(Translated by https://www.hiragana.jp/)
Diet and metabolic syndrome: a narrative review | Internal and Emergency Medicine Skip to main content

Advertisement

Log in

Diet and metabolic syndrome: a narrative review

  • IM - REVIEW
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

Metabolic syndrome (MetS) is a highly prevalent condition defined by the presence of at least three out of five risk factors including central obesity, increased fasting glucose, high blood pressure, and dyslipidaemia. Metabolic syndrome is associated with a 2-fold increase in cardiovascular outcomes and a 1.5-fold increase in all-cause mortality. Excess energy intake and Western dietary pattern may influence the development of metabolic syndrome. By contrast, both Mediterranean diet (Med-diet) and Dietary Approaches to Stop Hypertension (DASH) diet, with or without calorie restriction, have positive effects. For the prevention and management of MetS, it is recommended to increase the daily intake of fiber-rich and low-glycaemic-index foods and the consumption of fish and dairy products, especially yogurt and nuts. Moreover, it is advisable to consume a large variety of unprocessed cereals, legumes, and fruit. Finally, it is suggested to replace saturated fatty acids with monounsaturated and polyunsaturated fatty acids and to limit the consumption of free sugars to less than 10% of the total energy intake. The aim of this narrative review is to analyze current evidence on the different dietary patterns and nutrients that may affect prevention and treatment of MetS and to discuss the underlying pathophysiological mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MetS:

Metabolic syndrome

Med-diet:

Mediterranean diet

DASH:

Dietary Approaches to Stop Hypertension

EDCs:

Endocrine disrupting chemicals

HFCS:

High fructose corn syrup

VLDL:

Very-low-density lipoprotein

HDL:

High-density lipoprotein

SFA:

Saturated fatty acid

MFA:

Monounsaturated fatty acid

PUFA:

Polyunsaturated fatty acid

HOMA-IR:

Homeostasis model assessment insulin resistance

TAG:

Triacylglycerols

hsCRP:

High sensitivity C-reactive protein

IL:

Interleukin

VEGF:

Vascular endothelial growth factor

CETP:

Cholesterol ester transfer protein

References

  1. Kylin E (1923) Studien uber das hypertonie-hyperglykamie-hyperurikamiesyndrom. Zentrablfinnere Med Leipz 81:105–217

    Google Scholar 

  2. Vague J (1956) The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am J Clin Nutr 4(1):20–34. https://doi.org/10.1093/ajcn/4.1.20

    Article  CAS  PubMed  Google Scholar 

  3. Haller H (1977) Epidermiology and associated risk factors of hyperlipoproteinemia. Z Gesamte Inn Med 32(8):124–128

    CAS  PubMed  Google Scholar 

  4. Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37(12):1595–1607. https://doi.org/10.2337/diab.37.12.1595

    Article  CAS  PubMed  Google Scholar 

  5. Expert Panel on Detection Ea and Treatment of High Blood Cholesterol in Adults (2001) Executive summary of the third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA 285(19):2486–2497. https://doi.org/10.1001/jama.285.19.2486

    Article  Google Scholar 

  6. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(16):1640–1645. https://doi.org/10.1161/CIRCULATIONAHA.109.192644

    Article  CAS  PubMed  Google Scholar 

  7. Hirode G, Wong RJ (2020) Trends in the prevalence of metabolic syndrome in the United States, 2011–2016. JAMA 323(24):2526–2528. https://doi.org/10.1001/jama.2020.4501

    Article  PubMed  PubMed Central  Google Scholar 

  8. Santos AC, Severo M, Barros H (2010) Incidence and risk factors for the metabolic syndrome in an urban South European population. Prev Med 50(3):99–105. https://doi.org/10.1016/j.ypmed.2009.11.011

    Article  PubMed  Google Scholar 

  9. Bakhshayeshkaram M, Heydari ST, Honarvar B, Keshani P, Roozbeh J, Dabbaghmanesh MH et al (2020) Incidence of metabolic syndrome and determinants of its progression in Southern Iran: a 5-year longitudinal follow-up study. J Res Med Sci 25:103. https://doi.org/10.4103/jrms.JRMS_884_19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hwang JH, Kam S, Shin JY, Kim JY, Lee KE, Kwon GH et al (2013) Incidence of metabolic syndrome and relative importance of five components as a predictor of metabolic syndrome: 5-year follow-up study in Korea. J Korean Med Sci 28(12):1768–1773. https://doi.org/10.3346/jkms.2013.28.12.1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carnethon MR, Loria CM, Hill JO, Sidney S, Savage PJ, Liu K et al (2004) Risk factors for the metabolic syndrome: the coronary artery risk development in young adults (CARDIA) study, 1985–2001. Diabetes Care 27(11):2707–2715. https://doi.org/10.2337/diacare.27.11.2707

    Article  PubMed  Google Scholar 

  12. Baratta F, Pastori D, Polimeni L, Bucci T, Ceci F, Calabrese C et al (2017) Adherence to mediterranean diet and non-alcoholic fatty liver disease: effect on insulin resistance. Am J Gastroenterol 112(12):1832–1839. https://doi.org/10.1038/ajg.2017.371

    Article  CAS  PubMed  Google Scholar 

  13. Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P et al (2010) The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol 56(14):1113–1132. https://doi.org/10.1016/j.jacc.2010.05.034

    Article  PubMed  Google Scholar 

  14. Shin JA, Lee JH, Lim SY, Ha HS, Kwon HS, Park YM et al (2013) Metabolic syndrome as a predictor of type 2 diabetes, and its clinical interpretations and usefulness. J Diabetes Investig 4(4):334–343. https://doi.org/10.1111/jdi.12075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sattar N, Gaw A, Scherbakova O, Ford I, O’Reilly DS, Haffner SM et al (2003) Metabolic syndrome with and without C-reactive protein as a predictor of coronary heart disease and diabetes in the West of Scotland coronary prevention study. Circulation 108(4):414–419. https://doi.org/10.1161/01.CIR.0000080897.52664.94

    Article  CAS  PubMed  Google Scholar 

  16. Velasquez MT (2018) Altered gut microbiota: a link between diet and the metabolic syndrome. Metab Syndr Relat Disord 16(7):321–328. https://doi.org/10.1089/met.2017.0163

    Article  PubMed  Google Scholar 

  17. Bao J, Wang L, Hu P, Liu J, Tu J, Wang J et al (2022) Burden of metabolic syndrome among a low-income population in China: a population-based cross-sectional study. Diabetes Metab Syndr Obes 15:2713–2723. https://doi.org/10.2147/DMSO.S377490

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dallongeville J, Cottel D, Ferrières J, Arveiler D, Bingham A, Ruidavets JB et al (2005) Household income is associated with the risk of metabolic syndrome in a sex-specific manner. Diabetes Care 28(2):409–415. https://doi.org/10.2337/diacare.28.2.409

    Article  PubMed  Google Scholar 

  19. Perel P, Langenberg C, Ferrie J, Moser K, Brunner E, Marmot M (2006) Household wealth and the metabolic syndrome in the Whitehall II study. Diabetes Care 29(12):2694–2700. https://doi.org/10.2337/dc06-0022

    Article  PubMed  Google Scholar 

  20. US Census Bureau. Statistical abstract of the United States. N 214. 2013

  21. Johnson RJ, Segal MS, Sautin Y, Nakagawa T, Feig DI, Kang DH et al (2007) Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr 86(4):899–906. https://doi.org/10.1093/ajcn/86.4.899

    Article  CAS  PubMed  Google Scholar 

  22. Davis C, Bryan J, Hodgson J, Murphy K (2015) Definition of the Mediterranean diet; a literature review. Nutrients 7(11):9139–9153. https://doi.org/10.3390/nu7115459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Trichopoulou A, Martínez-González MA, Tong TY, Forouhi NG, Khandelwal S, Prabhakaran D et al (2014) Definitions and potential health benefits of the Mediterranean diet: views from experts around the world. BMC Med 12:112. https://doi.org/10.1186/1741-7015-12-112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sacks FM, Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP et al (1999) A dietary approach to prevent hypertension: a review of the dietary approaches to stop hypertension (DASH) study. Clin Cardiol 22(7 Suppl):III6-10. https://doi.org/10.1002/clc.4960221503

    Article  CAS  PubMed  Google Scholar 

  25. Keys A (1953) Atherosclerosis: a problem in newer public health. J Mt Sinai Hosp N Y 20(2):118–139

    CAS  PubMed  Google Scholar 

  26. Keys A, Aravanis C, Blackburn HW, Van Buchem FS, Buzina R, Djordjević BD et al (1966) Epidemiological studies related to coronary heart disease: characteristics of men aged 40–59 in seven countries. Acta Med Scand Suppl 460:1–392

    CAS  PubMed  Google Scholar 

  27. Yudkin J (1964) Patterns and trends in carbohydrate consumption and their relation to disease. Proc Nutr Soc 23:149–162. https://doi.org/10.1079/pns19640028

    Article  CAS  PubMed  Google Scholar 

  28. Wood RJ, Fernandez ML, Sharman MJ, Silvestre R, Greene CM, Zern TL et al (2007) Effects of a carbohydrate-restricted diet with and without supplemental soluble fiber on plasma low-density lipoprotein cholesterol and other clinical markers of cardiovascular risk. Metabolism 56(1):58–67. https://doi.org/10.1016/j.metabol.2006.08.021

    Article  CAS  PubMed  Google Scholar 

  29. De Coster S, van Larebeke N (2012) Endocrine-disrupting chemicals: associated disorders and mechanisms of action. J Environ Public Health 2012:713696. https://doi.org/10.1155/2012/713696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Haverinen E, Fernandez MF, Mustieles V, Tolonen H (2021) Metabolic syndrome and endocrine disrupting chemicals: an overview of exposure and health effects. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph182413047

    Article  PubMed  PubMed Central  Google Scholar 

  31. Choo VL, Viguiliouk E, Blanco Mejia S, Cozma AI, Khan TA, Ha V et al (2018) Food sources of fructose-containing sugars and glycaemic control: systematic review and meta-analysis of controlled intervention studies. BMJ 363:k4644. https://doi.org/10.1136/bmj.k4644

    Article  PubMed  PubMed Central  Google Scholar 

  32. White JS, Hobbs LJ, Fernandez S (2015) Fructose content and composition of commercial HFCS-sweetened carbonated beverages. Int J Obes (Lond) 39(1):176–182. https://doi.org/10.1038/ijo.2014.73

    Article  CAS  PubMed  Google Scholar 

  33. Taskinen MR, Packard CJ, Borén J (2019) Dietary fructose and the metabolic syndrome. Nutrients. https://doi.org/10.3390/nu11091987

    Article  PubMed  PubMed Central  Google Scholar 

  34. Perez-Pozo SE, Schold J, Nakagawa T, Sánchez-Lozada LG, Johnson RJ, Lillo JL (2010) Excessive fructose intake induces the features of metabolic syndrome in healthy adult men: role of uric acid in the hypertensive response. Int J Obes (Lond) 34(3):454–461. https://doi.org/10.1038/ijo.2009.259

    Article  CAS  PubMed  Google Scholar 

  35. Chan W, Smith B, Stegall M, Borrows R (2019) Obesity and metabolic syndrome in kidney transplantation: the role of dietary fructose and systemic endotoxemia. Transplantation 103(1):191–201. https://doi.org/10.1097/TP.0000000000002424

    Article  CAS  PubMed  Google Scholar 

  36. Crujeiras AB, Carreira MC, Cabia B, Andrade S, Amil M, Casanueva FF (2015) Leptin resistance in obesity: an epigenetic landscape. Life Sci 140:57–63. https://doi.org/10.1016/j.lfs.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  37. Teff KL, Elliott SS, Tschöp M, Kieffer TJ, Rader D, Heiman M et al (2004) Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J Clin Endocrinol Metab 89(6):2963–2972. https://doi.org/10.1210/jc.2003-031855

    Article  CAS  PubMed  Google Scholar 

  38. Bawden SJ, Stephenson MC, Ciampi E, Hunter K, Marciani L, Macdonald IA et al (2016) Investigating the effects of an oral fructose challenge on hepatic ATP reserves in healthy volunteers: a (31)P MRS study. Clin Nutr 35(3):645–649. https://doi.org/10.1016/j.clnu.2015.04.001

    Article  CAS  PubMed  Google Scholar 

  39. Aeberli I, Hochuli M, Gerber PA, Sze L, Murer SB, Tappy L et al (2013) Moderate amounts of fructose consumption impair insulin sensitivity in healthy young men: a randomized controlled trial. Diabetes Care 36(1):150–156. https://doi.org/10.2337/dc12-0540

    Article  CAS  PubMed  Google Scholar 

  40. Domínguez-Coello S, Carrillo-Fernández L, Gobierno-Hernández J, Méndez-Abad M, Borges-Álamo C, García-Dopico JA et al (2020) Decreased consumption of added fructose reduces waist circumference and blood glucose concentration in patients with overweight and obesity the DISFRUTE study: a randomised trial in primary care. Nutrients. https://doi.org/10.3390/nu12041149

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jegatheesan P, De Bandt JP (2017) Fructose and NAFLD: the multifaceted aspects of fructose metabolism. Nutrients. https://doi.org/10.3390/nu9030230

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jalal DI, Smits G, Johnson RJ, Chonchol M (2010) Increased fructose associates with elevated blood pressure. J Am Soc Nephrol 21(9):1543–1549. https://doi.org/10.1681/ASN.2009111111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Le MT, Frye RF, Rivard CJ, Cheng J, McFann KK, Segal MS et al (2012) Effects of high-fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects. Metabolism 61(5):641–651. https://doi.org/10.1016/j.metabol.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  44. Choi HK, Willett W, Curhan G (2010) Fructose-rich beverages and risk of gout in women. JAMA 304(20):2270–2278. https://doi.org/10.1001/jama.2010.1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lê KA, Ith M, Kreis R, Faeh D, Bortolotti M, Tran C et al (2009) Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes. Am J Clin Nutr 89(6):1760–1765. https://doi.org/10.3945/ajcn.2008.27336

    Article  CAS  PubMed  Google Scholar 

  46. Hieronimus B, Stanhope KL (2020) Dietary fructose and dyslipidemia: new mechanisms involving apolipoprotein CIII. Curr Opin Lipidol 31(1):20–26. https://doi.org/10.1097/MOL.0000000000000653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Julibert A, Bibiloni MDM, Tur JA (2019) Dietary fat intake and metabolic syndrome in adults: a systematic review. Nutr Metab Cardiovasc Dis 29(9):887–905. https://doi.org/10.1016/j.numecd.2019.05.055

    Article  CAS  PubMed  Google Scholar 

  48. Siri-Tarino PW, Chiu S, Bergeron N, Krauss RM (2015) Saturated fats versus polyunsaturated fats versus carbohydrates for cardiovascular disease prevention and treatment. Annu Rev Nutr 35:517–543. https://doi.org/10.1146/annurev-nutr-071714-034449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang DD, Hu FB (2017) Dietary fat and risk of cardiovascular disease: recent controversies and advances. Annu Rev Nutr 37:423–446. https://doi.org/10.1146/annurev-nutr-071816-064614

    Article  CAS  PubMed  Google Scholar 

  50. Riccardi G, Giacco R, Rivellese AA (2004) Dietary fat, insulin sensitivity and the metabolic syndrome. Clin Nutr 23(4):447–456. https://doi.org/10.1016/j.clnu.2004.02.006

    Article  CAS  PubMed  Google Scholar 

  51. Mensink RP, Zock PL, Kester AD, Katan MB (2003) Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr 77(5):1146–1155. https://doi.org/10.1093/ajcn/77.5.1146

    Article  CAS  PubMed  Google Scholar 

  52. Tardivo AP, Nahas-Neto J, Orsatti CL, Dias FB, Poloni PF, Schmitt EB et al (2015) Effects of omega-3 on metabolic markers in postmenopausal women with metabolic syndrome. Climacteric 18(2):290–298. https://doi.org/10.3109/13697137.2014.981521

    Article  CAS  PubMed  Google Scholar 

  53. Paniagua JA, Pérez-Martinez P, Gjelstad IM, Tierney AC, Delgado-Lista J, Defoort C et al (2011) A low-fat high-carbohydrate diet supplemented with long-chain n-3 PUFA reduces the risk of the metabolic syndrome. Atherosclerosis 218(2):443–450. https://doi.org/10.1016/j.atherosclerosis.2011.07.003

    Article  CAS  PubMed  Google Scholar 

  54. Yubero-Serrano EM, Delgado-Lista J, Tierney AC, Perez-Martinez P, Garcia-Rios A, Alcala-Diaz JF et al (2015) Insulin resistance determines a differential response to changes in dietary fat modification on metabolic syndrome risk factors: the LIPGENE study. Am J Clin Nutr 102(6):1509–1517. https://doi.org/10.3945/ajcn.115.111286

    Article  CAS  PubMed  Google Scholar 

  55. Babio N, Toledo E, Estruch R, Ros E, Martínez-González MA, Castañer O et al (2014) Mediterranean diets and metabolic syndrome status in the PREDIMED randomized trial. CMAJ 186(17):E649–E657. https://doi.org/10.1503/cmaj.140764

    Article  PubMed  PubMed Central  Google Scholar 

  56. Service USDoHaH: American 2015–2020 Dietary Guidelines. https://health.gov/dietaryguidelines/2015/guidelines/ (2015). Accessed 2022

  57. Lutsey PL, Steffen LM, Stevens J (2008) Dietary intake and the development of the metabolic syndrome: the atherosclerosis risk in communities study. Circulation 117(6):754–761. https://doi.org/10.1161/CIRCULATIONAHA.107.716159

    Article  PubMed  Google Scholar 

  58. Steffen LM, Van Horn L, Daviglus ML, Zhou X, Reis JP, Loria CM et al (2014) A modified Mediterranean diet score is associated with a lower risk of incident metabolic syndrome over 25 years among young adults: the CARDIA (Coronary Artery Risk Development in Young Adults) study. Br J Nutr 112(10):1654–1661. https://doi.org/10.1017/S0007114514002633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ghorabi S, Salari-Moghaddam A, Daneshzad E, Sadeghi O, Azadbakht L, Djafarian K (2019) Association between the DASH diet and metabolic syndrome components in Iranian adults. Diabetes Metab Syndr 13(3):1699–1704. https://doi.org/10.1016/j.dsx.2019.03.039

    Article  PubMed  Google Scholar 

  60. Asghari G, Yuzbashian E, Mirmiran P, Hooshmand F, Najafi R, Azizi F (2016) Dietary approaches to stop hypertension (DASH) Dietary pattern is associated with reduced incidence of metabolic syndrome in children and adolescents. J Pediatr 174:178–84.e1. https://doi.org/10.1016/j.jpeds.2016.03.077

    Article  PubMed  Google Scholar 

  61. Phillips CM, Harrington JM, Perry IJ (2019) Relationship between dietary quality, determined by DASH score, and cardiometabolic health biomarkers: a cross-sectional analysis in adults. Clin Nutr 38(4):1620–1628. https://doi.org/10.1016/j.clnu.2018.08.028

    Article  PubMed  Google Scholar 

  62. McKeown NM, Meigs JB, Liu S, Saltzman E, Wilson PW, Jacques PF (2004) Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham Offspring Cohort. Diabetes Care 27(2):538–546. https://doi.org/10.2337/diacare.27.2.538

    Article  PubMed  Google Scholar 

  63. Tian Y, Su L, Wang J, Duan X, Jiang X (2018) Fruit and vegetable consumption and risk of the metabolic syndrome: a meta-analysis. Public Health Nutr 21(4):756–765. https://doi.org/10.1017/S136898001700310X

    Article  PubMed  Google Scholar 

  64. Hidayat K, Zhu WZ, Peng SM, Ren JJ, Lu ML, Wang HP et al (2022) The association between meat consumption and the metabolic syndrome: a cross-sectional study and meta-analysis. Br J Nutr 127(10):1467–1481. https://doi.org/10.1017/S0007114521002452

    Article  CAS  PubMed  Google Scholar 

  65. Tierney AC, McMonagle J, Shaw DI, Gulseth HL, Helal O, Saris WH et al (2011) Effects of dietary fat modification on insulin sensitivity and on other risk factors of the metabolic syndrome–LIPGENE: a European randomized dietary intervention study. Int J Obes (Lond) 35(6):800–809. https://doi.org/10.1038/ijo.2010.209

    Article  CAS  PubMed  Google Scholar 

  66. Cruz-Teno C, Pérez-Martínez P, Delgado-Lista J, Yubero-Serrano EM, García-Ríos A, Marín C et al (2012) Dietary fat modifies the postprandial inflammatory state in subjects with metabolic syndrome: the LIPGENE study. Mol Nutr Food Res 56(6):854–865. https://doi.org/10.1002/mnfr.201200096

    Article  CAS  PubMed  Google Scholar 

  67. Kesse-Guyot E, Ahluwalia N, Lassale C, Hercberg S, Fezeu L, Lairon D (2013) Adherence to Mediterranean diet reduces the risk of metabolic syndrome: a 6-year prospective study. Nutr Metab Cardiovasc Dis 23(7):677–683. https://doi.org/10.1016/j.numecd.2012.02.005

    Article  CAS  PubMed  Google Scholar 

  68. Monteiro R, Azevedo I (2010) Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm. https://doi.org/10.1155/2010/289645

    Article  PubMed  PubMed Central  Google Scholar 

  69. Richard C, Couture P, Desroches S, Charest A, Lamarche B (2011) Effect of the Mediterranean diet with and without weight loss on cardiovascular risk factors in men with the metabolic syndrome. Nutr Metab Cardiovasc Dis 21(9):628–635. https://doi.org/10.1016/j.numecd.2010.01.012

    Article  CAS  PubMed  Google Scholar 

  70. Richard C, Royer MM, Couture P, Cianflone K, Rezvani R, Desroches S et al (2013) Effect of the Mediterranean diet on plasma adipokine concentrations in men with metabolic syndrome. Metabolism 62(12):1803–1810. https://doi.org/10.1016/j.metabol.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  71. Esposito K, Marfella R, Ciotola M, Di Palo C, Giugliano F, Giugliano G et al (2004) Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA 292(12):1440–1446. https://doi.org/10.1001/jama.292.12.1440

    Article  CAS  PubMed  Google Scholar 

  72. Guo Y, Luo S, Ye Y, Yin S, Fan J, Xia M (2021) Intermittent fasting improves cardiometabolic risk factors and alters gut microbiota in metabolic syndrome patients. J Clin Endocrinol Metab 106(1):64–79. https://doi.org/10.1210/clinem/dgaa644

    Article  PubMed  Google Scholar 

  73. Jahrami H, Trabelsi K, Alhaj OA, Saif Z, Pandi-Perumal SR, BaHammam AS (2022) The impact of Ramadan fasting on the metabolic syndrome severity in relation to ethnicity and sex: results of a systematic review and meta-analysis. Nutr Metab Cardiovasc Dis 32(12):2714–2729. https://doi.org/10.1016/j.numecd.2022.09.001

    Article  PubMed  Google Scholar 

  74. Seral-Cortes M, Sabroso-Lasa S, De Miguel-Etayo P, Gonzalez-Gross M, Gesteiro E, Molina-Hidalgo C et al (2020) Interaction effect of the Mediterranean diet and an obesity genetic risk score on adiposity and metabolic syndrome in adolescents: the HELENA study. Nutrients. https://doi.org/10.3390/nu12123841

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hajiluian G, Abbasalizad Farhangi M, Jahangiry L (2017) Mediterranean dietary pattern and VEGF +405 G/C gene polymorphisms in patients with metabolic syndrome: An aspect of gene-nutrient interaction. PLoS ONE 12(2):e0171637. https://doi.org/10.1371/journal.pone.0171637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Garcia-Rios A, Alcala-Diaz JF, Gomez-Delgado F, Delgado-Lista J, Marin C, Leon-Acuña A et al (2018) Beneficial effect of CETP gene polymorphism in combination with a Mediterranean diet influencing lipid metabolism in metabolic syndrome patients: CORDIOPREV study. Clin Nutr 37(1):229–234. https://doi.org/10.1016/j.clnu.2016.12.011

    Article  CAS  PubMed  Google Scholar 

  77. Pérez-Martínez P, Mikhailidis DP, Athyros VG, Bullo M, Couture P, Covas MI et al (2017) Lifestyle recommendations for the prevention and management of metabolic syndrome: an international panel recommendation. Nutr Rev 75(5):307–326. https://doi.org/10.1093/nutrit/nux014

    Article  PubMed  PubMed Central  Google Scholar 

  78. Guideline: Sugars Intake for Adults and Children. 2015

  79. French SA, Sherwood NE, JaKa MM, Haapala JL, Ebbeling CB, Ludwig DS (2016) Physical changes in the home environment to reduce television viewing and sugar-sweetened beverage consumption among 5- to 12-year-old children: a randomized pilot study. Pediatr Obes 11(5):e12–e15. https://doi.org/10.1111/ijpo.12067

    Article  CAS  PubMed  Google Scholar 

  80. Fidler Mis N, Braegger C, Bronsky J, Campoy C, Domellöf M, Embleton ND et al (2017) Sugar in infants, children and adolescents: a position paper of the European society for paediatric gastroenterology, hepatology and nutrition committee on nutrition. J Pediatr Gastroenterol Nutr 65(6):681–696. https://doi.org/10.1097/MPG.0000000000001733

    Article  CAS  PubMed  Google Scholar 

  81. Bruscato NM, Vieira JL, do Nascimento NM, Canto ME, Stobbe JC, Gottlieb MG et al (2010) Dietary intake is not associated to the metabolic syndrome in elderly women. N Am J Med Sci 2(4):182–188. https://doi.org/10.4297/najms.2010.2182

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sun K, Ren M, Liu D, Wang C, Yang C, Yan L (2014) Alcohol consumption and risk of metabolic syndrome: a meta-analysis of prospective studies. Clin Nutr 33(4):596–602. https://doi.org/10.1016/j.clnu.2013.10.003

    Article  PubMed  Google Scholar 

  83. Tresserra-Rimbau A, Medina-Remón A, Lamuela-Raventós RM, Bulló M, Salas-Salvadó J, Corella D et al (2015) Moderate red wine consumption is associated with a lower prevalence of the metabolic syndrome in the PREDIMED population. Br J Nutr 113(Suppl 2):S121–S130. https://doi.org/10.1017/S0007114514003262

    Article  CAS  PubMed  Google Scholar 

  84. Freiberg MS, Cabral HJ, Heeren TC, Vasan RS, Curtis ER, Survey TNHaNE (2004) Alcohol consumption and the prevalence of the Metabolic Syndrome in the US: a cross-sectional analysis of data from the third national health and nutrition examination survey. Diabetes Care 27(12):2954–2959. https://doi.org/10.2337/diacare.27.12.2954

    Article  PubMed  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Baratta.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Human and animal rights

Due to the review nature of the manuscript no human and animal rights statements are needed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topical Collection “T.C.: GUT inflammation in human health and disease” Relationship between Gut Inflammation and Human Health Editors: Prof. Rachele Ciccocioppo (Verona, Italy) & Piero Portincasa (Bari, Italy).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelico, F., Baratta, F., Coronati, M. et al. Diet and metabolic syndrome: a narrative review. Intern Emerg Med 18, 1007–1017 (2023). https://doi.org/10.1007/s11739-023-03226-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-023-03226-7

Keywords

Navigation