

DAT309-R

Amazon Aurora storag
demystified: How it all

Murali Brahma

Director of Engineert
Amazon Aurora

Amazon Web Services

AWS
re. | nve nt © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved

Agenda

« What is Amazon Aurora?

 Quick recap: Database internals & motivation for building Aurora
 Cloud-native database architecture

« Durability at scale

- Performance results

Features & demos

+ Global databases

 Fast database cloning

- Database backtrack

What is Amazon Aurora ?
Enterprise class cloud native database

Speed and availability of high-end commercial databases

T

=5

Amazon Aurora

Simplicity and cost-effectiveness of open-source
databases

V] Drop-in compatibility with MySQL and PostgreSQL

V] Simple pay-as-you-go pricing

Delivered as a managed service

Quick recap: Database B+ Tree

Data is organized in
—memory as fixed sized
“pages”, e.g. 16KB

Interme

(aka “buffer-pool”)

Root Interme
diate

Quick recap: DO-REDO-UNDO protocol

Data is modified “in-place” in the buffer-pool usinga DO/REDO/UNDO operation

Log records with before and after images are stored in a write-ahead log (WAL)

New state Old state

Old state New state

New state

Log record

Old state

Log record

Quick recap: Crash Recovery Log records on
- Pages on durable storage durable storage
I
— A —
Checkpoint | 7x,]
L
B Ix, and are redone by using the REDO procedure
is undone by using the REDO/UNDQO procedure __________ - '''''''''''''''''''
L L
System failure f
L L
System recovery

Quick recap: I/Os required for persistence Log records on

Pages on durable storage durable storage

Log record write: |
typically few bytes

Torn page protection write:
page sized, e.g. 16KB

Checkpoint write:
page sized, e.g. 16KB

User data change size << I/O size (32KB+)

Databases are all about 1/O

Traditional database architecture

Compute

Databases are all about I/O

Design principles for > 40 years
« Increase I/O bandwidth
« Decrease number of I/Os!

Attached storage

Aurora approach: Log is the database

Log stream from beginning of the database

...

Any version of a database page can be constructed using the log stream

Blue-page at £, can be created using log records from £; and £;

Aurora approach: Offload checkpointing to the storage fleet

Relying only on log stream for page reads is not practical (too slow)

Use periodic checkpoints

Database instance is burdened with checkpointing task

Use a distributed storage fleet for continuous checkpointing

Aurora approach: compute & storage separation

Compute & storage have different lifetimes Compute

Compute instances

- fail and are replaced

« are shut down to save cost

- are scaled up/down/out on the basis of load needs

Storage, on the other hand, has to be long-lived

Decouple compute and storage for scalability, availability,

Network storage

durability

AUrora uses service-oriented architecture

A

We built a log-structured
distributed storage system that
iIs multi-tenant, multi-attach,
and purpose-built for
databases

LD NEL
Logging + storage

/O tflow in Amazon Aurora storage node

Log records

Storage node

. 5

B \
Incoming queue a
> B-0-0— |
GC
Update
Queue Coalesce Data
R [p| Pages | Scrub
Sort “J l l l —
Group e
Hot

Peer-to-peer gossip

log

Continuous backup

N\

0 .

(1) Receive log records and add to in-memory
queue and durably persist log records

(2) ACK to the database

(3) Organize records and identify gaps in log
(4) Gossip with peers to fill in holes

(5) Coalesce log records into new page versions

(6) Periodically stage log and new page versions
to S3

(7) Periodically garbage collect old versions
Periodically validate CRC codes on blocks

Note:

 All steps are asynchronous

e Only steps 1 and 2 are in the foreground
latency path

Uncorrelated and independent failures

At scale there are continuous independent

failures due to failing nodes, disks, and switches. | avaitability Availability Availability
Zone 1 Zone 2 Zone 3
. . . . Shared storage volume
The solution s replication
X [] [] X
[X N

One common straw man:

Replicate 3-ways with 1 copy per AZ Storage nodes with SSDs
Use write and read quorums of 2/3

What about AZ failure?

—> Still have 2/3 copies Availability Availability Availability

Zone 1 Zone 2 Zone 3

—> (Can establish quorum

I Shared storage volume
— No data loss

Storage nodes with SSDs

What about AZ + 1 failures?

Losing 1 node in an AZ while another AZ | Availabiiiy Availability Availability
Zone 1 Zone 2 Zone 3
s dowr
X V|]
—> Lose 2/3 copies N O O
— -05€ quorum Storage nodes with SSDs
—> Lose data

Aurora tolerates AZ + 1 failures

Replicate 6-ways with 2 copies per AZ
Write quorum of 4/6

What if an AZ fails? Availability Availability | Availability
. Z 1 Z 2 7 3
—> Still have 4/6 copies R one one

—> Maintain write availability I Shared storage volume

X N y []
What if there is an AZ + 1 failure ? = _L Bl . = u
Still have 3 copies |
No data loss Storage nodes with SSDs

Rebuild failed copy by copying from 3 copies
Recover write availability

VRVRVRY

Aurora uses segmented storage

» Partition volume into n fixed-size segments
* Replicate each segment 6 ways into a protection group (PG)

» Trade-off between likelihood of faults and time to repair

* |If segments are too small, failures are more likely
* |If segments are too big, repairs take too long

» Choose the biggest size that lets us repair “fast enough”

* We currently picked a segment size of 10 GB, as we can repair a 10-GB
segment in less than a minute

Fast and reversible membership changes

Use quorum sets, and epochs to
* Enable quicker transitions with epoch advances
« Create richer temporary quorums during changes
« Reverse changes by more quorum transitions

Epoch 2: Node F is in a suspect state;
second quorum group is formed with node
G; both quorums are active

@------
@) Bl [Bl el BN PEN eN

Epoch 3: Node F is confirmed
unhealthy; new quorum group with
node G is active

Aurora |/O profile

MySQL with replica
AZ 1 9 AZ 2

Replica
instance

Primary
instance

|

Amazon EBS

mirror

Amazon EBS

mirror

Amazon
S3

MySQL I/0 profile for 30-min Sysbench run
- 780K transactions
- Average 7.4 1/0s per transaction

——) | 0 =) Binlog

Aurora

Primary
instance

ASYNC 4/6 QUORUM

Aurora 10 profile for 30-min Sysbench run S3
e 27M transactions: 35x more
« 0.95 1/0s per transaction (6x amplification): 7.7x less

mmmmml)) Data ==l Double-write Frm files

Write and read throughput

Aurora MySQL is 5% faster than MySQL

250,000 800,000
705,000 705,000
700,000
200,000
200,000
170,000 SLO DL
150,000 500,000
400,000
100,000 290787
AGELY : 757,122
50,000 200,000
9,536 5,592 100,000
0]
Write 0
H Aurora 5.7 Aurora 5.6 B MySQL5.7 mMySQL5.6 H Aurora 5.7 Aurora 5.6 B MySQL5.7 mEMySQL5.6

Using Sysbench with 250 tables and 200,000 rows per table on R4.16XL

Global physicat replication

Primary region

®» @ ®

Replica :)
instance | Primary

instance

ASYNC 4/6 quorum

Continuous
backup

Amazon

Replication Fleet
S3 /

Primary instance sends log records in parallel to storage nodes,
replica instances, and replication server

Replication server streams log records to replication agent in
secondary region

Replication agent sends log records in parallel to storage nodes and
replica instances

Replication server pulls log records from storage nodes to catch up
after outages

Secondary region

ASYNC 4/6 quorum

Continuous
backup

Replication Fleet Amazon
\ / 2

Up to 150K writes/second; negligible
performance impact
<1 second cross-region replica lag under
heavy load
<1 minute to accept full read-write
workloads after region failure

Global replication performance

QPS

Logical vs. physical replication

250,000

200,000

150,000

100,000

50,000

QPS —Llag

Logical replication

600 250,000
Al 200,000
/ 400
150,000
S N
o
300 § &
? 100,000
200
100 50,000
0 0

QPS —Llag

Physical replication

5.00
4.50
4.00
3.50
3.00
2.50 §
2.00 *
1.50
1.00
0.50
0.00

Global databases

Primary region (US West) Secondary region (US East)

E _ E i { Replica E
{ Primary § : 4 instance
{ instance 5

ASYNC 4/6 quorum ASYNC 4/6 quorum

»éé

Continuous
backup

Continuous
backup

Amazon : Amazon
S3 i S3

Continuous Inserts Continuous Reads

+ ____________________________
1 row in set (©.2731 sec)

e e e e e e ————————

| current_timestamp(6)
+ ____________________________

| 2019-11-28 ©7:48:15.602139
+ ____________________________

1 row in set (©.2731 sec)

e e e e e e ————————

| current_timestamp(6)

+ ____________________________
| 2019-11-28 ©7:48:15.685168
+ ____________________________
1 row in set (©.2731 sec)

L

| current_timestamp(6)
+ ____________________________

| 2019-11-28 ©7:48:15.608287
L ettt

1 row in set (©.2731 sec)

+ ____________________________
| current_timestamp(6)

+ ____________________________
| 2019-11-28 ©7:48:15 411665
+ ————————————————————————————
1 row in set (©.2781 sec)

P — ———— — e mmmmmmmmmmmmmm »

1 row Inwset (0.2731 sea)

Query OK, © rows affected (O©.
global-reinvent-1-ins

A~ T T PP dmmmmmm e +---4--- -
1 row in set (©.2075 sec) S E t
. .U dS

| current_timestamp(6
= (Reader)

US West

Fmmm e e e e e e e e r e m e _ -

I| 2019-11-28 ©7:48:15.592589
I + ____________________________

1 row in set (©.2075 sec)

+ —+ —+
+ —+ —+
1
1
1
1
1
1
1
1
1
1
1
+
1
1
1
]
1
1
+

+------- + e e e e e
| x I '
+------- + o o
= Replication Lag
+------- +
~110ms
R +
| x | current_timestamp(6)
+----- - e e e e e - - -g
| 99988 2019-11-28 | 2019-11-28 ©7:48:15.660000 2019-11-28
Ry bt o o e
07:48:15.614.124 1 row in set (8.2075 sec) 07:48:15.725.479
+------- + e e e
| x | current_timestamp(6)
R +
| 99998 | 2019-11-28 ©7:48:15.693188 J
+------- + (S e e -
1 row in set (©.2075 sec)
+-------- + e EE R Fommmm - +--m - +
X | | curseit_timestamp(6) | loopCount | @max |
R e e it +-------- +
| 7eoe00 | 2019-11-28 ©7:48:15.725479 | 3802 | 100000 |
--------- + e ittt =
vow in set (©.2075 sec)
2731 sec) Query OK, © rows affected (©.2075 sec)

tance-1 reinvent SQL > _ J UVAo|l clobal-reinvent-1-instance-1-us-east-1a reinvent SQL >

-ast database cloning

Create a copy of a database without p
duplicate storage costs 88

Creation of a clone is instantaneous because it Dev/test @

applications

doesn't require deep copy . .
Data copy happens only on write, when original

and cloned volume data differ t—i S
Production Production
applications applications

Typical use cases DS B

* Clone a production database to run tests

« Reorganize a database Production database

* Save a point-in-time snapshot for analysis
without impacting production system

Database cloning: How does it work?

Page | Page | Page | Page Page | Page | Page | Page
1 2 3 4 L 2 3 4
Both databases reference the same pages on the shared
distributed storage system
Shared distributed storage system
Page | Page Page | Page
L 3 2 4

Database cloning: How does it work?

Page Page | Page Page | Page Page
1 3 4 1 2 4

As databases diverge, new pages are added appropriately to each
database while still referencing pages common to both databases

Shared distributed storage system

4 A 4 I

Page | Page
2 4

Page
1

Page
3

Database State Metrics

Metric Statistic Time H-:EH[']E: Ferod

[Billed] Vol... ¥ Average Last 24 Ho... 7 1 Minute v

e ~40Mrows
« ~25GB space used

Legend: | fastclone-1-instance-1

Clone

Services -

Amazon RDS

Dashboard
Databases
Performance Insights
Snapshots
Automated backups

Reserved instances

Subnet groups
Parameter groups

Option groups

Events

Event subscriptions

Recommendations o

Certificate update 9

Resource Groups ~ %

RDS Databases fastclone-1

fastclone-1

Related

Q

DB identifier

Role

Ja\

Admin/kaunanda-Isengard @ 8. ~ M. California ~ Support

Modify H Actions ¥

Stop

Add reader

Engine Region & AZ Size Statu

Create cross region read replica

fastclone-1

Regional

Aurora MySQL us-west-1

1 instance

fastclone-1-instance-1

Connectivity & security Monitoring

Logs & events

CloudWatch

Legend: | fastclone-1-instance-1

Q wvo

Writer

Configuration

Aurora MySQL us-west-1c

Maintenance & backups

T

db.r5.large ® Av

Restore to point in time

Tags Add replica auto scaling

‘ C H Add instance to compare H Monitoring ¥

Last Hour

Database State (Clone

See ~40M rows

Metrics

Metric

[Billed] Vol... ¥

Statistic

Average

N

@ fastclone
File Edit View Query Database Server Tools Scripting Help

&l e &l &EE s [e

Naviga

fastclone-snapshot

MANAGEMENT ‘ a e bt
) Server Status
—&. Client Connections
A Users and Privilege:
k1 Status and System \

Data Export

Data Import/Restor

show databases;
use fastclone;

select count(*) from tw;
|
-
U
-

INSTANCE (8

u
a
,

RFORMANCE Result Grid | [{l] 4% Fiter Rows: |
count(*)

y | Performance Repor

5N Performance Schem

Time Range Period

Last Hour 1 Minute

Legend: | fastclone-1-instance-snapshot

|"

Limit to 1000 rows

v ‘
J

\ Export: Bl | Wrap Cell Content: IA

Database State (Cloned)

 Update ~10M rows

Database backtrack

Invisible

Invisible

il

-~ Rewind to t;

tO t1 :
| | | /
t, t. t,

Backtrack is a quick way to bring the database to a particular point
in time without having to restore from backups

- Rewinding the database to quickly recover from unintentional DML/DDL
operations

« Rewind multiple times to determine the desired point in time in the database
state; for example, quickly iterate over schema changes without having to restore
multiple times

[

= N

Database State # backrack >

File Edit View Query Database Server Tools Scrnpting Help

(@07:05:07) SR e A&

lavigator Query 1 » &S

MANAGEMENT L d -y 9 b e %| Lmtto 1000rows =~ | ¥ | ¥ Q |1
O Server Status

10 select count(*) from t;
" :
- client Connections 2 e select current_timestamp(), ¢ from t order by c desc limit 5;
% Users and Privilege: :
24 Status and System \ :
X Data Export
i, Data Import/Restor
INSTANCE
Table with ~10K 4
PERFORMANCE Result Grid ___‘: L) Fiter Rows: | [| Export: _H Wrap Cell Content: A | Fetch rows:
rOws
& Dashboard aurent_timestamp() C
A7 Performance Repor P 2019-11-28 07:05° 10000
Administration S{4 # 2019-11-28 07:05:07 9999
e a 2019-11-28 07:05:07 9998
" 2019-11-28 07:05:07 9997
2019-11-28 07:05:07 9996
No object

selected

Database State -

ﬁ* backirack

(@07:09:58) Filee Edt View (Query Database Server Tools Scriping Help
g8l o SEFE&EE @ o

Navigator Query 1 x ELEES

e Added acolumn KT HH FFAQ D B Umto 00ows ~ | 7, | ¥ Q (1 [
g Server Status : + o S
1 e select count(*) from t;

¢ Added tWO rOWS o= Client=sagedtions 2 e select current_timestamp(), ¢ from t order by c desc limit 5;

Users and Privilege: i
g E alter table t add (cl int default 99);
] statusam am \

4 @ insert into t values (10600] y 82);
Data Export) .
1 5 ® insert into t values (1200802 y 83);
o~ Dasgimport/Restor
5 @ select count(*) from t;
INSTANCE 7 ® select current timestamp(), c from t order by c desc limit 5;
¢ Options File E
PERFORMANCE Result Grid { 4% Fiter Rows: Export:) | Wrap Call Content: IA | Fetch rows: == 4
& Dashboard current_timestangy
5 Performance Repor | P | 2019-11-28 07:09:58(” 100002
Administration S{4 $ 2019-11-28 07:09:58 100001
L 2019-11-28 07:09:58 10000
' 2019-11-28 07:09:58 9999
2019-11-28 07:09:58 9958
No object

selected

| et's Backtrack

RDS Databases reinvent-1

reinvent-1

Related

Q

DB identifier

Role

Engine Region & AZ

Size

reinvent-1

Regional

Aurora MySQL us-west-1

2 instances

reinvent-backtrack-instance-1

reinvent-backtrack-instance-1-us-west-1c

Writer

Reader

Aurora MySQL us-west-1a

Aurora MySQL us-west-T1c

db.r5.large

db.r5.large

Connectivity & security Monitoring Logs & events

Configuration

Maintenance & backups

Tags

Modify H Actions W

Stop

Add reader
Create cross region read replica
Create clone

gie to point in time

Mica auto scaling

| et's Backtrack

RDS Databases reinvent-backtrack-instance-1
Backtrack DB cluster

Rewinds the DB cluster to a previous point in time without creating a new DB cluster.

Earliest restorable time is November 26, 2019 at 8:05:51 PM UTC-8 (Local) (@)

Date Time

November 27, 2019 23

/\ Your DB cluster is unavailable during the Backtrack process, which typically takes a few minutes.

Cancel Backtrack DB cluster

Regional Aurora MySQl backtracking
backtracking

reinvent ack-instance-1-us-west-1c Reade Aurora MySQl us-west-1c backtracking

™

e

Database State & backusck

(after Backtrack) FEE; &;eash gae ESr:r Tis Scripting Help

lavigato Query 1 x ELEER

O Server Status -

MANAGEMENT B - .[r_- Q, b e %!l Limtto 1000rows ~ -
select current timestamp(), c from t order by c desc limit 5;
= Chent Connections

j_ Users and Privilege:

ROWS addEd mISSIHg 24 Status and System \
Single column £ Data Export

i Data Import/Restor

—

INSTANCE

B

A server Lo

PERFORMANCE
« Dashboard

A7 Performance Repor £
\dministration S 4 #

Result Grid | - I\ t¥ Fiter Rows: Export: S | Wrap Cel Content: A | Fetch rows:

current_timestampy c

2019-11-28 07:32:08 10000
2019-11-28 07:32:08 9999
2019-11-28 07:32:08 9998
2019-11-28 07:32:08 9997
2019-11-28 07:32:08 9996

Publications

Amazon Aurora: Design Considerations for High Throughput Cloud-Native
Relational Databases. In SIGMOD 2017

Amazon Aurora: On Avoiding Distributed Consensus for I/0s, Commits,
and Membership Changes. In SIGMOD 2018

Thank vou!

Murali & Tobias

brahmade@amazon.com
tobiasgl@amazon.com

AWS
re. | nve nt © 2019, Amazon Web Services, Inc. or its affiliates. All rights rese

re: INven

