

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon Aurora storage
demystified: How it all works

D A T 3 0 9 - R

Tobias Ternstrom

Director of Product Mgmt,

Amazon Aurora

Amazon Web Services

Murali Brahmadesam

Director of Engineering,
Amazon Aurora

Amazon Web Services

Agenda

• What is Amazon Aurora?

• Quick recap: Database internals & motivation for building Aurora

• Cloud-native database architecture

• Durability at scale

• Performance results

Features & demos

• Global databases

• Fast database cloning

• Database backtrack

What is Amazon Aurora ?
Enterprise class cloud native database

Speed and availability of high-end commercial databases

Simplicity and cost-effectiveness of open-source

databases

Drop-in compatibility with MySQL and PostgreSQL

Simple pay-as-you-go pricing

Delivered as a managed service

Amazon Aurora

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Quick recap: Database B+ Tree

Root

Interme
diate

Interme
diate

Leaf 1 Leaf 2 Leaf 3 Leaf 4

Leaf 1 Leaf 2 Leaf 3 Leaf 4Root Interme
diate

Interme
diate

Quick recap: DO-REDO-UNDO protocol

Data is modified “in-place” in the buffer-pool using a DO/REDO/UNDO operation

Log records with before and after images are stored in a write-ahead log (WAL)

DO

Log record

REDO

Log record

UNDO

Log record

Quick recap: Crash Recovery

tf

Tx1

Tx2

Tx3

Tx4

Checkpoint

System failure

Pages on durable storage
Log records on

durable storage

tf

tr tr
System recovery

Tx2 and Tx3 are redone by using the REDO procedure

Tx4 is undone by using the REDO/UNDO procedure

Quick recap: I/Os required for persistence
Pages on durable storage

Log record write:

typically few bytes

Torn page protection write:

page sized, e.g. 16KB

Checkpoint write:

page sized, e.g. 16KB

User data change size << I/O size (32KB+)

Databases are all about I/O

Log records on

durable storage

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Traditional database architecture

Databases are all about I/O

Design principles for > 40 years
• Increase I/O bandwidth

• Decrease number of I/Os !

SQL

Transactions

Caching

Logging

Compute

Attached storage

Aurora approach: Log is the database

t5 can be created using log records from t1 and t5

Aurora approach: Offload checkpointing to the storage fleet

Problem 1:

Solution:

Problem 2:

Solution:

Aurora approach: compute & storage separation

Compute & storage have different lifetimes

Compute instances

• fail and are replaced

• are shut down to save cost

• are scaled up/down/out on the basis of load needs

SQL

Transactions

Caching

Logging

Compute

Network storage

Storage, on the other hand, has to be long-lived

Decouple compute and storage for scalability, availability,

durability

Aurora uses service-oriented architecture

We built a log-structured

distributed storage system that

is multi-tenant, multi-attach,

and purpose-built for

databases

Logging + storage

SQL

Transactions

Caching

I/O flow in Amazon Aurora storage node
①Receive log records and add to in-memory

queue and durably persist log records

② ACK to the database

③ Organize records and identify gaps in log

④ Gossip with peers to fill in holes

⑤ Coalesce log records into new page versions

⑥ Periodically stage log and new page versions
to S3

⑦ Periodically garbage collect old versions

⑧ Periodically validate CRC codes on blocks

Log records

Database

instance

Incoming queue

Storage node

S3 backup

1

2

3

4

5

6

7

8

Update

Queue

ACK

Hot

log

Data

Pages

Continuous backup

GC

Scrub

Coalesce

Sort

Group

Peer-to-peer gossipPeer

storage

nodes

Note:

• All steps are asynchronous

• Only steps 1 and 2 are in the foreground

latency path

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

At scale there are continuous independent

failures due to failing nodes, disks, and switches. Availability

Zone 1

Shared storage volume

Availability

Zone 2

Availability

Zone 3

Storage nodes with SSDs

X
X

X

Uncorrelated and independent failures

The solution is replication

One common straw man:

Replicate 3-ways with 1 copy per AZ

Use write and read quorums of 2/3

 Still have 2/3 copies

 Can establish quorum

 No data loss

Availability

Zone 1

Shared storage volume

Availability

Zone 2

Availability

Zone 3

Storage nodes with SSDs

X

What about AZ failure?

Losing 1 node in an AZ while another AZ

is down

Availability

Zone 1

Shared storage volume

Availability

Zone 2

Availability

Zone 3

Storage nodes with SSDs

X

What about AZ + 1 failures?

X Lose 2/3 copies

 Lose quorum

 Lose data

Replicate 6-ways with 2 copies per AZ
Write quorum of 4/6

Availability

Zone 1

Shared storage volume

Availability

Zone 2

Availability

Zone 3

Storage nodes with SSDs

X

Aurora tolerates AZ + 1 failures

X

What if an AZ fails?
 Still have 4/6 copies

 Maintain write availability

What if there is an AZ + 1 failure ?
 Still have 3 copies

 No data loss

 Rebuild failed copy by copying from 3 copies

 Recover write availability

➢ Partition volume into 𝑛 fixed-size segments
• Replicate each segment 6 ways into a protection group (PG)

Aurora uses segmented storage

➢ Trade-off between likelihood of faults and time to repair
• If segments are too small, failures are more likely

• If segments are too big, repairs take too long

➢ Choose the biggest size that lets us repair “fast enough”
• We currently picked a segment size of 10 GB, as we can repair a 10-GB

segment in less than a minute

Use quorum sets, and epochs to
• Enable quicker transitions with epoch advances

• Create richer temporary quorums during changes

• Reverse changes by more quorum transitions

A B C D E F

Epoch 1: All nodes are healthy

A B C D E F

A B C D E G

Epoch 2: Node F is in a suspect state;

second quorum group is formed with node

G; both quorums are active

A B C D E F

A B C D E G

Epoch 3: Node F is confirmed

unhealthy; new quorum group with

node G is active

Fast and reversible membership changes

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Aurora I/O profile

MySQL with replica Aurora

Amazon EBS
mirror

Amazon EBS
mirror

AZ 1 AZ 2

Amazon EBSAmazon EBS

Primary

instance

Replica

instance

1

2

3

4

5

Amazon

S3

MySQL I/O profile for 30-min Sysbench run

• 780K transactions

• Average 7.4 I/Os per transaction

Aurora IO profile for 30-min Sysbench run

• 27M transactions: 35× more

• 0.95 I/Os per transaction (6× amplification): 7.7× less

Binlog Data Double-writeLog Frm files

ASYNC 4/6 QUORUM

Continuous backup

AZ 1

Primary

instance

Amazon

S3

AZ 2

Replica

instance

AZ 3

Replica

instance

1

1

Write and read throughput

200,000

170,000

9,536 5,592

0

50,000

100,000

150,000

200,000

250,000

Write

Aurora 5.7 Aurora 5.6 MySQL 5.7 MySQL 5.6

705,000 705,000

290,787
257,122

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

Aurora 5.7 Aurora 5.6 MySQL 5.7 MySQL 5.6

Write throughput Read throughput

Using Sysbench with 250 tables and 200,000 rows per table on R4.16XL

Aurora MySQL is 5× faster than MySQL

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Global physical replication
Primary region Secondary region

1
ASYNC 4/6 quorum

Continuous

backup

AZ 1

Primary

instance

Amazon

S3

AZ 2

Replica

instance

AZ 3

Replica

instance

Replication

server

Replication Fleet

Storage fleet

11

4

AZ 1

Replica

instance

AZ 2 AZ 3

ASYNC 4/6 quorum

Continuous

backup

Amazon

S3

Replica

instance

Replica

instance

Replication

agent

Replication Fleet

Storage fleet

3

3

2

① Primary instance sends log records in parallel to storage nodes,

replica instances, and replication server

② Replication server streams log records to replication agent in

secondary region

③ Replication agent sends log records in parallel to storage nodes and

replica instances

④ Replication server pulls log records from storage nodes to catch up

after outages

High throughput: Up to 150K writes/second; negligible

performance impact

Low replica lag: <1 second cross-region replica lag under

heavy load

Fast recovery: <1 minute to accept full read-write

workloads after region failure

Logical replication Physical replication

0

100

200

300

400

500

600

0

50,000

100,000

150,000

200,000

250,000

se
c
o

n
d

s

Q
P

S

QPS Lag

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0

50,000

100,000

150,000

200,000

250,000

se
co

n
d

s

Q
P

S

QPS Lag

Logical vs. physical replication

Global replication performance

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Global databases
Primary region (US West) Secondary region (US East)

1
ASYNC 4/6 quorum

Continuous

backup

Primary

instance

Amazon

S3

Replication

server

Replication Fleet

Storage fleet

1

4

Replica

instance

ASYNC 4/6 quorum

Continuous

backup

Amazon

S3

Replication

agent

Replication Fleet

Storage fleet

3

3

2

Continuous Inserts Continuous Reads

U S West
(Writer)

U S East
(Reader)

2019-11-28

07:48:15.614.124
2019-11-28

07:48:15.725.479

Replication Lag
~110ms

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fast database cloning

Create a copy of a database without
duplicate storage costs

• Creation of a clone is instantaneous because it
doesn’t require deep copy

• Data copy happens only on write, when original
and cloned volume data differ

Production database

Clone Clone

Clone
Dev/test

applications

Benchmarks

Production
applications

Production
applications

Typical use cases
• Clone a production database to run tests

• Reorganize a database

• Save a point-in-time snapshot for analysis

without impacting production system

Database cloning: How does it work?

Page

1

Page

2

Page

3

Page

4

Source database Cloned database

Both databases reference the same pages on the shared

distributed storage system

Page

1

Page

2

Page

3

Page

4

Page

1

Page

3

Protection group 1

Page

2

Page

4

Protection group 2

Shared distributed storage system

Database cloning: How does it work?

Page

1

Page

2

Page

3

Page

4

Page

5

Source database Cloned database

As databases diverge, new pages are added appropriately to each

database while still referencing pages common to both databases

Page

1

Page

2

Page

3

Page

4

Page

5

Page

6

Page

1

Page

3

Page

5

Page

3

Page

5

Protection group 1

Page

2

Page

2

Protection group 2

Shared distributed storage system

Page

6

Page

4

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Database State

• ~40M rows

• ~25GB space used

Clone

• See ~40M rows

• ~0.1GB space used in clone!

(vs. 25GB)

Database State (Cloned)

• Update ~10M rows

• Now ~1.2 GB! vs

25GB

Database State (Cloned)

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Database backtrack

Backtrack is a quick way to bring the database to a particular point
in time without having to restore from backups

• Rewinding the database to quickly recover from unintentional DML/DDL
operations

• Rewind multiple times to determine the desired point in time in the database
state; for example, quickly iterate over schema changes without having to restore
multiple times

t0 t1 t2

t0 t1

t2

t3 t4

t3

t4

Rewind to t1

Rewind to t3

Invisible Invisible

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Database State

(@07:05:07)

Table with ~ 10K rows

Table with ~10K

rows

Database State

(@07:09:58)

• Added a column

• Added two rows

Oops!

Let’s Backtrack

Let’s Backtrack

07:06:00

Database State

(after Backtrack)

The good old

state!

Rows added missing

Single column

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Publications

Amazon Aurora: Design Considerations for High Throughput Cloud-Native
Relational Databases. In SIGMOD 2017

Amazon Aurora: On Avoiding Distributed Consensus for I/Os, Commits,
and Membership Changes. In SIGMOD 2018

Thank you!

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Murali & Tobias

brahmade@amazon.com
tobiasql@amazon.com

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

