of this fact. We also obtain
the new result that unification in the union of disjoint equational theories is finitary, if
general unification—i.e., unification of terms with additional free function symbols—is
finitary in the single theories.

c∞ 1996 Academic Press Limited

1. Introduction

E-unification is concerned with solving term equations modulo an equational theory E.
The theory is called “unitary” (“finitary”) if the solutions of a system of equations can
always be represented by one (finitely many) solution(s). Otherwise the theory is of type
“infinitary” or “zero” [see e.g., Siekmann (1989); Jouannaud and Kirchner (1991); Baader
and Siekmann (1994) for an introduction to unification theory]. Equational theories of
unification type unitary or finitary play an important rôle in automated theorem provers
with “built in” theories (see e.g., Plotkin, 1972; Stickel, 1985), in generalizations of the
Knuth-Bendix algorithm (see e.g., Jouannaud and Kirchner, 1986; Bachmair, 1991), and
in logic programming with equality (see e.g., JaÆar et al., 1987). The reason is that

† E-mail: baader@informatik.rwth-aachen.de
‡ E-mail: schulz@cis.uni-muenchen.de

0747–7171/96/020211 + 33 $18.00/0 c∞ 1996 Academic Press Limited



© Franz BaaderDresden

Information Processing Letters  67 (1998) 215-220 

On the  complexity of Boolean unifica tion 

Franz Baader *9 ’ 
LuFg Theoretical Computer Science, RWTH Aachen, AhornstraJe 55, 52074 Aachen, Ge-y 

Received 11 June 1997 
Communicated by H. Ganzinger 

Abstract 

Unification modulo the theory of Boolean a lgebras  has  been investigated by several autors . Nevertheless , the exact complexity 
of the decision problem for unifica tion with constants  and general unifica tion was not known. In this  research note , we show tha t 
the decision problem is  L$-complete  for unifica tion with constants  and PSPACE-complete  for general unifica tion. In contras t, 
the decision problem for e lementary unifica tion (where the terms to be unified contain only symbols of the s ignature  of Boolean 
a lgebras) is  “only” NP-complete . 0 1998 Elsevier Science B.V. All rights  reserved. 

Keywords: Computational complexity; Automatic theorem proving 

1. Introduction 

Boolean unification, i.e ., unification modulo the  the- 
ory of Boolean a lgebras  or rings, has  been consid- 
e red by several authors  [5,15,14]. On the  one hand, 
this  problem is  of interest for research in unifica- 
tion theory s ince, unlike theories  such as  associativity- 
commutativity, the  theory of Boolean a lgebras  is  uni- 
ta ry even for unification with constants  (where  the  
te rms to be unified may contain additional free  con- 
s tant symbols). In addition, well-known results  from 
mathematics  [2,13,17] can be used to compute  the  
most general unifier of a  given (solvable) unifica- 
tion problem. General Boolean unification (where  the  
te rms to be unified may contain additional free  func- 
tion symbols) is  s till finitary, but no longer unitary 
[181. From a  practica l point of view, a  Prolog system 
enhanced by Boolean unification can, e .g., be used to 
support hardware  verification and design tasks  [5,19]. 

* Partially supported by the  EC Working Group CCL II. 
1 Email: baader@informatik.rwth-aachen.de. 

OO20-0190/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved. 
P II: SOOZO-0190(98)00106-9 

The emphasis  in the  work on Boolean unification 
was  on developing a lgorithms tha t compute  a  most 
general unifier for unification problems with constants  
[5,15,14], or finite complete  se ts  of unifiers  for gen- 
era l unification problems [18,3]. Of course , such al- 
gorithms can a lso be used to decide  solvability of a  
given unification problem. However, the  complexity 
of a  decision procedure  obtained this  way need not be 
optimal. In fact, to the  bes t of our knowledge, the  ex- 
act complexity of the  decision problem for Boolean 
unification has  only been proved for elementary uni- 
fication, where  it is  easily seen to be NP-complete . 
For unification with constants , l7: complexity is  men- 
tioned (without a  complete  proof) in [ 101. 

In this  research note , we  will determine the  com- 
plexity of the  decision problem for the  following kinds 
of Boolean unification problems: unification problems 
with constants , unification problems with linear con- 
s tant res trictions  (which were  introduced in the  con- 
text of combination of unification a lgorithms [l]), and 
general unification problems. To be more  precise , we  

J Autom Reasoning (2012) 48:363–390
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E-unification with Constants vs. General E-unification
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Abstract We present a solution to Problem #66 from the RTA open problem
list. The question is whether there exists an equational theory E such that E-
unification with constants is decidable but general E-unification is undecidable. The
answer is positive and we show such a theory. The problem has several equivalent
formulations, therefore the solution has many consequences. Our result also shows,
that there exist two theories E1 and E2 over disjoint signatures, such that E1-
unification with constants and E2-unification with constants are decidable, but
(E1 ∪ E2)-unification with constants is undecidable.

Keywords E-unification with constants · General E-unification ·
Combination problem

1 Introduction

The aim of the combination problem for unification is to find a procedure which using
an E1-unification algorithm and an E2-unification algorithm constructs an (E1 ∪ E2)-
unification algorithm. The combination problem was intensively studied by many
researchers. The main question is which theories admit a combination procedure.
Many results were published for particular types of theories (simple, regular and
collapse free, etc.). These results are summarized in [6]. Schmidt-Schauss presented a
more general result in [12]. He has not restricted theories to have any particular type,
instead he showed that all equational theories E1, E2 over disjoint signatures that
have decidable constant elimination problems admit a combination procedure. This
result was improved by Baader and Schulz in [3, 4]. They showed that all equational
theories E1, E2 over disjoint signatures having decidable E1- and E2-unification

J. Otop (B)
Institute of Computer Science, University of Wrocław,
ul. Joliot-Curie 15, 50-383, Wrocław, Poland
e-mail: jotop@cs.uni.wroc.pl
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Unification in Commutative Theories, Hilbert’s Basis

Theorem, and Grobner Bases
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German Rcserrrch Cetztc,rf(]r .4rtificiu11ntc,l[lgetzce (DFA’1), Saarbriickctz, Gcrrrurny

Abstract. Unification in acommunitativc theory Emaybereduced tosolving linear equations in
the corresponding semiring S(E) [37]. The unification type of E can thus be characterized by
algebraic properties of S(E). The theory of Abelian groups with n commuting homomorphisms
corresponds to the semiring ZIXI, ..., x,,]. Thus, Hilbert’s Basis Theorem can bc used to show
that this theory is unitary. But this argument does not yield a unification algorithm. Linear
equations in ZIXI, . . . . x,, ] can be solved with the help of Griibner Base methods, which thus
prowdethe desired algorithm. The theory of Abelian monoids with a homomorphism is of type
zero [4]. This can also be proved by using the Pact that the corresponding semiring, namely N[ x],
is not Noetherian. Another example of a semiring (even ring) that is not Noctherian is the ring
Z(x, . . . . . X,,), where X,, . . .. X.. (n > 1) are noncommuting indeterminatcs. This semirmg
corresponds tothetheory of Abelian groups with n noncommuting homomorphisms. Surprisingly,
by construction of a Grobner Base algorithm for right ideals in Z(X1, . . .. X..), it can be shown
that this theory N unitary unifying.

Categories and Subject Descriptors: F.2. 1 [Analysis of Algorithms and Problem Complexity]:
Numerical Algorithms and Problems—co~npt~tattons on polymmuak; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms and Problems—computati~]/l.s on discrete
structures; pattern matching; F.4. 1 [Mathematical Logic and Formal Languages]: Mathematical
Logic—mechanical theorem pro~,ing; I. 1.2 [Algebraic Manipulation]: Algorithms—algebratc algo-
nthrns; 1.2.3 [Artificial Intelligence]: Deduction and Theorem Proving—resolution

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Equational reasoning, Grobner bases, unification

1. Introduction

E-unification is concerned with solving term equations modulo an equational
theory E. More formally, let E be an equational theory and =~ be the
equality of terms, induced by E. An E-unification problem r is a finite set of
equations (s, = t,;1 s i s n )E where s, and t,are terms. A substitution 0 is
called an E-unifier of r iff s, 6 =~ fi 8 for each i, i = 1, ..., n. The set of all
E-unifiers of r is denoted by 11~(r).

This research was carried out while the author was a member of IMMD1, University of Erlangen.
Author’s address: German Research Center for Artificial Intelligence (DFKI), Stuhlsatzenhausweg
3. D-6600 Saarbriicken 11, Germany.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy othawisu, or to republish, requires a fee and/or
specific permission.
0 1993 ACM 0004-541 l\93\0700-0477 $01.50

Journal of the As.ocldt~cm for Comput,ng M.chmery, Vol 40, No 3, July 1993, pp 477-5(13
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Abstract 
Cyclic definitions are often prohibited in terminological 
knowledge representation languages because, from a 
theoretical point of view, their semantics is not clear 
and, from a practical point of view, existing inference 
algorithms may go astray in the presence of cycles. In 
this paper, we shall consider terminological cycles in a 
very small KL-ONE-based language. For this language, 
the effect of the three types of semantics introduced by 
(Nebel 1987,1989,1989a) can be completely described 
with the help of finite automata. These descriptions pro- 
vide a rather intuitive understanding of terminologies 
with cyclic definitions and give insight into the essen- 
tial features of the respective semantics. In addition, one 
obtains algorithms and complexity results for subsump- 
tion determination. As it stands, the greatest fixed-point 
semantics comes off best. The characterization of this 
semantics is easy and has an obvious intuitive 
interpretation. Furthermore, important constructs - such 
as value-restriction with respect to the transitive or 
reflexive-transitive closure of a role - can easily be 
expressed. 

1. Introduction 
Cyclic definitions are prohibited in most terminological 
knowledge representation languages (e.g., in KRYPTON 
(Brachman et al. 1985), NIKL (Kaczmarek et al. 1986), or 
LOOM (MacGregor & Bates 1987)) for the following rea- 
sons. From a theoretical point of view, it is not obvious 
how to define the semantics of terminological cycles. But 
even if we have fixed a semantics it is not easy to obtain 
the corresponding inference algorithms. 

On the other hand, cyclic definitions may be very useful 
and intuitive, e.g., if we want to express the transitive 
closure of roles (i.e., binary relations). For a role child, 
value-restrictions with respect to its transitive closure off- 
spring can be expressed by cyclic concept definitions if we 
take the appropriate semantics. For the same reason, recur- 
sive axioms are considered in database research (see e.g., 
(Aho & Ullman 1979), (Immerman 1982), (Vardi 1982), 
and (Vielle 1989)). Aho and Ullman have shown that the 
transitive closure of relations cannot be expressed in the 
relational calculus, which is a standard relational query 

1. This work was supported by the German “Bundesministe- 
rium ftir Forschung und Technologie” under Grant ITW 8903 0. 

language. They proposed to add cyclic definitions which 
are interpreted by least fixed-point semantics. This was 
also the starting point for an extensive study of fixed-point 
extensions of first-order logic (see e.g., (Gurevich & 
S helah 1986)). 

A thorough investigation of cycles in terminological 
knowledge representation languages can be found in (Nebel 
1987,1989,1989a). Nebel considered three different kinds 
of semantics - namely, least fixed-point semantics, 
greatest fixed-point semantics, and what he called descrip- 
tive semantics - for cyclic definitions in his language 
5@” But, due to the fact that this language is relatively 
strong2, he does not provide a deep insight into the mcan- 
ing of cycles with respect to these three types of 
semantics. For the two fixed-point semantics, Nebel ex- 
plicates his point just with a few examples. The meaning 
of descriptive semantics - which, in Nebel’s opinion, 
comes “closest to the intuitive understanding of termino- 
logical cycles” ((Nebel 1989a), p. 124) - is treated more 
thoroughly. But even in this case the results are not quite 
satisfactory. For example, the de&ability of subsumption 
determination is proved by an argument3 which cannot be 
used to derive a practical algorithm, and which does not 
give insight into the reason why one concept defined by 
some cyclic definition subsumes another one. 

Before we can determine what kind of semantics is most 
appropriate for terminological cycles, we should get a bet- 
ter understanding of their meaning. The same argument 
applies to the decision whether to allow or disallow 
cycles. Even if cycles are prohibited, this should not just 
be done because one does not know what they mean and 
how they can be handled. 

In this paper, we shall consider terminological cycles in 
a very small KL-ONE-based language which allows only 
concept conjunction and value-restrictions. For this lan- 
guage the effect of the three above mentioned types of 
semantics can be completely described with the help of 
finite automata. These descriptions provide a rather intu- 

2. The language allows concept and role conjunction, value- 
restrictions, number-restrictions and negation of primitive 
concepts. 
3. Roughly speaking, the argument says that it is sufficient to 
consider only finite interpretations to determine subsumption 
relations. 

BAADER 621 
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