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!. Introduction 

The natural interpretation of  even moments of  exponential sums, in terms of  the 
number of  solutions of  certain underlying diophantine equations, permits a rich 
interplay to be developed between simple analytic inequalities, and estimates 
for those even moments. This interplay is in large part responsible for the 
remarkable success enjoyed by the Hardy-Littlewood method in its application 
to numerous problems of  additive type. In the absence of  such an interpre- 
tation, the most effective method for bounding odd and fractional moments, 
hitherto, has been to apply H61der's inequality to interpolate linearly between 
the exponents arising at even moments. The object of  this paper is to es- 
tablish a method for handling all moments of  exponential sums over smooth 
numbers non-trivially, thereby breaking out of  the latter (classically) implied 
convex region of  permissible exponents. In view of  the great flexibility and 
applicability of  the new iterative methods of  Vaughan and Wooley (see, for 
example, [13, 16, 18]), this breakthrough has many consequences. In this pa- 
per we confine ourselves to two relatively accessible applications, deriving new 
bounds for sums of  cubes, and strengthening substantially what is known about 
quasi-diagonal behaviour. 

In order to describe the consequences of  our new method for mean values 
of  smooth Weyl sums, we shall require some notation. Denote by ,~(P,R) the 
set of  R-smooth numbers of  size at most P, that is 

,4(P,R)={nC[l,P]ATl'plnand p p r i m e ~ p < R  }. (l .1) 
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Let k be a fixed positive integer exceeding 2, and define the smooth Weyl sum 
j '(~) = f ( ~ ;P , R )  by 

f(~z;P,R) = ~ e(~x~),  (1.2) 
vE el(p,  R } 

where e(z) denotes e 2~'z. Further, when s is a positive real number, define the 
mean value U,(P,R)  by 

I 

Us(P,R) = f If(=;P,R)l~"d~. (1.3) 
0 

Notice that when s is an even integer, say s = 2t, the familiar observation that 
If(~)J 2 = f ( ~ ) f ( - ~ ) ,  combined with orthogonality, reveals that the integral 
in (1.3) is equal to the number of  solutions of  the equation 

x~ + - . .  +x~ = y~ + . . .  + y~ ,  (1.4) 

with xi, yi C .~(P,R)  (1 < i =< t). Vaughan's  seminal work [13] on smooth 
Weyl sums provides non-trivial exponents, 2t (t E IN), with the property that 
for each ~; > 0, when q is a positive number sufficiently small in terms of  ~:, t 
and k, one has 

Uzt(P,P q) ~ .  t k P/4+' �9 (1.5) 

(The significance of such a result should be judged in the light of  the well 
known lower bound card(,~(P,  P" ) )  ~>,IP.) Moreover, these exponents are sub- 
stantially smaller than those which follow from corresponding bounds for clas- 
sical Weyl sums (see [10], Lemma 2.5 and Chapter 5). Although subsequent 
work of  Vaughan and Wooley (see, for example, [16, 18]) improves on these 
exponents 2 ,  the theory is limited to handling even moments (that is, integral 
values of  t). Thus, if s is a positive number, and t is the integer satisfying 
2t < s < 2t + 2, then the best upper bound for the sth moment stemming 
from the above circle of  ideas is that derived from HSlder's inequality, that is 

(i f Jf(et;P,R)pd~ <= kf(~;P,R)12td~ 
0 

~ pa2t+b2t+l + ~, 

b 

where a = t +  1 - s / 2  and b = s / 2 - t . , W e  shall refer to a bound arising in this 
manner as being determined by classical convexity, that is, by interpolating 
between exponents corresponding to even moments. 

It is convenient to describe some notation with which to discuss bounds 
for the mean values U,.(P,R). We shall say that an exponent p, = P~,k is 
permissible whenever the exponent has the property that for each e > 0, there 
exists a positive number q = q(e,s,k) such that whenever R < p,1, one has 

Us(P,R)~ ..... kr  ' �9 

Permissible exponents certainly exist, since for each s the estimate U,(P, R ) ~  ps 
is trivial. 
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We are now in a position to state a consequence of  our new method which 
leads to an immediate breaking of  classical convexity. In Sect. 4 we establish 
the following theorem. 

Theorem 1.1. Let  k be an integer with k > 3, and let s and t be real numbers 
with s + 2t > 4 and O < t < 1. Write v = s( l  - t / 2 ) - l .  Suppose that tl,~,k 
and t~,,,~ are permissible exponents. Then lls+2t, l~ is permissible, where 

/z,+2, = I~,~( 1 - O) + t + s O ,  

and 
0 = (2 - t)/~,,- 2/~+ 

(k + 1 )t + (2 - t)l~ - 21,,. 

We note that a result similar to Theorem l. l ,  but applicable only when 
t = 1 and s is an even integer, has been used in work of  Vaughan [15] on 
Waring's problem. 

Corollary. Let  k be an integer with k > 3. Suppose that A = A~ has the 
property that Jbr each ~: > O, there exists a positive number q = q(e,k)  such 
that whenever R <= P' ,  one has 

I 
6 3 + d + r  f I f (~ ;P ,R)[  d,~4~,,,~P . 

0 

Let  ~ be a real number with 0 < ~ <= 1. Then Jor each ~; > O, there exists  
a positive number r / =  riO;, a, k )  such that whenever R <= p,1, one has 

I 
j .  i f ( c c p ,  R)14+~ d ~  o2+cr/2+5(a)+,, "~ ..... a'~ , (1.6) 
0 

log{/, +1 ) 
where 6(rr) =eAc;  ,o~2 

The conclusion of  the Corollary is plainly superior to the bound following 
from classical convexity, which yields a similar result with 6(r = �89 Al- 
though our methods may be used to improve the quality of  the bound recorded 
in the Corollary when k is large, the dependence on a, for small o-, remains 
the same. 

If  the breaking of  classical convexity were the only consequence of  our 
new method, then one might justifiably describe it as being of  somewhat tech- 
nical interest. However, by recycling the new mean value theorems inside the 
machinery of  the new iterative methods, it is possible to improve on existing 
bounds for even moments o f  smooth Weyl sums. Since, in general, a detailed 
consideration of  the optimal permissible exponents deriving from our method 
entails considerable computational effort, we confine our exposition to the case 
k = 3. Thus, in Sect. 5, we establish the following theorem. 

T h e o r e m  1.2. Let  ~ be the positive root o f  the polynomial  {3 + 16~2 + 2 8 ~ -  8, 
so that ~ = 0.24956813 . . . .  Then f o r  each e > O, there exists a positive 
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number q = r/0: ) such that whenever R < P't, one has 

I 

f [.f(o~;p,p)2f(~z;p,R)41 3 ~-,~+, d e ~ P  . (1.7) 
0 

The estimate (1.7) should be compared with Vaughan [13], Theorem 4.4, 
where the upper bound 

I 
f [.1(cr P,R)I 6 dc~ ~` pi3/4+,, (1.8) 
0 

is established. By considering the underlying diophantine equation one finds 
that (1.7) is stronger than (1.8). Although our improvement is rather small, 
it has significant implications for the derivation of lower bounds for R7,3(n), 
the number o f  representations of  n as the sum of seven positive cubes. It is 
conjectured that 

RT,3(n) ~ 4 ~( / / )n  4/3 , (1.9) 

where ~ ( n )  is the singular series associated with seven cubes, 

and 

~ ( n )  = E 
q=l a=l 

(a,q)=l 

(q- '  S(q, a ) )7e(-an~q),  

q 

S(q,a) = ~ e(ax3/q). (1.10) 

But, as noted in the introduction of  [14], the inequality (1.8) "combined with 
a straightforward application o f  the Hardy-Littlewood method based on Weyl ' s  
inequality for cubes fails by an ~: in the exponent" to establish a lower bound 
for R7.3(n) of  the same order of  magnitude as (1.9). Indeed, Vaughan [14] 
was forced to apply a complicated argument, based on an efficient differencing 
argument restricted to the minor arcs, in order to overcome this difficulty. 
Theorem 1.2 enables us to give a simple proof  of  a result slightly stronger 
than Vaughan's.  

Corollary A. Let n be a positive inteqer, and let t 1 denote a positive number. 
Define r(n; q) to be the number of  solutions o f  the equation 

+ + + + + = n ,  

with 

1 <= xi <= n I/3 (1 < i _< 3) and y / E  ,4(nl/3,n '/) (1 =< j =< 4 ) .  

Then when q is a sufficiently small positive number, anti 6 is sufficiently small, 

r(n; q) = ~ ( r l ) ~ ( n ) n  4/3 -[- O(n4/3( log n ) - 6 )  , ( 1.11 ) 

where c~.(q) is the positive number defined in equation (5.13) below. 
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Although the lower bound for RT,3(n) stemming from (1.11) is likely to be 
very far from the conjectured asymptotic formula (1.9), in principle one can 
calculate explicitly a suitable choice for q, and a value for c~'(q), in order to 
provide a comparison. 

Let , l ( X )  denote the number of  natural numbers not exceeding X which 
are the sum of  three cubes of  natural numbers. Also, let E ( X )  denote the 
number o f  natural numbers not exceeding X which are not the sum of  
four cubes of  natural numbers. The problems of  providing lower bounds for 
�9 ! '(X), and upper bounds for E(X) ,  have long histories (see, for example, 
[2 ,3 ,4 ,5 ,6 ,7 ,9 ,  I I ,  12, 13]). Theorem 1.2 permits us to make some further, 
very small, progress. 

Corollary B. With ~ deJined in the statement o f  Theorem 1.2, 

. t ( X ) > > , X  1-~/3-" and E ( X ) ~ , . X  I-a>{'+' 

Previously, Vaughan [ 13] had established that . I ' (X) >>,X 11/]2-,. (note that 
I1 

l - ~/3 > 0.91681, whereas ]5 < 0.91667), and Briidern [2] had established 
37 that E ( X ) ~ X  37/42+~" (note that 1 - ( 4 -  6~)/21 < 0.88083, whereas ~ > 

0.88095). The proofs of  the estimates given in Corollary B follow, respectively, 
a standard application of Cauchy's  inequality, and the argument of  Brfidem [2]. 
We therefore give the details of  neither proof. 

Perhaps the most striking consequences of  our new method concern esti- 
mates for even moments of  smooth Weyl sums, o f  the form (1.5), when k 
is large and t is small. We examine the latter situation in Sect. 6, where we 
are able to show that 7, is very close to s, a phenomenon we have previously 
described as quasi-diagonal behaviour (see [19]). 

Theorem !.3. Suppose that k is an integer with k > 3, and that s is a real 
number with 4 < s <= 4 e - ] k  )/2. Then the exponent tt,..h is permiss'ible, where 
P,., k = s/2 + 6,. t, and 

8 ,,2 (_ 6k ) 
= - -  exp 

6,,h- es \ e2s2// 

With a little effort, one can deduce from work of  Vaughan [15] a similar 
bound with 6,,,, bounded roughly in the form 6,,a ~ exp(-C(log(k/s2))2) ,  for 
a suitable positive constant C (see also [19], Theorem 2). Theorem 1.3 pro- 
vides a substantial improvement on the latter bound when s is smaller than 
about k 1/2. 

Let A~a.s(X) denote the number of  natural numbers not exceeding X which 
are the sum o f s  positive kth powers. It is widely believed that .4'"x.3(X) ~ X 3/a 
for k __> 3. We make substantial progress in this direction for large k. 

Corollary. For each inte#er k with k > 3, 

3 e--h/17 
�9 ,f k, 3 (X)>kX~ 
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For comparison Vaughan [13], improving on work of  Davenport, had 
established a similar result with e -h/17 replaced by k -2, which he later im- 
proved in [15] to an expression of  the form A exp( -C( logk)2) ,  for a suitable 
positive constant C. The superiority of  our new bound is self-evident. 

Our basic method for bounding the mean values U.~(P,R) is described 
in Sects. 2, 3 and 4. In common with the iterative methods of  Vaughan and 
Wooley, our strategy is to introduce a strong congruence condition on two 
of  the implicit variables through suitable manipulations. In the former treat- 
ments, this process was much simplified by reference to the underlying dio- 
phantine equations, a resource unavailable to us here. Thus we are forced to 
perform delicate rearrangements o f  exponential sums of  a somewhat combina- 
torial flavour. Oversimplifying the situation considerably, our argument bounds 
the mean value Us(P,R) in the shape 

U.~.(P,R)<(P~176176 + T.~,t) , 

where t and 0 are real numbers with 0 < 0 < l/k and 0 < t < 1 to be 
chosen later, and 

1 
T,,, = f IF(oO' f(c~;P'-~ I do:, 

0 

where 

F(a) = E ~ e(~u-k(z~ -zk2)). (1.12) 
uC ~/(pOR, R) z I , z 2 E  " / ( P , R )  

u > P  0 z I =--z 2 (rood u/' ) 
zl  4=22 

Thus our argument extracts an efficient difference for arbitrary real s, not just 
for s an even integer. Moreover, and this is crucial for the proof of  Theorem 
1.3, this efficient differencing may be performed on a fractional number o f  
variables (this is the significance of  permitting t to be smaller than 1). The 
expression T,,~ may be estimated in terms of  mean values for F(o:), and the 
mean values Uw(PI-~ for suitable w. Optimising the choices for 0 and t 
ultimately leads to bounds for the mean values Us(P,R). 

In the light o f  the progress described in this paper, it seems natural to en- 
quire whether similar progress can be made in repeated differencing procedures, 
paralleling treatments o f  [16] and [18]. After preliminary investigations of  this 
matter, the author feels confident that such is indeed possible, but only through 
an argument at least an order o f  magnitude more complicated than the one 
described in Sects.2 and 3. Since the consequences of  such a result are not yet 
clear, and in any case likely to be less accessible than those described above, 
we have decided to defer any such discussion to a future occasion. We note 
also that a breaking of  classical convexity may also be achieved in the context 
of  Vinogradov's mean value theorem by methods similar to those described 
here. However, at this stage the author has yet to find an application of  such 
a breakthrough which would justify its exposition. 
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2. The preparation lemma 

In order to ascend to a position from which to bound U,.(P,R) in the way 
alluded to in the introduction, in this section we establish a lemma which pre- 
pares to extract an efficient difference within this mean value. We first describe 
some notation and conventions which will ease the burden of  exposition. 

Throughout, k will be an integer exceeding 2, and s will be a positive real 
number. We use ,; and q to denote sufficiently small positive numbers, and P to 
denote a large positive number depending at most on k, s, c and q. The implicit 
constants in Vinogradov's well-known notation, ,~ and > ,  will depend at most 
on k, s, ~: and q. Also, we write [x] for the greatest integer not exceeding x. We 
adopt the following convention concerning the numbers ,: and R. Whenever ~: 
or R appear in a statement, either implicitly or explicitly, we assert that for 
each ~: > 0, there exists a positive number q0:,s, k) such that the statement 
holds whenever R < p,1. Note that the "value" of  c, and r/, may change from 
statement to statement, and hence also the dependency of  implicit constants 
on ~: and q. We observe that since our iterative methods will involve only 
a finite number of  statements (depending at most on k, s and ,:), there is no 
danger of  losing control of  implicit constants through the successive changes in 
our arguments. 

With this notation, an exponent p,,~ is permissible, in the sense defined in 
the introduction, provided that 

U ~ ( P , R ) ~ p  ~<~+~: . 

We record some elementary properties of  permissible exponents in the follow- 
ing lemma. 

Lemma 2.1. For each posit ive number  s, and inte,qer k n, ith k > 3, a permis-  
sible exponent  t(~,k exists wih P.~,k <= s. Moreover,  P.,.,k necessarily satiaifies 
the inequality P~.,k > s/2 when s > 2. Further, when 0 < s < 4, one m a y  
take p.~,~ = s/2. 

P r o o f  As we noted in the introduction, the estimate U s ( P , R ) ~ P  ~ is trivial, 
and hence for each s a permissible exponent P~,k exists with Ps, k < s. Next 
we suppose that s > 2, and write t = [s/2]. Then by H61der's inequality, 

2~/s  

Recall the implicit assumption that R = P" with q a positive number. Then 
by counting only the diagonal solutions of  the diophantine equation underlying 
the mean value on the left hand side of  (2.1), and recalling (1.3), we obtain 

Us(P, R)  >> ( U )s/Zt = p~./2 . 

Consequently, every permissible exponent satisfies lr > s/2. 
Finally we note that the estimate U4(P,R)4~P 2+': is essentially classical, 

on considering the underlying diophantine equation. Thus an application of  
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H61der's inequality shows that when 0 < s < 4, we have Us(P,R)~P v2+''. 
This establishes the final assertion of the lemma. 

It is convenient at this point to establish a simple estimate for the mean 
value ~P~(Q; u, w), which we define for positive integers u and w by 

where 

I 

7',.(Q; u,w) = f tg,(ccw~; Q/w)2f(cr Q, Ry 2] dcz, (2.2) 
0 

,q~,(~z;L) = ~ e (  o:z '~ ) . (2.3) 
zC ,/(L,R~ 

~z, u)=l 

Lemma 2.2. Suppose that s is a real number with s > 2, that u, w are positit, e 
integers, and that Ps, k is a permissible exponent. Then 

~,(Q; u, w) <u"w -1 Q~" + ' . 

Proq[? In view of the well-known identity involving the M6bius function, we 
have 

,q,,(cc;Q) = ~ ~ l~(c)e(~z ~) = ~ t t ( c )  ~ e(c~zk). 
zE r c[(z, u) clu zE ~/(Q,R) 

Then by Cauchy's inequality, and a standard estimate for the divisor function, 

}g,,(~; Q)I 2 < u '"~ If(~?; Q/c, R ) [ 2  
c'l~t 

Consequently, 

l 

7'AQ; u, w ) ~  u ~ f [J(~(cw)~;Q/(cw), R)2f(~; Q, R)"-21d~ . 
clu 0 

Then by H61der's inequality, 

~AQ; u, w) ~ u " ~  J~(Q; ew)2/L~,(Q; 1 ),-2/.~ 
C[bt 

(2.4) 

where 
I 

,-r d) = f ]J(~d~; Q/d,R)lSd~. (2.5) 
0 

On recalling (l .3) we find that .--~.(Q;d) = UAQ/d,R). But lr is permissible, 
so that by (2.4), 

q's(Q; u, w)  < u' ~ Q"~+"(cw)- ~'~+"~. 
('[u 

The proof of the lemma is completed on observing that by Lemma 2.1, we 
have p~. > s/2. 

The preparation lemma makes use of a parameter, ~b, associated with the 
differencing procedure. For each positive number s, we take q5 to be a real 
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number with 0 < 0 --< l/k to be chosen later. We then take 

M = P'/', H = PM -~ and Q = P M - t  . (2.6) 

We shall also make use, in the preparation lemma, of  a modified set of  smooth 
numbers, ~ ( L , ~ , R ) ,  defined for prime numbers, r~, by 

,~(L,=,R) = {x E IN " L < x < L~, =Ix, plx and p prime ~ 7r < p < R}.  

(2.7) 
Finally, when P,M and R are real numbers with P > M and R > 2, we write 

] ' (~;P,M,R)  = max ~ e(:cv ~) . (2.8) 
m > M v C.~/(l '/m, R ) 

Lemma 2.3. Let s be a real number with s > 4, and let t = t(s) he a real 
number with 0 < t < 1. Suppose that ~ = r saris:ties 0 < ~ < 1/k, 
and that D is a real number with 1 < D < pi/a. Suppose also that p.,,a and 
t~,,-2,a are permissible exponents'. Then 

~ I 21, t +~ 
Us(P,R)~pu,+'.D"/2-m +Mpl~ t ' , -2  +'. + p~  , z, ~i, K,,I(P,R 

i t , h e r e  

K,,,,(P,R) = 
4t I 

E E E E (de)-27aT~,r '-~72' , (2.9) 
I <<_d<_D n<=R uE ~ ( M / d , n , R )  I < e < Q  

and 

1 

y,, , , (d,  =, e) = f lY, , (<  P/(de))12']'(au*; P/(de), M/d, ~)"-2' d a .  
0 

(2.10) 

Proof  We follow more closely the argument o f  Vaughan [13], Lemma 2.1 
than that o f  Wooley [18], Lemma 2.2, the former permitting greater control to 
be exercised when negotiating the many combinatorial difficulties. We begin 
by writing 

If(< P, R)I 2 = J (~ ;  P, R ) f ( - ~ ;  P, R) = +Yi (or + ,~2(:~), 

where 

and 

Thus 

,~-1(~) = ~ ~ e ( ~ ( x ~ - y * ) ) ,  (2.11) 
I <-d<-D ~, v C ' / ( P , R )  

(~, v)=d 

,~2(~) = ~ ~ e ( ~ ( x ~ - y ~ ) ) .  (2.12) 
D < d < P  ~,vCq/(P,R) 

(v, v)=d 

U,,(P,R) = UI + U2, 
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where 
I 

U, = f . ~ , ( ~ x ) l f ( = ; P , R ) l  ~ 2d~, (i = 1,2). (2.13) 
0 

We divide into cases. 
(I) Suppose first that ]U2] > [U~], so that U~(P,R) < 2]U2]. By (2.12) we 

have 
,~2(~) ----- ~ ~ ~ ~ p(e)e(~(x ~ _ yk) )  

D < d < _ p  ~E4(P,R} I'E ,t(P,R) ,,h" ~ 2'~ 
-- d b , / ]~ ~ 7 " d  ' 

= 2 ~ life) ~ ~ e(o~(x k _ y k ) ) .  
D < c < P  ed:c ~E ,/(P,R) vC~/(P.R) 

d>O 'Is" ely 

Thus, by using an elementary estimate for the divisor function, we obtain 

,~2(or ~ [f(~c~';P/c,R)l 2 . 
c > D  

Recalling (2.5), and applying HSlder's inequality to (2.13), we deduce that 

U2 ~ P': ~ .,r P ; c )2/',~ s( P ; 1 )1-2/s, 
c > D  

and hence obtain 

U,(P,R)~P':  ~ (U~(P/c,R)) 2/' 
c > D  

But P~,k is permissible, and thus 

"~ S/2 

( (P/c) 2','-,+':') , 
\ c > D  

whence the lemma follows in the first case. 
(II) Suppose next that [Ui] ->_ ]U2[, so that Us(P,R) < 2]UI]. We write 

where 

and 

Thus 

fCt(~)= ~ ~ ~ e(o~(xk--yk)) ,  (2.14) 
I <-d<D yE,c' /(P,R) ':E (/(P.R) 

d l y  (~,y)=d 
y > M  

~2(~) = ~ ~ ~ e(~(x k _ yk ) ) .  (2.15) 
1 < d  < D y E  ~r R) rE ,/(P,R) 

d]y (*,y)=d 

~s(P,R)~ ]V,I + IV21, 
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where 
I 

Vi = J'c.G(~)l.f(~t;P,R)l~-2dc~ (i = 1 ,2) .  (2.16) 
0 

We subdivide into further cases. 
(a) Suppose that I~1 >_- Iv, I, so that G ( P , R ) ~ I V ~  I. By estimating the 

exponential sum in (2.15) trivially, we find from (2.16) that 

I 

V 2 <  ~ PMd-2f I.[(~;P,R)["-2 doc<PMI-J~-2(P,R). 
I <_d<~D 0 

But IG-2,h is a permissible exponent, and hence the lemma follows in this 
case also. 

(b) Suppose that IV1] > IV21, so that U , . ( P , R ) ~ I V j  I. We first observe that 
from (2.14), 

~ 1 ( ~ ) =  ~ ~ ~ e(~d~(z  h - w h ) ) .  (2.17) 
[ <_d<D uE ,/(P/d,R) zG ~/(Pd~R} 

~ >M,d (z,u)=1 

But by Vaughan [13], Lemma 10.1, for each w appearing in the second sum- 
mation of  (2.17), there is a unique triple (r~, u, v) with w = uv ,~  prime, 
u C . ~ ( M / d , ~ , R )  and v E .~ / (P / (ud ) ,~ ) .  Thus we deduce that 

where 

But 

(r = ~ ~ ~ ,Y(~dk) ,  (2.18) 
I<<_d<_D ~<R t t c~ (M/d ,  rc, R) 

prime 

~h~ ( :t ) ~ ~ e( c~( z h - U k Vk ) ) . 
vC ~/(P/(ud),rc) zE ,/(P'd,R) 

(z, tn ) :1  

~ ( ~ )  = ~ ~ It(e)e(ot(z h - u~v ~)) 
t'C ~/(P/(ttd),rt) zE ,/(P d, R) e [ (z ,v )  

(z, tt} I 

i t (e)  ~ ~ e(~(z  k - ukv ~ ) ) .  
I <_e<-P/(ud) ~ E (/(pl(ud),Tr) zC ~/(pId, R) 

ei~ (_-, u) :1 
elz 

(2.19) 

On recalling (2.8), we find that when u E ~ ( M / d , ~ , R ) ,  

e(~u ~ v h ) ~ max 
t E r r e > M i d  

elt 

e( cff ue )~v ~ ) 
v E,o/(P/(mde ), ~) 

= f ( o ~ ( u e ) k ; P / ( d e ) , M / d ,  re) . 

Then by (2.3) and (2.19), 

iF(7) < ~' f(~(ue)k; P/(de) ,  M/d, ~)l,q,,(~ek; P/(de))[ . 
1 <e<--P/(ud) 

(2.20) 
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Thus by (2.16), (2.18) and (2.20), we have 

V, < ~, ~_, ~, ~, W(d, zr, u , e ) ,  (2.21) 
I<-d<-D 7r<R u E ~ ( M / d ,  rc, R) I<=e<=P,/M 

where W = W(d,~ ,u ,e )  is defined by 

I 

. W = .ff(oc(ude)h; P/(de), M/d, =)lg,,(~(de)a;P/(de)).f(oq P, R) ' -Zld~. 
0 

(2.22) 
On applying H6lder 's  inequality to (2.22) we find that 

I ~ 4 t  ~ - - 2  

W(d, lr, u, e) ~J t ' -2 '  j ~ , -  4,J32,-4t , (2.23) 

where 

l 

J, = f [,q,,(c~(de)a;P/(de))[2' f(c~(ude)l';P/(de), M/d, rc)s-2'dc~, 
0 

I 

J2 = J" l,q,,(o~(de)k;P/(de)) 2 f ( ~ ;  P, R) ' -2I  d ~ ,  
0 

and 
1 

.]3 = J' I f ( < P , R ) I ' d ~ .  
o 

Then since /z,,a is a permissible exponent, we have by (1.3), 

J3 = U~ (P ,R )~U  ' '+ '  , 

and by Lemma 2.2, 

J2 = %(P;  u, de)4~u"(de) -IP~''+'' . 

(2.24) 

(2.25) 

Moreover, by a change of  variable, 

I 
J1 = f I,q,(c~; P/(de))[z ' .[(~uh;P/(de),M/d, zc) s 2'd~ = ~ , , ( d ,  re, e ) ,  (2.26) 

0 

and consequently the lemma follows in this final case, on combining (2.21) 
to (2.26). 

3. Efficient differencing 

In order to bound U~(P,R) by using Lemma 2.3, we must estimate V,,~(P,R). 
This we do by exploiting an implicit congruence condition between variables 
occurring inside the mean value ~ .... thereby extracting an efficient difference. 
When s is even and t = 1, it is easy to discern the latter congruence condi- 
tion by considering the underlying diophantine equation. This resource being 
unavailable to us in general, we make use of  an argument somewhat similar 
to one applied in a minor arc estimate by Vaughan [12], Sect. 8. 
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Our proof of Lemma 3.3 below requires bounds for the mean value 
O,.(P,M,R), which we define by 

I 
( ] , (P ,M,R)  = .f .?(~;P,M,R)" d~t . (3.1) 

o 

A very convenient approach to providing such bounds is through the use of 
the Carleson-Hunt theorem (see [8], Theorem 1 ), which we state below in the 
form given by Bombieri [1], p12. 

Theorem 3.1. Let T be the maximal  operator, 

T a,,e(nx = max a,,e(nx) . 
M < N 

Then T is a hounded operator in L p Jor 1 < p < v~. More precisely, there 
is an absolute constant B such that ]JTI]Lp =< B p S / ( p -  1) 3. 

We state a corollary of this theorem in the form of a lemma. 

Lemma 3.2. Suppose that s > l, and that P ,M and R are real numbers with 
P > M a n d R  > 2. Then 

O,.(P, M, R ) ~.~ U,(P/M, R) . 

Proqfi We apply Theorem 3.1 with 

art 

and deduce that 

= { 1 ,  

0, 

when n = x k with x C ,~/ (P/M,R) ,  

otherwise, 

I I 

IJ , (P,M,R)  -= f ( T ( . f ( ~ ; P / M , R ) ) y  d~ .~, f If(~; P/M, m)l' d=.  
0 0 

The proof of the lemma is completed on recalling (1.3). 

We remark that the deep Carleson-Hunt theorem may be avoided, as 
pointed out to the author by Professor E. Bombieri, by employing older, 
less precise, results on the convergence of Fourier series (see, for example, 
Zygmund [20], Chapter XIII). Indeed, Professor H.L. Montgomery has kindly 
supplied just such an argument to the author, which we reproduce in the 
Appendix. The use of the latter argument suffices to establish Lemma 3.2 with 
the main conclusion replaced by the weaker bound 

/J,.(P, M, R) < .,(log P y  U,.(P/M, R ) .  

The latter estimate suffices for our applications. 
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Lemma 3.3. Adopt the same notation, and make the same hypotheses, as in 
the statement of Lemma 2.3. Write, in addition, 

q/t = ~ ~ ~ d 2 t - S / 2 e S / 2 - 1 , ~ t t ( d , x , e } ,  ( 3 . 2 )  

I <<_d<_D ;T<_R I < _ e _ < Q  

where 
I 

,~(d,  ~ t , e )=  f l J / (~) l ' [ (~;P/ (de) ,M/d ,  TO~"-2'd:r (3.3) 
0 

and 
,:r (~) = ~ 

uC ~(M/d,~z,R) ~, I'C ,/(P/(de),R) 
(us }  (v,u):=l 
~ v  (rood u/' ) 

Then if, t(~-2t, k is a permissible exponent, 

I V,,t(p,R)~p'.(ptM~-2tQi ', 2, + M S - 3 t  q / l ) , - 2 t  . 

e(~u-k(xk _ yt,-)) . (3.4) 

0.5) 

Proof By applying H61der's inequality to (2.9), we obtain 

~ - - I  2 /  I 

�9 , - - 2 t  (3.6) ~, ,(P,R) < ~1" ' - 2 t  ~ 2  ' 

where 

and 

I<-d<-D n<=R uCff(M/d, lr, R) I<=e<~Q 

'r ~ ~ ~ ~ d2'-"/2eS/2-1~.,,(d,~z,e). (3.7) 
IGd<_D rc<=R uE~{M/d,~z,R) l~e<=Q 

Moreover a simple estimation yields 

1 ~ i" ~ P"MR 2 . (3.8) 

In order to estimate t2, we make the change of variable 7 = c~ua in (2.10) to 
obtain 

u / ' - - I  t+1  

Jr,,, = u -k ~ f IO,,(Tu-k;P/(de))[2'/(7;P/(de),M/d,~l'-2~ dT. 
I=O l 

Thus, sincef(7;P/(de) ,M/d,~)  is a periodic function of ?, with period 1, 

I 

~-r = f G,.,(y; P/(de)).f(7; P/(de), Mid, g)s-2, dy ,  
0 

(3.9) 

where 
u h --  I 

Gt,,,(y;L) = u -k 2~2 ]gu((? + l)u-h;L){ 2' �9 
/ = 0  

(3.1o) 
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It suffices to consider the sum GL,,(7;L), since by H61der's inequality, 

G,,,(?; L ) < ( M R/d ) t- '  G~,,,( ?; L ) (3.11) 
uE ~(M/d, rt, R) uE ~( I, zc, R) 

By orthogonality, it follows from (3.10) that 

We write 

Gt,,(?;L) = ~ ~ e(?u ~(x/~ - yk ) ) .  (3.12) 
~ E ~ / ( I . . R )  I E ~ / ( L , R )  

(~,t/)=l ( l ' , t t )=l  
I/~ ~/~ (nlod tr ) 

,q(> L; u,z) = ~ e(;,u ax k ) ,  
~C ~/(L,R) 

( ~ , u } = l  

~ z  (rood u/' ) 

and let <~:(h,u) denote the set of solutions modulo u ~ to the congruence 
x/' ~ h (modu a) with (x, u) = 1. Then card(~(h,u))~u", and so by (3.12), 
on applying Cauchy's inequality, 

U , Z )  2 
u h u ~ 

G,,u(? ;L)= ~ ~ g(7;L; <= u~" ~ ~ Ig(?;L;u,z)[ z .  
h = l  zEq,,(h,u) h = l  zE~e;(h,u) 

Thus we arrive at the inequality 

G~,,(?;L)~ff" ~ e(?u ~(x ~ - y ~ ) ) .  (3.13) 
~, I E c / (L ,R )  

( ~ , u ) = (  i',u} I 

~ 1  (mod u '~ ) 

On isolating the diagonal contribution in (3.13), we deduce from (3.11) 
that 

G,, , (7;P/(de))~P"(M/d)I- ' (PM(d2 e) -I + I . .  (~,)[)' , 
uC '~(M/d, rc, R) 

where ,/{'(3') is defined by (3.4). Thus, by substituting into (3.7) and (3.9), we 
obtain 

t2 < P"MI-t( .Y+ ql, ) ,  (3.14) 

where 

1 

j -  = (PM) t ~ ~ ~ d-'~/2e ' /2- ' - '  f f (~/;p/(de) ,M/d,  zO~'-2td? " 
I<_d<D :z<_R I<_e<=Q 0 

Then by (3.1) and Lemma 3.2, on recalling that t(~-2tA, is permissible, 

,Y-~(PM)tR ~ ~ d - " / 2 e S / 2 - t - t ( p / ( M e ) )  I''-2'+~" . 

I<_d<_D I<_e<<_Q 

Furthermore, by Lemma 2.1 we have l(~-2t >= S / 2  -- t, SO that 

,c7 4~ Pt+" Mt QI"- 2' . (3. l 5 ) 
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Collecting together (3.6), (3.8), (3.14) and (3.15) completes the proof of 
the [emma. 

The expression ,;((e) is somewhat similar to the sum Fl(c~) appearing 
in work of Vaughan and Wooley [13, 16, 18]. This observation motivates us 
to manipulate r into a form in which .#(c0 can be sanitised inside mean 
values related to diophantine equations. In the following lemma, we restrict 
attention to bounds depending only on second and fourth moments of ,#(~),  
our philosophy being that higher moments should be avoided in favour of 
further efficient differencing operations. 

Lemma 3.4. Define the inteqer r = ~(k ) by 

f 1, when k = 3, and when k >= 8 and k is even ,  
"~( k ) (3.16) / O, o therwise .  

Suppose  that s and  t are real numbers  with s > 4 and 0 < t < 1. Suppose  

also that v is a posit ive number  with 

s -  2t s - 2 t  - - < _ v <  
l - t ~ 4  - - l - t ~ 2 '  

and that p,,,k is a permissible exponent.  Then in the notat ion o f  (2.6) and 

(3.2), 
@t ~ Dht pt/2 +" Ht-WMt-W+r(t/2-W) Q ( I-w)l'' , 

where w = I - (s - 2t)/v. 

P r o o f  We apply H61der's inequality to the integral in (3.3) to obtain 

~ ' - z ~  x ~ r 2 W - - l / 2  T t / 2 - - W  r r  l - - W  
,~,Aa,~z, e l~ .q  '12' O v , (3.17) 

where 
1 

Im= f !,#'(cO]2mdc~ (m = 1,2), (3.18) 
o 

and 

U,, = ~f(c~; P/(de) ,  M/d,  ~z)" dc~. 

But since /~,, is a permissible exponent, it follows from (3. l) and Lemma 3.2 
that 

U ,  = ~ , ( P / ( d e ) , M / d , x ) < ~ U v ( P / ( M e ) , x ) < ( P / ( M e ) )  l ' '+"  . (3.19) 

Next, on recalling (3.4), we find that Im is bounded above by the number 
of solutions u , x , y  of  the equation 

2,q~ 

u:k(g _ / )  2 -k ' = uj (x j  - y ~ ) ,  (3.20) 
i=1 ]=m+l 
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with 

Mid < u, <= MR/d  (1 __% i _< 2m) ,  (3.21) 

1 <= y, < x, <= P/(de)  and x, =- .v, (moduS)  (1 _< i _< 2m) .  (3.22) 

We now substitute z, = x,+y, and h, = ( x : - y , )u~  ~ (1 _< i _< 2m) into equation 
(3.20). In view of (3 .21)  and (3.22), it follows that 1 < h, < (P/ (de) ) (M/d)  - t  
for each i. Moreover, we have 2x, = zi+h~u) and 23, ̀  = z~-h,u~ ( I <_ i <_ 2m). 
Then on writing 

7'l(z,h, u) = u-~((z  + hu ~ )~ - (z - hu ~ )k ) , 

and considering the underlying diophantine equation, it follows that 

I 

Im < f IFj , , (~) lz"d~,  (3.23) 

where o 

Fj.,.(~) = ~ ~ ~ e(~Pl(z,h, u ) ) .  (3.24) 
I <-z<<-2P/(de) I < - h < - H d ~ - I e  - I  M / d < u < M R ' d  

Thus we may imitate the treatment applied by Vaughan in [13], Sect. 2, 
and [15], to the case d = e = 1, and conclude that when k > 3, 

Ii ~P"(P/ (de) ) (Hdh-~  e - j  ) (MR/d) '~PI+"HMdt -3  e -2 , (3.25) 

and when k > 4, 

12 ~P"(P / (de ) )2 (Hdk- l e  I )3(MR/d)3+r ~p2+,H3M3+rd3a-S-re-5 . (3.26) 

Collecting together (3.2), (3.17), (3.19), (3.25) and (3.26), we find that when 
k = > 4 ,  

r ~ Pt/2+~'HI- VMt-W+r(t/2 W)Q(i-w)/,, J/[i (3.27) 

where 

and 

. u : :  E E Z a " ~ - ~ ,  
I<d<_D~<-R I<-e<-Q 

A = k t - s / 2 ,  B = ( l - w ) I t , + 3 t / 2 + l - s / 2 - w .  

But by Lemma 2.1 we have #, > v/2, and hence B > I + t / 2 - w  > 1. 
Consequently, JJ//~ ~P~D ~t, and the lemma follows immediately from (3.27). 

When k = 3 the above argument must be modified, since the fourth moment 
estimate (3.26) no longer follows from [13] or [15]. We observe instead that 
by Cauchy's  inequality, 

u)) 2 

[F~,,(~z)l 2 < H M R  ~ ~ ~ e(~ztPl(z,h, < H ( M R ) 2 G ( ~ ) ,  
M < u < M R  I < _ h < H  l <_z<_2P 
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where 

Thus, 

G ( ~ ) =  E ~ E e ( 6 a h ( z 2 - z 2 ) )  �9 
I <_h<_tt I <=z I _<_2P I <=z 2 < 2 P  

1 1 

f IFt,~(~)I 4 d~ < H ( M R )  2 J" G(~)[FI,,(~)I 2 d~.  (3.28) 
0 0 

The integral on the right hand side of (3.28) is equal to the number of solutions 
of  the diophantine equation 

6h(z~ - z 2) = 7Jl(xj ,hj ,ul  ) - q~l(x2,h2,u2) , (3.29) 

with 

1 < h, hj ,h2 <= H, M < uj,u2 <= M R  and 1 <z , ,x ,  < 2P ( i =  1,2).  

If  IPl(Xl,hl,ul)= ~l(X2,h2,u2) in (3.29), then necessarily zl = z2, and so the 
number of  solutions of this type is bounded above by 

I 
H P  f IFI, l(~)12 d~ < p2+,. H 2 M  . 

0 

On the other hand, if ~ l ( x ~ , h l , u l ) +  ~l(x2, h2,u2), then on fixing one of the 
O ( ( P H M R )  2) possible choices for x, ,h, ,ui  (i = 1,2), we find that h, zl + z 2  
and zl - z 2  are divisors of  a fixed non-zero integer. Thus, by using a standard 
estimate for the divisor function, we find that the number of solutions in this 
case is bounded above by P " ( P H M )  2. It therefore follows from (3.28) that 

I 

f [FI,I(~)I 4 d~ <= P2+"H3M4 , 
0 

and the more general estimate (3.26) follows easily. The proof when k = 3 
may therefore be completed as before. 

We note that as an alternative to the above strategy, one may cultivate a 
simple repeated efficient differencing method by applying H61der's inequality 
to (3.3). Thus, when w is an integer with 1 < w < (s - 2t)/t ,  

.~Z(d,~,e) < T(/2T I-t~2 , 

where 

and we write 

[ 

T, = f 1~'(~){2f(cr P/ (de ) ,  M/d,  ~z) 2w d~ ,  
0 

1 

T2 = f / ( g ;  P / ( d e ) ,  Mid,  ~t)' d a ,  
0 

s - (2 § w)t 
V - -  

1 - t / 2  

On considering the underlying diophantine equation, it is apparent that Ti may 
be estimated as in [18], Sects. 2,3. Meanwhile, by (3.1) and Lemma 3.2, we 
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have T2 ~ U~,(P/(Me),Tz), so that 7"2 may be bounded using ideas within the 
orbit of  this paper. 

4. New permissible exponents 

We now explain how to obtain non-trivial permissible exponents It.~.~ in an 
iterative manner. Take Itw, k(w > 0) to be known permissible exponents. Ini- 
tially one might use the trivial exponents tIw.h = w, or exponents obtained from 
work of  Vaughan and Wooley [13, 15, 16, 18] by interpolating between those 
known for even values of  w. Let s and t be real numbers with s > 4 and 
0 < t < I, and suppose that rD is a real number with 0 < (/~ < l/k. Let 7 be 
a positive number, sufficiently small in terms o f  s, t and k, but large compared 
to t:, and write D = P~'. We take v to be a real number with 

s - 2t s - 2t 

l - t /4  l - t / 2 '  

and apply Lemmas 3.3 and 3.4 to obtain a bound for V,.,I(P,R). Thus, on 
writing w = 1 - ( s -  2t)/v, we obtain 

V~,,(P,R)~P~'(MS-3t(tPI + Dl " t~2 ) ) l / ( s -21 )  , 

where 

and 

~', = ( p M  )t QI'.,- 2, , 

(4.1) 

(4.2) 

~u 2 = pl/2H,-WMt w+:(k)(I/2 W)Q(t-,,.)~,,. (4.3) 

On recalling (2.6), the equation q'l = 7J2 implicitly determines a linear equation 
for </~. Let the solution o f  this equation be 0, and take 

0, when 0 < 0 ,  

= 0, when 0 < 0 < 1/k, 

l/k, when 0 > l / k .  

Then it follows from (4.1), (4.2), (4.3), or from Lemma 3.3, respectively, that 

V~,~(P, R) ~ P~:(D k ' U M  ~-2t Qt,, 2, )1/(.,.-2o . 

By Lemma 2.3, therefore, 

U, . (P ,R)~P '  (P" 'D  s/2-''' + MP '+'''-2 + P( '~2Y)" ' (Dk 'P" : )  '--~f2t ) , (4.4) 

where 
t(,. = #. , . -2,(1 - ~5) + t + ( s - 2 0 4 .  ( 4 . 5 )  

Observe that when w > 2, a trivial estimate yields 

I 1 

Uw(P,R) = j' I f(~;P,R)lW d~z<~P w-2 f If(~;P,R)12 d~ ~ P  ~''-' 
0 0 
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Consequently, when s > 4, 

/ 
112. =- [ l , _ 2 t  47 t Jr  (S  - -  2t - -  [ l s _ 2 l ) ( / )  ~ [ l s _ e t  47 t 47 ~ . (4.6) 

Furthermore, when 0 < t < 1, an application o f  H61der's inequality reveals 
that #, 2 < s-2 = ~ - ~ T P s - 2 t ,  and thus by Lemma 2.1, 

2 - 2t 
I t s _ 2 !  > t / ,2_2 47 I ts--2 > = S - - 2  = J l s - 2  q- 1 - -  t . 

Hence by (4.6), 

I'{ ~ It.s 247 1 47 4). (4.7) 

We claim that #.,( is a permissible exponent. If p.', > 1~,2, then our claim 
is trivial, so we assume that I(2{ < I*.2. We also assume that it~ > s/2, 
for otherwise, by Lemma 2.1, we have it., = s/2, and thus by (4.6) and 
Lemma 2.1, 

' �89 l l s  > / t s _ 2 t  47 I > S -- 2t) 47 t = IZ,. 

which contradicts our earlier assumption. Thus, by (4.4) and (4.7), 

U 2 . ( p , R ) ~ p  '~ pt',D.2/2-~', + p  ,--2, . (4.8) 

, (r).oo p~.0) We define a sequence o f  exponents tll~ ),-=0 by = IZ2, and for r > 0 
by 

{ } �9 (r+l )  . . ( r )  /*, max t'.,. + (�89 '('% (s 1 2t)p~. ') + ~l', + kt7 
= - , .~ j r ,  s T } - i  ' 

By (4.8), for each r => 0 we have U,.(p,R)~p*'{'%',, and thus/z[ ') (r >= 0) are 
permissible exponents. Moreover, in view of  our assumptions above, one finds 
with little difficulty that lim,._+~ it~. ') = p.{ 47 ktT, and consequently, when 

is sufficiently large in terms of  s, k and I, we have # f )  <= p.{. 47 2kt3,. But 3' 
is sufficiently small in terms of  s and k, so that on recalling our notational 

conventions, we arrive at the conclusion UAP, R ) ~ P  *'{+', which justifies our 
claim that P.'2. is a permissible exponent. 

Given a sequence of  permissible exponents (p.2), we can define a new 
sequence (it'2.) by using the above argument. Defining It* = min{p,2.,p~.} for 
each s, we obtain a sequence of exponents (p.2"!) with ll~ =< it,, for each s. It is 
now apparent that by repeating this process, we obtain a sequence o f  sequences 
(lt2.), convergent to some limit (fi.2.), and that fi.~. is a permissible exponent for 
each s. 

We illustrate the conclusions of  the above argument by proving 
Theorem 1.1. 

The p r o o j  o f  Theorem 1.1. We suppose that u and t are real numbers with 
u + 2t > 4 and 0 < t -<_ 1, and write v = u(1 - t /2 ) - t .  We suppose also that 
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It,,h and l~,,h are permissible exponents. On applying Lemma 3.4 with 
s = u + 2t, we deduce that 

<Y/t ~ P" Dt t ( P M H  ),/2 Q( 1 -,/2 )t~, 

Then following the argument above, our choice of  q5 is determined from the 
equation 

( P M  )~ QI'" = ( P M H  )I/2 Q( I -~/2 )~" 

and thus, on recalling (2.6), we put 

(2 - t)tt~, - 2tt, 
0 = (4.9) 

(k + 1 )t + (2 - t)it,, - 21t,, 

Observe that by convexity, we have p,, > (1 - t / 2 )  i1~,,, so that 0 > 0. Also, 
if 0 > 1/k then by the above argument the exponent ItS is permissible, where 
by (4.5), 

It,. = It,, + t + ( u -  B . ) / k  < tl. + t + ( u -  t t . ) O .  

In any case, therefore, the exponent t(~ = tt,,( l - O) + t + uO is permissible. 
Theorem 1.1 follows immediately. 

The Corollary to Theorem 1.1 provides estimates for U , ( P , R )  when s < 5. 
When s < 4 we have the estimate U , ( P , R ) ~ P  '/2+'', which by Lemma 2.1 is 
essentially best possible. Thus the Corollary provides estimates for U,.(P,R) for 
the smallest values of  s which interest us. 

The  p r o o f  o f  the Corol lary  to T h e o r e m  1.1. For each real number s, we shall 
say that the exponent 6, = 6,.t is an assoc ia ted  e x p o n e n t  if It.,,x = s /2  +6,,~ is 
permissible. It follows from Lemma 2.1 that if 6.~,h. is an associated exponent, 
then necessarily 6, > 0. Furthermore, the associated exponent 6~ = s/2 is 
trivial, and one may take 6, = 0 when 0 < s < 4. 

Suppose that s is a real number with 2 < s < 4, so that 6,. = 0 is an 
associated exponent. We apply Theorem 1.1 with t = 1 to deduce that if 62., 
is an associated exponent, then so is 6.,.+2, which we define by 

I " 

6,+2 - 5s6z'  (4.10) 
k +  1 + 62.,. 

Suppose that it6,k = 3 + A is a permissible exponent. Then by applying the 
relation (4.10) iteratively, we deduce the existence of  associated exponents 
64~2~ ~ defined for non-negative integers 1 by 66 = A, and 

1 + 2  - /  
04+21 i -  k-}-I 64+22 ! (I ~ l ) .  

it follows that for each 1, we have 

t~4+21 l ~ C l ( k  + l ) - IzJ  , (4.1 1 ) 



442 T.D. Wooley 

where 
1 

C~ = I ] ( I  + 2 - ' ) .  (4.12) 
l=1 

For each real number o- with 0 < 0- =< I we define l(cr) to be the smallest 
integer satisfying 2 -/(~) < a. Then by convexity it follows that l~4+a,k = 
2 + 0-/2 + 6(0-) is permissible, where 6(o-) =< 64+2,_t~ I. Moreover, by (4.1 1) 
and (4.12), ~og o 

64+21 l(a) ~ C ~ ( k  + I)I~ . 

The corollary follows on noting that a simple estimation yields Co~ < e. 
(Indeed, a calculation shows that the latter infinite product is approximately 
2.38423 . . . .  ) 

5. Sums of cubes 

In this section we prove Theorem 1.2 and the associated Corollary A, which 
concern sums of  cubes. Throughout this section we therefore suppose that 
k = 3. The proof  of  Theorem 1.2 depends on a non-trivial bound for Us(P, R), 
which we establish in the following lemma. 

Lemma 5.1. Suppose that 1t6,3 is a permissible exponent, and write 66 = 
#6,3-3. Then the exponent #5,3 = ~ +65 is permissible, where 65 = 366/(8+266). 

Proo f  On applying the argument of  the proof  of  the Corollary to Theorem 1. l 
(given in the previous section), the lemma follows immediately from equation 
(4.10). 

Since Vaughan [13], Theorem 4.4 shows that i,6,3 = 13/4 is permissible, 
as an immediate consequence of  Lemma 5.1 we have that #5,3 = 25- + 3 is a 
permissible exponent. The latter exponent is superior to that arising from clas- 
sical convexity, and it is this observation which is crucial to the proof of  
Theorem 1.2. 

Lemma 5.2. Suppose that Pt,3 (t = 5,6) are permissible exponents, and write 
6~ = I~t,3 - t/2. Then the exponent it~, 3 is permissible, with lt~,3 = 3 + 24' and 

{ 66 1 + 2 6 5 + 6 6  } (5.1) 
4' = max 3 + 66' 11 -k- 265 + 66 " 

Moreover, Jor each c > O, there exists a positive number q = rl(c) such that 
whenever R < P", one has 

I 

.f [ 1(~; P, P)~ f(~; P, R)4[ d~ <,:P'G+'. 
0 

Proof  We apply the methods of Vaughan and Wooley (noting, in particular, 
the remark at the end of  Wooley [ 18], Sect. 3). Take 4' to be a real number 
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with 0 < q5 < 1/7, and recall the notation defined in (2.6). Write 

F(o 0 = ~ ~ ~ e(2~h(3z 2 + h2n(')) . 
I<_z<2p I<h<H M<m<=MR 

Further, when ~ '  C [0, 1 ), define 

I(:~) = .( IF(~)J(o~; 2Q, R )4[ dr . (5.2) 

Then by [18], Lemma 2.3 and the argument of  Lemma 3.1, as in [16], Lemma 
2.1, we have 

I 

f[f(cc;P,P)2f(oc;P,R)4[doc~P"M3(pMQ2 +I([O,I))) .  (5.3) 
0 

We remark that by considering the underlying diophantine equation, the in- 
tegral on the left hand side of  (5.3) provides an upper bound for U6(P,R), 
so that the argument which follows will determine a permissible exponent 

I/6,3 . 

Let m denote the set o f  points ~ in [0, 1) with the property that whenever 
there exist a E 7/, and q E IN with (a,q) = 1 and [ : ~ q - a [  < pQ-3, then 
q > P. Further, let ~JJl = [0, 1) \m . 

Suppose that ~ E m ,  and choose a E 7 / , q E I N  so that (a ,q)= 1, 
[~q_a l  < pQ-3, and q < p-iQ3. Then q > P, and hence, as in the 
argument of  the proof of  Vaughan [13], Lemma 3.7, 

F(cr ~P~(PM)'/2H . (5.4) 

Also, by applying HSlder's inequality to (5.2), we have 

l ( m )  4~J 1/4 U~/2 U~/4 , (5.5) 

where 

and 

J = f IF(~c)lador 
I l l  

1 

Ut = f lf(~;2Q, R)l' d~ ( t = 5 , 6 ) .  
0 

But by (5.4), and the argument of  [13], Lemma 3.7, we have 

(5.6) 

1 

J r IF(c01 = d~ ~P2+':M2H3 . 
0 

Thus, on substituting into (5.5), and recalling tha t /~  (t = 5,6) are permissible 
exponents, we conclude that 

I (m) 4~ P': (PM)1/2H3/4 Q~,5/2+j~6/4. (5.7) 
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In order to estimate l(gJl), we observe that 9)l is the union over a E 7Z and 
q E N satisfying (a,q) = I and 0 <- a <_ q < P, of  the intervals 

~JJi(q,a) = {~ E [0,1) : [ ~ q - a  I < pQ-3} . 

When c~ C 9)l(q,a) C_ 93l, it follows from [13], Lernmata 3.1 and 3.4 that 

F(o~) < P':(HI (~; q, a)  + H2(~; q, a ) ) ,  

where 

PHM PHM I /2 

Hl(c~;q,a) = (q + Q31~ q -  a1)2/3 and H2(c~;q,a) = (q + Q31c~q_ al)l/2 . 

Thus by (5.2), 
I(9)l) 4~P"(Kt + K2),  

where 

(5.8) 

Moreover, 

and 

Ki = ~ f IHi(~;q,a)f(oe;2Q, R)4]d<z ( i =  1,2) .  (5.9) 
O ~'l'<q "< P ~J~(q,a ) 

(a,q)=l 

7 (PHM)3 
E f }H,(oe;q,a)13do~< ~ q ~o(q-~-Q~) 2 d/3 

0<a<q<P 9Jl(q,a) I <=q~P 
(a,q)= I 

P"(PHM )3 Q-3  , 

f [H2(~;q,a)l 4d~< ~ q 7  (PHM'/2)4 dfi 
O<a<q<P'3Jl(q,a) I<=q<p 0 (q + Q3qfi)2 

(a,q)-I 

P"(PH )4M2 Q-3 . 

Consequently, on applying H61der's inequality to (5.9), we deduce from (5.6) 
and (5.8) that 

I(9"II)'~PI+~'HMQ -IU2/3 +PI+"HMI/213-3/4111/21/I/4~ "'5 ~6  " ( 5 . 1 0 )  

We now recall (2.6), and deduce from (5.7) and (5.10) that 

I([o, l ) )<P"(~  + ~2), 

where 
41 = Q I+~-lt6 a n d  q~2 = ( p M ) I / 2 H 3 / 4 Q  1~5/2+1'6/4 �9 

If  qh > ~/'2, then by (5.3), 

1 
f If(~;p,p)2f(c~;p,R)4] dc~p~:M3 (pMQ2 + Q'+~,,6) , 
0 
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whence, on taking 4) = c~6/(3 + 66), we obtain 

1 

f lf(~; P, P)zU(~; P, R )4 I d= < p3+24,+,.. (5.1 1 ) 
0 

Meanwhile, if  q~2 > 4~1, then by (5.3), 

I 
f ]J'(c~; P, P)2f(0~; P,R) 4 ] dc~ ~ P " M 3 ( p M Q  2 + (PM)b'2H3/'4Q It5/2+I'6'4 ) . 
0 

In this case we take 95 = (1 +265  + 6~,)/(1 1 + 2 6 s  + 66), and thus once again 
deduce that the inequality (5.1 l ) holds. Thus on taking 95 as in (5.1), in either 
case we have the inequality (5.11), and it follows that tL(,,' 3 = 3 + 295 is a 
permissible exponent. This completes the proof  of  the lemma. 

We now prove Theorem 1.2 by applying Lemmata 5.1 and 5.2 iteratively. 

The proof q[ Theorem 1.2. Suppose that /lt,3(t = 5,6) are permissible ex- 
ponents, and write /~r,3 = t/2 + 6, (t = 5,6). Then by applying Lem- 
mata 5.1 and 5.2 repeatedly, we obtain a sequence of such associated ex- 
ponents, ,51 ' /  (t = 5,6), with the property that for each r, the exponent 
f = t/2+61 ') (t = 5,6), is permissible. This sequence is defined by 61 ~ = 6t, t,3 

and f o r r  > 0 b y  

;so+')_ 36~"' "6"s("+' { 6C~;)3 + 1l + 26~") + 61e() } l  + 26~ ' )  + v, 8 + 26'((' and = 2 max 6c6,.,, a~"' " 

On taking the limit as r --. oo, we thus deduce that the exponent /~* = L3 
t/2 + 6[ it = 5,6) is permissible, where 6~ and ag satisfy the equations 

.. 36• .. I + 26~ + 62 
as - 8 + 2a; and 66 = 2 11 + 2,~ + ag 

It follows that 61 is the positive root of  the polynomial i53 + 1662 + 28,5 - 8, 
and hence that a; = 0.24956813 . . . .  and 6~ = 0.08809182 . . . .  The proof  of  
Theorem 1.2 is completed on noting that the inequality (1.7) also follows in 
the above manner, in view of  the last line of  Lemma 5.2. 

Our proof  of  Corollary A to Theorem 1.2 will be very brief, since with our 
new permissible exponent/t6,3 < 13/4, an entirely routine argument along the 
lines of  [13, Sect. 5] suffices. 

The proq[" o f  Corollary A to Theorem 1.2. Suppose that n is a large positive 
integer, and that q is a safficiently small positive number. Let r(n; ~1) be as in 
the statement of  Corollary A. On writing P = n I/3 and R = p3,1, it follows that 

1 
r(n; rl) = f f(~; P, P)3f(c~; P,R)4e(-an)de.  (5.12) 

0 

I - 2  1 - 2  Let m denote the set o fc~E [gP , I + g P  ) such that w h e n e v e r a E ; g  and 
q E N satisfy (a,q) = 1 and Ic~ - a/q[ <= (6q)- lP -2, then q > P. A standard 
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application of Weyl's inequality (see, for example, [10], Lemma 2.4) shows 
that sup~e,,, I f (a;  P, P)I ,~p3/4+~:. Then 

I 

fJ(ot; P, P)3 f(c~; P, R)4e( -o~n )dot ,~p3/4+,:f i jt.(ot; p, p)2 f(ot; p, R)41 dot, 
m 0 

and thus,by the conclusion (1.7) of Theorem 1.2, and in view of the observation 
that 3 + ~ + 3/4 < 4, for some ,5 > 0 we have 

f f(ot; p, p)3 f(ot; p, R)4e(_ccn) dot ,~ p4-~ . 
|11 

Owing to the presence of three classical Weyl sums, f(ot;P,P), in the 
expression (5.12), the argument of [13], Sect. 5 suffices to complete the proof 
of Corollary A, showing that when r/ is sufficiently small, there is a positive 
number v such that 

r(n; q) = cg(rl)~(n)n4/3 § O(n4/3(logn)-V) , 

where ~ ( n )  is the singular series defined in the introduction, 

log Yl ) 
~(~'/) = Yt-4/3 ~ 3-7(XlX2X3YI ''" Y4)-2/3p \ 3~l~gi7 "'" 

x,y 

and the multiple sunl is over x and y with 

log Y4 "~ 
P ' 

(5.13) 

1 <=xi <=n (1 ~< i < 3 ) ,  n3" < y l  < n  (1 < j  < 4 ) ,  

and 

xj +x2 +x3 + y l  + ' ' ' +  Y4 = n.  

Here, p(x) denotes Dickman's function, defined for real x by 

p(x) = 0 when x < 0 ,  

p ( x ) =  1 when 0 - < x - <  1, 

p is continuous for x > 0 ,  

p is differentiable for x > 1 , 

xp'(x) = - p ( x -  1) when x > 1 . 

6. Quasi-diagonal behaviour 

The object of  this section is to prove Theorem 1.3. Since the proof of  the 
Corollary to Theorem 1.3 follows a well-known argument involving Cauchy's 
inequality, we shall not give the details here. Recall the notation described in 
the proof of  the Corollary to Theorem 1.1; for each real number s, we say 
that the exponent 6s = 6s, k is an associated exponent if/~s,k = s/2 + 6s, k is 
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permissible. Thus, by Theorem 1.1, for each t with 0 < t < 1, whenever 6,. 
and 6~/(j-t/2) are associated exponents, then so is 6,+2, where 

and 

t~,'s,+2t = (~s( 1 - 0) + ~ s 0 ,  

( 1 - t/2)6~,,~t - - t /2 )  - -  6 s  
O= 

�89 + 1 )t + (1 - t/2)6~/~1_,/2) - 6,. 

By convexity we have (1 -t/2)6s/(l-~/2) > 6,, and hence 

s 6 6~.+2 t ~ •.,' ~- ~ s / ( I - t / 2 ) .  (6.1) 

The relation (6.1) permits us to set up an iterative process in the following 
manner. Suppose that 6~ (0 < s =< k) are associated exponents. We define a 
new sequence of  associated exponents (6',. f) as follows. When 0 < s < 4, we 
put 6'~,~ = 0, and for each s > 4 we define 6',,t by means o f  the recurrence 
relations 

-, -t S 
6s+2t, t --  6s, t = ~ s/ I - t ~ 2 )  �9 (6.2) 

Then by the above argument, the sequence (6~,t)'' consists of  associated expo- 
nents. We then optimise with respect to the parameter t subject to 0 < t < 1, 
and repeat the process. 

We claim that for each r E N,  and each positive number s, the number 6.~ 
is an associated exponent, where 

2 ( e2s2~  ' 
6s = ~- \ 1 6 k J  r ! .  (6.3) 

We prove this claim by induction, beginning with the case r = 1. Notice that 
when t = 1, by making the trivial choice q5 = l /k  in the argument of Sects.2,3 
and 4, it follows from (4.5) that whenever 6,. is an associated exponent, then 
so is 6s+2," where tJs+ 2 " '  = 6~.(1 - l / k ) +  s/(2k) .  A simple induction therefore 
leads to the conclusion that 6s = s2/(8k) is an associated exponent for each 
positive s. Thus the inductive hypothesis holds when r = 1. 

Suppose now that the inductive hypothesis holds for some positive integer 
r. For each positive number s, and each t with 0 < t < 1, we define 6'~.,~ to 
be zero w h e n 0  < s  < 4, and w h e n s + 2 t  > 4 by 

S 2 (eZs2"~' ( 1 - t / Z ) - 2 " r ! .  (6.4) 

Then by (6.2) the numbers 6~.~ are associated exponents. Moreover, it follows 
from (6.4) that 

(s 
6~"t <= e2tk "+l \ 16J (1 - t /2)  -2~ ~ (s - 21t) 2'+1 . 

l < l < [ s / ( 2 t ) ]  
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But 

l <l<{s/(2,)] ~ (s -- 21t) 2r+l < (202''+1 "~/(?t) ( !  k, 2ttS __ X) 2r+l d x -  
$2r+2 

2t(2r + 2) 

Thus 

8 (e2s2, '" r, 
6'~" < ~ \ 16kJ  r + l  t 2 

We take t = 2/(r  + 1), and observe that (r/(r  + 1)) -2r < e 2. Consequently, 

2 (e2,25'+' 
6'~., < ~ \ 16k J ( r +  1)! ,  

and by (6.3) the inductive hypothesis follows with r + 1 in place of  r. 
In order to establish Theorem 1.3, we take r = [16k/(e2s2)] in (6.3). We 

note that by a simple induction, r! < r"+b'2el-'. Then since 

16k/(e2s 2) >= r > 16k/(e2s 2) - 1 , 

we finally obtain 

8k  1/2 2 "~ 
(~s < 2 e - 2 r l / 2 e l - r  <= - - e - 1 6 k / ( e  s " ) .  

eS 

On taking s = 6, we have 

4 e_4L,(9e2 ) , 66/k < 
= 3ekl/2 

whence the corollary also follows, with a modicum of  computation. 

7. Appendix: maximal partial sums 

In this appendix we reproduce an argument supplied by Professor H.L. 
Montgomery which establishes a conclusion almost as strong as Lemma 3.2, 
but which avoids using the difficult Carleson-Hunt Theorem. Before stating 
this conclusion, we will require some notation. We suppose that f E Ll(]l'), 
and that f has Fourier coefficients ]'(k). Let Sx(X) denote the Kth symmetric 
partial sum of  the Fourier series o f  f ,  so that 

K 
SK(X)= ~ ] ( k ) e ( k x ) .  

k=-K 

In addition, put 

s*x(x) = max Isk(x)[. 
I <_k<_K 
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Finally, we define the LP-norm o f . /  in the usual way, so that for 1 < p < oo, 

Lemma 7.1. Suppose that p is a real numher u'ith 1 < p < ~ ,  and f r 
LI'(3F). Then fo r  each K with K > 1 one has 

IIss =< II.fll,,log(6K). 

Proq!: Let DK(X) denote Dirichlet's kernel, 

K sin((2K + 1 )~x) 
DK(X) = ~ e (kx)= 

I , - -K sin(nx) 

Then 

Put 

s~ (x) = f f ( x  + y )DA ( - y )  d)'. ( 7.1 ) 

D~(x)  = min{2K + 1, Isin(rrx)1-1 },  

so that lDa(x)t < D~(x)  for all k < K. Then on applying the triangle inequality 
to equation (7.1), we obtain 

.~'~(x) __< J' I�9 + y ) l O ~ ( y ) 4 , .  (7.2) 
"ll" 

Suppose first that 1 < p < oc, and write 

I = j s i . (xy dx .  

Then by (7.2), 

/ = j 4.(x)p-' f I.!(x + y)l D2.(y) dydx. 

Consequently, on applying H61der's inequality, we deduce that 

( ) 1 <  f f  * p * = SK(X) DK(Y)dydx JJ-I/(~ + y)l"D*K(y)dydx 
~g2 

whence 

I//) 

/ ~ / ' - ' " " l l f l l ,~  JOEy)dy .  
-g 

We therefore obtain, for 1 < p < oo, the inequality 

IIs;~llp _-__ II1 lip J D K ( y ) d y .  (7.3) 
lr 

Further, when p = 1 the inequality (7.3) follows by integrating both sides of  
(7.2). Moreover (7.3) follows immediately from (7.2) when p = oc. 
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Since (7.3) holds for all p with 1 < p < oc, in order to complete the 
proof  of  the lemma it suffices to show that 

f D ~ ( y ) d y  < logC6K).  (7.4) 
v 

Since D*K(y ) < 2 K +  1 for 0 < y ___ ( ~ ( 2 K +  1 ) ) - i  and D~(y)  < ( s i n ( ~ y ) )  - I  
for l /(rc(2K + 1)) < y < �89 it follows that 

~/2 
f D*K(y)dy = 2 J'D*x(y)dy < 2 
~" 0 + f s in (~y~ l/(lr(2K+ I )) 

2 ~,/2 
= - ( 1 + [log tan(x/2)]  I/(2K+E ) ) 

r~ 

2 
= --(1 + log co t (1 / (4K + 2 ) ) )  

7t 

2 
< - log(e(4K + 2 ) ) .  

Since it is simple to verify that this last quantity is at most log(6K)  for all 
K > 1, the inequali ty (7.4) follows, and hence the proof o f  the l emma is 
complete.  

We remark that for K > 67, the conclus ion o f  the lemma holds with 
log (6K)  replaced by  log K. 

Acknowled~.iements. This work was motivated loosely by an idea developed in [17] arising 
from joint work of the author with Professor R.C. Vaugban. I thank the latter for his 
many kind words of advice over the years. 1 also thank Professor E. Bombieri for some 
advice concerning the Carleson-Hunt theorem, and also for his encouragement. Finally, 
the author is particularly grateful to Professor H.L. Montgomery for supplying the ar- 
gument reproduced in the Appendix. The latter provides a relatively simple proof of a 
conclusion of strength comparable to Lemma 3.2, avoiding the difficult Carleson-Hunt 
Theorem. 

References 

1. E. Bombieri: On Vinogradov's mean value theorem and Weyl sums. Proceedings of the 
conference on automorphic forms and analytic number theory (Montreal, PQ, 1989), 
Univ. Montr6al, Montreal, PQ, pp. 7-24, 1990 

2. J. Briidern: On Waring's problem for cubes. Math. Proc. Camb. Phil. Soc. 109, 229-256 
(1991) 

3. H. Davenport: Sur les sommes de puissances enti6res. C. R. Acad. Sci. 207, 1366-1368 
(1938) 

4. H. Davenport: On Waring's problem for cubes. Acta Math. 71, 123-143 (1939) 
5. H. Davenport: Sums of three positive cubes. J. London Math. Soc. 25, 3.39-343 (1950) 
6. G.H. Hardy, J.E. Littlewood: Some problems of Partitio Numerorum, VI: Further re- 

searches in Waring's problem. Math. Z. 23, 1-37 (1925) 
7. C. Hooley: On Waring's problem. Acta. Math. 157, 49-97 (1986) 



Breaking classical convexity 451 

8. R.A. Hunt: On the convergence of Fourier series, Proceedings of the conference on 
orthogonal expansions and their continuous analogues (Edwardsville, 111. 1967), Southern 
Illinois Univ. Press, Carbondale, Ill., pp. 235 255, 1968 

9. C.J. Ringrose: Sums of three cubes. J. London Math. Soc. (2) 33, 407-413 (1986) 
10. R.C. Vaughan: The Hardy-Littlewood Method. University Press, Cambridge, 1981 
11. R.C. Vaughan: Sums of three positive cubes. Bull. London Math. Soc. 17, 17 20 (1985) 
12. R.C. Vaughan: On Waring's problem for cubes. J. Reine Angew. Math. 365, 122 170 

(1986) 
13. R.C. Vaughan: A new iterative method in Waring's problem. Acta Math. 162, I--71 

(1989) 
14. R.C. Vaughan: On Waring's problem for cubes, lh J. London Math. Soc. (2) 39, 205 218 

(1989) 
15. R.C. Vaughan: A new iterafive method in Waring's problem, lh J. London Math. Soc. 

(2) 39, 219-230 (1989) 
16. R.C. Vaughan, T.D. Wooley: Further improvements in Waring's problem. Acta Math. 

174, 147 240 (1995) 
17. R.C. Vaughan, T.D. Wooley: Further improvements in Waring's problem, II: Sixth pow- 

ers. Duke Math. J. 76, 683-710 (1994) 
18. T.D. Wooley: Large improvements in Waring's problem. Ann. Math. |35, 131-164 

(1992) 
19. T.D. Wooley: Quasi-diagonal behaviour in certain mean value theorems of additive num- 

ber theory, J. Am. Math. Soc. 7, 221-245 (1994) 
20. A. Zygmund: Trigonometric series, vol. 2, Cambridge University Press, 1968 


