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Chapter I

INTRODUCTORY

1. THE CONCEPT OF A FUNCTION. Underlying the formal cal-
cull which we shall develop is the concept of a function, as it
appears 1n various branches of mathematlcs, elther under that
name or under one of the synonymous names, "operation" or "trans-
formation."” The study of the general properties of functions,
independently of their appearance in any particular mathematical
(or other) domain, belongs to formal logic or lies on the boun-
dary line between loglc and mathematics. This study is the orig-
inel motivation for the calcull — but they are so formulated
that 1t 1s possible to abstract from the intended meaning and
regard them merely as formal systems.

A function is a rule of correspondence by which when any-
thing is given (as argument) enother thing (the value of the
function for that argument) may be obtained. That is, a func-
tion 1s an operation which may be applied on one thing (the ar-
gument) to yleld another thing (the value of the function). It
is not, however, required that the operation shall necessarily
be applicable to everything whatsoever; but for each function
there 1s a class, or range, of possible arguments -- the class
of things to which the operation 1s significantly applicable --
and this we shall call the range of arguments, or range of the
independent variable, for that function. The class of all values
of the function, obtained by taking all possible arguments, will
be called the range of values, or range of the dependent variable.

If f denotes a particular function, we shall use the nota-
tion (fa) for the value of the function s for the argument
a. If a does not belong to the range of arguments of f, the
notation (fa) shall be meaningless.

It 1s, of course, not excluded that the range of arguments
or range of values of a function should consist wholly or partly
of functions. The derivative, as this notion appears in the el-
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ementary differentizl calculus, is a familiar mathematical exam-
ple of a function for which both ranges consist of functions.

Or, turning to the integral calculus, if in the expression

Sé( fx)dx we take the function f as independent variable, we
are led to a function for which the range of arguments consists
of functions and the range of values, of numbers. Formal logic
provides other examples; thus the existential quantifier, accord-
ing to the present account, is a function for which the range of
arguments consists of propositional functions, and the range of
values consists of truth-values.

In particular it is not excluded that one of the elements of
the range of arguments of a function f should be the function
f itself, This possibility has frequently been denied, and in-
deed, if a function is defined as a correspondence between two
previously given ranges, the reason for the denial 1s clear.
Here, however, we regard the operation or rule of correspondence,
which constitutes the function, as being first given, and the
.range of arguments then determined as consisting of the things to
which the operation is applicable. This is a departure from the
point of view usual in mathematics, but it 1s a departure which
is natural in passing from consideration of functions in a spec-
1al domain to the consideration of function in general, and it
finds support in consistency theorems which will be proved below.
] The identity function I 1s defined by the rule that (Ix)
is x, whatever x may be; then in particular (IJ) 1s I. If
a function X 1s defined by the rule that (Ax) 1s I, what-
ever x may be, then in particular HA) 1is 1. If I 1s the
existential quantifier, then (£r) 1s the truth-value truth.

The functions I and XA may also be cited as examples of
functions for which the range of arguments consists of all things
whatsoever.

2. EXTENSION AND INTENSION. The foregoing discussion
leaves it undetermined under what circumstances two functions
shall be considered the same.

The most immediate and, from some points of view, the best
way to settle this question 1s to specify that two functions f
and g are the same 1f they have the same range of arguments and,
for every element a that belongs to this range, (fa) 1is the
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same as (ga). When this 1s done we shall say that we are deal-
ing with functions In extension.

It is possible, however, to allow two functions to be dif-
ferent on the ground that the rule of correspondence 1s differ-
ent in meaning in the two cases although always ylelding the same
result when applied to any particular argument. When this is
done we shall say that we are dealing with functions in inten-
sion. The notion of difference in meaning between two rules of
correspondence 13 a vague one, but, in terms of some system of
notation, it can be made exact in varlous ways. We shall not at-
tempt to decide what is the true notlon of difference in meaning
but shall speak of functions in intension in any case where a
more severe criterion of identity 1s adopted than for functions
in extension. There 1s thus not one notion of function in inten-
sion, but many notions, invalving various degrees of intensional-
ity.

In the calculus of A-conversion and the calculus of re-
stricted A-KR-conversion, as developed below, it is possible, 1if
desired, to interpret the expressions of the calculus as denoting
functions in extension. However, iIn the calculus of A-S-conver-
sion, where the notion of identity of functions 1s introduced in-
to the system by the symbol &, it 1s necessary, in order to
preserve the finitary character of the transformation rules, so
to formulate these rules that an interpretation by functions in
extension becomes impossible. The expressions which appear in
the calculus of A-é-conversion are interpretable as denoting
functions in intension of an appropriate kind.

3. FUNCTIONS OF SEVERAL VARIABLES. So far we have tacitly
restricted the term "function" to functions of one variable (or,
of one argument). It 1is desirable, however, for each positive
Integer n, to have the notlon of a function of n variables.
And, in order to avold the introduction of a separate primitive
idea for each n, 1t 1s desirable to find a means of explaining
functions of n variables as particular cases of functions of
one varlable. For our present purpose, the most convenient and
natural method of doing this is to adopt an idea of Schdnfinkel
(491, according to which a function of two variables is regarded
as a function of one varlable whose values are functions of one
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variable, a function of three variables as a function of one va-
riable whose values are functions of two variasbles, and so on.

Thus if f denotes a particular function of two variables,
the notation ((fa)b) -- which we shall frequently abbreviate as
(fab) or fab -- represents the value of f for the arguments
a,b. The notation (fa) -- which we shall frequently abbreviate
as fa -- represents a functlon of one variable, whose value for
any argument x 13 fax. The function f has a range of argu-
ments, and the notation fa 1s meaningful only when a belongs
to that range; the function fa again has a2 range of arguments,
which is, in general, different for different elements a, and
the notation fab 1s meaningful only when & belongs to the
range of arguments of fa.

Similarly, 1f F denotes a function of three variables,
(((fa)b)c) or fabc denotes the value of f for the arguments
a,b,c, fa denoting a certain function of two variables, and ,
((fa)b) or fab denoting a certain function of one variable --
and so on.

(According to another scheme, which 1is the better one for
certain purposes, a function of two variables 1s regarded as a
function (of one varieble) whose arguments are ordered pairs, a
function of three variables as a function whose arguments are
ordered triads, and so on. Thils other concept of a function of
several variables 1s not however, excluded here. For, as will
appear below, the notlons of ordered palr, ordered triad, etc.,
are definable by means of abstraction (§4) and the Schénfinkel
concept of a function of severable variables; and thus functions
of several variables iIn the other sense are also provided for.)

An example of a function of two variables (in the sense of
Schdnfinkel) 1s the constancy function X, defined by the rule
that Kxy 1s x, whatever x and y may be. We have, for in-
stance that XII 1s I, KHI 1s H, and so on. Also KI 1is
K (where H 1s the function defined ebove in §1). Similarly
KX 1s a function whose value 1s constant and equal to KX.

Another example of a function of two variables is the func-
tion whose value for the arguments f, x 1s (fx); for rea-
sons which will appear later we designate this function by the
symbol 1. The function 1, regarded as a function of one vari-
able, 1is a kind of identity function, since the notation (1f)
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whenever significant, denotes the same function as f; the func
tions I and 1 are not, however, the same function, since the
range of arguments consists in one case of all things whatever,
in the other case merely of all functions.

Other examples of functions of two or more varlables are the
function H, already defined, and the functions 7, v, 8, ¢ W,
S, defined respectively by the rules that TIxf 1s (fx), Jfxyz
is fx(fzy), Bfgx 1s flgx), Cfxy 1s (fyx), Wfx 1s (fxx),
Snfx 1s f(nfx).

‘ Of these, B and ¢ may be more familiar to the reader un-
der other names, as the product or resultant of two transforma-
tions f and g, and as the converse of a function of two vari-
ables f. To say that BII 1s I 1s to say that the product
of the 1ldentity transformation by the identity transformation is
the identity transformation, whatever the domain within which
transformations are being considered; to say that B11 1s 1

is to say that within any domain consisting entirely of functions
the product of the ldentity transformation by itself 1s the iden-
tity trensformation. BI 1s 1, since it 1s the operation of
composition with the identity transformation, and thus an iden-
tity operation, but one applicable only to transformations.

The reader may further verify that ¢X 1s H, ¢r 1is 1,
€1 1s I, ¢I 1s T -- that 1 and I have the same converse
1s explained by the fact that, while not the same function, they
have the same effect in all cases where they can significantly
be applied to two arguments. The function BcC, the converse
of the converse, has the effect of an identity when applied to a
function of two variables, but when applied to a function of one
variable it has the effect of so restricting the range of argu-
ments as to transform the function into a function of two vari-
ables (if possible); thus Bcel 1s 1.

There are many similar relations between these functions,
some of them quite complicated.

4, ABSTRACTION. For our present purpose it 1s necessary
to distinguish carefully between a symbol or expression which
denotes a function and an expression which contains a variable
and denotes ambiguously some value of the function -- a distinc-
tion which 1s more or less obscured in the usual language of
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mathematical function tlheory.

To take an example from the theory of functions of natural
numbers, consider the expressicn (x2+x)2. If we say, "(xg+x)2
is greater than 1,000," we male a2 statement which depends on x
and actually has no meaning unless x is determined as some pcr-
ticular natural number. On the other hand, if we s2y, "(x2+x)2
is a primitive recursive function," we make a definite statement
whose meaning in no way depends on & determination of the vari-
able x (so that in this cazse x plays the r8le of an apparent,
or bound; variable). The difference between the two cases 1is
that in the first case the expression (xg«u-x)2 serves as an am-
biguous, or variable, denotation of a natural number, while in
the second case it serves as the denotation of & particular func-
tion. We shall hereafter distinguish by using (x2+x)2 when we
intend an ambiguous denotation of a netural number, but (Ax(x2
+x)2) as the denotation of the corresponding function -- and
likewise in other cases.

(It is, of course, irrelevant here that the notation (x2+
x)2 1s commonly used also for a certaln function of real numbers,
a certain function of complex numbers, etc. In a loglcally exact
notation the functions, addition of natural numbers, addition of
real numbers, addition of complex numbers, would be denoted by
different symbols, say +no tps *os and the three functions,
square of a natural number, square of a real number, square of a
complex number, would be similarly distinguished. THe uncertain-
ty as to the exact meaning of the notation (x2+x)2, and the
consequent uncertainty as to the range of arguments of the func-
tion (Ax(x2+x)2), would then disappear.)

In general, if M 1s an expression containing a variable
x (as a free variable, i.e., in such a way that the meaning of
M depends on a determination of x), then (Axpd) denotes a
function whose value, for an argument a, 1s denoted by the re-
sult of substituting (a symbol denoting) a for x in M. The
range of arguments of the function (AxM) consists of all ob-
Jects a such that the expression A has a meaning when (a sym-
bol denoting) a 1is substituted for x.

If M does.not contain the variable x (as a free vari-
able), then (AxM) might be used to denote a function whose val-
ue is constant and equal to (the thing denoted by) A, and whose
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range of arguments consists of all things. This usage 1s contem~
plated below in connection with the calcull of A-K-conversion,
but 1s excluded from the calcull of A-conversion and A-é-con-
version -- for technical reasons which will appear.

Notice that, although x occur as a free variable in M,
nevertheless, in the expression (AxM), x 1s a bound, or ap-
parent, variable. Example: the equation (x2+x)2 = (g2+ q)2 ex-
presses a relation between the natural numbers denoted by x and
y and its truth depends on a determination of x and of y (in
fact, it 1s true if and only if x and y are determined as de-
noting the same natural number); but the equation (Ax(x 2+x)2) =
(Ay(y2+y)2) expresses a particular proposition -- namely th-t
(Ax(x2+x)2) is the same function as (Ay(qe«o-y)z) -- and 1t 1is
true (there is no question of a determination of x and y).

Notice also that A, or Ax, 1is not the name of any func-
tion or other abstract object, but is an incomplete symbol --
i.e., the symbol has no meaning alone, but appropriately formed
expressions contalning the symbol have a meaning. We call the
symbol Ax an abstraction operator, and speak of the function
which 1s denoted by (AxM) as obtained from the expression af
by abstractiocn.

The expression (Ax(Ayf)), which we shall often abbreviate
as (Axy.M), denotes a function whose value, for an argument de-
noted by x, 1s denoted by (Aya) -- thus a function whose val-
ues are functions, or a function of two variables. The expres-
sion (Ay(Ax*)), abbreviated as (Ayx.A), denotes the converse
function to that denoted by (Axy.A). Similarly (Ax(Ay(Azpf))),
abbreviated as (Axyz/), denotes a function of three variables,
and so on.

Functions introduced in previous sections as examples can
now be expressed, if desired, by means of abstraction operators.
For instance, I 1is (Axx); J 18 (Afxyz.fx(rzy)); s is
(Anfx.f(nfx)); H 1s (AxI), or (Ax(Ayy)), or (Axyy); K
1s (Axy.x); 1 1s (Afx.fx).




Chapter II

LAMBDA-CONVERSION

5. PRIMITIVE SYMBOLS, AND FORMULAS. We turn now to the de-
velopment of a formal system, which we shall call the calculus of
A-conversion, and which shall have as a possible interpretation
or application the system of 1deas about functions described in
Chapter I.

The primitive symbols of this calculus are three symbols,

A ()

which we shall call improper symbols, and an infinite 1list of
symbols,

QG B € eee s Xy Yy 2, 8y By wee 5 By Gy eee

which we shall call variables. The order in which the variables
appear in this originally given infinite 1list shall be called
their alphabetical order.

A formula 1s any finite sequence of primitive symbols. Cer-
tain formulas are distinguished as well-formed formulas, and each
occurrence of a variable in a well-formed formula 1s distin-
guished as free or bound, in accordance with the following rules
(1-%), which constitute a definition of these terms by recursion:

1. A variable x 1s a well-formed formula, and the occur-
rence of the variable x Iin this formula 1is free.

2, If F and A are well-formed, (FA4) 1is well-formed,
and an occurrence of a variable y in F 1s free or bound in
(FA) according as it 1s free or bound in F, and an occurrence
of a variable y in A4 1is free or bound in (FA) according as
it 1s free or bound in A4.

3. If M 1s well-formed and contalns at least one free oc-
currence of x, then (Ax?) 1s well-formed, and an occurrence
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of a varisble y, other than x, 1in (AxM) 1s free or bound
in (AxM) according as it is free or bound in M. All occur-
rences of x iIn (AxM) are bound.

4, A formula is well-formed, and an occurrence of a vari-
able in it 1s free, or is bound, only when this follows from
1-3.

The free variables of a formula are the variables which
have at least one free occurrence in the formula. The bcund va-
riables of a formula are the variables which have at least one
bound occurrence in the formula.

Hereafter (as was just done in the statement of the rules
1-4) we shall use bold capital letters to stand for variable or
undetermined formulas, and bold small letters to stand for vari-
able or undetermined variables. Unless otherwise indicated in a
particular case, it 1is to be understood that formulas represent-
ed by bold capital letters are well-formed formulas. Bold let-
ters are thus not part of the calculus which we are developing
but are a device for use in talking about the calculus: they be-
long, not to the system 1tself, but to the metamathematics or
syntax of the system.

Another syntactical notation which we shall use 1s the no-
tation,

vl

which shall stand for the formula which results by substitution
of N for x throughout Af. This formula is well-formed, ex-
cept in the case that x 1s a bound variable of A and XN is
other than a single variable -- see §7. (In the special case
that x does not occur in Af, 1t 1is the same formula as AM.)

For brevity and perspicuity in dealing with particular well-
formed formulas, we often do not write them in full but employ
various abbreviations.

One method of abbreviation 1s by means of a nominal defini-
tion, which introduces & particular new symbol to replace or
stand for a particular well-formed formula. We indicate such a
nominal definition by an arrow, pointing from the new symbol
which 1s being introduced to the well-formed formula which it is
to replace (the arrow may be read “"stands for"). As an example
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we make at once the nominal definition:
I — (Aaq).

This means that [ wi1ll be used as an abbreviation for (Aaa)
-- and consequently that (/) will be used as an abbreviation
for ((Aaad)(Aaa)), (Aalal)) as an abbreviation for (Aala
(Aaa))), etc.

Another method of abbreviation 1s by means of a schematic
definition, which introduces a class of new expressions of a cer-
tain form, specifying a scheme according to which each of the
new expressions stands for a corresponding well-formed formula.
Such a schematic definition is indicated in a similar fashion by
an arrow, but the expressions on each side of the arrow contain
bold letters. When a bold smell letter -- one or several -- oc-
curs in the expression following the arrow (the definiens) but
not in the expression preceding the arrow (the definiendum), the
following convention 1s to be understood:

a stands for the first varieble in alphabetical order not
otherwise appearing in the definiens, ® stands for the
second such variable in alphabetical order, ¢ the third,
and so on.

As examples, we make at once the following schematic definitions:

M+A] — (Aa(Ab( (Ma) ({(Fa)d)))).
M=N] — (AalMAD)).
M — ().

The first of these definitions means that, for instance, [x+y]
will be used as an abbreviation for (Aa(Ab((xa)((ya)b)))), and
[a+c] will be used as an abbreviation for (Ab(Ad((ad)((cdb)d)))),
and [I+I) as an abbreviation for (Ab(Ac((Ib)((Ib)c)))), etc.
As a further device of abbreviation, we shall allow the o-
mission of the parentheses ( ) in (FA4) when this may be done
without ambiguity, whether (FA4) 1s the entlire formula being
written or merely some part of 1t. In restoring such omitted
parentheses, the convention is to be followed that association
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is to the left (cf. Schénfinkel [49], Curry [17]). For example,
fxy 1s an abbreviation of ((fx)y), f(xy) 1s an abbreviation
of (f(xy)), fxyz 1s an abbreviation of (((fx)y)z), flxy)z
1s an abbreviation of ((f(xy))2), f(Axx)y 1s an ebbreviation
of ((f(Axx))y), etc.

In expressions which (in consequence of schematic defini-
tions) contain brackets [ ], we allow a similar omission of
brackets, subject to a similar convention of assoclation to the
left; thus x+y+z 1s an abbreviation for [[x+yl+2], which ex-
pression is in turn an abbreviation for a certain well-formed
formula in accordance with the schematic definition already in-
troduced. Moreover we allow, as an abbreviation, omitting a
pair of brackets and at the same time putting a dot or period
in the place of the initial bracket [ ; in this case the conven-
tion, instead of association to the left, is that the omitted
bracket extends from the bold period as far to the right as pos-
sible, consistently with the formula's being well-formed -- so
that, for instance, x+y+z 13 an abbreviation for [x+[y+2z]],
and x+.y+2t 1s an abbreviation for [x+([y+[z2+t]]], and (Ax.
x+x) 1s an abbreviation for (Ax[x+x]).

We also iIntroduce the following schematic definitions:

(Ax.FA) — (Ax(F4)),
(Axy.FA) — (Ax(Ay(FA))),
(AxyzFA) — Ax(Ay(A2(FA)))),

and so on for any number of variables x, y, & ... (which must
be all different). And we allow similar omissions of A's, pre-
ceding a bold period which represents an omitted bracket in the
way described in the preceding paragraph -- using, e.g., Axyz.x
+y+z a3 an abbreviation for (Ax(Ay(Az[(x+yl+=z]))).

Finally, we allow omission of the outside parentheses in
(AxM), or in (Ax.FA), or (AxwyFd), or (AxyzFA), etc.,
when this 1s the entire formula being written -- but not when one
of these expressions appears as a proper part of a formula.

Hereafter, in writing definitions, we shall abbreviate the
definiens in accordance with previously introduced abbreviations
and definitions. Thus the definition of [A%+A] would now be
written:
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M+ A — Aab-MANab).

Definitions and other abbreviations are introduced merely
as matters of convenlence and are not properly part of the
formal system at all. When we speak of the free variables of
a formula, the bound variables of a formula, the length (num-
ber of symbols) of a formula, the occurrences of one formula
as a part of another, etc., the reference 1s always to the
unabbreviated form of the formulas in question.

The introduction and use of definitions and other abbrevia-
tions 1s, of course, subject to the restriction that there shall
never be any ambigulty as to what formula a given abbreviated
form stands for. In practice certain further restrictions are
also desirable, e.g., that all free variables of the definiens
be represented explicitly in the definiendum. Exact formulation
of these restrictions is unnecessary for our present purpose,
since all definitions and abbreviations are extraneous to the
formal system, as just explained, and in principle dispensable.

6. CONVERSION. We introduce now the three following oper-
ations, or transformation rules, on well-formed formulas:

I. To replace any part A of a formula by S M, pro-
vided that x 1s not a free variable of M and y
does not occur in M.

II. To replace any part ((AxM)N) of a formula by
s;‘m , provided that the bound varisbles of M are
distinct both from x and from the free variables
of A,

III. To replace any part S;MI of a formula by ((AxAM)A),
provided that ((AxA)AN) 1s well-formed and the bound
variables of M are distinct both from x and from
the free variables of A.

In the statement of these rules -- and hereafter gener-
ally -- it 1s to be understood that the word part (of a formu-
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la) means consecutive well-formed part not irmedlately follow-
ing 2n ocrurrence of the symbol A.

When the same formula occurs several times as such a part
of another formula, each occurrence 1s to be cointed as a dif-
ferent part. Thus, for instance, Rule I may be used to trans-
form ab(Aaa)(Aaa) 1into ab(Abb)(Aaa). Rule III may be used
to transform Aaa into Aa.(Aaa)a. But Rule III may not be used
to transform (Aaa) into (A((Aaa)a)a) -- the latter formula
is, in fact, not even well-formed.

Rules I-III have the important property that they are ef-
fective or "definite,” 1.e., there 1s a means of always deter-
mining of any two formulas 4 and # whether 4 can be trans-
formed into £ by an application of one of the rles (and, if
so, of which one).

If 4 can be transformed into 8 by an application of one
of the Rules I-III, we shall say that 4 1s immediately convert-
ible into & (abbreviation, " A4imc £"). If there is a finite
sequence of formulas, in which A 1s the first formula and &
the last, and in which each formula except the last is immediately
convertible into the next one, we shall say that 4 1s convert-
ible into B (abbreviation, "4 conv B"); and the process of ob-
taining B from A by a particular finite sequence of applica-
tions of Rules I-III will be called a conversion of 4 into g
(no reference is intended to conversion in the sense of forming
the converse -- for the corresponding noun we use, not "converse,"
but "convert"). It 1s not excluded that the number of applica-
tions of Rules I-III in a converslion of 4 into §#& should be
zero, £ Dbelng then the same formula as A4.

The relation which holds between 4 and & when 4 conv &
will be called interconvertibility, and we shall use the expres-
sion "4 and B are Interconvertible" as synonymous with "4 conv
B8." The relation of interconvertibility 1s transitive, symmet-
ric, and reflexive -- symmetric because Rules II and III are in-
verses of each other and Rule I is its own inverse.

If there 1s a conversion of 4 1into #& which contains no
application of Rule II or Rule III, we shall say that A4 1is
convertible-I into B (4 conv-I B). Similarly we define "4
conv-I-II A" and "4 conv-I-III B."

A conversion which contains no application of Rule II and
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exactly one application of Rule III will be called an expansion.
A conversion which contains no application of Rule III and ex-
actly one application of Rule II will be called & reduction. If
there is a reduction of 4 1into &, we shall say that 4 1is
immediately reducible to B (4 imr F). If there 1s a conversion
of A4 into B which consists of one or more successive reduc-
tions, we shell say that A4 1is reducible to £ (4 red B). (The
mesning of "4 red " thus differs from that of "4 conv-I-II 8"
only in that the former implies the presence of at least one ap-
plication of Rule II in the conversion of A4 into B&8.)

An application of Rule II to & formula will be called a
contraction of the part ((AxM)AN) which is affected.

A well-formed formula will be said to be in normal form if
it contains no part of the form ((AxA)N). We shall call & a
normal form of 4 if £ 1s in normal form and 4 conv 8. We
shall say that 4 has & normal form if there is a formula &
which is a normal form of A.

A well-formed formula will be sald to be in principal nor-
mel form if it is in normal form, and no variable is both a bound
variable and free variable of it, and the first bound variable
occurring in it (in the left-to-right order of the symbols which
compose the formula) 1s the same as the first variable in alpha-
betical order which 1is not a free variable of it, and the vari-
ables which occur in 1t immedlately following the symbol A are,
when teken in the order in which they occur in the formula, in
alphabetical order, without repetitions, and without omissions
except of variables which are free variables of the formula. For
example, Aab.ba, andAaa(Ac.bc), and Ab.ba are in principal
normal form; and Aac.ca, and Abc.cb, and Aa.al(Aa.ba) are
in normal form but not in principal normasl form.

We shall call £ a principal normal form of 4 if & 1s
in principal normal form and 4 conv g. A formula in normal form
i1s always convertible-I into a corresponding formula in principal
normal form, and hence every formula which has a normal form has
& principel normal form. We shall show in the next section that
the principal normal form of a formula, if it exists, 1is unique.

An example of a formula which has no normal form (and there-
fore no principal normal form) 18 (A x,xxx)(AXx,xxx),

It is intended that, in any interpretation of the formal
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calculus, only those well-formed formulas which have a normal
form shall be meaningful, and, among these, interconvertible for-
mulas shall have the same meaning. The condition of being well-
formed 1s thus a necessary condition for meaningfulness but not
a sufficient condition.

It is important that the condition of being well-formed is
effective in the sense explained et the beginning of this sec-
tion, whereas the condition of being well-formed and having a
normal form is not effective.

7. FUNDAMENTAL THEOREMS ON WELL-FORMED FORMULAS AND ON THE
NORMAL FORM. The following theorems are taken from Kleene ([34]
(with non-essentiel changes to adapt them to the present modified
notation). Thelir proof 1s left to the reader; or an outline of
the proof may be found in Kleene, loc. cit.

7 I. In a well-formed formula K there exists a unique pair-
ing of the occurrences of the symbol (, each with a
corresponding occurrence of the symbol ), in such a
way that two portions of K, each lying between an oc-
currence of ( and the corresponding occurrence of )
inclusively, either are non-overlapping or else are con-
tained one entirely within the other. Moreover, if such
a pairing exists 1n the portion of K 1lylng between the
nth and the (n+r)th symbol of K 1inclusively, 1%t is a
part of the pairing in K. .

7 II. A necessary and sufficient condition that the portion &
of a well-formed formula K which lies between a given
occurrence of ( 1iIn K and a given occurrence of )
in K inclusively be well-formed is that the given oc-
currence of ( and the given occurrence of ) corre-
spond.

7 III. Every well-formed formula has one of the three forms,
x, where x 1is a varilsble, or (FA4), where F and
A are well-formed, or (AxM), where M 1s well-formed
and x 1s a free variable of M.

7 IV. If (FA) and elther F or A 1is well-formed, then both
F and A are well-formed.
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7 VII.

7 VIII.

7 XI.

7 XII.

7 XIII.

7 XIV.

If AxM) 1s well-formed, x Dbelng a variable, then
M 1s well-formed and x 1s a free varlable of M.

A well-formed formula can be of the form (FA), where
F (or A) 1s well-formed, in only one way.

A well-formed formula can be of the form (AxAf), where
x 1s & variable, in only one way.

If P and Q are well-formed parts of a well-formed
formula K, then either P 1is a part of Q, or Q 1is
a part of P, or P and Q are non-overlapping.

T™wo distinct occurrences of the same well-formed formula
P as a part of a well-formed formula K must be non-
overlapping.

If P, F, and A are well-formed and P 1is a part of
(FA), then P 1s (FA) or P is apart of F or pP
1s a part of A4.

If P and M are well-formed and x 13 a variable and
P 1s a part of @AxM), then P 1s @AxM) [or p 1s
x] or P 1s a part of M. (The clause in brackets is
superfluous because of the meaning we give to the word
part of a formula -- see §6).

An occurrence of a variable x in a well-formed formula
K 1is bound or free according as it is or 1is not an oc-
currence in a well-formed part of K of the form QAxAv).
(Hence, in particular, no occurrence of a variable 1n a
well-formed formula is both bound and free.)

If M 1s well-formed and the varlable x 1s not a free
variable of M and the varliable y does not occur in
M, then S;Ml i1s well-formed and has the same free va-
riables as M.

If M end AN are well-formed end the variable x oc-
curs In A and the bound variables of M are distinct
both from x and from the free variables of AN, then
S:M and ((AxM)N) are well-formed and have the same
free varlables.

If K, P, Q are well-formed and all free variables of
P are also free variables of Q, the formula obtained
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by substituting Q for a particular occurrence of P
in K, not immedlately following an occurrence of A,
1s well-formed.

7 XVI. If A 1is well-formed and A conv 8, then #& 13 well-
formed.

7 XVII. If A 1is well-formed and A conv 8 then 4 and g
have the same free variables.

7 XVIII.If K, P, Q =are well-formed, and Pconv Q, and L
is obtained by substituting Q for a particular occur-
rence of P Iin K, not immediately following an occur-
rence of A, then K conv L.

We shall call a well-formed part P of a well-formed for-
mla K a free occurrence of P 1in K 1f every free occurrence
of a variable in P 1s also a free occurrence of that variable
in K; 1in the contrary case (1f some free occurrence of a vari-
able In P 1is at the same time a bound occurrence of that vari-
able in K) we shall call the part P of K a bound occurrence
of P in K. If P 1s an occurrence of a variable in K, not
immediately following an occurrence of A, this definition is
in agreement with our previous definition of free and bound oc-
currences of variables.

Moreover we shall extend the notation SXM introduced in
§5 by allowing S:M to stand for the result of substituting
N for P throughout M, where N, P, M are any well-formed
formulas. This 1is possible without ambiguity, by 7 IX.

7 XIX. A well-formed part P of a well-formed formula K 1is a
bound or free occurrence of P In K according as it
is or is not an occurrence in a well-formed part of K
of the form AxM) where x 18 a free variable of PpP.

7 XX. If K, P, @ are well-formed, the formula obtained by
substituting Q for a particular free occurrence of P
in K 1s well-formed.

7 XXI. If K, P, Q are well-formed and there 1is no bound oc-
currence of P in K, then S";Kl is well-formed.

7 XXII. Iet x be a free variable of the well-formed formula
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M and let P be the formula obtained by substituting
N for the free occurrences of x in Af. If the re-
sulting occurrences of A in P are free, (QAxAMN)
conv P.

In what follows we shall frequently make tacit assumption
of these theorems.

In stating these theorems, it has been necessary to hold in
abeyance the convention that formulas represented by bold capi-
tal letters are well-formed. Hereafter this convention will be
restored, and formulas so represented are to be taken always as
well-formed.

We turn now to a group of theorems on conversion teken from
Church and Rosser [16]. In order to state these, it is neces-
sary first to define the notion of the residuals of a set of
parts ((ijﬂj)ﬂj) of a formula A4 after a sequence of applica-
tions of Rules I and II to 4 (§6).

We assume that, 1f p+#q, then ((A JN_) 1s not the
same part of 4 as ((Ax M )N_) -- though it may be the same
formula. The parts ((Ax.M.)N.) of A need not be all the
parts of 4 which have the form ((AyP)Q). The residuals of
the ((ij/v JN;) after a particular sequence of applications
of Rules I and II to 4 are then certain parts, of the form
((AyP)Q), of the formule into which 4 1s converted by this
sequence of applications of Rules I and II. They are defined
as follows:

If the sequence of applications of Rules I and II in ques-
tion 18 vacuous, each part ((Ax,M.)¥,) 1is its own residual.

If the sequence consists of a single application of Rule I,
each part ((Ax,M,)N.) 1is changed into a part ((Agy:Mi)AY) of
the resulting fo , and this part ((A yj”:i)ﬁ.'i) is the resid-
ual of ((Ax M)ﬁj).

If the sequence consists of a single application of Rule II,
let ((AxM)AN) be the part of 4 which is contracted (§6), and
let A' be the resulting formula into which 4 1s converted.
Let ((AxM)N,) be e particular one of the ((AxjM;)Ny), end
distinguish the six following cases.

Case 1: ((AxMAN) and ((Axﬁ)ﬁp) do not overlap. Under
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the reduction of 4 to 4', ((Ax JN_) goes into a definite
part of A4, which 1s the same formula as ((Axpﬁ(p)ﬂp). This
part of A' 1s the residual of (O\xﬁ)ﬂp).

Case 2: (@AxA)N) 1s a part of Mp. Under the reduction
of A4 to A&, Mp goes into a definite part MI'> of A, which
arises from by contraction of ((AxAM)AN), and ((Ax )II )
goes into the part ((Ax W,) of 4'. This part ((Axp(l(p)ﬂ )
of A' 1s the residual of (/\xrﬂp)ﬁ ).

Case 3: ((AxM)N) 1s a part of A_. Under the reduction
of A to A, l!p goes into a definite part ' of A, which
arises from AN, Dby contraction of ((AxAN), and ((Ax W)

1 t ]
goes into the part ((Axpl‘&))llp) of A'. This part -((A"lf’p)”p)
of A4 1is the residusl of ((Axlflp)ﬁ ).

Case 4: ((AxMAN) 1s (V\xd‘lp)ﬂ ). In this case ((Axlflp)
Np) has no residual in 4'.

Case 5: (Q\Xﬁ)ﬂp) is a part of M. let M' be the re-
sult of replacing all x's of M except those occurring in
((Axp%)ﬂp) by A. Under these changes the part ((i\xﬁ‘lp)ﬂp)
of M goes into a definite part of M which we shall denote
also by (O\xpﬁ%)ﬁp), since it is ihe same formula. If now we
replace ((Ax_ M )IN.) in M by S ((A W), M' becomes
s;M and we denote by S;( (Axﬁ)ﬁp)l the particular occurrence
of S;( (Axﬁ)ﬁ )| 1in SN‘M that resulted from replacing

W,) in A by the formila Sy (Axp,),) |- Then the
residusl In 4' of ((Ax W,.) in A is defined to be the
part S;( (/\xp%)n )| 1in the particular occurrence of %M in
A4' that resulted from replacing ((AxMA) in 4 by S:J'll.

Case 6: (Axp%)ﬁ ) 1is a part of A. Let ((Ay,P)Q)
respectively stand for the particular occurrences of the formula
(Axpr) in %M which are the part ((Ax g )A,) in each
of those particular occurrences of the formula A in S#ﬂ that
resulted from replacing the x's of M by A. Then the resid-
uals in 4' of ((Axﬁ)l!p) in 4 are the parts (QAy,P Q)

171%y
in the particular occurrence of the formula % in 4' that
resulted from replacing ((AxM‘A} 1in 4 by *VI.
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Finally, in the case of a sequence of two or more succes-
sive applications of Rules I, IT to 4, say 4 imc 4 imc 4"
imc ... , we define the residuals In 4' of the parts ((AxA,)
ﬁj) of A 1n the way just described, and we define the resid-
uals in 4" of the parts ((Ax-/\l-)ﬁj) of A4 to be the resid-
uals of the residuals in 4', and so on.

7 XXIII. After a sequence of applications of Rules I and II to
A, under which A4 1s converted into £, the resid-
uals of the parts ((Ax H-)Ivj) of A4 are a set (pos-
sibly vacuous) of parts of B which each have the
form ((AyP)Q).

7 XXIV. After a sequence of applications of Rules I and II to
A, no residual of the part ((AxM)N) of A4 can co-
incide with a residual of the part ((Ax'M')A') of 4
unless ((AxM)AN) coincides with ((Ax'M')AN').

We say that a sequence of reductions on 4,, say 4 imr
A, imr A3 ees imr 4n+1’ 1s a sequence of contractions on the
parts ((Ax Nj)”j) of A, 1if the reduction fmm 4 to 4,

‘(1=1, ...,n) involves a contraction of a residual of the
((A’Eiﬁ.'])”j)’ Moreover, if no residuals of the ((Ax Nj)ﬂ) oc-
cur in 4n+.1 we say that the sequence of contractions on the
((ijl‘lj){vj) terminates and that a1 1s the result.

In some cases we wish to speak of a sequence of contractions
on the parts ((Ax;M:)N;) of A where the set ((;\xj/v.),‘v.) may
be vacuous. To handle this we agree that, if the set e(ijMj )ﬂj)
1s vacuous, the sequence of contractions shall be a vacuous se-
quence of reductions.

7 XXV, If ((ijM )Hj) are parts of A4, then a number m
can be found such that any sequence of contractions on
the ((ij/‘tj)ﬂj) will terminate after at most m con-
tractions, and 1If A4 and 4" are two results of ter-
minating sequences of contractions on the ((ij/vj)/vj) ’
then A4' conv-I A4".

This 1s proved by induction on the length of 4. It 1is
trivially true if the length of 4 1s 1 (i.e., if A4 consists
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of a single symbol), the number m being then 0. As hypothe-
sis of induction, assume that the proposition is true of every
formula 4 of length less than n. On this hypothesis we have
to prove that the proposition is true of an arbitrary given for-
mula A4 of length n. This we proceed to do, by means of a
proof involving three cases.

Case 1: A4 has the form AxA. All the parts ((Ax;M;)N;)
of A must be parts of M. Since M 1s of length less than
n, we apply the hypothesis of induction to M.

Case 2: A has the form FX, where FX 1s not one of
the ((Ax.M.)N.). All the parts ((AxJN.)Hj) of 4 must be
parts either of F or of X. Since F and X are each of
length less than n, we apply the hypothesis of induction.

Case 3: A is ((Axpﬁlp)ﬂp), where ((,\xﬁ\lp)lv ) 1s one
of the ((Ax.M, )ﬂj). By the hypothesis of induction, there 1is
a number a such that any sequence of contractions on those
((ijl‘lj)ﬂ ) which are parts of AM_ terminates after at most a
contractions, and there is a number b such that any sequence
of contractions on those ((A xjﬁlj)ﬂj) which are parts of lvp
terminates after at most b contractions; moreover, if we
start with the formula Af and perform a terminating sequence
of contractions on those ((Ax.A.)AN.) which are parts of A,
the result is a formula A, which 1s unique to within applica-
tions of Rule I, and which contains a certain number ¢, 2 1,
of free occurrences of the variable x_.

Now one way of performing a terminating sequence of con-
tractions on the parts ((/\xjﬂ-)ﬁ ) of A 1s as follows. First
perform a terminating sequence of contractions on those ((Ax;At)
Nj) which are parts of %, 3o converting 4 into ((AeM)N.).
Then there 1s one and only one residual of ((A %)H ), name-
1y the entire formula ((Ax/‘l)ﬁp). Perform a contraction of this,
80 obtalning

t
st an|
M

where M' differs from M at most by applications of Rule I.

Then in this formula there are ¢ occurrences of /Vp resulting
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from the substitution of ﬂp for ¢. Teke each of these occur-
rences of ﬁp in order and perform a terminating sequence of
contractions on the residuals of the ((ijlvj)ﬁj) occurring in
it.

Let us call such a terminating sequence of contractions on
the parts ((ijHj)N-) of A a special terminating sequence
of contractions on the parts ((ijﬁlj)ﬁj) of A. Clearly such
a special terminating sequence of contractions contains at most
a+l+cb contractions.

Consider now any sequence of contractions, u, on the
parts ((Ax:M.)N.) of A, The part ((Ax )N ) of A will
have just one residual (which will always be the entire formula)
up to the point that a contraction of its residual occurs, and
thereafter will have no residual; moreover, if the sequence of
contractions i1s continued, a contraction of the resicdual of
((A%)Np) must occur within at most a+b+! contractions.
Hence we may suppose, without loss of generality, that u con-
gists of a sequence of contractions, ¢, on the ((A;;JM )n )
which are different from ((Axpﬁtp)ﬂp), followed by a contrac-
tion rso of the residual of ((A%Mp)’ followed by a se-
quence of contractions, 9, on the then remaining residuals of
the ((Ax M.)NJ.). Clearly, ¢ can be replaced by a seguence
of contractions, &y, on thevr((ijMj)Nj) which are parts of

, followed by a sequence of contractions, n, on the ((Ax
M:)N;) which are parts of A_ -- in the sense that a, fol-
lowed by n gives the same end formula as ¢ and the same set
of residuals for each of the (Ax:M:.)N;). Moreover, replacing
$ by G followed by 'nn does not change the total number of
contractions of residuals of parts of M. or of residuals of
parts of %. Next, n followed by |3 can be replaced by a
contraction ' of the residual ((AyP)N ) of ((Axﬂ‘&))ﬁ )
followed by a set of applications of n on each of tnose oc-
currences of /!p in the resulting formula

s¥ P

M
which arose by substituting for y in p'. (Here p' d4if-
fers from P at most by applications of Rule I. Since n may

be thought of as a transformastion of the formula /Vp, the con-
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vention will be understood which we use when we speak of the se-
quence of reductions of a given formula which results from ap-
plying n to a particular occurrence of ﬂp in that formula.)

By this means the sequence of contractlions, u, 13 re-
placed by a sequence of contracticns, ', which consists of a
sequence of contractlons, «,, on the ((Ax,M.)¥;) which are
parts of M_, followed by a contraction @' of the residual
of ((Axp%)ﬁ ), followed by further contractions on the then
remaining residuals of the ((ijﬁs-)ﬁj).

Consider now the part § of ', consisting of f' and
the contractions that follow 1t, up to and including the first
contraction of a residual of a part of Hp Denoting the for-
mula on which ¢ acts by ((AyP)Hp), we see that ¢ can be
considered as the act of first replacing the free y's of P
by various formulas ”pk’ got frem np by various sequences
of reductions (which may be vacuous), and then (possibly after
some applications of Rule I) contracting a residual ((AzR)S)
of one of the ((Ax.M:.)¥;) which are parts of Np, say ((Ax

)ﬂq). From this point of view, we see that none of the free
2's of R are parts of any AN, , and hence ( can be re-
placed by a contraction (possibly after some applications of
Rule I) of that residual in P of ((quNq)ﬁ ) of which (AzR)
§) 1s a residual, followed by a contraction lzposs:l.b].y after
some applications of Rule I) of the residual of ((A n.),
followed by a sequence of contractions on residuals of parts of
Np.

If M 1is altered by replecing ¢ in this way, the result
is a sequence of contractlons, u", having the same form as ',
but having the property that after the contraction of the resid-
ual of ((Axpl'ip)ﬁp) one less contraction of residuals of parts
of occurs.

By repetitions of this process, u 1s finally replaced by
a sequence of contractions v, which consists of a sequance of
contractions, «, on the ((ijf-{].)ﬁj) which are parts of M _,
followed by & contraction R of the residual of ((Axp(‘&))ﬂ )s
followed by a sequence of contracticns <Yy on residuals of the
((Ax j”j)”j) which are parts of ﬁp. Moreover, v contains at
least &s many contractions as p =-- for in the process of ob-
taining v from M there is no step which can decrease the
number of contractions. The sequence of contractions, «, con-
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tains at most a contractions, and <y contains at most cb
contractions. Thus v, and consequently pu, contains at most
a+1+cb contractions.

Thus we have proved that any sequence of contractions on
the parts ((ij)\s)nj) of 4 will terminate after at most
a+i+cb contractions.

Now suppose that u 1s a terminating sequence of contrac-
tions. Then v elther 1s a special terminating sequence of
contractions (see above) or can be made so by some evident
changes in the order in which the contractions in <+ are per-
formed. By the hypothesis of induction, applied to Np and /Vp,
the result of a special terminating sequence of contractions is
unique to within possible applications of Rule I. Therefore
the result of any terminating sequence of contractions, n, 1s
unique to within possible applications of Rule I.

7 XXVI. If 4 imr B by a contraction of the part ((AxA)AN) of
A4, and A, is 4, and 4, imr 42, A, imr 43, ey
and, for all k, Bk is the result of a terminating
sequence of contractions on the residuals in 4, of
((AxMN), then:

(.1) 6, 1s &.

(2) PFor all k, Bk conv-I-I1 Bk+1:

(3) Even if the sequence A, Ay, ... cean be
continued to iInfinity, there 1s a number Ups depend-
ing on the formula A, the part (@AxAM)AN) of A, and
the number m, such that, starting with Bm, at most
U consecutive ﬂk's occur for which it is not true
that 8, red B .,

(1) 1is obvious.

To prove (2), let ((AyiPi)Qi) be the residuals in ‘k of
(AxM)N) and let the reduction of Ak‘ into Ay involve a
contraction of (a residual of) the part ((AzR)S) of Ay Then
Bk+1 i1s the result of a terminating sequence of contractions
on ((AzR)S) and the parts ((Ay;P)Q) of 4, . If ((AzR)S)
1s one of the ((AyiPi)Qi), no residuals of ((AzR)S) occur in
‘k’ and Bk conv-I 81("_1 by 7 XXV. If, however, ((AzRS) 1is

not one of the ((Ay,;P)Q;), a set of residuals of ((AzR)S)
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does occur in &k and a terminating sequence of contractions
on these residuals in ’k glves Bk+1 by 7 XV.

Thus ‘k red Bk-n unless the reduction of ‘k into a .
involves a contraction of a residual of ((AxAM)AN); but if we
start with any particular 4 this can be the case only a fi-
nite number of successive times by 7 XXV. Hence (3) 1s proved,
up being defined as follows:

Perform m successive reductions on 4 1in all possible
ways. This gives a finite set of formulas (since, for this pur-
pose, we need not distinguish formulas differing only by appli-
cations of Rule I). In each formula find the largest number of
reductions that can occur in a terminating sequence of contrac-
tions on the residuals of ((AxM)AN). Then let u, be the larg-
est of thess.

7 XXVII. If A conv 8, there 1s a conversion of 4 into @&
in which no expansion precedes any reduction.

In the given conversion of 4 into B8, 1let the last ex-
pansion which precedes any reduction be an expansion of B, in-
to A4,. This expansion is followed by & sequence of one or more
reductions, say 41 imr 42, 421mr 45, ceey 51_1 imr An, and
4:1 conv-I-IITI 8. The inverse of the expansion of 8, into A,
1s a reduction of 4, into B8; 1let ((AxM)¥) Dbe the part of
A4 which 1s contracted in this reduction, and let By (k= 2,
3, «.ey, n) be the result of a terminating sequence of contrac-
tions on the residuals in Ak of (AxMN). By 7 XXVI, 31
conv-I1-II &8, 82 conv-I-II 83, esey B conv-I-II Bn, B.

conv-I-IIT A, A conv-I-III B This gr;vides an altematlilve
conversion of B, into #£ in which no expansion precedes any
reduction. The given conversion of 4 into B may be altered
by employing this alternative conversion of B, into £ instead
of the one originally involved, with the result that the number
of expansions which are out of place (precede reductions) in the
conversion of 4 iInto & 1s decreased by one. Repetitioné of
this process lead to a conversion of 4 into £ in which no

expansion precedes reductions.

7 XXVIII. If B8 1is & normal form of A4, then 4 conv-I-II 8.
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This 1s a corollary of 7 XXVII, since no reductions are
possible of a formula in normal form.

7 XIX. If A has a normal form, 1ts normal form is unique
to within applications of Rule I.

For if B and #' are both normal forms of 4, then &'
is a normal form of B. Hence & conv-I-II g'. Hence & conv-I
8, since no reductions are possible of the normal form B&.

Note that 7 XXIX ensures a kind of consistency of the cal-
culus of A-conversion, in that certain formulas for which dif-
ferent interpretations are intended are shown not to be inter-
convertible.

7 X, If A4 has a normal form, it has a unique principal
normal form.

7 XXT, If 8 1s a normal form of 4 then there 1s a num-
ber m such that any sequence of reductions starting
from 4 will lead to & (to within applications of
Rule I) after at most m reductions.

In order to prove 7 XXXI, we first prove the following lem-
ma by induction on n:

If B 1s a normel form of 4 and there 1s a sequence
of n reductions leading from 4 to B8, then there is
a number Vv 4,n such that any sequence of reductions start-
ing from 4 will lead to & normal form of 4 1in at most
v An reductions,

If n= 0, we take VA,O to be o.

Assume, as hypothesis of induction, that the lemma is true
when n=%k. Suppose 4 imr ¢, C imr ¢ € imr Ca’ c, imr
63, eees €y imr 8. Also, where A, 1s the same as 4, sup-
pose A4, imr Ay, A, imr 43, «e+ « By 7 XXVI there is a sequence
(D1 the same as (), D, conv-I-II 02, 02 conv-I-II O,y «eu,
such that A4; conv-I-II p; for all j's for which A4: exists;
and, if the reduction from 4 to € 1involves a contraction of

((AxM)N), then, starting with 0, at most up consecutive
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Dj's occur for which it is not true that DJ red njn .

Since the sequence € imr €, C, imr Ce, ... 1leads to 8
in k reductions, there 1s, by hypothesis of inductlion, a num-
ber v(‘,k such that any sequence of reductions starting from
€ leads to & normal form (and thus terminates) alter at mosat
v Cx reductions. Hence there are at most Ve reductions in
the sequence 0, conv-I-ITI 02, 02 conv-I-II 03, ..., and this
sequence must terminate after at most f(vt‘,k) steps, f(x)
being defined as follows:

f(o) = u,,
f(x+1) = £(x)+M+1,

where M 1s the greatest of the numbers Upy Uys -eey uf(x)+1°
(Of course f(x) depends on the formula 4 and the part
((AxM)AN) of A, as well as on x, Dbecause 4, depends on 4
and ((AxMON).

Since the sequence of 0O.'s continues as long as there are
A.'s on which reductions can be performed, it follows that after
at most f(vt,k) reductions an 4. 1s reached on which no re-
ductions are possible. But this 1s equivalent to saying that
this “j i1s in normal form. Thus any reductionsof A4 to.a
formula €, such that there 1s a sequence of k reductions
leading from € to a normal form of A, determines an upper
bound, f(vc’k), which holds for all sequences of reductions
starting from A. Since the number of possible reductions of
A to such formulas € 1s finite (reductions, or formulas C,
which differ only by applications of Rule I need not be distin-
guished as different), we teke v PRI to be the least of the
numbers f(vt,k)'

This completes the proof of the lemma. Hence 7 XXXI fol-
lows by 7 XXVIII.

7 XXII. If A has a normanl form, every [well-formed] part of
A has a normel form.

This follows from 7 XXXI, since any sequence of reductions
on a part of A4 implies a sequence of reductions on 4 and
therefore must terminate.



Chapter III

LAMBDA-DEFINABILITY

8. I1AMBDA-DEFINABILITY OF FUNCTIONS OF POSITIVE INTEGERS.
We define,

1 —» Aab.ab,
2 — Aab,a(ad),

3 — Aab.a(a(ad)),
and so on, each numeral (in the Arabic decimal notation) being
introduced as an abbreviation for a corresponding formula of the
indicated form. But where a numeral consists of more than one
digit, a bar 1s used over it, in order to avoid confusion with
other notations; thus,

11 — Aab.alalalalalalalalalalad)))))))))),
but 11, without the bar, is an abbreviation for
(Aab.ab)(Aab,abd),

In connection with these definitions an interpretation of
the calculus of A-conversion is contemplated under which each
of the formulas abbreviated as a numeral is interpreted as de-
noting the corresponding positive integer. Since it is Intended
at the same time to retain the interpretation of the formulas of
the calculus (which have a normal form) as denoting certain func-
tions in accordance with the 1ldeas of Chapter I, this means that
the positive integers are identified with certain functions.

For example, the number 2 1is identified with the function which,
when applied to the function f as argument, yields the product
of f Dby 1itself (product in the sense of the product, or resul-

28
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tant, of two transformations); similarly the number 14 is 1derti-
fied with the function which, when applied to the function f
as argument, ylelds the fourteenth power of f (power in the
sense of power of a transformation). This 1s allowable on the
ground that abstract number theory requires of the positive in-
tegers only that they form a progression and, subject to this
condition, the integers may be identified with any entities
whatever; as a matter of fact, logical constructions of the pos-
1tive integers by identifying them with entitles thought to be
logically more fundamental are possible in many different ways
(the present method should be compared with that familiar in the
works of Frege and Russell, according to which the non-negative
integers are ldentified with classes of similar finite classes).

A function F of positive integers -- i.e., a function of
one variable for which the range of arguments and the range of
values each consist of positive integers -- 1s said to be A-de-
finable if there is a formula F such that (1) whenever m and
n are positive integers, and Fm= n, and M and AN are the
formulas which represent (denote) the integers m and n re-
spectively, then FAfconv A, and (2) whenever the function F
has no value for the positive integer m as argument, and A
represents m, then FM has no normal form. Similarly the
function X of two integer variables 13 said to be A-definable
if there 1s a formula F such that (1) if (, m, n are posi-
tive Integers, and Flm= n, and L, M, X represent the inte-
gers (, m, n respectively, then FLMconv A, and (2) if the
function F has no value for the positive integers (, m as ar
guments, and L, M represent (, m respectively, then FLAM has
no normal form. And so on, for functions of any number of vari-
ables.

We shall say also, under the circumstances described, that
the formula F  A-defines the function F (we use the word "A-
defines rather than "denotes"™ or "represents®™ only because the
function which F denotes, in general has other elements than
positive integers in its range -- or ranges -- of arguments).

The successor function of positive integers (1.e., the func-
tion x+1) 1s A-defined by the formula S, where

S — Aabc.blabce).
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It 1s left to the reader to verify this, and also to verify that
addition, and multiplication, and exponentiation of positive in-
tegers are A-defined by the formulas Amnm+n, and Amnmsn,
and Amn.m' respectively (see definitions in §5).

These A-definiticns of addition, multiplication, and ex-
ponentiation are due to Rosser (see Kleene {35]). The defini-
tion of multiplication depends on the observation that the prod-
uct of two positive integers in the sense of the product of
transformations is the same as their product in the arithmetic
sense, and the definition of exponentiation then follows because,
when the positive integer n 1s taken of any function f as ar-
gument, there results the nth power of f 1n the sense of the
product of transformations.

The reader may also verify that, for any formulas L, M, N
(whether representing positive integers or not):

(L+M)+N conv L+[m+A],
iLxM)xn conv Lx(MaN],
[L+M)xN conv [LxN]+[M=A],
LM cony (M,
M cony MM,
SM conv 1+M

9. ORDERED PAIRS AND TRIADS, THE PREDECESSOR FUNCTION. We
now introduce forrmulas which may be thought of as representing
ordered pairs and ordered triads, as follows:

(M, N1 — Ac.aMh,

[L, M, N] — Aa.alMh,
2, — Aa.a(Abc.clIb),

2, — Aa.a(Abe.blc),

31 — Aa.a(Abcd.cldlb),
H — Aa.alrbed.bldIc),

35 — Aa.a(Abcd.blcld).
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If L, M N are formulas representing positive integers,
then 2 (M, N] conv M, 22[H, AN) corv N, 3, (L, M, N] conv
L, 32[l., M, N] conv A, and J,’[L, M, N)] conv A.

Verification of this depends on the observaticn that, 1if
M 13 a formula representing a positive Integer, M7 conv I (the
mth power of the identity 1s the identity).

By the predecessor function of positive integers we mean
the function whose value for the argument 1 1s 1 and whose value
for any other positive integer argument x 1s x-1. This func-
tion is A-defired by

P — Aa 35(alAblS(3,0), 3,0, 301001, 1, 1]).
For i1f K, L, M represent positive Integers,
(Ab[S(3,b), 3,6, 3,b])(K, L, M) conv [SK, K, L],
and hence if A4 represents a positive integer,
A(Ab[S(3,0), 3,0, 3,61)[1, 1, 1] conv [S54, 4, B],

where B8 represents the predecessor of the positive integer rep-
resented by 4. (The method of A-definition of the predecessor
function due to Kleene [35] is here modified by employment of a
different formal representation of ordered triads.)

A kind of subtraction of positive integers, which we dis-
tinguish by placing a dot above the sign of subtraction, and
which differs from the usual kind in that x=y =1 1if x { y,
may now be shown to be A-definable:

PN — APM.
The functions the lesser of the two positive integers x

and y and the greater of the two pesitive integers x
anéd y are A-definable respectively by

min — Aab . S6 = . Sb = q,

max — Aad . [a+b] = min a&
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The parlty of & tcsitive integer, 1.e., the function whose
value 1s 1 for an cii zositive integer and 2 for an even posi-
tive integer, 1s A-Zz7ined by

T2r — Aa.a(Ab.3>b)2,

Using ordereé :tzlrs in a way simllar to that in which or-
dered triads were ussZ to obtain a A-definition of the prede-
cessor function, we zive a A-definition of the function the
least integer not 1sss than half of x -- or, in other words,
the quotient upon dividing x+1 Dby 2, in the sense of division
with a remainder:

K — Aa.P(2,(a{Ab[P[2, b+ 2,b], 3= 2,6])(1, 2])).
Of course this A 1s unrelated to the -- entirely differ-
ent -- function # which was introduced for illustration in §1.

If we let

L — Ab.bAcAd[dPc(Ae.et I)Afg. fgS)c,
dPc(ARMIS)(AT) kokij (AL 11))d]),

Y — Aa.alf1, 1],
Z — Aa.2,(Ua),
2" — Aalda(Abeb=c),
then, 1f M, N represent the positive integers m, n respec-
tively, (M, A] conv [(SM, 1] 1f m=n= 1 and conv [AM, SAN] if
m*n > 1; hence U1, Y2, ... are convertible respectively into
(2, 11, (3, 11, [3, 2], (&, 1], (&4, 2], [%, 31, [5, 1], «.. ;

hence 21, 22, ... ere convertible respectively into

]’ 1’ 2’ 1’ 2! 3’ 1) 2, 3’ h’ 1’ 2) 3) l‘l 5’ ese



§10. PROPOSITIONAL FUNCTIONS, THE KLEENE p-FUCTION 33

and 2'1, 2'2, ... are convertible respectively into
1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 4, 3, 2,1, ... .
Thus the infinite sequence of créered pairs,
(v, 211, (22, 2'2), (23, 2'3], ...,

contains all ordered palrs of positive integers, with no repeti-
tions. The function whose value for the arg=—ents x, y 1s the
number of the ordered palr ([x, y] 1n this erumeration is A-de-
fined by

nr — Aab . S(K[la+b] = Pla+b]]l) = b.
[P 1Y

10. PROPOSITIONAL FUNCTIONS; THE KL=EEZ p-FUNCTION. By
a propositional function we shall mean a function (of one or
more variables) whose values are truth values — 1.e., truth
and falsehood. A property is a proposition=l function of one
variable; a relation is a propositional function of two vari-
ables. The characteristic function asscclated with a proposi-
tional function is the functicn whose value is 2 when (1.e.,
for an argument or arguments for which) the value of the pro-
positional function 1s truth, whose value 1s 1 when the value
of the propositional function 1s falsehood, and which has no
value otherwise.

A propositional function of positive integers will be said
to be A-definable if the assoclated charecteristic function is
2 A-definable function. (It can readily be shown that the choice
of the particular integers 2 and 1 in the definition of charac-
teristic function is here non-essential; the class of A-defin-
able propositional functions of positive integers remains unal-
tered 1f any other palr of distinct positive integers is substi-
tuted.)

In particular, the relations > and = between positive
integers are A-definable, as 1s shown by giving A-definitions
of the assoclated characteristic functions:
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exc — Aab . min 2 (Sa~b].

eq — Aab . 4 = , exc ab + exc ba.

From this follows the A-definabllity of a great variety of prop-
erties and relations of positive integers which are expressible
by means of equations and inequalitiles; conjunction, disjunction,
and negation of equations and inequalities can be provided for
by using min, max, and Aa.>>a respectively.

We prove also the two following theorems from Kleene [35],
and a third closely related theorem:

10 I. If R 1s a A-definsble propositional function of
n+1 positive integer arguments, then the function
F 1s A-definesble (1) whose value for the positive
integer arguments Xys Xpy eeey X is the least pos-
itive integer y such that Rx1x2...xny holds (i.e.,
has the value truth), provided that there is such a
least positive integer y and that, for every posi-
tive integer 2z 1less than this vy, Rx, XgesoX 2 has
a value, truth or falsehood, and (2) which has no value
otherwise.

In the cese that R has a value for every set of n+1 pos-
itive integer arguments, F may be described simply by saying

that Fx x,...x, 1s the least positive integer y such that

Rx1x2. eeXpy holds.
Let

6 — An,n(Arr(Ass 1 [I(Axgt.gi(tx)Ix)))
(AL fTUTY (Axgt.g(t(Sx))(Sx)gt).

Then
61 red Axgt.g(t(Sx))(Sx)gt,

62 red Axgt.gi(tx)Ix.

Hence if AN represents a positive integer and TN conv either
1 or 2, we have (using 7 XXVIII to show that TN red 1 or 2),

GINGT red G(T(SN))(SHGT,
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G2AGT red A.

Hence 1f we let

p— Atx.G(tx)xG¢,

we have pI¥red N 1f TN conv 2, and pTAN conv pT(SAH) 1If
TN conv 1, and (by 7 XXXXI, 7 XXXII) »7A has no normal form
1f TA¥ has no normal form.

If AN represents the positive integer n and T A-defines
the characteristic function associated with the . property T of
positive integers, it follows that »IF¥ 1s convertible into the
formula which represents the least positive integer y, not
less than n, for which Ty holds, provided that there 1s such
a least positive integer y and that, for every positive inte-
ger 2z less than this y and not less than n, 7Tz has a val-
ue, truth or falsehood; and that in any other case TA¥ has no
normal form (in the case that 7Ty has the value falsehood for
all positive integers y not less than n, we have

pTN red G(TA)NGT red G(T(SN))(SN)GT red G(T(S(SN)))(S(SN))OT

to infinity, and hence no normal form by 7 XXXI).

let R be a formula which A-defines the characteristic
function associated with the propositional function R referred
to in 10 I. Then Fr 1is A-defined by

Ax1x2. ..xn.lna(Rx1 XyeooX 1.

n)

10 II. If T 1is a A-definable property of positive inte-
gers, the function F 1s A-definable (1) whose val-
ue for the positive integer argument x 1is the xth
positive integer y (1n the order of magnitude of
the positive integers) such that Ty holds, provided
that there 1s such a positive integer y and that,
for every positive integer 2z 1less than y, Tz has
a value, truth or falsehood, and (2) which has no
value otherwise.
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For let T be a formula which A-defines the characteris-
tic function associated with 7T, and let

@ — Atx.P(x(An.S(ptn))1).
Then @T A-defines F.

10 III. If R, and R2 are A-definable propositional func-
tions each of n+1 positive integer arguments, then
the propositional function R 1s A-definable

(1) whose value for the positive integer arguments Xy,
Xps eees X is falsehood if there is a positive in-
teger y such that R1x1x2...xny holds and R,x, Xy

ceeXp 2 and R2x1 Xpeo X2 both have the value false-
hood for every positive integer =z 1less than uy,

and

(2) whose value for the positive integer arguments X1,
Xpe eeey Xp is truth if there is a positive integer y
such that R, x, XpeooXpy holds and R 1XqXpe e e Xply
has the value falsehood and R 1X1Xpeeex 2 and

sz1 XpeeoXp 2 both have the value falsehood for every

positive integer 2z 1less than y, and
(3) which has no value otherwise.

Let

alt — Axyn.parn(Aa.a(Ab.bily))(Ac.c(Adef.fde) )x(Hn).
n — Axy.par(yp(alt xy)1).

If F and ¢ are functions of positive integers, each be-
ing a function of one argument and including the integer 1 in its
range of arguments, and 1f F and € A-define F and ¢ re-
spectively, then alt F6€ A-defines the function whose value for
the odd integer 2x-1 1s Fx and whose value for the even in-
teger 2x 1s Gx.

If R, and R, A-define the characteristic functions as-
soclated with R, and R2 respectively, then the characteristic
function associated with R 1s A-defined by
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Ax1x2. . .:n:n.ﬂ(R1 X, X,.. .xn)(szlxz. . .xn)

-- this completes the proof of 10 III.

Formulas having the essential properties of y» and @
were first obtained by Kleene. These formulas A-define {(in a
sense which will be readily understood without explicit defini-
tion) certain functions of functions of positive integers, as al-
ready indicated.

As a further applicaticn of the formula p, we give A-
definitions of subtraction of positive integers in the ordinary
sense (so that x-y has no value T § y) and exact division
(so that x+y has no value unless x 1is a multiple of y):

M-N) — v(Aa . eq M [(A+ad)1.
M=N] — pAa . eq M [(N-al)l.

11. DEFINITION BY RECURSION. A functlon F of n posi-
tive integer arguments 1s said to be defined by composition in
terms of the functions 6 and H1, ”2’ eesy, A of positive in-

m
tegers (of the indicated numbers of arguments) by the equation,

Fx1x2. o G(h'lxlx2. . .xn)(ﬂaxixe. . .xn) . ..(I{mx1 Xpeo .xn) .

(The case 1is not excluded that m or n or both are 1.)

A function F of n+1 positive integer arguments is said
to be defined by primitive recursion in terms of the functions
¢, and Cp of positive integers (of the indicated numbers of
arguments) by the pair of equations:

Fx1 Xpee .xnI = Gy X)XpeeeXps

Fx, xa...xn(y+1) = CoXyXpees nl,/(l"x.I xe...xny).

(The case 1s not excluded that n = 0, the function G, being
replaced in that case by a given positive integer a.)

The class of primitive recursive functions of positive in-
tegers 1s defined by the three following rules, a function being
primitive recursive if and only if it is determined as such by
these rules: '
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(1) The function ¢ such that ¢x =1 for every posi-
tive integer x, the successor function of positive integers,
and the functions Ulil (where n 1s any positive integer and
1 1s any positive integer not greater than n) such that
U?x1 XpeeoXp = Xg, are primitive recursive.

(2) If the function F of n arguments is defined by
composition in terms of the functions ¢ and Hys Hys <oy Hpy
and If ¢, A, ”2’ ceey ”m are primitive recursive, then F 1is
primitive recursive.

(3) If the function F of n+1 arguments is defined by
primitive recursion in terms of the functions ¢, and o and
if 6, and 6'2 are primitive recursive, then #F 1s primitive
recursive; or in the case that n = 0, 1f F 1s defined by
primitive recursion in terms of the integer a and the function
6'2 and 1f 6'2 is primitive recursive, then F 1s primitive re-
cursive.

In order to show that every primitive recursive function
of positive integers 1s A-definable, we must show that all the
functions mentioned in (1) are A-definable; that if F 1s de-
fined by composition in terms of ¢ and A, Hz’ ceey ”m and
G, H1, H2, ceey ”m are A-definable, then F 1s A-definable;
and that 1f F 1s defined by primitive recursion in terms of
¢, and Ge(or, in the case n = 0, in terms of a and 62)
and 1if 6‘1 and 6'2 are A-definable (or, in the case n = 0,
if 6'2 i1s A-definable), then F 1s A-definsble.

Only the last of these three things makes any difficulty.
Suppose that F 1s defined by primitive recursion in terms of
6, and 6'2, and that ¢, and 6'2 are A-defined respectively
by 6‘1 and 6‘2. Then in order to obtain a formula ¥ which
A-defines F we employ ordered triads:

F— Ax;xy...x Y. 33(y(7\2[5( 3,2),

C2x1x2.. .xn( 312)(322), 322])[1 ,C1x1x2...xn, 11)-

(x1, Xos eees Xps Y, Z being any n+2 distinct varisbles). In
the case n = 0, this reduces to:
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F— Ay. 3, (y(A2[5(3,2), 6,(3,2)( 3,2), 3,21)(1, 4, 1]),
where A4 represents the positive integer a.

(The A-definition of the predecessor function given in §9
may be regarded as a speclal case of the foregoing in which a
is 1 and G, is 012 The extension of the method used for the
predecessor function to the general case of definition by primi-
tive recursion is due to Paul Bernays, in a letter of May 27th,
1935 -- where, however, the matter 1s stated within the context
of the calculus of A-K-conversion and ordered palrs are conse-
quently used instead of ordered triads. As remarked by Bermays,
this method of dealing with definition by primitive recursion
has the advantage that it shows also, for each n, the A-de-
finsbility of the function e of functions of positive integers
whose value for the arguments ¢, and 6, 1is the function ~»
defined by primitive recursion in terms of ¢, and 62 -- 1.e.,
essentially, the function p of Hilbert (31].)

Thus we have:

11 I. Every primitive recursive function of positive integers
is A-definable.

The class of primitive recursive functions is known to in-
clude substantially all the ordinarily used numerical functions
-- cf., ©.8., Skolem [50], G8del [27], Péter [41] (1t 1s readily
seen to be a non-essential difference that some of these authors
deal with primitive recursive functlons of non-negative integers
rather than of positive integers). Primitive recursive, in par-
ticular, are functlions corresponding to the quotient and remain-
der in division, the greatest common divisor, the xth prime num-
ber, and maeny related functions; A-definitions of these func-
tions can consequently bs obtained by the method just given.

The two schemsta, of definition by composition and by prim-
itive recursion, have this property in common, that -- on the
hypothesis that all particular values are known of the functions
in terms of which F 1s defined -- the given equations make pos-
sible the calculation of any required particular value of F by
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a series of steps each consisting of a substitution, either of
a (symbol for a) particular number for (all occurrences of) &
variable, or of one thing for another known to te equal to 1it.
By allowing additional, or more general, schemata having this
property, various more extensive notions of recursiveness are
obtainable (cf. Hilbert [31], Ackermann [1], Péter [41, 42, L3,
L44]). If the definiticn of primitive recursiveness 1s modified
by allowing, in place of (2) and (3), any definition by a set of
equations having this property, the functions obtained are called
general recursive -- 1if 1t is required of all functlons defined
that they have a value for every set of the relevant number of
positive integer arguments -- or partial recursive if this 1s
not required. For a more exact statement (which may be made in
any one of several equivalent ways), the reader 1s referred to
G8del (28], Church (9], Kleene [36, 39], Hilbert and Bernays
(331.

That every general recursive function of positive integers
1s A-definable can be proved in consequence of 10 I and 11 I
by using the result of Kleene (36], that every general recursive
function of n positive integer arguments Xys Xps eee, X, o cCED
be expressed in the form ZF(ey(Rx, Xpeeo ny)), where F 1s a
primitive recursive function of positive integers, R 1s a prop-
ositional function of positive integers whose assoclated char-
acteristic function is primitive recursive, and "ey" 13 to be
read "the least positive integer y such that” (Cf. Kleene
{371). The converse proposition, that every A-definsble func-
tion of positive integers, having a value for every set of the
relevant number of positive integer arguments, is general recur-
sive, 1s proved by the method of Church [9] or Kleene [37] (the
proof makes use of the fact that, by 7 XXXI, the process of re-
duction to normal form provides & method of calculating explic-
itly any required particular value of & function whose A-defi-
nition 1s given, and proceeds by setting up a set of recursion
equations which in effect describe this process of calculation).

These proofs may be extended to the case of partial recur-
sive functions without major modifications (cf. Kleene (39]).
Hence are obtained the following theorems (proofs omitted here):

11 II. Every partial recursive function of positive integers
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1s A-definable.

11 III. Every A-definable function of positive integers
i1s partial recursive.

The notion of a method of effective calculation of the val-
ues of a function, or the notion of a function for which such a
method of calculation exists, 1s of not uncommon occurrence in
connection with mathematical questions, but it is ordinarily left
on the intuitive level, without attempt at explicit definition.
The known theorems concerning A-definability, or recursiveness,
strongly suggest that the notion of an effectively calculable
function of positive integers be given an exact definition by
jdentifying it with that of a A-definable function, or equiva-
lently of a partial recursive function. As in all cases where a
formal definition 1is offered of what was previously an intuiltive
or empirical idea, no complete proof 1s possible; but the writer
has little doubt of the finality of the identification. (Con-
cerning the origin of thls proposal, see Church [9], footnotes
3, 18.)

An equivalent definition of effective calculability 1is to
identifyy it with calculability within a formalized system of
logic whose postulates and rules have appropriate properties of
recursiveness -- cf. Church [9], §7, Hilbert and Bernays [33],
Supplement II.

Another equivalent definition, having a more immediate in-
tuitive appeal is that of Turing [55], who calls a function com-
putable if (roughly speaking) it is possible to make a finite
calculating machine capable of computing any required value of
the function. The machine 1s supplied with a tape on which com-
putations are printed (the analogue of the paper used by a human
calculator), and no upper limit is placed on the length of tape
or on the time required for computation of a particular value of
the function, except that it be finite in each case. Further re-
strictions imposed on the character of the machine are more or
less clearly elther non-essentiasl or necessarily contained in the
requirexent of finiteness. The equivalence of computability to
A-definability and general recursiveness (attention being confined
to functions of one argument for which the range of arguments con-
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sists of all positive integers) 1s proved in Turing [57].

Mention should also be made of the notioun of a finite com-
binatory process introduced by Post [46]. This again is equiva-
lent to the other concepts of effective calculability.

Examples of functions which are not effectively calculable
can now ve given in various ways. In particular, it is proved
in Church (9] that if the set of well-formed formulas of the cal-
culus of A-conversion be enumerated in a straightforward way
(any one of the particular enumerations which immediately suggest
themselves may be employed), and if F 1is the function such that
F 1s 2 or 1 according as the xth formula in this enumeration
has or has not a normal form, then ¥ 1s not A-definsble. This
may be taken as the exact meaning of the somewhat vague statement
made et the end of §6, that the condition of, having a normal form
1s not effective.

In the explicit proofs of many of the theorems which have
been stated without proof in this section, use 1s made of the
notion of the G8del rumber of a formula or formal expression.

In the published papers referred to, this notion 1s introduced

by a method closely similar to that employed by G3del [27]). In
the case of well-formed formulas of the calculus of A-conversion,
however, it would be equally possible to use the somewhat differ-
ent method of our next chapter.



Chapter IV

COMBINATIONS, GODEL NUMBERS

12. COMBINATIONS. If s 1s any set of well-formed formu-
las, the class of s-combinations is defined by the two follow-
ing rules, a formula being an s-combination if and only 1if it
is determined as such by these rules:

(1) Any formula of the set s, and any variable stand-
ing alone, 1s an s-combination.

(2) If A and B are s-combinations, 48 1s an s-
combination.

In the cases in which we shall be interested the formulas
of s will contain no free variables and will none of them be
of the form A4BF. 1In such a case 1t 1s possible to distinguish
the terms of an s-combination, each occurrence of a free vari-
able or of one of the formulas of s being a term.

If s 1s the null set, the s-combinations will be called
combinations of variables.

If s consists of the two formulas [, J, where

I — Aaq,
J — Aabcd.abladc),

the s-combinations will be called simply combinations.

We shall prove that every well-formed formulas 1is convertible
into a combination. ' This theorem is taken from Rosser (47], the
present proof of it from Church [8); the ideas involved go back
to Schdnfinkel [49] and Curry [18, 21].

Let:

T — JII,

Then T conv Aab.ba, and hence TAF conv FA.

k3
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If M 1s any combination containing x as a free varilable,
we define an assoclated combination AxM|, which does not con-
tain x as a free variable but otherwise contains the same free
variables as A, This definition is by recursion, according to
the following rules:

(1) Ayx| 1s 1.

(2) If 8 contains x as a free variable and 4 does
not, A,A4Bl 1is JTA, BI(/IA).

(3) If A contains x as a free variable and # does
not, A, 4Bl 1s JTBA,A4l.

(4) If both A and & contain x as a free variable,
AABl 1s Jrr(JI(JTT(TTALBI (VTAAlV)))).

12 I. If M 1is a combination containing x as a free vari-
able, AxM conv AxM.

We prove this by induction with respect to the number of
terms of M.

If M has one term, then M 1is x, and Ale is 1,
which 1is convertible into Axx.

If M 1s AF and 8 contains x as a free variable and
A does not, then A M| 1s JtA B|(J74), which (see definitions
of I, J, T) 1s convertible into Ad.A(Axsld), which, by hy-
pothesis of induction, 1s convertible into Ad.A((AxB)a) which
finally 1is convertible into Ax.A8.

If M 1s AB and A contains x as a free variable and
8 does not, then AxMI is JTB?\XAI, which 1is convertible into
Ad.AxAldB, which, by bypothesis of induction is convertible in-
to Ad.(AxA4)dB, which finally is convertible into Ax.A4S8.

If M 1s AF and both A and & contaln x as a free
variable, then A M| 1s Jtt(JI(JTT(/TALBl(JTA,41V)))), which
1s convertible into Ad.i\xAId(Axsld) , Wwhich, by hypothesis of
induction, 1s convertible into Ad.(AxA)d((Ax8)d), which finally
1s convertible into Ax.A4B8.

The foregoing tacitly assumes that 4 and # do not con-
tain d as & free variable. The modification necessary for
the contrary case 1s, however, obvious.

This completes the proof of 12 I. We define the combina-
tion belonging to a well-formed formula, by recursion as follows:
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(1) The combination belonging to x 1s x (where x
is any variable).

(2) The combination belonging to F4 1is F'4', where
F' and A' are the combinations belonging to F
and 4 respectlvely.

(3) The combination belonging to AxM is "x”'l’ where
M' 1s the combination belonging to M.

12 II. Every well-formed formula is convertible into the com-
bination belonging to 1it.

Using 12 I, this is proved by induction with respect to the
length of the formula. The proof 1s straightforward and details
are left to the reader.

12 III. The combination belonging to X and the combination
belonging to ¥ are identical if and only if X
conv-1 V.

13. PRIMITIVE SETS OF FORMULAS. A set s of well-formed
formulas is called a primitive set, if the formulas of s con-
tain no free variables and are none of them of the form 48,
znd every well-formed formule 1s convertible into an s-combi-
netion. (When necessary to distinguish this idea from the analo-
gous 1dea in the calculus of A-K-conversion, the calculus of
A-6-conversion, etc. -- see Chapter V -- we may speak of primi-
tive sets of A-formulas, primitive sets of A-X-formulas, prim-
itive sets of A-6-formulas, etc.)

It was proved in §12 that the formulas I, J are a primi-
tive set. Another primitive set of formulas, suggested by the
work of Curry, consists of the four formulas B, C, W, I, where:

B — Aabc.albc).
C — Aabc.acb.

W — Aab.abb.

In order to prove this it 1s sufficient to express J as a
{B, C, W, I}-combination, as follows:
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J conv B(Bc(BC))(B(w(BBB))C).

St11l another primitive set of formulas consists of the four
fornulas B8, T, D, I, where:

T — Aab.ba.

D — Aa.aa.

In order to prove this it is sufficient to express ¢ and w
as {8, T, D, I}-combinations, as follows:

C conv B(T(BBT))(BBT).

w conv B(B(T(BD(B(TT)(5(88B)T))))(BBT))(B(Tr(B(TI)(TI)))B).

A primitive set of formulas is sald to be independent if 1t
ceases to be a primitive set upon omission of any one of the for-
mulas. It seems plausible that each of the three primitive sets
which have been named is independent. -- In the case of the set
{1, Ji, the independence of J follows (using 7 XVII) from the
fact that any combination all of whose terms are [ 1s convert-
ible into I; and the independence of I follows (using 7
XXVIII) from the fact that if A imr # and B contains a (well-
formed) part convertible-I into [/ then 4 must contain a (well-
formed) part convertible-I into [.

14, AN APPLICATION OF THE THEORY OF COMBINATIONS. We prove
now the following theorems, due to Kleene [34, 35, 37]:

14 I. If 41 and 42 contain no free variables, a formula
L can be found such that L1 conv 4, and L2 conv .42.

For, by 12 1I, 41 and A2 are convertible into combina-
tions 41' and Aé respectively. We take 4! to be the com-
bination belonging to A,, unless that comblnation falls to con-
tain an occurrence of J, 1in which case we take 41' to be
JIIrr; and A} 1s similerly determined relatively to A,. Let
A7 and 4,3 be the result of replacing all occurrences of J by
the variable ; 1in A{ and Aé respectively, and let 8, and
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82 be AjA;' and AjAg respectively. Then B1J conv 4,, and
B,J conv 4,, and 87 conv I, and B8,/ conv I. Consequently
a formula € having the required property 1is:

An.n(Ax.x(Ay.yIB,))(Az.2I1)B,J.
14 IT. I A,, ‘2' ceey “n contain no free variables, a
formula L can be found such that L1 conv 4,

L2 conv 42, eees LN conv An(ﬂ being the formula
which represents n).

For the case that n 1s 1 or 2, this follows from 14 I.
For larger values of n, we prove it by induction.

Let L2 be a formula such that L21 conv 4,, and let L,
be a formula such that L11 conv ‘2’ L_12 conv 43, cney L1H conv
‘n (where M represents n-1). Also let € be a formula such
that €1 conv £, and ¢2 conv L,. Then a formula £ having
the required property 1is:

Ai.C[3i](Pi).
14 III. If A, 42, ey ‘n' F1, Fe’ ey ’m contain no
free variables, a formula £ can be found which
represents an enumeration of the least set of formmu-
las which contains 4, A, +++, Ay and 1s closed
under each of the operations of forming l&XY from the
formulas X,Y & =1, 2, ...,n ), 1n the sense that
every formula of thls set 1s convertible into one of
the formulas in the infinite sequence

e, E2, ...,

and eévery formula in this infinite sequence is con-
vertible into one of the formulas of the set.

We prove this first for the case m = 1, using a device
due to Kleene for obtaining formulas satisfying arbitrary con-
version conditions of the general kind illustrated in (1) below.

Using 14 II, let V Dbe a formula such that
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V1 conv [,
V2 conv Axy. F (y(S(N'=2Zx])[2x-N]y)(y(SIN'=2'x])(Z'x~N]y),
U3 conv Axy.yxdw
UL conv Axy.yer,

DR R R I I I R A A A A

UN' conv Axy.yxdn,

where AN represents n and A' represents n+2, and Z and
Z2' are the formulas Introduced in §9. Let £ be the formula,

ALUSIN = i)l i=N]0.

Then we have:
£V conv A,

E2 conv “n—1 ’

EN conv A,

EK conv F(E(Z[K=N]1))(E(Z'[K=nN])),

K being any formula which represents an integer greater than
n. From this it follows that £ 1s a formula of the kind re-
quired.

Consider now the case m > 1, Let M represent m and
let F Dbe a formula such that F1 conv F,, F2 conv f2, eeey FM
conv Fm. By the preceding proof for the case m = 1, a formula
E' can be found which represents an enumeration of the least
set of formulas which contains [1, 41], [2, 41], ceey (M, 41],
[1, 4,1, (2, 41, ..o, M 4], ooy [1, 41, (2, 410, .., (M
An] and 1is closed under the operation of forming VY(Axylx, XFyl)
from the formulas X, ¥. Then a formula £ of the kind required
1s:

Ai.ZE(E'i).

It is immaterlal that the enumeration so obtained contains
repetitions. (Notice that 2,(B, €] conv € if £ 1s any for-
mula such that &I conv /, in particular if £ 1s any formula
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representing a positive integer; the case considered in §9 that
# and C€ Dboth represent positive integers 1s thus only a spe-
cial case.)

14 IV, If 4,4, .., A, Fis Fop voes Fppy Fooqs Frep? *oo2
'm+r contain no free varlables, a formula £ can be
found which represents an enumeration of the least set
of formulas which contains 4, 42, cees Ap and is
closed under each of the operations of forming raxv
from the formulas X, ¥ (¢=1, 2, ,.., m) and of
forming mex from the formula X (3 =1, 2, ..., 1)
-- in the sense that every formula of this set is con-
vertible into one of the formulas in the infinite se-
quence

Ev, E2, ...,

and every formula in this infinite sequence is convert-
ible into one of the formulas of the set.

(The case 1s not excluded that m = 0 or that r = 0, provided
that m and r are not both 0.)
By the method used in the proof of 14 I, find formulas B&.

1'
82,...., B 6‘1, c2, veey € such that 31.! conv 4, 82./ conv

n’ m+r
42, ..., ByJ conv 4,, G,J conv F, €J conv F,, ..., Gy, .J conv
'm+r’ and B]I conv [, 82[ conv I, ..., BnI conv [, qt conv [,

621 conv I, ..., cm+rI conv I. By 14 III, a formula E' can be
found which represents an enumeration of the least set of formu-
las which contains 81, 32, ceey Bn and 1s closed under each of
the operations of forming A x.cax(Xx)(Yx) from the formulas JX,¥
(x=1, 2, «o., m) &and of forming Ax.YIGm+Bx(Xx) from the for-
mulas X, ¥ (B =1, 2, ..., r). Then a fornula £ of the kind
required is:
ALEVDJ,

15. A COMBINATORY EQUIVALENT OF CONVERSION. It 1is desir-
able to have a set of operations (upon combinstions) which have
the property that they always change a combilnation into & com-
bination and which constitute an equivalent of conversion in the
sense that a combination X can be changed into a combination
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Y by a sequence of (0 or more of) these operations if and only
1f X conv ¥. Such a set of operations 1s the following (OI -
OXXXVIII) -- where F, 4, B, ¢, D are arbitrary combinations,
B, ¥» w are defined as indicated below, and the sign | 1s
used to mean that the combination which precedes |- 1s changed
by the operation into the combination which follows:

0I. IA F A.
0II. A | IA,
OIII. F(IA) - FA.
OIV. FA |~ F(IA4).
OV. F (IAB) | F(AB).
_OVI. F(AB) |~ F(148).
OVII. F (JABCD) } F(AB(ADC)).
OVIII. F (AB(ADC)) | F(JABCD).
0IX. FJ F F(u(BY(BMRPREY)I(BBERR))I)))).
0X. F(w(BY(B(R(RY)BBERR))I)))) - FJ.
OXI. FR + F(R(B(RI))IAR).
OXII. F(B(R(RI))R) + FA.
0XIII. Fy F F(B(B(RT))Y).
0XIV. F(R(R(RI))Y) + Fy.
OXV. FI + F(BII).
OXVI. F(RII) F FI.
OXVII. F (N(BR(RREA)IR) F F(R(ER)R).
OXVIII. F(R(BR)R) F F(Y(RR(RRR))RA).
OXIX. F(v(rR(RRM)Y) F FREBY)(IRRR)).
OXX. F(R(BRYV)(RRA)) F F(RR(ARRA))Y).
oxXxI. F(vy(RprRw) F FIR(RW(RRR)).
0XXII. F(B(BRw)(RAR)) F F(N(RRA)W).
OXXIII. F (¥RI) - F(B(RI)I).
oXXIv. F(B(RII) - F(OYBI).
OXXV. F(BRY) F F(B(R(RYWYIIBA)).
OXXVI. F(B(A(RY)V(BR)) F FIBBY).
OXXVII. F(BRw) F F(R(BB((B(RWW)(BY)IR(RR)))IA).
OXXVIII. F(B(R(R(B(RwWw)(BY)IBBA))IR) F FBRW.
OXXIX. F(RYY F F(B(RI)).
oXxXX. F(B(RI)) F F(ByY).
0XxXI. F(R(BEYVVBY)) F FRMBNEBY))Y).
0XXXII. F(R(BY(RY))Y) F FIR(BBYV)BY)).
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OXOTII. F(BYw F FIB(B(RWYBY)).
0XXIV. F(B(R(RW)YI(RY)) F F(Byw).
oXXV., F(Ruwy) F Fu.
OXXXVI. Fw + F(Rwy).

0XCVII. F(Rww) F F(Rw(BRw)).

OXXXVIII. F(Rw(fw)) F F(Rww).

Y — JT(JT)(JT).
B — yIVWI).
w — V(¥ (BY(¥(RIT)T))T).

(Note that =¥, ¥, B, w are convertible respectively into T, C,
B, W.)

These thirty-eight operations have characteristics of sim-
plicity not possessed by the operations I, II, III of §6, name-
ly: (1) they are one-valued, i.e., glven the combination op-
erated on and the particular one of the thirty-eight operations
which 1s applied, the combination resulting is uniquely deter-
mined; (2) they do not involve the idea of substitution at an
arbitrary place, but only that of substitution at a specified
place. This has the effect of rendering some of the develop-
ments in §16 much simpler than they otherwise might be.

The proof of the equivalence of OI-OXXXVIII to conversion
is too long to be included here. It may be found in Rosser's
dissertation [47] (cf. Section H therein). Many of the import-
ant ideas and methods involved derive from Curry [17, 18, 20,
21]; in fact, Curry has results which may be thought of as con-
stituting an approximaste equivalent to the one in question here
but which are nevertheless sufficiently different so that we are
unable to use them directly.

16, G6DE'L NUMBERS. The G3del number of a combination is
defined by induction as follows:

(1) The G8del number of I 1s 1.

(2) The G8del number of J 1s 3.

(3) The G3del number of the nth variable in alphabetical order
(see §5) 1s 2n+5.

() If m and n are the G8del numbers of 4 and § respec-
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tively, the G8del number of 48 13 (m+n)(m+n-1)-2n+2,

The G8del number belonging to a formula is defined to be
the G8del number of the combination belonging to the formula.
(Notice that the G8del number belonging to a combination is thus
in general not the same as the G8del number of the combination.)

It is left to the reader to verify that the G8del numbers
of two combinations 4 and # are the same if and only if 4
end F are the same; and that the G8del numbers belonging to
two formulas 4 &and B are the same if and only if A4 conv-1I @&
(ef. 12 IIT). (Notice that the G8del number of 48, according
to (4), is twice the number of the ordered pair [m, n] in the
cnumeration of ordered palrs described at the end of §9.)

The usefulness of G8del numbers arises from the fact that
our formalism contains no notations for formulas -- i.e., for
sequences of symbols. (It 1s not possible to use formulas as
notations for themselves, because interconvertible formulas must
denote the same thing although they are not the same formula, and
because formulas containing free variables cannot denote any
(fixed] thing.) The G3del number belonging to a formula serves
in many situations as a substitute for a notation for the form-
la and often enables us to accomplish things which might have
been thought to be impossible without a formal notation for for-
mulas.

This use of G8del numbers is facilitated by the existence of
a formula, form, such that, if AN represents the G8del number be-
longing to A4, and A4 contains no free variables, then, form A
conv A. In order to obtain this formula, first notice that par#n
conv 2 if N represents the G8del number of a combination hav-
ing more than one term, and par N conv 1 if N represents the
G8del number of a combination having only one term; also that if
N represents the G8del number of a combination 4B, then Z(AN)
is convertible into the formula representing the G8del number of
A, and Z'(HN) 18 convertible into the formula representing the
G8del number of £ (see §9). We introduce the abbreviations:

Nl — Z(HN).

N, — Z'(HN).
Subscripts used in thls way may be lterated, so that, for instance,
Nypo — Z'(H(Z'(H(Z(HM)))).
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By the method of §14, find a formula B such that

B1 conv Ax.x12.
B2 conv I,
13 conv Ax.x12J,
and a formula U such that
1 conv B,
U2 conv Axyy(par x,)x,y(y(par x,)x,y),

(these formulas B and U can be explicitly written down by re-
ferring to the proofs of 14 I and 14 II).
Let

form — An.U(par n)nU.

Then
form 1 conv 7,

form 3 conv J, and
form N conv form Nl(fom ”2)

if A represents an even positive integer. From this it follows
that form has the property ascribed to 1t above; for if AN rep-
resents the Gd3del number of a combination 4' belonging to a

formula A4, containing no free variables, then form A conv 4',
and 4' conv 4.
Let:

o - An, [parmparqwqmrﬁ1+[3=eqﬁén12]+parn2+eqﬁn21¢1_o]
+ [2-[parmparq+eq5f8‘f5n11+[5=m1.n(parn2)(eql—é'n21 112611
+ [3x [parr-.-:-eq?ﬁ:»ﬁh_&w1 +parn2+eq1_2 n 5 +PaTR,,
+eq623FT5Th6N,, | +Parn, , p4PaTN, ;5 460208120, 55

+PETT 50 o +PET T 5551 +6Q2R8T2N, 5551 4630555, 2R ]]
2 5.

Noting that the G8del numbers of JI, T, JT, JTT are respective-
1y 12, 156, 24812, 623375746, the reader may verify that:

oN conv 1, 2, 3, or 4 1f A represents a positive integer;



5 IV. COMBINATIONS, GODEL NUMBERS

ofN conv 2 if AN represents the G8del number of a combina-
tion of the form JTBWIA), with B different from -;

oN conv 3 if AN represents the G8del number of a combina-
tion of the form JtBA4 but not of the form JrB(JIA);

oN conv 4 4f N represents the G8del number of a combina-
tion of the form JTT(JI(JTT(JTB(JTAJ))));

oN conv 1 if A represents the G8del number of a combina-
tion not of one of these three forms.

Again using §14, we find a formula u such that
ul conv Axy,ySx,

u2 conv Axy.y(oxy,)x, Y

u3 conv Axy.y(ox,)x,y,

ub conv Axymin(y(ox
u5 conv Ax.3+x,

and we let

22212)%222139)(Y(9X00001 20500012 9)s

0 — An.u(c n)nu,

Then o A-defines a function of positive integers whose value
is8 2 for an argument which 1s the G&8del number of a combination
of the form AxNI, and 1 for an argument which is the G8del num-
ber of a combination not of this form -- or, as we shall say
briefly, o A-defines the property of a combination of being of
the form AM.

By sirmdlar constructions, involving lengthy detail but noth-
ing new in principle, the following formulas may be obtained:

1) A formula, occ; 8uch that, if AN represents a posi-
tive integer n, we have that occ A A-defines the property of
a combination of containing the nth variable in alphabetical
order, as a free variable (i.e., as a term).

2) A formula e, such that, & representing a positive
integer n, if € represents the G3del number of a combination
not of the form A Af|, then eAG conv ¢, and if ¢ ropresents
the G3dsl number of a combination ’\le , then ¢AN¢ 1s convert-
ible into the formula representing the G3del number of the com-
bination obtained from A/ by substituting for all free occur-
rences of x in Af the nth variable in alphabetical order.

3) A formula €, such that, if € represents the G8del
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number of a combination not of the form AXNI, then (€€ conv ¢,
and 1f € represents the GGdel number of a combination A M|,
then ¢€ 1s convertible into the formula representing the Gi3del
number of the combination obteined from A by substituting for
all free occurrences of x Iin Af the first varlable in alpha-
betical order which does not cccur in M as a free variable.

4) A formula r which A-defines the property of a com-
bination, that there is a formmila to which 1t belongs.

5) A formula A which A-defines the property of a com-
bination of belonging to a formmla of the form AxM.

6) A formula, prim, which A-defines the property of a
combination of containing no free variables.

7) A formula, norm, which A-defines the property of a
combination of belonging to a formula which is in normal form.

8) A formule 01 which corresponds to the operation OI
of §15, in the sense that, if € represents the G8del number of
a combination of such a form that 0I 1s not applicable to it,
then 016‘ conv ¢, and if € represents the G8del number of a
combination Af to which OI 1s applicable, then 0,6 1s convert-
ible Into the formula representing the G8del number of the com-
bination obtained from Af by applying OI.

9) Formulas 02, 03, ey 038 which correspond respective-
ly to the operations OII, 0III, ..., OXXXVIII of §15, in the same
sense.

By 14 III, a formula, cb, can be found which represents
an enumeration of the leest set of formulas which contains 1 and
3 and 1s closed under the operation of forming (Aab . 2 =
nr ab)X¥ from the formules X, ¥. But iIf X, ¥ ©represent the
G8del numbers of combinations 4, B respectively, then (Aab . 2
= nr ab)X¥ 1s convertible into the formula which represents the
G8del number of A48. Hence the formula, c¢b, enumerates the
G8del numbers of combinations conteining no free variables, in
the sense that every forrula representing such a G3del number is
convertible into one of the forrulas in the infinite sequence

cb 1, ¢cb 2, ...,

and every formula in this infinite sequence 1is convertible into
a formula representing such a G%del number.
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If now we let
ncb — An . ¢cb (P(Ax . norm (cb x))n),

then ncb enumerates, in the same sense, the G8del numbers of
combinations which belong to formulas in normal form and contain
no free variables (cf. 10 II).

By 14 IV, a fornula O can be found which represents an
enumeration of the least set of formulas which contains [ &nd
is closed under each of the thirty-eight operations of forming
(Aab.Oﬂ(ab))X from the formula X (B =1, 2, ..., 38). Let

cnvt — Aab.Oba.

Then if € represents the G8del number of a combination A, the
formula, cnvt €, enumerates (again in the same sense as in the
two preceding paragraphs) the G8del numbers of combinations ob-
tainable from M by conversion -- cf. §15.

Let

nf — An . cnvt n(p(Ax . norm (cnvt nx))1).

Then nf A-defines the operation normal form of & formula, in
the sense that (1) 1f € represents the G8del number of a com-
bination A, then nf € 1s convertible into the formula repre-
senting the G8del number belonging to the normal form of Af; and
hence (2) if € represents the G8del number belonging to a for-
mula M, then nf ¢ 1s convertible into the formula represent-
ing the G8del number belonging to the normal form of M. If ¢
represents the G38del number of & combination (or belonging to a
formula) which has no normal form, then nf ¢ has no normal
form (cf. 10 I).

Let i and s Dbe the formulas representing the G8del num-
bers belonging 1 and S respectively. Then the formulas

2 (H(1(Ax . 2 = nrsx)i)), Z'(H(2(Ax . 2 = nr sx)i)),
ZV(H(3(Ax o« 2 * NP $X)i))s euu,

are convertible respectively into formulas representing G8del
numbers belonging to

1, §1, S(51), «ee

Hence a formula v which A-defines the property of a combina-
tion of belonging to a formulae in normal form which represents a
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positive integer, may be obtained by defining:
v— An . n(eq n)(Am . eq n(nf(Z'(Alm(Ax . 2 * nr sx)i))))).

(It 1s necessary, in order to see this, to refer to 10 III, and
to observe that the G8del number belonging to a formula in nor-
mal form representirig a positive integer 1s always greater than
that positive integer.)



Chapter V

THE CALCULI OF A-X-CONVERSION AND A-&-CONVERSION

17. THE CALCULUS OF A-X-CONVERSION. The calculus of A-X-
conversion 1s obtained if a single change is made in the con-
struction of the calculus of A-conversion which appears in §§
5,6: namely, in the definition of well-formed formula (§5) de-
leting the words "and contains at least one free occurrence of
x" from the rule 3. The rules of conversion, I, II, III, in
§6 remaln unchanged, except that well-formed is understood in
the new sense.

Typical of the difference between the calcull of A-conver-
sion and A-K-conversion 1s the possibility of defining in the
latter the constancy function,

K— AalAba),

and the integer zero, by analogy with definitions of the positive
integers in §8,

0 — Aa(Abb).

Many of the theorems of §7 hold also in the calculus of A-
K-conversion. But obvious minor modifications must be made in
7 IIT and 7 V, and the following theorems fail: 7 XVII, clause
(3) of 7 XVI, and 7 XXXI, and 7 XXXII. Instead of 7 XXXI, the
following weaker theorem can be proved, which is sufficient for
certain purposes, in particular for the definition of p (see
§10):

17 I. Let a reduction be called of order one if the application
of Rule II iInvolved is a contraction of the initial
(?\xl‘l),‘v1 in a formula of the form

(Axl‘f)ﬁ1ﬁ2...ﬁr (r=1,2, ...).

58
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Then if 4 has a normal form, there 1s a number m
such that at most m reductions of order one can oc-
cur in a sequence of reductions on A.

A notion of A-K-definability of functions of non-negative
integers may be introduced, analogous to that of A-definability
of functions of positive integers, and the developments of Chap-
ter III may then be completely paralleled in the calculus of A-
K-conversion. The same definitions may be employed for the suc-
cessor functlon and for addition and multiplication as in Chap-
ter III. Many of the developments are simplified by the pres-
£nce of the zero: in particular, ordered palrs may be employed
instead of ordered triads in the definition of the predecessor
function, and the definition of p» may be simplified as in Tur-
ing [581].

It can be proved (see Kleene [37], Turing [57]) that a
function F of one non-negative Integer argument 1s A-X-defin-
able if and only if Ax . F(x-1)+1 18 A-definable -- and sim-
i1larly for functions of more than one argument.

The calculus of A-X-conversion has obvious advantages over
the calculus of A-conversion, including the possibility of de-
fining the constancy function and of introducing the integer
zero in a simpler and more natural way. However, for many pur-
poses -- in particular for the development of a system of sym-
bolic logic such as that sketched In §21 below -- these advan-
tages are more than offset by the fallure of 7 XXXII. Indeed
if we regard those and only those formulas as meaningful which
have & normal form, 1t becomes clearly unreasonable that Fa
should have a normal form and A have no normal form (as may
happen in the calculus of A-K-conversion); or even if we impose
a more stringent condition of meaningfulness, Rule III of the
calculus of A-X-conversion can be objected to on the ground that
if M 1is a meaningful formula containing no free varlables, the
substitution of (AxM)A for M ought not to be possible unless
N 1s meaningful. This way of putting the matter involves the
meanings of the formulas, and thus an appeal to intuition, but
corresponding difficulties do appear in the formal developments
in certain directions.
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§18. THE CALCULUS OF RESTRICTED A-X-CONVERSION. In order
to avoid the difficulty just described, Bernays [4] has proposed
a modification of the calculus of A-K-conversion which consists
in adding to Rules II and III the proviso that # shall be in
normal form (notice that the condition of being in normal form
is effective, although that of having a normal form 1s not). We
shall call the calculus so obtained the calculus of restricted
A-XK-conversion. In it, as follows by the methods of §7, a for-
mula which in the calculus of A-K-conversion had a normal form
and had no parts without normal form will continue to have the
same normal form; in particular, no possibility of conversion
into a normal form is lost which existed in-the calculus of A-
conversion. On the other hand, all of the theorems 7 XXVIII -

7 XXXII remain valid in the calculus of restricted A-X-conver-
sion -- and are much more simply proved than in the calculus of
A-conversion. (It should be added that the content of the the-
orems 7 XXVIII - 7XXXXII for the calculus of restricted A-X-con-
version is in a certain sense much less than the content of these
theorems for the calculus of A-conversion, and in fact cannot be
regarded as sufficient to establish the satisfactoriness of the
calculus of restricted A-XK-conversion from an Intuitive viewpoint
without addition of such a theorem as that asserting the equiva-
lence to the calculus of (unrestricted) A-K-conversion in the
case of formulas all of whose parts have normal forms.)

The development of the calculus of restricted A-X-conversion
may follow closely that of the calculus of A-conversion (as in
Chapters II-IV), with such modifications as are indicated in §17
for the calculus of A-K-conversion. Many of the theorems must
have added hypotheses asserting that certain of the formulas in-
volved have normal forms.

§19. TRANSFINITE ORDINALS. Church and Kleene [15] have ex-
tended the concept of A-definability to ordinal numbers of the
second number class and functions of such ordinal numbers.

There results from this on the one hand an extension of the no-
tion of effective calculability to the second number class (cf.
Church [13], Kleene [39], Turing [59]), and on the other hand a
method of introducing some theory of ordinal numbers into the
system of symbolic logic of §21 below.
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Instead of reproducing here this development within the
calculus of A-conversion, we sketch briefly an analogous devel-
opment within the calculus of restricted A-K-conversion.

According to the idea underlying the definitions of §8&, the
positive integers (or the non-negative Integers) are certain
functions of functlons, namely the finite powers of a function
in the sense of iteration. Thils 1dea might be extended to the
ordinal numbers of the second number class by allowing them to
correspond in the same way to the transfinite powers of a func-
tion, provided that we first fixed upon & limiting process rel-
ative to which the transfinite powers should be taken. Thus
the ordinal w could be taken as the function whose value for
a function f as argument is the function g such that gx 1s
the 1limit of the sequence, x, fx, f(fx), ... . Then w4+l
would be Ax.f(wfx), and so on.

Or, instead of fixing upon a limiting process, we may in-
troduce the limiting process as an additional argument a (for
instance taking the ordinal w to be the function whose value
for a and f as arguments 1s the functlon g such that gx
is the limit of the sequence x, fx, f(fx), ... , relative to
the limiting process a). This leads to the following defini-
tions in the calculus of restricted A-X-conversion, the subscript
o Dbeing used to distingulsh these notations from similar nota-
tions used 1n other connections:

0, — AalAblAcc)),

16 — Aabc.bc,

2, — Aabe.b(bc), and so on.
So — Adabce,b(dabc) .

Lo — Arabc.a(Ad.rdabc).

wy —> Aabc.a(Ad.dabce).

We prescribe that 00 shall represent the ordinal 0; if «
represents the ordinal n, the principal normal form of SON
shall represent the ordinal n+1; 1f R represents the mono-
tone increasing infinite sequence of ordinals, Mgs M5 Ny eeey
in the sense that ROO, Rlo, R2°, ... are convertible into for-
mulas representing Nor Ny Moy eees respectively, then the
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principal normal form of LOR shall represent the upper limit
of this infinite sequence of ordinals. The transfinite ordinals
which are represented by formulas then turn out to constitute

e certaln segment of the second number class, which may be de-
scribed as consisting of those ordinals which can be effectively
built up to from below (in a sense which we do not make explicit
here).

The formula representing a given ordinal of the second num-
ber class is not unique: for example, the ordinal w is repre-
sented not only by Wy but also by the principal normal form of
LOSO, and by meny other formulas. Hence the formulas represent-
ing ordinals are not to be taken as denoting ordinals but rather
as denoting certain things which are in many-one correspondence
with ordinals.

A function F of ordinal numbers 1is said to be A-KX-defined
by a formula F if (1) whenever Fm = n and M represents m,
the formula FAf 1s convertible into a formula representing n,
and (2) whenever an ordinal m 1s not in the range of F and
M represents m, the formula FAM has no normal form.

The foregoing account presupposes the classical second num-
ber class. DBy suitable modifications (cf. Church [13]), this
presupposition may be eliminated, with the result that the cal-
culus of restricted A-K-conversion 1s used to obtain a defini-
tion of a (non-classical) constructive second number class, in
which each classical ordinal 1s represented, if at all, by an
infinity of elements.

20. THE CALCULUS OF A-§-CONVERSION. The calculus of A-¢-
conversion is obtained by meking the following changes in the
construction of the calculus of A-conversion which appears in
§§5, 6: adding to the list of primitive symbols a symbol &,
which 1s neither an improper symbol nor a variable, but is classed
with the variables as a proper symbol; adding to the rule 1 in
the definition of well-formed formula that the symbol 6 is a
well-formed formula; and adding to the rules of conversion in
§6 four additional rules, as follows:

IV. To replace any part ¢MA of a formula by 1, provided
that M and N are in dé-normal form and contain no
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free variables and M 1s not convertible-I into A..

V. To replace any part 1 of & formula by &AM, provided
that M and A are in d&-normal form and contain no
free variables and M 1s not convertible-I into A.

VI. To replace any part &MY of a formula by 2, provided
that M 18 in 46-normal form and contains no free va-
riables.

VII. To replace any part 2 of a formula by 6MM, provided
that M 13 in é-normal form and contains no free va-
riables.

Here a formula 1is said to be in dé-normal form if 1t con-
tains no part of the form (AxP)Q and contains no part of the
form SRS with R and § containing no free variables., It isa
necessary to observe that both the condition of being in &-nor-
mal form and the condition that A 1s not convertible-I into
N eare effective.

A conversion (or & A-é-conversion) is a finite sequence of
applications of Rules I-VII. A A-é-conversion 1is called a re-
duction (or & A-é-reduction) if it contains no application of
Rules III, V, VII and exactly one application of one of the Rules
II, IV, VI. A4 1s 88id to be immediately reducidble to g 1if
there 18 & reduction of A4 into &8, and 4 1s said to be re-
ducible to & 1if there 1s a conversion of 4 1into £ which
consists of one or more successive reductions.

All the theorems of §7 hold also in the calculus of A-6-
conversion, 1f some appropriate modifications are made (see Church
and Rosser [16]). The residuals of (Ax ) after an appli-
cation of Rule I or II are defined in the same way as before, and
after an application of IV or VI they are defined as what (

)N becomes (this is always something of the form (A )HI')).
The residuals of %ﬁp after an application of I, II, IV, or
VI are defined only in the case that Mp and A, are in 6-
normal form and contain no free variables. In that case the re-
siduals of &MN are whatever pert or parts of the entire re-
sulting formila 672/ A Dbecomes, except that after an application
of IV or VI in which 6Npﬂp itself is contracted (1.e., replaced

by 1 or 2), dﬂpﬁp has no residual. Thus residuals of Gﬂpﬁp
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are always of the form SMAN, where M and AN are in 6é-nor-
mal form and contain no free varlables. A sequence of contrac-
tions on a set of parts (ijﬁj)ﬂj and &§R;S; of 4,, where
Ry and S1 are in dé-normal form and contain no free variables,
i1s defined by anslogy with the definition in §7. Similarly a
terminating sequence of such contractions. In 7 XXV, the set of
parts of 4 on which a sequence of contractions is taken is al-
lowed to include not only parts of the form (Ax‘ﬁ.)ﬁj, but al-
so parts of the form dkisi in which Ri and Si are in ¢-
normal form and contain no free variables. The modified 7 XXV
may then be proved by an obvious extension of the proof given
in §7, and thereupon 7 XXVI - 7 XXII follow as before. In 7
XXVI - 7 XXXII “conv-I-II" must be replaced throughout by "conv-
I-II-IV-VI" and in 7 XXVI the case must also be considered that
A imr B by a contraction of the part &6M¥ of 4. For 7 XXX,
there must be supplied a definition of principal &-normal form
of a formula, analogous to the definition in §6 of the princi-
pal (A-)normal form.

In connection with the calculus of A-é-conversion we shall
use both of the terms A-conversion and A-é-conversion, the for-
mer meaning a finite sequence of applications of Rules I-III,
the latter a finite sequence of applications of Rules I-VII. The
term conversion will be used to mean a A-é§-conversion, as al-
ready explained.

Similarly we shall use both of the terms A-normal form of
a formula and JS-normal form of a formula. A formula will be
called & A-normal form of another if it is in A-normsl form
and can be obtained from the other by A-conversion. A formula
will be called & d&-normal form ‘of another i1f it is In é-normal
form and can be obtained from the other by A-é-conversion. By
7 XXIX applied to the calculus of A-conversion, the A-normal
form of a formula (in the calculus of A-§-conversion), if it
exists, 1s unique to within applications of Rule I. By the ana-
logue of 7 XXIX for the calculus of A-&-conversion, the &-nor-
mal form of a formula, if it exists, is unique to within appli-
cations of Rule I.

In order to see that the calculus of A-6-conversion requires
an intensional interpretation (cf. §2), it 1s sufficient to ob-
serve that, for example, although 1 .and Aab.Sablab correspond
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to the same function in extension, they are nevertheless not in-
terchangeable, since 611 conv 2 but d¢1(Aab.sablab) conv 1.
A constancy function x may be defined:

x — Aab.sbdla,

Then xAF conv A, if B8 has a2 d¢é-normal form and contains no
free varisbles, and in that case only (the conversion properties
of x are thus weaker than those of the formula X 1in either
of the calcull of A-X-conversion).

The entire theory of A-definability of functions of posi-
tive integers carries over into the calculus of A-é-conversion,
since the calculus of A-conversion is contained in that of A-
é-conversion as a part. It only requires proof that the notion
of A-6-definebility of functions of positive integers 'is not
more general than that of A-definability, and this can be sup-
plied by known methods (e.g., those of Kleene [37]).

The theory of combinations carries over into the calculus
of A-§-conversion, provided that we redefine a combination to

mean an [I, J, §}-combination. In defining the combination be-
longing to a formula, it 1s necessary to add the provision that

the combination belonging to & 1s 6.

If A 1is e well-formed formula of the calculus of A-§-
conversion and contains no free variables, a formula 8, can
be found such that 8J conv 4, and 87 conv [ For let A
be the combination belonging to 4,, unless that combination
falls to contain an occurrence of either J or 6, 1in which
case let A be JIIIl. let A;’ be obtained from 41' be re-
placing J and &6 throughout by ; and 67Ij(Ax.x(Ay.ylIl))
(Az.2I)6 respectively. Then 8, hay be taken as AjAT .

Hence 14 I, and the remaining theorems of §1L, may be proved
for the calculus of A-6-conversion in the same way as for the
calculus of A-conversion.

In order to obtain a combinatory equivalent of A-§-conver-
sion, analogous to the combinatory equivalent of A-conversion
given in §15, 1t 1s necessary to add to OI-OXXXVIII the follow-
ing four additional operations -- where F, 4, B, € are combi-
nations, and A and B8 belong to formulas in é-normal form,
contain no frees variables, and are not the same, and € belongs
to the formula which represents the G38del number of 4:
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OXXXIX. F(sAB) | F(pI).
OXL. FAB(3I) | FAB(6AB).
oxLI. F(644)  F(wB).

OXLII. FCwR) | FC(SAA).

The reader should verify that the conditions on 4, 8 € -- al-
though complex in character -- are effective (§6).

In order to see that these four operations are equivalent,
in the presence of 0I - OXXXVIII, to the rules of conversion IV
- VII, 1t 1s necessary to observe that @/ and wf® are A-con-
vertible into 1 and 2 respectively.

To show that OXLII provides an equivalent to Rule VII, we
must show that it enables us to change €(wR) into €(s44).
Since 0I - OXXXVIII are equivalent to A-conversion, this can be
done as.follows: €(wf3) 1is A-convertible into <y(r7)6C(wf),
and this becomes, by OXLII, <¥t7)cc(s44), and this in turn is
Aconvertible into €(544).

Similarly, to show that OXL provides an equivalent of Rule
V, we must show that it enables us to change ¢€(3s) into €(5A48).
This can be done as follows: 6(f3I) 1s A-convertible into
Yy I)e)(AI)(wR); and this can be changed by the method of the
preceding paragraph into ~(y(*I)C)(RI)(688); and this is A-
convertible into y(y(tI)(y(y(xI)}€)(RI)))(&BB)(wR); and this can
be changed by the method of the preceding paragraph into +y(y(<I)
(v(y(x7)E)(RI)))(688)(S44); and this 1s A-convertible into
YRRV Y(BER) (wé) ) I (v(¥(T7)€)))) ) (wé) )AB(RI); and this be-
comes, by OXL, Y(R(v(BY(v(v(B(BR)(wS))I)(v(v(x1)6))))) (ws))AE
(648); and this is A-convertible into Y(y(TI)(¥(y(TI)C)(648)))
(688)(644); and thls becomes, by OXLI, (y(vI)(v(v(x1)6)(548)))
(688)(wfR3); and this is A-cénvertible into Y Y(TI)€)(SAB)(588);
and this becomes, by OXLI, y{(v(t7)€)(54B)(wR); and this, fi-
nally, is A-donvertible into €(548).

Only minor modifications are necessary in §16 in order to
carry over its results to the calculus of A-é-conversion. Ih
the definition of the G8del number of a combination the clause
must be added: (2a) The G3del number of 6 1s 5. In the con-
struction of the formula, form, it is only necessary to impose
on T the further condition that B 5 conv Ax.x126, 8o insuring
that form 5 conv 6. The construction of o remsins unchanged.
The formulas occ, ¢, ¢, r, A, prim, norm, and O1 - 038 may then
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be obtained, having the properties described in §16 (norm A-de-
fines the property of a combinatlon of belonging to a formula
which is in A-normal form). The formulas cb, ncb, 0, cnvt, nf
(the A-normal form of), and v may then also be obtained as be-
fore. The formula, cb, represents an enumeration of the least
set of formulas which contains 1, 3, and 5 and i1s closed under
the operation of forming (Aadb . 2 » nr ab)X¥ frcm the formulas
X, v

Besides norm it is also possible to obtain a formula, dnorm,
which A-defines the property of a comblnation of belonging to a
formula in é-normal form. Detalls of this are left to the read-
er.

Formulas 059- 0,‘2 may be obtained, related to the operations
OXXXIX - OXLII in the same way that 0, - 038 are related to 0I -
OXXXVIII. We give details in the case of 0y and Ouo- let 7&0
be a formula such that 3,‘01 conv I and Thoz conv Ax . 2 =

nr x1[2-nr[2-n.r 5x”2]x12]; then let
Oho — AX . !Fho[pa.r X 4+ par x, + par x,, + prim X110
+ dnorm X0+ prim Xip + dnorm X5
+ eq Mx, = €q X%, = T31x,

n being the formula representing the G8del number of RI. Let
5&2 be a formula such that 3,1 conv/ and 7J,,2 conv Ax . 2
= nr x1[2 *» nr [2 = nr 5(form xie)l(fom x12)]; then let

Oyp = Ax . !FhQ[par X + par x, + h(vx12)x12 + eq Qx, = 6lx,

where (¢ 1s the formula representing the G8del number of wf3,
and h 1s such a formula that n1 conv Ax.x1 and h2 conv
Ax.min (prim (form x))(dnorm (form x)).

Then a formula, do, may be obtained, analogous to O but
involving all of 0, - ohe instead of only 0, - 038' Let

denvt — Aadb . do ba.

Then, i1f € represents the G8del number of a combination A,
the formula, dcnvt 6, enumerates the G8del numbers of combina-
tions obtaingble from M by A-§-conversion (whereas cnvt €
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enumerates merely the G8del numbers of combinations obtainable
from M by A-conversion).

It 1s also possible, by using the formula, dnorm, to obtain
a formula, dnf, which A-defines the operation é-normal form of
a formula, and a formula, dncb, which enumerates the G&8del num-
bers of combinations which belong to formulas in é-normal form
and contain no free variables. The definitions parallel those
of nf and ncb.

Finally, in the calculus of A-é-conversion, a formula, met,
may be obtained which provides a kind of inverse of the function,
form: i1f M 1s a formula which contains no free variables and
has a é-normal form, then met M 1s convertible into the for-
mula representing the G38del number belonging to the &é-normal
form of M. The definition i1s as follows:

met — Ax . dncb (p(An . &§(form (dncb n))x)1).

21. A SYSTEM OF SYMBOLIC LOGIC. If we identify the truth
values, truth and falsehood, with the positive integers 2 and 1
respectively, we may base a system of symbolic logic on the cal-
culus of A-§-conversion. This system has one primitive formula
or axiom, namely the formula 2, and seven rules of inference,
namely the rules I - VII of A-§-conversion; the provable for-
mulas, or theses, of the system are the formulas which can be
derived from the formula 2 by sequences of applications of the
rules of inference. (As a matter of fact, the rules of inference
II, IV, VI are superfluous, in the sense that their omission
would not decrease the class of provable formulas, as follows
from 7 XXVII, or rather from the analogue of this theorem for
the calculus of A-é-conversion.)

The 1dentification of the truth values, truth and falsehood,
with the positive integers 2 and 1 1s, of course, artificilel,
but apparently it gives rise to no actual formal difficulty. If
i1t be thought objectionable, the artificiality maey be avoided by
a minor modification in the system, which consists in Introduc-
ing a symbol F and writing k2, instead of 2, as the primitive
formula; all the theses of the system will then be preceded by
the sign |, which may be interpreted as asserting that that
which follows 1s equal to 2.
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In this system of symbolic logic the fundamental operztions
of the propositional calculus ~- negation, conjunction, disjunc-
tion -- may be introduced by the following definitions:

[~A4] — m(Aa.al(624))(Aaal(614)).
[A28) — 4 = |, [~4] + [~ 8.
AvE] —s ~ . [~4] & [~8].

It follows from these definitions that AvB cannot be a
thesis unless either 4 or & 1s a thesis -- and this situa-
tion appaﬁently cannot be altered by any suitable change in the:
definitions. Since this property is known to fall for classical
systems of logic, e.g., that of Whitehead and Russell's Princip-
ia Mathematica, it i1s clear that the present system therefore
differs from the classical systems in a direction which may be
regarded as finitistic in character.

Functions of positive integers are of course represented in
the system by the formulas A-defining these functions, and prop-
erties of and relations between positive integers are represent-
ed by the formulas A-defining the corresponding characteristic
functions. The propositional function to be a positive integer
1s represented in the system as a formula &N, defined as fol-
lows (referring to §§16, 20):

N — Ax.v(met x).

The general relation of equality or identity (in intension) 1is
represented by 6.

An existential quantifier I may be introduced:
\ — Af . form (2'(A(dcenvt a(p(An . 6f
(form (Z(A(denvt an)))))1)))),

where o 1s the formula representing the G&8del number belonging
to the formula 2;

I — ALF(S).
Here 1 represents a general selection operator. Given a for-
mula F; if there is any formula A4 such that F4 conv 2, then
tF 1s one of the formulas 4 having this property; and in the
contrary case F has no normal form. Consequently I repre-
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sents an existential quantifier without a negation: IF conv 2
if there 1s a formula 4 such that F4 conv 2, and in the con-
trary case IF has no normal form.

The operator t« should be compared with Hilbert's opera-
tor € [31 and elsewhere], or, perhaps better, the n-operator
of Hilbert and Bernays [33]. The « should be used with the
caution that the equivalence of propositional functions repre-
sented in the system by F and 6 need not imply the equality
of (F and €.

The interpretation of 1+ as a selection operator and of
I as an existential quantifier depends on an identification of
formal provabllity in the system with truth. But this 1s justi-
fied by a completeness property which the system possesses: a
formula which is not provable, unless it is convertible into a
principal normal form other than 2 and hence is disprovable,
must have no normal form, and hence be meaningless.

For conyenience in the further development of the system,
or for the sake of comparison with more usual notations, we may
introduce the abbreviations:-

DhxM] — (AxM).
[3Ixr] — I(AxM).

The problem of introducing universal quantifiers into the
system, or, equivalently, of introducing existential quantifiers
having a negation, 1s beyond the scope of the present treatise.
It follows by the methods of G8del [27] that any universal quan-
tifier introduced by definition will have a certain character of
Incompleteness; this 1is in effect the same incompleteness proper-
ty which, in accordance with the results of G8del, almost any
consistent and satisfactorily adequate system of formal logic
must have, except that it here appears transferred from the realm
of provability to the realm of meaning of the quantifiers.

The consistency of the system of symbolic logic just out-
lined is a corollary of 7 XXX, or rather of the analogue of this
theorem for the calculus of A-§-conversion. This consistency
proof is of & strictly constructive or finitary nature.

(The failure in this system of the known paradoxes of set
theory depends, in some of the simpler cases, merely on the fact
that the formula which would otherwise lead to the paradox fails
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to have a normal form. Thus, in the case of Russell's paradox,
we f£ind that (Ax.~(xx))(Ax.~(xx)) has no normal form; and in
the case of Grelling's paradox concerning heterological words,
or, as we shall put it, concerning heterological G&8del numbers,
we £ind that (Ax.~(form xx))(met (Ax.~(form xx))) has no nor-
mal form. In more complicated cases, where the expression of
the paradox requires a universal quantifier, the fallure may de-
pend on the above indicated incompleteness property of the quan-
tifier.)



INDEX OF THE PRINCIPAL FORMULAS INTRODUCED BY DEFINITION

§5.

58’

§9.

§10.

§12.

§13.

§15.

§16.

§17.

§19.

§20.

§21.

I, wem, wem, mh.
1’ 2: 3’ ey S, W‘*”]: W-ﬁ], W”].

M, M, (L, M A, 2 22: I 32: 3, P, MmN,
min, max, par, 4 2, 2', nr.

exc, eq, p, @, w.
I, J, T

B, G W I, D
Y, B, w.

form, o, occ, ¢, &, r, A, prim, norm, 01 - 033: cb,
ncb, 0, cnvt, nf, wv.

X, 0.
02 1o7 292 o S5 Lys Wy

x, form, o, occ, ¢, € r, A, prim, norm, o, - 038’
¢b, nedb, O, cnvt, nf, v, dnorm, 039 - oha’ do, denvt,
dnf', dncb, met.

[~‘]’ [A&ﬂ, [AVB]’ N, 1, I, [le], [me-

T2



10.

1.

12.

BIBLIOGRAPHY

Wilhelm Ackermann, Zum Hilbertschen Aufbau der reellen
Zahlen, Mathematische Annalen, vol. 99 (1928), pp. 118 -
133,

Paul Bernays, Sur le platonisme dans les mathématiques,
1'Enseignement mathématique, vol. 34 (1935), pp. 52 - 69.

Paul Bernays, Quelques points essentiels de la métamathé-
matique, 1ibid., pp. 70 - 95.

Paul Bernays, Review of Church and Rosser (16], The jour-
nal of symbolic logic, vol. 1 (1936), pp. T4 - 75.

Alonzo Church, A set of postulates for the foundation of
logic, Annals of mathematics, ser. 2, vol. 33 (1932), pp.
346 - 366,

Alonzo Church, A set of postulates for the foundation of
logic (second paper), ibid., ser. 2, vol. 34 (1933), pp.
839 - 86.4.

Alonzo Church, The Richard paradox, the American mathe-
maticel monthly, vol. 41 (193L4), pp. 356 - 361.

Alonzo Church, A proof of freedom from contradiction,
Proceedings of the National Academy of Sciences of the
United States of America, vol. 21 (1935), pp. 275 - 281.

Alonzo Church, An unsolvable problem of elementary num-
ber theory, American journal of mathematics, vol. 58,

(1936), pp. 345 - 363.

Alonzo Church, Methematical logic, mimeographed lecture
notes, Princeton University, 1936.

Alonzo Church, A note on the Entscheidungsproblem, The
Journal of symbolic logic, vol. 1 (1936), pp. Lo - L1,

Alonzo Church, Correction to A note on the Entscheidungs
problem, ibid., pp. 101 - 102.

3



Th

BIBLIOGRAFHY

13.

14,

16.

17.

18.

19.

20.

21,

22.

23.

2k,

25.

Alonzo Church, The constructive second number class, Bul-
letin of the American Mathematical Society, vol. 4L (1938),
pp. 224 - 232.

Alonzo Church, On the concept of a random segquence, 1ibid.,
vol. 46 (1940), pp. 130 - 135.

Alonzo Church and S. C. Kleene, Formal definitions in the
theory of ordinal numbers, Fundamente mathematicae, vol.
28 (1937), pp. 11 - 21,

Alonzo Church and J. B. Rosser, Some properties of conver-
sion, Transactions of the American Mathematical Soclety,
vol. 39 (1936), pp. 472 - 482,

H. B. Curry, An analysis of logical substitutlon, American
journal of mathematics, vol. 51 (1929), pp. 363 - 38k.

H. B. Curry, Grundlagen der kombinatorischen lLogik, 1ibid.,
vol. 52 (1930), pp. 509 - 536, 789 - 834,

H. B. Curry, The universal quantifier in combinatory logie,
Ammals of mathematics, ser. 2, vol. 32 (1931), pp. 154 -
180.

H. B. Curry, Some additions to the theory of combinators,
American journal of mathematics, vol. 54 (1932), pp. 551 -
558.

H. B. Curry, Apparent varlables from the standpoint of

combinatory logic, Annals of mathematics, ser. 2, vol. 34
(1933), pp. 381 - Lok.

H. B. Curry, Some properties of equality and implication

in combinatory logic, ibid., ser. 2, vol. 35 (1934), pp.
849 - 860.

H. B. Curry, Functionality in combinatory logic, Proceed-
ings of the National Academy of Sclences of the United
States of America, vol. 20 (1934), pp. 584 - 590.

H. B. Curry, First properties of functionslity in combina-
tory logic, The Tdhoku mathematical journal, vol. 41
(1936), pp. 371 - Lol,

H. B. Curry, Review of Church [10], The journal of symbol-
ic loglc, vol. 2 (1937), pp. 39 - kLo.



BIBLIOGRAPHY 73

26.

27.

28.

29.

30.

31.

32.

33.

34,

35.

36.

37

38.

39.

Frederic B. Fitch, A system of formal logic without an ana-
logue to the Curry W operator, The journal of symbolic log-
ic, vol. 1 (1936), pp. 92 - 100.

Kurt G&del, ﬁber formal unentscheidbare SAtze der Principia

Mathemstica und verwandter Systeme I, Monatshefte ffir Mathe-
matik und Physik, vol. 38 (1931), pp. 173 - 198,

Kurt G8del, On undecidsble propositions of formal methemet-

ical systems, mimeographed lecture notes, The Institute for
Advanced Study, 1934.

Kurt G8del, Uber die L2nge von Beweisen, Ergebnisse eines
mathematischen Kolloquiums, no. 7 (1936), pp. 23 - 2.

Jaques Herbrand, Sur la non-contradiction de 1'arithmé-
tique, Journzl fur die reine und angewandte Mathematik,
vol. 166 (1931), pp. 1 - 8.

David Hilbert, f]ber das Unendliche, Mathematische Annzalen,
vol. 95 (1926), pp. 161 - 190.

Devid Hilbert and Paul Bernays, Grundlagen der Mathematik,
vol. 1, Julius Springer, Berlin, 1934.

Devid Hilbert and Paul Bernays, Grundlagen der Mathematil,
vol. 2, Julius Springer, Berlin, 1939.

S. C. Kleene, Proof by cases in formal logic, Annals of
mathematics, ser. 2, vol. 35 (1934), pp. 529 - Ski,

8. C. Kleene, A theory of positive integers in formal logic,
American journal of mathematics, vol. 57 (1935), pp. 153 -

173, 219 - 24k,

S. C. Kleene, General recursive functions of natural num-
bers, Mathematische Annalen, vol. 112 (1936), pp. 727 - 742;
see [45), and [39] footnote k.

S. C. Kleene, A-definability and recursiveness, Duke math-
ematical journal, vol. 2 (1936), pp. 340 - 353.

S. C. Kleene, A note on recursive functions, Bulletin of
the American Mathematical Socliety, vol. k2 (1936), pp. 54k
- 546.

S. C. Kleens, On notation for ordinsl numbers, The journal
of symbolic logic, vol. 3 (1938), pp. 150 - 155.




76

BIBLIOGRAPHY

Lo.

L3RR

ke.

L3,

bL,

us.

46.

u-’o

48.

k.

50.

51.

8. C. Kleene and J. B. Rosser, The inconsistency of certain
formal logics, Annals of mathematics, ser. 2, vol. 36 (1935)
pp. 630 - 636.

R6zsa PéEter, ﬁber den Zusammenhang der verschiedenen Begrif-
fe der rekursiven Funktion, Mathematische Annalen, vol. 110

(1934), pp. 612 - 632,
R6zsa Péter, Konstruktion nichtrekursiver Funktionen, 1ibid.,
vol. 111 (1935), pp. 42 - 60.

R6zsa Péter, A rekurz{v ffiggvények elméletéhez (Zur Theorile
der rekursiven Funktionen), Matematikal 8s fizikail lapok,

vol. 42 (1935), pp. 25 - 49,

R6zsa Péter, ﬁ'ber dle mehrfache Rekursion, Mathematische
Annalen, vol. 113 (1936), pp. 489 - 527.

R6zsa Péter, Review of Kleene [36), The journel of symbolic
logic, vol. 2 (1937), p. 38; see Errata, ibid., vol. &,
(1939), p. iv.

Emil L. Post, Finite combinatory processes - formulation 1,
ibid., vol. 1 (1936), pp. 103 - 105.

J. B. Rosser, A mathematical logic without variasbles, Annals
of mathematics, ser. 2, vol. 36 (1935), pp. 127 - 150, and
Duke mathematical journal, vol. 1 (1935), pp. 328 - 355.

J. B. Rosser, Extensions of some theorems of G8del and
Church, The journmal of symbolic logic, vol. 1 (1936), pp.
87 - 91,

Moses Schdnfinkel, ﬁber die Bausteine der mathematischen
logik, Mathematische Annalen, vol. 92 (1924), pp. 305 - 316.

Thoralf Skolem, Begrfindung der elementaren Arithmetik durch
die rekurrierende Denkweise ohne Anwendung scheinbarer Ver-
&nderlichen mit unendlichem Ausdehnungsbereich, Skrifter ut-
git av Videnskapsselskapet i1 Kristiania, I. Matematisk-na-
turvidenskebelig klasse 1923, no. 6.

Thoralf Skolem, ﬁber dle Zurfickfthrbarkeit einiger durch Re-
kursionen definierter Relationen auf "arithmetische", Acta
scientiarun mathematicarum, vol. 8 (1937) pp. 73 - 88.




BIBLIOGRAPHY 17

52.

53.

Sk

55.

56.

57.

58.

59.

60.

61,

62.

63.

G. Sudan, Sur le nombre transfini w%, Bulletin mathéma-
tique de la Société Roumaine des Sciences, vol. 30 (1927)
pp. 11 - 30.

Alfred Tarski, Pojecle prawdy w jezykach nauk dedukcyjnych,

Travaux de la Soclété des Sclences et des Lettres de Var-
sovie, Classe III, Sclences mathématiques et physiques, no.
34, Warsaw 1933.

Alfred Tarskl, Der Wahrheitsbegriff in den formalisierten

- Sprachen, German translation of [53] with added Nachwort,

Studia philosophica, vol. 1 (1935), pp. 261 - 405,

A. M. Turing, On computable numbers, with an application to
the Entscheidungsproblem, Proceedings of the London Mathe-
matical Sogiety, ser. 2, vol. 42 (1936), pp. 230-- 265

A. M. Turing, On computable numbers, with an application to
the Entscheidungsproblem, A correction, ibid., ser. 2, vol.
43 (1937), pp. 5S4k - 546.

A. M. Turing, Computability and A-definability, The jour-
nal of symbolic logiec, vol. 2 (1937), pp. 153 - 163.

A. M. Turing, The p-function in * A-X-conversion, 1ibid.,
p. 16k.

A. M. Turing, Systems of logic based on ordinals, Proceed-
ings of the London Mathematical Soclety, ser. 2, vol. 45
(1939), pp. 161 - 228,

Addenda

Alonzo Church, A formulation of the simple theory of types,
The journal of symbolic loglc, vol. 5 (1940), pp. 56 - 68.

H. B. Curry, A formslization of recursive arithmetic,
American journal of mathematics, vol. 63 (1941), pp.263-282.

H. B. Curry, A revision of the fundamental rules of combina-
tory logic, The journal of symbolic logic, vol. 6 (1941),
pp. 41 - 53.

H. B. Curry, Consistency and completeness of the theory of
combinators, ibid., pp. 5u4-61.




78

BIBLIOGRAPHY

64.

65.

66.

67.

68.

69.

T0.

T1.

T2.

3.

Th.

75 -

76.

Further addenda (1951)

Alonzo Church, Review of Post [101], The journal of
symbolic logic, vol. 8 (19%3), pp. 50-52; see erratum,
ibid., p. iv. See note thereon by Post, Bulletin of the
American Mathematical Society, vol. 52 (1946), p. 26k4.

Paul Csillag, Eine Bemerkung zur Aufl8sung der ein-
geschachtelten Rekursion, Acta scientiarum mathematicarum,
vol. 11 (1947), pp. 169-173.

H. B. Curry, The paradox of Kleene and Rosser, Transactions
of the American Mathematical Society, vol. 50 (1941),

pp. 454-516.

H. B. Curry, The combinatory foundations of mathematical
logic, The journal of symbolic logic, vol. 7 (1942),
pPp. 49-64; see erratum, ibid., vol. 8, p. iv.

H. B. Curry, The inconsistency of certain formal logics,
ibid., vol. 7 (1942), pp. 115-117; see erratum, ibid., p. iv.

H. B. Curry, Some advances in the combinatory theory of
guantification, Proceedings of the National Academy of
Sciences of the United States of America, vol. 28 (1942),
pp. 564-569.

H. B. Curry, A simplification of the theory of combinators,
Synthese, vol. 7 no. 6A (1949), pp. 391-399.

Martin Davis, On the theory of recursive unsolvability,
dissertation, Princeton 1950.

Robert Feys, La technique de la logique combinatoire, Revue
philosophique de Louvain, vol. 44 (1946), pp. T4-103,
237-270.

Frederic B. Fitch, A basic logic, The journal of symbolic
logic, vol. 7 (19%2), pp. 105-11k4; see erratum, ibid., p. iv.

Frederic B. Fitch, Representations of calculi, ibid.,
vol. 9 (1944), pp. 57-62; see errata, ibid., p. iv.

Frederic B. Fitch, A minimum calculus for logit, ibid.,
pp- 89-94; see erratum, ibid., vol. 10, p. 1iv.

Frederic B. Fitch, An extension of basic logic, ibid.,
vol. 13 (1948), pp. 95-106.




BIBLIOGRAPHY 79

7.

78.

79.

80.

81.

82.

83.

8k.

85.

86.

87.

88.

89.

90.

Frederic B. Fitch, The Heine-Borel theorem in extended basic
logic, ibid., vol. 1% (1949), pp. 9-15.

Frederic B. Fitch, On natural numbers, integers, and
rationals, ibid., pp. 81-84.

Frederic B. Fitch, A further consistent extension ~f basic
logic, ibid., pp- 209-218.

Freceric B. Fitch, A demonstrably consistent mathematics
Part I, ibid., vol. 15 (1950), pp. 17-2k.

Hans Hermes, Definite Begriffe und berechenbare Zahlen,
Semester-Berichte (Mlinster i. W.), summer 1937, pp. 110-123.

S. C. Kleene, Recursive predicates and quantifiers, Trans-
actions of the American Mathematical Society, vol. 53 (1943),
pp- 41-73.

S. C. Kleene, On the forms of the predicates in the theory
of constructive ordinals, American journal of mathematics,
vol. 66 (1944), pp. L1-58.

S. C. Kleene, On the interpretation of intuitionistic number
theory, The journal of symbolic logic, vol. 10 (1945),
pp. 109-124.

S. C. Kleene, On the intuitionistic logic, Proceedings of
the Tenth International Congress of Philosophy, North-
Holland Publishing Company, Amsterdam 1949, pp. T41-T43.

A. Markoff, On the impossibility of certain algorithms in
the theory of associative systems, Comptes rencus (Doklady)
de 1'Académie des Sciences de 1'URSS, n.s. vol. 55 no. 7
(1947), pp. 583-586.

A. Markoff, Névozmoznost' nékotoryh algorifmov v téorii
associativnyh sistém, Doklacdy Akadémii Nauk SSSR, vol. 55
(1947), pp- 587-590, vol. 58 (1947), pp. 353-356, and
vol. 77 (1951), pp. 19-20.

A. Markoff, O nékotoryh nérazrédSimyh problémah kase3&ihsd
matric, ibid., vol. 57 (1947), pp. 539-5k2.

A. Markoff, O prédstaviénii rékursivnyh funkcij, ibid.,
vol. 58 (1947), pp. 1891-1892.

Andrzej Mostowski, On definable sets of positive integers,
Fundamenta mathematicae, vol. 34 (1946), pp. 81-112.




80

BIBLIOGRAPHY

91.

92.

93.

9k

95.

96.

97.

98.

99.

100.

101.

102.

103.

Anérzej Mostowski, On a set of integers not cefinable by

means of one-quantifier predicates, Annales de la Société
Polonaise de Mathématique, vol. 21 (1948), pp. 114-119.

Andrzej Mostowski, Sur '1nterprétation géométrigue et
topologique cées noticns logiques, Proceedings of the Tenth
International Congress of Philosophy, North-Holland
Publishing Company, Amsterdam 1949, pp. T67-769.

John R. Myhill, Note on an idea of Fitch, The journal of
symbolic logic, vol. 14 (1949), pp. 175-176.

David Nelson, Recursive functions and intuitionistic number
theory, Transactions of the American Mathematical Soclety,
vol. 61 (1947), pp. 307-368; see errata, ibid., p. 556.

David Nelson, Constructible falsity, The journal of symbolilc
logic, vol. 1% (1949), pp. 16-26.

M. H. A. Newman, On_ theories with a combinatorial definition
of "eguivalence," Annals of mathematics, ser. 2, vol. 43
(1942), pp. 223-243.

M. H. A. Newman, Stratified systems of logic, Proceedings of
the Cambridge Philosophical Society, vol. 39 (1943),

pp. 69-83.

Rbzsa Péter, Zusammenhang der mehrfachen und transfiniten
Rekursionen, The journal of symbolic logic, vol. 15 (1950),
pp. 2u48-272.

Rézsa Péter, Zum Begriff der rekursiven reellen Zahl, Acta
scientiarum mathematicarum, vol. 12 part A (1950),

pp. 239-245.
Rbzsa Péter, Rekursive Funktionen, Akademischer Verlag,
Budapest, 1951.

Emil L. Post, Formal reductions of the general combinatorial
decision problem, American journal of mathematics, vol. 65
(1943), pp. 197-215.

Emil L. Post, Recursively enumerable sets of positive
integers and their decision problems, Bulletin of the
American Mathematical Soclety, vol. 50 (1944), pp. 284-316.

Emil L. Post, Recursive unsolvability of a problem of Thue,
The journal of symbolic logic, vol. 11 (1946), pp. 1-11.




BIBLIOGRAPHY 81

10k.

105.

106.

107.

108.

109.

111.

113.

1ML,

115.

116.

MT.

Emil L. Post, Note on a conjecture of Skclem, ibid.,

pp. T3-Th.

Julia Robinson, Definability and decision problems in
arithmetic, The journal of symbolic logic, vol. 14 (1949),
pp- 98-11k.

Julia Robinson, General recursive functions, Proceedings
of the American Mathematical Scclety, vol. 1 (1950),
pp- T703-718.

Raphael M. Robinson, Primitive recursive functions,
Bulletin of the American Mathematical Soclety, vol. 53
(19%7), pp. 925-9%2.

Raphael M. Robinson, Recursion and double recursion, ibid.,
vol. 54 (1948), pp. 987-993.

J. B. Rosser, Review of this monograph, The journal of
symbolic logic, vol. 6 (1941), p. 171.

J. B. Rosser, New sets of postulates for combinatory
logics, ibid., vol. 7 (1942), pp. 18-27; see errata,
ivid., vol. 7, p. iv, and vol. 8, p. iv.

Thoralf Skolem, Einfacher Bewels der UnmBglichkeilt eines
allgemeinen Lbsungsverfahrens flir arithmetische Probleme,
Det Kongelige Norske Videnskabers Selskab, Forhandlinger,
vol. 13 (1940), pp. 1-4.

Thoralf Skolem, Remarks on recursive functions and rela-
tions, ibid., vol. 17 (1944), pp. 89-92.

Thoralf Skolem, Some remarks on recursive arithmetic,
ibid., pp.- 103-106.

Thoralf Skolem, A note on recursive arithmetic, ibid.,
pp. 107-109.

Thoralf Skolem, Some remarks on the comparison between
recursive functions, ibid., pp. 126-129.

Thoralf Skolem, Den rekursive aritmetikk, Norsk matematisk
tidsskrift, vol. 28 (1946), pp. 1-12.

Thoralf Skolem, The development of recursive arithmetic,
Den 10. Skandinaviske Matematiker Kongres, Jul.

Gjellerups Forlag, Copenhagen 1947, pp. 1-16.



82 BIBLIOGRAPHY

118. Ernst Specker, Nicht konstruktiv beweisbare S&Ztze der
Analysis, The journal of symbolic logic, vol. 14 (1949),
pp. 145-158.

119. Alfred Tarski, Andrzej Mostowski and Alfred Tarski, Julila
Robinson, abstracts in The journal of symbolic logic,
vol. 1% (1949), pp. 75-T8.

CORRECTION AND ADDITIONS

Page 75, line 12. For "Jaques," read "Jacques."

On page 46 the amendment should also be taken into account
which 1s suggested by Rosser [109]. The following simpler ex-
pression for W 1s avallable:

Weconv B(T(B(BDB)T))(BBT).

Hence replace line 9 on page 46 by this.

In §15, pages 49-51, the combinatory equivalent of conver-
sion which 1s given can be simplified by the method of Rosser
[110], and in particular the proof of the equivalence to con-
version can be greatly shortened. Details of this, including
the proof of equivalence, may be obtained from Rosser's paper;
and the formula 0 of §16, and the formula do of §20, may then
be modified correspondingly.

For a combinatory equivalent of A -K -conversion, and also
of A -XK-conversion with the additlion of a rule by which B/ and
I are interchangeable, see [70] -- where Curry employs Rosser's
method in order to simplify his earlier treatments of the theory
of combinators (which are referred to at the end of §15).
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