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Abstract

This text recounts my scientific itinerary from the late 1970’s up to now, as I view it today,
as well as the context in which it took place. The views expressed here are of course quite
personal, and extremely partial in regard of the global landscape of research on programming
languages in France and in the world. My research takes place mostly on the theoretical end
of the spectrum of computer science. As a matter of fact, my scientific journey is now mainly
taking place in homotopical algebra and higher category theory, with an eye on their recently
unveiled links with type theory.

This text is dedicated to the memory of
Gilles Kahn (1946-2006), Martin Hofmann (1965-2018), and Maurice Nivat (1937-2017).

1 How I became a computer scientist

As a student, I had a hesitation, as for my future, between languages (the real ones) and math-
ematics. This brought me all the way to the Marquises islands where I had the plan to become
acquainted with Polynesian languages. This was not serious, though (but the human experience
was very much worth!). When I came back, I went to visit Maurice Gross (a pioneer in compu-
tational linguistics), who recommended me to enroll in the “DEA d’Informatique Théorique” at
Université Paris VII (1976-1977). I followed his advice. I remember my passion for the courses
of Dominique Perrin and Luc Boasson on codes (à la Schützenberger) and on formal languages,
respectively. My memoir was undertaking a compilation/comparison/classification of Dutch works
on biology-inspired formal languages (L-systems, as I recall). When I presented it for the oral
examination, I understood that it had been received well enough when Maurice Nivat began to say
“tu” to me. I also remember that a fellow student had as a starting point for his memoir a long
paper of Dana Scott, Data types as lattices, which did not appeal to me at all... I had no idea
about λ-calculus.

Then, something happened. I was about to accept a thesis grant from Université Paris VII,
when a young researcher named Gérard Berry tried (and finally succeeded) to get in touch with me
and mentioned me the possibility to come to Sophia-Antipolis to do my PhD there with him. When
I heard this, I immediately made a connection with my hang-gliding activities of the time: what
a wonderful place to work at, with so many flying sites around! I received Maurice’s benediction
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to accept Gérard’s offer, and I headed towards the South, with my wing on the roof of my Combi
VW. And then I learned λ-calculus! Working with Gérard Berry proved magical rightaway. He
had a visionary approach to the full abstraction problem for PCF, and shared his intuitions with
me. They were so sharp that I had no difficulty in “mathematising them” in a few months time.
But let me introduce the subject.

2 Various flavours of semantics

In the early 1970’s, a brand new field of research called denotational semantics arose from the
encounter between a logician (Dana Scott) and a computer scientist (Christopher Strachey) in
Oxford.

• Strachey was working a bit “like a physicist”: assuming that equations such that D =
{?} + (A ×D) (for lists), or the really challenging D = D → D (needed for giving meaning
to untyped programs) had solutions, he developped both a notation for and a thorough de-
scription of the mathematical meaning of programs in terms of set-theoretic functions [51].
A notation was introduced for this purpose: [[M ]] for the meaning of the program (or piece
of program) M , with the understanding that M lives in the syntax, and [[M ]] is an element
of some set of denotations, as they were called. Typically, a program P from Nat (the type
of natural numbers) to Nat has as denotation a (partial, see below) function from N to N
(the natural numbers that we learn at school). Organising the set of denotations of programs
yields a notion of model. The word is taken from logic, where we have a setM of individuals
(the model), and where predicates and formulas (the syntax) are interpreted as subsets ofM.

• Scott had the mathematical framework to solve these equations, in the setting of complete
partial orders and continuous functions between them [59, 60]. He arrived there by taking
inspiration from works in recursion theory (Myhill-Shepherdson [54], Platek [55]) that high-
lighted the partial order on the set of partially defined functions between any two sets X and
Y : if f, g are two such functions, we set f ≤ g if g extends f in the sense that g coincides
with f on the domain of definition of f , and hence the domain of definition of g contains the
domain of definition of f . Scott’s reading of this key example of a complete partial order was
that f, g represent partial knowledge of the result of a computation as it proceeds.

The more we compute or observe on the behaviour of a program, the more we know about its
denotation. For example, take a recursively defined function: we know nothing (denoted by⊥)
before the computation starts; before the first unfolding of the recursive definition, we might
know its value for some arguments (typically if the text of the program starts with “if 0 then
3 else ...”), and, after each unfolding, the information about the program increases (or not!).
The point of view of denotational semantics is to synthesise these successive approximations
in the form of a least fixed point. More precisely, one writes the recursive definition of our
function f in the form f = F (f), and we set [[f ]] to be the least fixed point of [[F ]]. We
refer the reader to [4] for a textbook account of the theoretical foundations of denotational
semantics.

On the other hand, a number of researchers, like McCarthy or Landin, had enriched the toolkit
of the theory of programming languages with methods to describe the execution of programs, by
means of formally described automata-like interpreters. They were early forerunners of operational
semantics, which gained its nobility in the more achieved form of structural operational semantics
in seminal notes of Gordon Plotkin [57]. The emphasis there was on compositionality, or structural
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induction on programs. Typically, if c1, c2 are commands in, say, an imperative language, and if c1
evolves (in one step) to c′1 (possibly producing some changes, also recorded in the transition from
c1 to c′1), then c1; c2 evolves to c′1; c2 (producing the same changes). If c1 evolves to skip (i.e., the
execution of c1 is completed), then c1; c2 evolves to c2.

Gilles Kahn later advocated natural semantics, which is big-step (i.e., the rules describe directly
the result of the computation, as opposed to the just sketched small-step semantics which describes
computation step by step), and easier to implement in logic programming style.

What occupied me in the first years of my career was the correspondence between these two
kinds of semantics: denotational and operational. I’ll come to that in the next section. For the
time being, let me briefly complete the landscape of semantics as it emerged in roughly the same
period of time.

Quite linked with operational semantics is axiomatic semantics, with Floyd, Dijkstra and Hoare
as founding fathers. Here, one aims at establishing properties of programs by means of logical
assertions that hold at the beginning of an execution (the precondition) and change according
to formal rules associated with each instruction in the code of the program, allowing to predict
and prove that the program will satisfy a desired logical assertion (the postcondition) when the
program’s tasks will be completed, or, in the case of non-terminating programs, that the program
will respect some invariants.

Denotational, operational, and axiomatic semantics are the three main approaches, but the
frontiers are not so clear between them, and this is fortunate. In particular, as we shall see, some
denotational models are very much “syntactic”. Some uses of axiomatic semantics techniques are
so refined that they are quite close to the full description of the meaning of a program. Conversely,
“rough” kinds of denotational semantics may be used to prove properties of programs, very much
in the style of axiomatic semantics: this was advocated by Patrick Cousot and Radhia Cousot, who
founded the nice framework called abstract interpretation.

Let me finish this very brief overview with another flavour of semantics, called algebraic seman-
tics, which flourished a lot in France thanks to the enthusiastic efforts of Maurice Nivat. Here, the
meaning of the program remains a syntactic object (typically an infinite tree) that makes all the
potential of a finite piece of code explicit. The approach was based on the formalism of recursive
program schemes, while denotational semantics was very much based on Church’s λ-calculus. In
recent years, these formalisms have been brought together: λ-calculus is equivalent to so-called
higher-order recursive program schemes, which are themselves equivalent to automata with stacks
of stacks (see e.g. [14]).

3 The full abstraction problem

The notion of fully abstract denotational model of a programming language was formulated in
influential papers of Milner [52] and of Plotkin [56], relatively to a toy language called PCF, that
served as a backbone for a lot of the works on denotational semantics. More specifically, PCF
has types built recursively from two base types, booleans and natural numbers, using the function
type as unique type constructor. For example, ((Nat → Bool) → Nat) is a type. The terms are
built recursively from variables (x) and a few arithmetic constants, by means of application (MN),
function definition (λx.M), if then else constructs and fixpoints. (The fragment with only x, MN
and λx.M is the λ-calculus). We refer to the original papers quoted above and to [4] for a complete
definition and discussion.
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But it suffices here to remember that we have a core typed deterministic functional language (i.e.,
allowing to declare functions and to apply them), together with a collection of observable types (here
Nat and Bool) with associated observable values (such as 3 or “true”), and an operational semantics
for programs P that are closed (i.e., without non-locally defined identifiers) and of observable type.
One writes P →∗ v to denote the fact that the evaluation of P terminates with an observable value
v. Most denotational models satisfy the so-called computational adequacy properly, which states
that, for all such P , we have P →∗ v if and only if [[P ]] = v. In particular, observable values receive
their “standard” interpretation [[v]] = v.

Thus, there is a perfect match between the syntax and the semantics at observable types. Compu-
tational adequacy is usually proved by a variant of the so-called computability/realisability method,
which has a long history in logic as a tool to prove consistency of logical systems and is also in-
strumental in proving termination properties in typed λ-calculi.

The property of full abstraction, which we introduce now, allows to formulate a correspondence
between syntax and semantics for arbitrary terms, not necessarily closed nor of observable type. Its
formulation relies on the notion of contextual (or operational) equivalence, which is the following:

M =op N ⇔ (∀C C[M ]→∗ v ⇔ C[N ]→∗ v) ,

where C ranges over contexts (programs with a hole) such that both C[M ] (C in which the whole
is filled with M) and C[N ] are closed and of observable type. We can think of these contexts as
experiments; then M,N are operationally equal if there is no experiment that can distinguish them.
Then the model is called fully abstract with respect to L if for all M,N (of the same type):

[[M ]] = [[N ]] ⇔ M =op N .

The left-to-right direction is called adequacy (or “abstraction”) and is an easy consequence of
computational adequacy. The other direction is the hard one, and corresponds to the full of full
abstraction or the complète of “complète adéquation” (the French term used for full abstraction).
A nice explanation of why this is the hard side of the equivalence comes from the theory of inter-
section types [16] (systematised in Abramsky’s “domains in logical form” [2]), which recasts the
denotational side of the correspondence as the side of “proofs”, and the operational side as the
side of “models”. Then, under these glasses, fullness/completeness goes in the right direction: if
|= M = N (i.e., if M =op N), then `M = N (i.e., [[M ]] = [[N ]]).

The full abstraction problem consisted in constructing a fully abstract model of PCF. Milner
exhibited one such model as a quotient (mimicking/accounting for the contextual equivalence) of
a sort of “algebraic semantics”, and he even showed that this model was the unique extensional
fully abstract model (i.e., made of functions, unlike the model discussed in the next section) [52].
On the other hand, Plotkin showed that Scott’s continuous model of PCF (the only one available
at the time) is not fully abstract, but he showed that it becomes fully abstract for an extension
of PCF with “parallel or” (actually, originally, “parallel if” – see [19] for the more natural variant
with parallel or). From there on, two choices were open for investigations on full abstraction:

1. vary/“synthesise” the language to fit an intended model,
2. vary the model to fit an intended language.

Plotkin’s result was a result of the first kind. The quest for an answer to question (2) for the
original language PCF is what constituted the (loosely formulated) full abstraction problem. The
(implicit) goal was to adjust Scott’s continuous model to recast Milner’s model without reference
to the syntax, but also without resorting to a quotient.

Since Plotkin’s result designated the patient zero of lack of full abstraction, Berry engaged in
restricting Scott continuous functions to a subclass of so-called stable functions [7] ruling it out.
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To discuss these notions, it is good to think of input and output data as tree-like structures whose
nodes or/and edges are decorated by elementary pieces of data. Continuous functions are defined
to be those functions f for which any single piece of the output f(x) may be computed using a finite
part of the input x, and one can take it to be minimal. The stability condition requires that, for a
fixed x and a fixed piece of f(x), such a minimal input is unique, and thus minimum. Let us see why
it excludes por (parallel or), which is such that por(true,⊥) = true and por(⊥, true) = true (recall
that ⊥ is a symbol for an undefined value). (One endows B = {⊥, true, false} with the partial order
defined by ⊥ ≤ true and ⊥ ≤ false.) We have that both (true,⊥) and (⊥, true) are minimal, hence
we do not have uniqueness (relative to the input (true, true)). A program implementing por(a, b)
should be able to output the value true as soon as either a or b is true, and, supposing that a and
b are the outputs of two programs P and Q, it would necessitate computing P and Q in parallel,
which a sequential language like PCF does not allow, as war first observed by Scott in [61].

But stability is not enough. A more subtle example was given by Berry and is known as
Gustave’s function (a nickname given to Gérard Berry because of an overloading of Gérard’s at
Inria, which was IRIA at the time). A (partial) specification of this function is:

Gustave(true, false,⊥) = true Gustave(false,⊥, true) = true Gustave(⊥, true, false) = true.

The reader can check that this function is stable, but again, it can only be computed by running
the execution of the three arguments in parallel.

The next candidate was then the notion of sequential function, introduced by Vuillemin [62]
(and also Milner [52]): a function f : Natn → Nat is said to be sequential (at (⊥, . . . ,⊥)) if
f(⊥, . . . ,⊥) = ⊥, and if, whenever there exists (y1, . . . , yn) such that f(y1, . . . , yn) 6= ⊥, then
there exists i ∈ {1, . . . , n} such that (for all (x1, . . . , xn)) if f(x1, . . . , xn) 6= ⊥, then xi 6= ⊥. As
the reader can easily check, this definition discards the function Gustave. The notion of sequential
function was then generalised by Kahn and Plotkin [42] to the framework of concrete data structures
(introduced below). But it does not scale up to higher types such as (Nat → Nat) → Nat. More
precisely, if A,B are concrete data structures, then the set of sequential functions from A to B does
not give rise to a concrete data structure.

Then Berry had a dream: it should be possible to model, at all types, the sequential computa-
tional behaviours, and only them, by moving from a traditional framework of appropriate ordered
sets and functions to a setting retaining more than the ordinary input-output behaviour of pro-
grams. For example, the following two schedules for the logical and (partially specified below)
should be given different interpretations in the model.

if b = true then if a = true then true
if a = true then if b = true then true

Starting from this luminous intuition, I made the dream into a model (1978). Gérard helped
me in smoothing its presentation, while Maurice Nivat followed the work with benevolence and
suggested the name “sequential algorithm”. Then Gérard made it into a programming language
called CDS, to which I gave its first interpreter (1981). I recall this in the next section.

But before that, and anachronically, let me mention that another route, staying in the realm
of “honest” functions, was proposed successfully at the turn of 1990 by Antonio Bucciarelli and
Thomas Ehrhard to achieve the same goals of both “killing” Gustave and providing a model for
PCF programs of all types. Their model is based on a reformulation of Kahn-Plotkin’s defini-
tion of sequentiality as a suitable meet-preservation property. But again, sticking exactly to the
preservation of the kind of meets involved in this characterisation did not scale up to higher types.
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Bucciarelli and Ehrhard’s “dream” and insight was to find a way to enlarge their framework in
such a way that it would be preserved at all types, at the price of (seemingly) losing a connection
with notions of sequentiality at higher orders. Which meets need be preserved is dictated by an
additional structure on domains, called coherence. The morphisms are the functions preserving
these coherent meets and are called strongly stable. Later, Ehrhard was able to connect the two
routes by exhibiting the strongly stable model as the extensional collapse of the model of sequential
algorithms [28].

4 Sequential algorithms

A concrete data structure (originally called information matrix in [42]) has a collection C of cells
and a collection V of values. Data x are represented as sets of pairs (c, v) of events such that c ∈ C
and v ∈ V , called state. Hence a datum is made of elementary bricks which consist of a cell c filled
with some value v (where a cell holds at most one value). Some cells must be filled before others
can be filled, just like a node of a tree can be drawn only if its ancestors have been drawn before,
but we shall not go into that level of detail.

For example, the booleans can be represented with one cell ? and two values “true” and
“false”. The triplet (true, false,⊥) may be represented as {(?1, true), (?2, false)}: there are three
cells ?1, ?2, ?3 corresponding to the three coordinates, and we spell out that ?1 holds the value true,
that ?2 holds the value false, and (implicitly, by not mentioning it) that ?3 is not filled.

For function types, we take as cells pairs of a finite input state x = {(c1, v1), . . . , (cn, vn)} and
an output cell c′, written xc′, while values have the form “ valof c ” (where c is an input cell) or
“ output v′ ” (where v′ is an output value). The states f of this concrete data stucture are called
sequential algorithms, and their events read as follows: (xc′, output v′) ∈ f expresses (roughly) that
(c′, v′) ∈ f(x), while (xc′, valof c) ∈ f expresses that, at input x, in order to compute the value of
the output cell c′, f needs, or waits for, the value of cell c. As an example, the meaning of

if b = true then (if a = true then true)

of type Bool ×Bool→ Bool is

{(∅?, valof ?2),
({(?2, true)}?ε, valof ?1),
({(?2, true), (?1, true)}?, output true)}.

In CDS, computation proceeds in a lazy, stream-like way. If an expression a of the language, of
any type, is entered for evaluation, the interpreter of the language prompts the user for a request
c and returns the value v of this cell in (the meaning of) a, and then prompts the user for a new
request c1, etc.

Now we are ready to explain the dynamics of function application, as illustrated by the two
figures APPLICATION 1 and APPLICATION 2: the outer box, when receiving a request c′,
consults the input state y stored in a local table, which stands for the part of the input x read so
far. Initially, the internal table is the empty set. The function is then asked the question yc′. If
may either answer “ valof c ” or “ output v′ ”. In the first case, control is transfered to the argument
x, because the value of cell c in x is requested. When c answers with some v, then the internal
table is updated and become y′ = y ∪ {(c, v)}, allowing for the more informed question y′c′ to be
asked. In this way a loop is formed between f and x, witnessed by a sequence c, v, c1, v1, . . . of
alternating “moves”. The loop terminates when f has received enough information from x, i.e.,
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APPLICATION 2

internal table

argument function

?
c′

?
yc′

-y

?

output v′

v′

internal table

APPLICATION 1 (interaction loop) y → y ∪ {(c, v)}

argument function

6
v

� c �valof c

?
c′

?
yc′

-y
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when the internal table y has become large enough, so that f presented with yc′ answers with
“output v′”, which yields v′ as answer to the initial request c′ to f(x).

I presented this then brand new model in 1978 at the Spring School on λ-calculus in La Châtre
(the 6th Ecole de Printemps d’Informatique Théorique – an annual series of convivial one week
meetings launched by Maurice Nivat in 1973). I presented the operational semantics of the language
CDS in 1982 in a joint French-US workshop held in Fontainebleau, and I vividly remember Gilles
Kahn stopping me when I was on the very edge of writing stuff, not on a slide, but on the table
of the projector itself. The corresponding publications, both with Gérard Berry, are [9, 10] The
language CDS was developped during a period of several years in the 1980’s in Sophia-Antipolis by
a team directed by Berry (Matthieu Devin, Francis Montagnac and Annie Ressouche). The slogan
was that it would be the “language of the years 1990”. Unfortunately, the compiler technology
of the time was poor, and also the underlying ideas were somehow ahead of their time: a widely
shared enthusiasm for interactive models of computation arose only later, with the advent of linear
logic, game semantics, ludics... – see below. And Berry turned to new adventures (Esterel).

Sequential algorithms did provide a fully abstract model, not for PCF, but for extensions of
PCF with control primitives, as offered in the language CDS, or in PCF extended with an operation
catch [15]. The model is effective in the sense that operational equivalence classes can be effectively
enumerated, and there is even a finite number of them when the base types are themselves finite
(such as the booleans).

This full abstraction result was not our initially intended goal: we wanted a fully abstract
model of PCF for short. But a later result by Loader [47] sort of settled the question negatively:
he showed that the operational equivalence for PCF is not effective. As a matter of fact, the
models of PCF given in 1994 by Abramsky, Jagadeesan, and Malacaria (AJM), and by Hyland and
Ong (HO) [38, 3] offer syntax-free presentations of term-models (which we could call an algebraic
semantics), and the fully abstract model of PCF is obtained from them by a rather “radical”
quotient, called “extensional collapse”, which gives little more information than Milner’s original
term model construction of the fully abstract model.

But the importance lies not in the goal, but in the research that it triggered. The AJM and the
HO models were partly inspired by our early work on sequential algorithms, partly by a tradition
of dialogue games in logic, and partly by linear logic (see below). Like in CDS, they feature
interactive computation, where cells and values become an opponent and a player, and where what
we called states are now called strategies. Collectively, they opened a new research area, called
game semantics, mainly based in the United Kingdom. Game semantics (in the HO presentation)
turned out to be extremely successful in providing a sharp classification of various programming
language features such as control, references, non-determinism... each of these corresponding to
suitable restrictions or liberalisations on the allowed strategies.

Last but not least, we discovered later that Kleene had the same experience of a need to record
internal information in addition to the plain underlying functions, and as a matter of fact he
essentially built the Berry-Curien sequential algorithms at lower-order types [43]. In his colourful
vocabulary, he modelled higher-order recursive computations as “machines” communicating via
“oracles”, or “envelopes” that are handed by the sender and opened by the receiver.

I’d also like to mention that, parallel to, and complementing the semantic study of stability and
sequentiality, Berry had “double-checked” their relevance by showing a syntactic stability theorem
and a syntactic sequentiality theorem within the λ-calculus [8]. In the same vein, stability and
sequentiality have been investigated in the realm of recursive schemes and term rewriting systems
by Berry and Lévy [11] and by Huet and Lévy [37], respectively.

The common author of these two papers, Jean-Jacques Lévy, was the author of a monument:
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the theory of optimal reduction in the λ-calculus, described in his Thèse d’Etat [46], based on
a thorough analysis of causality in the λ-calculus. To get a flavour, in a sequence of rewritings,
some steps could have been performed earlier, while others depend on previous reductions, like in
the sequence (λx.xM)(λx.x) → (λx.x)M → M → M ′, in which the computation M → M ′ was
available from the beginning, while (λx.x)M is called a created redex. As the reader may feel, there
is (more than) an air of family between tracing back the source of a redex creation and finding the
minimum part of input responsible for producing an output.

Before closing this section, I’d like to say that the influence I received from Gilles Kahn goes
far beyond his joint work with Plotkin, which was the basis for our constructions. His work on
coroutines with David MacQueen [41], as well as the so-called Kahn networks [40], were an inspiring
source for us, and especially helped me to conceive the interpreter of CDS sketched above.

5 The categorical abstract machine

My work on sequential algorithms had an interesting side-effect. The model was too baroque to
fit into the “set-and-functions based” definitions that were available at the time. Berry and I had
to learn a bit of category theory (we knew from Plotkin that we should!), and soon we were able
to formulate the model of sequential algorithms in this language. Then, viewing the categorical
interpretation of PCF as a compilation into a syntax of categorical combinators, with the help
of Guy Cousineau and Michel Mauny, I designed the Categorical Abstract Machine [18], which
was taken as the basis of the first implementation of the language Caml (ancestor of the present
language OCaml). “Caml” stands for the compression of “Categorical Abstract Machine” (CAM)
and “Meta Language” (ML). The language ML was originally conceived to develop proof tactics in
the early theorem prover LCF developed by Robin Milner and his research group at the University
of Edinburgh in the 1970s.

Let me explain this unexpected transition from sequential algorithms to the CAM in some more
detail. The language CDS was actually not based on the λ-calculus directly, but on constructions
directly derived from the categorical model: composition, pairing, projections, curryfication, eval-
uation. I soon realised that these primitives, independently of the particular model of sequential
algorithms, provided a language of combinators, different from the classical combinatory logic of
Curry et al. And I began to play with those combinators. My first PhD student, Thérèse Hardin,
wrote her PhD thesis on their confluence properties [33]. The correspondence between λ-calculus
and cartesian closed categories had been already thoroughly studied by Joachim Lambek (another
pioneer in many ways), but from a purely equational – as opposed to computational – point of
view.

But I also realised quickly that categorical combinators could be executed directly in a form
according to some operational semantics. I shared my preliminary thoughts at a small informal
workshop organised by Berry in Sophia-Antipolis in 1983, and this gave rise to a remarkable and
rare convergence of cultures: from Gérard Huet, I learned de Bruijn’s nameless notation for the
λ-calculus, which turned out to be a natural intermediate between λ-calculus and categorical com-
binators. On the other hand, Guy Cousineau presented his work on implementing ML’s static
binding in Le-Lisp (a dialect of Lisp then developed at IRIA by Jerôme Chailloux), inspired by
what F. Lockwood Morris had done for Edinburgh ML. Implicitly, his encoding was doing the same
job as the compilation into categorical combinators. All this converged rapidly to yield the CAM.
Guy and myself were joined by Michel Mauny (whom we cosupervised), and we presented our work
at the conference Functional Programming and Computer Architecture in Nancy in 1985.
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I next introduce categorical combinators (no need to learn category theory for this!), and sketch
how the CAM works. The syntax of categorical combinators is the following:

f ::= id | f ◦ f | 〈f, g〉 | Fst | Snd | Λ(f) | ev

and their abstract machine litteral counterparts are given by the following table:

id
◦
〈
,
〉
Fst
Snd
Λ
ev


 



SKIP “do nothing”
; “code concatenation”
PUSH “save the current environment”
SWAP “exchange the environment with the top of the stack”
CONS “pair the environment with the top of stack”
CDR “access the tail of the environment”
CAR “access the head of the environment”
CLOSURE “form a pair of the body of a function and of its static environment”
EV “apply a closure to an (evaluated) argument”

The CAM has three components, found in many other abstract machines: the code, the environment
and the stack. The environment has the structure of a (binary) tree (becoming a graph when
recursion is added). More precisely, environments are declared by the following syntax:

s ::= () | (s, s) | Λ(f)s,

where () stands for the empty environment (used initially when evaluating (the compilation of)
a closed program), while (s, t) builds the tree structure, and Λ(f)s is a closure. Here are the
transitions of the machine:

〈SKIP;C | s | S〉 → 〈C | s | S〉
〈CDR;C | (s1, s2) | S〉 → 〈C | s1 | S〉
〈CAR;C | (s1, s2) | S〉 → 〈C | s2 | S〉
〈PUSH;C | s | S〉 → 〈C | s | s · S〉
〈SWAP;C | s1 | s2 · S〉 → 〈C | s2 | s1 · S〉
〈CONS;C | s2 | s1 · S〉 → 〈C | (s1, s2) | S〉
〈Λ(C);C ′ | s | S〉 → 〈C ′ | Λ(C)s | S〉
〈ev ;C ′ | (Λ(C)s, t) | S〉 → 〈C;C ′ | (s, t) | S〉

A few years later (end of the 1980’s), Jean-Jacques Lévy had a nice idea. Rather than compiling
the λ-calculus into a calculus of categorical combinators (which are sort of “low-level”, even if I
synthesised them from very abstract mathematics!), he proposed to “import” some of their benefits
in the syntax of the λ-calculus. We developped this idea while I was on a sabbatical visit at DEC
SRC in Palo Alto (1989-90), together with Mart́ın Abadi and Luca Cardelli, and we named our
calculus the λσ-calculus, or λ-calculus with explicit substitutions ([1], preceded by a presentation
at POPL 1990 in San Francisco). In further joint work with Thérèse Hardin and Jean-Jacques
Lévy, we investigated the confluence properties of calculi of explicit substitutions [22], while Paul-
André Melliès showed a remarkable counterexample to strong normalisation (even for simply typed
λσ-calculus) [49]. René David and Bruno Guillaume then designed a way around: they exhibited
a calculus with both explicit substitutions and explicit weakening, named λws, enjoying strong
normalisation [26]. Sadly, René David passed away in early 2022. To our community, he was
known for his elegant contributions to and around λ-calculus.
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We next give a brief introduction to λσ. For a progression, here are, successively, the syntax
of the λ-calculus, of its nameless version (the aforementioned De Bruijn notation), and of the
λσ-calculus (which has a two-sorted syntax of terms M and substitutions s):

M ::= x | λx.M |MM
M ::= n | λ.M |MM (n natural number, n 6= 0)
M ::= 1 | λ.M |MM |M [s] s ::= id |↑|M · s | s ◦ s,

(where 1 and ↑ are new names for Snd and Fst). The main interest of λσ-calculus is that it provides
a finite (unlike De Bruijn’s notation) variable-free syntax to account precisely and rigorously for the
subtle capture-avoiding substitution mechanism in the λ-calculus. Let us contrast how computation
proceeds in the first and in the third syntax. In traditional λ-calculus, a term of the form (λx.M)N
(think of a procedure, with body M , called with N as argument) rewrites to M [x← N ], to be read
as the term M in which N has been substituted to all free occurrences of x in M . In the λσ-calculus,
this is replaced by (λ.M)N → M [N · id ], and the actual substitution of N in M is carried out
stepwise, traversing the structure of M . This makes the λσ-calculus into an intermediate language,
suitable to prove correctness properties of compilers (see e.g. [34]).

Let me also mention that explicit substitutions, by their virtue of offering a first-order presen-
tation of the λ-calculus, triggered new ways to look at subjects such as higher-order unification or
higher-order logic (the logic underlying theorem provers such as HOL, Isabelle, PVS, λ-Prolog),
with the aim of applying well-studied techniques coming from first-order logic to them (works of
Gilles Dowek, Thérèse Hardin and Claude Kirchner).

As for myself, the experience with explicit substitutions was instrumental to me when I worked
on the semantics of Martin-Löf’s dependent type theory (anticipating next section), again using
the abstractions of category theory. In the dependent setting, substitution not only goes into
terms, but also into types, for example List(n) is the type of lists of length n, and in type theory
you can write List(P ), where P is a term of type Nat. It turns out that substitution in types is
interpreted by means of a categorical abstraction called Grothendieck fibration, the definition of
which involves some universal property. But universal properties in mathematics are defined only
up to isomorphism. And as a result, I noticed that the interpretations of A[s][t] and of A[s ◦ t] (for
a type A and for substitutions s, t that type-check together) are not equal, but only related by
a (canonical) isomorphism (or coercion), while in the syntax of type theory A[s][t] and of A[s ◦ t]
(without explicit substitutions) are exactly the same type. This mismatch gives rise to the same
dilemma as in Section 3:

1. vary the type theory to fit the original intended model,
2. vary the notion of model to fit the original theory.

I followed the first path in [20] by designing a syntax of type theory with explicit substitutions
and coercions, while (independently) Martin Hofmann followed the second one by providing a
construction that starting from a model yields another model that is “strict”, i.e., in which the
interpretations of A[s][t] and A[s ◦ t] coincide. Many years later, the two of us, joined by Richard
Garner, were able to place these results in a global picture [24], allowing us to give a new proof of
my main coherence result in [20], namely that the interpretation of the original type theory in the
original model is after all well-defined. More precisely, what is interpreted in the original model is
not a (typed) term, but a proof of typing of this term. The coherence theorem asserts that all the
possible typing proofs of a given term receive the same interpretation, and hence that we can call
it the meaning of the term.
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6 Curry-Howard

But let us return to the early 1980’s, which saw a capital convergence between logicians (proof
theorists) and computer scientists, happening (lucky me!) at my doorsteps. As far as my memories
go, in a rather short time interval (one or two years), the following events had a direct impact on
(and not only on) me.

• When the time came for me to defend my Thèse d’Etat, Maurice Nivat suggested to invite
Jean-Yves Girard to be member of my jury. This was my first encounter with a logician, and,
to say the truth, with logic... Again, Maurice was orienting me discreetly and in a timely
manner towards an interesting new territory.

• At a certain point, we had a kind of joint working group between logicians and computer
scientists at the university Paris VII. The attendance included Girard, Huet, Cousineau,
Coquand – then a young student –, and me. In particular, we started to avidly read a paper
by Böhm and Berarducci [12], which explained how to encode some recursive data structures
such as natural numbers presented according to Peano axioms (0 is a natural number, and
if n is a natural number, so is n + 1), or lists (cf. Section 2), as formulas in second-order
propositional logic, and how to manipulate them using “system F”, or polymorphic λ-calculus.
These are two names for the same thing: system F was introduced by Girard in his Thèse
d’Etat [29] as a language of proofs for this logic (and he used it to prove its consistency), and
completely independently from a computer science perspective by John Reynolds [58], who
was interested in such things as data independence and parametricity.

• Shortly after we had established these contacts, Girard got interested in denotational seman-
tics and proposed the first model for system F, for which he reinvented Berry’s notion of stable
functions. He arrived to stability from a completely different angle. He had played for about
a decade on a rather conceptual approach to studies on the complexity of proofs, and had
introduced a theory (dilators – dilatateurs in French) in which pullback preserving functors
(a categorical version of (conditionally) meet preserving functions) play a central role. This is
exactly, in a different language, the idea of stable functions. For example, coming back to por
(cf. Section 3), it does not hold that por((true,⊥) ∧ (⊥, true)) = por(true,⊥) ∧ por(⊥, true),
since

por((true,⊥) ∧ (⊥, true)) = por(⊥,⊥) = ⊥
por(true,⊥) ∧ por(⊥, true) = true ∧ true = true.

• Girard gave an enormously influential master course on Proofs and types at Université Paris
VII, which gave rise to an eponymous book [30].

These two views of the same language (second item above) are part of a whole picture known as
the Curry-Howard correspondence: λ-terms can be seen as programs, or as providing a language of
(intuitionistic) proofs, expressed in the so-called style of natural deduction. This correspondence
had been identified earlier (in the late 1960’s) [36], but the realisation of its importance had to wait
for more than a decade...

Under this correspondence (which one should not take too strictly, see Section 8), a type reads
as a formula, and a program P of type A reads as a proof of A. The dictionary associates product
(×) and function types (→) with conjunction (∧) and implication (⇒), respectively. Indeed, on
one hand, a datum of a product type is a pair of data of the component types, and, on the other
hand, a conjunction A ∧ B is proved by providing a proof of A and a proof of B. The story for
implication goes as follows. Suppose you want to prove a formula B, and that you have established
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(via a proof π) as a lemma that A ⇒ B holds: then any proof π1 that you can provide for A will
give you a proof of B (that we can denote as π(π1)) by using the lemma.

The correspondence relates also the dynamics: program execution corresponds to the process
of cut elimination, by which a proof is transformed into a proof “without lemmas”: of course this
is not what mathematicians wish to do, but cut-free proofs serve important foundational purposes,
like proving consistency of logical systems.

Two major projects, both deeply guided by this dictionary, started in the mid 1980’s: the
calculus of constructions of Coquand and Huet [17] and Girard’s linear logic [31].

The calculus of constructions is an extension of both Martin-Löf’s type theory (featuring de-
pendent types, cf. Section 5) and of polymorphic λ-calculus, to which inductive types were then
added (work of Christine Paulin-Mohring) to form the calculus of inductive constructions. The lat-
ter served as the kernel of an interactive proof assistant named Coq (a very French symbol!), first
released in 1989. In the following decades, Coq has been used for large-scale developpements, both
for software certification (certification of a compiler of the language C, led by Xavier Leroy), and for
certification of mathematical proofs (certification of the four colour theorem, of Feit-Thompson’s
theorem – a key part of the classification of finite groups –, led by Georges Gonthier). Thierry
Coquand, Gérard Huet, Christine Paulin-Mohring, Bruno Barras, Jean-Christophe Filliâtre, Hugo
Herbelin, Chetan Murthy, Yves Bertot, and Pierre Castéran received the 2013 ACM Software Sys-
tem Award for their role in creating and developping Coq. The adventure continues: the project
Deepspec (federating driving forces mainly located on the East Coast of the USA) aims at push-
ing the certification chain even further towards (and including) the hardware; a proof assistant
directly inspired by Coq, called Lean, is attracting rapidly a lot of attention in the mathematical
community...

Let us turn to the other “revolution” of the mid 1980’s: linear logic arose as a side effect of
Girard’s work on his model of system F. By analysing this model, and by cutting the unessential
features of the underlying partial orders, he arrived at a bare notion that he called coherence space,
and there he observed a key phenomenon: the function space A → B (or A ⇒ B, depending
on which side of the mirror you want to look at) decomposes as (!A) ( B, and he immediately
realised the logical significance of these two constructions, which he turned into connectives, that he
called the linear implication (() and the exponential (or “bang”), respectively. The decomposition
is accompanied by an explanation in terms of resources: when proving our above lemma that A
implies B, we may use the assumption A a number of times (or even not use it at all, and then you
have actually a proof of B which you have weakened to a proof of A ⇒ B). This multiple use is
governed by the exponential (which can be seen as a modal operator). The linear function space /
implication is constrained to use its argument exactly once (e.g. the function x 7→ x + 4 is linear,
while x 7→ x + x and x 7→ 3 are not). Finally, the equation (A ⇒ B) = ((!A) ( B) reads as: a
function that uses its argument several times is the same thing as a linear function whose argument
has been made duplicable, and hence can pretend to have been used exactly once.

This decomposition had lots of consequences.

• Negation (in fact linear negation) becomes involutive – a feature that was banished in intu-
itionnistic logic, since identifying A and the negation of the negation of A amounts to admit
that all formulas A are “decidable” (i.e., A, or its negation, holds). This ability to regain
duality is again due to the modality “bang”. (The intuitionistic negation of A is encoded as
the linear negation of !A, and remains non involutive.)

• Proofs in linear logic can be presented traditionally in natural deduction style, but they also
enjoy a description in terms of graphs called proof nets. In subsequent works, Girard devel-
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oped a program called geometry of interaction (GoI), where the dynamics of cut elimination
(rewriting of proof nets) is replaced by a circulation of tokens in the proof net (which remains
fixed). This interactive interpretation of computation is in tune with our early work on the
language CDS (reported in Section 4). As a matter of fact, numerous links between the GoI,
game semantics and abstract machines have been made explicit, by Vincent Danos, Laurent
Regnier and Patrick Baillot, notably. Applying Ockham’s razor, Girard has pursued this pro-
gram in his ludics, where connectives are defined interactively: types are behaviours, which
are collections of “untyped programs”, that he calls designs, and play the role of states or
of strategies (discussed in Section 4) that “succeed” when confronted or executed against a
collection of “counter-programs”.

• The formula-as-resource paradigm led to variants of linear logic characterising some time
complexity classes, starting with polynomial time. The idea is to have the number of steps
of cut elimination (or of GoI execution) controlled by the logic itself, imposing restrictions
on the use of the magical “bang” (which Girard nicely described as the ever renewable dollar
in your pocket). The framework of ludics, which develops a distinctive paradigm of formulas
located in (and competing for) space, opened the way to give a proof-theoretical account of
space complexity as well.

• The connectives of linear logic, while initially designed according to the formula-as-resource
prism, can also be classified according to polarity: there are passive (or reversible, or negative)
and active (or irreversible, or positive) connectives. This led to the development of polarised
logics (intuitionistic, linear, classical), and to the investigation of new facets of the Curry-
Howard correspondence, where the polarities read as lazy versus eager types. Let me expand
on what it means from the programming point of view:

– (5, 8) is a value of the eager product: it is a pair, and its two components are evaluated;

– (M,N) is a value of the lazy product: the program is clearly displaying a pair with its
two components, but M and N are not evaluated (note that this brings us back to the
model of evaluation of CDS sketched in Section 4: interactively, the “user” of the pair
may prompt, say N , for continuing the computation);

– finally, (λx.x)(M,N) is neither an eager nor a lazy value, as computation has to proceed
before evidencing a pair.

The world of semanticists was changed radically by the advent of linear logic. Researchers in the
field began to realise that the linear decomposition of the function space is present in most of the
models considered so far, including original Scott’s continuous model, but also the strongly stable
one, recast in terms of hypercoherences [27]. It is worth noting that the latter arose as a side-effect of
Ehrhard’s comparison work recounted at the end of section 3. In the case of sequential algorithms,
this was observed by Lamarche (unpublished), and by myself (elaborating on his observations) [21].
The AJM variant of game semantics was first developped as a model of (a fragment of) linear logic.

But the logic underlying sequential algorithms or game semantics is not quite linear logic:
negation is not involutive, as it corresponds to two cumulated “actions” on the game: exchange
the role of player and opponent, and add a unit of time at the beginning of the game (at least in
the sequential versions of games) to maintain its (negative) polarity. The fine study of the rich
relations betweeen game semantics and linear logic has been undertaken by Paul-André Melliès,
culminating in his habilitation dissertation [50].

The influence of linear logic extended far beyond the community of theoreticians on either side
of the Curry-Howard correspondence. It has pervaded the research community working on pro-
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gramming language design and implementation. For example, linear types may allow for compiler
optimisations, as was initially observed by Yves Lafont [45]. Much more space (and bibliographical
work) would be needed to tell that story in more detail.

Before closing this section, I want to mention another important milestone that occurred in
1990, when Tim Griffin [32] found the logical counterpart of call-cc, a control operator present in
the language Scheme (and in some other functional programming languages), which is... classical
reasoning! This was sort of breaking the monolithic slogan that classical logic “was no good for
computation”. Griffin’s discovery was then explained and discussed under different angles: by
Girard using polarities, by Michel Parigot who developped a carefully crafted extension of the
λ-calculus called λµ-calculus as a language for classical logic in natural deduction style (with a
particular discipline on cut elimination). I’ll come back on this thread in the next section. Let me
just mention here that Griffin’s work was also the starting point of Jean-Louis Krivine’s ambitious
and successful programme of classical realisability, aimed at extracting the computational content
of all axioms of set theory, and of mathematical proofs in general [44].

7 Dualities

I have encountered “complementary pairs” of various kinds as my career unrolled:

• memory cell (or location or register) versus its actual contents or value; in object-oriented
style, record field names versus their values, method names versus their actual definition (as
in the bricks (c, v) of concrete data structures);

• input and output, or (in the language of proof theory) hypotheses and conclusions;

• sending and receiving messages (in process calculi);

• a program and its context (the libraries of your program environment – or the larger program
of which the program under focus is a subpart, or a module) (cf. the operational equivalence
of Section 3); the programmer and the computer; two programs that call each other;

• call-by-name (CBN) and call-by-value (CBV).

In a joint work with Hugo Herbelin [23], we found a striking convergence between the second and
the last item in this list. In his PhD thesis [35], Hugo had proposed a language for classical proofs
in sequent calculus style. In sequent calculus, connectives are not described via introduction rules
and elimination rules like in natural deduction, but via right and left introduction rules. Hugo also
identified the operational counterpart of the left introduction rule for implication. Let me try to
explain this. When a call-by-name interpreter is faced with an expression MN , it will concentrate
on M until M “becomes” (i.e., M rewrites to) some λx.P , and then will proceed with the body P ,
keeping the task of evaluating N for later. Thus, if the “stack of things to do when arriving at MN”
(the context) is E, the context right after moving the focus from MN to M (as suggested above)
consists of the pair of N and E, written as (N ·E) (“put N on top of E”). More formally, recalling
from Section 3 that a context is a term with a hole in it, our global program writes as E[MN ]. If we
write E′ for N ·E, our change of focus from MN to M is captured by the equality E[MN ] = E′[M ]
(read from left to right). And now comes the logic. We consider a context as a “coterm” whose
type is the type of its hole, and this type is “on the left” (see the definition of sequents below), on
the side of assumptions: a context expects an expression to fill its hole. In contrast, a term M of
type A produces a value of type A “on the right”, on the side of the conclusions (in classical logic,
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there are multiple conclusions). With this in mind, let us now analyse the types involved in our
equality E[MN ] = E′[M ]: the context E expects a term of type B, while E′ expects a term of type
A→ B. But E′ is a pair of a term of type A (on the right) and, as we have just seen, of a context
expecting a term of type B. This matches perfectly with the left introduction rule for implication
in sequent calculus, which is of the form

“if (. . . ` A, . . .) and (. . . , B ` . . .), then (. . . , A→ B ` . . .)”.

(A sequent is a pair of two lists Γ and ∆ of formulas, written as Γ ` ∆, with the intention that the
conjunction of the formulas in Γ entails the disjunction of the formulas in ∆.)

In our work, Hugo and I continued the program started by Hugo by providing a syntax (in the
form of a binding construct called µ̃) allowing to control the change of focus from one assumption
to another in a sequent, dual to the µ of Parigot’s λµ-calculus, which served to switch between
conclusions. Equipped with this “symmetric” syntax, we were able to exhibit a striking duality
between CBN and CBV, according to whether one privileges rewriting the central term below to
the right or to the left, respectively:

c1[α← µ̃x.c2] ← 〈µα.c1 | µ̃x.c2〉 → c2[x← µα.c1]

(in rewriting theory, such a situation of a term reducing in two different ways is called a critical
pair). Slowly, 〈µα.c1 | µ̃x.c2〉 reads as follows: c1 (resp. c2) represents the proof of a sequent with
some occurrence of a formula A among its conclusions (resp. among its assumptions), µα.c1 (resp.
µ̃x.c2) adds a focus on this conclusion (resp. this assumption), and the construct 〈− |−〉 represents
an application of the cut rule: if . . .1 , A ` . . .2 and . . .1 ` A, . . .2 (with focus on the respective
highlighted occurrences of A), then . . .1 ` . . .2. (We invite the reader to check the soundness of this
rule and of the above left introduction rule for implication with respect to the intended “conjunction
of . . .1 implies disjunction of . . .2” interpretation.) We called our calculus the λµµ̃-calculus. (The
duality between CBN and CBV had been prefigured in previous works, and in particular in those
of Danos, Joinet and Schellinx analysing classical logic through the lenses of linear logic [25].)

Later, Guillaume Munch-Maccagnoni enriched the picture by showing the role of polarities (cf.
Section 6) in controlling the crucial critical pair above, and exhibiting corresponding notions of
categorical models [53].

8 The homotopical era

This section is dedicated to the memory of Vladimir Voevodsky (1966-2017),
Jean-Louis Loday (1946-2012) and Patrick Dehornoy (1952-2019).

The turn of the year 2010 saw the emergence of a new era for type theory, when the interpretation
of types as (topological) spaces, and in particular of the predicate of equality (called the identity
type in Martin-Löf type theory) in terms of paths in spaces has been actively pursued. If x, y are
of type A, then there is a type x =A y, called identity (or equality) type over A, and a term p of
type x =A y is read as a path from x to y in (the interpretation of) A. And then one can form,
for two distinct terms p, q of type x =A y, a type p =x=Ay q, and a term of this type reads as a
homotopy (or continuous deformation) from the path p to the path q (which share their endpoints
x and y). Continuing in this way we get so-called higher structures. Technically, it has been proved
independently by Lumsdaine [48] and by van den Berg and Garner [?] that every type defines a
syntactic weak ∞-groupoid.
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Also, Martin-Löf had associated with identity types (as with other type constructors) its con-
structors (the terms refl(a) of type a =A a, for a type A and a term a of type A – reflexivity!) and
its induction principle, which says that in order to build a function taking triplets (x, y, p) of terms
x, y of type A and p of type x =A y to some type C (more generally a type C(x, y, p) depending on
x, y, p), it is enough to define it for the special triplets (x, x, refl(x)). In homotopical terms, this is
linked to the observation that a path with variable ends can be shrinked to a point.

The full realisation of this new dictionary gave rise to homotopy type theory (HoTT), culminating
into the collective book [39] which cristallised during the special year on Univalent foundations at
the Institute of Advanced Study (2012-2013) organised by Vladimir Voevodsky, Thierry Coquand,
and Steve Awodey. We highlight below some of the main innovations offered by homotopy type
theory.

• A new way to look at how types are “big” or “complex”, by classifying them according to
how much non-trivial higher structure they have. In particular, in the HoTT setting, types
are not propositions in general, as propositions have no higher structure at all: it is reduced
to the existence (“true”) or inexistence (“false”) of an element of that type, therefore they
are very particular kinds of types.

• A new whole provision of inductive types, named higher inductive types (HIT), which allow
to encode lots of familiar objects from topology, like spheres, tori... For example, just like
natural numbers are given by a 0 and a successor function, circles are “given” by a point
base and a path loop of type base = base. One can then use an induction principle to define
type-theoretically maps from the circle into some space A (i.e., to “draw” a circle in A). This
is the beginning of a whole area that emerged very rapidly (in less than a decade), called
synthetic homotopy theory. Its achievements so far, beyond providing elegant new proofs of
elementary results in algebraic topology that trade the explicit use of continuity against logical
induction principles, have been to place some more advanced theorems (like Blakers-Massey
theorem [5]) into a wider context. In computer science, HIT’s have been used to describe
quotient types of various kinds.

• A strong axiom called univalence, proposed by Voevodsky after he “synthesised” it out of the
simplicial model of type theory. This axiom is to the universe of all types what the axiom
of extensionality is to the function type. So let us discuss function extensionality first. This
axiom says that if two terms M,N of type A→ B are such that for all x of type A we have
a term p(x) of type Mx =B Nx, then we have M = N (i.e., the axiom gives us a term
function–extensionality(p) of type M =A→B N). Univalence is similarly providing a way to
get terms of type A =U B (where U is the universe, i.e. a “big” type of all “small” types). It
says (simplifying slightly) that if we have two terms f, g of type A→ B, B → A, respectively,
such that there are terms ε, η of type g ◦ f = id and f ◦ g = id , then we have A =U B
(i.e., the axiom gives us a term univalence–axiom(f, g, ε, η) of type A =U B). This axiom
is “magical”, as it allows to “instantaneously” transfer algebraic structure from one type to
another isomorphic (or more properly homotopy equivalent) one, and makes the extremely
powerful principle of induction associated with identity types (recalled above) available in
this context.

A community of tens, becoming hundreds, of enthusiastic young scientists working on these ideas,
either coming from mathematics or from computer science, has grown in almost no time in many
corners of the world, including in France (Paris, Nantes).
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The two trends of homotopy type theory (and synthetic homotopy theory) and of formalising
mathematics in Coq or Lean have yet to somehow merge. Here are some obstacles or challenges
for such a convergence.

• The homotopical extension of type theory (notably univalence) has raised some questions on
how to maintain, in the homotopical setting, the whole architecture of Coq, which is based
on proofs “that compute”: e.g., if a term M of type A→ Nat is given, where A is, say, a type
of moduli of spaces (i.e., its elements are spaces of some kind), then we would like to extract
from it an actual program that computes this number MX for a given space X of type A.
An answer to these concerns has been given by cubical type theory, developed by Coquand
and his coauthors.

• Although the “higher structure attitude” has permeated quite a number of branches of math-
ematics beyond algebraic topology, like algebraic geometry or representation theory, many
areas of mathematics do not have (at least at present) natural meaningful analogs of “homo-
topy” or “deformation”.

• A number of mathematicians express their interest (or even need) for theorem provers (in-
teractive or automated) that would support their usual way of reasoning, which includes non-
constructive arguments, which can create some cultural gap with the computer scientists
attached to the constructive nature of a software like Coq, built on top of the very construc-
tive calculus of constructions.

• Homotopy type theory is sort of “too higher-order”. Since every type is endowed with a
structure of weak ∞-groupoid, this raises the hope to give in HoTT “direct” or “genuine”
definitions of all kinds of infinity algebraic structures, in contrast to those currently in use
among mathematicians, that most often go through a quite heavy apparatus of homotopical
algebra and often hide the expected intuition. But this endeavour stumbles against a chicken-
and-egg problem: if we want to declare an algebraic structure by generators and relations
and “...”, one is immediately confronted to the cascade of having to specify at once all the
“...” (namely the relations between relations, etc.). Understanding how to “bootstrap” this
properly is an active subject of research. Fortunately, HoTT provides ways to work with
“ordinary” algebraic structures like groups, rings, etc. by means of extra facilities such as
explicit truncations. We could also use these additional features to formalise higher structures
by following closely the main path used by mathematicians, but that is not the idea!

As for myself, I have followed a path (!) that is sort of “parallel” to that trend, by “foraging” in
related fields such as operad theory or higher dimensional rewriting, using my “syntactic toolbox”
and my own “obsessions”, among which are coherence issues of various sorts (cf. Section 5). Like
for much of what I have done before, there was no predefined plan. I like to call this serendipity (like
in, say, the movie Notting Hill). I had the chance to have Jean-Louis Loday and Patrick Dehornoy
as friends: they communicated their enthusiasm for algebraic operads, and braids, respectively, to
me, and this opened new horizons... They left us much too early, and I miss them badly.

Coming back to types and to the main theme of this contribution, I had also the chance to get
to know Vladimir Voevodsky on a daily basis, when I organised in the spring 2014 a trimester at
the IHP (Institut Henri Poincaré) on the Semantics of proofs and certified mathematics, together
with Hugo Herbelin and Paul-André Melliès: we had occasions to visit an exhibition, as well as
IKEA; we had conversations about irrational phenomena...
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9 The French touch in semantics of programs and proofs

The tutelar figures of Gérard Huet, Gilles Kahn, Jean-Jacques Lévy, Gérard Berry, and of Jean-
Yves Girard and Jean-Louis Krivine, have contributed to shape a “French identity” around the
whole field of programs and proofs. I benefited a lot from knowing them, both scientifically and
on the personal level, and – crossing the Channel – I would add Robin Milner, Gordon Plotkin
and Martin Hyland to the list. A “cousin” of mine is Glynn Winskel, whose thesis work [63] was
contemporary to mine. He explored event structures, one facet of which is to be to concrete data
structures what stability is to sequentiality, while they also played an important and successful
role in the development of concurrency theory. A “young brother” of mine is Thomas Streicher,
whose work on the foundations of type theory turned out to have a great impact. As for the
next generation (here “generations” are often counted by units of a few years – typically the time
of a PhD thesis!), Thierry Coquand, Thomas Ehrhard, Antonio Bucciarelli, Yves Lafont, Vincent
Danos, Laurent Regnier, Hugo Herbelin, Paul-André Melliès – just to quote those in or from France
with whom I interacted most – have very much enriched the scene. I’d like to make here a special
mention of Thomas, the master in models of linear logic of all kinds, some of which have led to
major innovations in the syntax of proofs and programs (differential, probabilistic). As for the
international scene, among the great scientists I had the fortune to collaborate with, I have a
particular thought for Martin Hofmann, whose tragic disparition on Mount Nikko Shirane in Japan
in 2018 has put our community into a deep mourning. He was smart and generous. And the next
generation, and the generation next to the next generation... I would not like to call this a school,
as the motivations and background of every single researcher in this (open) list are so different.
But certainly a common spirit, in which computational/syntactic aspects are stressed, even in the
most (seemingly) abstract mathematical structures coming into play.
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Functional Programming 1(4), 375-416 (1992).

[2] S. Abramsky, Domain theory in logical form, Annals of Pure and Applied Logic 51, 1-77 (1991).

[3] S. Abramsky, R. Jagadeesan, and P. Malacaria, Full abstraction for PCF, Information and
Computation 163, 409-470 (2000). (Manuscript circulated since 1994.)

[4] R. Amadio and P.-L. Curien, Domains and Lambda-Calculi, Cambridge University Press
(1998).

[5] M. Anel, G. Biedermann, E. Finster, and A. Joyal, A generalized Blakers-Massey theorem,
Journal of Topology 13(4), 1521–1553 (2020).

[6] R. Garner and B. van den Berg, Types are weak ω-groupoids, Proceedings of London Mathe-
matical Society 102 (2), 370–394 (2011).

[7] G. Berry, Stable models of typed lambda-calculi, Proceedings of ICALP 1978, Springer Lecture
Notes in Comp. Science 62 (1978).
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