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The many dimensions of colloidal matter. The self-assembly of colloids can be controlled by 

changing the shape, topology, or patchiness of the particles, by introducing attractions between 

particles, or by constraining them to a curved surface. All of the assembly phenomena illustrated 

here can be understood from the interplay between entropy and geometrical constraints. 
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Summary of this review article 

Background:  

Colloids consist of solid or liquid particles, each about a few hundred nanometers in size, 

dispersed in a fluid and kept suspended by thermal fluctuations. While natural colloids are the 

stuff of paint, milk, and glue, synthetic colloids with well-controlled size distributions and 

interactions are a model system for understanding phase transitions. These colloids can form 

crystals and other phases of matter seen in atomic and molecular systems, but because the 

particles are large enough to be seen under an optical microscope, the microscopic mechanisms 

of phase transitions can be directly observed. Furthermore, their ability to spontaneously form 

phases that are ordered on the scale of visible wavelengths makes colloids useful building blocks 

for optical materials such as photonic crystals. Because the interactions between particles can be 

altered and the effects on structure directly observed, experiments on colloids offer a controlled 

approach toward understanding and harnessing self-assembly, a fundamental topic in materials 

science, condensed matter physics, and biophysics.  

Advances:  

In the past decade, our understanding of colloidal self-assembly has been transformed by 

experiments and simulations that subject colloids to geometrical or topological constraints, such 

as curved surfaces, fields, or the shapes of the particles themselves. In particular, advances in the 

synthesis of nonspherical particles with controlled shape and directional interactions have led to 

the discovery of structural transitions that do not occur in atoms or molecules. As a result, 

colloids are no longer seen as a proxy for atomic systems but as a form of matter in their own 

right. The wide range of self-assembled structures seen in colloidal matter can be understood in 

terms of the interplay between packing constraints, interactions, and the freedom of the particles 

to move—in other words, their entropy. Ongoing research attempts to use geometry and entropy 

to explain not only structure but dynamics as well. Central to this goal is the question of how 

entropy favors certain local packings. The incompatibility of these locally-favored structures 

with the globally-favored packing can be linked to the assembly of disordered, arrested structures 

such as gels and glasses. 

Outlook 

We are just beginning to explore the collective effects that are possible in colloidal matter. The 

experimentalist can now control interactions, shapes, and confinement, and this vast parameter 

space is still expanding. Active colloidal systems, dispersions of particles driven by intrinsic or 

extrinsic energy sources rather than thermal fluctuations, can show nonequilibrium self-

organization with complexity rivaling that of biological systems. We can also expect new 

structural transitions to emerge in “polygamous” DNA-functionalized colloids, which have no 

equivalent at the molecular scale. New frameworks are needed to predict how all of these 

variables—confinement, activity, and specific interactions—interact with packing constraints to 

govern both structure and dynamics. Such frameworks would not only reveal general principles 

of self-assembly but would also allow us to design colloidal particles that pack in prescribed 

ways, both locally and globally, thereby enabling the robust self-assembly of optical materials. 
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Abstract 

Colloidal particles with well-controlled shapes and interactions are an ideal experimental system 

for exploring how matter organizes itself. Like atoms and molecules, these particles form bulk 

phases such as liquids and crystals. But they are more than just crude analogues of atoms; they 

are a form of matter in their own right, with complex and interesting collective behavior not seen 

at the atomic scale. Their behavior is affected by geometrical or topological constraints, such as 

curved surfaces or the shapes of the particles. Because the interactions between the particles are 

often short-ranged, we can understand the effects of these constraints using geometrical concepts 

such as packing. The geometrical viewpoint gives us a window into how entropy affects not only 

the structure of matter, but also the dynamics of how it forms. 

Introduction 

A colloid is a dispersion of microscopic particles that are individually unremarkable but 

collectively interesting. More traditionally, one might say that a colloid is a fluid dispersion, like 

fog, milk, paint, or glue, where the particles are larger than a molecule but small enough to stay 

dispersed for days or longer. But defining colloids in the traditional way is a bit like defining 

puppies as young dogs; though technically accurate, it doesn’t quite capture their appeal. The 

feature of colloids that drives much current research is their collective behavior—their ability to 

form complex structures and show unusual dynamical transitions. By exploring how these 

collective effects emerge, we gain insights into general questions of how matter organizes itself, 

questions that are fundamental to condensed-matter physics, materials science, and even our 

understanding of life itself. 

Many of the things that used to be called colloidal particles are now more often called 

nanoparticles, the “nano-” prefix highlighting a size scale where unusual electronic, magnetic, or 

optical properties reside. Meanwhile, the term “colloid” (1) has come to refer to a dispersion of 

larger particles, perhaps hundreds of nanometers or so, with uniform shapes and a controlled size 

distribution. Compared to a nanoparticle, an individual colloidal particle (in this narrower 

definition of the term) has no remarkable material properties. From the perspective of quantum 

mechanics, it is a blob of macroscopic matter, no more interesting than a baseball. 

It is precisely because there is nothing exciting about an individual particle that the collective 

behavior of colloids is worth studying. Each particle is classical, and its interaction with other 

particles is generally related to its shape. Yet each is big enough so that we can resolve it from its 

neighbors under an optical microscope. So when we see these well-characterized, mundane 

classical particles doing something collectively unexpected—like forming a crystal—it tells us 

something about the fundamental physics governing that same phenomenon in more complex 

systems. Indeed, colloids do form crystals, as well as other phases of matter found in atomic and 

molecular systems, and because the structural length scales of these phases are on the order of 
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visible light, they serve as useful model systems for observing the microscopic mechanisms of 

phase transitions. 

But colloids are more than just crude models for atomic systems; they are themselves a form of 

matter, with interesting collective behavior not seen at the atomic scale. By observing how that 

behavior is modified by geometrical or topological constraints, such as surfaces, fields, or the 

shapes of the particles themselves, we garner clues about how order arises in condensed phases, 

and how it might be disrupted. An enduring mystery of biological systems is how they harness 

stochastic motion at the molecular level to build ordered structures. Experiments on colloids 

constitute perhaps the most carefully-controlled approach toward understanding the statistical 

physics underlying this process, which is called self-assembly. The self-assembly of colloidal 

particles is well-worth studying on its own merits, since it can be used to make photonic crystals 

and macroporous materials (2, 3), although that is not the focus of this review. 

The discussion will focus on the general principles concerning the structure and dynamics of 

colloidal matter, and how this behavior can be understood in terms of geometry and topology. 

Two themes emerge. The first is that entropy, an abstract thermodynamic quantity colloquially 

associated with “disorder,” makes its presence felt in unexpected ways, including driving the 

formation of ordered phases. The second is the relation between packing constraints, which are 

imposed by the shapes of the particles, and structure and structural transitions. These two themes 

intersect at one of the frontiers of the field: understanding how entropy and geometry govern not 

only the structure of matter but also the dynamics of how it forms. 

From atoms to model atoms 

To understand why entropy is so important in colloidal dispersions, we first consider a single 

colloidal particle in a liquid. As Robert Brown showed in 1827 (4), it moves about randomly and 

incessantly. This Brownian motion, as we now call it, was quantified by Jean Perrin (5), who 

used Einstein’s theory (6) to extract Avogadro’s number from the slope of the mean-squared 

particle displacements as a function of time. Perrin’s result proved that matter must be 

discretized at some scale. The random forces imparted by its discrete units—atoms and 

molecules—give rise to the movement of the particle (Figure 1A). 

As a consequence of these random forces, a colloidal particle changes its direction and velocity 

on time scales smaller than a microsecond. This means that over longer times, it can explore its 

container (Figure 1B) and—in the language of mechanics—its phase space (momentum and 

position). If the dispersion is kept free of contaminants that might cause the particles to 

aggregate, it can reach a state of thermal and chemical equilibrium in perhaps hours or days, 

reasonable timescales for an experiment.  

We can therefore bring the apparatus of statistical thermodynamics to bear on understanding the 

collective behavior of the particles. In equilibrium at constant temperature, the colloid minimizes 

its free energy F=U-TS, where S is the entropy and T the temperature. The internal energy U is 

the sum of the kinetic energy, which is constant and can be ignored, and an “effective” potential 

that accounts for interactions between the solvent molecules and the particle and between the 

particles themselves (7). If we are given a model or measurement of the effective potential, we 

can sweep the details of molecules under the rug. 

The role of the entropy S, and how it relates to the organization of matter, is best illustrated by 

hard spheres, where the potential energy U is a constant for all configurations. Computer 
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simulations in the 1950s (8, 9) showed that hard spheres spontaneously form a face-centered 

cubic (FCC) lattice at volume fractions of about 0.50. In 1986, Pusey and van Megen (10) 

showed that a colloidal dispersion of particles that closely approximated hard spheres showed a 

fluid-to-crystal transition. Their colloid contained on the order of 1014 particles, which, in 

contrast to the simulations, was unambiguously in the thermodynamic limit.  

It is perhaps surprising that hard spheres should show a freezing transition. Because the potential 

energy U is a constant (taken to be zero), we must conclude that the crystallization is driven by 

an increase in entropy. A simple packing argument (11) shows how. The densest packing of 

spheres in three dimensions (3D) is the FCC lattice (12, 13), with a volume fraction of 74%, 

whereas the densest disordered packing of spheres occurs at about 64% volume fraction, as 

observed in experiments on ball bearings (14). The exact volume fraction of the disordered state 

depends on the packing protocol (15), but it is always well below the maximum density of the 

solid. Therefore, at some volume fraction lower than about 64%, a crystalline solid should have 

higher vibrational entropy than the fluid: if arranged in an FCC lattice at 64% volume fraction, 

the particles have room to rattle around their lattice sites, whereas in a disordered arrangement 

they are jammed (Figure 1C). A more quantitative argument for the phase boundary requires a 

numerical analysis (16), but the packing argument makes clear that there is an upper bound at 

which the solid phase must be entropically favored. 

The hard-sphere freezing transition shows that entropy should not be thought of as “disorder” but 

rather as a measure of the configuration space of the particles. The ordering influence of entropy 

was first predicted in the 1940s by Onsager, who showed that hard rods at high density should 

orient themselves in the same direction to maximize their freedom to translate (17). This entropic 

alignment is the origin of the isotropic-nematic transition in a liquid crystal. Since the discovery 

of hard sphere crystallization, other experiments and simulations on variously shaped hard 

particles have revealed many entropy-driven transitions from disorder to order (18–21).  

The observation that colloids can replicate fundamental phase transitions, as shown in hard 

spheres (10) and earlier in charged repulsive particles (22, 23), has resulted in more than three 

decades of experiments in which colloids have been used as “model atoms” (24) or “big atoms” 

(25) for exploring longstanding questions in condensed-matter physics and materials science. 

Experiments on colloids have examined the formation of defects in crystals under stress (26, 27), 

the dynamics of crystal melting (28, 29), the nucleation and growth of crystals (30, 31), the role 

of thermal capillary waves in interfacial phenomena (32), and the glass transition (33). By 

replacing traditional liquids and crystals by their colloidal counterparts, the experimentalist can 

image and quantify the motions of individual particles in “real space,” as opposed to the less 

direct “reciprocal space” picture given by scattering techniques. Real-space studies were 

essential in demonstrating that supercooled liquids showed dynamical heterogeneities (34, 35), a 

precursor to the glass transition. 
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Figure 1. Colloids are a model system for understanding phase transitions. (A) Collisions with 

solvent molecules (blue) lead to fluctuating, random forces on a particle (gray). (B) On larger 

time scales, the particles execute a random walk. We can use statistical mechanics to understand 

the collective behavior because the particles explore their container and interact with each other. 

(C) Hard spherical particles at a sufficiently high density have less room to move in a fluid phase 

(left) than in a crystal (right). In 3D, they spontaneously crystallize into a face-centered cubic 

lattice (right) at 50% volume fraction. A hexagonally close-packed lattice is shown for contrast. 
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From model atoms to colloidal matter 

However, there are differences between colloids and atoms, and these differences result in some 

of the more interesting features of colloidal matter. The attractions between colloidal particles 

can be made much shorter ranged (in proportion to the particle size) than those of atoms, and 

when this is the case, the rates of transitions between structures depend on entropy and 

hydrodynamics, in contrast to the energy barriers that govern dynamics of atomic systems. Also, 

because the particles are purely classical objects, vibrational and rotational entropy can stabilize 

the equilibrium phases, which does not happen in atomic systems at low temperatures. 

Ganapathy, Buckley, Gerbode, and Cohen (36) examined how the range of attractive forces 

affects the growth of crystals. They created colloidal crystal “islands” on a lithographically-

patterned surface by introducing a depletion attraction between the particles. The depletion 

interaction, which is induced by smaller, non-interacting, nanoscale particles, is fundamentally 

entropic: when two larger particles come together, they create more space for the smaller 

particles to move, increasing the total entropy of the system. Although the interaction strength in 

the Ganapathy experiments was large enough to drive crystallization, the range of the attraction 

was short, only about 0.5% of the particle diameter. 

The short range of the attraction creates a free-energy barrier for particles to move across the 

corners and edges of islands. Each particle must break a “bond” (depletion interaction) with one 

or more particles and then diffuse to reach its new lattice site (Figure 2A). By contrast, in 

epitaxial growth of atomic crystals, such step-edge barriers arise from the long-ranged 

interactions between atoms; as the particle crosses the edge, it still “feels” the attractions from 

next-nearest neighbors in the crystal. Ganapathy et al. found that, surprisingly, the bond-

breakage-plus-diffusion process in the colloid leads to growth rates that are quantitatively similar 

to those in atomic epitaxy. The diffusion process slows down the kinetics, much as the long-

range potential barrier does in an atomic system. 

However, the similarity between colloidal- and atomic-scale kinetics need not always hold. For a 

general transition between two states, we must consider how the free energy varies as a function 

of the configuration of all the particles. Typical models for kinetics in atomic, molecular, and 

biological systems calculate transition rates from the pathways and barriers between basins on 

this “free-energy landscape” (37) (Figure 2B). But for colloidal particles this framework breaks 

down, owing to the short range of the attraction and hydrodynamic drag.  

Recent theories of colloidal dynamics take both of these effects into account. Holmes-Cerfon, 

Gortler, and Brenner (38) considered structural transitions in clusters of spherical particles with 

short-range attractive interactions. They considered transitions that are conceptually similar to 

those observed by Ganapathy et al., but generalized: after a bond is broken, particles can diffuse 

individually or in concert along “soft modes” (Figure 2B). In the limit of an infinitesimally short-

ranged (or “sticky”) attraction—a reasonable approximation for depletion or DNA-mediated (39, 

40) attractions—only two parameters, both easily measured in experiment, are needed to predict 

the transition rates: a diffusion coefficient and the probability of two spheres binding. The rest of 

the model is pure geometry: the entropy can be calculated as a function of the particle positions 

along the pathway. Similar models, incorporating not only the effects of drag on individual 

particles, but also the effects of hydrodynamic interactions between particles, have recently been 

used to explain non-equilibrium solid-solid transitions in colloidal crystals (41).  
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Another key difference between colloidal and atomic matter is that colloidal particles are purely 

classical objects. If we constrain some of the degrees of freedom, others can stabilize new 

equilibrium phases. Chen, Bae, and Granick (42) found that colloidal spheres with attractive 

patches centered on two poles can form a stable Kagome lattice—an “open” lattice with a low 

volume fraction (Figure 2C). The Kagome structure is favored over other lattices with equivalent 

potential energy, some having higher density. Mao, Chen, and Granick (43) later showed that 

open lattices like the Kagome are favored by the entropy associated with both vibration and 

rotation of the particles around their lattice sites (Figure 2C). Because these entropic terms can 

be increased by increasing the patch size, many different phases, including the 3D diamond 

lattice and even liquid phases (44), might be stabilized by changing patch size and geometry. 

This work illustrates the critical role that entropy plays in the organization of colloidal matter, 

even in the presence of strong attractive interactions. In atomic-scale systems, the vibrational and 

rotational modes—which in spin systems are better known by the names of their quasi-particles, 

phonons and magnons—also play a role in determining the equilibrium crystal structures, but 

these modes can be quantized even at room temperature. In contrast, colloidal systems are purely 

classical, so there is a continuous spectrum of energies for each mode. No modes can be “frozen 

out” by reducing the temperature, and all contribute simultaneously to the free energy. 
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Figure 2. Colloidal matter reveals structural and dynamical features not seen at the atomic scale. 

(A) Crystals grow through the motion of particles across step-edges (top). Short-range 

interactions between colloidal particles give rise to a different energy landscape for adcolloids 

(middle) than for adatoms (bottom). Figure adapted from (105). Reprinted with permission from 

AAAS. (B) For atoms, the rate of a transition (top) is set by the energy barrier (middle); for 

colloidal particles, one must consider the rate of diffusion after the bond is broken (bottom). The 

x-axis indicates the coordinate along the transition path. (C) Janus particles with two attractive 

patches (blue) assemble into an open Kagome lattice rather than the more dense hexagonal 

lattice. Both lattices have the same number of contacting patches, but the constraints in the 

hexagonal lattice (black lines) do not allow the vibrational and rotational degrees of freedom 

seen in the Kagome (bottom).The short range of the attraction creates a free-energy barrier for 

particles to move across the corners and edges of islands. Each particle must break a “bond” 

(depletion interaction) with one or more particles and then diffuse to reach its new lattice site 

(Figure 2A). By contrast, in epitaxial growth of atomic crystals, such step-edge barriers arise 

from the long-ranged interactions between atoms; as the particle crosses the edge, it still “feels” 

the attractions from next-nearest neighbors in the crystal. Ganapathy et al. found that, 

surprisingly, the bond-breakage-plus-diffusion process in the colloid leads to growth rates that 

are quantitatively similar to those in atomic epitaxy. The diffusion process slows down the 

kinetics, much as the long-range potential barrier does in an atomic system.  
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Anisotropic and patchy particles 

The “patchy particles” of Chen, Bae, and Granick (42), which interact preferentially along 

certain directions, are part of a new generation of colloidal particles that break orientational 

isotropy (45–47). The phase behavior of these particles is potentially much richer than that of 

spheres. For instance, tetrahedrally-coordinated patchy particles (48) might crystallize into a 

diamond lattice, and mixtures of patchy particles might form exotic phases such as an “empty 

liquid” (49), a liquid phase that persists to vanishingly small densities.  

For hard particles, changes in shape dramatically alter the equilibrium phases. This point has 

been examined most thoroughly in simulations. Damasceno et al. (21) explored how the densest 

equilibrium phase varies as a function of shape in families of convex polyhedra. These polyhedra 

formed a variety of crystals, liquid crystals, and glasses. In many cases the phase behavior agreed 

with expectations. For example, nearly spherical polyhedra formed FCC plastic crystals, a 

configuration that makes intuitive sense: the lattice allows the particles to maximize their 

vibrational entropy while maintaining freedom to rotate. But other transitions were 

counterintuitive. Some polyhedra formed more complex phases than expected, and still others 

failed to crystallize, even though their densest phase is known to be ordered. Although 

Damasceno et al. were not able to predict the densest equilibrium phase directly from the shape, 

they were able to correlate the observed phase behavior to two geometrical parameters, the 

sphericity of the particles and their average coordination number in the fluid phase (Figure 3A). 

The connection between global phase behavior and local structure was later explained by van 

Anders et al. (50) in terms of “directional entropic interactions”: when two particles orient their 

faces toward one another, they increase the free volume available to the rest of the particles 

(Figure 3B). The predictions of Damasceno et al. have not yet been tested in experiments at the 

colloidal scale, owing to the difficulty of synthesizing hard polyhedra. Inorganic nanoparticles 

with such shapes have been assembled using depletion interactions or sedimentation (51, 52), but 

experiments on hard colloidal particles would make it possible to visualize the dynamics 

governing the solid-solid and glass transitions.  

An experimentally simpler way to control colloidal assembly is through the topography of the 

particles. The depletion attraction between two surfaces can be modulated by roughness 

comparable to the size of the small depleting particles (53). In particles with rough and smooth 

spots, the smooth parts act as attractive patches. Kraft et al. (54) exploited this effect to assemble 

analogues of surfactant micelles from sphere doublets comprising one large, rough sphere and 

one small, smooth sphere (Figure 3C). Another way to control the depletion interaction is to 

imprint a concave region on an otherwise spherical particle (55). This topographical feature acts 

as a “lock” for another particle (the “key”) having a convex surface that closely matches the 

contour of the lock. The lock particles can be made by buckling spheres or by growing a 

spherical particle on a non-spherical seed and then removing the seed (56), leaving a dimple. 

Such particles can assemble into dimers, chains, and networks (Figure 3D). 

All of these colloidal particles, whether spherical or polyhedral, convex or concave, rough or 

smooth, have a common feature: they are topologically equivalent, or “homeomorphic.” In other 

words, they can all be continuously deformed into one another. It’s easiest to understand this if 

we imagine a colloidal particle as a lump of clay. We can knead it into many different shapes, 

but unless we punch a hole in it, or roll it into a cylinder and glue the ends together, there is no 

way to turn it into a torus. So, in terms of topology, even the “non-spherical” particles we have 
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seen are spherical! Both the shape and topology of a particle determine the interactions between 

particles inserted into a medium that is partially ordered, such as a nematic liquid crystal. Defects 

in the medium can be created by controlling the anchoring conditions or by moving the particles 

around to make defect lines and even knots (57). Smalyukh and coworkers (58, 59) showed that 

new classes of defect structures could be stabilized by particles with “handles” (Figure 3D) or 

knots (59). Handles are a topological feature: a sphere has none, a ring or coffee mug one, and 

two or more rings glued together in the plane have multiple handles. Ultimately, these 

topologically distinct particles may be able to self-assemble into novel structures, owing to the 

effective interactions that emerge as the liquid crystal minimizes the elastic energy associated 

with the defects (60, 61).  
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Figure 3. The shape, topography, and topology of nonspherical particles can be used to control 

assembly. (A) Equilibrium phases found in simulations of hard convex polyhedral correlate with 

the coordination number in the fluid and the degree of sphericity of the particles (adapted from 

(21). Reprinted with permission from AAAS). (B) To maximize the entropy of the system, the 

particles tend to orient with their faces parallel and close to one another. The tendency can be 

viewed as a “directional entropic force” (adapted from (50)). (C) Topographical features control 

assembly in the presence of depletion forces. Top, time series of micrographs showing dimers of 

rough (“R”) and smooth (“S”) particles assembling into analogues of micelles. Scale bar, 5 μm 

(adapted from (54)). Bottom, time series of micrographs showing 2-μm-diameter particles with 

concave dimples attracting convex particles and assembling into chains (Adapted by permission 

from Macmillan Publishers Ltd: ref. (55), copyright 2010). (D) Particles with different numbers 

of topological handles affect the director field (black lines) in a liquid crystal. The interactions 

between such particles can be controlled by the anchoring conditions and the number of handles 

(Adapted by permission from Macmillan Publishers Ltd: ref.(58), copyright 2013). 
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Colloidal matter on curved surfaces 

Geometry allows us to rationalize, and in some cases predict, how colloidal matter organizes, 

and even how its dynamics emerge. But what if we could change the rules of geometry itself?  

We can do this by curving the space that the colloid inhabits. Imagine we put hard spheres on a 

spherical surface. At high density, the system favors a triangular lattice, which corresponds to the 

densest packing of spheres in 2D (62). Each particle in the lattice has six nearest neighbors 

arranged in a hexagon, so that each component triangle of the hexagon subtends an angle of π/3. 

But on a sphere, the sum of the interior angles of a triangle must exceed π (Figure 4A), which 

means that the hexagon is strained. 

How does the system accommodate this curvature-induced strain? Part of the answer comes from 

mathematics. We can break down any 2D arrangement of points on the sphere into a network of 

(not necessarily regular) triangles that form a closed polyhedron. A famous result from Euler 

relates the number of vertices V, edges E, and faces F of the polyhedron: V-E+F=2. The number 

2, called the Euler characteristic, indicates that some particles must have fewer than 6 nearest 

neighbors; otherwise, we would have V-E+F=0.  

The simplest way to satisfy Euler’s theorem is to add 12 defects in which a particle is 

coordinated by five, rather than six, nearest neighbors. These 12 five-fold disclinations, as they 

are called, can be seen in an old-style, hand-stitched soccer ball (or a “football” as it is known in 

most places), which contains exactly 12 pentagonal panels, the rest being hexagonal. The 12 

pentagons allow the otherwise hexagonal tiling to make up for the angular surplus imposed by 

the Gaussian curvature. More generally, we can assign each five-fold disclination a topological 

“charge” of +1, and each seven-fold defect a charge of -1. The total disclination charge must be 

six times the Euler characteristic, which varies for different topologies. 

Geometry doesn’t entirely dictate the structure, though. The potential between the particles also 

matters (63). Bausch et al. (64) observed nearly hard-sphere colloidal particles bound to the 

surface of a spherical droplet and found that although the total disclination charge was exactly 

12, in agreement with Euler’s theorem, there were more than 12 defects. The excess defects 

consisted of pairs of five-fold and seven-fold disclinations aligned in chains that Bausch et al. 

termed “grain boundary scars” (Figure 4B). They argued that the scars minimize the elastic 

energy associated with the required disclinations (note that in theoretical models of the free 

energy, one treats the crystal as a continuous elastic medium and then calculates the deformation 

arising from the curvature-induced strain and the defects). The elastic energy implicitly includes 

an entropic contribution; indeed, for hard spheres, this is the only contribution. Bausch et al.’s 

elastic model showed that a single isolated five-fold disclination would incur a large local elastic 

strain, resulting in a large elastic energy penalty. To avoid the penalty, the crystal creates chains 

of defects, which gradually reduce the strain while keeping the total disclination charge constant. 

Different defect motifs emerge to accommodate gradients in curvature like those found in a 

capillary bridge. Topologically such bridges are equivalent to cylinders, which have an Euler 

characteristic of zero—meaning that no defects are required. The curvature, however, can vary 

across the bridge: it is zero near the top or bottom plates, and positive or negative at the center, 

depending on the distance between the plates. Irvine, Vitelli, and Chaikin (65) examined defects 

in a colloidal suspension confined to a capillary bridge and found that as they pulled the surfaces 

apart, chains of dislocations formed with their seven-fold disclinations closer to the center of the 

http://dx.doi.org/10.1126/science.1253751


doi: 10.1126/science.1253751  14 

 

bridge (Figure 4C). The total disclination charge remained zero, as required by topology. These 

polarized dislocations allow the crystal to minimize the elastic energy associated with the 

gradient in curvature, much as pleats allow a pair of trousers to accommodate the different 

curvatures of the wearer’s waist and hips. 

More recent experimental work has examined how curvature can affect the mobility of defects 

(66) and the growth of crystals (67). Meng and coworkers (67) found that particles with short-

ranged depletion interactions on a spherical droplet formed crystals consisting of connected 

“ribbons,” anisotropic domains with widths much smaller than their lengths (Figure 4D). The 

ribbon-like growth is a consequence of elastic considerations. When the attraction between 

particles is short-ranged, the crystal is brittle, and trying to wrap it around the sphere is like 

trying to gift-wrap a basketball: the wrapping paper can’t stretch, and if we are not allowed to 

wrinkle it, our only option is to tear it into strips. Multiple strips of the same width allow the 

crystal to cover a large area with minimal strain. 

We still do not have a full picture of how curvature and the interparticle potential affect the 

kinetics of phase transitions. Simulations (68, 69) of crystal growth on curved surfaces usually 

employ long-range attractive potentials, which give rise to dislocations, grain boundary scars, or 

pleats in the growing crystal, depending on the curvature and its gradient. But in colloidal matter, 

where attractions are short-ranged, it could well be difficult to reach the ground states, which 

must (by Euler’s theorem) include topological defects. It will therefore be interesting to see if 

biological systems on curved surfaces, such viral capsids and lipid vesicles, follow the same 

growth pattern shown by colloidal crystals on curved surfaces. 
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Figure 4. Curvature controls defects and growth in colloidal crystals. (A) The sum of the interior 

angles of an equilateral triangle on a sphere must exceed π. As a consequence, a hexagonal 

lattice on the sphere is strained. (B) To minimize the elastic strain caused by the curvature, hard-

sphere crystals on a spherical surface (left) form chains of disclinations known as grain-boundary 

scars (right; red: five-fold disclination; yellow: seven-fold disclination). From (64). Reprinted 

with permission from AAAS. (C) Polarized disclination pairs form in crystals on a capillary 

bridge (left). These “pleats” minimize the elastic strain associated with the gradient in curvature 

(yellow: five-fold disclination; red: seven-fold disclination). Adapted by permission from 

Macmillan Publishers Ltd: ref. (65), copyright 2010. (D) Attractive particles on a sphere form 

ribbon-like domains, which allow the crystal to minimize its elastic energy while still covering a 

large surface area (image from Guangnan Meng).
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Geometrical frustration in three dimensions 

Taken together, the results of the previous section show that curvature “frustrates” the growth of 

2D colloidal crystals of spherical particles. It makes the locally-favored packing of particles 

incompatible with the space-filling packing, resulting in disorder. Theories of geometrical 

frustration reason in the opposite direction to understand 3D disorder: given a particular 3D 

system, can we understand its propensity for disorder in terms of a competition between locally 

and globally favorable structures?  

There are many 3D disordered systems; indeed, most colloids form glasses or gels. The origins 

of these non-equilibrium phases, whether in colloidal matter or condensed matter as a whole, 

remain poorly understood. One body of work (70, 71) attempts to connect the slowdown of 

dynamics near the glass or gel transition to a growing structural length scale, perhaps associated 

with locally-favored structures. 

The challenge, then, is to determine the locally-favored structures. This problem has a long 

history in materials science and condensed-matter physics, beginning with a 1952 paper by Frank 

(72) showing that an icosahedron of 13 spheres interacting through a Lennard-Jones 6-12 

potential has an 8.4% lower energy than arrangements that occur in the FCC or hexagonally 

close-packed (HCP) lattices (Figure 5A). Frank hypothesized that these stable icosahedral 

arrangements might be common in liquids and, furthermore, that they might allow certain liquids 

to be supercooled well below their freezing point, since the five-fold symmetry of icosahedra is 

incompatible with crystalline order. Later calculations found that five-fold symmetric structures, 

though not necessarily icosahedra, are more stable than lattice-like clusters for other model 

potentials and for larger numbers of spheres (73). The statistical mechanics of such finite 

systems has become a field of its own (37, 74). In the last decade Frank’s hypothesis was 

verified by X-ray experiments that revealed structures with five-fold symmetry in metallic 

liquids (75). 

However, we must be careful when applying Frank’s hypothesis to colloidal matter. The 

Lennard-Jones 6-12 and related potentials are reasonable approximations for certain 

nanoparticles (76) but are poor models for colloids, which have much shorter-range attractions. 

Moreover, entropy must play a role in structuring colloids, even when the potential is attractive.  

In hard spheres, where the only structuring influence is entropy, the locally-favored structures do 

not appear to be icosahedra, except when the particles are confined (77). Colloidal hard spheres 

in 3D show a glass transition at a volume fraction of about 0.60 or higher, depending on the 

polydispersity (78). “Supercooled” fluids of such particles—that is, dispersions that remain fluid 

although they have been concentrated to volume fractions above the freezing transition—show 

structural and dynamical features similar to atomic-scale liquids (79). Yet experiments show that 

the local structure of supercooled colloidal fluids differs qualitatively from that of metallic 

liquids. Gasser et al. found few true icosahedra in the bulk of supercooled hard-sphere fluids 

(80). Simulations by Royall, Malins, Dunleavy, and Pinney at larger supercooling (higher 

volume fraction) also did not find icosahedra to be favored, although 10-membered clusters that 

are fragments of icosahedra were a common motif (81). However, the same study suggests that 

even deeper supercooling is necessary to resolve the connection between locally-favored 

structures and the glass transition. 

Experiments on random packings of hard macroscopic spheres, beginning with Stephen Hales’s 

examination of pea packings in 1727 (82), and continuing to Bernal and Finney’s studies of ball 

http://dx.doi.org/10.1126/science.1253751


doi: 10.1126/science.1253751  17 

 

bearing packings (14, 83) and more recent work on x-ray tomography of spherical beads (84), 

have found five-fold local packings but also many other local structures that are incompatible 

with crystalline order. As van Meel and coworkers noted (85) “Bernal and many after him have 

indeed observed just about any small polyhedron in hard-sphere fluids.” It is still not clear which 

locally-favored structures we should be looking for in hard-sphere fluids. 

When the particles attract one another, locally-favored structures can be found using energetic 

calculations or cluster lifetimes (86). Royall et al. (87) found that icosahedral, deltahedral, and 

bipyramidal clusters minimize the potential energy of a Morse potential with a short range 

parameter, which approximates a depletion interaction between spherical particles. Using 

confocal microscopy, they looked for these clusters inside a colloidal gel and found that they 

occurred in long-lived percolating networks (Figure 5B). These networks might contribute to the 

slowdown of dynamics near the gel transition. 

The stability of such clusters is also influenced by entropy (88, 89). One entropic effect that must 

be considered is the huge number of competing structures at any given cluster size: for example, 

for a 10-sphere cluster, there are nearly 400 potential-energy minima, most of which are 

degenerate (90, 91). A second entropic effect involves the number of ways each cluster can form. 

Meng et al. found that clusters of attractive spherical particles formed asymmetric structures in 

equilibrium (89). This tendency, which arises because lower-symmetry clusters have more 

permutations of particles that result in the same structure, strongly selects against the 

icosahedron and five-fold symmetry, while favoring polytetrahedral clusters (Figure 5C). This 

case shows yet another way in which short-range attractions and entropy in colloidal matter 

conspire to produce results different from (and, in this case, almost exactly the opposite of) 

atomic systems. 

There is still no direct correlation between the stability of certain clusters and a growing 

structural length scale in arrested colloidal phases. But perhaps this has more to do with the 

system than the model (92). Spherical particles may be one of the simpler experimental systems 

to examine, but they are also one of the trickiest to think about geometrically. Thus some 

experiments have begun to examine slow dynamics in dispersions of anisotropic particles (93). 

Hard tetrahedra may be a better system for testing theories of geometrical frustration because 

they “prefer” higher dimensions: although they cannot fill 3D Euclidean space, they can 

perfectly tile the surface of a four-dimensional hypersphere (94). Just as putting hard spheres on 

the surface of a sphere leads to disclinations, so does putting densely packed tetrahedra in flat 

(Euclidean) space (95, 96); both systems are subject to a curvature-induced elastic strain. 

Simulations have found that hard tetrahedra form a disordered, quasicrystal phase that persists to 

high densities, even though a denser ordered phase can form (97). It is interesting to consider 

whether the stability of this quasicrystal might be traced to locally-favored structures that—like 

the ribbons we saw in crystals of attractive spheres on a sphere (67)—minimize the curvature-

induced elastic strain. 
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Figure 5. The tension between locally and globally favored structures leads to frustration. (A) 

The lowest potential-energy configuration of 13 spheres interacting through a Lennard-Jones 

potential is an icosahedron. Unlike the FCC or HCP clusters, icosahedra cannot tile space. (B) 

Particles interacting through short-range attractions form a gel. The minimal-energy clusters of 

such particles (shown in colors) form a percolating network (Adapted by permission from 

Macmillan Publishers Ltd: ref. (87), copyright 2008). (C) Entropy favors asymmetry in local 

structure. Six particles with short-range attractions form an asymmetric configuration (the 

polytetrahedron) more than 24 times as often as they form a symmetric structure (the octahedron) 

in equilibrium. Both structures have the same potential energy. The difference in probabilities is 

primarily due to the higher rotational entropy for the asymmetric structure. 
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Looking forward 

Perhaps it should not be surprising that geometry and packing arguments can be used to 

understand the organization of colloidal matter. The earliest incarnations of colloidal particles 

were nanoscale objects with haphazard arrangements of charges and uncontrolled polydispersity. 

Advances in synthesis and fabrication have transformed colloids into their modern form: highly 

symmetric shapes with well-controlled size distributions, surface chemistry, topography, and 

topology. In other words, colloidal matter is designed to obey geometrical rules. 

What is surprising is the richness of the phenomena that emerge when we combine these well-

controlled particles with simple constraints. These phenomena occur because thermodynamic 

quantities such as the elastic energy depend sensitively on the interaction potential, and the 

entropy on how the particles are allowed to fluctuate. When we constrain the dominant degrees 

of freedom (by, for example, introducing patchy attractions), the other degrees of freedom that 

we previously neglected now come to the fore, stabilizing new structures. 

In most cases, however, geometrical arguments remain post-hoc explanations for the collective 

behavior we discover in experiment or simulation. Steps toward predictive frameworks have 

been made in the geometrical model of the free-energy landscape of Holmes-Cerfon et al. (38) 

and the directional entropic forces of van Anders et al. (50). But there are many other transitions 

and structural motifs that remain to be discovered in the vast parameter space now accessible to 

the experimentalist—a space spanned by shape, topography, topology, and curvature. 

Dynamics offers yet another dimension of control, one which is difficult to vary in atomic 

systems but in colloidal matter emerges naturally from the interactions between particles and 

fluid. Even at the single particle level, the thermally-driven motion of nonspherical particles (98) 

and of particles in anisotropic fluids (99) continues to reveal surprises, nearly 100 years after 

Perrin’s experiments. The hydrodynamic interactions between these particles can not only select 

for certain phases (41), but can also result in different collective phenomena when the driving 

forces are intrinsic or extrinsic energy sources rather than thermal fluctuations (100). Such active 

colloidal systems show nonequilibrium self-organization with complexity rivaling that of 

biological systems such as living cells, bacterial baths, and animal flocks.  

Another variable is specificity. DNA-functionalized colloidal particles have effective attractions 

that are both short-ranged and specific (101), and each particle can carry more than 40 different 

strands of DNA (102). It is therefore possible to explore systems in which the number of 

independent pair interactions is comparable to the number of particles. Collective effects should 

emerge from the interplay between specificity and packing constraints in such “polygamous” 

systems, which have no equivalent at the molecular scale. 

Understanding the effects of specificity, dynamics, and the many other dimensions of colloidal 

matter will require new experiments and theoretical models. But with such understanding we 

might resolve longstanding challenges, such as the “inverse” problem of creating a colloidal 

system that will self-assemble into a prescribed structure. Optical materials are a prime 

application, since the scale of colloidal particles is on the order of visible light. The optimal 

structures for materials that show structural colors (103) and photonic band gaps (104) are not 

crystals, but disordered materials with short-range correlations. Thus, the framework of 

geometrical frustration, which has been used to explain disordered systems, could be used to 

design new ones instead, through specific choices for the shapes or interactions of the particles.  
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Future discoveries in colloidal matter will continue to come from systematic and iterative 

collaborations between those who synthesize particles, those who measure their structure and 

dynamics, and those who construct models explaining the phenomena. Colloidal matter is, and 

will continue to be, where geometry, chemistry, and physics meet.  
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