
I want to thank Alan Bundy and his group for hosting this conference, and the
Herbrand award committee and Maria Paola for selecting me for this award.
This award means a lot to me. Thanks to the Herbrand award committee for
their work, and thanks also to those who supported me in this award.

Perhaps some historical reflections from early in my career would be appropriate.
At that time, resolution had been developed about five years before, and the
Knuth-Bendix procedure was new. Termination proofs for rewriting systems
were in their infancy. Lipton and Snyder (On the Halting of Tree Replacement
Systems, 1977) had an ordering that could prove termination of the
distributive law, but not in combination with other common equations.
Renato Iturriaga in his 1967 Ph.D. thesis at Carnegie-Mellon had a technique
involving arithmetic and repeated exponentiation that could handle rules
similar to those dealt with by the recursive path ordering, but only a small
number of them. Each ordering had to be proved terminating by special
methods.

I think it was Dave Luckham at Stanford who expressed the view that there
might be better methods for dealing with equational systems. I started
looking into this area, and was making progress towards something like
unfailing completion, which did not come on the scene until much later.
However, a departmental report by Dallas Lankford of Louisiana Tech arrived
at about that time, and he had apparently already developed an unfailing
completion method and proved it complete. He said the completeness proof
would appear in the next technical report. It never appeared, and he never
completed the proof, but this report discouraged me from continuing in this
line of research. I should have contacted him to find out more information,
and collaborate with him, but did not have the maturity to know how to
handle the situation properly. This is the characteristic of youth, full of
ambition and energy and brilliant of intellect, but lacking in maturity. And if
we of greater maturity had to do it over again, we might not do things as
well as we did the first time.

I got a job at the University of Illinois and became interested in termination
of rewriting. I developed something called the path of subterms ordering,
and published it in an Illinois departmental report. It was similar to the
recursive path ordering that Dershowitz developed soon afterwards, but was
more complex. It involved multisets and partial orderings on symbols, as did
most of the later orderings. Nachum saw what I was doing and it motivated
him to develop the well-known recursive path ordering. He also developed a
general technique for proving termination of term-rewriting systems. I even

remember him trying to find this termination method, and he was asking me
questions that I could not answer. Dave Liu at Illinois was able to answer
some of his questions. It was a brilliant insight of Nachum that such a
general termination technique might exist. He was basically trying to prove
Kruskal’s tree theorem. Later he found that the termination method he was
seeking was already known, and he was able to apply this to show that all
simplification orderings are well-founded.

I submitted my departmental reports to the J.ACM. Unfortunately, I did not
reference people who were in the proper community, and this led to
problems in the refereeing. My department chair, Jim Snyder, implied that
one of the referees of my reports committed suicide. This delayed the
refereeing process, and by the time my papers were read, Nachum’s
recursive path ordering had already been published, and my submissions
were rejected. When I explained the situation to the editors of J.ACM, they
apparently felt bad and offered to have me write a report for the J.ACM on
the uses of term-rewriting systems. However, as another illustration of
youthful immaturity, I did not do it. I should have asked Nachum to co-
author it with me. At the time I was concentrating on NP-completeness,
algorithms, and complexity research.

Claude Kirchner saw my Illinois departmental reports on the path of
subterms ordering. He did not look at the proofs but just looked at the
examples. This is what led him to become interested in the area of term
rewriting systems. Pierre Lescanne was also motivated by this work to
develop his recursive decomposition ordering. Since then Pierre has done a
tremendous amount of high-quality work in various formal areas.

At the time Sam Kamin was at Illinois and Kamin and Levy wrote their
amazing hand-written report on the lexicographic path ordering, which has
had tremendous influence.

One of my main interests in theorem proving became the study of the
general first-order inference problem, focusing on developing the knowledge
needed to implement uniform proof procedures for first-order logic. I thought
that a backward chaining strategy, somewhat like Loveland’s Model
Elimination, would work well, but then someone showed me the x^2 = e
implies commutativity group problem, on which a backward chaining prover
can be cumbersome. This showed me the need for a different approach. I
looked at forward chaining, but then found a problem that was
propositionally simple but on which a forward chaining prover started

combining a small number of literals in numerous ways and generated a
large search space. Then I thought that the non-Horn property was the
problem, and tried to deal with the non-Horn aspects of first-order logic by
case analysis, leading to the simplified and modified problem reduction
formats. However, this approach also seemed unsatisfying and I decided
that the Horn property was not essential, but what was needed was
propositional efficiency like the DPLL method in first-order logic. This led to a
focus on instance-based methods, starting with clause linking, then hyper-
linking, semantic hyper-linking, and ordered semantic hyper-linking. The
clause linking work led to the disconnection method of Billon and eventually
to the disconnection calculus theorem prover of Letz and Stenz, a substantial
theorem prover. Others such as Peter Baumgartner, Harald Ganzinger,
Konstantin Korovin (with iProver), Koen Claessen (with Equinox), Uwe
Waldmann, Chris Lynch, and others later became interested in instance-
based strategies, and instance-based provers are becoming more powerful.
Currently, however, the Vampire prover of Voronkov, Riazanov and Hoder still
seems to be the most powerful prover overall. It will be interesting to see
how instance-based and resolution-based approaches compare when
instance-based methods are engineered as well as Vampire and have the
best methods for equality.

It may be worthwhile to speculate on the degree to which theorem provers
are becoming better, and how we might analyze this theoretically. Are we
obtaining more theorems because of better engineering, better methods, or
more provers? What will it take before theorem provers have wide
applicability and attract substantial funding from industry? Of course already
we see some applications of provers, such as the inclusion of Waldmeister in
Wolfram’s Mathematica, and the use of provers in hardware and software
verification. Can we develop a theoretical framework for comparing provers
asymptotically? Historically, logicians have looked at proof length, but what
is more important for us is the total search space size. Perhaps more work
needs to be done giving a machine-independent, asymptotic analysis of the
size of the total search space, but this depends on the search strategy. This
was the object of my book with Yunshan Zhu on the efficiency of theorem
proving strategies. One thing to keep in mind is that the best prover
strategies for computers may not be the same as the best strategies used by
humans; this is the case, for example, in computer chess.

We really are standing on the shoulders of giants in this field. Frege and
others developed first-order logic, and Herbrand developed the foundations
of uniform proof procedures. Zermelo-Fraenkel set theory was developed.

Hilbert proposed a universal proof procedure for mathematics, which Goedel
showed was not possible. Church and Turing developed the idea of effective
computability, from which the concept of undecidability arises. Gilmore had
an early instance-based method, not based on clause form. Martin Davis
applied clause form to computer theorem proving. Robinson developed
unification and resolution. Later the DPLL method, which has had
tremendous influence, was developed. We now understand NP-
completeness, and that propositional satisfiability is NP-complete. Knuth (and
others) founded completion methods, and since this work the field has
developed and flowered in many ways. We now have AC unification and AC
completion, for example. And the dependency pair method of Arts and Giesl
has become a highly refined method of proving termination, which can often
produce very long proofs. We take many things for granted that arose from
the hard work and brilliant insights of many predecessors. However, the field
of theorem proving has not yet reached its full potential, by any means, and
we do not know at this point exactly how this can occur. On hard problems,
automated provers still cannot compete with human mathematicians except
in very rare instances like the Robbins problem. We still do not understand
exactly what is going on in the mind of a mathematician during theorem
proving.

As for applications of provers, perhaps provers can contribute more to
computer science in the area of software engineering and logic
programming. It may be desirable to have a closer integration of
computation and inference. For example, when a program functions
incorrectly now, one often obtains mysterious error messages. It would be
better if the program could explain why it did what it did. Integrating
computation and inference could also improve program reliability and
programmer productivity. Of course, I am only repeating ideas that many
others understand very well and promote.

Other promising areas for research are the design of languages for the
implementation of theorem provers, and the development of methods for
comparing theorem proving strategies independent of how well engineered
they are.

Already theorem provers are finding many applications, such as the use of
Waldmeister in Wolfram’s Mathematica. As another example, an article
“Automated Termination Proofs for Logic Programs by Term Rewriting”
appeared in the October, 2009 issue of ACM Transactions on Computational
Logic; this article applies term-rewriting termination techniques to

termination of logic programs. These developments are encouraging for our
field.

As advice to young researchers, I want to close by encouraging in you a love
of perfection and a love of excellence. We all know that our papers should
be correct and of high quality, but is this knowledge only in our head, or also
in our heart? It is better for the love of perfection to be in our heart. We
may need to proofread our papers multiple times to make them as nearly
perfect as possible. I have not always followed this practice myself, but I
was able to instill this love in my student, and he has begun getting more
acceptances as a result. Every symbol in our papers should be as correct,
clear, and concise as possible.

Thank you for the chance to share some of my accumulated experiences in
this brief talk. This is a tremendously exciting area to be in, one that I have
always felt is crucial for computer science. I wish you all the best in the
exciting and challenging times ahead.

