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Frequency locking in Josephson arrays: Connection with the Kuramoto model
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The circuit equations for certain series arrays of Josephson junctions can be mapped onto a simple model
originally introduced by Kuramotfin Proceedings of the International Symposium on Mathematical Problems
in Theoretical Physicsedited by H. Araki, Lecture Notes in Physics Vol. @pringer, Berlin, 1978 to study
fundamental aspects of frequency locking in large populations of nonlinear oscillators. This correspondence
makes it possible to derive accurate theoretical predictions of transitions signaling the onset of partial and
complete locking, respectively. We calculate that both transitions should be observable experimentally using
present fabrication tolerancd$1063-651X98)06102-9

PACS numbgs): 05.45+b, 74.50+r, 74.40+k

I. INTRODUCTION tolerated if the array is to achieve perfect frequency locking.
In fact, we can analytically determine the fraction of junc-
Josephson junction arrays are of interest for a variety ofions that frequency lock as a function of the various circuit
reasons, both fundamental and appligé4]. On the funda- parameters. The Josephson array can display two transitions:
mental side they have been used to study two-dimensiondihe first corresponds to the onset of dynamical order, the
melting, flux creep in type-Il superconductors, and the nonS€cond coincides with complete frequency locking. We find
linear dynamics of coupled oscillatofs]. Josephson arrays that both transitions should be experimentally accessible
are presently used to maintain the U.S. Legal \[6 and  With existing technology. o
researchers are pursuing applications where arrays could be [N Sec. Il we review both the lump circuit model for Jo-
used as sensitive parametric amplifiEf$ and tunable local S€Phson series arrays and the Kuramoto model for coupled
oscillators[8] at millimeter and submillimeter wavelengths. oscillators. Section Il esta_bhshes the connection between
This last application directly overlaps with a particular the two models. The analytical results known for the Kura-
fundamental topic drawn from the field of nonlinear dynam-moto model are summarized in Sec. IV and then used in Sec.
ics, namely, mutual synchronization. It is well known that V t0 predict the synchronization properties of Josephson ar-
populations of coupled nonlinear oscillators can spontanet@ys- We show that these predictions are in good agreement
ously synchronize to a common frequency, despite differ—"‘{'th pumerlcal simulations of the full equations for the Iump
ences in their natural frequencies. This phenomenon he_@rcun. Sqme of the work reported here was presented earlier
been observed in many physical and biological systems, il @bbreviated fornj23].
cluding relaxation oscillator circuits, networks of neurons
and cardiac pacemaker cells, chorusing crickets, and fireflies Il. BACKGROUND
that flash in unisof9,10]. The first systematic experimental
study was performed in 1665 by Huygens with two marine Consider a series array df junctions, biased with a con-
pendulum clocks hanging from a common suppad]. stant currentlz and subject to a load with inductante
In a pioneering study, Winfreg12] developed a math- resistanceR, and capacitanc€ (Fig. 1). For junctions with
ematical framework for studying large populations of limit- negligible capacitance, the governing circuit equations are
cycle oscillators and showed that the onset of synchronizg-24]
tion is analogous to a thermodynamic phase transition. This
observation was refined by Kuramof®3], who proposed . )
and analyzed an exactly solvable mean-field model of Ed)ﬁljsind)ﬁQ:IB, i=1,... N (1)
coupled oscillators with distributed natural frequencies. The ]
Kuramoto model has stimulated much theoretical wdrk—
22], thanks to its analytical tractability. . 1 N
In this paper we show how the lump circuit equations for LQ+RQ+ Q= EE Pk, 2
a series array of zero-capacitance Josephson junctions can be k=1
mapped onto the Kuramoto model in the limit of weak cou-
pling and weak disorder. This allows us to answer the quesahere ¢; is the wave-function phase difference across the
tion how large a spread in the junction parameters can bgth Josephson junctiom; is the junction resistance; is the
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L . . FIG. 2. Typical behavior of the fraction of f lock
FIG. 1. Circuit model for a current biased series array of Joseph- . G ypica be_ avior o t_e raction of frequency locked
. : . : . . oscillatorsf as a function of coupling strengih
son junctions shunted in parallel by an inductor-capacitor-resistor

load. The essence of the problem is the competition between

the intrinsic disorder(i.e., variations in the junction resis-
tances and critical currentsand the dynamical coupling
ﬁtrength. In the Kuramoto model, the disorder enters via the
distribution of natural frequencies, while the effective cou-
) pling strength is set by the parameter combinati®dn
(ﬁ/29)¢i_- ) ) =Kcosr. If A>0 then the coupling is “attractive” and
Equation(1) shows that the coupling between the junc-gnqs to induce frequency locking. Asis decreased from a
tions is mediated by the load curre@t In the absence of a |arge positive value, three dynamical regimes are encoun-
load the junctions are dynamically uncoupled affiok Iz tered, as shown in Fig. 2. Far> X, all of the oscillators are
>1;) the jth element executes voltage oscillations at its bargrequency locked, forx,>\>\; some finite fraction is

junction critical currentQ is the charge on the load capaci-
tor, # is Planck’s constant divided by72 ande is the el-
ementary charge. The overdot denotes differentiation witl
respect to time. The voltage drop across jltejunction is

frequency locked, and forn;>\ there is no frequency locking.
In the Josephson junction array, one does not have inde-
o =ﬂ(l 2_12)12 3) pendent control over the parameters appearing ind&qgFor
Fon VB example, the most natural control parameter is the bias cur-

. . rentlg and(as we shall sgevarying this parameter simulta-

The Igad causes the elements to oscillate at shifted freque’ﬁ'eously changes all of the quantitiés cosy, and theN bare

cies{w;}, making it possible for junctions with different bare frequencies{w;}. Moreover, the effective coupling strength

frequenciedw;} to oscillate at a common frequen€y. This  \ cannot be increased to an arbitrarily large value. As might

requires the coupling to be large enough to overcome thge expected, the values of the transition points increase with

intrinsic spread in the bare frequencies; the larger the councreasing intrinsic disorder. Consequently, depending on the

pling, the greater the number of elements entrained. various circuit parameters, it can happen that one or both of
Our goal is to calculate, as a function of the various systhe transition pointsX;, \,) are not observed in a particular

tem parameters, the fraction of junctions that become perarray. However, we find that complete frequency locking

fectly frequency locked. We also want to calculate the totakhould be observable using present technology, with toler-

power generated at the locking frequerfiy a quantity that  ances in the junction parameters on the order of a percent

also involves the relative phases of the locked elements. Wgs). we discuss this point in Sec. V.

can achieve these goals by mapping Efsand(2) onto the

Kuramoto-Sakaguchi moddll5] for a set of N globally IIl. DERIVATION OF THE AVERAGED EQUATIONS

coupled limit-cycle oscillators

< In this section we show that the Josephson systBrand

. . (2) can be mapped onto Kuramoto’s mod@é) in the limit of

b= 0= Nkzl Sin(6; = i+ a) 4 weak coupling and weak disorder. Our derivation is a

straightforward extension of the averaging procedure previ-

for j=1,... N, whereg, is the phase of th¢th oscillator,  ously applied to identical junction array26,27.

wj is its bare frequency is the coupling constant, andis The first step is to introduce “natural angle®; defined

a constant whose role is discussed below. The Kuramotdsy

Sakaguchi model can be solved in the laMydimit using a

self-consistency approach. In Sec. Il we derive &).from 2er;do; _ déy 5)

the Josephson circuit equations, in the limit of weak disorder h w; lg—Il;sing;’

and weak coupling; the quantitative consequences for the

dynamics of the Josephson array are tackled in the following'he anglesy; are natural in the sense that, in the uncoupled

sections. The remainder of this section is devoted to a suniimit, they rotate uniformly, while thep; do not. Direct in-

mary of the qualitative picture that emerges from that analytegration of this equation yields the useful trigonometric re-

sis. lation

N



57 FREQUENCY LOCKING IN JOSEPHSON ARRAYS: ... 1565
lg—1:sing;=(15—1%)/(1g—1,cod;). 6 . —. 1
s ljsing;=(Ig—1j)/(ls —1;cos9) © LQ+(R+N)Q+5Q
Thus Eqg.(1) can be rewritten as

o 1
=r(13—12 S .
"% )Ek lg— | cod wi+ 6,(0)]

: 12
b 9 12
t‘)j—wj |2_|2(|B |JCO$J) (7)

8 ) This is the equation for a periodically driven harmonic oscil-

We assume that the disorder is weak. so it is convenient t@tor. For convenience, introduce the Fourier cosine series

write . )
ri=r(l+ep;), (8a) lg— | cofwt) n=0
|J:|_(1+ el), 8b) so that, for example,

2 Ig
wj=w(1l+€d) (80 Ay T( o 1) (14

where e is a formal parameter used to keep track of small
guantities and the overbar denotes a sample mean. Note thBhen Eq.(12) has the steady-state solution
pj. {j, andg; are not independent: From E@), we see that
to leading order,

N o0
Q(t)=k§_)1 ZO Bncognwt+n6,(0)+8,], (15

5J:Pi_|é_ﬁ§i+o(e)- where
T2(12 _ 7222
In what follows we also assume that the bias current is not B2= _ reds— | )_An _ (16)
too close to the critical curreritg—1;>0(€)] and that the " (LnZw?-1/C)2+nZw?(R+Nr )2
coupling is weaf Q=0(¢)]. Thus Eq.(7) becomes q
an
b= w+ ew_a-—w——Qu ~Tcosd)+O(ed).  (9) nw(R+NT)
J bzt ® J ' Bn=arctan—————. 17
Lnew°—1/C

The basic idea behind the averaging method is as followsrg relative sign betweed, andB, determines the correct
Equation(9) shows that; — w=0(¢); hencef;(t) —wtisa  pranch of the inverse tangent: One can easily check that
slowly varying quantity that changes significantly only on asing, has the opposite sign of the rath, /B, and, for w
long time scalet=0(1/e). Hence, on the fasD(1) time  >1//LC, cos3, also has the opposite sign f,/B,. We
scale of a single oscillatior; (t) — wt is almost constant and choose theB, to be positive; consequently, 4, is positive
may therefore be replaced byi_ts running average over onghen — 7<g,<—m/2.
cycle. To determine how;(t) — wt varies on the long time Having found Q(t) to leading order ine, we are now
scale, we time average the right-hand side of Ey.and ready to derive the averaged equations for the phases. Sub-
replaced; () with ot+ 6,(0)+0(e). This procedure yields stitution of expre55|om_15) |r_1t0 Eqg. (9) and taking the time
an equation correct to first order for the slow evolution of@verage over one period yields
0;(t) — wt. To do the calculation explicitly we need an ex- P
pression forQ(t), but this is readily obtained from Eq), 0= w+ E“’_51_2——2 71 sin(6x— 6+ B1), (18)
as we now show. lg— 1% k=1

To find Q, note first that Eqst1) and (6) imply where 6,(0)—6;(0) has been replaced by,(t)— 6;(t).

[This replacement introduces another negligible error of

2_ |2
i' j:&”_'@j, (10) C.)(ez).into the averaged equatiofslo recast these equa-
2e”’ lg—I;co9; tions into the form of the Kuramoto model, set=—1
— B1- Then sinf—6,+ B1)=sin(6,— G+ «). Finally, to first
so that Eq(2) becomes order ine, Eq. (18) is equivalent to
. SEAL 1 > 12—12 _ K
LQ+| R+ 2 T Q+:0Q= 2 fkm- (11 aj:wj_ﬁzl sin( 6, — O+ a), (19

To leading order irg, where, in terms of the original circuit parameters,
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2e
Nrw 7rIB—w 0
" [(Lo2-1/C)2+ wX(R+N )22
and
Lw?—1/C
cosy= (21)

[(Lw?=1/C)%+ w?(R+NT)4]Y’
where — 7/2< a<0.

IV. ANALYSIS OF THE KURAMOTO MODEL

Equation(4) is a variation of the Kuramoto model studied
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By solving for the stationary density of these drifting os-
cillators, along with the phase positions of the locked oscil-
lators, and then substituting the results into the definition
(22), one arrives at the self-consistency relatjas]

oe =Ko iJ+F/2, d¢ 9(Q+Ko sing) e'‘cot |,
— /2
27
where
@2 cost(1—cost)
J=JO 06— g — L0(Q+ )~ g(2—p0)]
(28

by Sakaguchi and Kuramofd5], who analyzed the problem and n=Ko/sin£ Given the parameters of the problem,
using a self-consistency approach. First, one introduces mamely,K, a, and the functiorg(w), this equation can be

complex order parameter

N

) 1 )
o€ *”zﬁk:l e, (22

solved to yield the desired quantitiesand(), which in turn
allows one to compute the fraction of locked oscillators via
Eq. (25).

There is always the trivial solutior=0, corresponding
to a completely desynchronized state. But fiér large

which is a useful measure of the phase coherence of thenough, there is also a nontrivial solution wigt»>0. Typi-

dynamical state. For instance=0 corresponds to an inco-
herent state, whereas=1 for perfect in-phase locking. For

a symmetric, unimodal bare frequency distributg(w) and
in the largeN limit, numerical simulations indicate thai
settles down to a constant value amdrotates uniformly,

with ¢=Qt. Thus Q represents the mutual locking fre-

cally one needs to solve ER7) numerically. For example,
suppose one wants to map out the nonzero solution branch as
a function of the widthA of the given bare frequency distri-
bution. An efficient scheme is to start with a very small value
of A, so that practically all the junctions are locked and the
corresponding solution(l,o) lies very close to the initial

quency, which in general differs from the mean bare fre-guess (,1). The precise solution can be determined by us-

quencyw.

ing, e.g., Newton’s method for computing the zeros of func-

We can readily determine which set of oscillators mutu-tions. Then one can follow the solution branch from there by

ally lock. Upon multiplying Eq(22) by e (%™ and taking
the imaginary part, we can rewrite E@) as

0;=w;— Ko sin(6,— y+a). (23)

Using variables in a rotating frame defined by= 6, — Qt,
this equation becomes

¢j=w;—Q—Ko sin(p;+a). (24)

Thus thejth oscillator locks to the frequenc§) provided
|w;—Q|<Ko. In the infiniteN limit, the fraction f of
locked oscillators is

Q+Ko
f=f dog(w).

Q—-Ko

(29

What about the oscillators that do not lock? Equatia4)

can be explicitly integrated and one finds that each drifting

oscillator winds at a dressed frequerﬁiygiven by

0?=(0;— )%~ (Ko)2. (26)

slowly increasing the width\, using the most recently cal-
culated values of) and o as the initial guess for the next
case. Notice also that the numerical integration on the right-
hand side of Eq(27) may require special care X is very
small.

V. COMPARISON WITH NUMERICAL SIMULATIONS

Having established the connection with the Kuramoto
model, we are in a position to make quantitative predictions
about the dynamical transitions in the Josephson array. As a
first example we consider an array &= 100 with disorder
in the junction critical currents only. Figure 3 shows the
fraction of locked junctions versus the spreadn critical
currents. The critical currents were chosen to match a nor-

malized parabolic distribution with meah and full width
2A:

3 —
P(1)= zy3lA%=(1=1)2. 29

The other parameter values are listed in the figure caption.
For these parameter values, one calculates from Exfs.

For the order parameter to remain constant in the rotatingnd (21) the corresponding Kuramoto parameteks
frame (as assumed it is necessary to impose the further =0.0601 and cas=0.3878. The solid curve is then gener-
condition that the drifting oscillators arrange themselves in ated by solving Eqs(27) and(25) for each value ofA. The
stationary distribution around the circle. The story of howopen circles are the results from direct numerical simulations

this comes abouiand in what sense it is trjiés an interest-

ing one[14,28,, but here we simply assume its validity.

of the original circuit equation€l) and(2). The agreement is
very good.
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FIG. 3. Fraction of junctions locked to a common frequency as 108 L ./‘ N SR
a function of the spread of critical currents foN=100,15=1.5 0.0 05 10 m(;:“) 20 25 30

mA, R=50 Q, L=25 pH,C=0.04 pF,| =0.5 mA, and all junc-
tions r;=0.5 Q. Circles correspond to numerical simulations of
Egs. (1) and (2). The solid line corresponds to E¢R5). Power
spectra for regimea—c are shown in Fig. 4. The inset shows his-
tograms for the baréhin line) and dressegthick line) frequencies
at the pointA=0.06 mA.

FIG. 4. Power spectrén arbitrary unit$ for the ac component
of the total array voItagef(/Ze)(Eg'bk—@('j)k)), where angular
brackets indicate time average, for the three different regimes of
Fig. 1: (8 A=0.005 mA,(b) A=0.06 mA, and(c) A=0.14 mA.

We see that there are three different dynamical regimesthat for a givena, keeping the product;r; constant in-

. . ._creases the spread in bare frequencies and so increases the
As the disorder is decreased from a large value, there is . . . o

o . ; .~ ~ effective disorder. Once again, we see that the predictions
transition atA = A signaling the onset of frequency locking;

for A_<A<A, there is partial frequency locking: fah based on the Kuramoto model agree quite well with the nu-

P . merical simulations. Note that for the larger disorder case
<A, the frequency locking is complete. The inset shows the g

T : shown,A =0.002 mA (asterisky complete frequency lock-
distribution of bare and erSS.Ed frequencied #10.06 mA, ing is never achieved. Even so, for somewhat larger critical
where about half of the junctions are locked.

T . N . currents(e.g., 2 mA full locking is seen at larger values of
Each transition is accompanied by a distinctive signature eg A g 9

in the power spectrum for the total voltage across the array®/ ! (€:9-,2%). This is in the range of present fabrication
As A is lowered belowA, the power spectrum develops a (echniqueg25].

sharp line at the locking frequendy (and its harmonids We turn next to an issue concerning experimen_tal obs_er-
while at A=A, the broadband spectrum is completelyvat'on' Although recent developments have made it possible
Cc

guenched. These features are readily apparent in Fig. o directly image and identif_y ’T‘”t”a”y locked junctions

which shows the results of numerical simulations for thre 30], a more standard alternative is to measure the freqyency
values ofA corresponding to the labeledb,c in Fig. 3. In spectrum of the total voltage across the load. As mentioned
principle, the addition of thermal noise can wash out thes .arller, the onset of order is signaled by the birth of a narrow

sharp freatures; however, we have run simulations includin ne at frequency) [compare Figs. @) and 4c)]. We can

Johnson noise generated by both junction and load resig2iculate an explicit expression for the strengih of this

tances for a temperaturé 4 K and the spectra in Fig. 4 are !In€ from the Kuramoto model as follows.
essentially unchanged except for the presence of a flat noise According to Eq.(15), the load currenQ(t) is
floor at 10°°.

We consider as a next example a situation more natural
for real experiments, where the bias currggis used as the
control parameter rather than the disorder leelvarying
Ig simultaneously affects all of the Kuramoto parameters
wj, K, anda. As lg is decreased from a large value, the
effective coupling strengtiKcosx passes through a maxi-
mum as shown in Fig. 5. As a result, the effective coupling
strength may never be strong enough to induce complete
locking.

Figure 6 shows the results for two levels of intrinsic dis-
order, plotting the fraction of frequency locked junctions vs
Ig. For these runs, the junction critical currehtsvere cho- I, (mA)
sen to match Eq29) as before, but the produtir; was the
same for all junctions, a situation more typical of disorder in  FIG. 5. Typical dependence of the effective coupling strength
superconductor-normal-superconductor arrgy2®]. Note  Kcosx vs bias currentg.

004 T T T T T T T T T T T T
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respond to numerical simulations of Eq4) and (2), circles for
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Q(t>=§ B@ cog né,(t)+ Bn]- (30)

Using a= — 7— B4, the fundamentalr{=1) componenQ,
can be written as

Qu(t)=—-B; 2 cog (1) ~a]. (3D
By definition of the order paramet€22), we have
Qi1(t)=—NByo cogy—a) (32)

or, using the Kuramoto ansatz=Qt, the load current is

Q1(t)=NB1oQ sin(Qt—a). (33

The voltage drop/ across the array is directly related to the

load current by the load circuit equatiod=LQ+ RQ
+Q/C. Thus the fundamental component of the voltage
is given by

Vi(t) =Agsin(Qt+y—a), (34)
where the amplitude is
13—12
Ag=2Ko — V(LOZ—-1/C)%+ O°R? (35)
w
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FIG. 7. Dependence d&, vs the bias currenty, for the same
parameters shown in Fig. 6. The solid lines correspond tq 35,
the symbols to numerical simulations of E¢$) and (2).

and the dephasing is given by

B LOQ%-1/C
V(LOZ-1/C)Z+ O%R?

cosy (36)

Figure 7 shows the results of simulations for the same set
of circumstances as Fig. 6, except ndwy is plotted as a
function of I3. The agreement between simulations and the
predicted behavior is once again very good. The shape of the
Aq-lg curves is very similar to that of the correspondiing
| g curves. The main difference is that, shows no dramatic
change at the complete-locking transition; consequently, for
this transition it is better to monitor the broadband low-
frequency part of the voltage output, which is quenched at
this transition[compare Figs. @) and 4b)]. On the other
hand, sincé, is directly proportional tar [cf. Eq. (35)] it
is a good order parameter for determining the onset of co-
herence.

Finally, we note that the power delivered to a matched
load at frequency) is given by PszzfAf)/ZR, which for
these parameters is about 30 nW per junction. This should be
sufficient power to detect using on-chip measurements.
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