(Translated by https://www.hiragana.jp/)
An Updated Infrageneric Classification of the Oaks: Review of Previous Taxonomic Schemes and Synthesis of Evolutionary Patterns | SpringerLink
Skip to main content

An Updated Infrageneric Classification of the Oaks: Review of Previous Taxonomic Schemes and Synthesis of Evolutionary Patterns

  • Chapter
  • First Online:
Book cover Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L.

Part of the book series: Tree Physiology ((TREE,volume 7))

Abstract

In this chapter, we review major classification schemes proposed for oaks by John Claudius Loudon , Anders Sandøe Ørsted , William Trelease , Otto Karl Anton Schwarz , Aimée Antoinette Camus , Yuri Leonárdovich Menitsky , and Kevin C. Nixon . Classifications of oaks (Fig. 2.1) have thus far been based entirely on morphological characters. They differed profoundly from each other because each taxonomist gave a different weight to distinguishing characters; often characters that are homoplastic in oaks. With the advent of molecular phylogenetics our view has considerably changed. One of the most profound changes has been the realisation that the traditional split between the East Asian subtropical to tropical subgenus Cyclobalanopsis and the subgenus Quercus that includes all other oaks is artificial. The traditional concept has been replaced by that of two major clades, each comprising three infrageneric groups: a Palearctic-Indomalayan clade including Group Ilex (Ilex oaks), Group Cerris (Cerris oaks) and Group Cyclobalanopsis (cycle-cup oaks), and a predominantly Nearctic clade including Group Protobalanus (intermediate or golden cup oaks), Group Lobatae (red oaks) and Group Quercus (white oaks, with most species in America and some 30 species in Eurasia ). In addition, recent phylogenetic studies identified two distinct clades within a wider group of white oaks: the Virentes oaks of North America and a clade with two disjunct endemic species in western Eurasia and western North America, Quercus pontica and Q. sadleriana. The main morphological feature characterising these phylogenetic lineages is pollen morphology, a character overlooked in traditional classifications. This realisation, along with the now available (molecular-)phylogenetic framework, opens new avenues for biogeographic, ecological and evolutionary studies and a re-appraisal of the fossil record . We provide an overview about recent advances in these fields and outline how the results of these studies contribute to the establishment of a unifying systematic scheme of oaks. Ultimately, we propose an updated classification of Quercus recognising two subgenera with eight sections. This classification considers morphological traits , molecular-phylogenetic relationships, and the evolutionary history of one of the most important temperate woody plant genera.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 34319
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 42899
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 42899
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akkemik Ü, Yaman B (2012) Wood anatomy of Eastern Mediterranean species. Verlag Kessel, Remagen

    Google Scholar 

  • Andreánszky G (1959) Die Flora der Sarmatischen Stufe in Ungarn. Akadémiai Kiadó, Budapest

    Google Scholar 

  • Axelrod DI (1983) Biogeography of oaks in the Arcto-Tertiary Province. Ann Missouri Bot Gard 70:629–657

    Article  Google Scholar 

  • Bentham G, Hooker JD (1880) Genera plantarum, vol 3. L. Reeve & Co., Williams & Norgate, London

    Google Scholar 

  • Borgardt SJ, Nixon KC (2003) A comparative flower and fruit anatomical study of Quercus acutissima, a biennial-fruiting oak from the Cerris group (Fagaceae). Am J Bot 90:1567–1584

    Article  PubMed  Google Scholar 

  • Borgardt SJ, Pigg KB (1999) Anatomical and developmental study of petrified Quercus (Fagaceae) fruits from the Middle Miocene, Yakima Canyon, Washington, USA. Am J Bot 86:307–325

    Article  CAS  PubMed  Google Scholar 

  • Bouchal J, Zetter R, Grímsson F, Denk T (2014) Evolutionary trends and ecological differentiation in early Cenozoic Fagaceae of western North America. Am J Bot 101:1–18

    Article  Google Scholar 

  • Britton NL, Brown A (1913) An illustrated flora of northern United States, Canada and British possessions. Scribner & Sons, New York

    Google Scholar 

  • Browicz K, Zieliński J (1982) Chorology of trees and shrubs in South-West Asia and adjacent regions. Polish Scientific Publishers, Warsaw, Poznan

    Google Scholar 

  • Camus A (1936–1938) Les Chênes. Monographie du genre Quercus. Tome I. Genre Quercus, sous-genre Cyclobalanopsis, sous-genre Euquercus (sections Cerris et Mesobalanus). Texte. Paul Lechevalier, Paris

    Google Scholar 

  • Camus A (1938–1939) Les Chênes. Monographie du genre Quercus. Tome II. Genre Quercus, sous-genre Euquercus (sections Lepidobalanus et Macrobalanus). Texte. Paul Lechevalier, Paris

    Google Scholar 

  • Camus A (1952–1954) Les Chênes: Monographie du genre Quercus. Tome III. Genre Quercus: sous-genre Euquercus (sections Protobalanus et Erythrobalanus) et genre Lithocarpus. Texte. Paul Lechevalier, Paris

    Google Scholar 

  • Cavender-Bares J, Gonzalez-Rodriguez A, Eaton DAR, Hipp AL, Beulke A, Manos PS (2015) Phylogeny and biogeography of the American live oaks (Quercus subsection Virentes): a genomic and population genetics approach. Mol Ecol 24:3668–3687

    Article  PubMed  Google Scholar 

  • Costa Tenorio M, Morla Juarista C, Sáinz Ollero H (2001) Los bosques Ibéricos. Una interpretación geobotánica. Planeta, Barcelona

    Google Scholar 

  • Crepet WL (1989) History and implications of the early North American fossil record of Fagaceae. In: Crane PR, Blackmore S (eds) Evolution, systematics, and fossil history of the Hamamelidae Vol 2: ‘Higher’ Hamamelidae. Systematic Association Special Vol 40B. Clarendon, Oxford, pp 45–66

    Google Scholar 

  • Daghlian CP, Crepet WL (1983) Oak catkins, leaves and fruits from the Oligocene Catahoula Formation and their evolutionary significance. Am J Bot 70:639–649

    Article  Google Scholar 

  • de Candolle A (1862a) Étude sur l’espèce á l’occasion d’une révision de la famille des Cupulifères. Arch Sci Phys Nat II 15:211–237, 326–365

    Google Scholar 

  • de Candolle A (1862b) Note sur un charactère observé dans les fruits des chênes. Ann sci nat ser 4(18):49–58

    Google Scholar 

  • Deng M (2007) Anatomy, taxonomy, distribution and phylogeny of Quercus Subg. Cyclobalanopsis (Oersted) Schneid. (Fagaceae). Ph.D. thesis, Kunming Institute of Botany, Chinese Academy of Sciences and Graduate School of Chinese Academy of Sciences, Beijing

    Google Scholar 

  • Deng M, Zhou Z-K, Chen Y-Q, Sun W-B (2008) Systematic significance of the development and anatomy of flowers and fruit of Quercus schottkyana (subgenus Cyclobalanopsis: Fagaceae). Int J Plant Sci 169:1261–1277

    Article  Google Scholar 

  • Deng M, Hipp A, Song Y-G, Li Q-S, Coombes A, Cotton A (2015) Leaf epidermal features of Quercus subgenus Cyclobalanopsis (Fagaceae) and their systematic significance. Bot J Linn Soc 176:224–259

    Article  Google Scholar 

  • Deng M, Jiang X-L, Song Y-G, Coombes A, Yang X-R, Xiong Y-S, Li Q-S (2017) Leaf epidermal features of Quercus Group Ilex (Fagaceae) and their application to species identification. Rev Palaeobot Palynol 237:10–36

    Article  Google Scholar 

  • Denk T, Grimm GW (2009) Significance of pollen characteristics for infrageneric classification and phylogeny in Quercus (Fagaceae). Int J Plant Sci 170:926–940

    Article  Google Scholar 

  • Denk T, Grimm GW (2010) The oaks of western Eurasia: traditional classifications and evidence from two nuclear markers. Taxon 59:351–366

    Google Scholar 

  • Denk T, Meller B (2001) Systematic significance of the cupule/nut complex in living and fossil Fagus. Int J Plant Sci 162:869–897

    Article  Google Scholar 

  • Denk T, Tekleva MV (2014) Pollen morphology and ultrastructure of Quercus with focus on Group Ilex (= Quercus Subgenus Heterobalanus (Oerst.) Menitsky): implications for oak systematics and evolution. Grana 53:255–282

    Article  Google Scholar 

  • Denk T, Grímsson F, Zetter R (2012) Fagaceae from the early Oligocene of Central Europe: persisting New World and emerging Old World biogeographic links. Rev Palaeobot Palynol 169:7–20

    Article  Google Scholar 

  • Denk T, Velitzelos D, Güner HT, Bouchal JM, Grímsson F, Grimm GW (2017) Taxonomy and palaeoecology of two widespread western Eurasian Neogene sclerophyllous oak species: Quercus drymeja Unger and Q. mediterranea Unger. Rev Palaeobot Palynol 241:98–128

    Article  Google Scholar 

  • Dumortier B-C (1829) Florula Belgica. J. Casterman, Tournai

    Google Scholar 

  • Engelmann G (1880) The acorns and their germination. Trans Acad Sci St Louis 4:190–192

    Google Scholar 

  • Fang J, Wang Z, Tang Z (2009) Atlas of woody plants in China. Volumes 1–3 and index. Higher Education Press, Beijing

    Google Scholar 

  • Farr ER, Zijlstra G (2017) Index Nominum Genericorum (Plantarum). 1996+. http://botany.si.edu/ing/. Last accessed 25 June 2017

  • Flora of China (2016) eFloras: Flora of China. http://www.efloras.org/flora_page.aspx?flora_id=2. Last accessed 2 Nov 2016

  • Flora of North America Editorial Commitee (1997) Flora of North America north of Mexico, vol 3. Oxford University Press, New York

    Google Scholar 

  • Gagnidze R, Urushadze T, Pietzarka U (2014) Quercus pontica Enzyklopädie der Holzgewächse: Handbuch und Atlas der Dendrologie 63. Erg. Lfg. 04/13. Wiley-VCH, Weinheim, pp 1–8

    Google Scholar 

  • Govaerts R, Frodin DG (1998) World checklist and bibliography of Fagales (Betulaceae, Corylaceae, Fagaceae and Ticodendraceae). Royal Botanic Gardens, Kew

    Google Scholar 

  • Grímsson F, Zetter R, Grimm GW, Krarup Pedersen G, Pedersen AK, Denk T (2015) Fagaceae pollen from the early Cenozoic of West Greenland: revisiting Engler’s and Chaney’s Arcto-Tertiary hypotheses. Plant Syst Evol 301:809–832

    Article  PubMed  Google Scholar 

  • Grímsson F, Grimm GW, Zetter R, Denk T (2016) Cretaceous and Paleogene Fagaceae from North America and Greenland: evidence for a Late Cretaceous split between Fagus and the remaining Fagaceae. Acta Palaeobot 56:247–305

    Google Scholar 

  • Hesse M, Halbritter H, Zetter R, Weber M, Buchner R, Frosch-Radivo A, Ulrich S (2009) Pollen terminology—an illustrated handbook. Springer, Wien, New York

    Google Scholar 

  • Hipp AL, Eaton DAR, Cavender-Bares J, Fitzek E, Nipper R, Manos PS (2014) A framework phylogeny of the American oak clade based on sequenced RAD data. PLoS ONE 9:e93975

    Article  PubMed  PubMed Central  Google Scholar 

  • Hipp AL, Manos P, McVay JD, Cavender-Bares J, González-Rodriguez A, Romero-Severson J, Hahn M, Brown BH, Budaitis B, Deng M, Grimm G, Fitzek E, Cronn R, Jennings TL, Avishai M, Simeone MC (2015) A phylogeny of the world’s oaks. Botany 2015, Edmonton. Available at http://2015.botanyconference.org/engine/search/index.php?func=detail&aid=1305

  • Hipp AL, Manos PS, González-Rodríguez A, Hahn M, Kaproth M, McVay JD, Valencia Avalos S, Cavender-Bares J (2017) Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. New Phytol. doi:10.1111/nph.14773

  • Hofmann C-C (2010) Microstructure of Fagaceae pollen from Austria (Paleocene/Eocene boundary) and Hainan Island (?middle Eocene). 8th European Palaeobotany-Palynology Conference. Hungarian Natural History Museum, Budapest, p 119

    Google Scholar 

  • Huang C, Zhang Y, Bartholomew B (1999) Fagaceae. In: Wu Z-Y, Raven PH (eds) Flora of China 4. Cycadaceae through Fagaceae. Science Press and Missouri Botanical Garden Press, Beijing, St. Louis, pp 314–400

    Google Scholar 

  • Hubert F, Grimm GW, Jousselin E, Berry V, Franc A, Kremer A (2014) Multiple nuclear genes stabilize the phylogenetic backbone of the genus Quercus. Syst Biodivers 12:405–423

    Article  Google Scholar 

  • Huzioka K, Takahashi E (1973) The Miocene flora of Shimonoseki, Southwest Honshu, Japan. Bull Nat Sci Mus 16:115–148

    Google Scholar 

  • Jähnichen H (1966) Morphologisch-anatomische Studien über strukturbietende, ganzrandige Eichenblätter des Subgenus EuquercusQuercus lusatica n. sp.—im Tertiär Mitteleuropas. Monatsber Dtsch Akad Wiss Berlin 8:477–512

    Google Scholar 

  • Jensen RJ (1997) Quercus Sect. Lobatae G. Don in J. C. Loudon, Hort. Brit. 385. 1830. In: Flora of North America Editorial Committee (ed) Flora of North America North of Mexico Vol 3. Missouri Botanical Garden Press, St. Louis, pp 447–468

    Google Scholar 

  • Jia H, Jin P, Wu J, Wang Z, Sun B (2015) Quercus (subg. Cyclobalanopsis) leaf and cupule species in the late Miocene of eastern China and their paleoclimatic significance. Rev Palaeobot Palynol 219:132–146

    Article  Google Scholar 

  • Kmenta M (2011) Die Mikroflora der untermiozänen Fundstelle Altmittweida, Deutschland. M.Sc. thesis, University of Vienna, Vienna, Austria. http://othes.univie.ac.at/15964/

  • Kovar-Eder J, Meller B (2003) The plant assemblages from the main seam parting of the western sub-basin of Oberdorf, N Voitsberg, Styria, Austria (Early Miocene). Cour Forschungsinst Senckenberg 241:281–311

    Google Scholar 

  • Kremer A, Abbott AG, Carlson JE, Manos PS, Plomion C, Sisco P, Staton ME, Ueno S, Vendramin GV (2012) Genomics of Fagaceae. Tree Genet Genomes 8:583–610

    Google Scholar 

  • Krishtofovich AN, Palibin IV, Shaparenko KK, Yarmolenko AV, Baykovskaya TN, Grubov VI, Iljinskaya IA (1956) Oligotsenovaya flora gory Ashutas v Kazakhstane (Oligocene flora of Ashutas Mount in Kazakhstan). Komarov Bot Inst Acad Sci SSSR Publ 145 Ser 8 Palaeobot 1:1–241 (in Russian)

    Google Scholar 

  • Kvaček Z, Walther H (1989) Palaeobotanical studies in Fagaceae of the European tertiary. Plant Syst Evol 162:213–229

    Article  Google Scholar 

  • Kvaček Z, Walther H (2010 [2012]) European Tertiary Fagaceae with chinquapin-like foligae and leaf epidermal characteristics. Feddes Repert 121:248–267

    Google Scholar 

  • Kvaček Z, Velitzelos D, Velitzelos E (2002) Late Miocene Flora of Vegora, Macedonia, N. Greece. Korali Publications, Athens

    Google Scholar 

  • le Hardÿ de Beaulieu A, Lamant T (2010) Guide illustré des Chênes. 2 vols. Edilens, Geer

    Google Scholar 

  • Linné C (1753) Species Plantarum. Vol 2. Laurentii Salvii, Stockholm

    Google Scholar 

  • Loudon JC (1830) Loudon’s Hortus Brittanicus. A. & R. Spottiswoode, London

    Google Scholar 

  • Loudon JC (1838) Arboretum et Fruticetum Brittanicum, vol III. Printed for the author by A. Spottiswoode, London

    Google Scholar 

  • Loudon JC (1839) Part II. The Jussieuean arrangement. In: Loudon JC (ed) Loudon’s Hortus Brittanicus A new edition. A. Spottiswode, London, pp 491–704

    Google Scholar 

  • Mai DH (1995) Tertiäre Vegetationsgeschichte Europas. Gustav Fischer Verlag, Jena, Stuttgart, New York

    Google Scholar 

  • Makino M, Hayashi R, Takahara H (2009) Pollen morphology of the genus Quercus by scanning electron microscope. Sci Rep Kyoto Prefect Univ Life Environ Sci 61:53–81

    Google Scholar 

  • Manchester SR (1994) Fruits and seeds of the Middle Eocene nut beds flora, Clarno Formation, Oregon. Palaeontogr Am 58:1–205

    Google Scholar 

  • Manos PS (1993) Foliar trichome variation in Quercus section Protobalanus (Fagaceae). SIDA Contr Bot 15:391–403

    Google Scholar 

  • Manos PS (1997) Quercus Sect. Protobalanus (Trelease) A.Camus. In: Flora of North America Editorial Committee (ed) Flora of North America North of Mexico, vol 3. Missouri Botanical Garden Press, St. Louis, p 468ff

    Google Scholar 

  • Manos PS (2016) Systematics and biogeography of the American oaks. Int Oak J 27:23–36

    Google Scholar 

  • Manos PS, Doyle JJ, Nixon KC (1999) Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Mol Phyl Evol 12:333–349

    Google Scholar 

  • Manos PS, Zhou ZK, Cannon CH (2001) Systematics of Fagaceae: Phylogenetic tests of reproductive trait evolution. Int J Plant Sci 162:1361–1379

    Article  Google Scholar 

  • Manos PS, Cannon CH, Oh S-H (2008) Phylogenetic relationships and taxonomic status of the paleoendemic Fagaceae of Western North America: recognition of a new genus, Notholithocarpus. Madroño 55:181–190

    Article  Google Scholar 

  • McIver EE, Basinger JF (1999) Early Tertiary floral evolution in the Canadian High Arctic. Ann Missouri Bot Gard 86:523–545

    Article  Google Scholar 

  • McVay JD, Hipp AL, Manos PS (2017) A genetic legacy of introgression confounds phylogeny and biogeography in oaks. Proc R Soc B 284:20170300

    Article  PubMed  Google Scholar 

  • Menitsky YL (1984) Duby Azii. Nauka, Leningrad [St. Petersburg]

    Google Scholar 

  • Menitsky YL (2005) Oaks of Asia [translated from the Russian original of 1984]. Science Publishers, Enfield, NH

    Google Scholar 

  • Muller CH (1961) The live oaks of the series Virentes. Am Midland Nat 65:17–39

    Article  Google Scholar 

  • Neophytou C, Dounavi A, Fink S, Aravanopoulos FA (2010) Interfertile oaks in an island environment: I. High nuclear genetic differentiation and high degree of chloroplast DNA sharing between Q. alnifolia and Q. coccifera in Cyprus. A multipopulation study. Eur J For Res 130:543–555

    Article  Google Scholar 

  • Neophytou C, Aravanopoulos FA, Fink S, Dounavi A (2011) Interfertile oaks in an island environment: II. Limited hybridization Quercus alnifolia Poech and Q. coccifera L. in a mixed stand. Eur J For Res 130:623–635

    Article  Google Scholar 

  • Nixon KC (1993) Infrageneric classification of Quercus (Fagaceae) and typification of sectional names. Ann Sci For 50:25s–34s

    Article  Google Scholar 

  • Nixon KC (1997) Fagaceae. In: Flora of North America Editorial Committee (ed) Flora of North America North of Mexico. Oxford University Press, New York, p. 436–537

    Google Scholar 

  • Nixon KC (2002) The oak biodiversity of California and adjacent regions. In: Standiford RB, McCreary D, Purcell KL (eds) Proceedings of the 5th Symposium on Oak Woodlands: Oaks in California’s Changing Landscape. USDA Forest Service General Technical Report PSW-GTR-184. Pacific Southwest Research Station, San Diego

    Google Scholar 

  • Nixon KC, Muller CH (1997) Quercus Sect. Quercus Linneus. In: Flora of North America Editorial Committee (ed) Flora of North America North of Mexico Vol 3. Missouri Botanical Garden Press, St. Louis

    Google Scholar 

  • Oh S-H, Manos PS (2008) Molecular phylogenetics and cupule evolution in Fagaceae as inferred from nuclear CRABS CLAW sequences. Taxon 57:434–451

    Google Scholar 

  • Ohwi J (1965) Flora of Japan (English ed., edited by F. G. Meyer and E. H. Walker). Smithsonian Institution, Washington, DC

    Google Scholar 

  • Ørsted AS (1866–1867) Bidrag til egeslægtens systematik. Vidensk Medd naturhist Foren Kjöbenhavn 28:11–88

    Google Scholar 

  • Ørsted AS (1871) Bidrag til Kundskab om Egefamilien. Kongl Danske Vidensk Selsk Biol Skr 5 naturvidensk math Afd 6:331–538

    Google Scholar 

  • Pavlyutkin BI (2015) The genus Quercus (Fagaceae) in the early Oligocene flora of Kraskino, Primorskii Region. Paleontol J 49:668–676

    Article  Google Scholar 

  • Pavlyutkin BI, Chekryzhov IU, Petrenko TI (2014) Geology and floras of lower Oligocene in the Primorye. Dalnauka, Vladivostok

    Google Scholar 

  • Pearse IS, Hipp AL (2009) Phylogenetic and trait similarity to a native species predict herbivory on non-native oaks. Proc Natl Acad Sci 106:18097–18102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pham KK, Hipp AL, Manos PS, Cronn RC (2017) A time and a place for everything: phylogenetic history and geography as joint predictors of oak plastome phylogeny. Genome. doi:10.1139/gen-2016-0191

    Google Scholar 

  • Rowley JR (1996) Exine origin, development and structure in pteridophytes, gymnosperms and angiosperms. In: Jansonius J, McGregor DC (eds) Palynology, Principles and Applications. American Association of Stratigraphic Palynologists Foundation, Dallas, pp 443–462

    Google Scholar 

  • Rowley JR, Claugher D (1991) Receptor-independent sporopollenin. Bot Acta 104:316–323

    Google Scholar 

  • Rowley JR, Gabarayeva NI (2004) Microspore development in Quercus robur (Fagaceae). Rev Palaeobot Palynol 132:115–132

    Article  Google Scholar 

  • Rowley JR, Skvarla JJ, Ferguson IK, El-Gazhaly G (1979) Pollen wall fibrils lacking primary receptors for sporopollenin. In: Bailey GW (ed) In: Proceedings of the 37th Annual Meeting Electron Microscopy Society of America, San Antonio, TX, August 13–17, 1979. Claitor, Baton Rouge, pp 340–341

    Google Scholar 

  • Schneider CK (1906) Illustriertes Handbuch der Laubholzkunde, vol 1. Gustav Fischer, Jena

    Google Scholar 

  • Schwarz O (1934) In: Krause, K.: Beiträge zur Flora Kleinasiens, IV. Feddes Repert 33: 321–328

    Google Scholar 

  • Schwarz O (1936) Entwurf zu einem natürlichen System der Cupuliferen und der Gattung Quercus L. Notizbl Bot Gart Mus Berlin-Dahlem Bd. 13 Nr. 116: 1–22

    Google Scholar 

  • Schwarz O (1937) Monographie der Eichen Europas und des Mittelmeergebietes. Repertorium specierum nov. regni vegetabilis, Sonderbeihefte D. Selbstverlag Friedrich Fedde, Dahlem-Berlin

    Google Scholar 

  • Simeone MC, Grimm GW, Papini A, Vessella F, Cardoni S, Tordoni E, Piredda R, Franc A, Denk T (2016) Plastome data reveal multiple geographic origins of Quercus Group Ilex. PeerJ 4:e1897

    Article  PubMed  PubMed Central  Google Scholar 

  • Solomon AM (1983a) Pollen morphology and plant taxonomy of red oaks in eastern North America. Am J Bot 70:495–507

    Article  Google Scholar 

  • Solomon AM (1983b) Pollen morphology and plant taxonomy of white oaks in eastern North America. Am J Bot 70:481–492

    Article  Google Scholar 

  • Song SY, Krajewska K, Wang YF (2000) The first occurrence of the Quercus section Cerris Spach fruits in the Miocene of China. Acta Palaeobot 40:153–163

    Google Scholar 

  • Spach E (1842) Histoire naturelle des végétaux. Phanerogames, vol 11. Schneider & Langrand, Paris

    Google Scholar 

  • Spicer RA, Herman AB, Liao W, Spicer TEV, Kodrul TM, Yang J, Jin J (2014) Cool tropics in the Middle Eocene: evidence from the Changchang Flora, Hainan Island, China. Palaeogeogr Palaeoclimatol Palaeoecol 412:1–16

    Article  Google Scholar 

  • Sprague TA (1929) International Botanical Congress Cambridge (England), 1930. Nomenclature proposals by British botanists. Wyman & Sons, London

    Google Scholar 

  • Standley PC (1922) Trees and shrubs of Mexico. Contr US Natl Herb 23. Government Printing Office, Washington

    Google Scholar 

  • Tanai T, Uemura K (1994) Lobed oak leaves from the Tertiary of East Asia with reference to the oak phytogeography of the northern hemisphere. Trans Proc Palaeontol Soc Japan 173:343–365

    Google Scholar 

  • Trelease W (1916) The oaks of America. Proc Natl Acad Sci 2:626–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trelease W (1924) The American Oaks. Mem Natl Acad Sci 20. Washington Government Printing Office, Washington, DC

    Google Scholar 

  • Tschan G, Denk T (2012) Trichome types, foliar indumentum and epicuticular wax in the Mediterranean gall oaks, Quercus subsection Galliferae (Fagaceae): implications for taxonomy, ecology and evolution. Bot J Linn Soc 139:611–644

    Article  Google Scholar 

  • Walther H, Zastawniak E (1991) Fagaceae from Sosnica and Malczyce (near Wroc3łav, Poland). A revision of original materials by Goeppert 1852 and 1855 and a study of new collections. Acta Palaeobot 31:153–199

    Google Scholar 

  • Writing Group of Cenozoic Plants of China (WGCPC) (1978) Cenozoic plants from China. Fossil Plants of China 3. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Xiang X-G, Wang W, Li R-Q, Lin L, Liu Y, Zhou Z-K, Li Z-Y, Chen Z-D (2014) Large-scale phylogenetic analyses reveal fagalean diversification promoted by the interplay of diaspores and environments in the Paleogene. Perspect Plant Ecol Syst 16:101–110

    Article  Google Scholar 

  • Xing Y, Onstein RE, Carter RJ, Stadler T, Linder HP (2014) Fossils and large molecular phylogeny show that the evolution of species richness, generic diversity, and turnover rates are disconnected. Evolution 68:2821–2832

    Article  PubMed  Google Scholar 

  • Yabe A (2008) Plant megafossil assemblage from the lower Miocene Ito-o Formation, Fukui Prefecture, Central Japan. Mem Fukui Prefect Dinosaur Mus 7:1–24

    Google Scholar 

Download references

Acknowledgements

We thank John McNeill for valuable comments. This work was supported by the Swedish Research Council (VR, grant to TD). GWG acknowledges financial support by the AMS Wien.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Denk .

Editor information

Editors and Affiliations

Appendix 2.1

Appendix 2.1

At https://doi.org/10.6084/m9.figshare.5547622.v1, we provide an electronic appendix including the following information (which may be subject to future updates): (i) an overview of earlier systematic schemes for oaks (genera, subgenera, sections) in comparison to the new classification; (ii) diagnostic morphological traits reported by earlier taxonomists extracted from the original literature; (iii) a comprehensive list of formerly and currently accepted species of oaks, compiled from the cited oak monographs and complemented by further data sources.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Denk, T., Grimm, G.W., Manos, P.S., Deng, M., Hipp, A.L. (2017). An Updated Infrageneric Classification of the Oaks: Review of Previous Taxonomic Schemes and Synthesis of Evolutionary Patterns. In: Gil-Pelegrín, E., Peguero-Pina, J., Sancho-Knapik, D. (eds) Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L.. Tree Physiology, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-69099-5_2

Download citation

Publish with us

Policies and ethics