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1 Introduction

This paper demonstrates that two models of tonal representation—those proposed by Yip (1989) and Bao
(1990)—cannot be regarded as distinct. Previous work (Bao, 1990; Chen, 2000; Yip, 2002) has claimed that
these proposals differ in their empirical coverage of assimilatory tone sandhi processes in Chinese dialects,
and thus constitute distinct representational theories. Arguments in favor of this distinction are situated
within a derivational perspective on tonal processes, and assume two basic mechanisms: spread and delink.
Apart from being tied to a specific grammatical formalism, these mechanisms are insufficient in capturing
the full range of assimilatory tone sandhi, crucially cases which purportedly distinguish the two proposals in
question. An additional copying mechanism is necessary for full coverage of attested tone sandhi.

In this paper, I employ a computational framework to examine earlier claims distinguishing Yip and
Bao tonal representations. The computational perspective advocated here focuses on the properties of the
input-output mappings which describe assimilatory tone sandhi processes (rather than theory-specific mech-
anisms), thus providing a more direct approach to evaluating models’ empirical predictions. I show that
both representations handle the relevant assimilatory tone-sandhi patterns equally well when described as
input-output mappings. The computational analysis preserves the basic character of the original represen-
tational theories in the sense that it reproduces the same basic and necessary mechanisms as traditional
accounts: spread, delink, and copy. Thus, this paper demonstrates that Yip and Bao models do not differ
in their empirical consequences—contra previous claims.

Additionally, I apply the same approach to structural comparisons of the representational theories through
examination of the properties of mappings between representations. This capitalizes on various structural
similarities apparent in elements of both Yip and Bao proposals, showing that one can be freely translated
into another and vice versa, and without any loss of contrast expressible by either theory. Given these
two results, the main claim of the paper is that these representational proposals do not constitute distinct
theories, but are instead notationally-equivalent.

The paper is organized as follows. §2 frames a broad definition of ‘notational equivalence’ between rep-
resentational theories to be pursued in the paper, and highlights some meta-theoretic issues regarding the
representation of assimilatory tone sandhi. §3 introduces the Yip and Bao proposals of in detail and sum-
marizes previous arguments to distinguish them on empirical grounds. In §4, I establish the computational
framework in which the issue of notational equivalence is addressed. This section then presents case studies
of two assimilatory patterns, and shows that both models capture these patterns as input-output mappings.
§5 presents additional evidence for notational equivalence from a structural perspective. §6 discusses these
results in broad terms and addresses meta-theoretic issues. §7 concludes.

2 A Notion of Notational Equivalence

There is a tacit assumption in linguistic theory that new theories improve on older ones by increasing
both the expressivity and restrictiveness of their predecessors. Models of grammar seek to explain the widest
possible scope of attested phenomena, at the same time limiting their predictive power such that the models
do not predict unnatural/impossible/unattested patterns. It follows that new theories do not simply rehash
older ones; that is, that the new contribution is distinct from earlier iterations. A reasonable expectation of
such contributions is that they predict alternations attested in human language that earlier theories failed
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to predict. New contributions to linguistic theory should also mitigate problems of over-expressivity left by
previous theories by reining in their predictive power. Ideally, they do both simultaneously.

However, if a proposed theory merely restates the generalizations of older theories, or if the former differs
from the latter in superficial ways—such that no demonstrable improvement in expressivity/restrictiveness
obtains—we may argue that the two are not distinct, but rather are notational equivalents. Chomsky (1972,
p. 2) makes this point in the following way:

Given alternative formulations of a theory of grammar, one must first seek to determine how they
differ in their empirical consequences, and then try to find ways to compare them in the area
of difference. It is easy to be misled into assuming that differently formulated theories actually
do differ in empirical consequences, when in fact they are intertranslatable - in a sense, mere
notational variants.

A more recent definition (Fromkin, 2013) establishes two criteria by which alternative models may be con-
sidered notationally equivalent. Not only must the models share the same empirical coverage, but they
must also represent the same set of basic, abstract properties, and differ only superficially in terms of that
representation. Two models are thus notationally equivalent if they satisfy the conditions in (1):

(1) Conditions for Notational Equivalence

a. Two models do not differ in their empirical predictions

b. Two models represent the same set of abstract properties, differ only superficially

In this paper, I test the conditions in (1) against two competing models of tonal representation: those
proposed by Yip (1989) and Bao (1990) and summarized in (2). Both theories model lexical tonal contrasts
and a variety of tonal processes, specifically tone sandhi processes in Chinese dialects. At first glance, they
represent a similar set of basic properties—in particular a root node which associates to a tone-bearing
unit (TBU), a binary register feature which bisects the vocal range into upper and lower registers, and
binary terminal tonal features (‘high’ and ‘low’ tones within a register). They also make the assumption
that contour tones are sequences of level tones dominated by a single structural node, and therefore form a
constituent. However, there are differences in how these basic properties relate to one another structurally.
A key difference between the models is that Yip’s root node is specified for a register feature and dominates
terminals directly, while Bao’s root is unspecified, and branches to separate register and contour nodes, the
latter of which dominates tonal terminal nodes.

(2) Yip (1989) Bao (1990)

TBU

[±upper]

[−αraised][αraised]

TBU

T

c

[−αslack][αslack]

[±stiff]

Previous work (Bao, 1990; Chen, 2000; Yip, 2002) has claimed that this difference distinguishes the models’
empirical predictions, specifically in capturing assimilatory tone sandhi patterns formalized as spreading.
Structural separation of register and contour in Bao’s model allows the two to spread independently. In
Yip’s model, since the register node directly dominates contour, there is no distinction between register or
contour spread; spread of register entails spread of contour and vice versa. As such, assimilatory processes
modeled as ‘register spread’ or ‘contour spread’ are not predicted in this representation.

However, this observation alone does not guarantee that the two models differ in their empirical predic-
tions because the set of processes a given model is said to predict is inevitably tied to the full context of the
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formalism in which those processes are defined. If the process is couched in derivational terms (as in SPE),
it may be defined as a set of crucially-ordered rewrite rules. In an optimization-based framework like OT,
specific constraints interact in an evaluation over some set of candidates to select the output form. Therefore,
the empirical predictions of a model’s representation—its capacity to capture a certain process—must be
considered within the full context of a particular framework.

Feature geometric models of tone formalize sandhi processes in an autosegmental phonological framework
(Goldsmith, 1976; McCarthy, 1988). The basic mechanisms of this theory are spread (addition of a single
association line between elements of structure) and delink (deletion of an association line). Simple spread and
delink, however, are insufficient to model assimilatory tone sandhi processes over these representations. This
is because spreading of contour requires the extra assumption of tier conflation (Younes, 1983; McCarthy,
1986; Yip, 1989), a process by which contour nodes and the terminal tonal nodes they dominate are copied
to guarantee that separate contours are realized on each root (and not a single contour over multiple roots;
see §3.2 and especially §6 for more discussion). This mechanism is shown in (3), where a dotted line indicates
spread.

(3) a. Spread T T

ci

b. Tier Conflation T T

ci ci

A feature geometric theory of assimilatory tone sandhi thus extends the traditional set of basic operations
(spread and delink) to include a copying mechanism. This extension, however, permits alternatives to a
traditional spreading analysis. For example, it is unclear why a spreading analysis with tier conflation is
favorable to—or even differs from—one which copies pieces of structure first and reassociates them (by
adding a single association line). This yields an identical structure using the same basic mechanisms of the
theory, summarized in (4).

(4) a. Copy T T

ci ci

b. Re-association T T

ci ci

Relatedly, the necessity of tier conflation bears on the accuracy of spreadability—that is, spreading without
copying—as a metric of empirical coverage. If spread and delink fail to capture the full range of attested
tone sandhi, how reliable can such a test be in distinguishing models’ empirical predictions?

The difficulty in answering such questions is compounded by the fact that traditional analyses of tone
sandhi over these representations are inherently derivational. Spreading and tier conflation are crucially
ordered with respect to one another, as the application of the latter is dependent on the former. Additionally,
the ‘spreading’ and ‘copying’ analyses above differ only in the order of application of basic mechanisms. In
a non-serial formalism like parallel OT, for example, such an ordering would be irrelevant. There is no
guarantee that the difference between these analyses is not merely a vestige of their formalization within a
derivational paradigm. A more direct approach to evaluating models’ empirical predictions (1a) examines the
properties of input-output mappings themselves, rather than theory-specific mechanisms. Ideally, such an
approach can also be applied to structural comparisons of representational models (1b) through examination
of mappings between representations.

This paper pursues a computational characterization of tonal representation to explore the question of
notational equivalence and address the conditions in (1) as they apply to Yip and Bao tonal models. Within
the empirical domain, I narrow the focus to the set of processes which earlier work claims distinguishes the
models: register assimilation and contour assimilation. I abstract away from theory-specific considerations—
and in particular the derivational nature of earlier spreading analyses—to focus instead on the nature of
input-output mappings which describe assimilation (Chandlee and Heinz, 2018; Heinz, 2018). To do so, the
paper employs a model-theoretic framework (Courcelle, 1994; Enderton, 2001; Libkin, 2013). Yip and Bao
representations are given rigorous definitions as graph structures, and assimilatory tone mappings between
these structures are defined using logical transduction. By fixing the complexity of the logical language
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necessary to define these mappings, we may compare the structures’ empirical predictions in a principled
way. It will be shown that the models do not differ in their empirical consequences (and thus satisfy
condition (1a)) because the processes in question can be defined over both models. They do so using a
restricted, quantifier-free (QF) logic.

The quantifier-free nature of this logic captures the important intuition that assimilation in tone sandhi
is inherently local, an insight which earlier approaches overlook, but which is well-attested in computa-
tional characterizations of a wide range of phonological processes (Chandlee, 2014). Importantly, non-size-
preserving QF logic is necessary to model assimilatory patterns over both models. Such transductions define
mappings over a finite number of copies of output structure (see more discussion in §4). In other words,
non-size-preserving QF logic describes mappings which allow a copying mechanism. While sentences in this
logic are more powerful than size-preserving QF logical statements (that is, those which prohibit copying),
the type of copying these transductions permit is restricted to local, bounded environments, and thus does
not overextend the intention or spirit of the original theory (see §6.1). The intuitions behind these map-
pings are described in terms of local, connected substructures, leaving full logical definitions to an appendix.
Mappings of assimilatory processes are presented first to demonstrate that the models do not differ in their
empirical consequences. §6 discusses how the ‘spreading’ and ‘copying’ analyses described above are, in fact,
formally indistinguishable from the computational perspective because they represent a single QF-definable
map. While the scope of this result is limited to two assimilatory tone sandhi processes, it provides a proof
of concept that may be applied to spreading and copying more generally (see §6.2).

The computational approach affords the same formal rigor to exploring representational theories’ struc-
ture, as well. It allows us to reason over both aspects of notational equivalence in (1) using the same formal
language. Therefore, using the same formalism of QF-definable transductions, I further show that the two
models satisfy the second condition in (1)—that is, that any structural differences between the models are
superficial—by demonstrating their bi-interpretability (Friedman and Visser, 2014).1 Bi-interpretability pro-
vides a restrictive and provable formal notion of ‘superficial’ differences between representational theories,
and is divided into two components. First, I define transductions to translate from any structure in Bao’s
representation directly to an equivalent structure in Yip’s representation and vice versa. These transla-
tions capitalize on various structural similarities apparent in elements of both models (in particular the
constituency of tonal contour under a single structural node), such that translating from Bao’s structure to
Yip’s represents a fusion of three separate nodes into a single node, and translating from Yip’s structure to
Bao’s represents an expansion of one node into three separate nodes. These intuitions are shown in (5).2

(5)

Bao Yip

σ σ

T ±u

c ±u h/l

h/l

Yip Bao

σ σ

±u T

h/l ±u c

h/l

The second component of bi-interpretability is a guarantee that these translations are contrast-preserving;
that is, no contrasts present in one model are lost in the process of translation into the other and vice versa.

1I thank an anonymous reviewer for providing clarification on a mathematically-rigorous definition of this concept.
2For the remainder of the paper, I follow the conventions of Chen (2000) and Yip (2002), who collapse specific featural

differences between these models for clarity. That is, binary register features—[±upper] in Yip’s model and [±stiff] in Bao’s
model—are denoted ‘+u’ for upper register and ‘-u’ for lower register. Terminal tonal nodes—[±raised] in Bao’s model and
[±slack] in Yip’s model—are denoted ‘h’ for high and ‘l’ for low. I also assume that the syllable (denoted σ) is the tone-bearing
unit, though this is not consequential for the results.
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I also show that this is the case for the models in question by demonstrating that the two translations are
inverses of one another; in other words, applying both translations to one model (i.e. through composition,
see §5 and Appendix B) is the same as mapping that model to itself.

The bi-interpretability result demonstrated here builds on recent studies exploring notational equivalence
in syllabic representation (Strother-Garcia and Heinz, 2017) and autosegmental representation (Danis and
Jardine, 2019) from a formal language perspective. Importantly, this paper adopts a more restrictive defi-
nition of bi-interpretability than previous studies and thus put forth a stronger hypothesis about notational
equivalence. As Bao and Yip models satisfy both conditions in (1), I conclude that they are notationally
equivalent.

This paper does not claim that structural differences between feature-geometric configurations are by
principle superficial, or that feature geometry is irrelevant. It does not assume equivalence between these
models and other representational theories, for example those which do not assume constituency of contour
tones (e.g. Duanmu, 1990, 1994, see §5.4 of the current paper). Rather, it advocates a rigorous formal
analysis of claims that any two representations differ, and motivates analyses which are independent of the
assumptions of a particular grammatical formalism. While the results of the current study are narrow in
scope, they serve as a proof of concept for subsequent analyses of other representational models. The two
representational theories examined in this study are introduced below.

3 Yip and Bao Models

This section offers a basic introduction to tonal models proposed by Yip (1989) and Bao (1990). Following
Yip (2002)’s design criteria for featural systems of tone, the purpose of such representational theories is to 1)
characterize attested lexical tonal contrasts (both level and contour) and 2) model common tonal processes.3

It presents each in turn, with a focus on previous arguments in the literature used to distinguish these models
in terms of the latter criterion—that is, claims that they differ in their empirical predictions.

3.1 Tonal Geometry in Yip (1989) and Bao (1990)

The table in (6) summarizes the representation of level and contour lexical tonal contrasts in each model,
with a corresponding string representation. Exhausting the permutations of the binary register features with
level and contour tones yields eight distinct tonal structures (two of which overlap for the string M or mid).

3The criteria also include considerations of tonal markedness and the relationship between tonal and non-tonal features,
which I do not address here.
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(6)
Tone Yip (1989) Bao (1990) String

Low Level

σ

-u

l

σ

T

c

l

-u
L

High Level

σ

+u

h

σ

T

c

h

+u
H

Mid Level

σ

-u

h

or

σ

+u

l

σ

T

c

h

-u
or

σ

T

c

l

+u
M

High Falling

σ

+u

lh

σ

T

c

lh

+u
HM

High Rising

σ

+u

hl

σ

T

c

hl

+u
MH

Low Falling

σ

-u

lh

σ

T

c

lh

-u
ML

Low Rising

σ

-u

hl

σ

T

c

hl

-u
LM

That is, these models represent the same set of lexical tonal contrasts (§5.2 explores the formal expression
of this notion). They do so, however, via different structural configurations. Intuitively, this discrepancy
can be described as follows: Bao’s model splits Yip’s [±u] node into three separate nodes: a ‘T’ root node,
a [±u] register node and a ‘c’ contour node. I therefore refer to Bao’s model as the separated model, and
Yip’s model as the bundled model for the remainder of the paper. This structural difference is crucial as it
is argued to distinguish the models’ empirical predictions, examined in the next section.
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3.2 Purported Empirical Predictions

Feature geometric representations model not only lexical tonal contrasts but also attested tone sandhi
patterns. Assimilatory tone sandhi is formalized over these structures using spread and delink, the two basic
mechanisms of autosegmental theory (Goldsmith, 1976). In this framework, assimilation is the addition of a
single association line—i.e. spread—between elements in a structure followed by the subtraction of an existing
association line—i.e. delink. A hypothetical register assimilation pattern between two adjacent syllables is
illustrated in (7) using a simplified separated representation (where contours are not shown). A dotted line
indicates spreading and a double-barred line denotes delinking.

(7) Spread Delink Output

σ σ

T T

-u +u

→

σ σ

T T

-u +u

=

→

σ σ

T T

-u

The [-u] feature on the first syllable spreads to the ‘T’ root node on the adjacent syllable. Then, the existing
association line between that node and the [+u] feature delinks. This models progressive register assimilation
with the result being a sequence of two low-registered [-u] tones.

Previous work measures the empirical coverage of a representational theory based on the ability of specific
structural positions within the representation to spread independently of others to model assimilatory tone
sandhi attested in the literature. For example, a given theory’s empirical predictions are evaluated by
whether it can spread a register node independently from all other nodes: contour, root, terminal, etc. It is
along this dimension that the separated and bundled models are argued to differ, with the former purporting
wider empirical coverage than the latter. The table in (8)—adapted from Chen (2000)—summarizes claims
about the models’ respective empirical predictions via this spreadability metric.

(8) Bundled Model Separated Model Attested Pattern
Contour Spread no yes Zhenjiang (Zhang, 1985)
Register Spread no yes Pingyao (Hou, 1980)
Whole Tone Spread yes yes Danyang (Lü, 1980)
Terminal Node Spread yes yes Gaojia (Yan, 1981)

The separated model makes explicit the structural independence of contour and register. Motivation for
this division is empirical; assimilatory tone sandhi processes attested in Chinese dialects require the contour
node to spread independently of register and vice versa. Consider the following data from Pingyao (Hou,
1980; Bao, 1990; Chen, 2000). High and low register on penultimate contour tones assimilate to the adjacent
final tone; a low-rising contour becomes high-rising before a high tone, while a high-rising contour becomes
low -rising before a low tone. The shape of the contour—i.e. rising—does not change. The Pingyao data in
(9) illustrate:

(9) thuæ paN ‘quit class’
35 13 base form /MH.LM/
13 13 sandhi form [LM.LM]

tCi ma ‘ride a horse’
13 53 base form /LM.HM/
35 423 sandhi form [MH.HM]

Bao (1990) analyzes this pattern as assimilation via regressive spread of a register node, and therefore as
crucial evidence for the separation of register and contour on a structural level. A rule is proposed to derive
the Pingyao assimilation pattern: when a rising contour tone appears in non-final position, the register node
(‘r’ below) on the adjacent tone first spreads to the non-final ‘T’ root node, while the underlying register
node delinks from the non-final ‘T’ node. As the ‘c’ contour node is independent of register, and given that
neither operation in the rule targets ‘c’ nodes, contour is predicted to be unaffected. The result of the rule
is that the penultimate rising contour surfaces with the same register as the adjacent tone. Thus the rule
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correctly derives the sandhi forms in (9). Below in (10), the proposed rule is shown along with a derivation
of /LM.HM/.

(10)

Rule Base Form /LM.HM/ Spread and Delink Sandhi Form [MH.HM]

T T

c r r c

l h

=

T T

c -u +u c

l h h l

T T

c -u +u c

l h h l

=

T T

c +u c

l h h l

Assimilatory patterns such as Pingyao may only be derived as spreading using representations which separate
register from contour on a structural level. As Bao (1990, pg. 66) and Chen (2000, pg. 73) argue, the bundled
tonal model proposed by Yip (1989) fails to explain such sandhi processes. Because the register node
immediately dominates terminal tonal nodes, register spread will necessarily entail spread of the terminal
nodes. The derivation in (11) performs the same spread and delink operations as in (10), but on the bundled
model.

(11)

σ σ

-u +u

l h h l

→

σ σ

-u +u

l h h l

=

→

*σ σ

+u

h l

When high register node spreads to the preceding syllable, the falling contour it dominates spreads as well.
Similarly, delinking the register node necessarily delinks its daughters, i.e. the rising contour. This results
in the unattested output *[MH.MH].

Similar arguments point to sandhi alternations where contour spreads independently of register. A
relevant example comes from Zhenjiang (Zhang, 1985; Bao, 1990): when a rising or falling contour tone
appears before a high level tone, it surfaces as either mid-level or high-level, depending on the register of the
affected tone. In (12), low-registered contour tones surface as mid-level [22] in this environment.4

(12) lẼn to ‘lazy’
31 55 base form /ML.H/
22 55 sandhi form [M.H]

C̃i huei ‘virtuous’
35 55 base form /LM.H/
22 55 sandhi form [M.H]

Bao (1990) proposes a regressive contour spread analysis, and cites Zhenjiang as more evidence in favor of
the separated model as sandhi does not alter register.5 According to this analysis, after spread and delink
operations, the structure undergoes a tier conflation operation in which the spread ‘c’ node (along with the
immediately dominated ‘h’ node) is copied. (see Bao, 1990, p. 101-103 and §6 of the current paper for more
discussion). The derivation of /ML.H/ → [M.H] in (13) illustrates.

(13) Spread Delink Tier Conflation

T T

-u c c +u

h l h

→

T T

-u c c +u

h l h

=

→

T T

-u c c +u

h h

4Bao (1990) analyzes the tone with the phonetic realization [35] as a low-register tone.
5There is some controversy surrounding this evidence and its analysis; see §6.2 for related discussion.
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As with Pingyao, the spreading in a bundled representation would ostensibly entail carriage of register
information along with contour information, an undesired result. This is because the immediate dominator
of terminal tonal nodes in the bundled model bears register features. In other words, there is no procedural
difference between register spread, contour spread, or whole tone spread. Assuming a similar analysis over
the bundled model in (14), the correct output cannot be derived.

(14) Spread Delink Tier Conflation

σ σ

-u +u

h l h

→

σ σ

-u +u

h l h

=

→

*σ σ

+u +u

h h

Contour spread (and tier conflation) entails register spread because the former is directly dominated by the
latter, thus producing the unattested *[H.H].

Claims that the two models differ in their coverage of assimilatory tone sandhi patterns hinge on the
spreadability metric described above. However, spreadability arguments are tied fundamentally to a deriva-
tional perspective on tonal processes. It is not clear what this metric means for a particular theory when
couched in a non-derivational formalism, or whether it distinguishes one theory from another in such cases.
This issue is treated in more detail in §6, but first I present an alternative computational perspective on the
question of these models’ empirical predictions. Instead of a potentially theory-specific notion of spreadabil-
ity, this perspective establishes an explicit threshold on the computational complexity of a set of processes,
and asks whether competing representational models can capture those processes within the threshold. The
next section adopts a computational outlook on separated and bundled models to challenge previous claims
about their empirical predictions.

4 Graph Mappings: Empirical Predictions

This section addresses the condition in (1a) which states that two models are notationally equivalent if
they do not differ in their empirical consequences. It illustrates that this condition holds for bundled and
separated representations, contra the conclusions of previous work. Focus is given to cases of assimilatory
tone sandhi claimed to distinguish the two models—register assimilation and contour assimilation.

To achieve this, I pursue a computational characterization of assimilatory tone sandhi. This framework
focuses on the nature of the input-output mappings which describe phonological processes (Chandlee and
Heinz, 2018; Heinz, 2018), and thus abstracts away from assumptions specific to any one grammatical
formalism. In particular, I present logical characterizations of tone sandhi mappings in a model-theoretic
framework (Courcelle, 1994; Enderton, 2001; Libkin, 2013). The section begins (§4.1) by offering rigorous
definitions of separated and bundled representations as graphs. Logical transductions are defined over these
graph structures. Transductions map input graphs to output graphs, and therefore can be used to model
phonological processes like assimilatory tone sandhi. A benefit of this approach is that we may fix the
complexity of logic used to define transductions, and determine whether mappings using either representation
are possible under the same complexity threshold.

In this section, I demonstrate that separated and bundled models do not differ in their empirical pre-
dictions by showing that transductions modeling register assimilation (§4.2) and contour assimilation (§4.3)
are definable over both representations using Quantifier-Free First Order (QF) logical statements. QF logic
is restrictive and computationally simple, and has been shown to be equivalent to the Input Strictly Local
class of functions (Chandlee and Lindell, to appear; Chandlee and Jardine, 2019); these functions are suffi-
cient to model a wide range of local phonological processes, both segmental and autosegmental (Chandlee,
2014; Chandlee and Jardine, 2018; Strother-Garcia, 2018) despite their restrictiveness. Statements using
QF logic determine output structure based solely on information about the corresponding input as well as
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input positions within a fixed window (that is, a local window) around it. Crucially, the information is not
global such that a quantifier is required to scan the entire input structure. QF thus provides an appropriate
and well-motivated upper bound on the complexity of the processes formalized here. Full transductions are
defined in an appendix, but I provide an intuitive graphical characterization in the main text in terms of
local substructures (described in more detail below).

In defining register and contour assimilation mappings over both representational models, this section
explores two hypotheses regarding the restrictiveness of QF. The first, more restrictive hypothesis limits
mappings to size-preserving QF transductions, for which the size of the input and output structures remains
constant. The second and less restrictive hypothesis permits non-size-preserving QF transductions; these
map input structures to a finite number of output copies.6 I will show that the latter hypothesis is necessary
to capture register and contour assimilation over both models.

4.1 Tonal Models as Graphs and Processes as Graph Mappings

Tonal geometric models can be explicitly represented as graphs, which are finite sets of points or nodes
connected by edges. Each node is labeled with at most one feature: syllable, tonal root, ±u register feature,
etc. Edges between nodes represent the internal structure of a tone: association between syllable and root
node, dominance between internal nodes, and linear order between nodes of the same type. A relational
model M is a mathematical object defining such a graph structure. It comprises a set or domain D of
structural positions (the nodes) defined over an alphabet Σ of feature symbols. A set of unary relations
(denoted P for each symbol in an alphabet Σ) determines the labelling of nodes with a particular feature—
that is, the property of being a syllable, register node, etc. Unary relations for the bundled and separated
models and the labels each relation imparts are shown in (15).

(15) Bundled Model Relation Separated Model Relation Label
Pσ Pσ syllable
P+u P+u +u register
P−u P−u -u register
Ph Ph h terminal
Pl Pl l terminal

PT ‘T’ root node
Pc ‘c’ contour node

The models contain the same set of unary relations except that the separated model contains two extra
relations which label root ‘T’ and contour ‘c’ nodes.

A set of unary functions define node edges representing internal structure and linear order. I use the
same set of functions for both representations, and define them as follows. A function α defines an edge
between a node labeled as a syllable and a node labeled as a root, and represents association. A function δ
defines an edge between nodes that represents immediate dominance. A successor function s defines an edge
between a node and its immediate successor. This function thus establishes a linear order over elements in
the representation. Crucially, the order obtains only between nodes of the same type (that is, that are on
the same tier)—e.g. in the separated model, register nodes are ordered with respect to one another, but not
with respect to contour ‘c’ nodes, which have their own order. The function is defined such that the final
element in a tier is its own successor.

With this set of relations and functions, we may explicitly represent models of bundled and separated
graph structures. (16) shows the disyllabic sequence [L.MH], a low level tone followed by a high-rising
tone, defined over a bundled graph and its corresponding model. Structural positions in the domain are
denoted with numbers. A node—a single structural position in a graph—is represented with a circle with
its corresponding label inside the circle. Edges are denoted with arrows, and are labeled with corresponding
association α, dominance δ, and successor s functions. In the model, relations are defined as a set of positions

6Given these definitions, size-preserving QF transductions prohibit both copying and deletion of input structure. I address
the latter as it applies to the current study in §4.1.
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which are in that relation, i.e. which contain that label. Functions are denoted as a set of ordered pairs of
positions which define edges.

(16)

σ
1

σ
2

-u
3

+u
4

l
5

l
6

h
7

α

δ

α

δ δ

s

s

s s

s

s

s

D = {1,2,3,4,5,6,7} Pσ = {1,2}
P+u = {4} P−u = {3}
Ph = {7} Pl = {5,6}
α = {(1,3), (2,4)} δ = {(5,3), (6,4), (7,4)}
s = {(1,2), (2,2), (3,4), (4,4)
(5,6), (6,7), (7,7)}

The same tone in the separated representation is defined as a graph model in (17).

(17)

σ
1

σ
2

T
3

T
4

-u
5

c
6

+u
7

c
8

l
9

l
10

h
11

α

δ δ

α

δ

δ
δ δ

δ

s

s s

s

s

s

s

s

ss

s

D = {1,2,3,4,5,6
7,8,9,10,11} Pσ = {1,2}

PT = {3,4} Pc = {6,8}
P+u = {7} P−u = {5}
Ph = {11} Pl = {9,10}
α = {(1,3), (2,4)} δ = {(5,3), (6,3), (7,4),
s = {(1,2), (2,2), (3,4), (8,4), (9,6), (10,8),
(4,4), (5,7), (7,7)} (11,8)}
(6,8), (8,8), (9,10)
(10,11), (11,11)}

The structural elements of any sequence of tones describable with a bundled or separated model can be
defined in this way.

Assimilatory tone sandhi processes are represented in a model-theoretic framework with transductions.
Transductions map an input graph structure to a corresponding output graph, and a QF logic is fixed
to define them. Here, I provide an intuitive discussion of these transductions with graph mappings, with
the restriction being that outputs can only be defined by referring to local, connected substructures in the
input—that is, they reference input nodes connected by edges. This is described in detail below.

Graph models comprise relations (which label nodes) and functions (which define edges between nodes).
Similarly, graph transductions determine node labels and edges over an output graph by referring to input
structure. Labels and edges are treated separately in a transduction, but refer to the same local input
substructures. Importantly, a transduction defines a mapping over a class of graph structures, and not
over an individual graph. Thus transductions are definitions satisfied by a potentially infinite set of graph
mappings. Consider a simplified example of a regressive spreading-type map in (18). The map is defined
over a class of graph structures with two separate tiers of ordered nodes: one tier contains nodes labeled a
and another contains nodes labeled either b or c. Nodes on these tiers relate one-to-one via edges marked
δ. Regressive spread is the addition of a δ edge between the final node on the b/c tier and the penultimate
node on the a tier. It also entails deletion of the input δ edge between penultimate nodes on these tiers, and
thus ‘deletion’ of the penultimate node on the b/c tier (denoted with a dashed circle; more explanation is
given below). The mapping in (18) is over a graph structure with three nodes on each tier, where ↦ denotes
‘maps to’ and δ1,1 indicates output δ labels. All mappings discussed in this paper are order-preserving, that
is, order relations are preserved from input to output structures (see Filiot, 2015; Chandlee and Jardine,
2019, for more discussion). Thus, these edges (i.e. the successor s function) are omitted for clarity, but I
assume a total order over each tier as in (16) and (17).
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(18)

a a a

b b c

δ δδ ↦

a a a

b c

δ1,1 δ1,1δ1,1

Defining output node labels via transduction is achieved through reference to local, connected substructures ;
that is, a given output node is determined by referring only to the corresponding input node and other nodes
connected by edges in the input structure. These definitions thus determine output structure using only a
fixed window in the input. It is possible, for example, to isolate structural elements such as the final a node
and the penultimate b node (illustrated in (19)). This is because both constitute connected substructures
in the input. The former is an a node with a looping s edge and the latter is a b node which shares an s
edge with some final element—that is, an element with a looping s edge. The definition may preserve labels
in the output for elements which map directly (i.e. an identity mapping) such as the final a node (19a).
Alternatively, it may map it to an empty label as in the penultimate b node (19b). Such a definition ‘deletes’
the label from the output structure, and is comparable to deletion of structural material, for instance, after
delinking in an autosegmental analysis. Importantly, however, it is still size-preserving; though the label
does not appear in the output, the structural node itself is preserved, and thus does not alter the size of the
input structure as a whole. The examples below demonstrate how the transduction defines output labels
in terms of local substructures. Relevant input ordering edges are shown with dotted lines. Additionally, x
denotes the relevant input node and x′ the corresponding output node.

(19) a. a
x

s ↦ a
x′

b. b
x s

s ↦
x′

The size-preserving node labeling definitions in (19) may be contrasted with strictly less-restrictive, non-
size-preserving transductions. Transductions of this complexity are defined over a finite set of multiple
output copies (also called the copy set), and thus permit an output which is of a greater size than the input.
Intuitively, non-size-preserving transductions are those which model processes with a copying mechanism.
An example would be a final a node (as in (19a)) mapped to two copies of itself, as in (20), where x′′ denotes
a second copy of the input structure.

(20) a
x

s ↦ a
x′

a
x′′

The following sections present transductions of this type, but it is worth noting here that the copying they
permit is crucially restricted by the local substructure (i.e. QF-definability) requirement. That is, in addition
to the finiteness of the copy set size, the number of nodes definable within a given copy set is bounded by the
size and structure of the input. In other words, despite permitting a copying mechanism, these transductions
are still part of a restrictive and computationally simple class of maps.

Recall that maps define both output nodes and output edges. Determining output edges proceeds in a
similar manner as with nodes, and is subject to the same restrictions. The regressive spreading-type map
in (18) is possible because it can be defined in terms of local substructures. This is summarized in (21) and
(22). First, the final nodes on the a and b/c tiers relate via an input δ edge, and so the output dominance
relation between them is simply an identity mapping; the input edge between two input nodes (x and y

below) is preserved in the output (x′ and y′ below; note that the δ edge on the first nodes in each tier may
be preserved in the same way). As in (18), this output edge is denoted δ1,1, that is, an edge from a node in
the first output copy to a node in the first output copy.7

7Since this map is size-preserving, there is only one copy of output nodes to relate via edges, so the notation may seem
superfluous here. When multiple copy sets are introduced, however, edges may relate nodes either within or across copy sets. I
introduce this notation here for consistency with the discussion to follow.
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(21)

a
y

c
x

s

s

δ ↦

a
y′

c
x′

δ1,1

The final c and penultimate a relate via the same δ edge in addition to a successor s edge between the
penultimate and final a nodes, thus forming a local input substructure, as in (22).

(22)

a
y

a

c
x

s

s

s

δ ↦

a
y′

a

c
x′

δ1,1

Combined in a single transduction, these edges model a regressive-spread type pattern in (23):

(23)

a
y

a
y

c
x

s

s

s

δ ↦

a
y′

a
y′

c
x′

δ1,1 δ1,1

Graph mappings which refer only to local, connected substructures model the space of maps definable with
QF logical transductions. These maps are restrictive, formally rigorous, and align well with the complexity
necessary to formalize local phonological processes (Chandlee and Lindell, to appear; Chandlee and Jardine,
2019).

4.2 Register Assimilation: Pingyao

Having defined separated and bundled theories as graphs, I now define transductions over these repre-
sentations to model attested tone sandhi patterns. Using this formalism, §4.2 and §4.3 show that Pingyao
register assimilation and Zhenjiang contour assimilation patterns are definable as QF transductions over
both separated and bundled representations. Formalizing register assimilation in this framework uncovers
a discrepancy in the QF logical power both representations require. This is a discrepancy between size-
preserving QF logic (sufficient for the separated model) and non-size-preserving QF logic (necessary for the
bundled model). While it may appear to signal a more general difference in the models’ capacity to capture
assimilatory tone sandhi processes, this distinction vanishes in the analysis of contour assimilation. Thus
when taken as a whole, more powerful non-size-preserving QF transductions are necessary for both repre-
sentations to capture register and contour assimilation. Within the computational perspective advocated
here, this indicates that the separated and bundled models do not differ in their empirical consequences as
previously claimed.

4.2.1 Separated Model

Let some transduction define mappings between input and output separated model graphs and which
models register assimilation in Pingyao. Consider the Pingyao input /LM.HM/ as a separated graph structure
in (24). Successor function edges are omitted for clarity.
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(24)

σ
1

σ
2

T
3

T
4

-u
5

c
6

+u
7

c
8

l
9

h
10

h
11

l
12

α

δ δ

α

δ

δ δ δ

δ

δ

The transduction is defined over a single copy of output nodes as follows. First, a penultimate [-u] register
node maps to an empty label. Such a node is definable as a connected substructure as (25) shows—a [-u]
node sharing a s edge with some final element (one with a looping s edge).

(25) -u
x

s
s ↦

x′

Other output labels map directly from corresponding inputs.
Output edges are also preserved from inputs, but with one exception.8 The delta δ edge between the

final register and the final ‘T’ node is preserved, but an additional edge is defined between the final register
node and the penultimate ‘T’ node. Again, this definition is possible because these nodes comprise a local
input substructure, as in (26).

(26)

T T
y

+u
x

s

δ

s

s

↦

T
y′

T
y′

+u
x′

δ1,1δ1,1

Applied to the graph in (24), this transduction maps to the correct form [MH.HM] as an output graph in
(27) below, where prime ′ indices denote output positions. Note that this graph is also consistent with the
sandhi form in (10). Changes to the output are given in bold.

(27)

σ
1

σ
2

T
3

T
4

-u
5

c
6

+u
7

c
8

l
9

h
10

h
11

l
12

α

δ δ

α

δ

δ δ δ

δ

δ

↦

σ
1
′

σ
2
′

T
3
′

T
4
′

c
6
′

+u
7
′

c
8
′

l
9
′

h
10
′

h
11
′

l
12
′

α
1,1

δ1,1δ1,1

α
1,1

δ1,1

δ1,1 δ1,1 δ1,1

δ1,1

δ1,1

8Assume also that edges are not preserved on unlabelled output nodes, e.g. the δ edge between the penultimate [-u] register
node and ‘T’ root node.
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Importantly, the graph mapping as defined generalizes beyond this case to any sequence with a penultimate
rising tone. The restriction of local substructures (and thus QF) is therefore sufficient to model this pattern
in the separated representation. Next, I show that the same holds for the bundled representation, though it
requires a more powerful QF logic to do so.

4.2.2 Bundled Model

Now, let some transduction define mappings between input and output bundled model graphs and which
models register assimilation in Pingyao. Consider the Pingyao input /MH.HM/ as a bundled graph structure
in (28):

(28)

σ
1

σ
2

-u
3

+u
4

l
5

h
6

h
7

l
8

α α

δ δ δ δ

Unlike its separated model counterpart, this transduction is defined over two copies of output nodes (and
thus uses non-size-preserving QF logic) as follows. Map a penultimate [-u] register node to an empty label
(29a). Additionally, generate two copies of a final [+u] node (29b). Preserve other node labels from the
input.

(29) a. -u
x

s
s ↦

x′
b. +u

x

s ↦ +u
x′′

+u
x′

Then, redefine output edges such that the α and δ edges on the penultimate syllable terminate on the second
copy of the final [+u] node, and hold other edges constant. Again, this is possible because these nodes form
a connected substructure of α, δ, and s edges in the input. This is shown in (30) where α1,2 and δ1,2 denote
edges defined from nodes in the first output copy to nodes in the second output copy.

(30)

σ
x

-u
y

+u

l
x

h
x

α

δ δ

s
s ↦

σ
x′

+u
y′′

l
x′

h
x′

α
1,2

δ1,2 δ1,2

Applied to the graph in (28), this transduction maps to the attested form [MH.HM] as an output bundled
graph, illustrated in (31). Changes to the output structure are given in bold.
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(31)

σ
1

σ
2

-u
3

+u
4

l
5

h
6

h
7

l
8

α α

δ δ δ δ

↦

σ
1
′

σ
2
′

+u
4
′′

+u
4
′

l
5
′

h
6
′

h
7
′

l
8
′

α
1,2

α
1,1

δ1,2 δ1,2 δ1,1 δ1,1

Therefore, despite ‘failing’ the spreadability test (as in (11)), the bundled representation can model register
assimilation in Pingyao as a logical transduction over bundled graph structures. Such a transduction is
definable using a restrictive QF logic (or in our terms, by referring to local input substructures).

4.2.3 Summary

Formalized as mappings, register assimilation processes (register spread) can be represented over both
models, contra previous claims. They do so using local, connected input substructures. There is an important
difference, however. The bundled model requires non-size-preserving QF logic to model register assimilation
because it has to emulate spreading as deletion plus copying. For cases of this type, the separated model
captures the process using the more restrictive, size-preserving logic.

4.3 Contour Assimilation: Zhenjiang

The difference in the class of logic needed to represent assimilatory processes between models vanishes
in the case of contour assimilation. Examining both types of assimilation reveals that size-preserving QF
is in fact too restrictive for both bundled and separated models because copying, and thus copy sets, are
necessary to capture contour assimilation in both representations. Despite this fact, transductions modeling
contour assimilation are definable over both models using non-size-preserving QF logic.

4.3.1 Separated Model

This section defines a transduction to model Zhenjiang contour assimilation over a separated represen-
tation. The goal is a transduction which maps input graphs to output structures like those in (13); that is,
ones which have undergone tier conflation. One desired output of such a transduction would be the graph
mapping of /ML.H/ to [M.H] in (32). Here, the output contains two copies of the input’s high contour.

(32)

σ
1

σ
2

T
3

T
4

-u
5

c
6

+u
7

c
8

h
9

l
10

h
11

α

δ δ

α

δ

δ δ δ

δ ↦

σ
1
′

σ
2
′

T
3
′

T
4
′

-u
5
′

c
8
′′

+u
7
′

c
8
′

h
11
′′

h
11
′

α
1,1

δ1,1 δ2,1

α
1,1

δ1,1

δ2,2 δ1,1

δ1,1
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This transduction is defined necessarily over a copy set of size two as follows. The penultimate contour (‘c’
node and any terminals, denoted ‘t’ below to include ‘h’ or ‘l’ labels) maps to unlabeled nodes as illustrated
in (33).

(33)

c
x

t
x

t
x

δ δ

s
s

↦
x′

x′ x′

Other labels are preserved, with the exception of the final high contour. To produce output graphs consistent
with Bao (1990)’s analysis, two copies of this connected input substructure are generated, as in (34).

(34)

c
x

h
x

δ

s

↦

c
x′′

h
x′′

c
x′

h
x′

The first output copy of the high contour node preserves its input δ edge with the corresponding input ‘T’
node in (35a). Another edge is defined between the second copy of the high contour node and the penultimate
‘T’ node in (35b).

(35) a.

T
y

c
x

δ

s

↦

T
y′

c
x′

δ1,1 b.

T T
y

c
x

δ

s
s

↦

T
y′

T

c
x′′

δ2,1

Defined thusly, the transduction yields maps consistent with Bao (1990)’s analysis of contour assimilation,
including the mapping in (32), repeated below in (36). Changes to the output structure are given in bold.

(36)

σ
1

σ
2

T
3

T
4

-u
5

c
6

+u
7

c
8

h
9

l
10

h
11

α

δ δ

α

δ

δ δ δ

δ ↦

σ
1
′

σ
2
′

T
3
′

T
4
′

-u
5
′

c
8
′′

+u
7
′

c
8
′

h
11
′′

h
11
′

α
1,1

δ1,1 δ2,1

α
1,1

δ1,1

δ2,2 δ1,1

δ1,1

Importantly, though, non-size-preserving QF logic is necessary to generate these structures. Taken as a
whole, then, size-preserving QF is too restrictive to capture both register and contour assimilation for the
separated model.
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4.3.2 Bundled Model

A transduction of the same process over the bundled model is also defined over a copy set of size two. A
Zhenjiang input /ML.H/ as a bundled graph structure is presented in (37):

(37)

σ
1

σ
2

-u
3

+u
4

h
5

l
6

h
7

α α

δ δ δ

Mapping the penultimate contour to unlabeled nodes is similar to the procedure used for the separated
representation. The difference lies in the fact that we want to preserve the immediate dominator of terminal
nodes on the penult (that is, preserve its input label), because this node carries register features. Since labels
and edges are defined separately, terminal nodes on the penult may be isolated by referring to the structural
position with which both nodes share a δ edge in the input. This definition thus applies to falling contours
(as in the example above), but also rising contours, and high/low level tones equally well; any tonal terminal
nodes which share a δ edge with some penultimate node satisfy the definition. In the bundled representation,
this position is labeled with a register feature, while in the separated representation, it is labeled ‘c’ (see
more in the next section). It is therefore possible—using connected substructures—to map the penultimate
contour to unlabeled nodes (38a) while also preserving input label on the penultimate register node (38b).

(38) a.

t
x

t
x

δ δ

s
s

↦
x′ x′

b. -u
x

s
s ↦ -u

x′

The transduction also generates two copies of the final ‘h’ node (but not two copies of the final register node)
in the same way, as in (39)

(39)

h
x

δ

s

↦ h
x′′

h
x′

Then, preserve input edges with the exception of the second copy of the final high node. Define a δ edge
between that node and penultimate register node in the first copy set. This is shown in (40), where y′

denotes the first (and only) output copy of the penultimate register node and x′′ denotes the second copy of
the final ‘h’ terminal node.

(40)

y
+u

h
x

δ

s
s

↦
y′

+u
3
′

h
x′′

δ2,1

Applied to the graph in (37), this transduction maps to the correct output [M.H] bundled graph as in (41).
Changes in the output structure are given in bold.
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(41)

σ
1

σ
2

-u
3

+u
4

h
5

l
6

h
7

α α

δ δ δ

↦

σ
1
′

σ
2
′

-u
3
′

+u
4
′

h
7
′′

h
7
′

α
1,1 α

1,1

δ2,1 δ1,1

Zhenjiang contour assimilation is thus formalizable over a bundled representation of tone using non-size-
preserving QF logical transductions.

4.4 Summary

Previous work claims that the separated and bundled models constitute distinct theories of tonal rep-
resentation in that they make different empirical predictions: one model successfully captures register and
contour assimilation tone sandhi patterns as spreading while the other does not. This section has shown
that both models can represent these processes when formalized as mappings over graph structures, and
that they do so within the same logical complexity threshold. This threshold is restrictive, aligns well with
attested phonological processes, and is not tied to any particular grammatical formalism. In addition, the
definability of these processes over both representational models using this logic—crucially using only local
input substructures—indicates that the local nature of tone sandhi patterns can be expressed in both models.
From the computational perspective, bundled and separated models of representation satisfy condition (1a)
of notational equivalence as they do not differ in their empirical consequences. The next section demonstrates
that the models are also equivalent on a structural level. It does so using the same QF logical transduc-
tion formalism. Thus, we may reason over this question of notational equivalence—both in empirical and
structural terms—using a single formal framework.

5 Graph Mappings: Structural Differences and Bi-interpretability

I now turn to condition (1b), which states that two models are notationally equivalent when they represent
the same set of abstract properties, and differ only superficially. This condition may be satisfied in a model-
theoretic framework by demonstrating the bi-interpretability of the bundled and separated models. Doing
so provides a rigorous formal expression of models differing only ‘superficially’. A definition of model bi-
interpretability is given by Friedman and Visser (2014):

We note that an interpretation K ∶ U → V gives us a construction of an internal model K̃(M) of
U from a model M of V . We find that U and V are bi-interpretable iff, there are interpretations
K ∶ U → V and M ∶ V → U and formulas F and G such that, for all models M of V , the formula
F defines an isomorphism between M and M̃K̃(M), and, for all models N of U , the formula G
defines an isomorphism between N and K̃M̃(N).

Intuitively, this means that one model can be translated into another (and vice versa), and that all contrasts
are preserved through translation. As in §4, the formal details of separated/bundled model bi-interpretability
are spelled out in an appendix, and I present an intuitive discussion here. The current section divides the
definition above into two main components. The first (§5.1) establishes interpretations between models. An
interpretation is a specific kind of map from one structure to another. For example, an interpretation Γbs

maps bundled structures to separated structures by providing a model of bundled structures using the logical
language of separated structures. Similarly, an interpretation Γsb maps separated structures to bundled
structures by providing a model of separated structures using the logical language of bundled structures.
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The existence of both interpretations corresponds to the notion that the models are intertranslatable. In
conceptual terms, the map defined by Γbs represents a fusion of ‘T’, ‘c’, and register nodes into a single
register node (holding all other nodes constant). The map defined by Γsb represents an expansion of a single
register node to separate ‘T’, ‘c’, and register nodes (also holding all other nodes constant). These intuitions
are provided below in (42), where dashed arrows represent fusion and expansion, respectively.

(42)

Separated Bundled

σ σ

T ±u

c ±u h/l

h/l

Bundled Separated

σ σ

±u T

h/l ±u c

h/l

The second component of bi-interpretability (§5.2) requires that the following conditions hold. First, combin-
ing Γsb and Γbs through composition—mapping bundled structures into separated structures and back into
bundled structures—produces the same mapping as (i.e. is isomorphic to) the identity map that maps every
bundled structure to itself. Similarly, composing Γbs with Γsb is isomorphic to the identity map that maps
every separated structure to itself. In intuitive terms, this component demands that the two interpretations
be inverses or mirror images of one another; as such, the translations they achieve preserve all contrasts
present in the original representation. I demonstrate this by showing that for any tonal structure describable
by bundled and separated representations, the output of Γsb is structurally identical to the input of Γbs and
vice versa.

5.1 Intertranslatability

5.1.1 Separated to Bundled: Fusion

Let Γsb be a transduction which maps any structure in a separated representation to a corresponding
structure in a bundled representation, and thus an interpretation of the class of separated models in terms
of the class of bundled models. Like process transductions, Γsb is a mapping between graph structures that
takes a set of node labels and edge relations as input and maps it to another set of output node labels and
edge relations. It is defined over a single copy set.

All bundled node labels are defined as identity mappings from relevant labels in the separated model, as
all features in the former model are contained in the latter. This includes register node labels. Predecessor p
and successor s edges are preserved, as linear order does not change. Association α and dominance δ edges,
however, must be redefined to reflect the fusion of ‘T’ and ‘c’ structural positions into a single register node.

In a separated model, syllables and ‘T’ nodes relate via α edges (representing the association relation).
Register nodes also relate to ‘T’ nodes, but via a δ edge. These nodes and edges constitute a local substruc-
ture. We may use this substructure to redefine α edges in a bundled model such that syllable nodes relate
directly to register nodes, which is not the case in the separated model. The figure in (43) illustrates how α

edges are defined in the transduction, where ‘r’ refers to either [+u] or [-u] register label.
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(43)

σ
x

T

r
y

α

δ

↦

σ
x′

r
y′

α1,1

Although the ‘T’ node is not labeled in the output structure—recall that the bundled representation does
not contain ‘T’ nodes—this structural position is still a part of the input structure and therefore can be
referred to in defining the output. The definition here ‘fuses’ the separated model’s ‘T’ node and the bundled
model’s register node as the structural position which shares an α edge with the syllable. More generally,
this reflects the fact that the ‘T’ node in the separated model and the register node in the bundled model
have the same structural function, that is, the tonal root.

Defining δ edges in the transduction utilizes another local input substructure to establish edges from
terminal tonal nodes directly to register nodes, a relation which does not obtain in the separated structure.
It builds on the fact that in the separated model, register nodes and tonal nodes both relate to a ‘T’ node;
the former shares a δ edge, while the latter relates through a ‘c’ contour node and two δ edges. This mapping
is shown in (44) where ‘t’ denotes ‘h’ or ‘l’ terminal node labels.

(44)

T

c r
y

t
x

δ δ

δ

↦ r
y′

t
x′

δ1,1

Again, the fact that ‘T’ and ‘c’ nodes are unlabeled in the output does not prevent reference to these
structural positions to relate terminal nodes directly to register nodes. The ‘fusion’ here is between the ‘c’
node in the separated model and the register node in the bundled model, and reflects the generalization that
these nodes also have the same structural function: the immediate dominator of ‘h’ and ‘l’ terminal nodes.

The transduction Γsb applied to a separated model structure produces an equivalent structure in bundled
representation. An example of a disyllabic sequence [L.MH] is given in (45), where predecessor and successor
edges are omitted for clarity.

(45)

Separated

σ
1

σ
2

T
3

T
4

-u

5

c
6

+u

7

c
8

l
9

l
10

h
11

α

δ δ

α

δ

δ
δ δ

δ

↦

Bundled

σ
1
′

σ
2
′

3
′

4
′

-u

5
′ 6

′

+u

7
′ 8

′

l
9
′

l
10
′

h
11
′

α
1,1

α
1,1

δ1,1
δ1,1δ1,1
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This is true for any separated representation graph. Γsb is thus an interpretation of the class of separated
graphs in terms of the class of bundled graphs.

5.1.2 Bundled to Separated: Expansion

Similarly, let Γbs be a transduction which maps any structure in a bundled representation to a corre-
sponding structure in a separated representation, and thus is an interpretation of the class of bundled models
in terms of the class of separated models.

The number of node label types in the separated model is greater than that of the bundled model—the
former contains ‘T’ and ‘c’ labels not present in the latter. A copy set greater than size one is necessary.
The transduction is defined over a copy set of size 3, where each copy set will represent one ‘expansion’ of
the bundled model’s register node: ‘T’ nodes in the first copy set, register nodes in the second copy set, and
‘c’ nodes in the third copy set. These nodes relate via a one-to-one identity mapping. This is shown in (46),
where x′, x′′, x′′′ indicate nodes in the first, second, and third copy sets respectively.

(46) r
x

↦ T
x
′

r
x
′′

c
x
′′′

Syllable nodes are labeled in the first copy set, while h/l tonal nodes are labeled in the third copy set.
This allows for preservation of α and δ edges from the input bundled structure, given in (47a) and (47b)
respectively. Again, this reflects the fact that these nodes share structural functions across models: register
and ‘T’ nodes relate to syllables via association, and register and ‘c’ nodes relate to h/l tonal nodes via
dominance.9

(47) a.

σ
x

r
y

α ↦

σ
x′

T
y′

α1,1 b.

r
y

t
x

δ ↦

c
y
′′′

t
x′′′

δ3,3

The transduction defines the internal structure of the separated model—i.e. δ edges between register/‘c’ and
‘T’ nodes—in terms of the bundled model in the following way. Given that ‘T’, register, and ‘c’ labels in the
separated structure map directly from a single register node in the bundled structure, δ edges between these
nodes can also be defined in terms of the same register node, keeping in mind that a single node constitutes
a connected substructure. Dominance from the register node to the ‘T’ node is a δ edge from a node in the
second copy set to an identical node in the first copy set, and dominance from the ‘c’ node to the ‘T’ node
is a δ edge from a node in the third copy set to an identical node in the first copy set, as shown in (48).

(48) r
x, y

↦

T
y′

r
x′′

δ2,1

T
y′

c
x′′′

δ3,1

The edges that the transduction defines between and within copy sets is summarized in (49), where ‘C1, C2,
C3’ indicate copy sets one, two, and three.

9Note that another consequence of the identity mapping is that predecessor and successor ordering edges can be preserved
within each copy set, and thus maintain linear order over ‘T’, register, and ‘c’ nodes.
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(49)

σ

r

t

α

δ

↦

C1 C2 C3

σ

T r c

t

α
1,1

δ
3,3

δ
2,1

δ
3,1

Combining these definitions, the transduction Γbs applied to a bundled structure produces an equivalent
structure in the separated model. An example of a disyllabic sequence [L.MH] translated from a bundled to
separated structure is shown in (50), where predecessor and successor edges are omitted for clarity.

(50)

Bundled

σ
1

σ
2

-u

3

+u

4

l
5

l
6

h
7

α α

δ δ δ

↦

Separated

σ
1
′

σ
2
′

T3
′ T 4

′

-u

3
′′

c
3
′′′

+u

4
′′

c 4
′′′

l
5
′′′

l
6
′′′

h
7
′′′

α
1,1

α
1,1

δ
3,3

δ
3,3 δ

3,3

δ
2,1

δ
3,1

δ
2,1

δ
3,1

Again, this is true for any bundled representation graph. Therefore, Γbs is an interpretation of the class of
bundled graphs in terms of the class of separated graphs.

5.2 Contrast Preservation

The second main component of the bi-interpretability definition requires translations between models to
be contrast-preserving. Appendix 2 demonstrates this in detail by examining the composition of transduc-
tions Γsb and Γbs, and showing that their composition is isomorphic to the identity map, but here I show that
the translations described in the previous section crucially preserve structural elements and their relations
from input models and that bundled and separated representations therefore fit this necessary criterion for
bi-interpretability. Example translations in (45) and (50) illustrate this point, but the reader is pointed
toward the appendix for a general demonstration.

Consider two mappings Ms ↦ M′

b via Γsb (translating a separated model to an equivalent bundled
model) and Mb ↦M′

s via Γbs (translating a bundled model to an equivalent separated model) of the same
tonal structure. The following holds of these graph structures: M′

b is structurally identical to Mb and M′
s is

structurally identical to Ms. Recall example translations of disyllabic [L.MH] in (45) and (50). The output
of (45) contains both the same structural elements and relations between those elements as the input of (50).
This is illustrated in (51) below where M′

b denotes the former and Mb the latter.
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(51) M′

b Mb

σ
1
′

σ
2
′

3
′

4
′

-u

5
′ 6

′

+u

7
′ 8

′

l
9
′

l
10
′

h
11
′

α
1,1

α
1,1

δ1,1
δ1,1δ1,1

≡

σ
1

σ
2

-u

3

+u

4

l
5

l
6

h
7

α α

δ δ δ

The same is true of the input of (45) and the output of (50). Separated representation components are
present in both and structural elements relate to one another via the same edges, as in (52).

(52) M′
s Ms

σ
1
′

σ
2
′

T3
′ T 4

′

-u

3
′′

c
3
′′′

+u

4
′′

c 4
′′′

l
5
′′′

l
6
′′′

h
7
′′′

α
1,1

α
1,1

δ
3,3

δ
3,3 δ

3,3

δ
2,1

δ
3,1

δ
2,1

δ
3,1

≡

σ
1

σ
2

T
3

T
4

-u

5

c
6

+u

7

c
8

l
9

l
10

h
11

α

δ δ

α

δ

δ
δ δ

δ

The above illustration generalizes beyond the [L.MH] sequence to any tone or sequence of tones representable
by either model. This reflects the observation in Table 1 in §3.2 that bundled and separated models represent
the same set of lexical tonal contrasts. Translation between the models maximally preserves those contrasts.

Combining this with the results from §5.1, the conclusion is that separated and bundled representations
are bi-interpretable in a strict model-theoretic sense. Within the adopted framework, the models do not differ
in any non-trivial way in terms of their structure. They thus satisfy condition (1b) of notational equivalence.

6 Discussion

The previous sections have applied a model-theoretic approach to the question of notational equivalence
between two models of tonal representation. They show that separated and bundled models neither differ in
their empirical consequences as previously argued (1a) nor do they differ substantially in their representation
of abstract properties (1b). I therefore conclude that they are notationally equivalent. Here, I pause to
interpret these results and consider their ramifications.

6.1 ‘Letter’ of the Theory vs. ‘Spirit’ of the Theory

§4 makes the claim that non-size-preserving QF logic is necessary to capture register assimilation and
contour assimilation across both models; size-preserving QF is too restrictive for these cases. As it applies
to feature geometric tonal representation, the fundamental difference between these logics is that the latter
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allows only spreading while the former permits both spreading and copying. The result diverges crucially
from previous analyses in that register and contour assimilation become possible over a bundled model. A
reasonable question to ask is whether this allowance is appropriate, and does not unreasonably coerce the
theories of separated/bundled representation beyond their original intentions. In other words, is a non-size-
preserving QF analysis in the spirit of these theories?

The answer to this question is yes, and stems from the observation that spreading and delinking mech-
anisms are, on their own, insufficient to capture the full range of assimilatory processes in Chinese dialects.
Any representational theory of these patterns requires an additional copying mechanism known as tier con-
flation (Younes, 1983; McCarthy, 1986), a procedure borrowed from segmental representation and templatic
morphology. Yip (1989, pg. 161) describes the process which “automatically copies non-adjacent multiply
linked roots so as to allow interpolation of the vocal root.” Applied to an edge-in association and contour
spread pattern in Danyang (Lü, 1980; Yip, 1989; Chan, 1991), for example, tier conflation copies tonal
information from a root node which has spread rightward two syllables, as in (53).

(53) Spread Tier Conflation

σ σ σ σ

r r

h l l h

→

σ σ σ σ

r r r r

h l h l h l l h

The extra derivational step ensures the surface form [HL.HL.HL.LH] (three falling contours followed by a
rising contour) and not a single falling contour realized gradually over three syllables *[H.M.L.LH]. The same
generalization can be applied to local contexts, as well, and is in fact necessary for contours spreading as a
unit for the same reasons. Consider a hypothetical Danyang-like pattern in (54), formalized over a separated
model, with progressive contour spread.

(54) Spread + Delink Without Tier Conflation With Tier Conflation

T T

r c c r

l h h l

=

→

T T

r c r

l h

T T

r c c r

l h l h

With a single contour associated to two roots (as above), there is no guarantee that the observed [LH.LH]
will obtain, and not any of the logically possible *[L.H], *[L.LH], or *[LH.H]. The copying mechanism of
tier conflation ensures this, and is thus necessary whenever contour spreads as a unit. This means that a
theory of tone sandhi assimilation over these representations comprises three basic mechanisms: addition of
association lines (spread), deletion of association lines (delink), and copying of structural nodes. Therefore,
while it is true that the ‘spreadability’ metric—using only the mechanisms of spread and delink—distinguishes
separated and bundled models in certain cases like register assimilation, it ultimately provides an incomplete
picture because it neglects a basic operation of the theory.

Given a theory with three basic mechanisms, it is unclear how a spreading analysis with tier conflation
is different from an alternative analysis which simply copies the contour nodes and re-associates them. The
Zhenjiang derivation in (13) is repeated in (55) to illustrate.
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(55) Spread Delink Tier Conflation

T T

-u c c +u

h l h

→

T T

-u c c +u

h l h

=

→

T T

-u c c +u

h h

Spreading with tier conflation is identical to an alternative copying analysis which proceeds as follows. The
assimilating contour node is first copied (indicated by an index), then re-associated to the preceding tone
after a delinking operation. This order of operations is given in (56).

(56) Copy Delink Re-associate

T T

-u c ci ci +u

h l hi hi

→

T T

-u c ci ci +u

h l hi hi

=

→

T T

-u ci ci +u

hi hi

A copying analysis correctly predicts the observed [M.H] for an input string /LM.H/ as in the spreading
analysis. Outputs for both analyses are not only surface-form identical, but also structurally identical, and
are achieved using the theory’s basic operations. They differ only in the relative order of these procedural
mechanisms.

If a copying analysis is permitted in this framework, the bundled representation can, in fact, model
register and contour assimilation processes contra previous claims. In Pingyao register assimilation, for
example, the intuition is as follows: generate a copy of the final register node, then re-associate the syllable
and terminal nodes to that copy. This correctly predicts the output [MH.HM] from /LM.HM/, as in (57)
below. Note that the resulting structure is identical to the output of the non-size-preserving QF mapping
defined over bundled graph structures in (31).

(57)

σ σ

-u +ui +ui

l h h l

→

σ σ

+ui +ui

l h h l

The intuition for Zhenjiang contour assimilation is similar: generate a copy of the terminal ‘h’ node, then
re-associate it to the preceding register node. Again, the analysis generates attested forms over a bundled
model as with the separated model. An example of /LM.H/ → [M.H] in (58) illustrates. The reader may
observe, as before, that the resulting form is identical to the output of the bundled graph mapping in (41),
that is, a mapping describable by a non-size-preserving QF transduction.

(58)

σ σ

-u +u

h l hi hi

→

σ σ

-u +u

hi hi

These copying analyses preserve the spirit of the original separated/bundled representational theories in the
sense that they utilize the same basic—and in fact necessary—mechanisms as traditional spreading accounts
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with tier conflation: spread, delink, and copy. The basic mechanisms are not unrestricted in their application,
however. They are limited to local environments and do not involve any long-distance dependencies. The
mappings defined in §4.2 and §4.3, then, are also in the spirit of the original theory given their QF-definability.
In spite of allowing copying, they are still restricted to local environments and thus accord with limitations
of the original theory.

6.2 Spreading vs. Copying

We may also ask how ‘spreading’ and ‘copying’ analyses differ (if at all). Answering this question, as
I suggest in §2, is non-trivial. This is because these mechanisms are inevitably fixed to the grammatical
formalisms in which they are proposed. Spreading accounts of assimilatory sandhi in Chinese dialects are
couched in derivational terms. Tier conflation, for example, is crucially ordered after spreading; its scope is
dependent on the structural environment created by the application of an earlier rule. In principle, a similar
argument is available to copying analyses in a derivational framework. Association of a copied element in
such an account is also dependent on the prior delinking of underlying associations to avoid line-crossing.

These distinctions vanish in so-called ‘one-jump’ models like Optimality Theory, but the assumptions of
that formalism also obscure the picture. A Correspondence account of copying like the one described above
does not translate well to spreading in autosegmental representations (although some effort has been made
to conflate the two; see Kitto and de Lacy (1999)). The correspondence relation R is not analogous to the
association relation: the former obtains between elements on the same tier while the latter is necessarily
inter-tier, etc. Instead, autosegmental spreading analyses in OT are under the purview of spreading-specific
constraints: markedness constraints like Share (McCarthy, 2011) or Agree (Baković, 2000; Lombardi,
2001; Pulleyblank, 2002), and faithfulness constraints Ident-Association (de Lacy, 2002), etc. Direct
comparison of these two mechanisms is thus impossible because the theory assumes that they are regulated
by separate constraints in the grammar.

One benefit of the computational approach pursued in this paper is that it allows us to compare these
analyses independently of any one grammatical formalism. Instead, we may fix an upper bound on complex-
ity, and simply ask whether the analyses can be mapped within that threshold. The complexity difference
between size-preserving and non-size-preserving QF logic is precisely the formal expression of the difference
between theories which only permit spreading and those which allow spreading and copying. Assimilatory
tone sandhi in Chinese dialect modeled over graph structures falls into the latter camp, regardless of which
analysis one adopts. A spreading-with-tier-conflation analysis of Zhenjiang as in (55) and a copying analysis
of the same pattern in (56) are definable as non-size-preserving QF logical transductions, and crucially not
as size-preserving ones. In fact, they are definable using the same logical transduction. Spreading (with tier
conflation) and copying are thus formally indistinguishable in such cases because they realize the same map.

This fact renders the traditional ‘spreadability’ metric ineffective as an empirical test to distinguish tonal
models of representation; if ‘spreading’ and ‘copying’ analyses of assimilatory tone sandhi both require non-
size-preserving QF logic, either is sufficient to show that a representational model captures a given pattern
under that threshold. The QF-definable graph mappings of register and contour assimilation defined for
the bundled representation in §4.2.2 and §4.3.2 do precisely that. So while the bundled model may fail the
spreadability test for these patterns, it passes the more formally-rigorous test, providing evidence that its
empirical coverage does not differ from that of the separated model.

This formal result aligns to a certain extent with earlier literature Kitto and de Lacy (1999) which
collapses spreading and copying into a single mechanism within a Correspondence framework. This has been
addressed in subsequent work by Kawahara (2004) and again by Kawahara (2007), who motivates a clear
distinction between copying and spreading. The aim of the current study, however, is not to settle this
larger debate. Formal equivalence between these mechanisms is limited to cases of assimilatory tone sandhi
processes formalized over two classes of graph structures. Determining whether this generalizes to other
processes (including those for which other rules intervene between spreading and tier conflation) defined
over these representations or others is beyond the scope of the current paper. However, as this paper
has shown, the model-theoretic approach provides a solid formal foundation for addressing this question in
greater detail.
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Given the equivalence of spreading and copying in this particular case, we may also ask why spreading one
constituent independently of another has been so crucial to theories of tonal representation in the first place?
Is spreading all that matters? Recall from §3 that one design criterion for theories of tonal representation,
apart from representing the full range of lexical tonal contrasts, is the ability to concisely model commonly-
attested tonal processes (Yip, 2002). Though assimilatory tone sandhi processes are attested in Chinese
dialects, Chen (2000) notes that the majority are dissimilatory, and that the alternations categorized as tone
sandhi also include neutralization, paradigmatic substitution, and metathesis. It is therefore unclear why
constituent spreading carries such substantial weight in distinguishing models’ empirical coverage. This is
indeed the case for the models proposed by Yip (1989) (i.e. bundled) and Bao (1990) (i.e. separated), who
defend their models precisely on their ability to spread one or more constituents as a unit.

One expects that evidence motivating structural independence of some constituent is unambiguous, but
we see that this is not the case, either. Bao (1990), for example, cites sandhi patterns from two dialects
to motivate the independence of contour from register: Zhenjiang (Zhang, 1985), examined in §4, and
Wenzhou (Zhengzhang, 1964). Chen (2000, pg.73), however, rejects both analyses, claiming that only
data from another dialect, Zhenhai (Rose, 1990), provides clear evidence of contour’s independence from
register. According to Chen, the correct analysis of Zhenjiang is not contour spread, but rather contour
simplification.10 That spreading as a means to formalize attested sandhi processes is as consequential to the
representational theories as has been proposed in the literature should cause concern, as what constitutes
an unambiguous case of spreading is unclear. Zhang (2014) recently cites this issue as a source of stagnation
for discussions of Chinese tone sandhi representation over the last decade. The current study, then, ideally
serves to renew interest in representational questions by providing a less formalism-dependent means to
evaluate a model’s empirical coverage.

6.3 Bi-interpretability and Mutual Interpretability

The second condition of notational equivalence (1b) as defined in the current study is entirely separated
from considerations of empirical predictions.11 Rather, it concerns the nature of structural differences be-
tween two models, and the superficiality/substantiveness of those differences. This paper adopts the notion
of bi-interpretability as the formal expression of ‘superficial’ structural differences, and demonstrates that
bundled and separated models of tonal representation are bi-interpretable within the model theory frame-
work. Here, I evaluate this result in the context of earlier studies which employ the same formalism, but
differ in their interpretations of structural notational equivalence via bi-interpretability.

Strother-Garcia and Heinz (2017) explore three representations of syllable structure proposed in the
literature, and demonstrate notational equivalence between all three through the definition of model-theoretic
graph transductions. Their definition of bi-interpretability (and thus notational equivalence) is as follows.
If a graph transduction definable using logic L exists from some model M1 to some model M2, then “M2 is
L-interpretable from M1.” If the condition holds in both directions, such that “M1 is L-interpretable from
M2 and vice versa, then the two are L-bi-interpretable.” Similarly, a more recent study by Danis and Jardine
(2019) addresses the question of notational equivalence between classical autosegmental representations
(Goldsmith, 1976) and Q-theory representations (Shih and Inkelas, 2018). Bi-interpretability is also defined
as the existence of interpretations between two models defined logically. That is, for models S and T , if there
exists an interpretation of T in S (i.e. a transduction defined in the logic of S or LS) and an interpretation
of S in T , then the models are bi-interpretable.

These definitions of bi-interpretability differ from the definition in (Friedman and Visser, 2014) adopted
in the current paper. While both require interpretations between models, the definition advocated here
establishes the additional requirement that translations between models be contrast preserving (§5.2). Def-
initions from earlier studies are more akin to mutual interpretability, a weaker notion of equivalence. A
definition of mutual interpretability due to Enayat and Wijksgatan (2013) is given below.

10As simplification only requires delinking of a terminal node, the analysis would not distinguish separated and bundled
models, even within a derivational framework.

11I wish to thank an anonymous reviewer for helpful suggestions that informed this section of the discussion.
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Suppose U and V are first order theories. U is interpretable in V , written U ⊴ V , if there is an
interpretation I ∶ U → V . U and V are mutually interpretable when U ⊴ V and V ⊴ U .

Previous accounts of notational equivalence among syllabic and autosegmental representations mentioned
above arguably demonstrate mutual interpretability of the representational theories they examine. The
existence of interpretations in both directions does not, by itself, guarantee an isomorphism between their
composition and the identity map. In other words, some contrasts might be lost through translation from one
representation to another. By illustrating that separated and bundled models satisfy the more restrictive
definition of bi-interpretability (§5.1 and §5.2), the current paper advocates a stronger hypothesis about
notational equivalence from a structural perspective.

6.4 Other Models of Representation

Separated and bundled models of representation are shown to be notationally equivalent by our adopted
definition in (1). One benefit of the model-theoretic approach adopted in this paper is that it allows for a
principled comparison of representational models’ empirical predictions (1a) and their structural differences
(1b) using the same formal framework.

This does not entail the notational equivalence of tonal geometries in general, though, nor does it make
the claim that geometry is irrelevant. Insofar as feature geometry aims to determine which features behave
as units phonologically (McCarthy, 1988), the bundled and separated models proposed by Yip (1989) and
Bao (1990) are quite similar in that they touch on the same conceptual point: contour tones behave as units
in phonological processes. Furthermore, they realize this point in the same manner geometrically: contours
are represented as a constituent under some other node. In the bundled model, this node is specified for a
feature (register), while in the separated model it is not. This paper has shown that such a difference is not
as conceptually distinct as originally argued. Importantly, our formal analysis disentangles the key notion
of constituency (domination under some structural node) from the featural content of the node itself. In our
terms, this is reflected in the notion that graph node labels and node edges refer to the same structures, but
are defined separately. Since both models represent contour as a constituent, they predict contour to behave
as a unit in processes like assimilatory tone sandhi. By formalizing processes as logical transductions (thereby
abstracting away from assumptions specific to a grammatical formalism), the current study shows that both
models make the same predictions about such processes. It also exploits the constituency of contour (among
other structural similarities) to translate between these representations via logical transduction, providing
formally-sound evidence that the observed structural differences between the models are superficial.

The scope of the current study is limited to two models of tonal representation. It does not make claims
about other representations, but does provide a framework to determine equivalence. Of particular interest
is a comparison between models which assume contour units as single constituents (such as the separated
and bundled models) and those which do not, such as those proposed by Duanmu (1990, 1994). In order
to make a claim about equivalence between these models, it must be determined that these models satisfy
both conditions put forth in (1): that is, that the models 1) do not differ in their empirical consequences
and 2) differ only superficially in their representation of abstract properties (i.e. are bi-interpretable). If
these models fail to satisfy both conditions, we have rigorous formal evidence that they are not notationally-
equivalent.

7 Conclusion

This paper has motivated a computational analysis of the notational equivalence of tonal geometries
offered by Yip (1989) and Bao (1990). It defined tonal representations as model-theoretic graph structures
and assimilatory tone sandhi processes as mappings between graphs using statements in QF logic. The first
result is that the models do not differ in their empirical predictions as previously claimed. Given the necessity
of a tier conflation mechanism across both representations, a more restrictive, size-preserving QF logic is too
restrictive to model the full range of tone sandhi processes. Statements in non-size-preserving QF logic, by
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contrast, are sufficient to model tone sandhi patterns which previous work has claimed to distinguish the
two models: register assimilation in Pingyao and contour assimilation in Zhenjiang.

Using the same model-theoretic formalism and a rigorous definition of bi-interpretability, the second
result is a proof that any structural difference between the representations is superficial. Specifically, the
representations are intertranslatable, and translation between models is contrast-preserving. I thus conclude
that separated and bundled models are notationally-equivalent, and do not constitute distinct theories of
tonal representation. The purpose of this paper is not to propose a new tonal model or advocate one model
over another. Instead, its aim is to establish a formally-rigorous procedure for determining whether two
competing models comprise two distinct theories of representation. Ideally, this paper serves as a proof of
concept to be expanded in future work, including widening the empirical scope beyond tone sandhi, and
analysis of other competing models of tonal representation which have been claimed to be distinct, but may
very well be notationally-equivalent.
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8 Appendix A: Process Transductions

8.1 Preliminaries

Graph models of separated and bundled representations—such as those in (17) and (16)—are defined
over model signatures ζs and ζb, respectively. These signatures comprise the relations and functions which
define label nodes (features) and edges (association, dominance, and immediate successor) in each model.

(59)
ζs = {Pσ, PT , Pc, P+u, P−u, Ph, Pl;α, δ, s}
ζb = {Pσ, P+u, P−u, Ph, Pl;α, δ, s}

I define two QF predicate logical languages Ls and Lb from these signatures. Such a logical language contains
atomic predicates of the form P (t) for each unary relation in the signature, which is true when a term t is in
that relation for a given interpretation. Terms are either members x of a set of variables (which are assigned
to a value in a domain D) or any of the unary functions—α, δ, s—applied to a term. Atomic predicates of
unary functions are of the form f(t) ≈ t where ≈ denotes a special identity relation; thus, these predicates
are true when the two terms denote the same value.

Each of these predicates is a well-formed formula (WFF) in the logical language. We may recurse over the
atomic predicates to define the full set of WFFs in each logical language using Boolean connectives (negation
¬, conjunction ∧, disjunction ∨, and material implication →). For WFFs ϕ and ψ, we also have the WFFs
¬ϕ, ϕ ∧ψ, ϕ ∨ ψ, and ϕ→ ψ. For example, Pl(x) ∨Ph(x) is a WFF in Ls and Lb, as is α(s(x)) ≈ y.

Mappings from input to output are defined as logical transductions denoted τ . These are logical inter-
pretations of an output signature (comprising unary relations and functions) in the logical language of the
input signature. Crucially, we may allow transductions which are interpretations over a finite ordered copy
set C = {1, ..., n}. A set of formulae of the form P c(x) are defined with one free variable (x) for each unary
relation in the output signature and for copy c ∈ C. Similarly, formulate of the form fn,m(x) ≈ y are defined
with two free variables (x and y) for all unary functions in the output signature and for all logically-possible
pairings of copies n,m ∈ C. Thus, for a copy set of size 2, the number of formulae for each function matches
the four possible pairings of {1,1}, {1,2}, {2,1}, and {2,2}.

The semantics of these transductions follows Engelfriet and Hoogeboom (2001). Given an input graph
model M defined over an input signature ζI and a domain of elements D, the output τ(M) is a graph model
M′ over an output signature ζO and a domain of elements D′. For each element in the input domain D,
there is a corresponding output element in D′ for a given copy c and belonging to a unary relation in ζO
provided that the following conditions are met: the input model satisfies the logical formula P c(x) for an
assignment of x to a domain element d, it does so for exactly one unary relation in the output signature,
and it does so for exactly one copy c ∈ C.

I define the following set of auxiliary relations for clarity. The first identifies the final string position on
a tier (that is, the position which is its own successor), the second identifies the penultimate string position
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on a tier. The third is a general ‘register node’ relation (i.e. labeled as either +u or -u), and the fourth is a
general ‘terminal tonal node’ relation (i.e. labeled as either +u or -u).

(60) lst(x)def

= s(x) ≈ x pnlt(x)def

= s(x) ≈ lst(x) Pr(x)
def

= P+u(x) ∨P−u(x) Pt(x)
def

= Ph(x) ∨Pl(x)

8.2 Pingyao: Separated Model

Let τps be a transduction over a separated representation model signature to model register assimilation
in Pingyao. It is defined over a copy set of size one. A brief explanation of this definition and how it is
satisfied by the graph mapping in (27) is provided below.

(61)

P 1
σ(x)

def

= Pσ(x)

P 1
T (x)

def

= PT (x)

P 1
+u(x)

def

= P+u(x) ∧ lst(x)

P 1
−u(x)

def

= P−u(x) ∧ lst(x)

P 1
c (x)

def

= Pc(x)

P 1
h(x)

def

= Ph(x)

P 1
l (x)

def

= Pl(x)

α1,1(x) ≈ ydef

= α(x) ≈ y

δ1,1(x) ≈ ydef

= (Pt(x) ∧Pc(y) ∧ δ(x) ≈ y) ∨ (Pc(x) ∧PT (y) ∧ δ(x) ≈ y)∨

(Pr(x) ∧ PT (y) ∧ lst(x) ∧ δ(x) ≈ y) ∨ (Pr(x) ∧PT (y) ∧ lst(x) ∧ δ(x) ≈ s(y))

s1,1(x) ≈ ydef

= s(x) ≈ y

This definition preserves the following input labels via identity—that is, definitions of the form P 1(x)def

= P (x)
for unary relations: syllable nodes, ‘T’ root nodes, ‘c’ contour nodes, and terminal tonal nodes labeled ‘h’ and
‘l’. The definitions of P+u and P−u preserve labels on the final register node only (and therefore penultimate
register nodes are unlabeled). Association (α1,1(x) ≈ y) and successor (s1,1(x) ≈ y) functions maintain input
specifications, as these edges do not vary between input and output.

The definition of output dominance δ edges over graph structures crucially modifies input edges and thus
models the assimilatory pattern. It does so in the following way. The first two disjuncts of the δ1,1(x) ≈ y
definition evaluate to true for graph structures maintaining input δ edges between tonal terminal nodes and
‘c’ nodes as well as between ‘c’ and ‘T’ nodes. Disjunct three preserves dominance between the final register
node and its tautosyllabic ‘T’ node (guaranteed by the conjunct δ(x) ≈ y), and the final disjunct defines
dominance between the final register node and a ‘T’ node whose successor shares a δ edge with that node
in the input (δ(x) ≈ s(y)); that is, the penultimate ‘T’ root.

An output graph structure which satisfies this definition is therefore one for which all nodes and edges
are preserved from the input with the exception of an additional δ edge between the final register node and
penultimate ‘T’ root node. The mapping in (27; repeated here) represents such a structure.
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(62)

σ
1

σ
2

T
3

T
4

-u
5

c
6

+u
7

c
8

l
9

h
10

h
11

l
12

α

δ δ

α

δ

δ δ δ

δ

δ

↦

σ
1
′

σ
2
′

T
3
′

T
4
′

c
6
′

+u
7
′

c
8
′

l
9
′

h
10
′

h
11
′

l
12
′

α
1,1

δ1,1δ1,1

α
1,1

δ1,1

δ1,1 δ1,1 δ1,1

δ1,1

δ1,1

8.3 Pingyao: Bundled Model

Let τp
b
be a transduction over a bundled representation model signature to model register assimilation in

Pingyao. It is defined over a copy set of size two. Formulae defined as F (‘False’) below and in subsequent
definitions indicate no labels/edges in the output structure for the given unary relation/function and copy.

(63)

P 1
σ(x)

def

= Pσ(x) P 2
σ (x)

def

= F

P 1
+u(x)

def

= P+u(x) ∧ lst(x) P 2
+u(x)

def

= P+u(x) ∧ lst(x)

P 1
−u(x)

def

= P−u(x) ∧ lst(x) P 2
−u(x)

def

= P−u(x) ∧ lst(x)

P 1
h(x)

def

= Ph(x) P 2
h (x)

def

= F

P 1
l (x)

def

= Pl(x) P 2
l (x)

def

= F

α1,1(x) ≈ ydef

= Pσ(x) ∧Pr(y) ∧ lst(x) ∧ lst(y) α2,1(x) ≈ ydef

= F

α1,2(x) ≈ ydef

= Pσ(x) ∧Pr(y) ∧ lst(y) ∧ α(s(x)) ≈ y α2,2(x) ≈ ydef

= F

δ1,1(x) ≈ ydef

= Pt(x) ∧Pr(y) ∧ lst(δ(x)) ∧ lst(y) δ2,1(x) ≈ ydef

= F

δ1,2(x) ≈ ydef

= Pt(x) ∧Pr(y) ∧ pnlt(δ(x)) ∧ s(δ(x)) ≈ y δ2,2(x) ≈ ydef

= F

s1,1(x) ≈ ydef

= s(x) ≈ y

Graph mappings such as those in (31) satisfy this definition.
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8.4 Zhenjiang: Separated Model

Let τzs be a transduction over a separated representation model signature to model contour assimilation
in Zhenjiang. It is defined over a copy set of size two.

(64)

P 1
σ(x)

def

= Pσ(x) P 2
σ(x)

def

= F

P 1
T (x)

def

= PT (x) P 2
T (x)

def

= F

P 1
+u(x)

def

= P+u(x) P 2
+u(x)

def

= F

P 1
−u(x)

def

= P−u(x) P 2
−u(x)

def

= F

P 1
c (x)

def

= Pc(x) ∧ lst(x) P 2
c (x)

def

= Pc(x) ∧ lst(x)

P 1
h(x)

def

= Ph(x) ∧ lst(δ(x)) P 2
h(x)

def

= Ph(x) ∧ lst(δ(x))

P 1
l (x)

def

= F P 2
l (x)

def

= F

α1,1(x) ≈ ydef

= α(x) ≈ y α2,1(x) ≈ ydef

= F

α1,2(x) ≈ ydef

= F α2,2(x) ≈ ydef

= F

δ1,1(x) ≈ ydef

= δ(x) ≈ y δ2,1(x) ≈ ydef

= Pc(x) ∧PT (y) ∧ lst(x) ∧ δ(x) ≈ s(y)

δ1,2(x) ≈ ydef

= F δ2,2(x) ≈ ydef

= Ph(x) ∧Pc(y) ∧ lst(δ(x)) ∧ lst(y)

s1,1(x) ≈ ydef

= s(x) ≈ y

Graph mappings such as those in (32) satisfy this definition.

8.5 Zhenjiang: Bundled Model

Let τzb be a transduction over a bundled representation model signature to model contour assimilation
in Zhenjiang. It is defined over a copy set of size two.

(65)

P 1
σ(x)

def

= Pσ(x) P 2
σ(x)

def

= F

P 1
+u(x)

def

= P+u(x) P 2
+u(x)

def

= F

P 1
−u(x)

def

= P−u(x) P 2
−u(x)

def

= F

P 1
h(x)

def

= Ph(x) ∧ lst(δ(x)) P 2
h(x)

def

= Ph(x) ∧ lst(δ(x))

P 1
l (x)

def

= F P 2
l (x)

def

= F

α1,1(x) ≈ ydef

= α(x) ≈ y α2,1(x) ≈ ydef

= F

α1,2(x) ≈ ydef

= F α2,2(x) ≈ ydef

= F

δ1,1(x) ≈ ydef

= Pt(x) ∧Pr(y) ∧ lst(δ(x)) ∧ lst(y) δ2,1(x) ≈ ydef

= Pt(x) ∧Pr(y) ∧ lst(δ(x)) ∧ δ(x) ≈ s(y)

δ1,2(x) ≈ ydef

= F δ2,2(x) ≈ ydef

= F

s1,1(x) ≈ ydef

= s(x) ≈ y

Graph mappings such as those in (41) satisfy this definition.

9 Appendix B: Translation Transductions

The transductions Γsb and Γbs below satisfy the first component of the bi-interpretability definition. Γsb

is an interpretation of separated models in terms of bundled models, and Γbs is an interpretation of bundled
models in terms of separated models.
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9.1 Separated to Bundled: Fusion

Let Γsb be a transduction over a bundled representation model signature which translates any separated
model into an equivalent bundled model. It is defined over a copy set of size one.

(66)

P 1
σ (x)

def

= Pσ(x) P 1
+u(x)

def

= Pr(x)

P 1
−u(x)

def

= Pr(x) P 1
h(x)

def

= Pt(x)

P 1
l (x)

def

= Pt(x) α1,1(x) ≈ ydef

= Pσ(x) ∧Pr(y) ∧ α(x) ≈ δ(y)

δ1,1(x) ≈ ydef

= Pt(x) ∧Pr(y) ∧ δ(δ(x)) ≈ δ(y) s1,1(x) ≈ ydef

= s(x) ≈ y

Graph mappings such as those in (45) satisfy this definition.

9.2 Bundled to Separated: Expansion

Let Γbs be a transduction over a separated representation model signature which translates any bundled
model into an equivalent separated model. It is defined over a copy set of size three.

(67)

P 1
σ(x)

def

= Pσ(x) P 2
σ(x)

def

= F P 3
σ(x)

def

= F

P 1
T (x)

def

= Pr(x) P 2
T (x)

def

= F P 3
T (x)

def

= F

P 1
+u(x)

def

= F P 2
+u(x)

def

= Pr(x) P 3
+u(x)

def

= F

P 1
−u(x)

def

= F P 2
−u(x)

def

= Pr(x) P 3
−u(x)

def

= F

P 1
c (x)

def

= F P 2
c (x)

def

= F P 3
c (x)

def

= Pr(x)

P 1
h(x)

def

= F P 2
h(x)

def

= F P 3
h(x)

def

= Pt(x)

P 1
l (x)

def

= F P 2
l (x)

def

= F P 3
l (x)

def

= Pt(x)

α1,1(x) ≈ ydef

= α(x) ≈ y α1,2(x) ≈ ydef

= F α1,3(x) ≈ ydef

= F

α2,1(x) ≈ ydef

= F α2,2(x) ≈ ydef

= F α2,3(x) ≈ ydef

= F

α3,1(x) ≈ ydef

= F α3,2(x) ≈ ydef

= F α3,3(x) ≈ ydef

= F

δ1,1(x) ≈ ydef

= F δ1,2(x) ≈ ydef

= F δ1,3(x) ≈ ydef

= F

δ2,1(x) ≈ ydef

= Pr(x) ∧Pr(y) ∧ x ≈ y δ2,2(x) ≈ ydef

= F δ3,3(x) ≈ ydef

= F

δ3,1(x) ≈ ydef

= Pr(x) ∧Pr(y) ∧ x ≈ y δ2,2(x) ≈ ydef

= F δ3,3(x) ≈ ydef

= δ(x) ≈ y

s1,1(x) ≈ ydef

= s(x) ≈ y s1,2(x) ≈ ydef

= F s1,3(x) ≈ ydef

= F

s2,1(x) ≈ ydef

= F s2,2(x) ≈ ydef

= s(x) ≈ y s2,3(x) ≈ ydef

= F

s3,1(x) ≈ ydef

= F s3,2(x) ≈ ydef

= F s3,3(x) ≈ ydef

= s(x) ≈ y

Graph mappings such as those in (50) satisfy this definition.

9.3 Isomorphism

The second main part of the bi-interpretability definition requires that the composition Γbs on Γsb (Γbs ○
Γsb) is isomorphic to the identity map on separated models (ids). Similarly, it requires the composition
Γsb ○Γbs to be isomorphic to the identity map on bundled models (idb). Thus applying Γsb to any separated
model and then applying Γbs to its output is the same mapping as a map from the separated model to
itself. Additionally, the reverse application over any bundled model is the same mapping as a map from the
bundled model to itself.
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Below, I illustrate this with generalized graph structures; register nodes are labeled ‘r’ and binary branch-
ing terminals are labeled ‘t’. This shows that this component of bi-interpretability holds for any contour
tones representable in either representation. This also generalizes to any level tone—by replacing the binary
branching graphs below with unary branching ones—and thus holds for the full extent of tonal contrasts
formalizable in both models.

9.3.1 Separated Model

First, apply Γsb to any separated model to generate an equivalent bundled model. Below in (68), ‘r’
indicates register nodes and ‘t’ indicates terminal tonal nodes, regardless of specification; the transduction
preserves register and tonal node features. Superscript primes denote output nodes as before, and super-
scripts denote output edges within a single copy set.

(68)

σ
1

T
2

r
3

c
4

t
5

t
6

α

δ δ

δ
δ

↦

σ
1
′

2
′

r
3
′

4
′

t
5
′

t
6
′

α
1,1

δ1,1
δ1,1

The resulting graph becomes the input structure to which Γbs is applied, as shown in (69). Here, output
copies are denoted with subscripted primes indicating copy set (e.g. 1′ for the first copy, 1′′ for the second
copy, 1′′′ for the third), and output edges are denoted with subscripts in the same manner.

(69)

σ
1
′

2
′

r
3
′

4
′

t
5
′

t
6
′

α
1,1

δ1,1
δ1,1

↦

σ
1
′

′

T
3
′

′

r
3
′

′′

c
3
′

′′′

t
5
′

′′′

t
6
′

′′′

α
1,1

1,1

δ2,1

δ3,1

δ2,1
δ
1,1

3,3

Taken together, the mappings in (68) and (69) illustrate the composition Γbs ○ Γsb, shown in (70).
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(70)

σ
1

T
2

r
3

c
4

t
5

t
6

α

δ δ

δ
δ

↦

σ
1
′

′

T
3
′

′

r
3
′

′′

c
3
′

′′′

t
5
′

′′′

t
6
′

′′′

α
1,1

1,1

δ2,1

δ3,1

δ2,1
δ
1,1

3,3

Now consider the identity map (ids) which maps every separated structure to itself, as when applied to the
generalized separated structure in (71):

(71)

σ
1

T
2

r
3

c
4

t
5

t
6

α

δ δ

δ
δ

↦

σ
1’

T
2’

r
3’

c
4’

t
5’

t
6’

α
1,1

δ1,1 δ1,1

δ1,1 δ1,1

The composition Γbs ○ Γsb in (70) is isomorphic to ids in (71); their respective outputs comprise structures
with the same set of elements (nodes) and the same relations between those elements (edges). This extends
from the generalized graph above to any tonal structure describable in separated representation.

9.3.2 Bundled Model

In a similar manner as above, first apply Γbs to any bundled model to generate an equivalent separated
model as in (72).

(72)

σ
1

r
2

t
3

t
4

α

δ δ

↦

σ
1
′

T
2
′

r
2
′′

c
2
′′′

t
3
′′′

t
4
′′′

α
1,1

δ
3,3 δ

3,3

δ
2,1

δ
3,1
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The resulting graph becomes the input structure to which Γsb is applied as illustrated below in (73). This
yields a bundled structure.

(73)

σ
1
′

T
2
′

r
2
′′

c
2
′′′

t
3
′′′

t
4
′′′

α
1,1

δ
3,3 δ

3,3

δ
2,1

δ
3,1

↦

σ
1
′

′

2
′

′

r
2
′′

′ 2
′′′

′

t
3
′′′

′

t
4
′′′

′

α
1,1

1,1

δ
3,3

1,1 δ
3,3

1,1

Taken together, the mappings in (72) and (73) illustrate the composition Γsb ○ Γbs, shown in (74).

(74)

σ
1

r
2

t
3

t
4

α

δ δ

↦

σ
1
′

′

2
′

′

r
2
′′

′ 2
′′′

′

t
3
′′′

′

t
4
′′′

′

α
1,1

1,1

δ
3,3

1,1 δ
3,3

1,1

Now consider the identity map (idb) which maps every bundled structure to itself, as when applied to the
generalized bundled structure in (75):

(75)

σ
1

r
2

t
3

t
4

α

δ δ

↦

σ
1
′

r
2
′

t
3
′

t
4
′

α
1,1

δ
1,1

δ
1,1

The composition Γsb ○ Γbs in (74) is isomorphic to idb in (75); their respective outputs comprise structures
with the same set of elements (nodes) and the same relations between those elements (edges). This extends
from the generalized graph above to any tonal structure describable in bundled representation.
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