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Introduction

Axel Thue published four papers directly relating to the theory of
words and languages:

• two on patterns in infinite strings in 1906 and 1912
1,2 1 Axel Thue. Über unendliche Zeichen-

reihen. Christiana Videnskabs-Selskabs
Skrifter, I. Math.-naturv. Klasse, 7, 1906

2 Axel Thue. Über die gegenseitige
Lage gleicher Teile gewisser Zeichen-
reihen. Christiana Videnskabs-Selskabs
Skrifter, I. Math.-naturv. Klasse, 1, 1912

• and two on the more general problem of transformations in 1910

and 1914
3,4

3 Axel Thue. Die Lösung eines Spezial-
falles eines generellen logischen
Problems. Christiana Videnskabs-Selskabs
Skrifter, I. Math.-naturv. Klasse, 8, 1910

4 Axel Thue. Probleme über Verän-
derungen von Zeichenreihen nach
gegebenen Regeln. Christiana
Videnskabs-Selskabs Skrifter, I. Math.-
naturv. Klasse, 10, 1914

Both the 1906 and 1912 papers have been translated and discussed
extensively by Jean Berstel [Berstel, 1995], and are known, among
other contributions, for their presentation of the Thue-Morse se-
quence. Thue’s 1910 paper deals with transformations between
trees, and is thus a more direct predecessor of his 1914 paper. It
been discussed by Steinby and Thomas [Steinby and Thomas, 2000].

These notes are intended to accompany a reading of Thue’s
1914 paper, which has not hitherto been discussed in detail. Thue’s
paper is mainly famous for proving an early example of an unde-
cidable problem, cited prominently by Post [Post, 1947]. However,
Post’s paper principally makes use of the definition of Thue sys-
tems, described on the first two pages of Thue’s paper, and does
not depend on the more specific results in the remainder of Thue’s
paper.

Thus, Thue’s paper has been “passed by reference” into the his-
tory of computing, based mainly on a small section of that work. A
closer study of the remaining parts of that paper highlight a num-
ber of important themes in the history of computing: the transition
from algebra to formal language theory, the analysis of the "compu-
tational power" (in a pre-1936 sense) of rules, and the development
of algorithms to generate rule-sets.

Structure: This document is in three sections

• We present a brief overview of Thue’s paper and a motivation
for studying it (pp. 2-3). This is an extended abstract of a talk
to be presented at the International Conference on the History and
Philosophy of Computing (HaPoC 2013), 28-31 October, 2013, Ecole
Normale Superieure, Paris.

• We provide some notes on the contents of the paper (pp. 4-10),
which are intended to be read in conjunction with the paper (or
its translation).

• The last section is a translation of Thue’s paper, numbered as in
Thue’s Selected Papers [Nagell et al., 1977], pages 493-524.
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An overview of Thue’s paper

Rarely has any paper in the history of computing been given such a
prestigious introduction as that given to Axel Thue’s paper by Emil
Post in 1947 [Post, 1947]:

“Alonzo Church suggested to the writer that a certain problem of
Thue [Thue, 1914] might be proved unsolvable ...”

However, only the first two pages of Thue’s paper are directly
relevant to Post’s proof, and, in this abstract, I hope to shed some
light on the remaining part, and to advocate its relevance for the
history of computing.

Thue Systems Thue’s 1914 paper is the last of four he published
that directly relate to the theory of words and languages [Berstel,
1995, Steinby and Thomas, 2000]. In this 1914 paper, Thue intro-
duces a system consisting of pairs of corresponding strings over a
fixed alphabet:

A1, A2, A3, . . . , An

B1, B2, B3, . . . , Bn,

and poses the problem: given two arbitrary strings P and Q, can we
get one from the other by replacing some substring Ai or Bi by its
corresponding string? Post called these systems of “Thue type” and
proved this problem to be recursively unsolvable.

Reception of Thue’s Work Thue’s earlier work was not widely cited
but often rediscovered independently [Hedlund, 1967], and some-
thing similar seems to have happened with the 1914 paper.

For example, Thue is not among the 547 authors in Church’s
1936 Bibliography of Symbolic Logic [Church, 1936], nor is Thue cited
in Post’s major work on tag systems, correspondence systems, or
normal systems before 1947 [Post, 1943, 1946]. His work appears to
have had no direct influence on the development of formal gram-
mars by Chomsky in the 1950s [Chomsky, 1959, Scholz and Pullum,
2007]. Most subsequent references to Thue’s paper (where they
exist) note it only for providing a definition of Thue systems.

Thue’s awareness Thue explicitly understood the general meta-
mathematical context (that we now associate with Hilbert’s pro-
gramme), describing the problem as being of relevance to one of the
“most fundamental problems that can be posed”.

Further, he phrases the problem in terms that have become quite
familiar in the post-1936 world:

“... to find a method, where one can always calculate in a predictable
number of operations, ...”

This language parallels that used in Hilbert’s 10th problem in 1900

[Hilbert, 1902], and places Thue’s work firmly in what we would
now regard as computing, rather than pure algebra.
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Foundations of Language Theory Having posed the general problem
in §II of his paper, Thue then presents an early example of a proof
of (what we would now call) termination and local confluence for a
system where the rules are non-overlapping and non-increasing in
size.

When reducing some string P, we must find some occurrence of
Ai and replace it with Bi. A difficulty arises if there is an overlap:
some substring CUD in P, such that Ai matches both CU and UD,
and thus choosing one option will eliminate our ability to later
choose the other.

In §IV, Thue presents the string U as a common divisor of CU and
UD and then shows how we can apply Euclid’s algorithm to derive
a Thue system from this. Euclid’s algorithm had been considerably
generalised throughout the 19th century, but here the string U
“measures” the strings CU and UD just as Euclid’s lines measure
each other (Elements, Book 10, proposition 3).

Thue derives another algorithm in §V which, given two strings P
and Q will derive those strings equivalent to them, and gradually
reduce them to a core set of irreducible strings, providing a solution
to the word problem in a restricted case. He investigates variants of
these presentations based on their syntactic properties in §VI and gives
some examples in §VII.

We remark that from the identity CU ≡ UD we can derive rules
of the form CU → UD, and that this template is precisely what Post
termed normal form for his rewriting systems.

Thue’s “completion” algorithm In §VIII of his paper Thue devel-
ops an algorithm to derive a system of equations from any given
sequence R. This is interesting not just for its structure (the algo-
rithm iterates until it reaches a fixed point) but also for its use of
overlapping sequences as a generation mechanism.

Starting from some given identity sequence R we can identify
all pairs where R ≡ CU ≡ UD, and then add the rules C ↔ D to
the Thue system. We can then apply these rules using R as a start-
ing symbol to derive a further set of identity sequences R1, R2, . . ..
These, in turn, can be factored based on overlaps to provide a fur-
ther set of rules Ci ↔ Di and so on. Since all Ri have the same
length, as do all Ci and Di, this process is guaranteed to terminate.

This is similar to, but not the Knuth-Bendix algorithm: there is
no explicit concept of well-ordering, for example. However, it cer-
tainly contains many of the “basic features” of the algorithm as
described by Buchberger [Buchberger, 1987], and could be consid-
ered, under restrictive conditions, as an embryonic version of it.
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Notes to accompany the translation

Terminology: In the translation I have translated Zeichenreihen lit-
erally as “symbol sequence”, even though Post had already inter-
preted it simply as “string”. I do this mainly to retain fidelity with
Thue’s paper, where he on other occasions uses “sequence”, “sub-
sequence”, and “null sequence” without using the word Zeichen.

- Section I (pg 493)

Here Thue briefly introduces the paper, noting that it follows from
his earlier work on trees [Thue, 1910] and on sequences that don’t
contain overlapping sub-sequences [Thue, 1912]. These are the only
two references in the paper even though e.g. the prior work by
Dehn was clearly relevant [Dehn, 1911]. This seems to be a habit of
Thue’s: his 1912 paper only references [Thue, 1906], and the 1910

and 1906 papers appear to have no references at all.
With hindsight we can see Thue’s work as fitting into the general

format of Hilbert’s programme and the work of Emil Post (see e.g.
[DeMol, 2013]), and it is interesting to note that Thue explicitly
understood his work as being of relevance to one of the “most
fundamental problems”. Yet Thue also limits his programme quite
clearly: he will deal only with special cases of this problem.

- Section II (pg 493)

In this section Thue presents what Post termed a Thue system as
a series of tuples of the form (Ak, Bk). Reading such a tuple as a
rule Ak ↔ Bk allowing the replacement of a sub-string Ak with
the string Bk or vice versa, Thue defines the concept of similar se-
quences, and then equivalent sequences as the closure of this.

Thue does not explicitly allow for empty sequences in the Ai or
Bi (or anywhere else in the paper) and, in the absence of an identity
element, his Problem (I) is thus the word problem for semi-groups.

The two special cases he deals with are:

(a) Each Ak and Bk have the same length: thus, applying such a
rule cannot change the length of the string, and there are only
finitely many possibilities for permuting the symbols in these
fixed-length strings.

(b) Each Ak is longer than its corresponding Bk: so, applying a
rule forwards will basically shrink the string, which can only
be done a finite number of times. Thue seems to slip into semi-
Thue mode here, where he interprets the rules one-directionally
as Ak → Bk. He also explicitly refers to this as a reduction, and
defines the term irreducible (also defined in his 1910 paper).

Either of these restrictions give us a system that is terminating.
Thue proves by induction that if we also disallow overlaps among
the Ak then the system must also be confluent (though he does not
call it this), and thus the word problem is decidable in this case.
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Notation: Thue distinguishes between:
P ∼ Q P can be transformed in 1 step into Q
P = Q P can be transformed in 1 or more steps into Q
P ≡ Q P is symbol-by-symbol identical to Q

- Section III (pg 497)

In this section Thue shifts the focus to systems based around some
given null sequence R which can be deleted from, or inserted into,
other strings. This allows him to redefine the terms similar and
equivalent “in respect of R” in this new context.

In language theory terms, the null sequence here is not the
empty sequence ε, but rather a nullable sequence. That is, for the
null sequence R, we implicitly have the rule R↔ ε.

While it is not exactly explicit here, the introduction of a null se-
quence brings us from semi-groups to monoids, and Thue’s Problem
(II) is the word problem in this case.

Overlaps The final few remarks of this section are of the utmost
importance for the rest of the paper. Thue has already dealt (in §II)
with the case where rules can’t overlap, and he now addresses the
case where they can overlap. In the context of §III, this means that
we have some string in which R occurs twice as a sub-string, but in
overlapping configurations. Calling this overlap U we get:

R ≡ CU
UD ≡ R

where CUD is a sub-string of the current string. Thue derives the
equivalence C = D in respect of R here, and will make considerable
use of this later.

- Section IV (pg 498)

Having established the importance of identities of the type CU ≡
UD, Thue investigates them further in this section.

First, Thue deals with a special case regarding power series
(pp. 498-499). If we have CU ≡ UD then C and D must have the
same number of symbols. If, in addition, they both have the same
number of symbols as U then we must actually have CD ≡ DC.
Thue re-generalises this case slightly to consider situations where
XY ≡ YX and X and Y are of different lengths. In this case Thue
proves that both strings must be composed of some common factor
θ, with p copies in X, q copies in Y and thus p + q copies in XY.

After dealing with a corollary (AA containing A), Thue now re-
turns to the general case and sets up a kind of Euclidean algorithm
for factoring overlapping strings. Starting with some string U0, we
factor this into a quotient C1 and remainder U1, and then follow the
same process with the remainder.

This process can be seen in action in the diagram on page 500.
Since we know S ≡ CU then S must start with at least one C. But
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since CU ≡ UD, if U has more symbols than C then it must also
start with a C. Hence S ≡ CU must start with two C’s. Repeating
this process until what remains of U becomes shorter than C, we
get S ≡ Cnα: that is, C divides n times into S with remainder α.
Following a similar process with the D’s from the other end, we get
the insight that C, D and U must be formed from regular patterns
of α and β.

An important point here is that we can factor U as

U ≡ (αβ)n−1α ≡ α(βα)n−1

But this has the same format as the identity we began with; i.e. it
has the form U ≡ C1U1 ≡ U1D1, and we can presumably apply the
same process, using U this time instead of S.

Note that U here is maximal and thus unique. If we hadn’t de-
manded that U be maximal, we could possibly have stopped divid-
ing by C at some earlier stage m < n and then get a larger overlap

U ≡ (αβ)n−mα ≡ α(βα)n−m

where C ≡ (αβ)m and D ≡ (βα)m.
In the final result of this section (pg 502) Thue shows that this

process can work ‘backwards’. Just as we can start with some M
and derive N as the largest overlap with remainder X and Y, we
can in a similar manner derive a string T for which M is the largest
overlap with remainder X and Y.

- Section V (pg 503)

In this section Thue considers the relationship between a presenta-
tion in terms of some null sequence R (as in §III), and one in terms
of a set of equations (as in §II). In particular he wants to know
under what circumstances a set of equations (such as (1)) can ade-
quately represent the null sequence. In algebraic terms, one might
regard this as asking the question: when when can a set of equa-
tions in the presentation of a semi-group adequately model the
presentation of a monoid (which could include equations of the
form R = 1).

Two sequences that are provably equivalent according to the
semi-group equations are called “parallel” and Thue uses the no-
tation P =\ Q. This notation is only used in this section and in ex-
amples 1 and 5 of §VII. In general, if R is the identity in a monoid,
then we must have for any other element z that zR = z = Rz.
For semi-group equations like (1) to model this, we must have the
power to prove all equations of this kind; Thue splits this into two
parts: the equations are

• complete (vollständiges) if we can prove zR =\ Rz

• perfect (vollkommenes) if we can prove RA =\ RB implies A =\ B

Thus we have an algorithm for dealing with sequences contain-
ing the null sequence. The theorem on page 504 sets this up, and
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the algorithm is presented on pg 505. Given some sequence P, a
complete system allows us to “move around” any occurrence of
the null sequence R in P, thus deriving all other sequences of the
same length that differ only in the position of R. A perfect system
then allows us to delete null sequences on the left, forming a new
collection of (shorter) parallel sequences. Repeating this process we
eventually get to a set of equivalent irreducible sequences. Given
some other sequence Q, it is equivalent to P if it reduces down to
the same set of irreducible sequences.

- Section VI (pg 506)

In this section Thue imposes some fairly severe restrictions on the
format of the equations and shows that this helps determining the
matching between sequences. He reintroduces the terminology
from §III (no null sequences in §VI), and then in the main theorem
on page 506 he restricts the format of allowable equations based
on the first symbol on each side. Thus given some sequence P, if I
apply a series of the equations to P, then I can guarantee that (at
worst) each two applications will fix a leftmost symbol in P for the
rest of the derivation.

For example, if I apply a rule of the form Ai → Bi, then, if the
leftmost symbol of P changes, it can only change from xi to yi.
But since no other Aj or Bj starts with yi, the leftmost symbol is
effectively fixed for the rest of the derivation. (I could choose Bi →
Ai, but this just makes the first step redundant).

Alternatively, if I could apply a rule of the form Bi → Ai and
change the leftmost symbol of P, it must change from yi to xi. But
now if I wish to change the leftmost symbol again I must this time
pick some rule of the form Ai → Bi, and the argument from the
previous paragraph then holds.

Thue presents this from a different perspective: if the leftmost
part of two equivalent strings are equivalent, then so are the re-
maining rightmost parts. This is proved methodically on pages
506-509.

- Section VII (pg 510)

In this section Thue gives 5 examples of systems of equations that
are complete and perfect.

The first example is a set of equations derived from a factoring
of the null sequence R using the method of §IV. Two points worth
noting here:

• just below the identities in (6) we are told that all the Yi and Xr

are different and

• just below the equivalences in (7) it is noted that X1 begins with
Xr (and, thus, so do all the left-hand-sides of the equations)

Taken together, this means that the equivalences in (7) have the



thue’s 1914 paper: a translation 8

format required for the main theorem in §VI. In particular, apply-
ing this theorem with R in place of C and D lets us conclude that
whenever RM = RN then M = N, meaning that (7) forms a perfect
set of equivalences.

This approach is used (implicitly) to prove that the equation
systems are perfect in examples 1, 2, 3 and 4. Note in examples 2, 3

and 4 that R is chosen so that it can be broken down into the usual
“overlap” pattern

R ≡ CU
UD ≡ R

which then yields equivalences of the form C = D.
Example 5 is a little different, since the equations are not con-

structed to be obviously perfect following the template of the oth-
ers. Actually proving that the system is perfect requires considerable
effort, stretching from page 514-516.

- Section VIII (pg 516)

Thue’s “few remarks” here amount to an algorithm for constructing
a system of equivalences starting from a given null sequence R.

Given some null sequence R, Thue shows how to generate an
initial set of equations based on any overlaps (as in example 2 of
the previous section). That is, we form the equation C = D for
each possible overlap U that satisfies R ≡ CU ≡ UD. This im-
plies that C and D must have the same length, and they must have
fewer symbols than R. Having derived a set of such equations, we
can then apply them to R to derive another set of null sequences
equivalent to R: these all have the same length as the original R. We
can continue in this way, alternating between deriving new set of
null sequences Sθ and new sets of equations Eθ . Since the length of
all the Ps, Qs and Rs are bounded, the process must terminate, as
noted on page 519.

In the following discussion (pp. 519-521) he shows how to use
such a system δ and to ‘minimise’ these equations to a derived
system ε. He then proves a series of theorems demonstrating the
‘minimality’ of this system.

In the final theorem starting on page 522 it may not be obvious
that the eight cases listed exhaust all the possibilities for the config-
uration of the overlap between M ≡ aRzb and N ≡ cRµd. The key
here is to work out the overlap between M and N and to note that
it (mostly) shrinks as we move through the cases.

Since both M and N are divided into three sub-strings, we can
characterise the overlap by categorising the degree to which each
sub-string is involved in it. For example, the maximal amount of
overlap (assuming the strings aren’t identical) would be given by
the following configuration
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a Rz b︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
C e f g h i D︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

c Rµ d

In this configuration, the overlap U ≡ e f ghi involves part of a
and d and all of the other four sub-strings. We can get the remain-
ing configurations by sliding M to the left (or, equivalently, N to the
right). Characterising the involvement of the six sub-strings as P,
A or N for part, all or none respectively, we can actually track nine
cases as we decrease the overlap. I found it useful to enumerate the
first eight of these as follows:

M ≡ N ≡
U ≡ aRzb cRµd

1 e f ghi PAA AAP
2 e f gb PAA APN
3 ce f gb PAA AAP
4 c f b NPA APN
5 f gh NPA APN
6 f b NPA PNN
7 c f NNP APN
8 f NNP PNN

The ninth case, which we could characterise as NNP versus AAP
is actually impossible, since it would result in Rµ being a sub-string
of Rz, and all the strings R are supposed to have the same length.

The eight cases Thue deals with are illustrated in Figure 1.
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1. U ≡ e f ghi 2. U ≡ e f gb, D ≡ hd

a Rz b︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
C e f g h i D︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

c Rµ d

a Rz b︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷︸︸︷
C e f g b h d︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸︷︷︸

c Rµ d

3. U ≡ ce f gb 4. C ≡ ae, U ≡ c f b, D ≡ gd

a Rz b︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷︸︸︷
C c e f g b D︸︷︷︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

c Rµ d

a Rz b︷︸︸︷ ︷ ︸︸ ︷ ︷︸︸︷
a e c f b g d︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸

c Rµ d

5. C ≡ ae, U ≡ f gh, D ≡ id 6. C ≡ ae, U ≡ f b, D ≡ gRµd

a Rz b︷︸︸︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
a e f g h i d︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸︷︷︸

c Rµ d

a Rz b︷︸︸︷ ︷ ︸︸ ︷ ︷︸︸︷
a e f b g Rµ d︸ ︷︷ ︸ ︸︷︷︸ ︸︷︷︸

c Rµ d

7. C ≡ aRze, U ≡ c f , D ≡ gd 8. C ≡ aRze, U ≡ f , D ≡ gRµd

a Rz b︷︸︸︷ ︷︸︸︷ ︷ ︸︸ ︷
a Rz e c f g d︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸

c Rµ d

a Rz b︷︸︸︷ ︷︸︸︷ ︷ ︸︸ ︷
a Rz e f g Rµ d︸ ︷︷ ︸ ︸︷︷︸ ︸︷︷︸

c Rµ d

Figure 1: The eight cases of the final
theorem in §VIII (pages 522-524)
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Problems concerning the transformation of symbol sequences
according to given rules

Axel Thue This translation by James F. Power
<jpower@cs.nuim.ie>

1914 August 28, 2013

This document is a translation of Axel Thue’s paper Probleme Based on the version published in his
Selected Mathematical Papers as paper
#28, pp. 493-524. Page numbers in this
document follow that pagination.

über Veränderungen von Zeichenreihen nach gegebenen Reglen (Kra.
Videnskabs-Selskabets Skrifter. I. Mat. Nat.Kl. 1914. No. 10)

Any margin notes (like this) are not
part of the original paper, but typos
noted here are typos in the original
paper.§ I

In a previous work1 I have posed the general question whether
two given concepts depicted as trees, but defined in different ways,
must be equivalent to each other.

In this paper I will deal with a problem concerning the trans-
formation of symbol sequences using rules. This problem, that in
certain respects is a special case of one of the most fundamental
problems that can be posed, is also of immediate significance for
the general case. Since this task seems to be extensive and of the
utmost difficulty, I must be satisfied with only treating the question
in a piecewise and fragmentary manner.

In a previous year’s work2 I have already solved a special case
concerning symbol sequences. On this occasion I will just settle
some simple cases of the aforementioned general problem. I will
not enter into a discussion here on the wider significance of investi-
gations of this type.

§ II
We are given two series of symbol sequences:

A1, A2, A3, . . . , An

B1, B2, B3, . . . , Bn,

where each symbol in each sequence A and in each sequence B is a
symbol from some group of given symbols.

1 Die Lösung eines Spezialfalles eines generellen logischen Problems.
(Christiana Videnskabsselskabs Skrifter, 1910.)

Selected Mathematical Papers pp. 273-310

2 Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen.
(Christiana Videnskabsselskabs Skrifter, 1912.)

Selected Mathematical Papers pp. 413-478
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For each value of k we will call Ak and Bk corresponding sequences.
If, given two arbitrary sequences P and Q, one can get one from

the other by replacing some subsequence A or B by its correspond-
ing sequence, then we say that P and Q are called similar sequences
with reference to the corresponding sequences A and B. We indi-
cate this by writing

P ∼ Q

The sequences αAhβ and αBhβ, where α and β denote symbol
sequences, are thus (for example) similar sequences.

If any two two symbol sequences X and Y are procured in this
way, then one can find a series of symbol sequences

C1, C2, . . . , Cr

such that X and C1, then Cr and Y, and finally Ch and Ch+1 for each
h are equivalent sequences, so then we have thus:

X ∼ C1 ∼ C2 ∼ . . . ∼ Cr ∼ Y,

then we say that X and Y are equivalent sequences in respect of the
given sequences A and B.

We denote this by means of the equation

X = Y

When P ∼ Q we also have P = Q. Further, we have Ak ∼ Bk and
Ak = Bk.

We can now pose the major general question (I):

Problem (I) For any arbitrary given sequences A and B, to find a
method, where one can always calculate in a predictable number of opera-
tions, whether or not two arbitrary given symbol sequences are equivalent
in respect of the sequences A and B.

This problem is easily solved in the following two cases (a) and
(b).

(a) Ak and Bk contain equal number of symbols for each value of k.
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Here, either two sequences X and Y are equivalent, or one can
find sequences C1, C2, . . . , Cr such that:

C0 ∼ C1 ∼ C2 ∼ . . . ∼ Cr ∼ Cr+1,

where C0 and Cr+1 denote X and Y respectively, then any two
of the sequences of C have equal number of symbols, but can be
assumed to be different from each other.

r must consequently fall under a predictable limit, and the prob-
lem is thus solved.

(b) Ak contains more symbols than Bk for each value of k. The This seems to assume we’re operating
semi-Thue system Ak → Bksequence A is in addition so constituted that any two arbitrary

subsequences Ap and Aq must always lie completely outside
each other for any values of p and q.

We assume, in other words, that no sequence in A can be a
subsequence of another sequence in A, while further two arbi-
trary possible subsequences Ap and Aq are not allowed to have
any common part.

We use the term irreducible sequence to refer to any sequence
which contains no subsequence A.

Case (b) of the aforementioned problem can now be solved as
follows:

Through repeated reductions of an arbitrary given symbol se-
quence S we can only get a single irreducible sequence. Here, in That is, the system is confluent.

each reduction a subsequence A of the given sequence (or any se-
quence obtained from it via an previous reduction) is replaced by
its corresponding sequence B.

This statement must be correct in the case where S contains only The proof proceeds by induction over
the number of symbols in S.a single symbol.

It is also immediately apparent that if the statement is correct
when the number of symbols in S is less than some number t, then
it must also be correct when the number of symbols in S is equal to
t.

In particular if S is irreducible, the case is immediately clear. It
also follows when S only contains a single subsequence A, i.e.

S ≡ MAk N,

where we use the symbol ≡ to denote the identity. S can then only
be reduced to the same irreducible sequence as MBk N. Since we know that Ak has more sym-

bols than Bk , the inductive hypothesis
applies to prove this case.

Finally we suppose that S is gradually reduced, in two different
ways, to the two irreducible sequences P and Q respectively.
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In the first reduction S is reduced by a single reduction to H, and
then by a sequence of reductions to P. In the second reduction S
is reduced by a single reduction to K, and then by a sequence of
reductions to Q.

The case is immediately clear when the two first reductions are
the same as each other, i.e. H ≡ K. If this is not the case, we can
write:

S ≡ MApLAqN
H ≡ MBpLAqN
K ≡ MApLBqN

where one or more of the sequences M, L and N are allowed to be
absent.

However H and K are so constituted that they contain fewer
symbols than t, and can then be reduced to a single irreducible
sequence MBpLBqN. That is,

P ≡ Q

Since any two similar rows, and even two equivalent rows, can
be reduced in this way only to a single irreducible sequence, this
proves the result.

Instead of problem (I), one can set up the still more general question: The next few paragraphs are in a
reduced font in Thue’s paper, thus
presumably a kind of sidenote.

Suppose P and Q signify two arbitrary symbol sequences, and
that each symbol that occurs in them is different from those in the
series A and B. Then, find a general method by which it is possible
to decide whether any of the symbols of P and Q can be replaced
by such symbol sequences, so that the symbol sequences P′ and Q′

obtained from P and Q in this way are equivalent.
We assume that symbols that are equal to one another are only

replaced by sequences that are equal to one another.

We can also generalise problem (I) in another way.
Given two arbitrary symbol sequences P and Q, one can get

one of them from the other by replacing a subsequence A′ with
another sequence B′, where A′ and B′ have been obtained in such
a way that one can write sequences in place of the symbols of two
corresponding sequences A and B, such that A and B in this way
turn to A′ and B′ respectively, then we can - with a new meaning of
the words - define P and Q to be similar.

In a corresponding manner we can define equivalent sequences
and pose the question: how can one always decide whether two
sequences are equivalent, or whether in place of the sequences one
can write two such sequences that in this way the sequences become
equivalent.

We wish now to deal with an important special case of problem
(I).

We wish to give a new definition of the concepts similarity and
equivalence.
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§ III
Let R signify an arbitrary given symbol sequence. Two arbitrary
sequences are said to be sequences similar to each other with respect to
R when we can get one from the other by removing a subsequence
R.

The sequences
MRN and MN,

where one of the arbitrary sequences M and N can of course be
missing, are thus examples of similar sequences.

When P and Q are similar sequences, we can indicate this by
writing

P ∼ Q.

If we are given two arbitrary sequences P and Q such that se-
quences C1, C2, . . . , Cr exist, where X and C1, also Cr and Y, and
finally Ch and Ch+1 for each value of k, are similar sequences, so
that

X ∼ C1 ∼ C2 ∼ · · · ∼ Cr ∼ Y

then we will call X and Y equivalent sequences in respect of R. We
indicate this by writing

X = Y

Equivalent sequences can always be transformed into one an-
other by removal and insertion of sequence R.

If we have P ∼ Q then we also have P = Q.
If we have A = C and B = C then we also have A = B.
If X and Y are two arbitrary equivalent sequences, then one can

find such sequences H and K that

H0 ∼ H1 ∼ H2 ∼ · · · ∼ Hp,

K0 ∼ K1 ∼ K2 ∼ · · · ∼ Kq,

where H0 ≡ X, K0 ≡ Y and Hp ≡ Kq,
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and one can always get from Hr−1 to Hr and Ks−1 to K by re-
moving a null sequence R. “Nullreihe” is first used here, but then

defined at the end of this sectionIf we have
X ∼ C1 ∼ C2 ∼ · · · ∼ Cm ∼ Y

where e.g.
Ct−1 ≡ xRyz

Ct ≡ xyz
Ct+1 ≡ xyRz

then we also have

· · · ∼ Ct−1 ∼ xRyRz ∼ Ct+1 ∼ · · ·

etc.

One can now state the major task (II):

Problem (II) Given an arbitrary sequence R, to find a method where one
can always decide in a finite number of investigations whether or not two
arbitrary given sequences are equivalent with respect to R.

The ultimate goal of our discussion now lies in giving the solu-
tions for some examples of this task.

We have shown earlier that the case is clear when two subse-
quences of R can never have common part.

The difficulty arises when the opposite case occurs. If two sub- This pattern for overlapping se-
quences, CU ≡ UD, is a recurring
motif in the remainder of the paper

sequences of R can have a common part U then we can write

R ≡ CU ≡ UD

or
C ∼ C(UD) ≡ (CU)D ∼ D

or
C = D

The sequence R is called a null sequence.

§ IV
By Tn, where T denotes and arbitrary symbol sequence, we wish to
signify the construction of a sequence

TT · · · T

from n copies of the sequence T.
We say that Tn is called a Power series.

If X and Y are two sequences so constituted that

XY ≡ YX
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then there exists a sequence θ such that

X ≡ θp, Y ≡ θq

The case where X and Y contain equally many symbols is clearly
true. For then

X ≡ Y

or

θ ≡ X ≡ Y

p = q = 1

The case where XY contains only two symbols is thus clearly
true.

However, if the case is true when XY has fewer than m symbols,
then it must also be true when XY has exactly m symbols.

Suppose here that, for example, X is composed of more symbols
than Y; then one has:

X ≡ YZ

or
(YZ)Y ≡ XY ≡ YX ≡ Y(YZ)

or
YZ ≡ ZY

or
Z ≡ θγ, Y ≡ θδ, X ≡ θγ+δ

If a sequence AA is composed of an inner subsequence A, we
can then write:

A A︷ ︸︸ ︷ ︷ ︸︸ ︷
x

... y
... x

...︸ ︷︷ ︸
A

A ≡ xy ≡ yx

or consequently

x ≡ θp, y ≡ θq, A ≡ θp+q.

Let U0 now denote an arbitrary given symbol sequence. We can This gives us a kind of Euclidean
(GCD) algorithm for sequences, with
each Ui as the quotient and Ci as the
remainder.

then define such sequences U, C and D such that:

U0 ≡ C1U1 ≡ U1D1

U1 ≡ C2U2 ≡ U2D2

. . . . . . . . . . . . . . . . . . . . . . . . . .
Ur−1 ≡ CrUr ≡ UrDr

where Up for any value of p is the largest sequence for which one
can find such sequences Cp and Dp that

Up−1 ≡ CpUp ≡ UpDp,
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where two subsequences Ur in the sequence can never have a
common part.

If one has
U0 ≡ CU ≡ UD,

then U must be equal to one of the sequences U1, U2, . . . , Ur, as can
be immediately seen.

If S denotes an arbitrary given symbol sequence and U the
largest sequence for which one can find two sequences C and D
such that

S ≡ CU ≡ UD

or
CS ≡ CUD ≡ SD

then first
S ≡ CC · · ·Cα ≡ Cnα,

where the sequence α is either wholly missing, or is composed of
fewer symbols than C.

Consequently there exists a sequence β such that

C S︷ ︸︸ ︷ ︷ ︸︸ ︷
...

...
...︸ ︷︷ ︸ ︸ ︷︷ ︸... S

... D
...

...
...

...
...... C

... C C
... α

...
...︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ...

...
...

... α
... β

......
...

...︷ ︸︸ ︷ ︷︸︸︷ ...︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
C C C α

C ≡ αβ

D ≡ βα

S ≡ Cnα ≡ (αβ)nα ≡ αβαβα · · · αβα ≡ α(βα)n ≡ αDn

U ≡ (αβ)n−1α ≡ α(βα)n−1

C is the smallest sequence for which one can find a sequence D
such that

CS ≡ SD.

If α contains at least one symbol, then we never have that

αβ ≡ βα.

Otherwise we would get:

βS ≡ βα(βα)n ≡ (βα)n+1 ≡ (αβ)n+1 ≡ (αβ)nαβ ≡ Sβ

where β is composed of fewer symbols than C.
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Each of the sequences

βαβ and αβα

where α is composed of at least one symbol, contains only a single
subsequence βα and a single subsequence αβ.

β α β︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
c

... d a
... b

... c
...︸ ︷︷ ︸ ︸ ︷︷ ︸

β α

If we say that βαβ contains an inner subsequence βα, one can
write

α ≡ ab ≡ bc

β ≡ cd ≡ da

or

S ≡ αβαβα · · · αβα ≡ (bc)(da)(bc)(da)(bc) · · · (bc)(da)(bc)
≡ b(cd)(ab)(cd)(ab) · · · (ab)(cd)(ab)c ≡ bβ[αβα · · · αβαc]
≡ [αβαβα · · · αc]d ab ≡ [αβαβα · · · αc]βb

or
S ≡ bβW ≡Wβb.

However, bβ here would clearly have to be composed of fewer
symbols than αβ, which is impossible. In this way it is also proven
that βαβ is not composed of an inner subsequence αβ.

Further, if αβα is composed of an inner subsequence βα, then we
have:

α β α︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸
a

... b
... c

... d
... a

...︸ ︷︷ ︸ ︸ ︷︷ ︸
β α

α ≡ ab ≡ da

β ≡ bc ≡ cd

or
S ≡ (da)(bc)(da)(bc)(da) · · · (da)(bc)(da)
≡ d(ab)(cd)(ab)(cd) · · · (ab)(cd)a
≡ d[αβαβα · · · αβ a]
≡ [αβαβα · · · αβ a]b

or
S ≡ dW ≡Wb.

That d is composed of fewer symbols than αβ is however impos-
sible. In this way it is also proven that αβα is not composed of an
inner subsequence βα.
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If one has
S ≡ PN ≡ NQ

where the number of symbols in P and Q are not less than the So here we’re deliberately selecting
some N shorter than Unumber in αβ and βα, then there is consequently a whole number m

between 0 and n for which Thus P ≡ (αβ)n−m and Q ≡ (βα)n−m

N ≡ α(βα)m ≡ (αβ)mα.

In order to find expressions for the sequence U that belongs to
the sequence S, we now write:

S ≡ α1(β1α1)
n1

α1β1α1 ≡ α2(β2α2)
n2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
αp−1βp−1αp−1 ≡ αp(βpαp)

np

where αq−1 when 2 ≤ q ≤ p, contains fewer symbols than βqαq,
while nq for 1 ≤ q ≤ p− 1 is greater than 1.

Furthermore, let αp for np > 1 be completely missing, while When the process terminates, either
np = 1 and the last factoring is the
trivial αp βpαp, or np > 1 and the last
factoring is to β

np
p .

α1(β1α1)
n1−1 is the largest sequence that the two sequences of S,

and αq(βqαq)
nq−1 is the largest sequence that the two sequences

of αq−1βq−1αq−1 can have in common. Depending on whether That is, αq−1βq−1αq−1 is the ‘overlap’
Uq−1 on each linenp is greater than or equal to 1, we can now treat αp or βp as S

respectively, etc.

If M denotes an arbitrary given sequence, and N denotes the
largest sequence for which one can find sequences X and Y such
that

M ≡ XN ≡ NY,

then
T ≡ XNY ≡ XM ≡ MY

is the shortest sequence for this largest sequence M where one can
find sequences P and Q such that

T ≡ PM ≡ MQ.

One gets here that
P ≡ X, Q ≡ Y.
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§ V
Let it be the case that in respect of some null sequence R:

A1 = B1

A2 = B2

. . . . . . . . . . . .
Ak = Bk

 (1)

where two equivalent sequences Ah and Bh for each value of h are
composed of the same number of symbols. One sees immediately
that Ah and Bh are composed of equally many of each kind of sym- Same number of xs, same number of

ys etc. Thus Ah is just a permutation of
Bh.

bol.
One can write in place of a possible sub-sequence Ah or Bh of

some sequence S the other of these equivalent sequences, so that
the sequence T constructed in this way is equivalent to S in respect
of R. We say that T is constructed from S through a homogeneous
transformation according to system (1).

Two sequences S and T, equivalent in respect of R, which are
also equivalent in respect of system (1) are called parallel sequences
in respect of R and (1). We indicate this by writing Corollary: Parallel sequences always

contain the same number of symbols

S =\ T.

If two sequences S and T are parallel to one another in respect of
system (1), there thus exist such sequences C0, C1, C2, · · · , Cr, Cr+1

where C0 and Cr+1 denote S and T respectively, so that one can
get one of the consecutive sequences Cm and Cm+1 from the other
by exchanging a possible sub-sequence Ah with the corresponding
sequence Bh.

When one can not derive any of the equivalences (1) from the
others through homogeneous transformation we say that the equiv-
alences (1) are independent of one another.

Given the sequences
zR and Rz

where R denotes the null sequence, if for any symbol z one can
always transform them into one another through homogeneous
transformation by the system (1), so that

zR =\ Rz

then we say that (1) forms a complete5 system of equivalences. 5 vollständiges
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Each sub-sequence R of an arbitrary sequence S can thus through
(1) be moved arbitrarily in the sequence S without changing the or-
der of the remaining symbols of S.

In this case we have the following theorem.

If one can get a sequence α from a sequence A, and a sequence β

from a sequence B by removing a sequence R, and meanwhile one
can transform α and β into one another by successive homogeneous
transformations according to a complete system of equivalences,
then the sequences A and B have this same property.

We indeed get that e.g.

A =\ Rα =\ Rβ =\ B.

If a system of equivalences derived from a null sequence R has
the property that A =\ B whenever RA =\ RB, then we say that the
system is perfect6 in respect of R. 6 vollkommenes

A complete and perfect system of equivalences in respect of a
null sequence R thus has the property that, in respect of the system
it is always the case that

CR =\ RC,

where C denotes an arbitrary sequence, meanwhile, when RA=\ RB
we always have A =\ B.

Theorem. If one can get a sequence α from a sequence A, and
a sequence β from a sequence B by removing a sequence R, and
meanwhile in respect of a complete and perfect system of equiva-
lences in respect of R

A =\ B,

then we also have
α =\ β.

Then:
Rα =\ A =\ B =\ Rβ

or
α =\ β.

If
R ≡ CU ≡ UD,

or
CR ≡ RD,
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so then in respect of a complete and perfect system of equiva-
lences in respect of a null sequence R we always have

C =\ D.

For
RC =\ CR ≡ RD.

If one has found a complete and perfect system of equivalences
in respect of a null sequence R, then we can immediately see how
in this way our problem (II) is easily solved.

Namely, if S denotes an arbitrary sequence, then one can set up a
series of sequence systems

N0, N1, N2, · · · , Nr

that for each value of p all sequences of Np are parallel, while S is
equal to one of the sequences of N0. Further the series N can be so
chosen that no sequence of Nr contains a sub-sequence R, while it is
possible to obtain for any value of p > 0 a sequence of Np+1 from a
sequence of Np through removal of a sub-sequence R.

Finally, the series N is so chosen that every sequence parallel to a
sequence of the series N is contained in the series N.

Having removed then from an arbitrary sequence of a series Np

a possible sequence R, one can obtain in this way for any value of
p < r one of the sequences in the series Np+1.

We say now that Nr forms an irreducible sequence system be-
longing to S.

Our problem (II) is now completed through the remark that
similar sequences, and thus equivalent sequences, must have the
same irreducible sequence system.

For a complete and perfect system of equivalences, a null se-
quence R must also be parallel to equivalent sequences with equally
many symbols in respect of the aforementioned system.

We can, however, decide for certain whether or not two se-
quences are parallel in a calculable number of steps.
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§ VI
Let there be given the two series of symbol sequences

A1, A2, · · · , Ak

B1, B2, · · · , Bk

where Ap and Bp for each value of p are - as before - corresponding
sequences.

Two arbitrary sequences S and T are called equivalent in respect
of the k pairs of corresponding sequences Ap and Bp when there
exist such sequences C0, C1, C2, · · · , Cr, Cr+1, where C0 and Cr+1

denote S and T respectively, that one can obtain Cq+1 from Cq for
each value of q through the exchange of a subsequence A or B for
its corresponding sequence.

We represent this, as before, through the equivalence

S = T

Cq and Cq+1 are called, as before, equivalent sequences, and we
write

Cq ∼ Cq+1

.
We have here the equivalences:

A1 = B1

A2 = B2

. . . . . . . . .
Ak = Bk

 (2)

Theorem. For arbitrary values of p and q, let Ap and Bp always
start with different symbols on the left, and also for any two of the
sequences in B, so we can write:

x1P1 ≡ A1 = B1 ≡ y1Q1

x2P2 ≡ A2 = B2 ≡ y2Q2

. . . . . . . . . . . . . . . . . . . . . . . . . .
xkPk ≡ Ak = Bk ≡ ykQk,

where x and y are such symbols that each y is different from each
of the other symbols y and x. If C, M, D and N are any such se-
quences that in respect of system (2):

CM = DN
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where
C = D

then it is also the case that

M = N.

We only need to show here that if

zM = zN

for any symbol z, then M and N must always be equivalent. For
convenience, we will prove the following more comprehensive
theorem:

Let zM and zN, where z denotes a single symbol, be two se-
quences that are equivalent in respect of system (2), i.e. we are
given such sequences E1, E2, · · · , Ep that

zM ∼ E1 ∼ E2 ∼ · · · ∼ Ep ∼ zN, (3)

then one can find such sequences F1, F2, · · · , Fq that

M ∼ F1 ∼ F2 ∼ · · · ∼ Fq ∼ N, (4)

where the number of F-sequences q is not greater than the number
of E-sequences p.

This theorem is clearly true when First, three base cases where the
derivation is 0, 1 or 2 steps

zM ≡ zN i.e. M ≡ N.

Further, also when

zM ∼ zN i.e. M ∼ N.

Finally, the theorem must also be true when If this happens we must have applied
a rule forwards and then backwards,
as two different rules must change the
first letter.

zM ∼ E1 ∼ zN,

because here M ≡ N.
We wish now to assume that the theorem is true when 1 ≤ p < Now three inductive cases...

n. We will then prove that the theorem is true when p = n. We can
then write:

zM ∼ z1C1 ∼ z2C2 ∼ · · · ∼ zn−1Cn−1 ∼ znCn ∼ zN, (5)

where each z denotes a single symbol. If z is different from each x Case 1: If z is different from each x
and y then the equations in (2) won’t
allow you to change z

and y one has:
z ≡ z1 ≡ z2 ≡ · · · ≡ zn

or
M ∼ C1 ∼ C2 ∼ · · · ∼ Cn−1 ∼ Cn ∼ N.
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If one of the symbols z1, z2, · · · , zn e.g. zr equals z then the theo-
rem is also quite clear: Then we have

zM ∼ z1C1 ∼ z2C2 ∼ · · · ∼ zr−1Cr−1 ∼ zrCr

zrCr ∼ zr+1Cr+1 ∼ zr+2Cr+2 ∼ · · · ∼ znCn ∼ zN,

then there exist such sequences α and β that by the inductive hypothesis

M ∼ α1 ∼ α2 ∼ · · · ∼ αs ∼ Cr

Cr ∼ β1 ∼ β2 ∼ · · · ∼ βt ∼ N,

where
s + t ≤ n− 1.

We thus need only consider now the case where z denotes and
x or a y, while each of the symbols z1, z2, · · · , zn in (5) is different
from z.

If z were an x, e.g. Case 2: start with an x

z ≡ xr

then we have in (5)

z1 ≡ z2 ≡ · · · ≡ zn ≡ yr

z1 in particular being different from z, i.e.

z1 ≡ yr.

If one has further that zk ≡ yr while zk+1 is different from yr then
we have

zk+1 ≡ xr ≡ z

which is clearly impossible.
We thus obtain here

xr M ∼ yrC1 ∼ yrC2 ∼ · · · ∼ yrCn ∼ xr N

or
xrPr M′ ∼ yrQr M′ ∼ · · · ∼ yrQr N′ ∼ xrPr N′

where

Pr M′ ≡ M

Pr N′ ≡ N.

However, since here

yrQr M′ ∼ yrC2 ∼ · · · ∼ yrCn−1 ∼ yrQr N′ ∼ yrQr N′

then one can find such sequences γ that

M′ ∼ γ1 ∼ γ2 ∼ · · · ∼ γν ∼ N′,
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where
ν ≤ n− 2,

and thus

M ≡ Pr M′ ∼ Prγ1 ∼ Prγ2 ∼ · · · ∼ Prγν ∼ Pr N′ ≡ N.

Finally, if z were equal to a y, e.g. yr, then we can get from (5), Case 3: start with a y; much the same
as case 2.

yr M ∼ xrC1 ∼ z2C2 ∼ · · · ∼ zn−1Cn−1 ∼ xrCn ∼ yr N

or

yrQr M′ ∼ xrPr M′ ∼ z2C2 ∼ · · · ∼ zn−1Cn−1 ∼ xrPr N′ ∼ yrQr N′

where
Qr M′ ≡ M, Qr N′ ≡ N.

Since
xrPr M′ ∼ z2C2 ∼ · · · ∼ zn−1Cn−1 ∼ xrPr N′

then there exists such sequences δ that

M′ ∼ δ1 ∼ δ2 ∼ · · · ∼ δµ ∼ N′,

where
µ ≤ n− 2,

and thus

M ≡ Qr M′ ∼ Qrδ1 ∼ Qrδ2 ∼ · · · ∼ Qrδµ ∼ Qr N′ ≡ N.

In this way our theorem is proven.

Let T denote an arbitrary sequence such that for each value of a
symbol z it is always the case that

zT ≡ Tz.

Further, let T′ denote an arbitrary sequence equivalent to T. If
then

T′ ≡ abc · · · gh,

where a, b, c, · · · , g, h are single symbols, then we would have

T′ ≡ abc · · · gh = bc · · · gha.

For

a(abc · · · gh) ≡ aT′ = aT = Ta = T′a = (abc · · · gh)a ≡ a(bc · · · gha)

or
abc · · · gh = bc · · · gha.

Thus if T contains n symbols, then n arbitrary consecutive sym-
bols of the sequence TT form a sequence equivalent to T.

We will now demonstrate some null sequences R for which one
can find a perfect and complete system of equivalences.
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§ VII

Example 1.

Let R be a null sequence defined using the following relations:

R ≡ X0 ≡ (X1Y1)
n1 X1 ≡ X1(Y1X1)

n1

X1 ≡ (X2Y2)
n2 X2 ≡ X2(Y2X2)

n2

X2 ≡ (X3Y3)
n3 X3 ≡ X3(Y3X3)

n3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Xr−1 ≡ (XrYr)nr Xr ≡ Xr(YrXr)nr


(6)

where Y1, Y2, · · · , Yr and Xr denote different individual symbols, These differences are important: it
means (7) will then fit the format
required for the theorem in §VI

while r and each n signify an arbitrary positive whole number.
Here we thus have

R ≡ (X1Y1)
n1 X1 ≡ (X1Y1)

n1(X2Y2)
n2 X2 ≡ · · ·

· · · ≡ (X1Y1)
n1(X2Y2)

n2 · · · (YpXp)
np Xp ≡ · · ·

where
1 ≤ p ≤ r.

Further we also have:

R ≡ X1(Y1X1)
n1 ≡ X2(Y2X2)

n2(Y1X1)
n1 ≡ · · ·

· · · ≡ Xp(XpYp)
np · · · (Y2X2)

n2(Y1X1)
n1

where
1 ≤ p ≤ r.

We get now e.g.

R ≡ X1Y1
...(X1Y1)

n1−1X1
...

...(X1Y1)
n1−1X1

...Y1X1 ≡ R

or
X1Y1 = Y1X1.

More generally, one obtains for each relevant value of q > 0

R ≡ (X1Y1)
n1 · · · (XqYq)

nq Xq+1Yq+1[(Xq+1Yq+1)
nq+1−1Xq+1]

[(Xq+1Yq+1)
nq+1−1Xq+1]Yq+1Xq+1(YqXq)

nq · · · (Y1X1)
n1 ≡ R

or one gets the equivalence:

(X1Y1)
n1 · · · (XqYq)

nq Xq+1Yq+1 = Yq+1Xq+1(YqXq)
nq · · · (Y1X1)

n1
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We thus have the following r equivalences in respect of R:
X1Y1 = Y1X1

(X1Y1)
n1 X2Y2 = Y2X2(Y1X1)

n1

(X1Y1)
n1(X2Y2)

n2 X3Y3 = Y3X3(Y2X2)
n2(Y1X1)

n1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(X1Y1)

n1 · · · (Xr−1Yr−1)
nr−1 XrYr = YrXr(Yr−1Xr−1)

nr−1 · · · (Y1X1)
n1


(7)

We remark here that X1 and R begin on the left with Xr. and Xr is different from any Yi

We add to (7) all possible equivalences:

Rδ = δR

where δ is not equal to any of the symbols Y1, Y2, · · · , Yr and Xr, so
the system formed in this way, which we will call H, is a perfect It’s perfect because it fits the format

required for the main theorem of §VI,
and we can apply this theorem with
C ≡ D ≡ R

system.
We will now prove that H is also a complete system in respect of

R, or that in respect of H it is always the case that

Rz =\ zR,

when z denotes a single arbitrary symbol.
We however need only prove the case where z is equal to one of

the symbols Y1, Y2, · · · , Yr or Xr.
We will however first prove that in respect of H or (7):

(X1Y1)
n1 · · · (XqYq)

nq [Xq+1Yq+1]
m =\ [Yq+1Xq+1]

m(YqXq)
nq · · · (Y1X1)

n1 (8)

where m is arbitrary.

The theorem is valid according to (7) for m = 0, q = 1. But if the
theorem is valid for q = h, m = 0 and for q = h, m = k, so it is also
valid according to (7) for q = h, m = k + 1.

For Some typos in the following:
- added superscript nh in line 2

- changed Yh+1 to Xh+1 in line 3(X1Y1)
n1 · · · (XhYh)

nh [Xh+1Yh+1]
m+1 ≡

≡ (X1Y1)
n1 · · · (XhYh)

nh [Xh+1Yh+1]
mXh+1Yh+1=\

=\ [Yh+1Xh+1]
m(YhXh)

nh · · · (Y1X1)
n1 Xh+1Yh+1=\

=\ [Yh+1Xh+1]
m(X1Y1)

n1 · · · (XhYh)
nh Xh+1Yh+1=\

=\ [Yh+1Xh+1]
mYh+1Xh+1(YhXh)

nh · · · (Y1X1)
n1 ≡

[Yh+1Xh+1]
m+1(YhXh)

nh · · · (Y1X1)
n1

Thus (8) is also valid for q = h, m = n or for q = h + 1, m = 0.
In this way is (8) proven.
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We now get according to (7) and (8) Typo: added superscript n1 in the
second line

YqR ≡ YqXq(YqXq)
nq · · · (Y1X1)

n1 =\ (X1Y1)
n1 · · · (XqYq)

nq XqYq ≡ RYq

XrR ≡ Xr(X1Y1)
n1 · · · (XrYr)nr Xr =\ Xr(YrXr)nr · · · (Y1X1)

n1 Xr ≡ RXr

Thus H is also a complete system in respect of R.

Our problem (II) is accordingly solved by this means for the
given null sequence R.

The above theory keeps its validity if Y1, Y2, · · · , Yr and Xr are
sequences provided that they cannot overlap with one another.

Example 2.

R ≡ ab bc ab,

where a, b and c denote single symbols.

R ≡ abbc[ab]
[ab]bcab ≡ R

or
abbc = bcab

or
R ≡ abbca[b]

[b]cabab = R

or
abbca = cabab.

In respect of the system As before, this system of equivalences
fits the format required for the main
theorem in §VI, and is thus perfect.abbc = bcab

abbca = cabab

}

we get however

aR ≡ a [abbc] ab = ab [cabab] = ab [abbc] a = abbcaba ≡ Ra
bR ≡ b [abbca] b = [bcab] abb = abbcabb ≡ Rb
cR ≡ cab [bcab] = [cabab] bc = abbcabc ≡ Rc.

Example 3.

Let
R ≡ ABABA,

where A and B are such sequences that ABA is the largest sequence
that the two sequences of R have in common.

Further let
ABA ≡ UUU · · ·U ≡ Un

where U is not a power sequence, and where U contains more
symbols than A.
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Thus we have here
U ≡ AX ≡ YA

or
B ≡ XUn−2Y.

Since AB = BA, we get

R = BAABA ≡ XUn−2YAAXUn−2YA ≡ XU2n−1

R = ABAAB ≡ AXUn−2YAAXUn−2Y ≡ U2n−1Y

or
X = Y.

If X contains more symbols than A, or

U ≡ ACA

then we get
AC = CA.

If A and C here represent single different symbols, or sequences
which cannot have an overlap with each other, then our problem
(II) is solved through these latest equivalences.

Example 4.

R ≡ xnyxn

where x and y are single symbols.
We get

xny = yxn

R = x2ny = yx2n

R = yx[x2n−1]

[x2n−1]xy = R

or
xy = yx

which is sufficient.

Example 5.

Let
R ≡ xnyxnyxn . . . xnyxn ≡ xn(yxn)p ≡ (xny)pxn

n > 1, p > 1.

Here we have first Thus we can always pull all the y’s to
the left (moving any xn to the right) or
vice versa.

xny = yxn.
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Second one thus gets:

R = ypx[x(p+1)n−1]

[x(p+1)n−1]xyp = R

or
ypx = xyp.

We will now show that the equivalences:

xny = yxn

ypx = xyp

}
(K)

form a complete and perfect system K in respect of R.

First it is certainly Proving completeness is the easy part.

Typo: changed = to =\ at the end of
the first equationxR =\ xx(p+1)nyp =\ x(p+1)nypx=\ Rx

yR =\ yypx(p+1)n =\ ypx(p+1)ny =\ Ry.

Second we will show the following: This is just the definition of a perfect
system being spelt outIf S and T are such sequences that, in respect of the System K,

zS =\ zT,

so that one can thus find a sequences E where

zS ∼ E1 ∼ E2 ∼ · · · ∼ Er ∼ zT,

where z is an arbitrary symbol denoting x or y, then in respect of K
we would also have

S =\ T.

There is then such a sequence F that

S ∼ F1 ∼ F2 ∼ · · · ∼ Fr ∼ T.
The proof will be by induction over

(a) the length of a derivation and
(b) the number of symbols in S.

Through the figure
X ∼ Y

we will indicate here that one can get Y from X by exchanging
a subsequence xny or yxn or ypx or xyp for its corresponding se-
quence.

The theorem is valid now first when zS ∼ zT. Then clearly For the base cases, note that both the
equivalences in K must change the
leftmost symbol.

S ∼ T.
Second the theorem is also valid when

zS ∼ E ∼ zT
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Then clearly
S ≡ T.

Third, the theorem is valid when both S and T denote just a
single symbol. Then clearly

S ≡ T.

We assume now in advance that the theorem is always true Inductive hypothesis

when both S and T are composed of at most m symbols. Further we
assume that the theorem remains true when both S and T contain
m + 1 symbols, and where the number of E-sequences r is not
greater than n > 1.

We then need only to prove that the theorem remains true when
both S and T are composed of m + 1 symbols, while in the deriva-
tion

zS ∼ E1 ∼ E2 ∼ · · · ∼ Er ∼ zT

the number r of E-sequences is equal to n + 1.
If it is the case that e.g.

z ≡ x

so we thus have

xS ∼ z1C1 ∼ z2C2 ∼ · · · ∼ zn+1Cn+1 ∼ xT.

If here e.g.
zk ≡ x

so we get
S =\ Ck =\ T.

In the opposite case one gets however i.e. no zk is x

xS ∼ yC1 ∼ yC2 ∼ · · · ∼ yCn+1 ∼ xT.

If here either

S ≡ xn−1yS′, T ≡ xn−1yT′

or
S ≡ ypS′, T ≡ ypT′

then one gets respectively

xS ≡ xnyS′ ∼ y(xnS′) ∼ · · · ∼ y(xnT′) ∼ xnyT′ ≡ xT

xS ≡ xypS′ ∼ y(yp−1xS′) ∼ · · · ∼ y(yp−1xT′) ∼ xypT′ ≡ xT

In both cases we get
S′ =\ T′

or
S =\ T.
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We need then only to consider the case where e.g. Since ∼ is symmetric this covers the
other “two” cases

S ≡ xn−1yS1, T ≡ ypT1.

We get then:

xS ≡ xnyS1 ∼ y(xnS1) ∼ · · · ∼ y(yp−1xT1) ∼ xypT1 ≡ xT

or
xnS1 =\ yp−1xT1.

We get here the alternatives:

yp−1xT1 ∼ · · · ∼ yp−1x(xn−1T2) ∼ · · · ∼ xnS1

yp−1xT1 ∼ · · · ∼ yp−1x(ypT2) ∼ y2p−1xT2 · · · ∼ xnS1.

In the first alternative

T1 =\ xn−1T2

xnyp−1T2 =\ xnS1

or
yp−1T2 =\ S1

or Typo: changed ≡ to =\ at the end of
this equationS ≡ xn−1yS1 =\ xn−1ypT2 =\ ypxn−1T2=\ ypT1 ≡ T.

In the second alternative

yp−1xT1 ∼ · · · ∼ yqp−1x(xn−1T3) ∼ · · · ∼ xnS1

or

xT1 =\ yp(q−1)xnT3

T1 =\ xn−1yp(q−1)T3

S1 =\ yqp−1T3

or

S ≡ xn−1yS1 =\ xn−1yqpT3 =\ ypxn−1y(q−1)pT3 =\ ypT1 ≡ T.

In this way the theorem is proved.

§ VIII
Finally we wish to make a few remarks.

If R denotes an arbitrary null sequence, then there exists three
series of symbol sequences

P1, P2, . . . Pm (α)

Q1, Q2, . . . Qm (β)

R1, R2, R3, . . . Rn (γ)

with the following properties:

1. Pr and Qr are - for each value of r - equivalent to each other in
respect of R, and each of these sequences contains fewer symbols
than R.
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2. All sequences R1, R2, . . . Rn, each of which denote a null se-
quence, are equivalent to one another in respect of the equiva-
lences

P1 = Q1

P2 = Q2

. . . . . . . . . .
Pm = Qm

 (δ)

3. For each r the series (γ ) contains two sequences Rp and Rq such
that

Rp ≡ PrU
UQr ≡ Rq

where U denotes a symbol sequence.

4. If for two arbitrary sequences Rp and Rq of the series (γ ) there
exist such symbol sequences C, D and U that

Rp ≡ CU
UD ≡ Rq

then the equivalence
C = D

forms one of the equivalences of (δ ).

One sees immediately that all the (γ )-sequences contain equally
many symbols, and similarly for Pr and Qr for each value of r.

We will now show how one can gradually form the sequences in
(γ ) and the equivalences in (δ ).

Let
S1, S2, · · · , Sk

denote k series of symbol sequences R

R1
1, R1

2, · · · , R1
n1

R2
1, R2

2, · · · , R2
n2

. . . . . . . . . . . . . . . . . . . . . .
Rk

1, Rk
2, · · · , Rk

nk

where each Ry
x denotes a single symbol sequence, while

Rθ
1, Rθ

2, · · · , Rθ
nθ

for each θ is said to denote the series Sθ .
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Further, we signify by

E1, E2, · · · , Eh

h systems of equivalences

P1
1 = Q1

1
P1

2 = Q1
2

. . . . . . . . . . .
P1

m1
= Q1

m1

· · ·

Ph
1 = Qh

1
Ph

2 = Qh
2

. . . . . . . . . . .
Ph

mh
= Qh

mh

where each P and each Q denotes a single symbol sequence, and
where Eθ for each value of θ is said to represent the system

Pθ
1 = Qθ

1
Pθ

2 = Qθ
2

. . . . . . . . . . . .
Pθ

mθ
= Qθ

mθ
.

The series S1 only contains the null sequence R.
For each value of θ we form Eθ from Sθ and further Sθ+1 from Eθ

as follows:
First, if the system

S1, S2, · · · , Sθ

contains two such sequences Rp and Rq that

Rp ≡ CU
UD ≡ Rq

where C, D and U denote single symbols or sequences, then

C = D

is equal to one of the equivalences from Eθ .
For each equivalence

Pθ
r = Qθ

r

from Eθ that are opposite for each value of r in the group, the series
S1, S2, · · · , Sθ contains such sequences Rp and Rq that

Rp ≡ Pθ
r U

UQθ
r ≡ Rq
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where U denotes a single symbol or a sequence. In this way Eθ is
completely defined.

Finally, let Sθ+1 be formed from all of those unique sequences
Rθ+1, that are equivalent to all R-sequences in the series S1, S2, · · · , Sθ

in respect of the equivalences of the system E1, E2, · · · , Eθ .
One sees immediately then that Sθ is contained in Sθ+1 and that

Eθ is contained in Eθ+1.
One can however choose θ so large that

Sθ+1 ≡ Sθ

and thus also
Eθ+1 ≡ Eθ .

In this way our claim is proven.

From the system (δ ) we can now choose a system (ε ) of equiva-
lences independent from each other

A1 = B1

A2 = B2

. . . . . . . . .
Ak = Bk

 (ε)

that one can derive each equivalence in (δ ) from (ε ) while one can
thus derive no equivalence in (ε ) from the others.

(ε ) can be so chosen that the number k of these equivalences
is minimised. Further, one can choose (ε ) so that none of these
equivalences can be replaced by another with fewer symbols.

In (ε ) it is never the case that

Ar ≡ Br

and further we never have simultaneously

Ar ≡ As

Br ≡ Bs

or

Ar ≡ Bs

Br ≡ As.

Theorem. The system (ε ) contains no equivalences of the form

TX = TY

where e.g. X starts the left of one of the sequences Rx of the (γ )-
sequences, i.e.

XW ≡ Rx.
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Since the named equivalence must also occur in (δ ), there are
such sequences Ry, Rz and Rµ in (γ ) that:

Ry ≡ TXU
UTY ≡ Rz

Rµ ≡ UTX
XW ≡ Rx

or the equivalence
UT = W

is contained in (δ ), or

Rx ≡ XW = XUT
UTY ≡ Rz.

However (ε ) then contains the equivalence

X = Y,

from which one can clearly derive Impossible, since by the definition
of (ε ) you can’t derive one of its
equations from any of the others.TX = TY.

Theorem. The system (ε ) contains no equivalence of the form:

SX = SY,

where S forms the right end of a (γ )-sequence.
Since the named equivalence must also occur in (δ ), there are

such sequences Rx, Ry, Rz and Rµ in (γ ) that:

Ry ≡ SXU
USY ≡ Rz

Rx ≡ K S
S XU ≡ Ry

or one obtains the equivalence K = XU which is thus contained in
(δ ). Finally

Rx ≡ KS = XUS= Rµ

Rz ≡ USY.

However (δ ) then contains the equivalence

X = Y,

which is impossible.
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Theorem. If

Rx ≡ PU
and

UQ ≡ Ry,

where Rx and Ry denote two sequences from (γ ), while thus

P = Q

forms one of the equivalences of (δ ), then we have in respect of (δ )
or in respect of (ε )

PR = RP

QR = RQ

UR = RU

where R denotes an arbitrary sequence of (γ ).
Then

PR = PRy ≡ PUQ ≡ RxQ = RxP = RP

UR = URx ≡ UPU = UQU ≡ RyU = RU.

Further, one gets in respect of (ε )

PU ≡ Rx = Ry ≡ UQ = UP.

Theorem. If one of the sequences P and Q in (δ ), which we shall
represent with C, has the form

C ≡ NM,

where M forms the starting left side of a sequence Rx of the (γ )-
sequences, then we have for each arbitrary sequence R of the (γ )-
sequences in respect of (δ ):

NR = RN

MR = RM.

For if D is the sequence corresponding to C in (δ ), there are
clearly such sequences Ry and Rz in (γ ) that

Ry ≡ NMU
UD ≡ Rz

or Typo: changed equals to equivalence
Rz = UNM

MW≡Rx

or
UN = W

or finally

NR = NRx ≡ NMW = NMUN ≡ RyN = RN.

Further

MR = MRz ≡ MUNM = MWM ≡ Rx M = RM.
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Theorem. Let Rx, Ry, Rz and Rµ denote four arbitrary different or
not different null sequences R of the system (γ ). Further M and N
denote two sequences which are obtained through insertion of Rz

and Rµ in Rx and Ry respectively. That is,

M ≡ aRzb

N ≡ cRµd

where Typo: changed equals to equivalence

Rx ≡ ab

Ry ≡ cd.

If there are then such sequences C, U and D that

M ≡ CU
UD ≡ N

then either
C = D

forms one of the equivalences of (δ ), or one can obtain sequences In cases 1-5 below we get C = D, while
in cases 6-8 C and D differ by some R.from C and D through removal of subsequences R of the systems

(γ ) that are equivalent in respect of (δ ).
Letting the symbol = represent equivalence in respect of (δ ), we

can distinguish the following cases: These 8 cases cover all possible config-
urations of the overlap between aRzb
and cRµd

1. a ≡ Ce c ≡ e f
b ≡ hi d ≡ iD

Rz ≡ f g
gh ≡ Rµ

or
f = h

Rx ≡ Cehi = Ce f i
e f iD ≡ Ry

or
C = D.

2. a ≡ Ce c ≡ e f
D ≡ hd

Rz ≡ f g
gbh ≡ Rµ

or
f = bh

Rx ≡ Ceb
ebD ≡ ebhd = e f d ≡ Ry

or
C = D.
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3. a ≡ Cce, d ≡ gbD
Rµ ≡ e f

f g ≡ Rz

or
e = g

Rx ≡ Cceb = Ccgb
cgbD ≡ Ry

or
C = D.

4. C ≡ ae, D ≡ gd
Rz ≡ ec f

f bg ≡ Rµ

or
ec = bg

Rx ≡ ab
bg f = ec f ≡ Rz

or
a = g f

Rµ ≡ f bg = f ec
cd ≡ Ry

or
f e = d

or
C ≡ ae = g f e = gd ≡ D.

5. b ≡ gh, c ≡ f g
C ≡ ae, D ≡ id

Rz ≡ e f
f gd ≡ Ry

or
e = gd

Rx ≡ agh
hi ≡ Rµ

or
ag = i

or
C ≡ ae = agd = id ≡ D.

6. c ≡ f bg
C ≡ ae, D ≡ gRµd

Rz ≡ e f
f bgd ≡ Ry
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or
e = bgd

or
C ≡ ae = abgd = Rxgd

D ≡ gRµd.

7. b ≡ ec f
C ≡ aRze, D ≡ gd

Rz ≡ aec f
f g ≡ Rµ

or
aec = g

or
D ≡ gd = aecd = aeRx

C ≡ aRze.

8. b ≡ e f , c ≡ f g
C ≡ aRxe, D ≡ gRµd

Rx ≡ ae f
f gd ≡ Ry

or
ae = gd.

i. May 1914.
Axel Thue.
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