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Abstract.

Constants of the form

C =

∞
∑

k=0

p(k)

q(k)bk

where p and q are integer polynomials, deg p < deg q, and p(k)/q(k) is non-

singular for non-negative k and b ≥ 2, have special properties. The nth digit

(base b) of C may be calculated in (essentially) linear time without computing

its preceding digits, and constants of this form are conjectured to be either

rational or normal to base b.

This paper constructs such formulae for constants of the form log p for many

primes p. This holds for all Gaussian-Mersenne primes and for a larger class of

“generalized Guassian-Mersenne primes.” Finally, connections to Aurifeuillian

factorizations are made.
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1 Introduction

The 1997 paper of Bailey, Borwein and Plouffe[2] heralded a new era for the

computation of various transcendental constants. For formulae such as the

alluring

π =
∞
∑

k=0

1

16k

(

4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)

and more generally

C =

∞
∑

k=0

p(k)

q(k)bk

where p and q are integer polynomials, deg p < deg q, and p(k)/q(k) is non-

singular for non-negative k and b ∈ ZZ+, they showed that the nth digit (base b)

may be calculated in (essentially) linear time without computing its preceding

digits. Moreover, constants of this form are conjectured to be either rational or

normal to base b; see Bailey and Crandall[3]. Bailey[1] has recently catalogued

a collection of these BBP-formulae.

Curiously, these formulae intersect with the search for prime numbers. Recall

that the Gaussian-Mersenne primes (Sloane A057429) are the primes p such

that ((1 + i)p − 1)((1 − i)p − 1) is prime. Not only will we see that log q has a

BBP-formula for every Gaussian-Mersenne prime q, but also for a much broader

sequence of “generalized Gaussian-Mersenne primes.”

Section 2 shows how evaluating cyclotomic polynomials at particular com-

plex values yields new BBP-formulae, which in turn is used to motivate the

definition of generalized Gaussian-Mersenne primes. In performing such calcu-

lations, certain redundancies keep cropping up, shown to be related to Aurifeuil-

lian identities. Section 3 shows how the cyclotomic polynomials can be used to

construct such formulae.
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2 Cyclotomic Polynomials and Generalized Gaussian-

Mersenne Primes

Perhaps the simplest BBP-formula for logarithms is the classical

log 2 =

∞
∑

k=1

1

k2k
.

Bailey et al.[2] sought to determine all integers m such that log m has a binary

BBP-formula, that is, where b = 2l. Bailey and Crandall noted that the space of

constants which admit a binary BBP-formula is linear; if C1 has such a formula

with base 2l1 and C2 has a formula with base 2l2 , then C1 + C2 has a formula

with base 2lcm(l1,l2). Since

log(2n − 1) − n log 2 = log

(

1 − 1

2n

)

= −
∞
∑

k=1

1

k2kn
,

log(2n − 1) has a binary BBP-formula, subsequently yielding formulae for

log(2n + 1) and the natural logarithm of any integer of the form

(2a1 − 1) (2a2 − 1) · · · (2ah − 1)

(2b1 − 1) (2b2 − 1) · · · (2bj − 1)
. (1)

The paper [2] gave a list of some primes which have this form. Bailey [1]

extended this list by using the expression

Re

(

log

(

1 ± (1 + i)k

2n

))

(2)

suggested by R. Harley and J. Borwein. This expression has a binary BBP-

formula since, for example,

log

(

1− 1 + i

2n

)

= −
∞
∑

j=1

(

1 + i

2n

)j
1

j

= −
∞
∑

j=0

8
∑

k=1

(

1 + i

2n

)8j+k
1

8j + k

= −
∞
∑

j=0

1

2(8n−4)j

8
∑

k=1

(

1 + i

2n

)k
1

8j + k
.
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A crucial tool for factoring numbers of the form bn−1 is the classical theory

of cyclotomic polynomials:

bn − 1 =
∏

d|n

Φd(b) (3)

where Φd(x), the dth cyclotomic polynomial, is defined as

Φd(x) =

φ(d)
∏

j=1

(x − ζj).

The terms ζj are the primitive dth roots of unity and φ(·) is the Euler totient

function. Alternatively, a well-known identity for these polynomials derived

using Möbius inversion is

Φd(x) =
∏

k|d

(1 − xd/k)µ(k) (4)

where µ(·) is the Möbius function.

In conjunction with expression (1), Bailey et al. state that log Φm(2) admits

a binary BBP-formula for all positive integers m. One may easily extend this

to

log Φm(2k) (5)

for all integers k. However, the cyclotomic polynomials may be used to obtain

many other values. Using the Möbius formula (4) with x = (±1 + i)/2n yields

Re

(

log Φm

(±1 + i

2n

))

=
∑

d|m

µ(d)Re

(

log

(

1 −
(±1 + i

2n

)m/d
))

. (6)

As in the consideration of the expression (2), the right side is a binary BBP-

formula. Though it is simply a linear combination of expressions of the form

(2), the advantage here is that implicitly some cancellation may take place. For

example, we have

Re

(

log Φ6

(

1 + i

16

))

=
1

2
[log 14449− 14 log 2] ,
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hence 14449 joins the list. Similarly, one may use the Möbius formula (4) with

x = (±1 +
√

3i)/2n to obtain

Re

(

log Φm

(

±1 +
√

3i

2n

))

=
∑

d|m

µ(d)Re



log



1 −
(

±1 +
√

3i

2n

)m/d






 ,

(7)

again producing binary BBP-formulae. An example here is

Re

(

log Φ5

(

1 +
√

3i

4

))

=
1

2
[log 331− 8 log 2] ,

so 331 comes onto the list. Again, such results are linear combinations of earlier

formulae since, for example,

Re

(

log

(

1 − 1 +
√

3i

2
x

))

= log(1 − x3) − log(1 − x).

Modest calculations with Maple produced the following augmentation of Bai-

ley’s list of primes whose logarithm admits a binary BBP-formula (underlined

numbers are given by Bailey[1]):

2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 41, 43, 61, 73, 109, 113, 127,

151, 241, 257, 331 , 337, 397, 683, 1321, 1429, 1613, 2113, 2731, 5419,

8191, 14449, 26317, 38737, 43691, 61681, 65537, 87211, 131071, 174763, 246241,

262657, 268501, 279073, 312709, 524287, 525313, 599479, 2796203, 4327489, 7416361,

15790321, 18837001, 22366891, 29247661, 47392381, 107367629, 536903681, 1326700741,

4278255361, 4562284561, 40388473189, 77158673929, 118750098349, 415878438361,

1133836730401, 2932031007403, 3630105520141, 4363953127297, 4432676798593,

4981857697937, 108140989558681, 140737471578113, 1041815865690181, 96076791871613611,

18446744069414584321, 5302306226370307681801,

2048568835297380486760231, 17059410504738323992180849,

84159375948762099254554456081, 134304196845099262572814573351,

19177458387940268116349766612211, 304832756195865229284807891468769,

1339272539833668386958920468400193, 3652124453410972878264128353955921,
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1772303994379887829769795077302561451, 6113142872404227834840443898241613032969,

1461503031127477825099979369543473122548042956801,

867988564747274927163124868127898657976489313137639569

Of course, products of two primes, three primes, etc. were found to be on

the list. Keeping track of these products of primes helps generate new single

primes. For example, since 211 − 1 = 23× 89, the product 23× 89 is on the list.

In addition, we have

Re

(

log Φ6

(

1 +
√

3i

212

))

=
1

2
[log 7 + 2 log(23 × 89) + log 599479− 44 log 2] ,

so this is how 599479 was obtained. Products of two primes which are on the

list include:

23×89, 47×178481, 53×157, 59×3033169, 67×20857, 71×122921, 79×121369,

83×8831418697, 97×673, 101×8101, 137×953, 139×168749965921, 149×184481113, 181×54001,

193×22253377, 197×19707683773, 229×457, 223×616318177, 251×4051, 277×30269,

281×86171, 283×165768537521, 313×1249, 353×2931542417, 571×160465489,

593×231769777, 601×1801, 631×23311, 641×6700417, 1013×1657, 1777×25781083,

3121×21841, 3761×7484047069, 5581×384773, 8681×49477, 10169×43249589,

13367×164511353, 32377×1212847, 92737×649657, 179951×3203431780337,

181549× 12112549

Note that all the primes up to 101 are on the list, either alone or multiplied

by one other prime. Indeed, every odd prime p is on the list, either alone or in

some multiple product of primes since 2p−1 − 1 is on the list and p|(2p−1 − 1).

Carl Pomerance (see [2]) showed that 23 could not be written in the form (1);

however, it is still unknown whether log 23 has a binary BBP-formula. Related

questions are extensively dealt with by Borwein, Borwein and Galway[4].
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An important subclass of binary BBP-formulae concerns the expression

Re

(

log Φm

(

1 + i

2

))

. (8)

Letting m equal a prime p = 4k + 1, we have

Φp

(

1 + i

2

)

= 1 +

(

1 + i

2

)

+

(

1 + i

2

)2

+ · · · +
(

1 + i

2

)(4k+1)

=

(

1+i
2

) (

1+i
2

)4k − 1
(

1+i
2 − 1

)

= 1 + i

(

1 −
(

−1

4

)k
)

,

which produces

Re

(

log Φp

(

1 + i

2

))

=
1

2
log



1 +

(

1 −
(

−1

4

)k
)2




=
1

2
log
(

2 · 42k − 2(−4)k + 1
)

− 2k log 2

=
1

2
log
(

(1 + i)(4k+1) − 1
)(

(1 − i)(4k+1) − 1
)

− 2k log 2

=
1

2
log ((1 + i)p − 1) ((1 − i)p − 1) − 2k log 2

=
1

2
log

(

((1 + i)p − 1) ((1 − i)p − 1)

24k

)

.

A similar calculation may be done for primes of the form p = 4k − 1. We then

have that if q is a Gaussian-Mersenne prime, then log q admits a binary BBP-

formula. This connection implies a larger question: For which positive integers

m is the numerator of the rational expression

exp

(

2Re

(

log Φm

(

1 + i

2

)))

(9)

prime? Besides the Gaussian-Mersenne primes, many composite m satisfy this

condition. These generalized Gaussian-Mersenne primes, checked for all m <

3000, are listed below (the regular Gaussian-Mersenne primes are underlined).

2, 3, 4, 5, 7, 9, 10, 11, 12, 14, 15, 18, 19, 21, 22, 26, 27, 29, 30, 33, 34, 35, 42, 45,
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47, 49, 51, 54, 55, 58, 63, 65, 66, 69, 70, 73, 79, 85, 86, 87, 105, 106, 110, 111, 113, 114,

126, 129, 138, 147, 151, 157, 163, 167, 178, 186, 189, 217, 231, 239, 241, 242,

283, 319, 323, 350, 353, 363, 367, 375, 379, 385, 391, 457, 462, 522, 543, 566, 602, 621,

633, 651, 679, 741, 779, 819, 871, 885, 997, 1062, 1114, 1126, 1150, 1226, 1275, 1317,

1329, 1367, 1382, 1434, 1477, 1710, 1926, 1970, 2331, 2422, 2446, 2995.

Some of the primes produced by expression (9) have been put on the previous

list of primes. When m = 2995, this produces a prime with over 700 digits.

3 Aurifeuillian Factorizations

Since the cyclotomic polynomials are irreducible in ZZ[x], it would seem no fur-

ther factorization of bn − 1 in equation (3) is possible. However, by imposing

certain restrictions on x, other factorizations exist. An example is

Φ5(x) = x4 + x3 + x2 + x + 1 = (x2 + 3x + 1)2 − 5x(x + 1)2

which, upon letting x = 52k−1 and factoring the difference of squares, yields

Φ5(5
2k−1) = [54k−2+3·52k−1+1−5k(52k−1+1)][54k−2+3·52k−1+1+5k(52k−1+1)].

These special polynomial identities were first noted by A. Aurifeuille and subse-

quently generalized by E. Lucas. References and other examples of Aurifeuillian

identities may be found in Brillhart et al. [6], as well as their use in factoring.

Theorems regarding writing Φn(x) as a difference of squares may be found in

Schinzel[7], Stevenhagen[8] and Brent[5].

Earlier we saw that log(2n ± 1) has a binary BBP-formula. Bailey[1]) notes

that

Re

(

log

(

1 ± 1 + i

2n

))

=

(

1

2
− n

)

log 2 +
1

2
log
(

22n−1 ± 2n + 1
)

,



9

so the two expressions 22n−1 ± 2n + 1 come onto the list. However, multiplying

these terms gives the classical Aurifeuillian identity

24n−2 + 1 =
(

22n−1 + 2n + 1
) (

22n−1 − 2n + 1
)

.

This demonstrates why some calculations used in the last section to generate the

list of primes were redundant. Indeed, in searching for various families of factors,

similar identities arise. We now develop other Aurifeuillian identities, interesting

for their own sake, and make connections to expressions used in the last section.

Let us start with a general theorem regarding cyclotomic polynomials.

Theorem 3.1 Let m, n ∈ ZZ+ satisfy gcd(m, n) = 1 and at least one of m or n

is greater than 2. Then

Φmn(x) =

φ(m)
∏

j=1

Φn(xζj) (10)

where ζj are the primitive mth roots of unity.

Proof: Since the degree of Φn(x) is φ(n), the degree of the left side polyno-

mial of (10) is φ(mn) = φ(m)φ(n), matching the degree of the right. The left

polynomial is monic, while the leading coefficient of the right side is

φ(m)
∏

j=1

ζj
φ(n) =





φ(m)
∏

j=1

ζj





φ(n)

= 1

so the right is also monic. It remains to show that the roots of each side are the

same.

The roots of Φmn(x) are simply eki2π/mn with gcd(k, mn) = 1. We will

show that each of these φ(mn) distinct roots is also a root of the right side. To

expand the right side, first note that each ζj has the form eli2π/m for some l

satisfying gcd(l, m) = 1. This combines to give

xζj = e(k+ln)i2π/mn
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so it is suffices to show that for each k there exists an l such that

gcd

(

k + ln

m
, n

)

= 1.

Since gcd(k, mn) = 1, we have gcd(k, n) = 1. This implies that gcd(k+ln, n) = 1

and, using the Euclidean algorithm with gcd(m, n) = 1, there exists an l such

that k + ln is a multiple of m. This completes the proof. 2

With the identities

Φ2kn(x) = Φn

(

−x2k−1
)

, n odd

and

Φpn(x) = Φn(xp), p prime, p 6 |n,

we construct several examples.

Example 3.1 The case m = 4 was foreshadowed by Schinzel[7, formula (12)].

Letting n be odd in Theorem 3.1 gives

Φn(−x2) = Φ4n(x) = Φn(ix)Φn(−ix).

Replacing x with ix gives

Φn(x2) = Φn(x)Φn(−x).

Example 3.2 Letting m = 8, n odd, we have

Φ8n(x) =

[

Φn

(

x
1 + i√

2

)

Φn

(

x
1 − i√

2

)][

Φn

(

x
−1 + i√

2

)

Φn

(

x
−1 − i√

2

)]

.

(11)

Replacing x with
√

2x yields

Φn(−4x4) = Φ4n(2x2)

= [Φn(x(1 + i))Φn(x(1 − i))] [Φn(x(−1 + i))Φn(x(−1 − i))] . (12)

If x is real, the two right side expressions must be integer polynomials since they

are each the product of complex conjugates. Example subcases with x = 2k are
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n=1:

24k+2 + 1 = (22k+1 + 2k+1 + 1)(22k+1 − 2k+1 + 1)

n=15:

232k+16 + 228k+14 − 220k+10 − 216k+8 − 212k+6 + 24k+2 + 1 = L · R

where

L, R = 216k+8 ± 215k+8 + 214k+7 ± 213k+7 + 212k+7 ± 211k+7 + 3 · 210k+5 ± 29k+6

+3 · 28k+4 ± 27k+5 + 3 · 26k+3 ± 25k+4 + 24k+3 ± 23k+2 + 22k+1 ± 2k+1 + 1

Getting back to the redundancies in our earlier calculations, let x = 1/2k in

(12) to produce

Re

(

log Φ4n

(

1

22k−1

))

= 2

[

Re

(

log Φn

(

1 + i

2k

))

+ Re

(

log Φn

(−1 + i

2k

))]

.

This shows how terms from (5) and (6) appear in some factorizations.

Example 3.3 Letting m = 12 and 2, 3 6 |n, we have

Φ12n(x) = Φn

(

x

√
3 + i

2

)

Φn

(

x

√
3 − i

2

)

Φn

(

x
−
√

3 + i

2

)

Φn

(

x
−
√

3 − i

2

)

(13)

Replacing x with 2
√

3x gives

Φ6n(12x2) =
[

Φn

(

x(3 +
√

3i)
)

Φn

(

x(3 −
√

3i)
)] [

Φn

(

x(−3 +
√

3i)
)

Φn

(

x(−3 −
√

3i)
)]

Again, the two right side expressions must be integer polynomials. Example

subcases with x = 2k−1 are

n=1:

9 · 24k − 3 · 22k + 1 = (3 · 22k − 3 · 2k + 1)(3 · 22k + 3 · 2k + 1)

n=5:

216k38 + 214k37 − 210k35 − 28k34 − 26k33 + 22k3 + 1

(28k34 + 27k34 + 26k+133 + 25k33 + 24k32 + 23k32 + 22k+13 + 2k3 + 1)

×(28k34 − 27k34 + 26k+133 − 25k33 + 24k32 − 23k32 + 22k+13 − 2k3 + 1)
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To show how equation (13) produces redundancies, replace x with x(
√

3 +

i)/2 to obtain

Φ6n

(

1 +
√

3i

2
x2

)

= Φ12n

(√
3 + i

2
x

)

= Φn

(

1 +
√

3i

2
x

)

Φn

(

−1 −
√

3i

2
x

)

Φn(x)Φn(−x).

With x = 1/2k−1 this yields the relationship

Re

(

log Φ6n

(

1 +
√

3i

22k−1

))

= Re

(

log Φn

(

1 +
√

3i

2k

))

+ Re

(

log Φn

(

−1 +
√

3i

2k

))

+ log Φn

(

1

2k−1

)

+ log Φn

( −1

2k−1

)

.

This shows how terms from (5) and (7) appear in some factorizations.
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