(Translated by https://www.hiragana.jp/)
Active laser frequency stabilization using neutral praseodymium (Pr) | Applied Physics B Skip to main content
Log in

Active laser frequency stabilization using neutral praseodymium (Pr)

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a new possibility for the active frequency stabilization of a laser using transitions in neutral praseodymium. Because of its five outer electrons, this element shows a high density of energy levels leading to an extremely line-rich excitation spectrum with more than 25 000 known spectral lines ranging from the UV to the infrared. We demonstrate the active frequency stabilization of a diode laser on several praseodymium lines between 1105 and 1123 nm. The excitation signals were recorded in a hollow cathode lamp and observed via laser-induced fluorescence. These signals are strong enough to lock the diode laser onto most of the lines by using standard laser locking techniques. In this way, the frequency drifts of the unlocked laser of more than 30 MHz/h were eliminated and the laser frequency stabilized to within 1.4(1) MHz for averaging times >0.2 s. Frequency quadrupling the stabilized diode laser can produce frequency-stable UV-light in the range from 276 to 281 nm. In particular, using a strong hyperfine component of the praseodymium excitation line E=16 502.6167/2 cm\(^{-1}\rightarrow E'=25\,442.742^{\mathrm{o}}_{9/2}\) cm−1 at λらむだ=1118.5397(4) nm makes it possible—after frequency quadruplication—to produce laser radiation at λらむだ/4=279.6349(1) nm, which can be used to excite the D2 line in Mg+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.L. Schawlow, C.H. Townes, Phys. Rev. 112, 1940 (1958)

    Article  ADS  Google Scholar 

  2. C.E. Wieman, L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991)

    Article  ADS  Google Scholar 

  3. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T.W. Hänsch, Opt. Commun. 117, 541 (1995)

    Article  ADS  Google Scholar 

  4. S. Gerstenkorn, P. Luc, Atlas du spectre d’absorption de la molécule d’iode. Laboratoire Aimé-Cotton, CNRS II, Orsay (France), 14000–15600 cm−1 (1978), 15600–17600 cm−1 (1977), 17500–20000 cm−1 (1977)

  5. S. Gerstenkorn, J. Vergès, J. Chevillard, Atlas du spectre d’absorption de la molécule d’iode. Laboratoire Aimé-Cotton, CNRS II, Orsay (France), 11000–14000 cm−1 (1982)

  6. A.Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T.W. Hänsch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P.V. Pokasov, M.N. Skvortsov, S.N. Bagayev, Opt. Commun. 192, 263 (2001)

    Article  ADS  Google Scholar 

  7. S. Picard, L. Robertsson, L.-S. Ma, Y. Millerioux, P. Juncar, J.-P. Wallerand, P. Balling, P. Kr̂en, K. Nyholm, M. Merimaa, T.E. Ahola, F.-L. Hong, IEEE Trans. Instrum. Meas. 52, 236 (2003)

    Article  Google Scholar 

  8. F.-L. Hong, J. Ishikawa, Y. Zhang, R. Guo, A. Onae, H. Matsumoto, Opt. Commun. 235, 377 (2004)

    Article  ADS  Google Scholar 

  9. M.N. Skvortsov, M.V. Okhapkin, A.Yu. Nevsky, S.N. Bagayev, Quantum Electron. 34, 1101 (2004)

    Article  ADS  Google Scholar 

  10. R.M. Macfarlane, D.P. Burum, R.M. Shelby, Phys. Rev. Lett. 49, 636 (1982)

    Article  ADS  Google Scholar 

  11. K.D. Böklen, T. Bossert, W. Foerster, H.H. Fuchs, G. Nachtsheim, Z. Phys. A 274, 195 (1975)

    ADS  Google Scholar 

  12. A. Ginibre, Phys. Scr. 23, 260 (1981)

    Article  ADS  Google Scholar 

  13. A. Ginibre, Thèse Université de Paris-Sud, Centre d’Orsay (1988)

  14. G.H. Guthöhrlein, Helmut-Schmidt-Universität der Bundeswehr Hamburg (Germany), unpublished energy levels and transition lines of praseodymium

  15. L. Windholz, Technische Universität Graz (Austria), unpublished energy levels and transition lines of praseodymium

  16. R. Zalubas, B.R. Borchardt, J. Opt. Soc. Am. 63, 102 (1973)

    Article  Google Scholar 

  17. W.C. Martin, R. Zalubas, L. Hagan, Atomic Energy Levels—the Rare Earth Elements (National Bureau of Standards, Washington, 1978)

    Google Scholar 

  18. W.J. Childs, L.S. Goodman, Phys. Rev. A 24, 1342 (1981)

    Article  ADS  Google Scholar 

  19. T. Kuwamoto, I. Endo, A. Fukumi, T. Hasegawa, T. Horiguchi, Y. Ishida, T. Kobayashi, T. Kondo, T. Takahashi, J. Phys. Soc. Jpn. 65, 3180 (1996)

    Article  ADS  Google Scholar 

  20. A. Krzykowski, B. Furmann, D. Stefańska, A. Jarosz, A. Kajoch, Opt. Commun. 140, 216 (1997)

    Article  ADS  Google Scholar 

  21. B. Furmann, Thesis, TU Poznań (1998)

  22. A. Krzykowski, Thesis, TU Poznań (1998)

  23. D. El Bakkali, Thesis, Helmut-Schmidt-Universität der Bundeswehr Hamburg (Germany), Fakultät für Elektrotechnik (2006)

  24. B. Furmann, A. Krzykowski, D. Stefańska, J. Dembczyński, Phys. Scr. 74, 658 (2006)

    Article  ADS  Google Scholar 

  25. Evaluation program Fitter for hyperfine structure measurements, Helmut-Schmidt-Universität der Bundeswehr Hamburg (Germany), laboratory for experimental physics, unpublished

  26. A. Ginibre, private communication to G.H. Guthöhrlein

  27. C. Schwedes, E. Peik, J. von Zanthier, A.Y. Nevsky, H. Walther, Appl. Phys. B 76, 143 (2003)

    Article  ADS  Google Scholar 

  28. A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, T.W. Hänsch, T. Schätz, Appl. Phys. B 84, 371 (2006)

    Article  ADS  Google Scholar 

  29. J.T. Höffges, H.W. Baldauf, W. Lange, H. Walther, J. Mod. Opt. 44, 1999 (1997)

    Article  ADS  Google Scholar 

  30. V. Batteiger, S. Knünz, M. Herrmann, G. Saathoff, H.A. Schüssler, B. Bernhardt, T. Wilken, R. Holzwarth, T.W. Hänsch, Th. Udem, Phys. Rev. A 80, 022503 (2009)

    Article  ADS  Google Scholar 

  31. T. Schätz, A. Friedenauer, H. Schmitz, L. Petersen, S. Kahra, J. Mod. Opt. 54, 2317 (2007)

    Article  Google Scholar 

  32. A. Friedenauer, H. Schmitz, J.T. Glückert, D. Porras, T. Schätz, Nat. Phys. 4, 757 (2008)

    Article  Google Scholar 

  33. J.P. Home, D. Hanneke, J.D. Jost, J.M. Amini, D. Leibfried, D.J. Wineland, Science 325, 1227 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  34. H. Schmitz, R. Matjeschk, Ch. Schneider, J. Glückert, M. Enderlein, T. Huber, T. Schätz, Phys. Rev. Lett. 103, 090504 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Oppel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oppel, S., Guthöhrlein, G.H., Kaenders, W. et al. Active laser frequency stabilization using neutral praseodymium (Pr). Appl. Phys. B 101, 33–44 (2010). https://doi.org/10.1007/s00340-010-4007-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4007-9

Keywords

Navigation