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Abstract

We prove a general theorem that can be used to derive recurrences for familiar
arithmetic functions such as r7,(n) and t;(n), the number of representations of n as a
sum of k squares and k triangular numbers, respectively.
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1 Introduction

Jacobi first investigated the relationship between the sum of squares and divisor sums. Leg-
endre also found formulas relating the sum of triangular numbers to divisor sums. The
history of developments in this area has been covered by Dickson [2, Chaps. VI-IX]. More
recent treatments include Grosswald [4] and Moreno-Wagstaff [3].
In this paper, we prove a general theorem that gives a number of recurrences, including
the following:
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where 7(n) denotes the number of representations of a positive integer n as a sum of k
squares, and D(n) gives the sum of the reciprocals of the odd divisors of n.
We also prove that
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where tx(n) is the number of representations of n as the sum of k triangular numbers,
representations with different orders are counted as unique, and

S )
dlj dlj

We state and prove our main theorem in Section 2. Section 3 is devoted to three special
cases of this theorem.

2 The main theorem

Theorem 1. Let F(q) and G(q) be two analytic functions of q for |q| < 1 with F(0) = 1
and G(0) = 0. Further, let
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Proof. From the hypotheses it is clear that f;(0) =1, for £ > 0, fy(n) = do, (0;; denotes the
Kronecker delta), and gy = 0. Furthermore, we have

which on comparison of coefficients of ¢" on both the sides gives (4).
To prove (5), we use the generating function for the incomplete exponential Bell polyno-
mials [1, p. 133] to deduce that
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which on comparison of coefficients of ¢" on both the sides gives
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Now we use Faa di Bruno’s formula [5]:

%Q(F(Q)) = ; Q(k‘) (F(q)) Bn,k (F’(q), F”(q), o F(n7k+1)(q))



with Q(¢) = log ¢ and let ¢ — 0 to deduce that
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where in the last step we have used the known “hockey stick” identity [7, 6]
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This completes our proof. O

3 Three applications of the theorem

Corollary 2. We have
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where D(n) is the sum of the inverses of the odd divisors of n, that is, D(n) = > amn é.
dodd

Remark 3. Equation (8) was obtained by Jha [14].

Proof. In Theorem 1, we let

[e.9] n
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Then fy(n) = (—1)"rg(n). We can also deduce that
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Now using (4) and (5) we get (7) and (8), respectively. O
Corollary 4. We have
ke
te(n) = — > 5 T(j) tr(n— ), 9)
j=1
and .
~ (=" (n
T pu—
) (") o, (10)
k=1
where T'(n) is given by (3).
Proof. In Theorem 1, we let
e mesn pr(1=¢Y)° 7
F(q) = nz;q = II ) E 1+¢)?(1—-¢) [8 Eq. (2.2.13) on p. 23].

Then
fr(n) = tx(n).
We can also deduce that
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Now using (4) and (5) we get (7) and (8), respectively. O
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Remark 5. Robbins [9] has shown the relation
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This implies the second equality in (3).

Corollary 6. Let [],-,(1 —¢")* = >0 pe(n) ¢". Then we have

pe(n) = YZU(J')Z%(”—J'), (12)

and
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Remark 7. Equation (12) was first obtained by Gandhi [11, 12]. Equation (13) was obtained
by Jha [13].
Proof. In Theorem 1, we let
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Then fr(n) = pr(n), which denotes the number of partitions of n with k colors. We can also
deduce that
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Now using (4) and (5) we get (12) and (13), respectively. ]



Remark 8. Letting k = —1 in the equation (12) gives the well-known relation:

n
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Furthermore, letting k& = 1 gives an identity obtained by Osler-Hassen-Chandrupatla [10]

o(n) = —na, — ZU(J) an—j (n>2),
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Here N =0,+£1,£2,....

References

[1] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Ezpansions,
Springer, 2011.

[2] L. E. Dickson, History of the Theory of Numbers. Vol. 1I: Diophantine Analysis, Dover
Publications, 2005.

[3] C.J.Moreno and S. S. Wagstaff Jr., Sums of Squares of Integers, Chapman & Hall/CRC,
2006.

[4] E. Grosswald, Topics from the Theory of Numbers, Birkauser, 1984.

[5] W. P. Johnson, The curious history of Faa di Bruno’s formula, Amer. Math. Monthly
109 (2002), 217-234.

[6] C. H. Jones, Generalized hockey stick identities and N-dimensional block walking, F'-
bonacci Quart. 34 (1996), 280-288.

[7] T. Arakawa, T. Ibukiyama, and M. Kaneko, Bernoulli numbers and Zeta Functions,
Springer, 2014.

8] G. E. Andrews, The Theory of Partitions, Cambridge University Press, 1998.

[9] N. Robbins, On partition functions and divisor sums, J. Integer Sequences 5 (2002),
Article 02.1.4.

[10] T. J. Osler, A. Hassen, and T. R. Chandrupatla, Surprising connections between parti-
tions and divisors, College Math. J. 38 (2007), 278-287.

7


https://cs.uwaterloo.ca/journals/JIS/VOL5/Robbins/robbins4.html

[11] J. M. Gandhi, Congruences for p,(n) and Ramanujan’s 7-function, Amer. Math. Monthly
70 (1963), 265-274.

[12] O. Lazarev, M. Mizuhara, and B. Reid, Some results in partitions, plane partitions, and
multipartitions, Summer 2010 REU program in mathematics at Oregon State University,
2010.

[13] S. Kumar Jha, A combinatorial identity for the sum of divisors function involving p,(n),
Integers 20 (2020), Paper #A97.

[14] S. Kumar Jha, An identity for the sum of inverses of odd divisors of n in terms of the
number of representations of n as a sum of squares, Rocky Mountain J. Math. 51 (2021)

581-583.

2020 Mathematics Subject Classification: Primary 11A99, Secondary 11P99.
Keywords: sum of divisors function, colour partition, sum of inverses of odd divisors of an
integer, triangular number, sum of squares.

(Concerned with sequences A000041 and A000118.)

Received October 15 2022; revised versions received October 16 2022; February 9 2023;
February 12 2023; February 25 2023. Published in Journal of Integer Sequences, February
25 2023.

Return to Journal of Integer Sequences home page.


https://oeis.org/A000041
https://oeis.org/A000118
https://cs.uwaterloo.ca/journals/JIS/

	Introduction
	The main theorem
	Three applications of the theorem

