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Charles Darwin attributed human evolutionary success to three traits. Our social habits 1 

and anatomy were important, he said, but the critical feature was our intelligence because it led 2 

to so much else, including such traits as language, weapons, tools, boats and the control of fire. 3 

Among these, he opined, the control of fire was “probably the greatest ever [discovery] made by 4 

man, excepting language.” Despite this early suggestion that the control of fire was even more 5 

important than tool use for human success, recent anthropologists have made only sporadic 6 

efforts to assess its evolutionary significance.e.g. 1,2 Here we use recent developments in 7 

understanding the role of cooked food in human diets to support the spirit of Darwin’s offhand 8 

remark. We first consider the role of fire in increasing the net caloric value of cooked foods 9 

compared to raw foods, and hence in accounting for the unique pattern of human digestion. We 10 

then review the compelling evidence that humans are biologically adapted to diets that include 11 

cooked food, and that humans have a long evolutionary history of an obligate dependence on 12 

fire. Accordingly we end by considering the influence of fire on various aspects of human 13 

biology. We pay particular attention to life history, and also briefly discuss effects on anatomy, 14 

behavior and cognition. 15 

 16 

The energetic consequences of cooking 17 

 Foraging serves multiple purposes, including obtaining amino acids, vitamins and 18 

minerals, but energy gain is consistently found to be the most important criterion for animal 19 

foraging decisions because maximization of energy gain tends to have direct consequences for 20 

fitness.3,4 This assumption has been validated by numerous studies of primates showing that even 21 

small increases in net energy gain lead to increases in female reproductive rate and/or offspring 22 

survival, e.g. in humans,5 chimpanzees6 and baboons.7 23 
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An obvious implication from optimal foraging theory is that like diet choice, patch choice 24 

and foraging time, methods of processing food should be designed to maximize energy gain. 25 

Among humans the predominant form of food processing is cooking, which has long been 26 

known to be a cultural universal that demands time, energy and care (Figure 1). Yet when Lévi-27 

Strauss hypothesized that cooking has no significant biological effects,8 no one objected to his 28 

idea. Only in the last decade has abundant evidence emerged that cooking consistently increases 29 

the energy obtainable from most foods. 30 

 Two kinds of evidence are particularly informative, though research on both is still at an 31 

early stage. First, body weight data show that humans have a more positive energy balance when 32 

eating cooked diets compared to when eating raw diets.9 In the most extensive study, a cross-33 

sectional survey of 513 long-term raw-foodists living in Germany, Koebnick and colleagues 34 

found that body mass index was inversely correlated with both the proportion of raw food in the 35 

diet and the length of time since adoption of raw-foodism.10 All studies of human raw-foodists, 36 

and many comparisons of domestic or wild animals on cooked versus raw diets, lead to the same 37 

conclusion: the more cooked food in the diet, the greater the net energy gain.9,11 38 

 Second, by studying the effects of cooking specific nutrients, experiments in vivo have 39 

begun to reveal the mechanisms underlying the beneficial effects of cooking on energy 40 

availability. Until recently researchers generally assumed that raw nutrients such as starch and 41 

protein are well digested by humans, given that when humans eat these nutrients raw, very little 42 

to none of the nutrient reaches the feces in an undigested form. The inference of 100% 43 

digestibility was flawed, however, because studies of ileostomy patients show that both raw 44 

starch and raw protein are only partially digested by the time they reach the end of the human 45 

small intestine. After leaving the ileum and entering the large intestine, residual nutrients are not 46 
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digested by the gut. Instead, they are fermented by intestinal microbes, which consume a 47 

proportion of the resulting energy. The proportion of energy that is used by the micro-flora is 48 

unavailable to humans, and the fraction of loss to humans ranges from 100% for protein12,13 to an 49 

estimated 50% for carbohydrates.14,15 Accordingly, based on the proportion of nutrient digested 50 

by the time it reaches the large intestine, cooking appears to increase digestibility substantially. 51 

Current experiments suggest that the associated caloric gain due to improved digestibility as a 52 

result of cooking is 12-35% for starches (median = 30%: oats, wheat, plantain, potato and green 53 

banana), and 45-78% for protein (chicken egg).11 The energetic costs of cooking food are 54 

currently unmeasured but would have to be very high to negate these benefits. For individuals 55 

able to obtain their food cooked without excessive difficulty in finding fuel, defending their 56 

fireplace, etc., these effects imply a large fitness advantage. 57 

 Cooking also increases net energy gain by reducing the metabolic work performed by 58 

humans when digesting. Evidence for this claim comes from animal studies. Other things being 59 

equal, rats eating softer food expend less energy in digestion, and are therefore heavier and more 60 

obese than rats eating harder diets having the same number of measured calories.16 Since 61 

cooking consistently softens plant food,9 as well as gelatinizes collagen and therefore reduces the 62 

physical integrity of meat,17 similar effects can be expected due to cooking. Although this 63 

hypothesis has not been tested directly in mammals, pythons fed cooked meat were found to 64 

experience costs of digestion that were 12-13% lower than pythons fed equivalent meals of raw 65 

meat.18 66 

 Various other mechanisms are potentially important but less well-studied.11 Cooked 67 

lipids are likely to be digested more easily than raw lipids because they tend to offer a greater 68 

surface area for digestion. Cooking may offer important benefits by reducing the energetic costs 69 
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of detoxification or of immune defense against pathogens. Cooking also allows more dry weight 70 

to be ingested because it reduces water content.  71 

Given these energetic benefits of cooking, in addition to other advantages such as making 72 

food safer, more accessible and more appetizing, why do people worldwide ever eat any of their 73 

diet raw? Two reasons appear particularly important. First, many fruits are designed to be eaten, 74 

i.e. they are biologically (and in some cases agriculturally) adapted to being as attractive as 75 

possible to consumers (because, in the case of wild fruits, consumers disseminate swallowed or 76 

expectorated seeds). The principal attractant is most often sugar, such as in apples and grapes. 77 

Cooking presumably does little to increase the digestibility of such items. 78 

 Second, cooking is sometimes impractical, particularly when individuals are on trek or 79 

foraging. For example Australian aborigines would eat a variety of roots, eggs or animals (such 80 

as mangrove worms) raw during the day, but if they found enough of the same items to bring 81 

them back to camp, they would cook them after reaching home. Likewise Inuit hunters would 82 

rarely attempt to cook while foraging, since wood fuel was in short supply and most cooking 83 

relied on seal-oil burners that required several hours of use. Inuit men therefore ate various 84 

animal foods raw by day, including cached fish and caribou. On return to camp, however, a 85 

cooked evening meal was the norm.9 86 

 87 

Biological adaptation to cooked food 88 

  While most animals, whether wild or domestic, appear to resemble humans by gaining 89 

more energy from cooked food than from raw food, current evidence points to a remarkable 90 

difference between humans and all other species in the ability to thrive on raw food. Every 91 

animal species investigated to date fares acceptably on raw diets. Only humans do not. Thus no 92 
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cases are known to us of humans living on raw wild food for more than a few weeks. Raw 93 

domesticated food can provide a sustaining diet for contemporary urban raw-foodists, but the 94 

few studies of health status all indicate that urban raw-foodists are at risk of chronic energy 95 

shortage.  96 

 Inadequate energy gain from a raw diet probably explains a particularly telling result. 97 

Koebnick and colleagues found that most women on a 100% raw diet were sub-fecund: 98 

approximately 50% of their subjects were amenorrheic.10 Indeed, like energy deficiency, the 99 

incidence of amenorrhea varied positively with the percentage of raw food in the diet and the 100 

duration of raw-foodism (Figure 2). The odds of energy deficiency or amenorrhea were not 101 

reduced in subjects who ate animal foods, suggesting that these results were driven by the lack of 102 

cooking rather than diet composition. It is notable that reproductive failure occurred in these 103 

women even though their urban raw diets had critical energetic advantages over raw diets that 104 

hypothetically they might have attempted to consume in the wild. First, since the urban foods 105 

were primarily domesticates (both plant and animal), they were likely high in digestible nutrients 106 

and low in indigestible components or toxins compared to wild raw foods. Second, the urban 107 

raw-foodists would have suffered little seasonal variation in food quality since they obtained 108 

food from global sources. Third, raw diets were extensively processed non-thermally (e.g. in 109 

blenders) or even by drying over low heat: many raw-foodists treat foods that have been heated 110 

below ~46°C as acceptable items. Finally, additional advantage appears to come from the urban 111 

raw-foodists taking less exercise than foragers.  112 

 The evidence that the average woman eating a diet of 100% raw high-quality foods is 113 

amenorrheic suggests an important conclusion: human populations are not adapted to survive on 114 

a diet of raw wild food, even when it is extensively processed using non-thermal methods. This 115 
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idea is consistent with the fact that no human population has ever been found living on raw wild 116 

food. The only alternative possibility is that hunter-gatherers in the unknown past were 117 

consistently able to find wild raw foods of higher quality than those eaten by contemporary 118 

urban raw-foodists. The challenge for those who are skeptical of the importance of cooking in 119 

human evolution is therefore to identify such diets. Even though honey, marrow, liver and some 120 

exceptional other kinds of meat or fruit or social insect might in theory sustain a population when 121 

eaten raw for a few weeks or months, we know of no raw diet that could provide predictable 122 

year-round adequacy. Until such a diet has been identified, we conclude that humans differ from 123 

all other species in being biologically committed to a diet of cooked food. 124 

 This proposal is easily understood in terms of our current biology. Most importantly the 125 

few available measurements indicate that the intestines of humans are small compared to those of 126 

other primates, i.e. around 60% of the expected weight/volume expected for a species of our 127 

body mass.19 More data are needed in order to assess the variation in gut dimensions within 128 

species, but current information suggests that once our ancestors had predictable access to 129 

cooked food, there would have been little benefit in retaining a relatively capacious colon 130 

designed to allow fermentation of long-chain carbohydrates. Since gut tissue is energetically 131 

expensive to maintain, selection would have favored reduction of colonic tissue and other parts 132 

of the gut that were no longer useful for individuals eating a cooked diet. 133 

 Human molars are also smaller than in other primates.9 The action of cooking in reducing 134 

food toughness suggests that tooth size reduction is adaptive.20 Other features of the mouth that 135 

have been interpreted as evolutionary responses to cooked foods include reduction of jaw-muscle 136 

myosin, increased salivary amylase production, and reduced oral cavity volume.21 137 
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 Many other adaptations can be expected to cooked diets. Very little is known about the 138 

comparative enzymology of the human and ape digestive system, but the relatively high quality 139 

of cooked food suggests that human-specific adaptations are likely. Reductions in toxin intake 140 

due to the destructive effect of heat may have led to increased sensitivity to plant xenobiotics in 141 

humans compared to many primates. Increased ingestion of Maillard compounds (potentially 142 

toxic complexes of sugars and amino acids that form under heat catalysis) could have selective 143 

consequences for detoxification systems. The ingestion of relatively high calorie loads in meals, 144 

particularly late in the day, suggests modifications to the insulin system compared to apes. Such 145 

possibilities make the evidence that humans are uniquely adapted to a high-quality diet of cooked 146 

food a provocative claim for understanding various aspects of human digestive physiology in a 147 

new way. 148 

 149 

Why Homo erectus appears to have needed fire 150 

Given evidence that all humans are biologically adapted to a cooked diet, when did fire 151 

use begin? The archeological evidence gives us a minimum age of at least 250 kya. Several sites 152 

dated to 250 kya or older contain evidence of fire use by hominids, including burned deposits, 153 

fire-cracked rocks, reddened areas, baked clay, ash, charcoal, fire-hardened wood, burned lithics 154 

and bone, and even some indication of hearths.22 Older dates for fire use are also widely 155 

acknowledged at sites such as Beeches Pit in England23 and Schöningen in Germany,24 dated to 156 

~400 kya, as well as Gesher Benot Ya’aqov in Israel, dated to 790 kya.25 Unfortunately, the 157 

archeological record may never tell us when fire was first controlled. There is a decreasing 158 

probability of finding evidence of any type as time increases, and this is particularly true with 159 

fire use, since traces of fire can vanish quickly.9 For example, Sergant and colleagues report that 160 
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burnt bone, shells and other artifacts have been found at almost all Mesolithic sites in the 161 

northwest European Plain, yet the direct evidence for control of fire is extremely limited.26  162 

Biology provides an alternative method of inferring the origin of cooking. Animals show 163 

that anatomy can adapt very quickly to a change in diet,27,28,29 Fast rates are also known for 164 

hominins. Among human populations with a history of dairying, lactase persistence (i.e. the 165 

ability to digest lactose into adulthood) has evolved at least twice in the last 7,000 years.30,31 In 166 

addition, populations with a recent history of consuming starch-rich foods exhibit higher copy 167 

numbers of the gene encoding for salivary amylase.32 Consequently, we can reasonably infer the 168 

origin of cooking from the emergence in hominins of biological traits that are consistent with the 169 

consumption of cooked food.  170 

Predictable effects of cooking, as delineated above, include food softening (including 171 

enhanced fracturability) as well as increased digestibility and reduced costs of digestion. From 172 

these we can hypothesize that the adoption of cooking should have led to corresponding 173 

reductions in masticatory and gastrointestinal anatomy. In what hominin, if any, did such 174 

reductions take place? 175 

We can eliminate Homo sapiens as a candidate, since fire was almost certainly controlled 176 

prior to their emergence ~300-200 kya and since the anatomical differences from H. 177 

heidelbergensis were not obviously diet-related, involving primarily a smaller face, rounder head 178 

and a somewhat larger brain.33 179 

Homo heidelbergensis would appear to be a reasonable candidate from an archeological 180 

perspective, since its emergence ~800-600 kya corresponds to the earliest widely accepted date 181 

for the control of fire.25 H. heidelbergensis differs from its precedessor, H. erectus, primarily by 182 

its larger cranial capacity and other aspects of cranial shape, including a higher forehead and a 183 
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flatter face.9 These features are not irrelevant: a less prognathic face can indicate reduced 184 

masticatory strain34 and a larger brain suggests a higher energy budget, since the brain is a 185 

metabolically expensive tissue.19 It is therefore likely that some improvement to the diet did 186 

occur at this junction. However, the anatomical changes appear too slight a response to a dietary 187 

shift as significant as cooking was likely to have been. In addition, the transition from H. erectus 188 

to H. heidelbergensis appears to have involved no major changes in dentition or gastrointestinal 189 

anatomy, in contrast to would be predicted if H. heidelbergensis were consuming a cooked diet. 190 

By contrast, the transition from late australopithecines or early Homo (Homo habilis, H. 191 

rudolfensis) to H. erectus is associated with significant changes to diet-related features that are 192 

consistent with the predicted effects of a cooked diet. Postcanine tooth area is smaller in 193 

H.erectus than in any previous hominin on an absolute basis, and so small as to be equivalent to 194 

H. sapiens when adjusted for body size.35 Correspondingly, H. erectus also exhibits a relatively 195 

smaller mandible36 and other aspects of facial shortening, which suggest reduced masticatory 196 

strain.34 Together, these craniodental features indicate that H. erectus was consuming a softer 197 

diet. Gut size also appears to conform to the expected pattern. For instance, H. erectus appears to 198 

have had a barrel-shaped thoracic cage, similar to later Homo and distinct from the funnel-199 

shaped thoraces of previous hominins.37 H. erectus is therefore reconstructed as having a smaller 200 

gut than its ancestors.19 Given consistent trade-offs in gut versus brain size among primates,19 201 

larger cranial capacity in H. erectus (849 cm3) compared to H. habilis (601 cm3) or H. 202 

rudolfensis (736 cm3)35 is also consistent with a smaller gut. Despite these reductions in digestive 203 

anatomy, H. erectus shows signals of increased energy use, including larger body size,38 204 

adaptations for long-distance running,39 and possibly reduced interbirth intervals.40 The 205 
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apparently softer, more digestible, and higher energy diet of H. erectus are all consistent with the 206 

expected effects of cooking.  207 

Locomotor adaptations likewise point to the control of fire by Homo erectus. It is 208 

generally accepted that H. erectus was the first obligate biped, with multiple adaptations for 209 

terrestrial locomotion that came at the expense of arboreal capability.39,41-44 Obligate terrestriality 210 

would have exposed H. erectus to a broader array of predators, including lions, leopards, hyenas 211 

and saber-toothed cats,45 with a reduced capacity to scramble up a tree. Whereas H. erectus 212 

might have defended themselves with weapons during the day, it is hard to imagine how they 213 

would have defended themselves at night without the protection of fire.46 Indeed, primates 214 

almost never sleep terrestrially; the main exceptions are humans, who universally rely on fire for 215 

protection in natural habitats; some gorillas (especially adult males), who are probably less 216 

susceptible to predation than were H. erectus on account of their larger body size and predator-217 

poor forest habitat; and some cliff-sleeping baboons.47 We therefore suggest that the control of 218 

fire was a prerequisite for the transition to obligate terrestriality. 219 

 220 

Adaptive consequences of the control of fire  221 

Life history  222 

Life history theory predicts causal relationships between age-specific extrinsic mortality 223 

rates and the pace of life history. For example, higher extrinsic mortality in adults – due to 224 

increased rates of predation or disease – results in a smaller proportion of the population 225 

surviving to older age. Increased extrinsic mortality in adults is therefore expected to weaken 226 

selection on genetic factors that delay senescence.48,49 As a result investments in growth and 227 

maintenance are less likely to pay off in terms of increased fecundity. For this reason populations 228 
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with higher adult extrinsic mortality tend to evolve fast life history patterns that feature earlier 229 

and heavier overall investments in reproduction. Correlated life history traits include shorter 230 

gestation, smaller size at birth, earlier weaning, reduced growth period, smaller adult body size, 231 

earlier sexual maturity, shorter interbirth intervals, and shorter lifespan. By contrast, species with 232 

lower adult extrinsic mortality can afford to allocate more energy to growth and maintenance, 233 

selecting for a life history pattern that features slow maturation, increased adult body size, late 234 

reproduction, high investment in each of a relatively small number of offspring, and longer life. 235 

These relationships have been extensively supported both in the wild50-52 and experimentally.53-55 236 

Compared to other mammals, primates tend to fall along the slow end of the life history 237 

continuum, even controlling for body size.56 Humans, however, are unique among primates in 238 

having a mixed-pace life history (Figure 3). In some respects, humans epitomize the slow 239 

strategy. For example, compared to chimpanzees, we birth larger infants, have protracted 240 

juvenility (i.e. childhood) and longer adult life expectancy. Yet humans also wean early and 241 

reproduce at a much faster rate than would be expected by the pace of our life history. As Dean 242 

and Smith describe it, reproduction in humans (hunter-gatherers) “works in double time 243 

compared to our closest relatives, the great apes” (p. 115),57 with mean interbirth intervals in 244 

human foragers being just 2-4 years compared to 5-6 in chimpanzees.58,59, 88 245 

Two main hypotheses have been proposed to explain the unusual combination of slow 246 

and fast features in human life history. Both note that humans are evolutionarily committed to a 247 

high-quality diet that is difficult to procure. They therefore conclude that weaned juveniles 248 

cannot easily feed themselves. As a result, juveniles need to be provisioned by mothers or other 249 

kin.58  250 
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The first hypothesis was proposed by Hawkes and colleagues and emphasizes the role of 251 

skilled, post-reproductive women in provisioning juveniles and helping with childcare.60 252 

According to their idea, known as the “grandmother hypothesis,” women can add to their 253 

inclusive fitness after menopause by facilitating reproductive success in their daughters and other 254 

younger kin. In this scenario longer-lived women contribute more to the gene pool via indirect 255 

fitness, leading natural selection to favor increased longevity. Interbirth intervals are reduced 256 

because the procurement, preparation and provision of appropriate foods by grandmothers means 257 

that dependent offspring are weaned sooner; and mothers are better at (and spend less energy in) 258 

foraging, facilitating the resumption of menstrual cycling. Hawkes and colleagues suggest that 259 

the high fitness benefits of being a grandmother may explain the evolution of postmenopausal 260 

longevity in humans. Thus with respect to the life history paradox, the grandmother hypothesis 261 

suggests that thanks to certain unique human traits, a long life promotes fast reproduction, and 262 

vice versa. 263 

The second hypothesis was proposed by Kaplan and colleagues, and emphasizes the age-264 

specific pattern of productivity. According to their idea (the “embodied capital model”) 265 

productivity of food in adulthood is so high that it can predictably compensate for the negative 266 

productivity in early life through the intergenerational transfer of resources. Under this model, 267 

longevity is extended because the return from delayed investments increases as the productive 268 

life span increases. Interbirth intervals decrease through the system of intergenerational transfers 269 

(from any kin, not just grandmothers) that allow women to weight energy allocation toward 270 

reproduction rather than food production during their fecund years. Similar logic has also been 271 

employed to argue for the inclusive fitness contributions of children and adolescents in shaping 272 

the unexpectedly “fast” component of the human life history pattern.61,62 273 
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Here we complement these ideas by proposing that the control of fire and consumption of 274 

cooked food also contributed to the evolution of the paradoxical human life history. In our 275 

“control of fire hypothesis” the slow components of human life history were favored by two 276 

main consequences of using fire. First, fire use led to reduced extrinsic mortality as a result of 277 

lower predation and disease. Second, cooking raised the nutritional value of provisioned food, 278 

increasing the value of assistance from older individuals and thereby strengthening the selection 279 

pressures on senescence. The fast components of human life history, early weaning and short 280 

interbirth intervals, were likewise supported by cooking. In our model, earlier weaning was made 281 

possible by cooked foods being softer, more easily digestible, and less pathogen-bearing than 282 

raw foods. Reduced interbirth intervals were favored by the energetic advantages of a cooked 283 

diet and the provisioning that cooking facilitates, allowing for greater stability in the nutritional 284 

status of mothers. These ideas are elaborated briefly below. Box 1 summarizes the 285 

commonalities and distinctions among the grandmother hypothesis,60 embodied capital model,58 286 

and control of fire hypothesis. 287 

Slow life history via reduced extrinsic mortality and increased productivity in the elderly 288 

The human transition to obligate terrestriality, apparently beginning with Homo erectus, 289 

should theoretically increase extrinsic mortality due to higher rates of predation, disease and 290 

environmental hazards on the ground. As expected, a phylogenetically controlled analysis of 776 291 

mammalian species found that terrestrial taxa tended to have shorter maximum longevity than 292 

arboreal taxa.63 Yet despite our terrestriality, modern humans were found to exhibit the highest 293 

longevity per body size of any mammal in the dataset, arboreal or terrestrial (Figure 4). This is 294 

especially remarkable given that all other terrestrial primates reduce nocturnal predation by 295 

sleeping in trees or on cliffs. Aiello and Key proposed that the solution to the problem of 296 
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extended human longevity “most probably lies in the developing social organization and 297 

expanding brain that provided a cultural buffer to the elevated mortality risks of the savanna” (p. 298 

562).40 We suggest that a particularly important ‘cultural buffer’ was fire use.  299 

The control of fire would have reduced extrinsic mortality by at least two means. First, 300 

the presence of fire appears to be a powerful deterrent of predators. Although no studies have 301 

formally quantified the deterrent effect of fire, demographic data support this claim. For 302 

example, causes of 4,993 deaths in a population of 8,008 !Kung hunter-gatherers of the Nyae 303 

Nyae area, from ca. 1900 to 2005, were collected systematically by John Marshall, Claire Ritchie 304 

and Polly Wiessner, and compiled into a database by Wiessner. Because predator attacks become 305 

legendary, Wiessner (pers. comm.) suspects that few, if any, are missing from the record. 306 

Wiessner's database includes 10 deaths or serious maulings by lion or leopard from 1910 to 307 

1960, all but one of which occurred in the absence of fire. As implied by these data, Wiessner 308 

reports that the !Kung regard a night-time fire as importantly protective. Thus, even though 309 

getting firewood can be a laborious task, the !Kung normally keep fires going all night and stoke 310 

them well when predators are in the vicinity, solely for protection. The danger of sleeping 311 

without a fire is illustrated by some of the fatal attacks, such as the death of /Asa: “Her mother 312 

and father were sleeping and had let the fire go dead. /Asa was sleeping a short distance away 313 

from them. The story goes that lions came and sat by the family, watched the parents, saw /Asa 314 

and took her” (P. Wiessner, pers. comm.). 315 

Second, control of fire should reduce extrinsic mortality by lowering rates of disease. 316 

Controlled burning of campsites controls pest infestations.64 In addition, cooking significantly 317 

reduces the incidence of foodborne illness, particularly for diets that include meat.11 Heat kills 318 

the most common foodborne bacteria, including Escherichia coli, Salmonella, Campylobacter, 319 
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Staphylococcus, Listeria, and Clostridium botulinum, all of which are potentially lethal. The 320 

incidence of foodborne illness in urban societies arising from meat consumption was recently 321 

estimated to be 99.98% lower due to cooking than if the same meats were consumed raw, 322 

suggesting that meat consumption at current levels would be energetically infeasible without 323 

cooking.11 Finally, the ability of heat to dramatically improve the energetic value of widely 324 

available food resources, such as tubers, reduces fluctuations in energy balance that might 325 

otherwise compromise immune functions.65   326 

Importantly, beyond extrinsic factors, fire use can influence the selection pressures 327 

governing senescence. Two mechanisms have been proposed for senescence. Mutation 328 

accumulation theory, developed by Medawar, states that the force of natural selection weakens 329 

with increasing age since extrinsic mortality will lead to fewer individuals alive in older age 330 

groups, even in a theoretically immortal population.48 Williams observed that antagonistic 331 

pleiotropy can also contribute to this effect, since traits that increase fitness early in life but bear 332 

a cost later in life will be positively selected for, given that more individuals are alive at young 333 

ages than at old ages.49 According to these theories, any feature that increases the proportion of 334 

individuals surviving to later ages and allows aged individuals to increase their contributions to 335 

fitness will strengthen selection on genetic factors that delay senescence, leading to a slowing of 336 

life history. We suggest that cooking meets both criteria. 337 

For example, it is well established that edentulous or denture-wearing individuals have 338 

lower masticatory efficiency than fully dentate individuals.66 In addition, masticatory efficiency 339 

can be affected by age-related decreases in biting and chewing force,67 attributable to 340 

deterioration in muscle strength.68 Masticatory disability of this type has been shown to increase 341 

mortality, even after controlling for other risk factors.69,70 By softening foods and reducing their 342 
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toughness, cooking should improve the ability of aged individuals to meet their energy needs and 343 

thereby increase the proportion of individuals surviving to later ages. 344 

In addition, by improving the energetic value of food resources, cooking should increase 345 

the advantages of assistance given to reproductive women by grandmothers60 and other aged 346 

kin.58 This increased contribution should lead to slower life history. Under the mutation 347 

accumulation model, it would strengthen selection against late-acting deleterious mutations by 348 

increasing the contribution to descendant gene pools of longer-lived individuals through the 349 

increased reproductive success of their female kin. Under the antagonistic pleiotropy model, it 350 

would increase payoffs for late somatic performance and therefore perturb the equilibrium in 351 

favor of higher longevity. 352 

 High fertility via cooked food consumption  353 

By transforming plant and animal source foods into nutrient-dense, soft and digestible 354 

forms via the mechanisms discussed above, cooking helps make foods accessible to the 355 

immature dentition and gastrointestinal tracts of potential weanlings. Moreover, unlike all other 356 

forms of processing, cooking reliably kills foodborne bacteria. Studies in developing countries 357 

have found that weaning diets are often contaminated with fecal pathogens due to improper food 358 

preparation and contact with animal feces, with microbial counts further worsened by prolonged 359 

storage at high ambient temperatures,71,72  The difficulty of locating fuel for proper cooking or 360 

reheating of food has been identified as a key problem hindering the prevention of related enteric 361 

infections that are a primary cause of malnutrition among weanlings.73 By increasing the 362 

availability of suitably nutritious and safe foods, cooking should facilitate weaning, shortening 363 

the duration of lactational amenorrhea.  364 
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Beyond lactational amenorrhea, it is well established that the primary ecological 365 

mediators of fecundity in women are energetic: net energy balance (i.e. energy stores), energetic 366 

expenditure, nutritional intake (i.e. current weight gain/loss) and the energetic costs of lactation 367 

are all important.74 For example, studies of natural fertility populations have found interbirth 368 

intervals to be negatively correlated with maternal post-partum weight, controlling for the 369 

duration of lactation.75,76 By improving the energetic value of foods – and particularly, starch-370 

rich foods that are consistently available – cooking enables a woman to resume ovarian cycling 371 

sooner. Indeed, given the high rates of ovarian suppression observed among female raw-foodists 372 

of reproductive age,10 we posit that a cooked diet is necessary for routine fertility in female 373 

hunter-gatherers. 374 

Since cooking improves the nutritive value of foods, fewer raw resources are required to 375 

achieve the same benefit. Given the well-established impact of cooking on starchy plant foods, 376 

which are the resources routinely collected by women among tropical hunter-gatherers, cooking 377 

should substantially lower a woman’s foraging effort and increase her own net productivity. 378 

Therefore, unlike other models, our scenario for the impact of fire on human life history does not 379 

necessarily depend on extra-maternal provisioning of raw food resources or processing effort. 380 

Nevertheless, our scenario is highly compatible with extra-maternal provisioning. As discussed 381 

by O’Connell and colleagues, this is because the positive effects of cooking increase the 382 

efficiency of kin provisioning, thereby broadening the range of provisioners that would achieve 383 

commensurate inclusive fitness benefits for their effort.77 Moreover, the act of cooking itself 384 

represents a means of contribution. This may enable juveniles who are not yet efficient hunters 385 

or foragers to contribute meaningfully to kin provisioning and thereby gain inclusive fitness 386 

benefits, provided that the inclusive fitness returns justify the costs in terms of time and energy. 387 
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Observations of cooking behavior in Hadza juveniles as young as five, though limited to the 388 

exploitation of fires kindled by elders,77 support the idea that contributions are possible even at 389 

very early ages. Thus, according to our model, provisioning by grandmothers, grandfathers and 390 

juvenile kin can all be expected to play a role in the evolution of the unique human life history 391 

pattern. 392 

 Anatomy  393 

 As with their effects on life history, cooking and other consequences of the control of fire 394 

appear to have influenced anatomy in multiple ways. We have already suggested that cooking 395 

led to reduction of the digestive system in relation to body mass. Features of the human digestive 396 

system that have been reported to be relatively small include teeth, jaw musculature, oral cavity 397 

volume, total gut volume, and the surface areas of the stomach, large intestine (colon) and 398 

cecum.9,78-80 The small intestine is the only major component of the human gut that is close to the 399 

expected size (smaller than in 62% of 42 measured primate species78), perhaps because it is the 400 

major site for nutrient absorption. No gut components are larger than expected. The diminution 401 

of the digestive system conforms to humans having a low daily dry weight intake of food 402 

compared to non-human primates.81 On the other hand, total daily energy expenditure appears 403 

high for humans compared to other apes.82 The contrast between reduced digestive structures and 404 

higher energy use is explicable only by human diets providing exceptional energy. 405 

Aiello and Wheeler proposed that gut reduction, and hence a reduction in the energetic 406 

cost of maintaining gut activity, contributes to solving the puzzle of large brains, i.e. the problem 407 

of how humans satisfy the high energy demands of a big brain despite having the same relative 408 

basal metabolic rate as smaller-brained primates.19 Aiello and Wheeler considered that two 409 

dietary changes were responsible for reduction of gut costs and corresponding increases in brain 410 
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size: more meat around 2 mya, followed by cooking around 0.6 mya. By contrast our argument 411 

that cooking likely arose with Homo erectus suggests that cooked food supported the rise in 412 

brain size from 1.9 mya onwards. As with many consequences of cooking, other factors may also 413 

play a role. In this case, reduction in skeletal muscle may also contribute to explaining how extra 414 

energy could be diverted to the brain.83 415 

 The problem of reducing heat loss when inactive suggests a further effect of the control 416 

of fire on body hair. As Pagel and Bodmer suggested, the ability to sleep next to a campfire 417 

would have solved the problem of maintaining warmth when asleep and therefore allowed the 418 

reduction of body hair.84 Loss of body hair could be favored by various factors including reduced 419 

vulnerability to parasites84 and increased ability to lose heat by day,85 as well as at least nine 420 

other possibilities.86 If Wheeler’s heat-loss hypothesis is correct, the warmth provided by fire can 421 

therefore ultimately be considered vital in enabling humans to acquire the ability to run long 422 

distances. Anatomical evidence that long-distance running began with Homo erectus39 is thus 423 

consistent with the idea that Homo erectus controlled fire. Babies, being relatively inactive by 424 

day, would still need to be protected from hypothermia: this might explain why, unlike adults, 425 

they have a thick layer of heat-generating fat close to the skin.87 426 

 427 

 Behavior and cognition 428 

 One of the most striking behavioral apomorphies of humans is that we spend much less 429 

time eating than non-human apes do. Great apes spend 4-7 hours per day chewing, much as 430 

expected from their large body mass. By contrast humans spend less than one hour per day 431 

chewing according to studies of US residents, Ye’kwana of Venezuela, Kipsigis of Kenya, South 432 

Pacific Samoans and nine other societies.9 In some ways the abbreviated human chewing pattern 433 
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makes us seem like a carnivore, since carnivores spend a similarly small amount of time chewing 434 

their food compared to plant-eaters.88 However, carnivores achieve their low chewing time by 435 

rapidly slicing and swallowing large chunks of meat, unlike the human pattern of finely 436 

comminuting their food. The short chewing time of humans is therefore better explained by the 437 

effect of cooking and non-thermal processing in reducing the toughness and hardness of food, 438 

than by the incorporation of increased amounts of meat in the diet. 439 

 Low chewing time in humans has several important consequences. Critically, individuals 440 

can afford to forego chewing for long periods during the day and instead compress much of their 441 

food intake into a relatively brief evening meal. As a result, instead of spending the majority of 442 

daylight hours with guts that are actively digesting, humans can minimize gut activity in favor of 443 

aerobic exercise. This allows relatively efficient multi-hour locomotion and long day journeys. 444 

Thus male chimpanzees have average day-ranges of 3-5 km, with an occasional maximum 445 

around 10 km, whereas male hunter-gatherers average around 9-14 km per day.89 Such long day-446 

ranges appear to be facilitated by the combination of short chewing times and relatively 447 

quiescent guts. 448 

 Additionally, the fact that humans can eat 2,000+ calories in an hour of chewing means 449 

that they can cover their energetic needs even after returning to camp at the end of a largely 450 

unproductive day. This depends, of course, on food being available following their return. 451 

Among contemporary foragers, the household system means that married men can expect a 452 

cooked meal to be available for them every evening. This system, which allows men to forage 453 

for high-risk, high-gain food by supporting them nutritionally on days when they fail to produce, 454 

thus depends on the use of a food-type that can be consumed rapidly, i.e. cooked food. The 455 
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tendency for men to forage more for high-risk, high-gain foods, while women specialize on low-456 

risk, low-gain foods, therefore, must have been strongly promoted by the control of fire. 457 

 The relationship between the control of fire and cognitive ability is speculative, but 458 

clearly considerable mental ability was important for launching the control of fire. The 459 

management of fire requires problem-solving (e.g. to capture fire) and planning (e.g. to get fuel). 460 

While chimpanzees and bonobos can control fire in limited ways,9 it seems likely that hominin 461 

encephalization, possibly as a result of increased meat-eating by habilines, made the stable 462 

control of fire cognitively possible. After the control of fire was achieved, life history effects 463 

favoring a long period of childhood development would have created further opportunities for 464 

enhanced cognitive function. Various consequences would have followed. Even if the initial 465 

control of fire did not necessitate a stable home base for weeks at a time, central place foraging 466 

was likely adopted to allow both fire-side cooperation in cooking and food distribution, as well 467 

as caring for relatively immobile offspring. Reliance on fire also suggests a relatively high level 468 

of coordination compared to great apes. Given that great apes demonstrate a preference for 469 

cooked food,90 we assume that the control of fire would have led rapidly to cooking, which then 470 

favored increased patience (to wait until the food is ready), cooperation and respect for 471 

ownership (in reducing the problem of scroungers taking food from a poorly guarded fire). 472 

Complex co-evolutionary pressures, including social pressures arising both from the opportunity 473 

to provision each other and from the ability to steal from each other, therefore seem likely to 474 

have shaped the relationship between fire and cognition. 475 

 476 

 Conclusion 477 
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 In this paper we have presented evidence that the first species adapted to the control of 478 

fire was Homo erectus. We have also proposed various consequences of using fire, including 479 

contributions to the unique patterns of human life history. In some ways we regard these ideas as 480 

conforming to existing theory. For instance the hypothesis of early fire use does not challenge 481 

the idea that increased meat-eating played an important role in human origins.  Nor do we 482 

conclude that the lifestyle and life history of H. erectus were fully modern. The value of fire to 483 

humans and the nature of its use probably changed after fire was first controlled, thanks to 484 

advances both in cooking methods and in other ways, such as the effectiveness of fire-based 485 

defense against predators. The postulated effects of fire may therefore also have developed in 486 

stages. For example while the initial control might have allowed hominids to sleep on the ground 487 

without experiencing an increase in predation rates compared to sleeping in trees, fire need not 488 

have had any immediate effects in lowering extrinsic mortality. The effects of controlling fire 489 

thus need to be considered without assuming that they were always the same as now. 490 

 Nevertheless, while the consequences of controlling fire have themselves evolved, the 491 

acquisition of fire is clearly expected to have had large effects on numerous aspects of human 492 

biology, and in some ways our ideas confront conventional wisdom. Thus our hypothesis lies in 493 

contrast to the view that fire was controlled first by a relatively late member of the human 494 

lineage, i.e. within the last half-million years, since that idea also necessitates the notion that fire 495 

use had little impact on human evolutionary biology. Likewise it also challenges the idea that 496 

humans are such ecological generalists that they are not adapted to any specific components of 497 

their habitats. Potts exemplified a widely held view: “It is patently incorrect to characterize the 498 

human ancestral environment as a set of specific repetitive elements, statistical regularities, or 499 

uniform problems which the cognitive mechanisms unique to humans are designed to solve” (p. 500 
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129).91 By contrast, we claim that humans are biologically adapted to eating cooked food. 501 

Accordingly, the human ancestral environment required the presence of controlled fire and 502 

cooked meals, and thus presented humans with a specific and consistent set of problems relevant 503 

to their biology, behavior and cognition.  504 

 The cooking hypothesis could be disproved by the discovery of some previously 505 

unknown combination of raw, non-thermally processed foods that provides an adequate human 506 

diet in diverse and variable habitats. Such a discovery would be provocative and informative. But 507 

if the cooking hypothesis is right it presents numerous exciting challenges for understanding the 508 

evolutionary impact of the control of fire. Either way, further attention to the unique aspects of 509 

human dietary adaptation promises large rewards for understanding human evolution. 510 
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Figure Legends 739 

 740 

Figure 1. Baboon being prepared for cooking in a Hadza camp, northern Tanzania. Following a 741 

widespread practice, the hunters have laid the prey on the fire in order to remove the hair by 742 

singeing. After the hair has gone they sometimes leave the carcass on the fire and let it roast in 743 

situ. Alternatively they boil the meat in a pot. Photograph and information courtesy of Frank W. 744 

Marlowe. 745 

 746 

Figure 2. Energy deficiency among raw-foodists, adapted from Koebnick and colleagues.10 Age-747 

adjusted body mass index (left axis,) and percentage of non-pregnant female subjects <45 748 

years old reporting amenorrhea (right axis,) as a function of the percent of the diet that is eaten 749 

raw. The odds of energy deficiency or amenorrhea were not different for vegans, vegetarians and 750 

meat-eaters in this sample. 751 

 752 

Figure 3. The human life history puzzle. In most species different life history parameters are 753 

consistent in their pace, as illustrated here for non-human primate species (solid circles) by 754 

correlations among four life history variables. Unusually, hunter-gatherers (large diamond) are 755 

slow in two variables (lifespan, age at first birth), but fast in two others (weaning, inter-birth 756 

interval). Figure 3a: non-human primates with long maximum lifespan tend to have late age of 757 

first birth (r2 = 0.56, n = 36, p < 0.001). Humans are here assigned a conservative estimate of 70 758 

years for maximum lifespan, following Harvey and colleagues,92 and fall close to the primate 759 

line. Figure 3b: non-human primates with later weaning have longer inter-birth intervals (r2 = 760 

0.80, n = 36, p < 0.001). Hunter-gatherers conform to the primate trend.  Figure 3c: non-human 761 
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primates with a late age of first birth tend to have long inter-birth intervals (r2 = 0.61, n = 41, p < 762 

0.001); however hunter-gatherers have shorter inter-birth intervals than expected. Figure 3d: 763 

non-human primates with a late age of first birth tend to wean later (r2 = 0.82, n = 29, p < 0.001), 764 

but hunter-gatherers have an earlier weaning age than expected. The puzzle about humans is why 765 

they combine fast reproduction (short inter-birth interval and early weaning) with slow growth 766 

(late age at first birth). Data sources: non-human primates, Harvey and colleagues92; hunter-767 

gatherers, Marlowe89 (Table 2, warm-climate, non-equestrian only). Number of hunter-gatherer 768 

societies contributing to mean values: age at first birth, 6; inter-birth interval, 9; weaning age, 18. 769 

 770 

Figure 4. Maximal lifespan plotted against body mass for humans (closed circle) and 151 771 

primates (open circles), compared to the ordinary least squares regressions for 189 arboreal 772 

mammals (dashed line: 0.25x + 1.64, r2 = 0.50, p < 0.001) and 469 terrestrial mammals (y = 773 

0.22x + 1.39, r2 = 0.76, P < 0.001). Modified from Figure 2 in Ref. 63 using data provided by 774 

Shattuck and Williams. 775 
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Text Box 

 

Box 1. Summaries of three solutions to the human life history paradox: (1) the “grandmother hypothesis”;60 (2) the “embodied capital 

model”;58 and (3) the “control-of-fire hypothesis”. The three solutions are not mutually exclusive. 

 
Common framework. All three models share a framework in 
which reduced extrinsic mortality [1] is responsible for ‘slow’ 
aspects of human life history, notably slow maturation [2] and high 
longevity [3]. An inverse relationship between extrinsic mortality 
(M) and time to maturity (α) is expected under Charnov’s 
dimensionless approach to life history, in which αM is 
approximately constant across related taxa.93 Slow maturation, in 
turn, promotes increased adult body mass.* Reduced extrinsic 
mortality will also favor increased longevity, as the average adult 
lifespan is roughly 1/M.94 All three models also share the concept 
that the intensive provisioning of younger kin [4] allows for ‘fast’ 
aspects of human life history, including earlier weaning of infants 
[5] and an earlier return to fecundity by women post-weaning, 
which in turn favors a short interbirth interval [6] and high fertility 
overall. Whether stated or implied, all three models also infer that 
high fertility contributes to high longevity, since the inclusive 
fitness benefits that result from provisioning by older kin will act 
to strengthen natural selection on factors delaying senescence.  
 
* Body mass increase in Homo is complicated by a reduction in 
sexual dimorphism, so that only females experience the increased 
mass. Reduction in sexual dimorphism in Homo is thought to be 
due to sexual selection,95 which we do not discuss in the present 
paper. 

   SLOW                        FAST 
 

 



 43 

  
Grandmother hypothesis.60 This model focuses on the inclusive 
fitness contributions of senior women as the critical factor 
allowing for high longevity and high fertility in humans. 
Extractive foraging by skilled post-reproductive women generates 
food in excess of self-maintenance requirements [1] and this 
surplus is shared with juvenile relatives. This surplus food, as well 
as other contributions by post-reproductive women in the form of 
food processing and childcare, allows for higher fertility of 
reproductive-aged kin. Since inclusive fitness rises for post-
reproductive women who provision, ‘long-lived helper’ genes 
increase in frequency in the gene pool, contributing to longevity. 
In addition, continued provisioning by post-reproductive women 
lowers the susceptibility to disease [2] of juvenile kin, further 
selecting for increased longevity. Hawkes and colleagues argue 
that these relationships may explain the evolution of 
postmenopausal longevity in humans.60 The complementarity 
between the grandmother hypothesis and the control-of-fire 
hypothesis is illustrated by the fact that O’Connell and colleagues 
discussed the importance of cooking as a mechanism that helped 
enable provisioning of kin.77 
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Embodied capital model.58 This model emphasizes the time 
required to learn to subsist effectively on a diet of high-quality, 
nutrient-dense foods. Here, slow maturation allows for the 
acquisition of knowledge, skill and strength [1] that lead to 
profitable hunting and extractive foraging [2]. The productivity of 
older individuals far exceeds that of younger individuals, leading 
to a system of resource transfers from old to young within kin 
groups. In addition, since hunting is a low-success but high-return 
activity, a dietary niche that involves hunting favors a broader 
culture of food sharing [3] (kin-based and non-kin-based). Jointly, 
kin provisioning and food sharing act to minimize volatility in 
nutritional status, resulting in less disease [4]. In addition, such 
food transfers lead to less predation [5], since provisioning reduces 
the amount of time that juveniles must spend out of camp and 
since food sharing reduces the costs of group living, leading to 
larger group size. Increased knowledge, skill and strength can 
further limit predation as it allows for better defense. The resulting 
reduction in extrinsic mortality selects for the ‘slow’ aspects of 
human life history, with high longevity subject to especially strong 
selection because cumulative resource production increases non-
linearly with longevity. Kaplan and colleagues argue that these 
relationships lead to co-evolution between the human patterns of 
life history and extreme intelligence.58 
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Control-of-fire hypothesis. We propose that the control of fire 
increases the efficiency of provisioning and reduces extrinsic 
mortality, thus contributing to the evolution of the human life 
history pattern. Increased efficiency of provisioning: Fire-use [1] 
allows for the cooking of food [2], which reliably enhances food 
energy, digestibility and softness [3] by the mechanisms discussed 
in this paper. Suitable infant foods are generated, allowing for 
earlier weaning. In addition, the high nutritive value of cooked 
food likely contributes to a short interbirth interval, given data 
illustrating the suppressive effect of a raw diet on ovarian function 
in modern raw-foodists.10 Importantly, the effects of cooking 
improve the efficiency of provisioning, with fewer raw resources 
required to achieve the same benefit. This enhances the value of 
kin provisioning, thus broadening the number of potential 
provisioners. Moreover, the act of cooking itself represents a 
means of contribution. This may enable juveniles who are not yet 
efficient hunters or foragers to contribute meaningfully to kin 
provisioning and thereby gain inclusive fitness benefits. Jointly, 
these characteristics favor the ‘fast’ aspects of human life history. 
Reduced extrinsic mortality: Other effects of cooking include food 
detoxification and the killing of foodborne pathogens. These 
features, coupled with a stable nutritional status as a result of a 
high-quality cooked diet and a culture of provisioning, lead to 
lower rates of disease [4]. Disease risk may be lessened further by 
fire-use, independently of the effects of cooking, if campsites are 
burned to eradicate pests. Finally, as discussed in this paper, fire-
use results in less predation [5] due to the effects of fire as a 
predator deterrent and potential weapon. Jointly, the suppressive 
effects of fire-use on extrinsic mortality contribute to the ‘slow’ 
aspects of human life history.  
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