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1+ - INTRODUCTION

All supersymmetries of the S5 matrix in 3+1 dimensions are
known 1). However, there are further interesting pessibillities, e.g., super-
symmetries in de Sitter spsce-time or in higher dimensions. Particularly
important is the conjecture that a suitably restricted version of the Neveu-
Schwarz-Remond string yields a renormalizable supersymmetric Yang-Mills and
gravity theory in 9+71 dimensions 2). Such theories may be reduced to

3)

3+1 dimensions by compactifying some directions .

In Section 2 we shall classify all manifest supersymmetries in
mere than 1+1 dimensions. For a flat space-time we determine the struc-
ture of the corresponding little groups in Section 3. In Section 4 we de-
termine their representations and derive formulae to calculate them expli-
citly, In Section 5 we consilder as examples the theories which admit
maltiplets with spins at most 1. In particular we shall see that the lowest
mass levels of the spinning string indeed can be regarded as supersymmetry

representations, thus confirming the conjecture of Ref. 2),

The notations are those of Ref. 4). In particular, the bracket
< 4,4' > will denote the anticommutateor, if both £,4' are odd, and the
commutator, if at least one of them is even., We shall always work with the

supersymmetry algebra, not with groups.

2, - CLASSIFICATION CF SUFERSYMMETRIES

Let L=G@® U be a finite dimensional supersymmetry algebra,
where G, U denote the even and odd subspaces, resp. We assume that the
generators exhibit the usual relation beiween spin and statistics (in fact
it is sufficient to szssume that U contains no Lorentz scalars). Purther-
more, L must admit an adjoint operation +., This is true, if T commutes
with some unitéry $ matrix, but we shall alsc consider theories with mass-
less particlesE or in de Sitter space, where the usual § matrix formalism
rins into difficulties, However, we resirict ocurselves tc manifest super-

symmetries, acting on some Hilbert space of particle states.
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Taking the subspace of L generated by the elements which cbey

g* - _? for jeG'

(1)
ut - iu for uéa,

we obtain a real form of I.
For the even part we write

G:SOJ’ (2)

where S is the space-time symmetry, and J a compact internal symmetry

of the form
j"TeA, (3)
with T semi-simple and A Abelian.

Consider first the case where S is simple, i.e., a conformsl

or a de Sitter algebras. Let C(X) denote the centre of X.

Proposition 2.1 :

1/0(L) is the direct sum of an internal symmetry J_, of type
(3) plus a supersymmebry which is simple up to a possible extensicn by an

al.gebra of cuter automorphisms (of course JC may be zero).

-

c(l)e 6, as

(uu"} >0 (4)

for 21l non-zero u € U, Tet V€ U be invariant under (S,+), i.e.,
under § and the adjoint operation. Then <« 8 < VV >»> is an § invariant
subspace of 8, thus either equal %o S or zero. In the latter case,

< vv' > defines a positive definite 8§ invariant Hermitian form on V,
thug that part of & which is faithfully represented on V 1is contained
in some compact unitary algebra. 4As S is simple and nomn-ccmpact,

< 8V > has to vanish. But because of the spin-statistics relation, U

contains nco scalars. Thus for any V#£OQO we have



<S<vvy =8 (5)

Therefore no ideal of L which contains an odd element can be soluble.
How let C be the maximal soluble ideal of L. BRBecause of (€& G one

has

{cuy - 0. (6)

In addition because of BEqs. (2) and {3)

CCA, {7)

Thus

C =Ct) . (8)

and L/C(L) is semi-simple., All semi-simple graded Lie algebrzas sre des-
cribed in Ref. 5). Because G is of type (2) with simple S, and U
contains no scalars, I/C{L) has to be a direct sum. Its summands must be
simple modulo extensions by outer automorphisms., Because of Eq. (5) all odd
elements of I/C(L) belong %o that direct summand which contains S. Q.E.D.
Apart from the ocuter automorphisms the direct summand which contains U can

be written as (9)

Ue LU

and this supersymmelry algebra is simple modulo "central charges" as

defined in Ref. 1). Here

Cuuy=SeJ (10)

where J' is & direct summand of J, thus again of type (3).

5),6)

All real simple graded Lie algebras have been classified .
Thus we just have tc select the algebras which are compatible with our as-

sumptions. We use fhe notation (G, U as representation space of §).



Proposition 2,2 :

The simple supersymmetry algebras are

(o(2,1) @ u(w), (2,0) + (2,/)), W £ 2 ( 1)
(o(2,1) ® eu(2), (2,2) + (2,2)) (1)
(o{2,1) @ o{W), (2,0)}s N = 1,254u. ( 1)
(o(2,7) @ o(4), (2,4)), ( 1z)
(o{2,1) @ o(3) @ su(l,H), (2,2,20)), W = 1,2544s ( IIT )
(o(2,1) @ o(7), (2,8)) (v )
(o(2y1) @ &5y (2,7)) C v)
(0(3,1), (2,1)+(1,2)) ( vr)
(o(3,2) ® o(W), (4,N)), N = 1,2,... ( viz )
(ofa,1) @ u(1}, 4+17) ( viz,)
{o(4,2) @ u(mw), (4,8)+ (4,8)), ¥ # 4 (vIII )
(o(4,2) @ su(4), (4,4)+ (Z,7)) (viII,)
(o(6,1) @ =u(2), (8,2)) ( 1x)
(o(5,2) ® su(2}, (8,2)) ( 1x,)
(0(6,2) ® su(N,H), (8,2N)), N = 1,2,... { x

The Lie algebras are denoted by lower case letters, capitals are reserved

for the groups. SU(N,H) is the group of unitary quaternionic NxN mairices,
it is the compact real form of Sp{2N,C). In particular su(1,H) ~sul2),
su(Z,H)"‘o(B). In (IIQ), o 1is s real constant which enters only into the
structure constants for < UU >. The algebras involving o(4,2) have been

classified in Ref. 1).

Recently, Euciidean supersymmetries have been studied 7). The
algebras O(R+1,1) may be interpreted as conformal algebras of an R di-
mensional Buclidean space. For compact de Sitter spaces we obtain the

additional possibilities

(o(3) @ ulw), (2,0)+(2,[)), ¥ #£ 2 ¢ 1)
(o(3) @ su(2), (2,2)~(2,2)) ¢ 11
{o(5) ® u(1), 4+17) ( viiy)
(o(6) @ u(n), (4,0)+ (,0)), ¥ £ 4 (vIII')
(o(6) @ su(4), (4,4)+ (%,3)). (viIzy)

Note that most of the orthosymplectic algebras are unsultable, as the

8)

sp(2N) are non-compact, Thus we had to use the isomorphisms




o(2,1) ~ su(1,1) 0(4,1) ~ gu(1,1,H)

o(3) ~ su(2) o(5) ~ su(2,H)
0(2,1) @ o(3) ~ sou(2,H) o{4,2) ~ su{2,2)
0(3,1) ~ sp(2,C) . ~o(6)  ~ su(4)

0{3,2) ~ sp(4) 0(6,2) ~ sou(4,H)

SaU(N,E) denotes the group of anti-unitary quaternionic I matrices.

The representations of S in U are always spinor represent-

ations.

To £ind central charges, one has to look at the decompositicn
of the symmeiric part of the tensor product of U with itself., For alge-
bras involving a u(1), any G scalar can be absorbed into 1t, Most other
algebras yield no G scalars, with the exception of (I1), (I%), (VIIIT)
and (VIII%). These algebras admit one central charge., In addition, only
they admit outer sutomorphisms U(71), and (I,) even sU(2). This extension
of (11) by SU{2) czn be obiained from (II@) in the limit o=0. In this

latter case no central charge is allowed,
The algebras for de Sitter spaces may be contracted to algebras
cf flat spaces. Here any direct summand of J may either be left unchanged

or contracted to a vector space of ceniral charges.

For supersymmetries where S is a conformal algebra we have

a natural grading over the integers

- t-) ¢ ¢/ @)
L = L(2)$L 'QLOJO L'st, {(11)

<quiL(uJ) - L("“”") (12)

Lw = [{’GL/ <d?)=n€]

with a suitably normalized dilaticn generstor d., Here

LY =P (14)

(13)
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is the subspace of translation generators, and
1)
(-1) (
L el "= u (15)

Let us now consider the supersymmetries with

S = io[p,'/), (16)

i.e., the Poincaré algebra in E+1 dimensions. As we have seen, these

supersymmetries cannot be simple. A typical example is the subalgebra
(-2) -1) ()
L ol & Lal (17)

of (11), where

. (o)
Lf;) ® dilations = L . (18)

In fact, we shall show that such a grading by dimension can always be cons-

tructed. Provisicnally we define recursively a filtration
™~ -2 ™ (o) ™ (k)
PeC(L)=LP cl™c. cl™=L o)

by

o 7 (m-2)
T {eel [¢Pedel br me 0.

The proof of Ref., 9) that k is finite applies also to supersymmetries.

~ e " ’\‘(;1*
<L()Z(9CL ”,} (21)

2 (m) + _ ~ (’H)
L™ =L,

Obviously

{22)

7 )
Gel (23)




Propc

sition 2.% ¢

We have

e (19), =%,

Put

u{") - u P L(.+.')

(PUC) =0

and therefore

Thus

From

we obtain for any u g U

<pcuttut - 0.

Quyt?) e Peld.
LPLPUC) <0

(1)

<<Pu><P‘u>> <P<<Pu>-u>)
- {PLPLuw)) < {P{PGY = U.

For 1€ T

But these

(1)

with u+ = u This means

(P> = O

elements span U(1), Thus

sz(”? . Lt-f-f) . Z&(.

(24)

(25)

(26)

(27)

(28)

(29)

(31)



Proposition 2.4

U consists of Spinor representations of o{R,1).

Consider a Cartan subalgebra of the Lorentsz algebrz spanned by
the Hermitian generators MOT’ M23,... + Decompose U into eigenspaces of

this Cartan algebra. TFor any element u of one of these spaces

(Mz;,z;u u> = a(u) w. (52)

Because of the compactness properties of 0(R,1), ao(u) must be purely

imaginary, and all the other ai(u) real, This yields

<M2; 2ie1 (uu*>> = 20(,(1() Jof (uu*)’

(33)
But there is no element with this property in G, unless
et L or U 54)
D(o{'“) 2 (

This must be true for all elgenspaces of the Cartan algebra, As scalars

have been excluded, U must consist of spinors. Q.E.D.

From (4) and Eq. (33) one obtains that the coefficient of P°
in < uv’ > defines a positive definite o(R) ® J invariant Hermitian

form on U. We write

duv*) = (uv) P’ +.. (35)

From the existence of this form it follows that even the representation of

A In U is completely reducible.

Proposition 2.5 :

For R > 2 the filtration (19) can be refined to a grading

- (~7) re)
L=L%¢L e L (36)



where
L(-Z) < Pe C(L)’ (37)
L(.’) = u: (38)
L(o) = O(R,‘,)@T@Ac (39)
with
A o C(L) = A o)
Proof

Because of (4), C¢(L) contains only even elements. Taking into
account Fas. (25), (27) and (31), we only have to prove that < UU >nJ
lies in ¢(L). Put

M::U$<u“2 ' (41)
M. = m/ (L LuUuy) = Velviy .,

We have to prove that MC contzing only odd elements. ILet W@ B be an
Abelian idea of Mc with B even, W odd. As the representation of B

(BV) =8BV = <BW)> =0

Thus

(43)

B < <VV>0 C (Mc.) =0 (44)

and

lyw)e B =0 (49)
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This yields

WeB =Wc CM)cV (46)

Moreover, C(MC) is even a direct summand of Mc’ as the complete reduci-

bility of the representation of < VV > 4in V  yields

KV a C(M) = vvd M) -a .,

Thus

Me = MS e C (M) (48)

with semi-simple or vanishing Ms’

But M, admits o(R,1) as outer sutomorphism. Thus for R} > 2
it has to vanish. Q.E.D.

For R= 2, MS has to be a direct sum whose summsnds are all of
the fornm (I{), iees, (su(2) @ su(2), (2,2)+(2,2)). This algebra has the
outer automorphism algebra 0(2,1). As Ms admits neo further ocuter auto-
morphisms, all direct summands of J which act non-trivially on Ms are
contained in < UU >, furthermore, MS admits no central charges. Thus
(UC)PC)J)/P is a direct sum of an algebra isomorphic to Ms and one of
type (36). This yields all 1 with S=i0(2,1).

In the simpleét cage, where Ms is just (I%), L can be obtained
from (Ila) in the limit o=-1. 1In this limit, o(2,1) may become the outer
automorphism, or it may be scaled down to a three dimensicnal cenire. If one
does both, the centre transforms as the adjoint, i.e,, the vector representa.-
tion of the outer automorphism o(2,1). This doubling of ©(2,1) <thus yields

the Polncaré algebra io{2,1).

The supersymmetry slgebra Just described apparently has rnot been

discussed before,

For R=1, no new possibilities for M, eppear, as (I{) is the
only real form of a simple graded Lie algebra which sdmits o(1,17) as outer
automorphism. Por exsmple, (su(N)@su(N),(W,¥)+ (F,8)) with N> 2 has the

cuter automorphism algebra o(2), which prevents the introduction of momenta.
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However, the exftension of (I{) by o(1,1) admits now one central

charge which may be obtained from one momentum component in 2+1 dimensions

by reduction to 1+1 dimensicns.

3. - LITTLE GROUES

We shall only determine the representations of the supersymmetries
graded according to Bgs. (36)-(392). For the conformal supersymmetries this
means that we represent only a subalgebra. TFor the de Sitter case we are
anyhow only interested in representations which have a limit for the con-

traction to f£lat space-time.

The representations can be induced in the usual way from the .
representations of the little group. Thus we fix some subspace H of the

filbert space on which P is constant and which is irreducible with res-

pect to
L' = G'QL(' | (49)
where
14
G =5 o] | (50)
and

S' = O(R) for the massive case

<'. io(R-") for The massless case. o)

In the latter case the "Galilei-transformations' of io(R-1) have to be
represented by zero, as otherwise the representations become infinlite di-

mensicnal. Thus S!' can be restricted to o(B-1).
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On H, 4 is represented by constants. Thus U]H (U res-
tricted to H) yields a (lifford algebra with bilinear form < UU >]H-
This bilinear form is not necessarily positive definite, though by {4} it

is non-negative definite.

Proposition 3.1

U can be decomposed into (G!',+) invariant subspaces
o !
U=Uell (52)
such that

u'l, =0

end < 7O > H is positive definite.

(53)

—— i ——

We may chcose H such that po==pR in the massless case and

p=m,0) for massive particles. Write

u=u+9u_ (54)

where

<i /‘41731 tl;>’ = .i:‘bt/{? for we Ll:t..

(55)

Eq. {33) yields

° R
(u*u) = C(P :&P) for ueut (56)
with ¢ > 0 for any non-trivial wu. In the massless case we obtain

u°-u-,
u'=u,.

In the massive case we use the positive definite Hermitian form on U

defined by Eq. (35). Note that Eq. (33) yields

(57)
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(u,u.)-0. (se)

In general, let Uu° be the subspace ¢f U which annihilates X and take
its orthogonal complement U' with respéct to this form. As the form is

{(G',+) dinvariant, this is also true for the decomposition. Q.E.D,

Note that in the massless case all central charges have to

), = U, =0 &
In the massive cage without central charges one obtains

<u+u~>lu ’0) | (60)

such that < UU >|H is positive definite and U° vanishes. Even with

vanish, as

central charges according to Eq. (56)

dim U’ > dim U, '%dim u. (61)

However, there may be linear relations between U+|H and U_|4

Proposition 3.2 :

C(L)IH forms a compact, convex set., At its boundary and only
at its boundary Uo;éo.

Choose a basis u® of UIH’ ¢t oor C(L)JH. We have

</'lju‘., (32 w*)*) = ma, (31" +C"a,-(H'}, (62)

where the a s 2, are Hermitian forms. We have seen that a, has to be
positive definite. In contrast, no linear combination of the &, can be
positive or negative definite, as the non-compact algebra G has no inva-

riant finite-dimensional positive definite Hermitian forms.,
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- The allowed values for C(L)]H are those for which

P(2)=ma,(A3) +c'a;(13) 2T fir ol 2. (63)
U° is non-vanishing, if in sddition

PO -0 | (64)

for some non-zeroc A. We may restrict A toc the compact space

N\ = {3/2[2;/2=7f> (65)

Then

min (PO)/a, (23)
N

is a continuous function of the << . Along any ray in C(L)fH from zero
to infinity i% is a linesr function which will take at first positive, then

negative values, with one zero in between. The convexity follows from

rn ((c"ar-a(;)a; {/\)J) 2 min (C;a; (AA)) + m;ﬂ(d'&;ﬂ“)‘
A A A

(66)

Q.E.D,

An important special case arises, if S::io(R,1) is reduced 4o
ic(R',1) with R!' < R, Here the superfluous momentum components become
central charges, and the boundary of C(L)fH corresponds to zero mass in

R+1 dimensions.

Now we shall show that as far as the representations of I' awe

concerned, the central charges enter only via the determination of UC.

Proposition 3.3

Let the representation U! g of (6',+) be given. Then

< Uyt > B is fixed up to an isomorphism.
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i

Let
1 (2
u' "u{)au Q... (67)

be the decomposition of U! into inequivalent representations of (Gt y+)

Ag < UMY >|H contains only @' scalars,

<u(""u"">IH' =J for M*n_ (ce)

Let Ugg be a basis of some U(m), where (G',+) acts irreducibly cn
the first index, whereas 1 counts the multiplicity of the representation.

We may write
- :
Cuty = Ko X .
<:‘l&110 LU GIL ] ) (69)
where K is the uniquely defined positive definite Hermitian invariant

form of the corresponding representation of (G',+). K®X has %o be posi-

tive definite Hermitian, thus slso X. In particular, we may chocse a

Ka& = 8“(’ )
X:" = J\ij (7o)

basis such that

Q.E.D.
Now let us classify the supersymmeiries with regard to the re-
presentations. As we have seen, this requires the classification of all

possible Ul

Proposition 3.4

Iet ' =S' ® J be an algebra of type (3), {51) and U' a
spinorial represgentation of (G',+). Then one can always find a super-
gymmetry L which yields G!' @ U as algebra of the little group, both

in the massless and in the massive case.
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It is sufficient to consider an irreducible Ur, octherwise
one just takes a direct sum with compenents orthogonal under the Lie
bracket. For any irreducible spinorial representation of some (G,+)

with G=5 ® J one can define a supersymmetry by

< Qi Qf 2= //“)«f PfX’ (71)

Here 5 acts on the first ang J on the second index of Q. Xij is the

positive definite Hermitian form on the representation of J,
Let

S'=o(r), (72)

where r=R fcr the massive and r=E-1 for the massless case. Take

G =zio(r+17) & J (73)

and choose a U which transforms under J according to the given repre-

sentation., Furthermcre let its transformation properties under o(r+1,7)

be given by the embedding of the representation of o(r) into the &pinorial

representation of o(r+1,1) of twice its dimension. As the real, quater-
nionie, or non-self-conjugated nature of the spinorial representations of
o(r+n,n) 4is independent of =n ° » the representation of (Gf,+) is
embedded into a representation of (G,+) of twice its dimensicn. Now
consider the corresponding algebra (7T1)s Tor an T with pozpm'1 it
yields the wanted algebra of the little group. In the massless case, we
have firnished, In the massive case we Just have to take the subalgebra

R+1

io(R,1) of io(R+1,1), and to interpres D as central charge. Q.E,D.

IIEL L PIEEE B 3 U I 4 e a  we e
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4. - REPRESENTATIONS

In this section we always take the restriction to H, without

noting it explicitly.

It remains to determine the representaztions of (Ll,+). As the
undecomposable representations of Clifford algebras with non-degenerate bi-

linear form are fixed up tc isomorphisms, this problem is completely gsolved

by

Proposition 4.1 :

The universal associative enveloping algebra U(L') of I!

U(L') = &'(6706((&'), ' (74)

where U(G¢!) is isomorphic to U(G!).

decomposes as

Proof
Take a basis gi of @, QQ of Ut, such that
<Q¢ OP+ hd S(ﬂ (75)
<ji Q.,) . @f 6;,:‘ o (76)
Tet
{ Qx 0;) = 7;; = Tpe. (77)
Then

G = Eﬂ Q;. (.78)

The Jacobl identity yields

‘ i = 67- | 79
Tor p= * Tup s "

and
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-7 Q6% Q", QD=0 for oll «,i. (50)

Thus we obtain a set of elements
=

- ol - :1'632 (j-i + (81)
§ =7 - 2%%%
of U(L!') which commute with all elements of U(U') =and form a Iie

&lgebra isomorphic to G'. The enveloping algebra T(G') of this Lie
algebra fulfils Zq. (74). Q.E.D.

Thus all representations of I! are products of a representa-
tion of G!' with the irreducible representation F of U'. Taking the
trivial representation of T(G') we obtain the fundamental representation
1®F of L', for which the generators gi are represented according
to

-+

i 1 ] o
§ = 2% %% (2

Its dimension is
ot ’:‘ ='f2

Proposition 4.2 :

g!iu|°(v42

(83)

The representations of L' contain the same number of fermion

as of boson states.

Let L Ybe the fermion number. Recause of
I
(")FQ = —Q(‘)f for Qeld (84)
one has

Tr {(")‘c <OO>) =0 for Q,O'éﬁ(’_ (85)

The number < QQ' > is in general not zero. Q.E.D.
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To tackle the calculation of the representations it is convenient
4o use characters, i.e., the traces of elements of the group generated by the
gi. We may restrict ourselves to a maximal Abelian subgroup, because bthis
determines slready all the weights. DLet E be any representation of ﬁ(G').
It corresponds, via the isomorphism %o ﬁ(G'), to a representation A of

XI@F (CX/: (J',.;i)/ ’II@F("‘f{ﬁ'}_')e’ﬁ"@'ﬁ Q(%; qdf.y:
Yalop(EF))e (3@ &) -
Yaler (55)) Yrar (P 4. -

"

L

Furthermore let us use Ed. (67) Let U(m) contain Cy irreducibvle repre-
sentations of type m, which by themselves yield fundamental representa-

tions 1 @ Fm. Then

X'IOF {f) = E,rq@Fm (}} Cm_ | (s7)

Thus we can restrict ourselves to irreducible UT, We can even reduce the
calculation of X1®Fm’ using the same formula, to the corresponding one

for irreducible representations of a maximum Abelian subgroup of &,

Now take an T dimensional Abelian group with generators

—

g.,...,gr end a 2° dimensional real representation U! for which no

g

i) are *i/2. For convenience we define

Yr Oay 1) = Yaor (2 (157

A change of base from g1, g2 to (g1i:g2)/2 vields the recursion relation

¥e (5o S )2 Joa BTl D e Jo) .

is represented trivially. We may assume that the eigenvalues of all

(Ea e

(88)
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XT can easily be calculated direetly. We take a base Q. of U', where
' Q_ is the adjoint of Q.+ The ¢ of Eq. (76) has the form
o' Z; (70 (90)
2 \g-1.
Thus

?7 = ‘?1(0+Q-‘Q-O+), (91}
Then Q; may be represented by the Pauli matrices (cy;tioy)/E. Thus
%(f} = 2eos ([/Y). (92)

Equation (89) then yieids

Xl(.c"f')’ Leos (f:/-?)-ﬁ-,ZCos (f;/,?]} (93)
NG B)- 202 cos]: +Templlepakup)ice) o

Equation {92} yields in general

A1or (exp(iTMy) = (2cos (1/ 9}) - /2' 92

Equation (93) shows that the state of 1 ® F which yields the highest

elgenvalue of N has zero eigenvalue for all generators commuting with

12
M5« Thus for any g € J

X1oF (""/’ ﬁ?ﬁ Mz;--r,z; '7)) '; '?“"‘d?“"""”%f)"-- (96)

One sees that for .dimU’ =90 mod.8, the fundamental repre-
sentation contains a totally symmetric ¢/8 tensor. For dimU'=4, one
has 2 spinor, more generally for dimU! = 4 mod 8 some spinor-tensor,
For dimU! = 2 mod 4, which may happen for massless particles in 341
dimensions, X, =1 is obviously impossible. XA(exp(igM12)) kas to be

a sum of terms of the form 2cos((2n+1)c/4),
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For o(10,1), the spin representation has dimension 32, such
that for massless particles dimU! is at least 16, Thus any representation
in more than 9+1 dimensions contains at least a symmetric tensor field.

For o(11,1), no Majorana-Weil-spincr exists 8 , thus dimU' is at least
32 and higher spins have to occur. Conéequently, supergravity theories are
impossible in more than 10+1 dimensions, supersymmetric Yang-Mills theories

in more than 9+1 dimensions.

Note that the minimal wvalue of dimU! grows exponentially with
the dimension. According to Eq. (83), dimF grows like an iterated expo-

nential.

5. - EXAMPLES

At first we shall list the fundamental representations of the
supersymmetries which allow multiplets with highest spin one. This requires
dim U!' < 8,

o ——

For J=0 we obtain the character of Ed. (92). With

X/‘ (C"f ("foz))" 2505((2”*7)f/¢),. n:=07.. (o)

we obtain

XA’ ®F ( e’x/; ( 'TM‘Q )) = 2eos (1 (s [/2 )4—2(05 (n /2 )

(98)

These are the well-known massless muliiplets of the standard supersymmetry
in  3+1 dimensions.

For J=su(2) ond isospin 4 we may embad the representation U!
into the corresponding one for 31t =0(3) without changing dimU'. There-
fore we need not treat this case separately., From now on we omit most re-

presentations for which such an embedding is possible.
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For J=su(3) and representation 343 2z slightly more compli-
cated embedding into the vector representation of o(6) is posgible, As
fundemental multiplet, one obtains su(3) singlets for "spin" 2£3/4 and
triplet, resp., antitriplet rfor "gpin"  *1/4. Multiplying by the XA of
Eqe (97) with n=0 one obtains singlets with spins *1, #%, triplet,
resp., aniitriplet for spin % and both triplet and antitriplet for
spin 0. Multiplying by the octet of su(3) one obtains the particles of
& poseible supersymmetric Yang-Mills theory,

However, here a general difficulty of those theories becomes
apparent. In Eg, (96) we have seen that for the fundamental representation
the particles with highest spin are J ginglets. Thus either one has to
except multiplets with spin larger than one, or one has to multiply by the
adjoint representaticn of scme gauge group. But this procedure yields un-
reasonably high representations of the gauge group for the fermions, If
ore takes supercharges which commute with the gauge group, one obtains only
adjoint representations of this group, otherwise higher representations
have to occur, But, cf course, one has to keep in mind that our investiga-~

tion concerne only manifest symmetries.

For J=su(4) and representation 442 compare the case 8! =o0(6),
J=o0{(2}, which may be embedded into the case G'=0(8) discussed below. The
fundamental representatiocn has a singlet for spin *1, quartet, resp, antiquar-
tet for spin *% and an antisymmetric temsor for spin zero., Note that the sim-
plest multiplet for J= su{3) discussed above admits the larger symme try
Je=su(4).

Even for J=0 the invariance under the adjoint operation
requires that U' contains an even number of spinors. As smallest multi-

plet one obtains

X1aF (r) =%f(ﬂz = 2cos (J/R) +2. (59)

Taking the spinor representation for L& one obtains in A ® F a vector,

10
a scalar, and two Majoranz spinors. These multiplets are well known ).

Here an embedding into the (2,2) representation of of3) @ o(3)
is possible. The character of the fundamental representation has already

been given in Bg. (93).




If one chooses the isospin & representation of J=su(2}, the

representation of the maximum Abelian subgroup in U! is reducible. One

obtains

X-er {ﬁfz) - }’2 (ﬁ.ﬁ) 1’* (], Zﬁ) (100)

1e€ay (391)'*'(1’5)'5‘(234)'

o(4)=0(3) ® o(3) need not be considered separately, as for

its spinors one o(3) is represented trivially.

From S'=0(5) on representations with 4imU' < & no longer
oceur and those with dimU! =8 can be embedded into & Majorana-Weyl-spinor
of o{8). This representation occurs for the massless particles of the

supersymmetric spinning string. Let us consider this system in detail.

For all supersymmetries in more than 5+1 dimensions, dimU
ig at least 16, All supersymmetries with R > 5, dimU= 16 can be con-
sidered as subsymmetries of the supersymmetry L=G @ U with G=1i0(9,1),
U= Majorana-Weyl-spinor, Central charges can be interpreted as components
of the momentum in 9+1 dimensions., There are at mcst 9-R of them.

The maximal internal symmetry for S=i0(R,1) 1is just o(9-R}. This can

easily be checked case by case.

For the massless multiplet in 941 dimensions, the fundamental
representation is essentizlly determined by dimF = 16 and proposition 4.2.
Alternatively it can be read of from Eq. (94). According to the chirality

of U one finds

14 ¥
Ye(SaaJuJu) - T Op (B EFR) ¢ 2 2eesfi, |

where all ¢ € {1,-1} and the sum goes over all gquadruples (61,62,63,34)
with

;W.gt. s =7 for X* re.?O. (102)

Equation (101) just yields the m=C states of the spinning string of
Ref. 2). The supersymmetry admits no central charges., Thus according o
Eq. (60), one finds, for the fundamental representaticn of the massive

case,
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As can easily be read off from the helicity partition function
this yields exactly the multiplet which occurs at the m2==1 level of the
Neveu=-Schwarz-Ramond string as considered in Ref, 2). TFor m2= 2 one finds

the V& F representation, where V 1is the 0{(9) vector with

4
XV {f"ﬁ'f’rf?) -2 '% c“f" +7. (104)

This is a strong confirmation Tfor the conjecture that this model is super-

symmetric,

For the closed string the representations considered in Ref. 2)
are just the tensor product of the open string representations with the cor-
responding representation of the boson sector alone. Thus for a super-
symmetric open string, the clcsed string has to be supersymmetric too. This
yields one possible supergravity theory in G+1 dimensions, which by re-

duetion yields the o(4) supergravity 12). The representation is given by
Y

. oL [

;r'(:r;f:r:l,r;(‘r;J :r;r* (}:U_r;::r;r.r;) <;?;§;‘. ‘jt
e

Tc restriet the representations of 10(9,1) 1o those of

(105)

io(3,1)+-su(4) one just has tc interpres M45, M67 and M@g in the
character formulae as generators of SU{4). For the fundamental massless
representation, BEq. (101) yields a su(4) singlet with spin 1, a su(4)

quartet, resp., antiquartet with spin % and a su(4) sextet with spin O.

To obtain a Yang-Mills theory in 9+1 dimensicns, one has to
multiply the multiplet of Eg. (101) with the ajoint representation of the
gauge group. 4As ncted above, the fermions then +transform according to the

adjoint representation, too,

LA T R P P T

11)
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Supergravity theories are posgible in at most 10+1 dimensions,
ag we have seen, For G::io(10,1), U= Majorana spinor, one obtains the

fundamental representation (103).

If seven dimensions are compactified, one finds G= 10(3,1) @D
® o(7), while U trensforms as Majorana spinor both under io(3,1) and
o(7). Now, one can enlarge o(7) to o(8) without changing the represent-
ation space U, As the Majorana-Weil-spinor and the vector representations
of o{8) are connected by outer automorphisms of o(8), the embedding of
o(7) into 0(8) may be done in such a way that U transforms as a vector
under o(8)., Thus one should obtain the o(8) supergravity by dimensional

reduction, if the supergravity in 1041 ‘'dimensions can be constructed.

In 9+1 dimensions, there is one further supergravity, which
arises, if one takes all tensor products of the open string with itself,
including the Fermion-fermion sector. This yields an internal symmetry
J = 0(2). Taking into account only the space-time symmetry, one obtains

for the fundamental representation

2

YL 05 - 1 BBl e

Scherk has discovered that dimernsional reductiocn of this thecry
probably yields the o(8) supergravity 15). Indeed, as far as the little
group G'=0(8) @ o(2) 4is concerned, an exchange of $1=0(8) and J=o(2)
would yield the representations of this supergravity. This exchange may
arise sutomatically by dimensional reduction of G' to o(2) @ o(6) ® o(2).
Now, the o(6) counts as part of the internel symmetry J= o(6) @ o(2),

As discussed for o{7) above, the representation of J in U admits an

extension to the vector representation of 0(8).

Thus in 9+1 &imensions three supergravity theories may exist,
with multiplets given by the Egs. (105), (103) and (106), resp. Dimensional
reduction of the first should yield the o(4) supergravity, whereas from

the other two one might obtein the o(8) supergravity.
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