This is a Quality image. Click here for more information.

File:VFPt metal balls largesmall potential.svg

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file (SVG file, nominally 800 × 600 pixels, file size: 156 KB)

Captions

Captions

Add a one-line explanation of what this file represents

Summary

[edit]
Description
English: Electric field around a large and a small conducting sphere at opposite electric potential. The shape of the field lines is computed exactly, using the method of image charges with an infinite series of charges inside the two spheres. Field lines are always orthogonal to the surface of each sphere. In reality, the field is created by a continuous charge distribution at the surface of each sphere, indicated by small plus and minus signs. The electric potential is depicted as background color with yellow at 0V.
Date
Source Own work
Author Geek3
Other versions
SVG development
InfoField
 
The source code of this SVG is invalid due to VectorFieldPlot errors.
 
This W3C-invalid vector image was created with Inkscape, or with something else.
 
This file uses embedded text.
This image has been assessed using the Quality image guidelines and is considered a Quality image.

العربية  جازايرية  беларуская  беларуская (тарашкевіца)  български  বাংলা  català  čeština  Cymraeg  Deutsch  Schweizer Hochdeutsch  Zazaki  Ελληνικά  English  Esperanto  español  eesti  euskara  فارسی  suomi  français  galego  עברית  हिन्दी  hrvatski  magyar  հայերեն  Bahasa Indonesia  italiano  日本語にほんご  Jawa  ქართული  한국어  kurdî  Lëtzebuergesch  lietuvių  македонски  മലയാളം  मराठी  Bahasa Melayu  Nederlands  Norfuk / Pitkern  polski  português  português do Brasil  rumantsch  română  русский  sicilianu  slovenčina  slovenščina  shqip  српски / srpski  svenska  தமிழ்  తెలుగు  ไทย  Tagalog  toki pona  Türkçe  українська  vèneto  Tiếng Việt  ちゅうぶん  ちゅうぶん(简体)  ちゅうぶんしげるからだ  +/−

Source code
InfoField

SVG code

# paste this code at the end of VectorFieldPlot 1.10
# https://commons.wikimedia.org/wiki/User:Geek3/VectorFieldPlot
u = 100.0
doc = FieldplotDocument('VFPt_metal_balls_largesmall_potential',
    commons=True, width=800, height=600, center=[400, 300], unit=u)

# define two spheres with position, radius and charge
s1 = {'p':sc.array([-1.0, 0.]), 'r':1.5}
s2 = {'p':sc.array([2.0, 0.]), 'r':0.5}

# make charge proportional to capacitance, which is proportional to radius.
s1['q'] = s1['r']
s2['q'] = -s2['r']
d = vabs(s2['p'] - s1['p'])
v12 = (s2['p'] - s1['p']) / d

# compute series of charges https://dx.doi.org/10.2174/1874183500902010032
charges = [[s1['p'][0], s1['p'][1], s1['q']], [s2['p'][0], s2['p'][1], s2['q']]]
r1 = r2 = 0.
q1, q2 = s1['q'], s2['q']
q0 = max(fabs(q1), fabs(q2))
for i in range(10):
    q1, q2 = -s1['r'] * q2 / (d - r2), -s2['r'] * q1 / (d - r1), 
    r1, r2 = s1['r']**2 / (d - r2), s2['r']**2 / (d - r1)
    p1, p2 = s1['p'] + r1 * v12, s2['p'] - r2 * v12
    charges.append([p1[0], p1[1], q1])
    charges.append([p2[0], p2[1], q2])
    if max(fabs(q1), fabs(q2)) < 1e-3 * q0:
        break

field = Field({'monopoles':charges})

# draw potential in background
p_array = sc.array([c[:2] for c in charges])
q_array = sc.array([c[2] for c in charges])
def potential(xy):
    return sc.dot(q_array, 1. / sc.linalg.norm(xy - p_array, axis=1))

from matplotlib import colors
# colormap from aqua through yellow to fuchsia
cmap = colors.ListedColormap([sc.clip((2*x, 2*(1-x), 4*(x-0.5)**2), 0, 1)
    for x in sc.linspace(0., 1., 2048)])

doc.draw_scalar_field(func=potential, cmap=cmap,
    vmin=potential(s2['p'] + s2['r'] * sc.array([1., 0.])),
    vmax=potential(s1['p'] + s1['r'] * sc.array([-1., 0.])))

# draw symbols
for c in charges:
    doc.draw_charges(Field({'monopoles':[c]}), scale=0.6*sqrt(fabs(c[2])))

gradr = doc.draw_object('linearGradient', {'id':'rod_shade', 'x1':0, 'x2':0,
    'y1':0, 'y2':1, 'gradientUnits':'objectBoundingBox'}, group=doc.defs)
for col, of in (('#666', 0), ('#ddd', 0.6), ('#fff', 0.7), ('#ccc', 0.75),
    ('#888', 1)):
    doc.draw_object('stop', {'offset':of, 'stop-color':col}, group=gradr)
gradb = doc.draw_object('radialGradient', {'id':'metal_spot', 'cx':'0.53',
    'cy':'0.54', 'r':'0.55', 'fx':'0.65', 'fy':'0.7',
    'gradientUnits':'objectBoundingBox'}, group=doc.defs)
for col, of in (('#fff', 0), ('#e7e7e7', 0.15), ('#ddd', 0.25),
    ('#aaa', 0.7), ('#888', 0.9), ('#666', 1)):
    doc.draw_object('stop', {'offset':of, 'stop-color':col}, group=gradb)

ball_charges = []
for ib in range(2):
    ball = doc.draw_object('g', {'id':'metal_ball{:}'.format(ib+1),
        'transform':'translate({:.3f},{:.3f})'.format(*([s1, s2][ib]['p'])),
        'style':'fill:none; stroke:#000;stroke-linecap:square', 'opacity':1})
    
    # draw rods
    if ib == 0:
        x1, x2 = -4.1 - s1['p'][0], -0.9 * s1['r']
    else:
        x1, x2 = 0.9 * s2['r'], 4.1 - s2['p'][0]
    doc.draw_object('rect', {'x':x1, 'width':x2-x1,
        'y':-0.1/1.2+0.01, 'height':0.2/1.2-0.02,
        'style':'fill:url(#rod_shade); stroke-width:0.02'}, group=ball)
    
    # draw metal balls
    doc.draw_object('circle', {'cx':0, 'cy':0, 'r':[s1, s2][ib]['r'],
        'style':'fill:url(#metal_spot); stroke-width:0.02'}, group=ball)
    ball_charges.append(doc.draw_object('g',
        {'style':'stroke-width:0.02'}, group=ball))

# find well-distributed start positions of field lines
def get_startpoint_function(startpath, field):
    '''
    Given a vector function startpath(t), this will return a new
    function such that the scalar parameter t in [0,1] progresses
    indirectly proportional to the orthogonal field strength.
    '''
    def dstartpath(t):
        return (startpath(t+1e-6) - startpath(t-1e-6)) / 2e-6
    def FieldSum(t0, t1):
        return ig.quad(lambda t: sc.absolute(sc.cross(
            field.F(startpath(t)), dstartpath(t))), t0, t1)[0]
    Ftotal = FieldSum(0, 1)
    def startpos(s):
        t = op.brentq(lambda t: FieldSum(0, t) / Ftotal - s, 0, 1)
        return startpath(t)
    return startpos

startp = []
def startpath1(t):
    phi = 2. * pi * t
    return (sc.array(s2['p']) + 1.5 * sc.array([cos(phi), sin(phi)]))
start_func1 = get_startpoint_function(startpath1, field)
nlines1 = 16
for i in range(nlines1):
    startp.append(start_func1((0.5 + i) / nlines1))

def startpath2(t):
    phi = 2. * pi * (0.195 + 0.61 * t)
    return (sc.array(s1['p']) + 1.5 * sc.array([cos(phi), -sin(phi)]))
start_func2 = get_startpoint_function(startpath2, field)
nlines2 = 14
for i in range(nlines2):
    startp.append(start_func2((0.5 + i) / nlines2))

# draw the field lines
for p0 in startp:
    line = FieldLine(field, p0, directions='both', maxr=7.)
    
    # draw little charge signs near the surface
    path_minus = 'M {0:.5f},0 h {1:.5f}'.format(-2./u, 4./u)
    path_plus = 'M {0:.5f},0 h {1:.5f} M 0,{0:.5f} v {1:.5f}'.format(-2./u, 4./u)
    for si in range(2):
        sphere = [s1, s2][si]
        
        # check if fieldline ends inside the sphere
        for ci in range(2):
            if vabs(line.get_position(ci) - sphere['p']) < sphere['r']:
                # find the point where the field line cuts the surface
                t = op.brentq(lambda t: vabs(line.get_position(t)
                    - sphere['p']) - sphere['r'], 0., 1.)
                pr = line.get_position(t) - sphere['p']
                cpos = 0.9 * sphere['r'] * pr / vabs(pr)
                doc.draw_object('path', {'stroke':'black', 'd':
                    [path_plus, path_minus][ci],
                    'transform':'translate({:.5f},{:.5f})'.format(
                        round(u*cpos[0])/u, round(u*cpos[1])/u)},
                        group=ball_charges[si])
    
    arrow_d = 2.0
    of = [0.5 + s1['r'] / arrow_d, 0.5, 0.5, 0.5 + s2['r'] / arrow_d]
    doc.draw_line(line, arrows_style={'dist':arrow_d, 'offsets':of})
doc.write()

Licensing

[edit]
I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current20:05, 30 December 2018Thumbnail for version as of 20:05, 30 December 2018800 × 600 (156 KB)Geek3 (talk | contribs)User created page with UploadWizard

File usage on other wikis

The following other wikis use this file:

Metadata