
Figure 0. A single q3osc performer surrounded by a sphere of rotating particles assigned homing
behaviors, each constantly reporting coordinates to an external sound-server with OSC.

Q3OSC OR: HOW I LEARNED TO STOP WORRYING
AND LOVE THE BOMB GAME

Robert Hamilton
Center for Computer Research in Music and Acoustics (CCRMA)

Department of Music
Stanford University

rob@ccrma.stanford.edu
http://ccrma.stanford.edu/∼rob

ABSTRACT

q3osc is a heavily modified version of the open-sourced
ioquake3 gaming engine featuring an integrated Oscpack
implementation of Open Sound Control for bi-directional
communication between a game server and one or more
external audio servers. By combining ioquake3’s internal
physics engine and robust multiplayer network code with
a full-featured OSC packet manipulation library, the vir-
tual actions and motions of game clients and previously
one-dimensional in-game weapon projectiles can be re-
purposed as independent and behavior-driven OSC emit-
ting sound-objects for real-time networked performance
and spatialization within a multi-channel audio environ-
ment. This paper details the technical and aesthetic de-
cisions made during the development and initial imple-
mentations of q3osc and introduces specific mapping and
spatialization paradigms currently in use for sonification.

1. INTRODUCTION

Virtual environments in popular three-dimensional video
games can offer game-players an immersive multimedia
experience within which performative aspects of game-
play can and often do rival the most enactive and expres-
sive gestural attributes of instrumental musical performance.
Control systems for moving client avatars through ren-
dered graphic environments (commonly designed for joy-
sticks, gamepads, computer keyboards and mice or any
such combination) place a large number of essentially pre-
composed in-game functions, gestures and movements at
a gamer’s fingertips, available for improvisatory use. With
the advent of easily-accessible fast wired and wireless net-
works, the focus of computer-based game-play has shifted
from predominantly solitary modalities of play towards a
peer-oriented and communal gaming experience.

Dynamic relationships between game-users and their
peers - both virtual and physical - have shifted in kind,
bolstered by massive online communities and expansive
game-worlds designed and developed with multi-user col-
laborative or combative play in mind. Much like tradi-
tional collaborative musical performance, many networked
interactive game environments allow participants to affect
the experiences of other participants in (hopefully) posi-
tive or (potentially) negative manners.

q3osc is a musical and visual performance environ-
ment which makes use of these paradigms of communal
networked conflict and collaboration to re-purpose virtual
entities and traditional game control methodologies into
agents and actions capable of affecting musical response
in physical auditory space. By extending the source-code
of a multi-user video game engine to include Open Sound
Control [25] input and output libraries, data from within
a game-engine’s virtual environment can be encapsulated
and transmitted to one or more external sound-servers with
the intent of sonifying virtual gesture and motion into a
musically rich and satisfying aural experience. In turn,
data generated by external performative controllers, po-
tentially extracted from the auditory environment or gen-
erated using algorithmic processes can be routed back into
the virtual environment as control data for the modifica-
tion of environment parameters and the control of individ-
ual game entities.

Custom modifications made to traditional game ele-
ments such as the targeting methods of “weapon” pro-
jectiles and global world-level variables such as gravity
and avatar speed allow for striking and dynamic change in
the visual and performative characteristics of both client
behaviors and the virtual environment itself. By empow-
ering game-players with the ability through gesture and
motion to generate complex evolving visual and musical
structures, relatively simple modifications in pre-existing
game code can have profound and far-reaching musical
and performative effects.

In its initial realization, q3osc has been used to build in-
teractive networked multi-user performance environments
for the Stanford Laptop Orchestra (SLOrk) [20], making
use of a set of 20 networked laptops, each projecting sound
from a six-channel hemispherical speaker. By correlating
the placement of physical laptop stations in a performance
space with the placement of representative speaker avatars
in virtual space, an immersive spatialized performance en-
vironment can be created, where performers move freely
through virtual space, projecting sound-events across the
ensemble’s dispersed speaker field.

2. BACKGROUND

q3osc is based on the open-sourced code-base of the wildly
successful Quake 3 Arena by id Software [9], one of the
most commercially successful and widely played FPS or
“First-Person Shooter” video games of modern times. In
Quake 3 Arena, game players control a futuristic gladiator-
like warrior fighting with other players connected over

the internet in three-dimensionally rendered graphic en-
vironments. Initially released as a commercial product in
December of 1999, Quake 3 Arena used a client-server
architecture with a significant amount of server-side pre-
diction to allow players from across the world to join to-
gether in fast-moving virtual combat environments which
themselves could be created and modified by members of
the gaming community. Following continued research by
id Software into more realistic and technically-advanced
gaming engines, the Quake 3 source-code was released
under the GNU GPL in August 2005, providing game-
developers and “modders” an invaluable tool for the cre-
ation of new gaming platforms and virtual environments
of all shapes and sizes. Development of the open-source
Quake 3 engine has continued under a community-driven
effort know as ioquake3 [10].

3. RELATED WORK

q3osc’s use of visual environments both as representative
models of physical acoustic spaces and also as virtual in-
terfaces for the control and display of musical data has
been directly influenced by works from both the gam-
ing and computer-music communities. Muench and Fu-
rukawa’s two-dimensional small fish [4] makes use of
bouncing projectiles and their subsequent collisions with
virtual entities as midi-triggering controllers for the dy-
namic creation of musical patterns and forms. Oliver and
Pickles’ ioquake3/Pure-Data (PD) [16] modification q3apd
[15] made use of PD’s string-based FUDI protocol to ex-
port game parameters to a Pure-Data sound-server. The
real-time visualizations of ChucK [21] processes displayed
by Wang and Cook’s Audicle [24], as well as game-based
Audicle interfaces like ChucK-ChucK Rocket respectively
use three-dimensional graphical environments and features
extracted from game-play to both represent and sonify
virtual actions. In addition, this author’s ioquake3-based
work maps and legends [5] made use of q3apd and Pure
Data to build virtual compositional maps within which
game-players’ motions triggered sonic events and controlled
spatialization within an eight-channel environment.

small_fish

q3apdmaps and legends

the Audicle

Figure 1. Interactive graphic environments used as gener-
ative systems for musical output.

SoundWIRE

PLOrkThe Hub

Figure 2. Networked ensemble projects including per-
formers in local as well as remote locations.

q3osc’s goal of creating multi-user networked musical
environments draws inspiration from a rich history of the
use of WAN and LAN computer networks for collabora-
tive performance. Early networked performances by The
Hub [26] stand out as rich examples of the complex mu-
sical constructs formed through communal composition,
improvisation and performance. Stanford’s SoundWIRE
group [2] and their networked concert performances with
the ensembles Tintinnabulate at RPI (NY) and VistaMuse
at UCSD, as well as with performers at Beijing Univer-
sity in 2008’s “Pacific Rim of Wire” concert [8], utilizes
multiple channels of uncompressed streaming audio over
its JackTrip software to superimpose performance ensem-
bles and spaces alike. And both the Princeton Soundlab’s
Princeton Laptop Orchestra (PLOrk) [19] as well as the
SLOrk have displayed the powerful possibilities of collab-
orative networked compositional form using distributed
point-source spatialization.

4. SYSTEM OVERVIEW

q3osc consists of a heavily modified or “modded” version
of the open-source ioquake3 project which tracks vari-
ous in-game actions and attributes and exports their val-
ues to one or more OSC client sound-servers for sonifica-
tion and spatialization. As local or remote clients run-
ning the standard and freely-downloadable open-source
ioquake3 software connect to a game-server via LAN or
WAN network connections and move their avatars through
the fully-rendered three-dimensional environment, each
client’s local software communicates its position and any
commands received from the player’s control system to
the game-server for coordination with other connected
clients. Data extracted from the game-server representing
client actions and motions, as well as coordinates repre-
senting the paths of fired projectiles is output using OSC
to one or more sound-servers. While the game-server it-
self runs highly customized code currently compiled only
for Linux, one great advantage of q3osc is that any stan-
dard ioquake3 client running any operating system can

connect to the server without any additional software other
than the currently loaded map data file. q3osc output can
be sent to a single multi-channel sound-server (where spa-
tialization across a speaker array is handled in software)
or to a series of distributed sound-servers, such as found
in a laptop orchestra, each connected to a single point-
source speaker. Sound servers used with q3osc can be
written in any interactive musical programming language
that supports the input and output of OSC messages or
bundles including but not limited to ChucK, SuperCollider
[14], Max/MSP [13] and PD. Currently under develop-
ment is an additional layer of communication in which one
or multiple sound-servers output OSC messages back into
the game environment to control or modify entity, client
or environment behaviors.

5. IOQUAKE3 MODIFICATIONS

The task of transforming a game-platform such as ioquake3
from a virtual arena for indiscriminate “deathmatch”-style
combat into an abstract musical playground began with el-
ements of FPS gameplay which could be seen as corollar-
ies to musical or spatial gesture: in particular the move-
ments of game-players and the projectiles they fired. In
q3osc, the major efforts of game-code modification have
focused on support for the output and input of OSC mes-
sages and bundles, modified behaviors and controls to
weapon projectiles, and the abilities of game-clients to af-
fect system-state and environment parameters.

5.1. Open Sound Control Integration

q3osc makes use of the Oscpack [1] C++ implementation
of Open Sound Control by compiling the Oscpack source-
code directly into the ioquake3 C-based project and call-
ing OSC output methods from a number of game-server
classes to track changes in position and state for game-
clients and entities as well as changes to the game-
environment itself. To facilitate linking between Oscpack’s
C++ classes and ioquake3’s C classes, exposed methods in
Oscpack are wrapped in “extern C{}” statements to allow
the entire project to be compiled using a modified version
of the ioquake3 Makefile calling the gcc compiler. q3osc
currently features OSC output of client and entity posi-
tions and states, support for multiple OSC output destina-
tions (both multiple IP addresses and Ports), and a limited
use of OSC input to control entity and environment char-
acteristics.

5.1.1. Osc Output

In the ioquake3 client-server model, there exist methods
called for each instantiated individual game-client and mov-
ing entity, triggered by the game server for each rendered
frame to calculate and adjust client or entity motion vec-
tors given commands made by the client or calculated by
the server. By passing data to a custom OSC bundle and
message formatting class, a stream of data representing
constantly changing client or entity position or state can be

ChucK

q3osc

3-D virtual

game-space
multi-channel

auditory space

Figure 3. Bi-directional communication between game-
server and sound-server allows for close correlation be-
tween elements in both the virtual/visual environment and
the physical/auditory environments.

formatted either as OSC bundles or messages and routed
to one or more OSC clients listening on designated IP
and Port addresses. As ioquake3 makes use of persistant
data structures to store information about client-state, a
number of client-state parameters (such as client-view an-
gle, three-dimensional velocity or selected weapon) are
exposed and can be output using OSC as well.

To facilitate the reading of q3osc OSC output by any
standard OSC client, the q3osc output can be toggled be-
tween OSC bundle and message formats using in-game
console flags. OSC output tracking an individual plasma-
bolt’s current owner or the client which fired the projectile
(/ownernum). unique projectile id (/projectilenum), X, Y,
and Z coordinate position (/origin), whether this message
signifies a bounce-event (/bounce), and whether this mes-
sage signifies the destruction of this particular game-entity
(/explode) is represented below, first as an OSC bundle,
and second as a single-line OSC message.

[/classname "plasma"
/ownernum 0
/projectilenum 84
/origin 102.030594 2550.875000 -2333.863281
/bounce 1
/explode 0]

/projectile "plasma" 0 84 102.030594 2550.875000
-2333.863281 1 0

5.1.2. Multiple OSC Output Streams

The ability to stream q3osc’s output OSC data to multiple
sound-servers affords users the choice to expand beyond
single sound-server architectures, allowing both the use
of distributed client sound-server environments as used
with the Stanford Laptop Orchestra as well as the ability
to load-balance the potentially large number and rapid-
rate of OSC streams across multiple parallel or redundant
sound servers. q3osc allows developers the choice of rout-
ing individual client data streams to one or more speci-
fied servers as well as the choice of routing all osc data
to all specified IP addresses; at this time q3osc has been
run successfully with as many as twenty distributed sound
servers across local networks. In a mapping schema where

each projectile entity fired in virtual space can result in
the dynamic instantiation of a potentially complex and
processor-intensive sound-object spatialized across an ar-
ray of real-world speaker locations, load-balancing greatly
decreases the possibility of audio drop-outs, distortions or
clicks generated by an overloaded audio-server. In this
manner, multiple sound-servers running different audio
softwares can be utilized together with little-to-no added
complexity. Additionally, the ability to route all OSC out-
put to any number of IP addresses allows geographically
distributed clients across over WAN networks to each si-
multaneously replicate a shared audio environment in mul-
tiple locations.

5.1.3. Osc Input

One extremely powerful feature of OSC integration into
the game-engine currently under development is the abil-
ity to use external OSC sending-servers to control in-game
entity motions and environment states by sending control
messages back into the game-engine. By allowing an ex-
ternal sound-server to communicate changes in the real-
world auditory environment to the game engine, a more
complex synergy between environments can be achieved.
For example, by creating an inverse correlation between
amplitude generated by a real-world sound-server and the
speed at which projectiles can move in the virtual-world,
a strong sense of relation is formed between virtual and

q3osc

3-D virtual

game-space

multi-channel

auditory space

Pure-Data

SuperCollider

ChucK

Figure 4. Multiple OSC output streams allow for the si-
multaneous use of multiple sound-servers utilizing various
software languages such as ChucK, PD, SuperCollider or
Max/MSP. Q3osc can receive OSC messages on multiple
ports allowing for multi-sourced OSC input as well.

physical space. In a more complex example, algorithmic
patterns of motion controlling X, Y, and Z coordinates
for in-game projectiles can be used to implement inde-
pendent swarming or flocking behaviors or other strongly
patterned group behaviors and causal relationships [3].

5.2. Projectile Behaviors and Controls

The use of in-game weapon projectiles as controllable or
behaviored entities, each generating their own individual
OSC output stream of data representing coordinate posi-
tion, velocity and other attributes has been achieved by
modifying existing code within the game-engine as well
as through the creation of several new methods for ef-
fecting physics-based changes on entity behaviors. In this
manner, not only does a weapon projectile like the “plasma-
bolt” - a visually striking blue ball of energy - output its
current X, Y, and Z coordinates as OSC messages, but
such projectiles also exhibit behaviors such as the ability
to bounce off walls (instead of being destroyed by contact
with environment surfaces) or the ability to be attracted to
individual game-clients as “homing” projectiles.

While in the standard ioquake3 code-base certain server
parameters such as the amount of global gravity or a client’s
top running speed could be modified by individual game-
clients during gameplay using in an in-game “console”
window (similar to a Linux/Unix “Terminal” window“),
modifications to the lower-level behavioral patterns of pro-
jectiles were not accessible during game-play. Weapons
fired by individual clients would be assigned a direction
vector (with an origin at the client’s current position) and
a pre-determined velocity for the selected weapon type.
The game-server would be sent a message that the weapon
had been fired by a particular client and would trace a
vector moving at the defined velocity until either a col-
lision occurred - where an entity such as a wall or another
game-client was detected to be “hit” - or a pre-determined
amount of time expired, causing the entity to destroy it-
self. These static behaviors and settings were hard-coded
into the game engine and could not be modified on-the-fly.

In Figure 5, screen captures of q3osc display a number
of modified entity behaviors. In examples I and II, large
rotating spherical masses of projectile entities are created
by enabling behavior flags which cause all subsequently
generated projectiles to a) persist indefinitely, b) bounce
from any contact with walls, floors or other parts of the en-
vironment itself, and c) constantly update their directional
vectors to track any client entity within a given radius. By
changing environment variables which control both this
radius of attraction and the speed at which the projectiles
move, projectiles are easily coaxed into orbits around their
targets of attraction. Additionally, by toggling projectile
homing behaviors on or off, these dynamic spheres can be
made to expand, contract and collapse (as seen in exam-
ple III). A linear path of homing particles can be seen in
example IV, where particles fired by one game client track
the position of another game client.

Figure 5. In q3osc, complex patterns of entities can be
formed and controlled by performers within the game en-
vironment: I) game-client observes orbiting/homing pro-
jectiles; II) clients surrounded by orbiting/homing projec-
tiles; III) projectiles collapsing on a stationary client; IV)
client-to-client homing projectiles.

6. SPACE AND SPATIALIZATION

In standard modes of single-user or networked multi-user
gameplay, the focus of both the visual and auditory rep-
resentations presented to each user has traditionally been
wholly user-centric. The user in his or her real-world
seat is presented with an illusory visual and sonic repre-
sentation of the virtual environment complete with signal
processings designed to strengthen the related illusions of
space, distance and motion. As game-users most com-
monly listen to game audio output through headphones,
stereo speakers, or an industry-standardized multi-channel
configuration such as 5.1 or 8.1, all audio processing done
in game-engines tends to attempt to create realistic illu-
sions of motion for one user sitting in the sound-system’s
centralized ”sweet-spot”. Such individualistic presenta-
tion by its very nature restricts the communal sensory ex-
perience fostered in the virtual environment from existing
anywhere except within the game-world itself. By invert-
ing these traditional models of sound-presentation and by
focusing on a space-centric model of sound projection for
game-environments, a communal listening experience can
be fostered inclusive of all listeners within a shared phys-
ical space, including game-users and audience members
alike.

6.1. Single-Server Configuration

In initial realizations of ioquake3-based sound works such
as 2006’s maps and legends, objects within a virtual game-
environment were spatialized across an 8-channel hori-
zontal sound-field. Eight speakers surrounding audience
and performers alike were mapped to virtual speaker lo-
cations within the game-environment and entity positions
in virtual space were spatialized across the sound field by
correlating simple distance measures from entity to vir-
tual speaker with speaker amplitude levels. In this man-
ner, data sent from q3osc can be sonified using a sound-
server connected to a multi-channel sound system, spa-
tializing user and projectile motions across two or three-
dimensional soundfields. Demonstration installations of
the project running in this kind of configuration have been
presented using CCRMA’s sixteen-channel spherical sound-
space located in the CCRMA Listening Room [11], as
well as more standard 8-channel configurations in the
CCRMA Stage and studios. The use of spatialization tech-
niques such as Ambisonics [12] or VBAP [17], creating
more realistic auditory models to correspond with vari-
ously sized and shaped virtual environments, can be im-
plemented in a number of OSC compatible audio process-
ing languages.

6.2. Multiple-Server Configurations

The flexibility of q3osc’s outbound OSC routing scheme
allows for a number of sound-servers to be run simulta-
neously. For computationally-intensive works, multiple
sound servers can be addressed, effectively load-balancing
the sonification of virtual environments populated with

large numbers of sound-generating entities. For systems
with exceptionally large numbers of individual audio out-
put channels (such as the 48-channel multi-tiered Sound-
lab [18] in Belfast’s Queen’s University Sonic Arts Re-
search Centre (SARC)), the addressing of sets of speakers
can be distributed across a number of sound-servers. In
this manner, q3osc enables the scaling of technical archi-
tectures to accommodate the use of larger speaker arrays
and more complicated environmental correlations.

In conjunction with the SLOrk, q3osc has been uti-
lized in a multiple speaker configuration which has seen as
many as twenty laptops connected to hemispherical speaker-
arrays acting as spatializing sound-servers for the actions
in virtual space of as many as twenty performers. OSC
messages generated by q3osc were sent over a wireless
802.11n local network to each laptop running a game client
and an instance of a ChucK audio server. In this con-
figuration, the physical distribution of the speaker arrays
- hemispherical radiating point sources - was correlated
to the position of specific virtual locations in the game-
environment.

7. SONIFICATION AND MAPPING OF
BEHAVIOR AND GESTURE

While the aim of q3osc is not to define a particular map-
ping scheme for sonification of game-entity generated data
but rather to facilitate the dialog between virtual action
and analog sounding-gesture, basic example sonifications
and data mappings such as the bouncing of projectile en-
tities and their continuous motion in space should prove
useful models for more complex future sonifications.

7.1. Projectile Bounces

A direct and effective mapping technique currently used
with q3osc is the sonification of projectile bounces, or
collisions between projectile entities and environment sur-
faces. At the point of contact between a given projectile
and environment surface, the projectile bounces off the
surface, setting and transmitting a “bounce” OSC flag. To
best accommodate a massive number of bouncing projec-
tiles, an extremely simple sonification running on a ChucK
sound-server of an impulse routed through a resonant fil-
ter has proven to be extremely efficient and robust. By
mapping coordinate data for a single plane - say the X
axis - received in the same OSC message as the bounce
flag to a desired musical scale, each bounce event can be
made to trigger simple notes. As a possible example of
additional non-spatial bounce mappings, speed of the pro-
jectile can be mapped to velocity or amplitude of each
bounce-triggered note-event, Y-axis coordinate data can
be mapped to note-duration and Z-axis coordinate data
can be mapped to length of decay on the reverb. At any
such point of impact, data points such as angle-of-incidence,
distance-traveled, and duration of existence all are easily
extracted.

Figure 6. Screen captures from a performance of nous sommes tous Fernando... show performers firing sound projectiles
and speaker locations as hemispherical constructs.

7.2. Continuous Projectile Output

As coordinate data for all projectiles in the game-engine
are transmitted continuously over OSC, sonification of pro-
jectile motion across coordinate space can be introduced
in addition to each projectile’s discrete bounce events. To-
wards this end, individual functions can be instantiated (or
“sporked” in the ChucK language) for each projectile, spa-
tializing the projectile’s motion across speakers within the
same array or with careful osc analysis, across distributed
speaker arrays. Development of various sonification for
continuous projectile output is currently ongoing both us-
ing ChucK as well as Supercollider-based sound-servers.

8. NOUS SOMMES TOUS FERNANDO... (2008)

Premiered in May, 2008 by the Stanford Laptop Orches-
tra, the ensemble piece nous sommes tous Fernando... [7]
is a flexible performance environment comprised of a se-
ries of richly textured performance maps for laptop en-
sembles of various sizes ranging from 5 virtual speaker
locations to twenty. In its most basic form, the map for
nous sommes tous Fernando... utilizes a series of five
hemispherical-shaped objects placed on the floor in a cross-
pattern in virtual space. Laptop-stations and connected
hemispheres are placed in an analagous pattern in the per-
formance space with a subwoofer connected to the center
speaker and performers sitting at each point of the cross.
Audience members sitting around and within the speaker
configuration watch the output from one laptop connected
to a video projector, acting as a virtual camera.

In SLOrk performances, OSC messages carrying posi-
tion data for projectiles fired by each performer are sent
from the Linux game server to each of the Mac OS X
client machines. The bounces of in-game projectiles are
then sonified across the multi-hemisphere soundfield in
ChucK, correlating bounce positions in the virtual envi-
ronment with scaled amplitudes across the physical speaker
layout using a simple distance function. Performers sit
at each speaker station with additional performers as de-
sired connecting via client machines not necessarily con-

nected to sound-servers. Frequency and resonance coeffi-
cients for a dynamically allocated array of tuned filters are
mapped to additional distance and coordinate data, creat-
ing a dynamically shifting sound world controlled by the
projectile firings of in-game performers..

Performers in nous sommes tous Fernando... are vi-
sualized as giant green lizards, moving through an envi-
ronment where all surfaces save the floor are made up
of blocks of random angles and sizes. In this manner,
any projectile bouncing off the walls or ceiling will be re-
flected in a completely unpredictable manner, minimizing
the chances of simple periodic or infinitely repetitive note
sequences. Each performer is allowed to affect changes
on a given set of environmental parameters such as each
client’s speed of motion, the gravity of the environment
and the speed of fired projectiles. Additionally all per-
formers can control whether all projectiles in the map per-
sist or whether they are destroyed. And while nous sommes
tous Fernando... is at heart an improvisatory work, the
virtual camera operator more often than not plays the role
of conductor, typing messages to performers in the game-
engine while attempting to shape the ensemble perfor-
mance into a coherent form.

9. CONCLUSIONS

Virtual game-environments repurposed as extensible multi-
user networked performance environments offer perform-
ers and audiences alike rich platforms for musical expres-
sion. The Quake III engine’s history as a successful com-
mercial gaming platform affords users a massive pre-existant
code base, a strongly user-supported and open-sourced
community-driven development environment and toolset,
and low financial and temporal barriers to entry. By in-
tegrating OSC support into the game-engine itself, q3osc
virtual environments can interface with and drive any num-
ber of commercial and custom computer-based music and
media systems. In this manner, the possibility exists for
the use of q3osc as the core of any virtual networked mul-
timedia performance system, ranging from the performance
of electroacoustic music to distributed network opera or

theatre. Towards this end, the source code for q3osc as
well as a detailed history of its development and a media
archive of its uses is maintained and made available for
download on the CCRMA Wiki site [6].

10. REFERENCES

[1] Bencina, R., Oscpack, 2006. URL
http://www.audiomulch.com/ rossb/code/oscpack/.

[2] Chafe, C., S. Wilson, R. Leistikow, D.
Chisholm, G. Scavone. “A Simplified Ap-
proach to High Quality Music and Sound
Over IP,” In Proceedings of the COSTG6 Con-
ference on Digital Audio Effects (DAFx-00),
Verona, 2000.

[3] Davis, T. and O. Karamanlis. “Gestural Con-
trol of Sonic Swarms: Composing with
Grouped Sound Objects.” In the Proceedings
of the 4th Sound and Music Computing Con-
ference.

[4] Furukawa, K., M. Fujihata, and W. Muench,
http://hosting.zkm.de/wmuench/small fish.

[5] Hamilton, R., “maps and legends: FPS-Based
Interfaces for Composition and Immersive
Performance” In Proceedings of the Interna-
tional Computer Music Conference., Copen-
hagen, Denmark, 2007.

[6] Hamilton, R., q3osc Wiki Page, 2008. URL
https://cm-wiki.stanford.edu/wiki/Q3osc.

[7] Hamilton, R., nous sommes tous
Fernando..., q3osc Wiki Works
Page, 2008. URL https://cm-
wiki.stanford.edu/wiki/Q3osc: works.

[8] Hamilton, R., The Stanford Pan-Asian Mu-
sic Festival: China on Stage, 2008. URL
http://panasianmusicfestival.stanford.edu.

[9] id Software, 2008. URL
http://www.idsoftware.com.

[10] ioquake3 Project Page, 2008. URL
http://www.ioquake3.org.

[11] Lopez-Lezcano, F. and C. Wilkerson.
“CCRMA Studio Report” In Proceedings of
the International Computer Music Confer-
ence., Copenhagen, Denmark, 2007.

[12] Mahlam, D. and A, Myatt. “3-D Sound
Spatialization using Ambisonic Techniques”
Computer Music Journal, 19;4, pp 58-70,
Winter 1995.

[13] Cycling ’74, “Max/MSP”, 2008. URL
http://www.cycling74.com.

[14] McCarthy, J. SuperCollider, 2008. URL
http://supercollider.sourceforge.net.

[15] Oliver, J., q3apd, 2008. URL
http://www.selectparks.net/archive/q3apd.htm.

[16] Puckette, M., 1996. “Pure Data.” In Pro-
ceedings of the International Computer Mu-
sic Conference. San Francisco, 1996, pp. 269-
272.

[17] Pulkki.V., “Virtual sound source positioning
using vector based amplitude panning.” Jour-
nal of the Audio Engineering Society, 45(6),
June 1997, 456-466.

[18] SARC Soundlab, 2008. URL
http://www.sarc.qub.ac.uk.

[19] Trueman, D., P. R. Cook, S. Smallwood,
and G. Wang. “PLOrk: Princeton Laptop
Orchestra, Year 1” In Proceedings of the
2006 International Computer Music Confer-
ence (ICMC), New Orleans, U.S., November
2006.

[20] Wang, G. The Stanford Laptop Orchestra,
2008. URL http://slork.stanford.edu.

[21] Wang, G. The ChucK Audio Programming
Language: A Strongly-timed and On-the-fly
Environ/mentality. PhD Thesis, Princeton Uni-
versity, 2008.

[22] Wang, G. A. Misra, and P.R. Cook. “Build-
ing Collaborative Graphical interFaces in the
Audicle” In Proceedings of the International
Conference on New Interfaces for Musical Ex-
pression., Paris, France, 2006.

[23] Wang, G. and P. R. Cook. “ChucK: A Con-
currant and On-the-fly Audio Programming
Language” In Proceedings of the Interna-
tional Computer Music Conference., Singa-
pore, 2003.

[24] Wang, G. and P. R. Cook. “The Audicle: A
Context-sensitive, On-the-fly Audio Program-
ming Environ/mentality” In Proceedings of the
International Computer Music Conference.,
Miami, USA, 2004.

[25] Wright, M. and A. Freed. “Open Sound Con-
trol: A New Protocol for Communicating with
Sound Synthesizers” In Proceedings of the
International Computer Music Conference.,
Thessaloniki, Greece, 1997.

[26] Lancaster, S., “The Aesthetics and History of
the Hub: The Effects of Changing Technology
on Network Computer Music”, Leonardo Mu-
sic Journal, Vol. 8, pp. 39-44, 1998.

