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Abstract

Background: The morphology of human pollical distal phalanges (PDP) closely reflects the adaptation of human hands for
refined precision grip with pad-to-pad contact. The presence of these precision grip-related traits in the PDP of fossil
hominins has been related to human-like hand proportions (i.e. short hands with a long thumb) enabling the thumb and
finger pads to contact. Although this has been traditionally linked to the appearance of stone tool-making, the alternative
hypothesis of an earlier origin—related to the freeing of the hands thanks to the advent of terrestrial bipedalism—is also
possible given the human-like intrinsic hand proportion found in australopiths.

Methodology/Principal Findings: We perform morphofunctional and morphometric (bivariate and multivariate) analyses of
most available hominin pollical distal phalanges, including Orrorin, Australopithecus, Paranthropous and fossil Homo, in order
to investigate their morphological affinities. Our results indicate that the thumb morphology of the early biped Orrorin is
more human-like than that of australopiths, in spite of its ancient chronology (ca. 6 Ma). Moreover, Orrorin already displays
typical human-like features related to precision grasping.

Conclusions: These results reinforce previous hypotheses relating the origin of refined manipulation of natural objects–not
stone tool-making–with the relaxation of locomotor selection pressures on the forelimbs. This suggests that human hand
length proportions are largely plesiomorphic, in the sense that they more closely resemble the relatively short-handed
Miocene apes than the elongated hand pattern of extant hominoids. With the advent of terrestrial bipedalism, these hand
proportions may have been co-opted by early hominins for enhanced manipulative capabilities that, in turn, would have
been later co-opted for stone tool-making in the genus Homo, more encephalized than the previous australopiths. This
hypothesis remains may be further tested by the finding of more complete hands of unequivocally biped early hominins.
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Introduction

One of the hallmarks of humankind is the possession of a

complex repertoire of manual grips [1–2]. In humans, the thumb

always plays a central role, being involved in almost all possible

prehensile typologies [1–4]. This is possible thanks to human

intrinsic manual proportions, i.e. a long thumb relative to the rest

of the hand. On the contrary, extant apes possess relatively long

hands with a short thumb, in which the musculature is poorly

developed [1–2,5]. The most refined expression of human

manipulation is attained during pad-to-pad precision grasping,

which consists in the opposition of the proximal pulp of the thumb

against that of one or more fingers ([3]; see Figure 1). This

capability is reflected in the morphology of the distal phalanges,

especially in the pollical distal phalanx (PDP), which shows specific

features related to the soft tissues involved in precision grasping

[3–4]. These include the pronounced insertion for the flexor pollicis

longus (FPL), with a marked asymmetry towards the radial side; the

presence of an ungual fossa; and the occurrence of dissymmetric

ungual spines, with a prominent ulnar one (Figure 1). The

asymmetries of the FPL insertion and the ungual spines are the

osteological correlates of the interphalangeal joint configuration of

the human thumb, in which flexion is accompanied by pronation,

so that the pulp of the thumb faces that of the remaining fingers.

This provides the maximum contact surface with the objects being

manipulated. The presence in humans of ungual spines and

ungual fossa are indicative of a fully compartmentalized digital

pulp, with a fatty and mobile proximal portion (related to the

ungual fossa) as well as a large and more or less static distal part

(related to the distal tuberosity; [3–4]). The presence of these two

different pulps, each with distinctive properties, ensures an

adequate friction and accommodation of the object between the
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pulp of the thumb and those of the fingers during precision

grasping (Figure 1). Furthermore, the possession of a wide apical

tuberosity is correlated with the presence of pulp that is also wide

[6].

Humans also display a characteristic FPL insertion, which

protrudes palmarly as a distinct bony element that is visible in

lateral view (Figures 1 and 2; [7] his Figure 4). Exclusively among

extant primates, humans display the complete set of anatomical

traits in their PDPs, which have been related to the presence of a

relatively long and powerful thumb, able to contact the proximal

pulp of the other fingers ([4]; Figure 1). Most previous studies

have focused on the functional relationship between the

anatomical traits discussed above and stone tool-making in Plio-

Pleistocene hominins [3–4,8–9]. Furthermore, some studies

equated precision grasping—inferred from PDP anatomy— with

stone tool-making, thus favoring the view that the evolution of the

human hand was mainly related the selective pressures posed by

the latter behavior [7,10–11]. However, the human-like manual

proportions displayed by australopiths [12–13], well before the

advent of stone tool-making, would contradict the former

hypothesis. In fact, ever since Darwin [14] it has been

hypothesized that the origin of bipedalism was related to the

freeing of the hands for manipulative purposes. Alternatively,

manual proportions might have been optimized for manipulation

once the hands became freed from locomotion thanks to the

advent of terrestrial bipedalism [12,15].

In order to test this hypothesis, and given the tight relationship

between the anatomy of the PDP and refined manipulation in

modern humans, we provide a morphofunctional analysis of this

bone in selected fossil hominins—including the early biped Orrorin

tugenensis (ca. 6 Ma; [16–17])—as compared to extant apes and

humans. A principal components analysis (PCA) based on shape

variables of the PDP is further provided in order to compare the

main proportions of this bone in extant great apes, humans and

fossil hominins, as well as ratios of relative phalangeal robusticity.

The presence of anatomical traits functionally related to pad-to-

pad precision grasping in the PDPs of early hominins would

suggest that these taxa also displayed human-like hand length

proportions for enabling the contact between the pulps (or pads) of

the thumb with those of one ore more of the remaining fingers [4].

However, more complete fossil hands of these early hominins

would be required in order to unequivocally confirm this

prediction. On the contrary, the latter would be falsified if fossil

taxa displaying the refined manipulation traits on their PDPs

together with relatively long hands and short thumbs were found

in the future.

Results

Precision grasping morphology
Extant great-ape PDPs lack all the features related to

precision grasping (Figure 2); as such, they display a smooth

Figure 1. Modern human thumb and index finger (right hand) during pad-to-pad precision grasping in ulnar view. The box shows the
anatomy of the pollical distal phalanx and its relationship with soft structures related to refined manipulation: a huge proximopalmar fossa (orange),
associated with a palmarly protruding ridge (red) for insertion of the flexor pollicis longus; a compartmentalized digital pulp to accommodate the
shape of the object being manipulated; this is reflected in the presence of an ungual fossa (green), associated to the large and mobile proximal pulp,
as well as a wide apical tuberosity associated with the smaller and less mobile distal pulp; and finally, the ungual spines (yellow), where the collateral
intraosseous ligaments that sustain the nail bed insert.
doi:10.1371/journal.pone.0011727.g001
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apical tuft (instead of a developed apical tuberosity with ungual

spines), and further lack well-developed basal tubercles, which

in humans reflect the presence of collateral intraosseous

ligaments for sustaining the nail bed ([3–4]; see Figures 1 and

2 and Videos S1, S2, S3, S4, S5 for renderings of the PDPs in

Figure 2).

Interestingly, the PDP of Orrorin, being the earliest pollical

specimen in the hominin fossil record (ca. 6 Ma; [16–17]) displays

an overall human-like morphology (Video S3). The latter even

includes the most significant features related to precision grasping

(Figure 2), although some of them (such as the ridge for insertion of

the FPL and the apical tuberosity) are stouter as compared to later

hominins and modern humans [17].

The Olduvai Hominid 7 (OH 7) specimen—originally attrib-

uted to Homo habilis [17]—differs from that of extant apes and

humans (Video S5). This PDP does not display ungual spines [3],

and there is no ridge for insertion of the FPL, but a huge palmar

fossa that extends until the large apical tuberosity (Figure 2).

Furthermore, the lack of a distinctive ungual fossa and spines

would be indicative of limited palmar pad compartmentalization

and, as such, of a restricted precision-grip capability [3].

PCA
A PCA based on PDP shape variables allow us to discriminate

the several extant genera being analyzed between each other

(Figure 3, see Materials and Methods and Table 1). Positive values

on the PC 1 (68% variance) are related to phalanges with

mediolaterally narrow tufts and shafts, and with dorsopalmarly

high midshafts and bases, thus having an overall rod-like

appearance. Negative values, on the contrary, are related to

phalanges with a flat appearance due to high breadths at midshaft

and at the distal end (i.e. with apical tuberosities instead of tufts).

Positive values on the PC 2 (13% variance) mainly separate

phalanges with a relatively large base, in both mediolateral and

dorsopalmar diameters (i.e., with a relatively small shaft and apical

tuft), from phalanges that are very long relative to other

dimensions (see Figures 2 and 3 and Videos S1, S2, S3, S4, S5).

To this respect, extant great apes display relatively narrow PDPs

with a dorsopalmarly high midshaft, while the apical tuft is not

well developed, conferring them a rod-like shape. This is especially

true concerning Pan and Pongo, which can be roughly distinguished

from each other thanks to the highest loads on PC 2 of orangs,

which display very small shafts and apical tufts relative to the base

Figure 2. Morphological comparisons of pollical distal phalanges in African apes, extant humans and selected hominins. Specimens
are showed in palmar (top), oblique proximopalmar (middle) and lateral (bottom) views, and scaled to the same length to easily visualize the
morphological differences. The main features related to human-like precision grasping are indicated in the middle row (same colors as in Figure 1),
whereas the palmarly protruding insertion for the flexor pollicis longus has been further signaled in lateral view (red arrows in the lower row). Note
that, although with several morphological differences, all the features related to refined manipulation in modern humans are already present in the
late Miocene Orrorin. By the way, the OH 7 specimen, besides its odd overall proportions, neither shows a distinctive insertion for the flexor muscle,
nor a compartmentalized digital pulp. All the phalanges belong to a right thumb. Scale bars represent 5 mm.
doi:10.1371/journal.pone.0011727.g002
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Figure 3. Principal components analysis (PCA) based on six shape variables of the pollical distal phalanx. Blue, Papio; red, Pongo;
yellow, H. sapiens; green, Gorilla; grey, Pan. The PC 1 largely reflects the proportions of the tuft and shaft, while the PC 2 is more related to the
proportions of the base. The Orrorin PDP overlaps with modern humans in both principal components, and later hominins also resemble modern
humans in both components—although to a lesser degree. Paranthropus robustus and OH 7 constitute an exception, because they fall within the
human range across the PC 2, but depart from the remaining taxa on the PC 1 by showing exceptionally wide PDPs (Figures 2 and 3). See text for
further explanation. Figures at the corners represent the outline of these phalanges in palmar and lateral views.
doi:10.1371/journal.pone.0011727.g003

Table 1. Main results of the principal components analysis (PCA) based on the six shape variables of the pollical distal phalanx,
including the variable loadings from the rescaled component matrix for the five principal components.

PC 1 PC 2 PC 3 PC 4 PC 5

% variance 68.668 13.344 8.072 7.149 2.768

% cumulative variance 68.668 82.012 90.084 97.232 100

Eigenvalue 0.67 0.13 0.08 0.07 0.03

Variable loadings

Variables PC 1 PC 2 PC 3 PC 4 PC 5

L 0.837 20.483 0.111 0.230 20.027

MLT 20.912 20.006 20.320 0.256 0.000

DPS 0.847 0.042 20.393 20.347 0.077

MLS 20.886 20.275 0.201 20.307 20.064

DPB 0.520 0.744 0.181 0.074 20.372

MLB 20.114 0.602 0.553 0.149 0.544

The more significant values across PC 1 and 2 (in bold) are discussed in the text.
Abbreviations: PC = principal component; L = length; MLT = mediolateral width at the tuft; DPS = dorsopalmar height at midshaft; MLS = mediolateral width at
midshaft; DPB = dorsopalmar height at the base; MLB = mediolateral width at the base. The sixth component was not included because the first five components
almost explained the 100% of the total variance.
doi:10.1371/journal.pone.0011727.t001
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(Figure 3). On this basis, gorillas occupy a central position on the

scatter plot, because their PDPs overall resemble a somewhat

flatter version of chimps’ (see also Figure 2).

Extant humans display PDPs with relatively wide shafts and

apical tuberosities (see Figure 2), as indicated by the low loads on

the PC1. Moreover, they show low values on the PC2, which are

also correlated to a significantly long PDP (Table 2). This

combination of relatively long and wide PDP is exclusive of

humans among the extant taxa analyzed (Figure 3). It is interesting

to point out that, although humans and gorillas overlap in both PC

1 and PC 2, they occupy different regions in the morphospace.

The position of baboons (Papio) in the scatter plot indicates that

they show overall proportions on PDPs more similar to those of

humans than to great apes, although being relatively shorter and

displaying a larger base (Figure 3).

Concerning the fossil hominins, Orrorin (BAR 1901901) most

closely resembles modern humans in both components (Figure 3).

Neandertals (La Ferrassie I and Kebara 2) and Stw 294 (cf. A.

africanus) also fall close to modern humans in both components,

although both La Ferrassie I and Stw 294 display slightly highest

values on the PC 2. However, both Paranthropus robustus (SKX

5016) and OH 7 depart in PC 1 by having an extremely robust (i.e

mediolaterally broad) shaft and apical tuberosity in the PDP.

Ratios
Here we provide additional morphometric evidence regarding

the robusticity of the distal phalanges, by comparing the first (DP1)

and third (DP3) manual rays of extant taxa, together with OH 7,

Paranthropus robustus and Neandertals (Figure 4 and Table 2). In

orangutans, the PDP is only slightly more robust than the third

Table 2. Descriptive statistics for the ratios of distal phalangeal robusticity.

DP1 MLT/L Taxon N Mean SD 95% CI Range

Pan 33 0.268 0.039 0.254 0.281 0.197 0.336

Gorilla 15 0.335 0.032 0.317 0.353 0.276 0.392

Pongo 23 0.273 0.030 0.260 0.286 0.227 0.359

Homo 35 0.407 0.045 0.391 0.422 0.316 0.515

Papio 22 0.478 0.050 0.456 0.501 0.391 0.571

Macaca 18 0.494 0.084 0.453 0.536 0.354 0.620

OH 7 1 0.611

P.robustus 1 0.566

La Ferrassie I 1 0.485

Kebara 2 1 0.456

DP3 MLT/L Taxon N Mean SD 95% CI Range

Pan 32 0.313 0.056 0.292 0.333 0.187 0.421

Gorilla 15 0.385 0.047 0.359 0.410 0.316 0.480

Pongo 26 0.229 0.024 0.219 0.239 0.184 0.268

Homo 21 0.403 0.050 0.380 0.426 0.300 0.470

Papio 22 0.323 0.033 0.309 0.338 0.253 0.371

Macaca 14 0.294 0.069 0.254 0.334 0.218 0.423

OH 7 1 0.437

P.robustus 1 0.397

La Ferrassie I 1 0.467

Kebara 2 1 0.426

DP1MLT/L - DP3MLT/L Taxon N Mean SD 95% CI Range

Pan 32 20.043 0.043 20.059 20.028 20.134 0.049

Gorilla 12 20.052 0.049 20.084 20.021 20.145 0.028

Pongo 21 0.045 0.036 0.028 0.061 0.005 0.175

Homo 20 0.004 0.037 20.014 0.021 20.072 0.057

Papio 22 0.155 0.052 0.132 0.178 0.067 0.301

Macaca 14 0.205 0.081 0.158 0.252 0.077 0.347

OH 7 1 0.174

P.robustus 1 0.169

La Ferrassie I 1 0.017

Kebara 2 1 0.030

The more important values of relative robusticity (in bold) are discussed in the text.
Abbreviations: DP1 = pollical distal phalanx; DP3 = middle finger distal phalanx; L = length; MLT = mediolateral width at the tuft; SD = standard deviation; CI =
confidence interval for the mean.
doi:10.1371/journal.pone.0011727.t002
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distal one, whereas in African apes the reverse condition is found.

The 95% confidence intervals (CI) for DP1 and DP3 robusticity

between extant great apes do not overlap, suggesting that

differences are significant. In modern humans the degree of distal

phalanx tuft robusticity for the first and third manual rays is very

similar, although it is somewhat higher in the thumbs of

Neandertals, with both La Ferrassie I and Kebara II having

robusticity values above the 95% CI of extant humans. In

monkeys, on the contrary, the distal pollical phalanx is much more

robust than the distal third one, with both macaques and baboons

showing values well above the 95% CI to that of the third digit.

This odd condition is also found in both OH 7 and P. robustus,

which the difference between the robusticity of the two digits (DP1

- PD3) falling within the 95% CI displayed by monkeys (see

Figure 4 and Table 2).

Discussion

Functional analysis
Extant great apes do not significantly use the thumb during

locomotion: it does not participate in below-branch suspensory

behaviors, and it does not support body weight during knuckle-

walking in African apes [18–21]. However, it can participate

during terrestrial palmigrady and fist-walking in orangutans [18].

In the latter, the hallux is reduced [22], and in some cases the

distal phalanx may not be present at all [23]. This is explained by

the specialized, four-digit hook grasp of orangs’ hands and feet.

According to this, the hallux would have been extremely reduced

because of locomotor selection pressures, whereas the reduction of

the pollex would not have proceeded to the same extent due to

contradictory, manipulatory selection pressures favoring instead

the possession of a longer thumb [23]. In orangutans, the

reduction of the hallux has also affected the long flexor tendon

[22]. This condition that can be also found in the thumb of all

extant great apes, especially in Pongo and Pan, in which locomotor

selection pressures have probably favored the lengthening and

increased strength of digits II-V [18].

Thus, although extant great apes display diminished thumbs,

especially concerning extrinsic muscle insertions, they do have

well-developed intrinsic muscles that enable efficient power and

precision grips, the latter being used during food manipulation

[1,2,5,18,24]. Chimps and gorillas do efficiently manipulate small

object between their thumb and index finger using different

precision grip combinations (e.g. tip-to-tip and pad-to-side), but a

human-like, pad-to-pad precision grip is precluded due to the

disproportionate length of their digits II-V relative to that of the

thumb [1,2,5,24]. Chimps and orangs mostly rely on arboreal

foraging by directly putting the foods from branch to mouth,

whereas gorillas spend many hours on the ground, where they

carefully select, manipulate and hold the food with their hands

[18]. Increased terrestriality in such a large ape might have

resulted in longer thumbs relative to the rest of the hand [12,25],

as a by-product of their shorter hands relative to body mass [26].

The Gorilla hand therefore displays more balanced proportions

Figure 4. Boxplots of distal phalangeal robusticity in selected extant taxa, Neandertals, OH 7 and Paranthropus robustus. Robusticity
refers to apical tuft width (a) in relation to maximum length (b) of the distal pollical and middle finger phalanges (left and right, respectively; see
Materials and for further details). Horizontal lines represent the median values, whereas the boxes represent the 25% and 75% percentiles, the
whiskers the maximum-minimum ranges and circles are outliers. OH 7, like Paranthropus robustus, display a robusticity pattern convergent with
quadrupedal monkeys (Macaca and Papio), in which the pollical distal phalanx is disproportionally robust relative to that from the middle finger. Note
that the pollical and nonpollical distal phalanges attributed to P. robustus may not belong to the same individual.
doi:10.1371/journal.pone.0011727.g004
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between the thumb and index finger (presumably related to

somewhat advanced manipulatory capabilities) than chimps and

especially orangs [5].

Our results show that extant great apes exhibit rod-like PDPs

with barely discernible muscular impressions on the palmar side,

further lacking developed tufts and associated palmar pads

(Figures 2–4; see also [4,6,22]). The lack of dorspalmar flattening

in the PDP, especially in Pan and Pongo, would be related to the

lack of a developed flexor apparatus (usually without receiving

extrinsic muscular component). The overall reduced PDP of

orangs, especially referring the shaft and apical tuft, obviously

stems from their rudimentary thumbs, which are diminished like in

Colobus and Procolobus [22]. In the latter taxa, the PDP, when

present, is usually confined to its proximal portion, the base (S.A.

personal observation). Gorillas, being the most terrestrial great

apes and displaying relatively short and skillful hands with

relatively long thumbs, possess a somewhat flatter PDP than the

other great apes (Figures 2–3). Furthermore, gorillas also exhibit

more barely evidence of muscular insertion scars on the palmar

side of the PDP shaft than them (Figure 2). Since the thumbs of

gorillas do not participate in locomotion, this morphology should

be correlated with an increased use of the thumb for manipulation

as compared to Pan and Pongo [18].

Terrestrial monkeys, in its turn, exhibit proportionally short

fingers in relation to their thumbs, thereby enabling an efficient

precision grip [27–28]. This is particularly evident in gelada

baboons, which display enhanced manual feeding capabilities [29]

thanks to displaying the highest opposability index among extant

primates, including humans [28]. Other baboons (Papio spp.) show

the same capabilities, although to a lesser degree [28]. These

baboons are digitigrade, and only the tip of the thumb contacts the

substrate during the touchdown phase [21]. A huge long flexor

tendon is inserted onto the distal part of the shaft and tuberosity of

their PDP [4], although it does not correspond to the FPL, but to

the radial portion of the flexor digitorium profundus [21]. Moreover,

during the tip-weight support, their PDPs can be hyperextended,

so that, like in humans, their pollical interphalangeal joint displays

well-developed sesamoid bones [4]. There are also other

similarities between baboon and human PDPs [4], such as a

broad distal pad, tuberosity (sometimes with spines) and nail, a

large palmar fossa (but not a distinct ridge for insertion of the FPL

and ungual fossa), and similar ratios concerning both bone and

long flexor tendon dimensions. These similarities can be related to

the enhanced manipulative capabilities displayed by these

monkeys [27–29].

Our results agree with previous findings showing that baboons

display PDPs more similar in overall proportions to those of extant

humans rather than those of extant great apes, although being

shorter and displaying a larger base (Figure 3). This morphology

might be an adaptation to frequent weight bearing, during which

the tip of the thumb contacts the ground in hyperextended

postures. According to this, the enhanced manipulative capabilities

displayed by baboons could be merely a by-product of an

adaptation of the hand to digitigrady, resulting in a long thumb

relative to the rest of the hand that would be suitable for pad-to-

pad precision grasping (see Fig. 8a–b in [28]). The precision

grasping displayed by these monkeys, in any case, is much less

developed than that of humans, which is further reflected by the

lack in the former of many PDP traits that are functionally related

to human-like precision grasping (Figures 1–2; [3–4]).

The morphology displayed by the PDP of modern humans—

including a relatively long bone, dorsopalmarly flat and wide at the

shaft and apical tuberosity (Figure 3), together with several

morphological traits related to a powerful FPL and compartmen-

talized digital pulp (Figure 2)—is not found among non-human

primates, being indicative of a stable and powerful pad-to-pad

contact during refined manipulation [3–4]. The similar position

occupied by the PDPs of modern humans and those of fossil

hominins (including Neandertals), together with the possession of

morphological features functionally-related to pad-to-pad preci-

sion grasping [17,30–31], is highly indicative of shared functional

similarities. Apart from Neandertals, this is evident in Stw 294 (cf.

A. africanus) and, particularly, in BAR 190191 (Orrorin), the latter

showing, among early hominins, the greatest resemblance to

extant humans (Figures 2–3). On the contrary, SKX 5016 (P.

robustus) and OH 7, although more closely resembling extant

humans than any other taxa examined, display extremely broad

shafts and apical tuberosities (Figures 3–4). Although the phalanx

attributed to P. robustus has been described as displaying some traits

related to pad-to-pad precision grasping [17], this is not the case of

OH 7 [3–4], which lacks some of these features (Figure 2 and

Video S5; see next section). These results agree with previous ones,

according to which both OH 7 and SKX 5016 are extremely

broad phalanges, unlike those of humans or apes, thus having a

narrow base relative to these dimensions [32].

All the evidence reported above suggests that the morphological

differences found between the PDPs of extant taxa seem to be also

correlated to functional differences in hand function, particularly

involving the thumb. It would be of utmost interest to discern

whether the subtle morphological differences found amongst the

fossil hominins being analyzed—particularly concerning SKX

5016 and OH 7—are also correlated to differences in function, or

whether they are alternatively correlated to different overall body

types [32]. This cannot be definitively settled until more

postcranial remains of these hominins are available. However,

given the apparently convergent morphological similarities

between these fossil taxa and baboons, both in the middle [33]

and distal phalanges [this study], we favor the view that some kind

of functional differences as compared to other hominins are likely.

The attribution of the OH 7 hand remains
The original attribution of the partial hand from Olduvai Bed I

to the holotype of H. habilis (OH 7, consisting in the parietals and

mandible of a subadult; [34]) has been subsequently accepted by

most authors [e.g. 2–3,35–36], mainly due to its subadult status.

However, due to its overall robusticity—especially concerning the

PDP—and curved middle phalanges, an alternative attribution to

Paranthropus—contemporary to Homo in that region [37]—was also

suggested long ago [18,38]. More recently, this alternative

attribution has been further favored on the basis of morphometric

and morfofunctional analyses, particularly concerning middle

phalangeal morphology [33]. The later study found that the OH 7

remains are more similar to those from South Africa attributed to

P. robustus than to earlier Australopithecus and later and contempo-

rary humans [33]. It is also noteworthy that other bones from the

OH 7 hand, such as the trapezium, also suggests a taxonomic

attribution different than Homo [9].

Be that as it may, the odd morphology of OH 7 PDP led some

authors to consider an alternative anatomical identification as a

hallucial distal phalanx [35]. This would be supported by the

strong muscular attachments and, especially, the slight axial

torsion at the apical tuft (functionally related to bipedalism).

However, a discriminant analysis by the same authors indicated

‘‘that the fossil is closer to human distal phalanges than to those of

any other hominoid and is somewhat more like a pollical than a

hallucial phalanx’’ [35, p. 325]. We concur with this anatomical

identification, especially given that there are no differences in axial

torsion as compared to modern humans or extant apes (Figure 2),
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in which the apical tuft is slightly twisted, so that it faces the rest of

the fingers. It is also noteworthy that the PDP of OH 7 does not

display a human-like morphology related to precision grasping

([3]; Figure 2 and Video S5). This includes its odd overall

proportions, which like in SKX 5016 (P. robustus) are characterized

by a high degree of apical and midshaft robusticity, as it is found

here (Figure 3) and in many previous works [10,32–33,39].

Furthermore, our results regarding relative distal phalangeal

robusticity show that, when non-pollical manual rays are also taken

into account, the pattern of robusticity of OH 7, like that of

Paranthropus, resembles that of quadrupedal monkeys and does not fit

either the great-ape or the human pattern (Figure 4). These results

agree with a previous study of this partial hand, which interpreted the

morphology of the middle phalanges as showing convergent

adaptations with gelada baboons [33]. Alternatively, it would be

necessary to conclude that early Homo was more similar to Paranthropus

than to Australopithecus and Orrorin regarding several aspects of

phalangeal morphology, which in evolutionary terms would imply

a reversion regarding, among others, the robusticity of the PDP.

The attribution of BAR 1901901
Hallucial distal phalanges do not display the set of features

present in all the human PDPs, which are related to the pad-to-

pad contact. Thus, they do show a large proximoplantar fossa,

which is further accompanied by plantarly protruding basal

tubercles. In proximal view, these structures configure a very wide

and shallow channel for the pass and/or insertion of the flexor

hallucis longus, which can act as a ‘‘supporting muscle’’ during

terrestrial progression in both apes and humans [40].

Thus, besides morphometric similarities, the PDP of the late

Miocene Orrorin displays the typically human set of morphological

features functionally related to human pad-to-pad precision

grasping (Figure 2 and Videos S3–S4; [4]). The presence of these

features, among others, indicates that BAR 190191 does not

belong to the hallux. The other features indicating an anatomical

attribution to the pollex include: its degree of elongation, overall

flatness, and round dorsal surface [17]; the orientation of the

apical tuberosity, which does not face distally (such is the case in

distal phalanges that support weight stresses in hyperextended

positions; see Fig. 1 in [41] for the case of OH 10); and the lack of

axial torsion, which is present in the hallucial phalanges of both

humans [41] and apes [42].

The evolution of refined manipulation
The presence of precision grip features in the PDP of Orrorin

indicates that this bone was fully prepared to accommodate objects

between the palmar aspect of its pulp and that of the fingers. Some

of these precision-grasping features in the Orrorin specimen had

been previously reported, although they were interpreted as an

adaptation to arboreal locomotion reflecting ‘‘the precision grip

essential for climbing and balancing, different from that of apes’’

([17], p. 372). However, given the fact that no arboreal primate

displays this set of features, we favor the hypothesis that

functionally relates the striking and detailed similarities between

Orrorin and extant human PDPs to refined object manipulation.

Admittedly, although the Orrorin phalanx mostly looks like a

human PDP, it also displays some primitive features that are

further retained by the later australopiths, such as a small ungual

fossa and a proximally protruding median eminence of the

articular surface. Moreover, some other features, like the ridge for

insertion of the FPL, and the dorsopalmar height of the shaft and

apical tuberosity, are stouter than in later hominins and modern

humans (Figure 2). The latter display relatively flat PDPs,

especially at midshaft and distal tuberosity levels (Figures 2–3).

Thus, although the late Miocene Orrorin is somewhat ape-like in

dorsopalmar dimensions, it approaches a human-like profile in

mediolateral dimensions. Moreover, it is most remarkable that

although Plio-Pleistocene australopiths also show the morpholog-

ical features related to precision grip [17], the 6-million-years-old

PDP of Orrorin is more human-like in overall proportions and

morphology than these later hominins. To this respect, both OH 7

and SKX 5016 display a degree of mediolateral broadening that

highly surpasses the human condition. This is consistent with the

femoral morphology of this taxon, which more closely resembles

australopiths than later Homo, but among early hominins it is the

one that most closely resembles humans [43]. All this evidence

suggests that australopiths—especially Paranthropus—are derived by

displaying a robusticity pattern on the distal phalanges that is

convergent with that of quadrupedal monkeys (Figure 4), as

previously suggested for the middle phalanges [33], and also

suggested to some degree by the trapezial morphology [9,36].

Be that as it may, the highest resemblance between the late

Miocene Orrorin and modern humans, with the exclusion of

australopiths, is an unexpected result that bears important

implications for the understanding of the selective pressures

originally involved in the evolution of human manual skills. Extant

great apes are highly committed to arboreal locomotion (including

vertical climbing and suspensory behaviors), their manipulative

capabilities being limited by their relative short thumbs [1–2,5], and

especially by their absolutely long hands [12]. Because Miocene

apes displayed absolutely long thumbs, it has been suggested that

their hands were more suitable for manipulative purposes than

those of extant hominoids [44–47]. The same condition can also be

inferred for the stem hominid Pierolapithecus, which displays relatively

short manual phalanges—like other early and middle Miocene

apes—as well as a relatively long PDP [48–49].

From the evidence presented above, it can be suggested that the

hand length proportions of humans are plesiomorphic to a large

extent. If Orrorin was an early biped hominin with a PDP adapted

to refined manipulation, it follows that the whole thumb would be

long relative to the hand, thus enabling an efficient pad-to-pad

contact. Thus, this leads us to hypothesize that the manual

proportions of Orrorin might have more closely resembled those of

early and middle Miocene apes than those of extant apes, which

would have diverged towards a different direction from the same

ancestral morphotype. This idea is similar to that presented by

Tuttle [18], who suggested that ‘‘By the time early hominids had

assumed a bipedal gait, the hand was probably well on its way

toward modern human configuration’’ [18; p. 203]. We therefore

favor the hypothesis that human hand proportion enabling a pad-

to-pad precision grasping are an exaptation, co-opted by early

bipedal hominins for manipulative purposes, but originally evolved

within a locomotor selective context as an adaptation to powerful-

grasping—assisted by the thumb— within an arboreal setting in

Miocene apes. This would explain why early bipedal hominins,

such as A. afarensis [12] and A. africanus [13], already displayed

human-like hand length proportions prior to the appearance of

stone tools in the archeological record. It seem likely that the

acquisition of habitual bipedalism—which largely freed the upper

extremities from locomotor demands [14]—would have facilitated

the refining of the manipulative capabilities displayed by all

primates [e.g. 1–2,5,12,28,33]. Furthermore, bipedalism could

also affect the hand morphology by means of correlated

developmental responses dues to changes in the feet morphology

[12,39]. Thus, most probably ‘‘early hominoids [and hominins]

[…] evidently employed behaviors resulting from the addition of a

number of functional morphological innovations to a relatively

conservative body plan, including those underlying a more
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sophisticated manipulative and grasping use of the hand than used

before’’ [50, p. 264].

Most likely, these hand capabilities would have not been co-

opted until much later for a regular use in stone tool-making,

coinciding with the encephalization increase that took place in

hominins with the advent of the genus Homo ca. 2.5 Ma [51–53].

Thus, stone tool-making would not have played a significant role

until the latter part of human hand evolution, and especially after

the advent of the Acheulian culture [54], as already suggested by

Tuttle [18]. On the basis of the evidence provided by modern

human hands, the fine tuning of manipulative adaptations during

the evolution of Homo would have involved an increase of overall

robusticity at the several manual joints, an increase in robusticity

of the whole thumb, and especially the development of distinct

palmar pads on the distal phalanges.

More complete fossil hands from the African Mio-Pliocene

transition would be necessary to clarify this issue, especially regarding

of the selection pressures underpinning the remarkable human-like

features of the Orrorin PDP. For the moment being, the most complete

fossil hand around this time corresponds to the 4.4 million-years-old

putative hominin Ardipithecus ramidus [55]. Although its hand is not as

elongated as in extant apes [55], its thumb seems to be relatively

short, and its PDP looks more ape-like than that of Orrorin, in spite of

the older chronology of the latter. Thus, although A. ramidus has been

claimed to be an early hominin close to the last common ancestor

with Pan [56], it could be alternatively interpreted as one of the apes

‘‘among the tangled branches that constitute the basal hominine

bush’’ [57, p 533]. Only future comparative studies would help to

bring some light onto this question.

Conclusions
The pollical distal phalanx of the early bipedal hominin Orrorin

(BAR 1901901) unequivocally shows precision grasping capabilities

in spite of its ancient chronology, most closely resembling modern

humans than some later Plio-Pleistocene hominins—which show a

derived robusticity pattern. This indicates that refined manipula-

tion is an ancient acquisition already present by the late Miocene.

This is consistent with the hypothesis that habitual terrestrial

bipedalism and the possession of skillful hands do constitute a

single adaptive complex. Both types of behaviors might have been

simultaneously selected, by synergistically favoring each other.

From the evidence reported by BAR 1901901, it is reasonable to

assume that human hand length proportions (i.e. short hands and

relatively long thumbs) are plesiomorphic to some degree, thus

more closely resembling the short hands with relatively long

thumbs of Miocene apes, rather than the elongated hands of

extant apes, which seem to be secondarily derived. These ancient

proportions, suitable for refined manipulation, would not have

been co-opted for stone tool-making until much later, coinciding

with a significative increase in encephalization in the genus Homo.

Materials and Methods

The primate sample
The comparative extant sample includes the following taxa:

chimpanzees and bonobos (Pan; N = 29), gorillas (Gorilla; N = 13),

orangutans (Pongo; N = 19), baboons (Papio; N = 22) and modern

humans (Homo sapiens; N = 22). The fossil sample includes the PDPs

of Orrorin tugenensis from the Lukeino Formation (BAR 1901901),

Australopithecus africanus from Sterkfontein (Stw 294), the hand from

Olduvai (OH 7 A), Paranthropus robustus from Swartkrans (SKX

5016), and H. neanderthalensis from La Ferrassie I and Kebara 2.

Apart of the above-mentioned extant taxa, we further employed the

following fossil third distal phalanges for computing ratios: OH 7 B,

SKX 27504 (attributed to P. robustus), La Ferrassie I and Kebara 2.

Measurements for fossil specimens were taken from originals, good

quality casts or from the literature [31,58–59].

PCA
A principal components analysis (PCA) based on the covariance

matrix was employed to perform morphometric comparisons

between the pollical distal phalanges (PDP) of selected fossil

specimens and those of other hominins and extant primates,

including modern humans. This analysis, which does not assume

group membership on a priori grounds, was based on six shape

variables of the PDP, in its turn computed on the basis of the

following six metrial variables: length (L); mediolateral width at the

apical tuft (MLT), midshaft (MLS) and the base (MLB); and

dorsopalmar height at midshaft (DPS) and the base (DPB). These

measurements were transformed into shape variables by dividing

each of them by the geometric mean (GM) of all the six phalangeal

measurements (the GM being taken as a variable of overall

phalangeal size) and then applying a logarithmic transformation

(on the basis of natural logarithms, ln), following [43].

Ratios
Distal phalangeal robusticity was analyzed by means of a ratio

between apical tuft width and maximum length, separately for

both the distal pollical and middle finger phalanges. We further

calculated the difference between both ratios, in order to quantify

the relative robusticity of the pollical distal phalanx in relation to

that of the middle finger. Summary statistics for extant and fossil

taxa are reported in Table 2.
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Video S4 360u video render of Homo sapiens pollical distal

phalanx.
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