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The C2v Point Group of H2O
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The Point Group of H2O consists of the
four Point Group symmetry operations

E, C2x, xz and xy 

1 2

Identity operation

C2 rotation about x axis Reflection in xz plane

Reflection in xy plane
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Point Group operations act on vibrational 
displacements and electronic coordinates

Electron above the 
plane of the page

Electron below the 
plane of the page



z

x

(+y)
C2x

z

x

(+y)

+ ++ -
ee

11 22

Successive application of PG operations
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Character Table for the Point Group C2v

 E (12) E* (12)* 

A1 1 1 1 1 

A2 1 1 1 1 

B1 1 1 1 1 

B2 1 1 1 1 
 

E C2x σxz σxy

4 irreducible representations
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σxy C2xσxz= σxyC2xσxz = σxzC2x σxy=

σxy C2xσxz= σxyC2xσxz = σxyC2x σxz=

1 2



Character table for the Point Group C3v

 E (123) (12) 

 1 2 3 

A1 1 1 1 

A2 1 1 1 

E 2 1 0 
 

E  C3 σ1
C3

2 σ2
σ3

3 irreducible representations

Reflection in 
FCH1 plane



Point Group Symmetry is based
on the geometry of the equilibrium

molecular structure in a single 
electronic state.

It has limitations when one needs 
to consider the effects of molecular 
rotation, tunneling, or electronic 
states of a molecule having different
Point Group symmetries 
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NH3H3
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Excited state geometry ≠ Ground state geometry

Rotational distortion Tunneling

D3h C2v C3v D3h C3v

C2H4 D2d D2h



In the language of Quantum 
Mechanics this means that 
symmetry operations R are 

such that they commute with 
the molecular Hamiltonian H.

RH = HR

A more general symmetry  is
“Energy Invariance” symmetry



• Uniform Space------------Any translation in space 

• Isotropic Space-----------Any rotation in space     

• Identical Electrons-------Permute electrons

• Identical Nuclei-----------Permute identical nuclei         

• Parity Conservation-----Invert coordinates and momenta

• Time Reversal------------Reverse momenta and spins      

• Charge Conjugation-----Interchange particles and antiparticles

Symmetry Operations
[commute with the full Hamiltonian]

Point Group operations do not commute with the full (rotation-
vibration-electronic-nuclear spin) Hamiltonian. They do 
commute with the vibronic (vibrational-electronic) Hamiltonian.



• Uniform Space------------Any translation in space 

• Isotropic Space-----------Any rotation in space     

• Identical Electrons-------Permute electrons

• Identical Nuclei-----------Permute identical nuclei         

• Parity Conservation-----Invert coordinates and momenta

• Time Reversal------------Reverse momenta and spins      

• Charge Conjugation-----Interchange particles and antiparticles

Symmetry Operations
[commute with the full Hamiltonian]

The Complete Nuclear Permutation Inversion Group

We just consider the group of these two types of symmetry operation



The Complete Nuclear Permutation 
Inversion (CNPI) Group

Contains all possible permutations
of identical nuclei including E. It also 
contains the inversion operation E*
and all possible products of E* with
the identical nuclear permutations.

GCNPI =  GCNP x {E,E*}

For H2O   GCNPI = {E,(12)} x {E,E*}
= {E,(12),E*,(12)*}



The Complete Nuclear Permutation Inversion (CNPI) group

for the water molecule is  {E,(12)} x {E,E*} = {E, (12), E*, (12)*}

H1 H2

O e+

H2 H1

O e+ H1 H2
Oe-

(12) E*

(12)*

Nuclear permutations permute nuclei (coordinates and spins).
Do not change electron coordinates in space

E* inverts coordinates of nuclei and electrons
at the centre of mass; it does not change spins.

The CNPI Group for the Water Molecule



The Complete Nuclear Permutation Inversion (CNPI) group

for the water molecule is  {E,(12)} x {E,E*} = {E, (12), E*, (12)*}

H1 H2

O e+

H2 H1

O e+ H1 H2
Oe-

(12) E*

(12)*

Nuclear permutations permute nuclei (coordinates and spins).
Do not change electron coordinates in space

The CNPI Group for the Water Molecule

H                               
C=NH

D
CNPI group of                is the same as that of H2O1

2

E* Inverts coordinates of nuclei and electrons
at the centre of mass; it does not change spins.



H                               
C=NH

D
CNPI group of                is the same as that of H2O1

2

GCNPI = {E,(12)} x {E,E*} = {E,(12),E*,(12)*}

In this group, the number of operations (called 
the “order” h) = 2! x 2 = 4

H                               
C=NH

H
1

2

3

CNPI group = {E,(123),(132),(12),(23),(31)} x {E,E*},
where (123) means  1 is replaced by 2, 2 is 
replaced by 3, and 3 is replaced by 1.

For this CNPI group, the order h = 3! x 2 = 12.



The benzene molecule C6H6 has six  
carbon nuclei and six protons. 
Its CNPI group has order 6! x 6! x 2 

The toluene molecule C6H5CH3 has seven  
carbon nuclei and eight protons. 
Its CNPI group has order 7! x 8! x 2  



The order of various CNPI groups:

The order of the CNPI group, and the
operations in the CNPI group, depend 

only on the chemical formula



(12)    E* 
1        1
1       -1

-1       -1
-1        1 

E   
1
1
1
1

(12)* 
1          
-1
1
-1

A1

A2

B1

B2

The character table of the CNPI
group of the water molecule. This 
group is called C2v(M) and it is
isomorphic with the Point Group C2v

We use the irreducible representations (irreps)
to label molecular energy levels. They are often
called “symmetry labels.” To be able to do this
it is necessary that the operations in the group
commute with the Hamiltonian, as we now show.



For nondegenerate states this 
is the effect of a symmetry 
operation on an eigenfunction:

RH = RE

HR = ER

H = E

we can only have R =  c where c is a constant.

For the water molecule (      nondegenerate) :

If one wants to label energy levels using the irreps of the 
group of operations R, we must have RH=HR for all R.
The effect of R is to change the coordinates.

RH = HR, and E is a number that must commute with R, so we have: 

Act with the symmetry operation  R on each side

Thus  R has the same eigenvalue as  Ψ. Since Ψ is nondegenerate



For nondegenerate states this 
is the effect of a symmetry 
operation on an eigenfunction:

RH = RE

HR = ER

H = E

Thus  R =  c since E is nondegenerate.

For the water molecule (     nondegenerate) :

For water we have R2 = E, so c2 = 1 and thus c = ±1

Eψ = ψ,    (12)ψ = ±ψ,    E*ψ = ±ψ,    (12)*ψ = ±ψ

Wavefunctions have symmetry. Effect of E* gives the “parity.”  



+ Parity - Parity

x

Ψ1
+(x)

x

Ψ3
+(x)

x

Ψ2
-(x)

Ψ+(-x) = Ψ+(x)

Ψ-(-x) = -Ψ-(x)

Eigenfunctions of H
must satisfy
E*Ψ = ±Ψ



+ Parity - Parity
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x

Ψ2
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Ψ+(-x) = Ψ+(x)

Ψ-(-x) = -Ψ-(x)

Eigenfunctions of H
must satisfy
E*Ψ = ±Ψ and

(12)Ψ = ±Ψ



Four symmetry types of wavefunction for H2O depending on 
whether the wavefunction is multiplied by +1 or -1 by (12) or E*

(12)    E* 
1        1
1       -1
-1       -1
-1        1 

E   
1
1
1
1

(12)* 
1          
-1
1
-1

A1

A2

B1

B2



The effect of (12)* is the product of the effects of (12) and E*

(12)    E* 
1        1
1       -1
-1       -1
-1        1 

E   
1
1
1
1

(12)* 
1          
-1
1
-1

A1

A2

B1

B2



(12)    E* 
1        1
1       -1
-1       -1
-1        1 

E   
1
1
1
1

(12)* 
1          
-1
1
-1

The effect of the identity operation has to be +1



(12)    E* 
1        1
1       -1
-1       -1
-1        1 

E   
1
1
1
1

(12)* 
1          
-1
1
-1

A1

A2

B1

B2

Thus we can use the irreps (or symmetry labels) of the CNPI group 
to label the molecular energy levels of the water molecule.

It can be shown that for any molecule, its energy levels can be 
labeled using the irreps of its CNPI group. 

These labels are used to determine if certain integrals vanish
without the need of numerically calculating the integrals. To do
this we make use of the “Vanishing  Integral Theorem.” This is one
of the major uses of symmetry in the understanding of molecules.

[See Chapter 6 of BJ2]



The Vanishing Integral Theorem involves the integral
of an operator “Op” between two states n and m and it
states for the water molecule that:

We can use the symmetry labels to determine whether an 
off-diagonal matrix element of the Hamiltonian H is zero,
i.e., whether two energy levels can perturb each other. 
They can also be used to determine whether an off-diagonal
matrix element of the dipole moment operator μA is zero
(where A is a space fixed direction), i.e., whether a 
spectroscopic transition is forbidden.

∫φn*Opφmdq=0 if   φn*Opφm  is not of symmetry A1



The dipole moment operator μA

The dipole moment of a molecule in the space fixed direction
A is given by

μA =  ∑i Ai ei

where i runs over all the nuclei and all the electrons in the molecule, Ai

is the A-coordinate of particle i and ei is its charge (-e for each electron). 

μA is unaffected by any permutation of identical nuclei since such
nuclei have the same charge, and it is reversed in sign by the
inversion E* since all the Ai are changed in sign by E*. Thus, μA

has CNPI symmetry A2  for the water molecule.

If ∫φn*μAφmdq=0 (integration over all coords q)
then the transition φn        φm is forbidden.



The Symmetry Labels of the CNPI Group of H2O

(12)    E* 
1        1
1       -1
-1       -1
-1        1 

E   
1
1
1
1

(12)* 
1          
-1
1
-1

A1

A2

B1

B2

Symmetry of μA

∫Ψa
*μAΨbdτ = 0 if symmetry of ψa*μAψb is not A1,

that is, if the symmetry of the product ΨaΨb is not A2

Symmetry of H

Using symmetry labels and the vanishing
integral theorem we deduce that:

∫Ψa*HΨbdτ = 0 if symmetry of Ψa*HΨb is not A1,
that is, if the symmetry of Ψa is not the same as Ψb



For any molecule its full Hamiltonian commutes with the
operations in its CNPI group. The irreps of the CNPI group 
can thus be used to label the molecular energy levels and to
determine which integrals of the Hamiltonian vanish and which
electric dipole transitions are forbidden.

BUT the CNPI group has a shortcoming

It often gives superfluous symmetry 
labels when a molecule has more 
than one “Version.”



PH3

1

2

3

There are two VERSIONS
of the equilibrium structure
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PH3 

Very
high
potential
barrier

~12000 cm-1

TWO VERSIONS: Distinguished
by numbering the identical nuclei

Tunneling splitting negligible



It is rather obvious that PH3. like NH3, 
has two versions. It is perhaps less 
obvious that CH3F has two versions.

This becomes clear when one numbers 
the identical nuclei. The two versions are 
shown in the next image and they can be
interconverted through the planar configuration 
obtained by rotating one CH2 moiety about its 
C2 axis relative to the remaining  HFC moiety.
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CH3F

Very, very
high
potential
barrier

~35000 cm-1

TWO VERSIONS: Distinguished
by numbering the identical nuclei

F F

Tunneling splitting even more negligible



The number of versions of the minimum is given by:
(order of CNPI group)/(order of point group).

H
N1 N2 N3

1   3   2

2   1   3

2   3   1

3   1   2

3   2   1

HN3 has 12/2 = 6 versions of its equilibrium structure
[See Bone et al., Mol. Phys., 72, 33 (1991)]



The number of versions of the minimum is given by:
(order of CNPI group)/(order of point group).

H
N1 N2 N3

1   3   2

2   1   3

2   3   1

3   1   2

3   2   1

HN3 has 12/2 = 6 versions of its equilibrium structure
[See Bone et al., Mol. Phys., 72, 33 (1991)]

Benzene, C6H6 has 
(6!x6!x2)/24 

= 1036800/24 
= 43200 versions



What happens when we use the CNPI 
group to symmetry label the energy 
levels of a molecule that has more than 
one version and no observed tunneling? 

Let us consider the rotation-vibration energy
levels of the CH3F molecule in its ground
electronic state as an example. 
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CH3F

Very, very
high
potential
barrier

~35000 cm-1

F F

The tunneling splittings are exceedingly miniscule
and have not been seen experimentally.



GCNPI={E, (12), (13), (23), (123), (132), 
E*, (12)*, (13)*,(23)*, (123)*, (132)*}

Character Table of CNPI group of CH3F

E   (123)  (12)  E*  (123)*  (12)*
(132)  (31)        (132)*  (31)*

(23)                    (23)*

D3h(M)

6 irred. reps



The CNPI group for CH3F has six irreps and therefore there can 
be  six different CNPI group symmetries for the rotation-vibration 
eigenfunctions of ground state CH3F.  

HOWEVER, if one did a numerical calculation of the
rotation-vibration eigenfunctions and eigenvalues of CH3F using
a very high quality ab initio potential energy surface encompassing
the entire nuclear coordinate space (i.e., including both minima) and
then determined the CNPI group symmetries of the eigenfunctions, one 
would find that the energy levels “paired” up into three possibilities:

E’ + E’’A1’’ + A2’A1’ + A2’’ or

Tunneling between the minima would split each of these
degeneracies, but experimentally such splittings are not
resolved. Each energy level is labelled with the sum of two
irreps of the CNPI group because there are two versions 
and no observed  tunneling splittings.



For understanding the spectrum 
when there is no observed tunneling 
this is a  “superfluous” degeneracy

For C6H6 :Number of versions = 6! x 6! x 2 = 43200,
and using the CNPI group each energy level would
get as symmetry label the sum of 43200 irreps.



It is possible to set up a sub-group of 
the CNPI Group, called the Molecular

Symmetry Group, with symmetry labels
that do not give rise to superfluous 

degeneracies.
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Very, very
high
potential
barrier

No observed tunneling through barrier

Useful ab initio calculation in here

Ab initio calc with neglect of tunnelingCH3F

It would be
superfluous
to calc points
in other min

F F
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2

Very, very
high
potential
barrier

No observed tunneling through barrier

Only P and P* operations from in here
are useful

CH3F

F F
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2

Very, very
high
potential
barrier

No observed tunneling through barrier

Only P and P* operations from in here
are useful

CH3F

(12)   superfluous
E*      superfluous
(123), (12)* useful

F F



GCNPI={E, (12), (13), (23), (123), (132), 
E*, (12)*, (13)*,(23)*, (123)*, (132)*}

superfluous

superfluous

useful

If we cannot see any effects
of the tunneling through the
barrier then we only need
NPI operations for one 
version. Omit NPI elements
that connect versions since 
they are not useful; they are

superfluous.

GMS ={E, (123), (132), (12)*, (13)*,(23)*}

The useful operations constitute the Molecular Symmetry Group

For CH3F:

If no tunneling
splittings are
resolved.

High Barrier



The superfluous operations in the CNPI group 
are those operations that connect versions of 

the molecule between which there is an 
insuperable potential energy barrier and 
hence no observable tunneling splitting.

It is important to realize that the determination
that an operation is superfluous depends on  

the size of the tunneling splitting relative to the
resolving power of ones apparatus 

Superfluous operations of the CNPI group  
are called “unfeasible” and the useful 

operations are called “feasible.”



GCNPI={E, (12), (13), (23), (123), (132), 
E*, (12)*, (13)*,(23)*, (123)*, (132)*}

Character Table of CNPI group of CH3F

E   (123)  (12)  E*  (123)*  (12)*
(132)  (31)        (132)*  (31)*

(23)                    (23)*

μA
A1”

H
A1’

D3h(M)



Character table of the MS group of CH3F

 E (123) (12) 

 1 2 3 

A1 1 1 1 

A2 1 1 1 

E 2 1 0 
 

E  (123)  (12)*
(132)  (13)*

(23)*  

μA A2

H A1
C3v(M)



CH3F:  CNPIG              MSG

E

A2

A1

Can use either to determine if an integral vanishes.
but clearly it is easier to use the MSG. This would
particularly be the case for benzene with 43200 versions 

E’ + E’’

A1’’ + A2’

A1’ + A2’’

E’ + E’’ E

μA is A1” μA is A2

D3h(M) C3v(M)



The subgroup of feasible elements forms a group called

THE MOLECULAR SYMMETRY GROUP
(MS GROUP)

Unfeasible elements of the CNPI group
interconvert versions that are separated

by an insuperable energy barrier

superfluous

useful



Note that for the NH3 molecule, which has two versions  like
CH3F but for which the tunneling splittings are resolved rather 
easily, all elements of the CNPI group are feasible and for NH3

the Molecular Symmetry Group is the CNPI group D3h(M).

The PH3 molecule is an interesting intermediate example for 
which a careful ab initio calculation of the rotation-vibration 
energy levels has been made.



Recent theoretical calculations 
using the full 6-d PE surface:

Sousa-Silva, Tennyson and Yurchenko
JCP 145, 091102 (2016)

Yield theoretical tunneling splittings 

Schwerdtfeger, Laakkonen and Pekka Pyykkö,
J. Chem. Phys., 96, 6807 (1992)

Barrier height = 12300 cm-1

THE PH3 MOLECULE



7.2 cm-1

0.775
0.145
0.023
0.0017 cm-1

15 MHz
2 MHz

240 kHz
15 kHz

600 Hz
12 Hz

1 cm-1 ≡ 3 x 1010 Hz

3ν2

PH3



Comb-referenced sub-Doppler resolution
spectroscopy of the 3ν2 band of PH3

Shoko Okuda and Hiroyuki Sasada
Keio University, Yokohama, Japan
(HRMS meeting Helsinki, August 2017). 
No tunneling splittings resolved

2940 cm-1

~10-5 cm-1



Thus for symmetry labelling the energy 
levels up to the 3ν2  level, one should use 
the C3v(M) group as the MSG but above that 
(i.e., for hot PH3) one should use the D3h(M)
group as the MSG. Also, if the resolution 
for the 3ν2 band were improved, and the 
tunneling splitting resolved, it would be 
necessary to use the D3h(M) group to label
the energy levels there.



7.2 cm-1

0.775
0.145
0.023
0.0017 cm-1

15 MHz
2 MHz

240 kHz
15 kHz

600 Hz
12 Hz

D3h(M)

C3v(M)

1 cm-1 ≡ 3 x 1010 Hz

3ν2

PH3



Point Group

CNPI GroupMS Group
Delete superfluous
symmetry operations

Use equi. 
molecular
geometry

Use all P and
P* operations

WE NOW RELATE THE MSG 
AND THE POINT GROUP

The groups have been derived by two quite different routes



C2v E    C2x σxz σxy    

 E (12) E* (12)* 

A1 1 1 1 1 

A2 1 1 1 1 

B1 1 1 1 1 

B2 1 1 1 1 
 

z

x

(+y)

Point Group and MSG of H2O

1 2

C2v(M)



 E (123) (12) 

 1 2 3 

A1 1 1 1 

A2 1 1 1 

E 2 1 0 
 

E  (123)  (12)*
(132)  (13)*

(23)*  

E  C3 σ1
C3

2 σ2
σ3

C3v

1

2

3

F

C3v(M)

Point Group and MSG of CH3F



GCNPI E   (123)  (12)  E*  (123)*  (12)*
(132)  (31)        (132)*  (31)*

(23)                    (23)*

GCNPI

E   2C3 3C2’  σh 3S3 3σvPoint Group D3h

Molecular
Symmetry
Group

3

1

2

+H3
+

D3h(M)



H5

C1

C2

C3

H4

H7

H6

Isomorphism of the MSG and Point Group:
E C2(z)             C2’               C2’          σd σd

{E, (45)(67), (13)(46)(57), (13)(47)(56), (45)*, (67)*,
S4 S4

(4657)(13)*, (4756)(13)*} 

The allene molecule   C3H4

Point Group is D2d which has 8 
operations as does the MSG.

They are isomorphic and have the same character tables

h(CNPI) = 3!x4!x2 = 288z



Point Group

CNPI GroupMS Group
Delete superfluous
symmetry operations

Use equi. 
molecular
geometry

Use all P and
P* operations

For non-tunneling non-linear mols

Isomorphic

This isomorphism is no accident as we show using the water molecule 



Black are instantaneous
positions in space. White
are equilibrium positions. 
N.B. +z is 1→2. Arrows on
particles indicate spin

Then do (12). 
Note that axes have moved.
rotational coordinates and
xyz electronic coordinates are
transformed by MS group.

‘+’ indicates
electron
above  page



Undo the permutation
of the nuclear spins

‘+’ indicates
electron
above  page



Undo the permutation
of the nuclear spins

We next undo the
rotation of the axes
by a bodily rotation
of the molecule
about x-axis thru π

‘+’ indicates
electron
above  page



‘+’ indicates
electron
above  page

‘-’ indicates
electron
below  page



only transforms
electronic and
vibrational
coordinates

Point Group operation

‘+’ indicates
electron
above  page

‘-’ indicates
electron
below  page



Point Group operation

We now 
reverse these

‘+’ indicates
electron
above  page

‘-’ indicates
electron
below  page

only transforms
electronic and
vibrational
coordinates



Point Group operation

‘+’ indicates
electron
above  page

‘-’ indicates
electron
below  page

only transforms
electronic and
vibrational
coordinates

only transforms
rotational
coordinates

only transforms
nuclear spin
coordinates



Point Group operation

‘+’ indicates
electron
above  page

‘-’ indicates
electron
below  page

This shows that
(12) = p12 Rx C2x

π

only transforms
electronic and
vibrational
coordinates

only transforms
rotational
coordinates

only transforms
nuclear spin
coordinates



Point Group operation



Point Group operation



MS Group and Point Group of 
H2O

E  =    p0 R0 E

(12)  = p12 Rx
 C2x

E*  =   p0 Ry
 xz

(12)*  =  p12 Rz
 xy

MS Group Point GroupC2v(M) C2v

Only act on vibronic
(vibrational and 
electronic) coordinates



The operations in a Point Group commute with the
vibronic Hamiltonian and they do not transform the
rotation or nuclear spin coordinates. We can symmetry
label the vibronic states using the Point Group. Using 
the same names for the irreps of the MS group as for the
isomorphic Point Group means that the same symmetry
labels are obtained for vibronic states using the MS group.



The names and character  tables of PI groups 
for  non-tunneling (“rigid”) molecules

For nonlinear rigid molecules the MS Group and the Point Group
are isomorphic and we can use the same character table for each.
We add “(M)” to the point group name to designate the MS Group.
As examples, the MS groups of CH3F and C6H6 are C3v(M) and
D6h(M), respectively.  

Linear rigid molecules are discussed in Section 8.3.4  on page 172
of BJ1 and in Chapter 17 of BJ2. For such molecules the Extended 
MS group is isomorphic to the Point Group and we add “(EM)” to 
the Point Group name so that we have D∞h(EM) and C∞v(EM) groups.

The group elements and character tables for these PI groups are 
given in the appendices of BJ1 and BJ2. In the final section of the
talk we use the MS group D2h(M) as an example to show the 
special place of the Point Group inversion operation i. 



The Molecular Symmetry Group D2h(M) 
of the non-tunneling ethylene molecule

E (12)(34)  (13)(24)(56)  (14)(23)(56)  E*   (12)(34)*  (13)(24)(56)*  (14)(23)(56)*

Under each  PI group operation is given the Point Group operation onto 
which it is mapped. Each PI operation is the product of the Point Group 
operation and equivalent rotation written under it times the appropriate 
nuclear spin permutation. Such products are written in image 74 for C2v(M). 



The Point Group inversion operation i

Centro-symmetric molecules like ethylene have the inversion 
operation i in their Point Group. This operation inverts vibrational 
displacements and electronic coordinates in the molecule mid-point.
It should be distinguished from the space inversion (parity) 
operation E* involved in PI groups. We explain this using the
ethylene molecule, and its MS group D2h(M), as an example.



The Molecular Symmetry Group D2h(M) 
of the non-tunneling ethylene molecule

E (12)(34)  (13)(24)(56)  (14)(23)(56)  E*   (12)(34)*  (13)(24)(56)*  (14)(23)(56)*

We have    (14)(23)(56)*  = p(14)(23)(56)  R0 i

where      p(14)(23)(56) is the permutation of the nuclear spins

and       R0 is the identity rotation.            



All rigid centrosymmetric molecules have a special PI group
operation that we shall call I* in their MS (or EMS) symmetry
group. For ethylene this is the operation (14)(23)(56)*. The
operation I* is the product of the permutation operation I and E*, 
where I exchanges pairs of nuclei symmetrically located about 
the molecular mid-point. For ethylene I = (14)(23)(56).

The operation   I* = pI R0 i

where pI is the exchange of the nuclear spin coordinates of
nuclei symmetrically located about the molecular mid-point.
Since (pI)2 = E and R0 is the identity rotation we have

i = pI  I* 

Since I* commutes with the full rovibronic-nuclear spin
Hamiltonian then i commutes with the rovibronic Hamiltonian.



Vibronic states are either symmetric (gerade or g) or unsymmetric
(ungerade or u) under the effect of the Point Group operation i. 
Because the point group operation  i commutes with the
rovibronic Hamiltonian, the rotational levels of g and u vibronic
states can only be coupled by the nuclear spin hyperfine
Hamiltonian. 

See Critchley et al, Phys. Rev. Letters, 86, 1725 (2001) for an 
example of g-u mixing in the centro-symmetric molecule H2

+.

The g/u label is NOT the parity label +/-. The parity label
is the effect of the spatial inversion operation E* on an
overall rovibronic nuclear spin state.



RH=HR defines a “Symmetry Operation” R

With RH=HR         Label energy levels using irreps

Irrep Labels         Determine which ∫φn*Opφmdq=0

Non-tunneling molecules    RPGHve=HveRPG

CNPI Groups    Group of all P and P* operations

Using CNPI Groups  Superfluous symmetry labels
because of VERSIONS

Mol Symm Groups   Unfeasible operations omitted

Can use Point Group to label vibronic states of non-tunneling molecules
since Point Group elements RPG commute with vibronic Hamiltonian Hve

SUMMARY


