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Abstract:  

Tesauro’s TD-Gammon was the first major success of machine learning and artifi-

cial intelligence in general, when it demonstrated world-class performance against the hu-

man backgammon champion of that time. Even more impressively, the method used re-

quired little expert knowledge, relying on self-playing and training neural networks using 

reinforcement learning. However, apart from standard backgammon, several – yet unex-

plored – variants of the game exist, which use the same board, number of checkers and 

dice, but have different rules for moving the checkers, starting positions or movement di-

rection.  

In this thesis we focus our research on three such popular variants in Greece and 

neighboring countries, named Portes, Plakoto, and Fevga (collectively called Tavli). Mo-

tivated by the successful methods of TD-Gammon, we extend and devise new reinforce-

ment learning methods for building artificial intelligent agents and show that expert-level 

play can also be achieved in these games. All the resulting agents created in this thesis are 

packaged in a freely available program, PALAMEDES, where everyone can play against 

the AI. To test the effectiveness of our approach, PALAMEDES participated in two back-

gammon Computer Olympiads, in 2011 and 2015, with opponents some of the best back-

gammon-playing programs in the world, emerging victorious in both of them.  

Additionally, we used the trained agents and self-play experiments to analyze key 

characteristics of these games for the first time, identifying one major flaw in the Fevga 

variant. The resulting statistics are then used to devise better strategies when playing in a 

match setting. 

 Finally, in order to facilitate later research efforts, we devised a framework called 

bcdGammon for reducing/extending the complexity of backgammon games, preserving the 

key characteristics of the originals.  
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CHAPTER 1:  INTRODUCTION 

Games have proven to be an ideal domain for the study of artificial intelligence, as 

not only are they fun to play and interesting to observe, but they also provide competitive 

and dynamic environments that model many real-world problems. Additionally, having 

increased their popularity in recent years, games are now a major part of the entertainment 

and software industry and an important cultural phenomenon. Methods from artificial in-

telligence promise to have a big impact on game technology and development, assisting 

designers and developers and enabling new types of computer games.  

1.1 Artificial Intelligence in Games 

Since the beginnings of Artificial Intelligence as a subfield of computer science, 

games have played an important role as a testing environment for the various algorithms, 

providing a much harder challenge than it is typically used in computer science research, 

the so called “toy problems”. Moreover, due to familiarity of games to the general public, 

strong game-playing programs generated publicity, especially when the derived systems 

won matches against the best human opposition.  

Over the decades of game AI research, there are many examples of high-perfor-

mance game-playing systems. The first successful example was the checkers program Chi-

nook, that managed to win the world’s champion checker player in 1994 (Schaeffer, 1997). 

TD-Gammon, a program that played backgammon was the next to reach world champion-

ship level. Even it did not win a human champion in its several matches against human 

experts, later analysis showed that it played better than its human opponents (Tesauro, 

2002). In 1997 Logistello, a program that played Othello, defeated Takeshi Mukarami, the 

human world Othello champion (Buron, 1998). In 1998, Maven, a scrabble playing pro-

gram defeated scrabble grandmaster Adam Logan 9 – 5 (Sheppard, 2002). 

An important milestone in game AI research was IBM’s Deep Blue (Campell, 

Hoane Jr, & Hsu, 2002), the chess machine that defeated then-reigning World Chess Cham-

pion Garry Kasparov in a six-game match in 1997. In the years following this important 

match, human grandmasters had some success by managing to draw several matches in 
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(KramniK-Deep Fritz 4-4 (2002), Kasparov-Deep Junior 3-3 (2003), Kasparov-X3D Fritz 

2-2 (2003)). However, after 2005 and the loss of grandmaster Michael Dams to Hydra 5.5-

0.5, and the rematch Kramnik-Deep Fritz 2-4, the superiority of the machine was obvious. 

Nowadays, matches between humans and computers are still played – just not on equal 

terms anymore. Computer programs play with odds, by giving the human player some kind 

of advantage. 

Recently, as computer resources grow, there have been several efforts that suc-

ceeded in solving complex games. Most notable achievements were the solving of Check-

ers (Schaeffer, et al., 2007) and Cepheus (Bowling, et al., 2015), a program that plays a 

variant of poker called heads-up limit Texas hold’em essentially perfectly.  

1.2 The Problem 

While many games have been studied extensively by Computer Science and Arti-

ficial Intelligence scientists, many more exist that are still unexplored. In this thesis, a fam-

ily of still unexplored games will be examined, the variations of backgammon that are 

popular in Greece, Portes, Plakoto, Fevga, collectively called Tavli. Since Portes is similar 

to standard backgammon, a game that expert playing programs such as the aforementioned 

TD-Gammon exist, we will focus most of the research to other two games. 

Concretely, the main research questions of this thesis are the following: 

Question 1: Can strong game-playing agents be built that can play at expert level 

the backgammon variants popular in Greece (Tavli – Portes, Plakoto, Fevga)? 

Question 2: Can the learning algorithms and training setups be improved in order 

to enable AI agents to learn to play backgammon games effectively by self-play? 

After successfully building an expert AI agent we will then try to answer the fol-

lowing secondary research question: 

Question 3: Can the expert agents be used to extract useful characteristics of the 

games? 
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1.3 Contribution 

During the research for this thesis, the following contributions have been made: 

A. Publications and Poster Presentations 

Papahristou, N., & Refanidis, I. (2011). Training Neural Networks to Play 

Backgammon Variants Using Reinforcement Learning, Proceedings of Evogames 

2011, EvoApplications 2011, Part I, LNCS 6624, (pp. 113-122). Springer. 

Papahristou, N., & Refanidis, I. (2012a) Improving Temporal Difference Per-

formance in Backgammon Variants, 13th Advances in Computer Games Confer-

ence (ACG 2011), Tilburg, The Netherlands, November 20-22, 2011, LNCS 7168, 

(pp 134-145). Springer. 

 Papahristou, N., & Refanidis, I. (2012b) On the Design and Training of Bots 

to Play Backgammon Variants, 8th IFIP WG 12.5 Artificial Intelligence Applica-

tion and Innovations Conference (AIAI 2012), Halkidiki, Greece, September 27-

30, 2012, Proceedings, Part I, Volume 381/2012, (pp 78-87). Springer. 

Papahristou, N., & Refanidis, I. (2013) AnyGammon: Playing Backgammon 

Variants Using Any Board Size, Entry at the Research and Experimental Festival 

of the 8th International Conference on the Foundations of Digital Games (FDG 

2013), Chania, Crete, May 2013, (pp. 410-412).  

Papahristou, N., & Refanidis, I. (2014) Opening Statistics and Match Play for 

Backgammon Games, 8th Hellenic Conference on Artificial Intelligence (SETN 

2014), Ioannina, Greece, LNCS 8445, (pp 569-582). Springer. 

Papahristou, N., & Refanidis, I. (2015) Constructing Pin Endgame Databases 

for the Backgammon Variant Plakoto, 14th Advances in Computer Games Confer-

ence (ACG 2015), Leiden, The Netherlands, to be published by Springer. 

B. Software 

 Palamedes (Chapter 6) 

(http://ai.uom.gr/nikpapa/Palamedes/) 

 AnyGammon (Section 2.1.6.3) 

(http://ai.uom.gr/nikpapa/AnyGammon/) 

C. Competitions 

 1st place and gold medal in the 16th Backgammon Computer Olympiad at Til-

burg, The Nederlands, organized by the International Computer Games As-

sociation (ICGA) from 18 November to 26 November 2011 (International 

Computer Games Association, 2011). 

http://ai.uom.gr/nikpapa/Palamedes/
http://ai.uom.gr/nikpapa/AnyGammon/


 

 

 

 21 

 1st place and gold medal in the 18th Backgammon Computer Olympiad at Lei-

den, The Nederlands, organized by the International Computer Games Asso-

ciation (ICGA) from 29 June to 6 July 2015 (International Computer Games 

Association, 2015). 

1.4 Outline 

This thesis is outlined as follows:  

Chapter 2 describes the necessary theoretical background. Section 2.1 describes the 

rules of all the backgammon variants discussed in this thesis. We also present a framework, 

called bcdGammon, which generalizes the backgammon games. Section 2.2 gives an over-

view of the reinforcement learning field. Reinforcement learning is a huge field, so a subset 

of its algorithms, the ones most related to this work, is presented. 

Chapter 3 describes the self-play training procedure we used to train Neural Net-

works to play tavli games at expert level. We describe all our attempts to create intelligent 

agents in detail, compare different training setups and the rational about which features are 

important to include for successful learning. 

In Chapter 4, the expert-playing agents constructed in the previous chapter are used 

in Monte-Carlo simulations, to extract useful statistics about the games. The distribution 

of the outcomes, the gammon rate and the first player advantage are some interesting char-

acteristics of the games that are measured. These statistics are then used to enhance the 

match strategy of our agents. 

Chapter 5 shows the construction of pin endgame databases for the game of plakoto. 

These databases generalize a huge amount of states to only a few million records. When 

they are utilized in our program, it is shown that the play of the plakoto agent is improved. 

In Chapter 6 we describe the program that includes all the research done in this 

thesis, Palamedes. Palamedes is a program that provides an attractive user interface for 

everyone to play against the AI in the tavli and other variants. In this chapter, the two 

participations of Palamedes in backgammon competitions leading in two gold medals are 

also discussed. 
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Finally, Chapter 7 concludes the thesis and avenues of future work are presented. 
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CHAPTER 2: BACKGROUND 

2.1 Rules of backgammon variants 

This section presents the rules of all the backgammon variants encountered in this 

thesis. The main target of this thesis are the variants that are popular in Greece, Portes, 

Plakoto, and Fevga, collectively called Tavli. Several other variants are also mentioned, 

when we attempt to explain some of our findings. All backgammon games are played on a 

board consisting of 24 triangles also called points divided in 4 quadrants of 6 points each.  

Figure 2.1: Backgammon board 

The following rules are common in every variant examined in this thesis: 

Each player starts the game with a number of pieces at his disposal, commonly 

called checkers (usually 15), placed in fixed starting positions.  

The players take turns playing their checkers using an element of chance in the form 

of two six-sided dice according to the game rules. After rolling the dice, players must, if 

possible, move their checkers according to the number shown on each die. For example, if 
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the player rolls a 5 and a 4 (notated as "5-4" or “54”), the player must move one checker 

five points forward and another or the same checker four points forward. The same checker 

may be moved twice, as long as the two moves can be made separately and legally: five 

and then four or four and then five. If a player rolls two of the same number, called doubles, 

that player must play each die twice. For example, a roll of 3-3 allows the player to make 

up to four moves of three spaces each. On any roll, a player must move according to the 

numbers on both dice, if it is at all possible to do so. If one or both numbers do not allow 

a legal move, the player forfeits that portion of the roll and his/her turn ends. If moves can 

be made according to either one die or the other, but not both, the higher number must be 

used. If one die is unable to be moved but such a move is made possible by the moving of 

the other die, that move is compulsory. 

When all the checkers of a player are inside his last quadrant of the board (called 

the home board), he can start removing them; this is called bearing off. The player that 

removes all his checkers first is the winner of the game.  

If one player has not borne off any checkers by the time that player's opponent has 

borne off all fifteen, then the player has lost a double game (or gammon in standard back-

gammon terminology), which counts for double a normal loss or two points. Otherwise, 

the win is called “single” and is worth one point. 

2.1.1 STANDARD BACKGAMMON 

Standard backgammon is the most commonly used backgammon game in the west-

ern world. Widely known as just “backgammon”, we use the naming “standard backgam-

mon” in this thesis in order to distinguish the game more easily from other variants which 

we may generally call “backgammon games” or “backgammon variants”. The following 

description of the rules is taken by the Wikipedia entry on backgammon (2015). 

2.1.1.1 Setup and direction of movement 

Each player begins with fifteen checkers, two are placed on their 24-point, three on 

their 8-point and five each on their 13-point and their 6-point. The two players move their 

checkers in opposing directions, from the 24-point towards the 1-point. Points 1 through 6 
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are called the home board or inner board and points 7 through 12 are called the outer board. 

The 7-point is referred to as the bar point and the 13-point as the midpoint. 

Figure 2.2: Starting position of standard backgammon and Portes 

2.1.1.2 Movement rules 

To start the game, each player rolls one die and the player with the higher number 

moves first using the numbers shown on both dice. If the players roll the same number, 

they must roll again. The players then alternate turns, rolling two dice at the beginning of 

each turn. 

In the course of a move, a checker may land on any point that is unoccupied or is 

occupied by one or more of the player's own checkers. It may also land on a point occupied 

by exactly one opposing checker or "blot". In this case, the blot has been "hit" and is placed 

in the middle of the board on the bar that divides the two sides of the playing surface. A 

checker may never land on a point occupied by two or more opposing checkers.  

Checkers placed on the bar must re-enter the game through the opponent's home 

board, before any other move can be made. A roll of 1 allows the checker to enter on the 
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24-point (opponent's 1), a roll of 2 on the 23-point (opponent's 2), and so forth, up to a roll 

of 6 allowing entry on the 19-point (opponent's 6). As in regular movement, checkers may 

not enter on a point occupied by two or more opposing checkers. More than one checker 

can be on the bar at a time. A player may not move any other checkers, until all checkers 

on the bar belonging to that player have re-entered the board. If a player has checkers on 

the bar, but rolls a combination that does not allow any of those checkers to re-enter, the 

player does not move.  

When all of a player's checkers are in that player's home board, that player may 

start removing them; this is called "bearing off". A roll of 1 may be used to bear off a 

checker from the 1-point, a 2 from the 2-point and so on. A die may not be used to bear off 

checkers from a lower-numbered point, unless there are no checkers on any higher points.  

If the losing player has not borne off any checkers and still has checkers on the bar 

or in the opponent's home board, then the player has lost a triple game (or backgammon in 

standard backgammon terminology), which counts for three times a normal loss or three 

points. 

2.1.1.3 The doubling cube 

To speed up match play and to provide an added dimension for strategy, a doubling 

cube is usually used. The doubling cube is not a die to be rolled but rather a marker with 

the numbers 2, 4, 8, 16, 32 and 64 inscribed on its sides to denote the current stake. At the 

start of each game, the doubling cube is placed on the bar showing number 64; the cube is 

then said to be "centered, on 1". When the cube is centered, the player about to roll may 

propose that the game be played for twice the current stakes. Their opponent must either 

accept ("take") the doubled stakes or resign ("drop") the game immediately. 

Whenever a player accepts doubled stakes, the cube is placed on their side of the 

board with the corresponding power of two facing upward, to indicate that the right to re-

double belongs exclusively to the player who last accepted a double. If the opponent drops 

the doubled stakes, he loses the game at the current value of the doubling cube. Although 
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64 is the highest number depicted on the doubling cube, the stakes may rise to 128, 256 

and so on, though in expert play rarely does the cube exceed 4.  

The doubling cube is a rule that was added in the 1930’s in New York City. In order 

to take accurate doubling decisions, players must calculate the probabilities of winning/los-

ing the game accurately, adding another strategy layer to the checker play. While it is used 

almost all the time in standard backgammon, the doubling cube is not used in other back-

gammon variants (with the exception of hypergammon). 

2.1.2 PORTES 

Portes is the first backgammon variant played in a tavli match. The starting position 

is the same with standard backgammon (Figure 2.2) and most of the rules are the same with 

the following exceptions: 

 The winner of the opening roll rerolls for his first turn. Thus, unlike standard back-

gammon, a double roll is possible on the first move. 

 The winner scores one point for a normal win and two points for a double win. 

There is no triple wins. 

 There is no doubling cube. 

2.1.3 PLAKOTO 

The key feature of game Plakoto is the ability to pin hostile checkers, in order to 

prevent opponent movement. The general rules of the game are the same as Portes apart 

from the procedure of hitting. Players start the game with fifteen checkers placed in oppos-

ing corners and move around the board in opposite directions, till they reach the home 

board which is located opposite from the starting area (Figure 2.3). 

When a checker of a player is alone in a point, the opponent can move a checker of 

his own in this point thus pinning (or trapping) the opponent’s checker. This point counts 

then as a made point as in standard backgammon, which means that the pinning player can 

move checkers in this point, while the pinned player cannot. The pinned checker is allowed 

to move normally only when all opponent pinning checkers have left the point (unpinning).  
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Figure 2.3: Starting position and direction of play in the Plakoto variant 

Bearing off is done as usual with the following exception: bearing off is not per-

mitted, if the opponent has one pin or more inside the player’s home board. In other words, 

a player can be permitted to bearoff any of his checkers only when all his checkers inside 

his home board are pin-free. 

The 24-point or the starting point is called the mother point. If a checker in this 

point gets pinned by the opponent, the game is over and you lose two points. The only 

exception is, if the opponent still has checkers on his starting point, since in this case his 

own mother is still threatened. A game in which both mothers are pinned is a tie. 

2.1.3.1 Tapa subvariant 

An interesting variation of Plakoto is the Tapa variant where the rules are exactly 

the same with Plakoto except for the initial checker placement: instead of placing all check-

ers in the last point the checkers are equally distributed in the last three points (5 checkers 

for each point (Figure 4). The change seems small, but has significant effect on important 

characteristics such as gammon rate and first player advantage (Chapter 5).   
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Figure 2.4: Starting position of the tapa variant 

2.1.4 FEVGA 

The main difference of Fevga from the other games is that there is no pinning or 

hitting. If the player has even a single checker in one point, this point counts as a made 

point, effectively preventing the movement of the opponent’s checkers in this point. Each 

player starts with fifteen checkers on the rightmost point of the far side of the board, at 

diagonally opposite corners from each other, whereas the two players move to the same 

direction (Figure 5).  

The game begins with a starting phase, where the players must move only one 

checker, until it passes the opponent’s starting point, before they may move any other of 

their checkers. The formation of primes (six consecutive made points) is easier in this 

game, because a made point can be constructed using a single checker. The formation of 

primes has the following exceptions: 

1. No player can form a prime in his starting quadrant.  
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2. No player can form a prime immediately in front of the opponent’s starting 

point1.  

Figure 2.5: Starting position of the Fevga variant 

 

Finally, it is not permitted to completely block the opponent (no-blocking rule). 

This means that for a move to be allowed, there must exist a dice roll that the opponent can 

use to move at least one checker2. 

As in Portes and Plakoto, triple games and the doubling cube do not exist. 

                                                 

 
1 Rules 1 and 2 are not enforced in all Greek regions. Fevga in some regions is played with no prime ex-

ceptions, while in some others only the first exception is used. Because primes are powerful, we prefer to 

apply both exceptions in order to give more chances to the defending player to avoid getting primed. How-

ever, after analyzing all possible combinations, we concluded that enforcing 1 and/or 2 rule did not change 

the characteristics of the game in a statistically significant way. 
2 Sometimes the moving player that has completely blocked his opponent does not have a legal move to un-

block the opponent. In this very rare situation, the player is allowed to play any legal move and play contin-

ues as usual (i.e. the opponent remains completely blocked).   
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2.1.5 MODES OF PLAY 

2.1.5.1 Money Game 

A money game is a style of competition where games are played individually and 

the participants bet on the result. At the end of each game the loser pays the winner the 

agreed initial stake multiplied by 2, if the result was a double win, or 3, if the result was a 

triple win. If the doubling cube is used, then the stake is further multiplied by the value of 

the doubling cube at the end of the game. From a game-theoretic point of view, a money 

game is like playing a match with infinite length. Unless otherwise stated, the experiments 

performed in this thesis are done under a money game mode; that is the agents try to max-

imize the result of the current game. 

2.1.5.2 Match Play 

This is the most common mode of competition used in tournaments on the internet 

and in casual play. The opponents play a series of games, until one of them reaches a pre-

determined number of points. Points (1, 2 or 3) are awarded normally after the end of each 

individual game (multiplied by the doubling cube in standard backgammon). The termi-

nology used is “n-point match”, which means that a player wins, when he acquires n points. 

The most popular match types used are the 7-point matches and 5-point matches because 

of the relative small amount of time needed to finish. In important competitions like cham-

pionships, where the effect of luck needs to be reduced, longer matches are usually played 

(15-point or 19-point). 

2.1.5.3 Tavli  

In Greece, the most popular way of playing backgammon games is a Tavli match 

(Figure 2.6), where Portes, Plakoto and Fevga are played one after the other, until a player 
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reaches a predefined number of points. Using the rules described in match play, one could 

also play a Plakoto match or a Fevga match, but this is a very rare proposition in Greece.  

  

 

Figure 2.6 Flow of a typical Tavli match.  

2.1.5.4 First player resolution 

As it was shown earlier, in standard backgammon the first player to move is deter-

mined by the result of single die roll. The result of this roll is also used for the first dice 

roll of the game. This rule is applied before the start of each money game or, when playing 

a standard backgammon match, before the start of each individual match game. In a Tavli 

match, however, there are the following changes: 

a) In the first game, the player that won the initial die roll rerolls again to begin 

his first turn.  

b) After the first game, the winner of the previous game goes first.  

These two match rules essentially permit doubles as the first roll on any tavli game, 

something that is not happening in standard backgammon matches. Disallowing a doubles 

as a starting roll, as we will see in chapter 5, has a positive effect in reducing the advantage 

of the first player. 
2.1.6 EXTENDING BACKGAMMON TO ARBITRARY BOARD SIZES 

Like other popular board games such as chess and go, backgammon has been stud-

ied with great interest by computer scientists. While game AI for standard backgammon 

has reached world-class strength (Tesauro, 2002), as it will be shown in chapter 3, the same 

claim cannot be stated for other variants i.e. Narde, Plakoto, Fevga, Acey-Deucey.  
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A popular method for developing, troubleshooting and understanding any game 

evaluation function in board games is to try it out first in smaller board sizes. For example 

in Go, apart from the standard 19x19 board, the game can be played at any board size, with 

9x9 and 13x13 being the most popular ones. Standard practice for AI Go programmers is 

to start developing their algorithms in smaller board sizes like 9x9 and upscale from there. 

Furthermore, small board sized games (like 5x5 Go) can be solved more easily, giving an 

additional evaluation tool for the developers (van der Werf, & Winands, 2009).   

In this section we attempt to reduce/extend the complexity of backgammon games 

in a consistent way. Previously, the only other attempt to simplify the backgammon games 

is the hypergammon variant (Keith, n.d.) that uses the same board size as standard back-

gammon but only 3 checkers for each opponent. The resulting game is simple enough in 

order to be strongly solved (Fang, Glenn, & Kruskal, 2008), but does not offer the strategic 

elements found in the original. In contrast, our underlying framework not only captures the 

key elements of the games in reduced versions, but also can easily extend the game into 

virtually any board size.  

Another extendible game worth mentioning is Nannon (Pollack, 2005). This game 

is played on a backgammon board and can be extended on the number of checkers and the 

number of points on the board. However, the rules for moving the checkers are much dif-

ferent from the typical backgammon games (e.g. the player cannot stack checkers on a 

point) making the strategies required completely different. Another drawback of Nannon 

is that it uses a single six-sided die in all configurations, thus prohibiting the study of the 

effects of different chance events. 

2.1.6.1 The bcdGAMMON Framework 

In this section we present bcdGammon, a framework for full parameterization of 

all key characteristics of a backgammon game. The name of the framework is inspired by 

its three core parameters, b, c, d:  

b: is the total number of points on the board,  

c: the number of available checkers for each player, and  
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d: the maximum number available when rolling a die. 

Figure 2.7: Screenshots of AnyGammon showing playable backgammon configurations. Upper 
Left: b=8, c=5, d=2, Upper middle: b=16, c=10, d=4, Upper right: b=24, c=15, d=6 (Standard 

backgammon), Lower left: b=32, c=19, d=8, Lower right: b=40, c=23, d=10 

For example, parameterizing backgammon with b=16, c=10, d=4, named in short 

Backgammon(b=16, c=10, d=4) or Backgammon(16, 10, 4), results in a board with 16 

points (4 for each quadrant), 10 checkers for each player and 4-sided dice (Figure 2.7, upper 

middle).  

Theoretically, any number can be assigned to the three parameters, as far as b>3, 

c>0, d>1. In practice, and in order to preserve the look-and-feel of the original games, 

additional constraints should be added: b mod 4 = 0 and d = b/4. The former constraint is 

necessary in order to retain the look of the board as four quadrants; otherwise, the board 

must be represented in a straight line and additional rules regarding the home board must 

be added. The latter constraint is needed in order to preserve the strategic elements of the 

original games. We are not certain what would happen, if d is different from b/4, so we 

leave this investigation for future work. In all configurations, two dice are used as in the 
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original games. Most backgammon games examined in this thesis (standard backgammon, 

Portes, Plakoto, Fevga etc) can be considered a subset of the bcdGammon framework 

where b=24, c=15, d=6. 

Another crucial element of backgammon variants is the initial position. For some 

variants like Fevga and Plakoto, all checkers are placed in the starting point, so there is no 

problem in adapting any version of bcdGammon. Standard backgammon, however, has a 

specific placement of the checkers at the start of the game. In all configurations supported, 

we adjusted the initial position to resemble standard backgammon. 

2.1.6.3 AnyGammon: A program that supports the bcdGammon framework 

In order to promote and support the bcdGammon framework, we authored 

AnyGammon (Figure 2.8), a game where players can play backgammon variants against 

the computer. Currently, supported game types are the tavli games (Portes, Plakoto and 

Fevga) but the goal of this project is to support dozens of backgammon variants. The pro-

gram is available for free and can be downloaded from http://ai.uom.gr/nik-

papa/AnyGammon. Currently the program runs on the Windows operating system and on 

Android devices (https://play.google.com/store/apps/details?id=gr.uom.ai.nikpapa. 

anygammon). AnyGammon was showcased at the FDG-2013 Research and Experiment 

Festival. 

Players start a game in AnyGammon by selecting the key parameters of the game: 

game type, b, c, d. Currently, supported game types are Portes, Plakoto and Fevga variants. 

The goal of this project is to support dozens of backgammon variants. Notable variants 

planned for the immediate future are Narde, a variant similar to Fevga that is popular in 

Russia, and Acey-Decuey, a variant popular within the US military personnel. All games 

are played without the doubling cube; we plan to support this in future updates. 

https://play.google.com/store/apps/details?id=gr.uom.ai.nikpapa.%20anygammon
https://play.google.com/store/apps/details?id=gr.uom.ai.nikpapa.%20anygammon
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Figure 2.8: Screenshot of AnyGammon windows version 

We placed several restrictions to the b and d parameters: board size (b) is restricted 

to a maximum of 40 points in increments of four and maximum number on the dice (d) is 

always b / 4. The number of checkers is also limited to a maximum of 30. Under these 

restrictions the player can select between 3x9x30=810 possible configurations at the start 

of a game. We plan to lift these restrictions, once we have fully investigated all aspects of 

these parameters. 
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2.1.6.4 AI agents used in AnyGammon 

The AI of AnyGammon is currently in its initial stages. The user can select between 

two simple Monte Carlo methods, FlatMC and FlatUCB (Browne, et al., 2012), as well as 

the thinking time in seconds per move. Monte Carlo methods were chosen because of their 

simplicity and the easy application to all available configurations without parameterization. 

These methods can be further enhanced by inserting heuristic rules to the simulation spe-

cific to each variant. We are also planning to compare many algorithms such as the NN 

which is very popular in backgammon software, the NN methods we propose in chapter 4, 

and MCTS/UCT (Coulom, 2006), currently the dominant method in Go computer pro-

grams (Browne, et al., 2012). Finally, we want to investigate methods for transferring game 

evaluation functions learned for small boards to large boards and vice-versa.  

2.1.6.5 Contribution and future work 

The bcdGammon was created primarily for research purposes as a testbed for game 

AI.  Small board sizes make it easier to analyze algorithms and game evaluation functions. 

Large board sizes make the original games more challenging and interesting for the players. 

Especially for the smaller configurations, we believe that bcdGammon will be of great 

importance in solving the full game for the following reason: Because backgammon games 

are not deterministic, every attempt to solve them requires to determine the minimum 

amount of precision that will be needed to store the floating point values in a database. 

Minimum precision is critical to reduce the memory requirements of the resulting database.  

This approach was used by (Bowling, et al., 2015) in the solving of the card game Heads-

Up Limit Hold’em (HULFE), when another smaller card game was used (Rhode island 

poker) first to determine the optimal amount of precision both for reducing disk space and 

for best performance of the solving algorithm. A similar approach can be used for solving 

the game of standard backgammon: first one can try a solving algorithm in smaller 

bcdGammon setups (e.g. b=16 or b=20), and then use the tuned precision parameter to 

solve the full game.  
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2.2 Reinforcement Learning 

Reinforcement Learning (RL) is an area of Machine Learning (ML) itself, a sub-

field of Artificial Intelligence (AI) and Computer Science (CS). Initially, inspired by be-

haviorist psychology, RL essentially gives a computational system where software agents 

learn behaviors in an environment under some notion of cumulative reward. This reward 

can be anything the agent deems valuable. Examples of reward in computer games reward 

are the eating of dots in pacman, the killing of an enemy in first person shooter games or 

the winning of a game in board games such as chess or backgammon. 

The ultimate goal of RL research is to find ways to program “smart” agents without 

having necessarily knowledge of the environment, by giving them only rewards and pun-

ishments, and by making them react efficiently to environmental changes. In other words, 

learning in RL should be done using trial and error, having constant interaction with the 

environment. In recent years, RL has been given a lot of focus, because of the large number 

of practical applications that it can be used to address.  

This chapter gives a brief overview of RL, focusing mainly on its main algorithms, 

the temporal difference type of algorithms, because these algorithms are used to construct 

backgammon evaluation function in later chapters. The presentation of these algorithms 

follows mainly (Sutton & Barto, 1998) and (Szepesvari, 2010), which we consider the main 

background references for RL. Obviously, an attempt of presenting the key concepts will 

be made having game applications in mind, and in particular, backgammon. 
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2.2.1 CORE ELEMENTS 

The core elements found in RL problems are: 

The agent is the learner and the decision-maker.  

The environment is everything else outside the agent. An agent interacts continually 

with the environment by executing actions and the environment responds by presenting 

new information to the agent. 

The policy that defines how the agent acts at any given moment. Policy is just a 

mapping of all the states of the environment to actions that can be executed in those states. 

In simple cases, a policy can be expressed with a lookup table; for example the game tic-

tac-toe has 765 possible different positions, so a policy can be easily created by means of 

a table. However, real-world problems have huge amount of states that cannot be mapped 

in a table. In games, chess, backgammon and go are some examples with huge state spaces 

that are impractical to use tables.  

The reward function is a critical element, because it defines the goal of the agent. 

It maps every state of the environment to a number, the reward, that determines how de-

sirable is to the agent to be in this position. The goal of the agent is to maximize its long-

term reward. In board games such as backgammon, the only reward that the agent gets is 

in the end of the game (terminal positions); for backgammon games this reward is usually 

+1 for a single win, +2 for a double win, -1 for a single loss and -2 for a double loss (and 

for standard backgammon +3, -3 for triple wins and losses respectively). 

The value function shows the value of a state (or state-action pair) with respect to 

the cumulative perceived future rewards from the current state onwards. Contrast to the 

reward function that shows the imminent gain or loss, the value function shows if the state 

is good or bad long-term. A state can yield low reward, but still can have a high value, 

because there will be a following sequence of states that will give high reward. In game AI 

the value function is usually called game evaluation function, but has essentially the same 

definition: it is a value that determines how good or bad a state is with respect to the final 

outcome. In backgammon games another term for the value function is equity and is a 

number in the [-2, 2] interval ([-3, 3] in standard backgammon). 
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Finally, the environment model is a function that takes the current state and an ac-

tion as inputs and returns the next state (also called afterstate) and the reward. Most RL 

algorithms target problems where the model of the environment is unknown, but they can 

also be used in environments where the model is usually known such as computer games.  

 

Figure 2.9: The Reinforcement Learning Framework (Sutton & Barto, 1998, pp. 71) 

2.2.2 MARKOV DECISION PROCESS 

RL problems are usually modelled as Markov Decision Processes (MDP) (Puter-

man, 1994). An MDP can be described as a quadruple {S, A, T, R}. S is a set of environment 

states, (S1, S2, … ST), A is a set of actions available to the agent, with the subset of actions 

applicable to state s denoted as A(s). T is a transition function, P(s, a, s’), which gives the 

probability of moving from state s to some other state s’, provided that action a was chosen 

in state s. Transitions can be deterministic or non-deterministic. Finally, R is a reward func-

tion R: S ↦ ℝ, maps every possible state of the environment to a real number. 

At each time t, the agent being in st  S chooses an action at A(st), where A(st) is 

the set of available actions in st, perceives the new state st+1 and receives the reward rt=R(st, 

a, st+1). Based on these interactions the goal of the agent is to choose a behavior that max-

imizes the expected return. The expected return for MDPs can be defined as Rt =

∑ 𝛾𝑘𝑟𝑡+𝑘+1
𝛵

𝑘=0
,  , where 0 ≤ γ ≤ 1 is the discount rate.  There is the possibility that T=∞ 

(for continuing tasks) or γ=1 but not both. The discount is necessary for continuing tasks, 

because in an infinite time horizon the sum of rewards can be infinite. Tasks that terminate 
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are called episodic tasks. In episodic tasks the agent usually tries to maximize the mean of 

the sum of rewards for every episode. 

A desired property of state representations is to retain all relevant information lead-

ing up to the current point of time, in order for the agent to be able to make a correct 

decision for the future. A state having this property is called Markov or having the Markov 

property. In the game of backgammon for example, we can have backgammon positions 

of the board as states. A backgammon position has the Markov property, because we do 

not need any other information in order to determine the best course of action successfully. 

The moves that led to the current position need not be retained so are irrelevant.  

2.2.3 VALUE FUNCTIONS 

The success of an agent following a policy π depends on how much more reward 

can be accumulated in the long run. The optimal policy π* is a policy that maximizes the 

expected return. A RL algorithm tries to optimize its policy so as to come as close as pos-

sible to the optimal policy π*. 

Instead of trying to directly find the optimal policy π* a class of RL algorithms try 

to calculate first a value function and then extract the policy using this function. Value 

functions can be defined for states or for state-action pairs. 

A value function V: S ↦ ℝ, maps a state to a real number value which expresses 

the expected return of the agent in a state, when it follows policy π from the current point 

of time onwards: 

𝑉𝜋(𝑠) =  𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠} = 𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+1 
∞

𝑘=0
| 𝑠𝑡 = 𝑠}  

Another way of using value functions is state-actions pairs, Q: S x A ↦ ℝ. These 

values are usually called Q-values and similarly to state values, express the expected return 

of an agent in a state s, that makes action a, and follows policy π afterwards:  

𝑄𝜋(𝑠, 𝑎) =  𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} = 𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+1
∞

𝑘=0
| 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎}  

Qπ(s,a) is called action-value function for policy π. 
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In order to find an optimal policy π, the agent can learn either the optimal Q* or the 

optimal V*. A policy π is better than another policy π’, if and only if Vπ (s) ≥ Vπ’(s) for 

every state. All optimal policies share the same optimal value function:  

𝑉∗(𝑠) =  max
𝜋

𝑉𝜋(𝑠)  

Similarly, the optimal policies have the same optimal action-value function: 

𝑄∗(𝑠, 𝑎) =  max
𝜋

𝑄𝜋(𝑠, 𝑎)  

2.2.4 BASIC REINFORCEMENT LEARNING METHODS 

We will examine the following methods for solving the reinforcement learning 

problem: Dynamic Programming (DP), Monte Carlo (MC) and Temporal Difference 

Learning (TDL). DP methods need a complete model of the environment and are compu-

tationally expensive, but are well understood and offer the mathematical basis for many 

RL algorithms. MC methods are simple and do not require a model, but do not work well 

for step-by-step computation. Finally, TDL methods also do not need a model, are fully 

incremental, but are more complex to analyze. A little more emphasis is given to MC and 

much more to TDL, because these are the methods used in this thesis. 

2.2.4.1 Dynamic Programming 

DP is a family of algorithms for finding the optimal policies in a MDP given the 

model of the environment. Value functions are essential here for guiding the agent towards 

a good policy. We first start by finding the value function of a policy π  using the Bellman 

equation: 

𝑉𝜋(𝑠) =  ∑𝜋(𝑠, 𝑎)

𝑎

∑𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)],

𝑠′

 

where 𝑃𝑠𝑠′
𝑎  is the probability of the agent being in state 𝑠′,when it chooses action a in state 

s, and 𝑅𝑠𝑠′
𝑎  is the corresponding reward received.  

The Bellman equation is a recursive equation that defines a |S| simultaneous linear 

equations in |S| unknowns. A simple iterative method to find the optimal policy involves 
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two steps: a) starting from some random value function (say V0), we use the above equation 

iteratively to find Vπ, b) then in the second step, we improve the policy (𝜋′) choosing the 

best action that maximizes the value function:  

𝜋′(𝑠) =  𝑎𝑟𝑔max
𝑎

∑𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾𝑉𝜋′
(𝑠′)]

𝑠′

 

By alternating these two steps (policy evaluation and policy improvement) we are 

guaranteed to gradually improve the policy and eventually converge to the optimal policy. 

This algorithm is called policy iteration. 

 One drawback of policy iteration is that the policy evaluation step is a computa-

tional costly operation, because it needs many iterations in order to converge. If the policy 

evaluation step stops after only one sweep of the state space, then we have the value itera-

tion algorithm: 

𝑉𝑘+1(𝑠) =  max
𝑎

∑𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾𝑉𝑘(𝑠
′)]

𝑠′

 

More information about DP methods is available in (Bertsekas, 1995) and 

(Bertsekas and Tsitsiklis, 1996). 

2.2.4.2 Monte Carlo methods 

Contrary to DP methods, Monte Carlo methods do not need a full model of the 

environment; only a way of generating sample transitions and not the explicit model of 

transition probabilities. They utilize accumulated experience, i.e. sequences of states, ac-

tions and rewards. These sequences are frequently called trajectories or samples or simu-

lations. MC methods are based on the fact that we could estimate a state value by averaging 

the returns from observed visits to that state. As more returns are observed (i.e. more sam-

ples experienced), the average should converge to the expected value. 

For example, suppose we want to find Vπ(s), the value of state s under policy π. 

Under the MC method first visit Monte Carlo, the agent creates samples following policy 

π and for each time s is encountered, it records the return after the first encounter of s. 
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When the episode is finished, the returns are accumulated and the average of all the accu-

mulated rewards asymptotically converges to Vπ(s). The same algorithm can be applied to 

state-action (Q) values.  

2.2.4.2.1 Bandit-Based methods 

The term Monte Carlo is also often used for estimation methods involving random 

components. An important class of problems are bandit problems, where the agent must 

choose between n actions in order to maximize the cumulative reward over some time pe-

riod. The problem resembles slot machines, where a player would like to maximize his 

winnings having n slot machines at his disposal. If he knew which arm will give the best 

value, he will surely play only this one; without this knowledge, however, one must rely 

on previous observations. This leads to the exploration-exploitation dilemma: one needs to 

balance exploitation of the bandit currently believed to be optimal with the exploration of 

other bandits, which now appear suboptimal, but may turn out to be superior in the long 

run. 

Bandit-based methods aim to minimize the agent’s regret, in other words the ex-

pected loss due to not selecting the best bandit: 

𝑅 = 𝜇∗𝑛 − 𝜇𝑗 ∑𝐸[𝑇𝑗(𝑛)],

𝐾

𝑗=1

 

where 𝜇∗ is the best possible expected reward, n is the number of plays (simula-

tions) so far, K is the total number of arms and 𝐸[𝑇𝑗(𝑛)] is the expected selections of arm 

j in the first n trials. It is important to ensure that all bandits are sufficiently explored in 

order not to get stuck in a suboptimal arm that seems temporarily promising. In other 

words, it is important to place an upper confidence bound (UCB) on the rewards observed 

so far.  

The simplest UCB policy was proposed by Auer, Cesa-Bianchi, N., & Fischer, 

(2012) and is called the UCB1 policy, in which the arm j selected is the one that maximizes 

𝑈𝐶𝐵1 = 𝑋̅𝑗 + √
2 ln 𝑛

𝑛𝑗
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where 𝑋̅𝑗  is the average reward of move j, n is the number of times the parent of 

node j was traversed and nj is the number of times that j was selected. When the reward 

distribution is in the [0, 1] interval, this bound is guaranteed to be optimal. 

2.2.4.2.2 Monte Carlo Tree Search 

Building on the above algorithms, instead of only updating the values of our possi-

ble actions, one can build a tree of underlying state-actions towards the end of the episode. 

This is especially important in games where the sequence of actions can be expressed as a 

game-tree. This class of algorithms are Monte Carlo Tree Search Algorithms (MCTS) and 

have shown to be effective in several games (Arneson, Hayward, & Henderson, 2010; Lo-

renz, 2010; Winands, Björnsson, & Saito, 2010), most notably go (Gelly, 2007; Coulom, 

2007).  

The basic idea of the algorithm is to progressively build a partial tree/graph in 

memory, guided by the results of previous simulations. For each stored node, MCTS stores 

statistics of the simulations traversing that node, including at least the minimum of which 

are the total rewards gained and the visit count, i.e. the number of simulations that traversed 

that node.  

The following four steps are applied for each iteration of the algorithm iteratively: 

1) Selection: Starting from the root node, a child is recursively selected according 

to the selection policy, until a node is found that must be expanded. Nodes must be ex-

panded, if they are not terminal and have at least one child not in the tree.  

2) Expansion: One or more nodes are added to the tree at the end of the selection 

point. 

3) Simulation: A simulation (or playout) is run from the new node(s) according 

to a simulation policy, until a terminal state is reached, where we receive the total reward. 

The most trivial simulation policy is a uniformly random policy. 

4) Backpropagation: The reward is “backed up” through the selected nodes of the 

tree, to update their statistics. 
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2.2.4.2.3 MC algorithms for games 

In this thesis we utilize or refer to the following MC algorithms: 

 flat Monte Carlo: a Monte Carlo method with uniform move selection and no 

tree growth. 

 flat UCB: a Monte Carlo method with the bandit-based move selection UCB1 

but no tree growth. 

 MCTS: a Monte Carlo method that builds a tree to inform its policy online. 

 UCT: MCTS with any UCB tree selection policy. 

The above terminology is borrowed from (Browne, et al., 2012). 

2.2.4.3 Temporal Difference Methods 

Temporal Difference Learning (TDL) is a branch of algorithms that combines char-

acteristics from MC and DP methods. Like MC methods, TDL does not need the full model 

of the environment, just a way to extract experience (samples). Like DP methods, the up-

dates to the value function estimations are based in part on estimations of later steps (a 

process also called bootstrapping) without waiting for the episode to end.  

2.2.4.3.1 One step TDL methods 

The most commonly used TDL methods are the ones that base their updates on the 

estimation of the next step only. We will examine three such simple methods, TD(0), Sarsa, 

and Q-learning. 

In TD(0) the update rule is the following: 

𝑉(𝑠𝑡) ←  𝑉(𝑠𝑡) + 𝑎[𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1) −  𝑉(𝑠𝑡)], 

where 𝑠𝑡 is a state in time t and 0 < a ≤ 1 is a parameter called the learning rate. 

From the above equation it can be seen that TD(0) is using another estimate (𝑉(𝑠𝑡+1)) to 

update the current value. Specifically, the value that we want the value function to shift to 

is 𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1) term, also called the target of the update, and whole term 𝑟𝑡+1 +

𝛾𝑉(𝑠𝑡+1) −  𝑉(𝑠𝑡) is called the TD-error. Figure 2.10 presents the algorithm in pseudo-

code form: 
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V(s) ← Arbitrate initialization to the policy π  for all states 

a ← Initialize to a fixed learning rate 

γ ← Initialize to a fixed discount rate 

For each episode do 

 s ← Initial state 

 Repeat (for every step of the episode) 

     a ← action given by π  for s 

  Take action a  

  𝑠′ ← next state after taking action a  

  r ← reward observed after taking action a in state s 

  𝑉(𝑠) ←  𝑉(𝑠) + 𝑎[𝑟 + 𝛾𝑉(𝑠′) −  𝑉(𝑠)] 
  s ← 𝑠′ 

 Until s is terminal 

End For  

Figure 2.10: Tabular TD(0) for estimating Vπ 

The equivalent algorithm of TD(0) for state-action (Q) values is the SARSA (State 

Action Reward State Action) algorithm (Singh and Sutton, 1996). The update rule in 

SARSA becomes: 

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) −  𝑄(𝑠𝑡, 𝑎𝑡)], 
where 𝑠𝑡 is the state the agent is originally in time t, 𝑎𝑡 is the action selected in that 

time step and 𝑠𝑡+1 the state results in after the action 𝑎𝑡. The reward received is 𝑟𝑡+1 and 

the next action taken under the current policy is 𝑎𝑡+1. The Q value function is updated after 

each time step, towards the target:  𝑟𝑡+1 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) and the rate of learning is con-

trolled by parameter a. Figure2.11 presents the algorithm in pseudocode: 
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Q(s, a) ← Arbitrate initialization for all states-actions 

a ← Initialize to a fixed learning rate 

γ ← Initialize to a fixed discount rate 

For each episode do 

s ← Initial state  

a ←  selected action evaluating Q in s 

repeat 

  Take action a 

  𝑠′ ← next state after taking action a  

  r ← reward observed after taking action a in state s 

  a′← selected action evaluating Q in 𝑠′ 

𝑄(𝑠, a) ← 𝑄(s, a) + 𝛼[r + 𝛾𝑄(s′, a′) −  𝑄(s, a)] 
s ← s′ , a ←  a′ 

Until s is terminal 

End For 

Figure 2.11: Tabular Sarsa algorithm 

Another popular TDL algorithm for state-action value is the Q-Learning algorithm 

(Watkins, 1989; Watkins & Dayan, 1992). The update rule in this algorithm is:  

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 [𝑟𝑡+1 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎) −  𝑄(𝑠𝑡, 𝑎𝑡)] 

The term max
𝑎

𝑄(𝑠𝑡+1, 𝑎) denotes that the target state-action pair may not be the 

same with the state-action pair followed by the sampling policy. This is important because 

it allows an arbitrary selection of sampling strategies. These kind of algorithms, where the 

learning agent tries to find a policy that may be unrelated to the policy followed, are called 

off-policy methods. On the other hand, on-policy methods (like TD(0) and SARSA) learn 

the same policy they use to explore the environment. Provided that all state-action pairs 

are updated infinitely often, Q-Learning has been proven to converge to Q*.    
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Q(s, a) ← Arbitrate initialization for all states-actions 

a ← Initialize to a fixed learning rate 

γ ← Initialize to a fixed discount rate 

For each episode do 

s ← Initial state  

repeat 

 a ←  selected action using policy derived from Q (e.g. ε-greedy) 

  Take action a 

  𝑠′ ← next state after taking action a  

  r ← reward observed after taking action a in state s 

𝑄(𝑠, a) ← 𝑄(s, a) + 𝛼 [r + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′) −  𝑄(s, a)] 

s ← s′  

Until s is terminal 

End For 

Figure 2.12: Q-Learning algorithm 

2.2.4.3.2 Multi-step TD methods 

There is a way to bridge methods with one-step backups (TD(0) ) and full backups 

(DP) by using a number of backups more than one but less than all of them until termina-

tion. For example, we could extend the TD(0) and instead of taking the target from the 

transition to the next state, we could use n-step backups, when the target of the update 

extends to the nth step under the following general case: 

𝑅𝑡
(𝑛)

= 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3+ .  .  . +𝛾𝑛−1𝑟𝑡+𝑛 + 𝛾𝑛𝑉𝑡(𝑠𝑡+𝑛) 

Similarly, the updates can be made not only by using n-step returns, but also using 

the average of the following n returns. Every mix of returns can be considered as long as 

the weights of the returns are positive and have a sum of 1. This kind of return is called a 

complex backup. This kind of backups are used in one of the most popular TDL algorithm, 

TD(λ).  

2.2.4.3.3 TD(λ) – forward view 

The TD(λ) algorithm uses complex backups with weights proportionally to λn-1 

where 0 ≤ λ ≤ 1. Adding a (1 – λ) factor to normalize the weights to 1 we have the following 

return at each time step t: 
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𝑅𝑡
𝜆 = (1 − 𝜆) ∑ 𝜆𝑛−1

𝑇−𝑡−1

𝑛=1

𝑅𝑡
(𝑛)

+ 𝜆𝑇−𝑡−1𝑅𝑡  

The return of the first step has the larger weight (1 – λ), the return of the second 

step has the second best with (1-λ)λ, the third step reward is (1-λ)λ2 and so forth. An im-

portant implementation point is that after a terminal state has been reached, all subsequent 

returns are equal to the terminal return. Another implementation point is that while theo-

retically we could go till the end of the episode to get to the average return, in practice we 

stop when the (1-λ)λn becomes a sufficiently small number. 

In the extreme cases, when λ = 0, only the one-step return is used (𝑅𝑡
(1)

) making 

the algorithm equivalent to TD(0), while, when λ = 1, the first term is zero, so only the 

terminal reward (𝑅𝑡 ) is backed-up, making the algorithm equivalent to MC methods. 

This approach is called the forward view of TD(λ), because the agent at each time 

step must know in advance the subsequent returns in order to make the updates to the value 

function. In practice, this can be achieved by sampling the environment, keeping the policy 

“frozen” and, after the episode ends, then updating the value function. 

2.2.4.3.4 TD(λ) – Backward view 

The forward view has the drawback that the episode must end in order for the up-

dates to begin to take place. In typical RL problems, it is desirable to update the value 

function incrementally, (i.e. at each time sampling step, also called online learning). For-

tunately, there is a way to make TD(λ) an incremental algorithm by introducing another 

variable for every state s, called eligibility trace, denoted with et(s). For the tabular case the 

algorithm is shown in Figure 2.13. 

Contrary to the forward view, here we observe the current TD error and we update 

it backwards to every previous state proportionally to the state’s current eligibility trace. 

Except for the accumulating traces presented in Figure 2.13, other types of eligibility traces 

has been proposed such as replacing traces and resetting traces, to name a few. We will 

not discuss further more all the different traces, since we are focused in this thesis mainly 
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in the forward view. It has been proved that in the online case, eligibility traces are a good, 

but not exactly equal, approximation to the theoretical forward view. 

V(s) ← Arbitrate initialization to the policy π  for all states 

 e(s) ← 0 for all states s  

a ← Initialize to a fixed learning rate 

γ ← Initialize to a fixed discount rate 

For each episode do 

  s ← Initial state 

  Repeat (for every step of the episode) 

      a ← action given by π  for s 

   Take action a  

   𝑠′ ← next state after taking action a  

   r ← reward observed after taking action a in state s 

   𝛿 ← 𝑟 + 𝛾𝑉(𝑠′) −  𝑉(𝑠) 

   𝑒(𝑠) ← 𝑒(𝑠) + 1 

   For all s do 

    𝑉(𝑠) ← 𝑉(𝑠) + 𝑎𝛿𝑒(𝑠) 

    𝑒(𝑠) ← 𝛾𝜆𝑒(𝑠) 

   End For 

   s ← 𝑠′ 

  Until s is terminal 

End For 

Figure 2.13: Tabular TD(λ) with accumulating eligibility traces 

2.2.4.4 Function approximation 

Value functions in tasks with small state action spaces can be represented as tables 

where each position stores the value of a state or state-action pair. As the state (or action) 

space increases, however, the use of tables becomes difficult not only because of the in-

creased memory needed, but also because of the time needed to update all the values. This 

is especially critical in games where the state space of most games of interest is huge. For 

example, standard backgammon has a state space in the vicinity of 1018, a size which pro-

hibits the use of tables, and makes some form of generalization of the value function man-

datory. This kind of generalization is known as function approximation, since it tries to 

approximate a function - in our case the value function.  
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2.2.4.4.1 Approximating Value Functions 

All the prediction methods examined so far have used incremental updates, where 

the value function of a state shifts towards the direction of a backed-up value also known 

as target value. Another way of viewing these backups is using supervised learning, where 

the backups translate as a training example (input-output pair) and then we interpret the 

derived approximation function as the prediction of the desired value function. This way 

we can use many supervised learning algorithms like neural networks, decision trees, linear 

regression, etc. In this thesis we will examine mostly neural networks, because this is the 

method that we used for approximating the value function in backgammon games. 

In order to use function approximation to predict the value function Vπ, we repre-

sent the value function Vt using a parameter vector 𝜃𝑡
⃗⃗  ⃗. For example, we could use a neural 

network with 𝜃𝑡
⃗⃗  ⃗ being the weights of the network. Usually the number of parameters are 

much smaller than the total number of states, so changing a parameter changes the value 

in many states. Consequently, when we apply a backup in some time step multiple states 

are affected. 

2.2.4.4.2 Gradient-Descent Methods 

An extremely popular class of methods is gradient descent methods, where the pa-

rameter vector is a column vector with a fixed number of real components, 𝜃𝑡
⃗⃗  ⃗ =

(𝜃𝑡(1), 𝜃𝑡(2), .  .  .  , 𝜃𝑡(𝑛))𝑇 and Vt(s) is a smooth differentiable function of 𝜃𝑡
⃗⃗  ⃗ for 

every s Є S. These states are usually successive states derived through sampling of the en-

vironment. 

A good strategy for updating 𝜃𝑡
⃗⃗  ⃗ is to minimize to MSE error of the observer exam-

ples using gradient descent by adjusting the parameter vector towards the direction that 

reduces the error:   

𝜃 𝑡+1 = 𝜃𝑡
⃗⃗  ⃗ + 𝑎[𝜐𝑡 − 𝑉𝑡(𝑠𝑡)] ∇𝜃𝑡

⃗⃗⃗⃗ 𝑉𝑡(𝑠𝑡), 

where a is the usual learning rate constant,  𝜐𝑡 is some prediction of the value func-

tion for the state st and ∇𝜃𝑡
⃗⃗⃗⃗ 𝑓(𝜃𝑡

⃗⃗  ⃗) is the vector of partial derivatives of our approximation 
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function. If  𝜐𝑡 is an unbiased estimate for each t, then 𝜃𝑡
⃗⃗  ⃗ is guaranteed to converge to a 

local optimum under the condition of sufficiently decreasing a. 

Applying gradient descent to TD(λ) and its n-step returns averages we have to fol-

lowing update rule:  

𝜃 𝑡+1 = 𝜃𝑡
⃗⃗  ⃗ + 𝑎[𝑅𝑡

𝜆 − 𝑉𝑡(𝑠𝑡)] ∇𝜃𝑡
⃗⃗⃗⃗ 𝑉𝑡(𝑠𝑡) 

where 𝑅𝑡
𝜆 is the usual λ-return term of the forward view TD(λ). Unfortunately, for 

λ < 1, 𝑅𝑡
𝜆 is not a unbiased estimate of Vπ(st), so it is not guaranteed to converge to a local 

optimum. Nevertheless, such bootstrapping methods have been found to work very well in 

practice.  

2.3 TDL in games and AI for backgammon 

In this section we will examine the most important research related to the work 

done in this thesis. Due to the nature of the research performed in this thesis, which is 

mainly focused on building expert AIs on backgammon variants, the related work pre-

sented in this section is split into two areas: a) research related in TDL methods applied in 

games, our main focus on building successful backgammon agents and b) research related 

in building AI in backgammon other than TDL. Both have considerable depth, so, for space 

reasons, we limited our survey in research deemed as the most significant. 

2.3.1 TDL METHODS IN GAMES 

The earliest attempt that used TDL-like methods was Samuel’s checker program 

(Samuel, 1959). Even though TDL methods would take around 25 years, until they were 

conceived, Samuel used a form of bootstrapping to update an evaluation function towards 

the value of a minimax search, after black and white had each played a move. We call this 

algorithm TD-Root following the name used in (Veness, et al., 2009). This approach ena-

bled Samuel’s program to achieve checker play equivalent to an amateur human. His ef-

forts were limited by the computing resources of the time and by the fact that the evaluation 

function was directed to measure the material advantage and not the actual result of the 

game.  
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There is plenty of researchers that effectively trained game-playing agents to some 

degree. Being in line of our original intentions to produce expert-level playing agents, in 

the following sections we analyze related work that produced strong game-playing agents 

equivalent to human masters or above.  

2.3.1.1 TD(λ) and TD-Gammon 

The first major success of TDL, and probably of machine learning in general, was 

the TD-Gammon program (Tesauro, 1992; 1995; 2002). TD-Gammon used the TD(λ) al-

gorithm and self-play to train from scratch a standard MLP-type neural network that 

learned the evaluation function of standard backgammon. TD-Gammon played several 

matches against backgammon world champions and, even though it was defeated in all of 

them, later rollout analysis showed that it made fewer errors than its human opponents 

(Tesauto, 2002). In this section we analyze in detail Tesauro’s training setup, since it is the 

most relevant compared to our training enhancements presented in this thesis. 

Td-Gammon’s learning procedure works as follows: a sequence of states is created 

starting from the initial position and ending at the terminal position during the course of a 

self-play game (meaning that the neural network plays with itself in order to produce the 

game-moves). These states are represented as vectors to the inputs of the neural network 

(x1, x2, …, xT) by means of a special encoding. Every step of the sequence represents a 

move from one side (1-ply in game terminology). For every vector xt, a corresponding 

output vector Υt exists that represents the estimated value of xt. In the TD-Gammon system, 

the output signal is composed by four outputs, one for each possible outcome of the game 

([p1, p2, p3, p4] → [win single, loss single, win double, loss double]). 

With this approach the weights of the neural network are used as function approxi-

mation (Section 2.2.4.4) to the value function and the backpropagation procedure is used 

to compute the gradients in the gradient-descend form of TD(λ) according to the following 

equation for every output unit:  

𝛥𝑤𝑡 =  𝛼 (𝑌𝑡+1 − 𝑌𝑡) ∑ 𝜆𝑡−𝑘∇𝑤𝑌𝑘

𝑡

𝑘=1
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where w is the vector of neural network weights being tuned, Yt is the prediction for 

the output at time step t, ∇𝑤𝑌𝑘 is a set of partial derivatives for each component of the 

weights w, α is the standard learning rate and λ is the factor controlling how much future 

estimates affect the current update. At the end of the game a terminal signal z, composed 

of 4 elements as described earlier, is returned based on the final game outcome. At the 

terminal position the above equation is applied as well, with one difference: the target is 

replaced by the terminal signal z instead of the next state 𝑌𝑡+1. Under this condition, every 

output of the neural network can be thought as a probability of reaching the corresponding 

outcome given the input state. Combing the outputs together, an estimation of the value 

(also called equity in backgammon terminology) can be easily calculated. 

During the learning process, the moves of the game selected by both players were 

determined by the learning agent with following procedure: on every time-step the agent 

grades all afterstate positions resulting after every possible move. The move actually 

played is then determined by selecting the one that leads to the afterstate with the most 

equity. When the training starts, the weights of the neural network were initialized uni-

formly in the [-0.5, 0.5] interval. Surprisingly, this setup was able to learn expert behavior 

from self-play, even though at the start of the training the moves selected are random.  

A crucial factor for the success of the method was the encoding of the backgammon 

position to the input layer of the neural network. The final encoding was used after many 

experiments: for every point of the 24 points of the backgammon board, 4 inputs were used 

for every player. The first input is binary and is set when the player has exactly 1 checker 

on the point, the second is also binary and is set when there are 2 or more checkers of the 

player on the point, the third is binary as well and is set when there are 3 exactly three 

checkers and the fourth is a float and is proportional to the amount of checkers >= 4 the 

player is having on the point. Under the above reasoning, the total amount of inputs is 192. 

Another 6 inputs were added, 2 encoding the bar points, 2 for the beared-off checkers and 

2 for the side to move. This encoding of the backgammon states at every time step without 

including inputs representing expert knowledge is called raw encoding. The neural network 

architecture is shown in Figure 2.14. 
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Figure 2.14: Neural network architecture of earlier TD-Gammon versions. Only 1 of the 4 out-
puts is shown. (Sutton & Barto, 1998) 

Using the raw encoding only, TD-Gammon was able to surpass in strength all avail-

able backgammon programs of the time. Adding features representing expert knowledge 

of the game, e.g. “pipcount”, a heuristic progress measure (the total distance of pieces from 

the goal) that were taken from Tesauro’s  previous program NeuroGammon, TD-Gammon 

was able to reach a playing level equaling, and maybe surpassing, the best human players 

of the time. 

The parameters used were as follows: the learning rate a was fixed at 0.1 and the 

bootstrapping value λ initially was 0.7, but later it was reduced to 0, because no significant 

difference was noticed and, without eligibility traces, the updates were simpler and faster 

to compute. Hidden layer units started at 40 and were gradually increased to 160 in the 

final version. Training time was also increased as time went by, reaching 6 million games 

in the final version (TD-Gammon 3.1).  

Eventually TD-Gammon was retired, but the influence in the backgammon world 

was tremendous. Firstly, many backgammon programs successfully replicated the TD(λ) 

+ neural network combination, the first examples were the Snowie and the Jellyfish pro-

grams. Currently, all strong backgammon programs use some variant of the original TD-

Gammon setup: 
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 BgBlitz, a shareware program authored by Frank Berger and frequent partici-

pant in backgammon computer Olympiads, uses neural networks with 200 hid-

den units and self-play TD(0) training procedure.  

 GNUBG, an open source program also participating many times in the back-

gammon computer Olympiads, uses 3 different neural networks (contact, 

crashed, race) for the three different stages of the game. Earlier versions were 

trained by TD(0), whereas nowadays all training is supervised which means 

that the targets of the training set were calculated by rollouts by the same pro-

gram. All neural networks have 128 hidden units.  

 eXtreme Gammon is another commercial program believed by many to be the 

best in the world in standard backgammon. Little details are known except for 

the description in its site (Extreme Gammon, 2015): “eXtreme Gammon engine 

uses a Neural Network to determine the value of every position. The Neural 

Network has been trained for years to achieve a very high accuracy in estimat-

ing positions” 

TD-Gammon and the other backgammon programs later inspired by it had also 

great influence to the human backgammon world. In some situations, TD-Gammon sug-

gested different moves than the ones thought as best at the time. Expert players began 

carefully studying the program’s evaluations and rollouts and began to change their con-

cepts and strategies. As a result, the new knowledge generated has been widely dissemi-

nated and the overall level of play in backgammon tournaments has greatly improved in 

recent years. 

2.3.1.2 TD-Leaf and KnightCap 

While TD(λ) and neural networks were very successful in standard backgammon, 

researchers struggled to effectively apply the same procedure to other deterministic board 

games such as chess, checkers, othello or Go. In all these games, finding an evaluation 

function accurate enough to evaluate a position at one-ply is a very difficult task, since 

there may occur tactical sequences that end the game after a few moves. For example, in 
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chess sequences of forced mate in 2, 3, 4 or more moves frequently occur both at actual 

play and in analysis. Consequently, almost all successful programs in these games use some 

sort of deep lookahead involving variants of minimax search. As this search results in ex-

ponentially more states to be evaluated, expensive evaluation functions such as neural net-

works are not typically used and fast linear functions are preferred because of their speed.   

The first successful TDL approach in domains, where search is important, was the 

chess program KnightCap (Baxter, J., Tridgell, A., & Weaver, L., 1998a; 1998b; 2000) that 

introduced a new TDL algorithm, TD-Leaf(λ). TD-Leaf(λ) is similar to standard TD(λ) 

with the only change being the root and the target of the updates; instead of the root being 

the current state and the target being the next state of the actual game, now the root is the 

leaf node of the principal variation searched in the current state and the target is the leaf 

node of the principal variation of the next state. Figure 2.15 explains the differences of the 

various backups in diagrammatic form. The idea is that the updates are now more informed 

about the tactical sequences found by search, so updates are more accurate in situations 

where tactical sequences play an important role. 

KnightCap with TD-Leaf was able to reach master level play by training a linear 

evaluation function of 5,872 expert features in 300 games but had two major concessions. 

Firstly, initial results showed that self-play training was very slow, so the training was 

performed in an online chess server, ICC1, with humans as opponents. For this reason ad-

ditional measures were put in place, so that updates were not performed, when blunders 

from the opponents were recognized. Secondly, in order to give a head-start in the 

knowledge gained, the features representing the material value of the pieces were initial-

ized to the default values. Good initial conditions were important for fast convergence, 

because without “smart” initialization of the features learning was found to be very slow. 

Under this setup, KnightCap reached a performance of 2150 ELO in blitz2 time 

controls without utilizing an opening tree. When an opening tree was added, KnightCap 

                                                 

 
1 Inter Chess Club: www.chessclub.com 
2 A fast time control that gives each player at most 5 minutes for the whole game. 
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reached a rating 2,400-2,500 (peak 2,575) on the ICC server, a rating equivalent to a human 

International Master (IM) level. The parameters used were λ = 0.7 and a = 1.0, the latter 

was unusually high on purpose in order that big updates and, as consequence, faster learn-

ing would be encouraged. These parameters seems to be fixed throughout the learning pro-

cess.  

The authors of KnighCap developed another algorithm called TD-Directed(λ). The 

difference with TD-Leaf(λ) is that the updates are performed on the actual states played in 

the game and not on the leaves, like TD(λ). Unlike TD(λ), the states are selected based on 

the result of a d-ply search and not by 1-ply. TD-Directed was also tried on chess but found 

to be less fast than TD-Leaf.  

A comparison with TD(λ) in standard backgammon was also performed. The au-

thors took LGammon, an already trained neural network with the TD(λ) procedure of TD-

Gammon, and tried to improved it by further training with TD-Directed and TD-Leaf. 

However, after 50000 training games the resulting networks were not found to be statisti-

cally better than the original. This is confirmed from our own preliminary experiments, 

where we tried to train a neural network from scratch using self-play, TD-Directed(0), and 

d=2 and found it to be very slow on the time used. This is because of the huge branching 

factor found in backgammon games which makes d-ply search very computationally ex-

pensive.  

TD-Leaf was successfully applied to checkers (Schaeffer, Hlynka, & Jussila, 2001) 

where it was able to train a linear evaluation function with self-play, which was found to 

be equally strong to Chinook, the World Man Checkers Champion, which had an evalua-

tion function that was manually tuned over a period of 5 years. The learning rate a was set 

to 0.01 and the λ parameter was chosen to be 0.95. These values, however, were not tuned; 

rather their values were influenced by the KnightCap research. 

2.3.1.3 Rootstrap and Treestrap 

Extending the idea of TD-Leaf algorithm, one could also update towards the trajec-

tory of the principal variation, not only on the leaf nodes (TD-Leaf) or on the actual states 
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of the game (TD). This way the tree created during the search process is better utilized by 

the learning process, since the potential exists to update much more per move played. This 

is exactly what is done in the RootStrap and TreeStrap algorithms (Veness, et al., 2009). 

The author stresses another advantage: the updated states are more representative of the 

types of states that can occur in a search-based evaluation, a potential problem with TD-

Leaf which only updates leaf nodes. In Rootstrap the target of the update, when the agent 

is in a state of “thinking” its move via search, is the leaf state in the principal variation, 

while in Treestrap all interior nodes of the tree are updated. The different backups of all 

the algorithms discussed so far are shown in Figure 2.15: 

 

Figure 2.15: Diagrams of various TD backups (Veness, et al., 2009) 

The authors also made alpha-beta versions of the algorithms exploiting the αβ cut-

offs produced by the alpha-beta algorithm by using a one-sided loss function and truncating 

the evaluation function inside the αβ cutoff bounds. All the algorithms were tested in the 

Meep chess program, which used 1812 linear features that were initialized to small random 

values and a small opening book to maintain diversity in the starting moves. After 10,000 

games under this training regime, Meep was able to learn a good evaluation function, with 

the better performing algorithm to be the TreeStrap(αβ). In blitz play on the ICC server, 

Meep reached 1,950-2,197 Elo under self-play training, and 2,154-2,338 Elo when trained 

against Shredder, a very strong chess engine.  
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The learning rates used were: 10-6 for TreesStrap (minimax) and 10-7 for 

Treestrap(αβ). Both KnightCap and Meep used online incremental updates, meaning that 

the updates were performed after each move of a training game. 

2.3.1.4 Self-play or expert tutoring? 

When we have an expert, it is tempting to use it to learn against it instead of self-

play training. As it was shown in the previous sections, KnightCap and Meep benefited 

from having an expert as an opponent; KnightCap by playing against humans (not always 

expert) and Meep by playing against a strong chess engine (Shredder). This was also con-

firmed in a study in the game of backgammon in (Wiering, 2010). Three paradigms were 

tested, self-play training, training by watching experts and training by playing against an 

expert. Training against an expert was the fastest. The TD(λ) setup used had many similar-

ities to the one proposed in this thesis; a) neural networks were used as function approxi-

mators, as it is usual in backgammon, b) learning was offline, meaning that the updates 

were performed after the game ended, c) the second player position was inverted, making 

the network see only the position as the first player. However, unlike our setup, the learning 

trajectory started from the beginning, probably resembling the forward offline method dis-

cussed in Section 3.2.2.1.  

The experiments showed that learning by observing an expert was approximately 

two or three times slowest than the other methods. Learning against an expert was the 

fastest, closely followed by self-play. Unfortunately, the resulting networks were tested 

only against themselves and not against some known benchmark such as pubeval (Tesauro, 

1994), so we do not know exactly how strong they were. The learning rate parameter a was 

set at 0.01, and interestingly, the λ value of 0.6 was found to give the best performance, 

something not observed in TD-Gammon or in our results. In line with our observations, 

starting with high values of λ (0.8) seemed to make the training faster. 

2.3.1.5 Learning from databases 

One could also try to learn from a database of games already played by expert play-

ers. Looking at the results of the previous paragraph, this seems to be the same as training 
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by watching an expert, however there are several advantages. Firstly, the agent does not 

need to waste resources on exploring the environment, which is important in games where 

the function that produces the available moves is costly. Secondly, not learning the values 

of weaker moves, the disadvantage of learning only from expert play can be easily miti-

gated by introducing randomness or other techniques. A successful example is the Giraffe 

chess program (Lai, 2015), where a variant of TD-Leaf was used to train a deep neural 

network utilizing a database of random positions taken by databases of computer games.  

 

Figure 2.16: Giraffe’s neural network architecture (Lai, 2015) 

Instead of using each position directly, the author introduced variations by ran-

domly applying a legal move to each position before putting it in the actual training data-

base. This approach gives variety to the positions and at the same time it keeps the distri-

bution close to one actually encountered during game-play. These positions were then the 

start of a ten-move self-play game that was used by the TD-Leaf algorithm to train the 

network using standard backpropagation. The learning rate was auto-tuned by the Adadelta 

algorithm (Zeiler, 2012) and the λ value was fixed to 0.7. The resulting network reached 

the performance of an international master (IM) in blitz play.  
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We believe that whenever possible database of experts should be utilized at least 

for initial training. If this is not enough to reach adequate performance, self-play can be 

used afterwards. However, for our purposes of building a strong agent for the backgammon 

variants in which we are interested, such databases do not exist for the games Plakoto and 

Fevga. So we concentrate our efforts on learning by self-play, a useful paradigm for agents 

trying to learn new problems in general. 

2.3.1.6 Summary 

The most key characteristics of the TDL training setups described so far, along with 

our method, are shown in Table 2.1. In the first row the program name is shown except for 

the backgammon program trained in (Weiring, 2012) where the name of the researcher is 

shown.  

Table 2.1: Summary of the key characteristics of various TDL applications in games 

Program TDGammon KnightCap Chinook Meep Weiring Bg Giraffe Palamedes 

Game BG1 Chess Checkers Chess BG1 Chess BG1 

Algorithm TD(λ) TD-Leaf(λ) TD-Leaf 
TreeStrap 

(αβ) 
TD(λ) TD-Leaf(λ) TD(λ) 

Parameter 

λ 
0.7, 0 0.7 0.95 - 0.6 0.7 decreasing 

Parameter 

α 
0.1 1.0 0.01 10-7 0.01 

Autotuned 

(AdaDelta) 
decreasing 

Function 

Approx. 

Neural 

Networks 

Linear 

Weights 

Linear 

Weights 

Linear 

Weights 

Neural 

Networks 

Deep 

Networks 

Neural 

Networks 

Training 

setup 

Online 

Self-play 

Online vs 

Expert 

Online 

Self-play 

Online vs 

Expert 

Offline vs 

Expert 

Online play 

from db of 

positions 

Reverse Of-

fline Recalc 

Self-play 

 

The λ parameter selected in most setups is 0.7 or close to it, noting that most at-

tempts did not optimize this value. An exception is TreeStrap, because the λ parameter 

does not exist in this algorithm. The learning rate has much diversity in the setups exam-

ined, starting from 10-7 in Meep and reaching 1.0 in KnightCap. This value seems to be 

highly dependent on the features and setup used. Objectively speaking, an automatic tuning 

                                                 

 
1 BG = Backgammon games 
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algorithm (like Giraffe) or a decreasing rate like the one we used in our setup should be 

used, in order to be able to escape local optima when stuck. In practice, these two algo-

rithms are very difficult to tune together, because the time needed for all the training runs 

is usually in the factor of days due to the complexity of the games.  

2.3.2 OTHER METHODS IN BACKGAMMON  

After the success of TD-Gammon, many researchers tried to apply different tech-

niques to learn to play standard backgammon but without much success. This section pre-

sents some of the most important work that used different kind of methods other than 

TDL+NN. 

The first attempt after TD-Gammon was by Pollack, Blair and Land (1997), when 

they presented HC-Gammon, a program that used a much simpler Hill-Climbing algorithm 

that trained the weights of neural networks. Under their model the current network is de-

clared `Champion,' and by adding Gaussian noise to the biases of this champion network, 

a `Challenger' is created. The Champion and the Challenger then engage in a short tourna-

ment and, if the Challenger outperforms the Champion, small changes are made to the 

Champion in the direction of the Challenger biases. HC-Gammon won only 40% of the 

games against the pubeval program. 

Another interesting work is that of Sanner et al. (2000), whose approach is based 

on ACT-R theory of cognition (Anderson & Lebiere, 1998). Rather than trying to analyze 

the exact board state, they defined a representational abstraction of the domain, consisting 

of general backgammon features such as blocking, exposing and attacking. They main-

tained a database of feature neighborhoods, recording the statistics of winning and losing 

for each such neighborhood. All possible moves were encoded as sets of the above features; 

then, the move with the highest win probability (according to the record obtained so far) 

was selected. This system reached a 45.94% win rate against pubeval. 

Darwen (2001) studied the coevolution of standard backgammon players using sin-

gle and multi-node neural networks, focusing on whether non-linear functions could be 

discovered. He concluded that with coevolution there is no advantage in using multi-node 
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networks and that coevolution is not capable of evolving non-linear solutions. His best 

agent scored 52.7% against pubeval. 

Qi and Sun (2003) presented a genetic algorithm-based multiagent reinforcement 

learning bidding approach (GMARLB). The system comprises several evolving teams, 

each team composed of a number of agents. The agents learn through reinforcement using 

the Q-learning algorithm. Each agent has two modules, Q and CQ. At any given moment 

only one member of the team is in control and chooses the next action for the whole team. 

The Q module selects the actions to be performed at each step, while the CQ module de-

termines whether the agent should continue to be in or relinquish control. Once an agent 

relinquishes control, a new agent is selected through a bidding process, whereby the mem-

ber which bids highest becomes the new member-in control. Their system reached a 56% 

winning rate against the pubeval benchmark. 

GP-Gammon was another line of research by Azaria and Sipper (2005), where Ge-

netic Programming (GP) (Koza, 1992) was applied to evolve computer programs to play 

backgammon. GP starts with an initial set of general and domain specific features and then 

lets evolution evolve the structure of backgammon-playing strategy. In addition, GP read-

ily affords the easy addition of control structures such as conditional statements, which 

may also evolve automatically. Two methods were tried, evolving backgammon strategies 

with external opponent as teacher and GP with self-learning. The self-learning approach 

was the better of the two, scoring 62.4% wins against pubeval, whereas the teacher-learning 

approach scored 56.8% wins. 

All the above approaches have one major flaw: the performance is measured in win 

rate against pubeval and not in points per game, from which we assume that the learned 

agents try to learn the game only to win and do not account the double wins as something 

more valuable. However, building a win only agent takes much of the complexity out of 

the game, since the double wins are very common in standard backgammon (Section 4.3.1).  

Moreover, some of the above results were evaluated with very few test games 

against pubeval: GMARLB-Gammon only with 50, HC-Gammon used 200 and GP-
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Gammon 1000. We believe that only ACT-R-Gammon, which used 5,000 games, and Dar-

wen which used 10,000 games, have sufficient amount of games to compensate for the 

randomness of the game.  

Finally, the MCTS algorithm (Section 2.2.4.2.2) was also applied to standard back-

gammon in (Van Lishout, Chaslot, & Uiterwijk, 2007). In this work, the UCT algorithm 

was used in the selection phase and random games in the playout phase. They also built a 

high performance move generation algorithm so that the random games can be finished 

quickly. The resulting program, MC-Gammon 1.0, makes a simplification of the game 

rules by declaring the game won, when all the checker are inside the home board. An up-

dated version, which played the full game, competed in the backgammon computer Olym-

piad in 2007, losing all its games. 
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CHAPTER 3: TRAINING NNS TO PLAY BACKGAMMON GAMES 

USING TD 

3.1 Learning architecture 

The architecture of the learning system that we used for all our experiments is 

shown in Figure 3.1. 

ʃ 

ʃ ʃ ʃ 

ʃ ʃ 

INPUT LAYER

HIDDEN LAYER . . . . .

. . . . . . .

OUTPUT LAYER

W WD LDOUTPUTS 

 
Figure 3.1: The neural network architecture used in our learning system. All units of the hidden 

and output layer use sigmoid transfer functions.  

The learning procedure is executed as follows: we start by creating a sequence of 

game positions beginning with the starting position and ending in the last position, when 

the game is over. For each of these positions we use the backpropagation procedure of the 

neural network to compute the TD(λ) update. The various methods of selecting input-out-

put-target sequences are mentioned in Section 3.3.2.1. The self-play learning process is 

repeated, until we can no longer improve the NN. 

The inputs of the NN may represent the board position and/or some other features. 

We used a modified version of the unary truncated encoding scheme used by TD-Gammon 

(Section 2.3.1.1) to map the board positioning of the checkers to the inputs of the neural 

network. We used three binary outputs to describe the final outcome of the game from the 

side of the first player. The first output (W) represents the outcome of the game, win or 

loss; the second output (WD) represents whether a double game is won; and the third output 

(LD) represents whether a double game is lost.  
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Under these training conditions, the neural network learns the “probability” of all 

three outputs at any time in the game, also called position equity. For the creation of the 

game sequences, we used the same NN currently in training to select the moves for both 

sides. Whenever a move selection must be made, the agent scores the states resulting from 

all legal moves by combining all three outputs. At every time-step the agent scores all legal 

moves available and selects the one with the highest score. 

For the evaluation of the learned agents, three procedures were examined: 

a) Evaluation against an independent benchmark opponent, the open source pro-

gram Tavli3D 0.3.4.1 beta (Varouhakis, 2007), the only freely available program that can 

play all the backgammon variants that we are interested in. 

b) Evaluation against stored weights taken by the agent at different stages of the 

learning process. Examples are weights after 104 training games, weights after 105 training 

games etc.  

c) Evaluation against previously trained agents. 

During the training procedure the weights of the network were periodically saved 

and tested with procedures (a) and (b), until no more improvement was observed. All the 

tests were conducted in matches of 10000 games each. The result of the tested games sum 

up to the form of estimated points per game (ppg) and is calculated as the mean of the 

points won and lost. 

3.2 Initial Experiments 

3.2.1 DETERMINING THE EFFECT OF EXPERT VS RAW FEATURES 

Our first learning experiment was done to determine how the agents learned with 

and without expert features. This was mainly done to Plakoto and Fevga variant since in 

Portes we can use the standard backgammon research available by TD-Gammon (Tesauro, 

1992; Tesuaro 1995;Tesauro, 2002). We used the same approach for all the variants exam-

ined: First, we trained a neural network with inputs consisting only of the raw position of 

the board. As with TD-Gammon, we observed a significant amount of learning even with-

out the addition of “smart” features. It only took few thousands learning games for the 
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agent to surpass the playing performance of the Tavli3D benchmark program for Plakoto 

and Fevga games and the pubeval benchmark program for Portes. We evaluated the result-

ing agent and tried to improve its evaluation function by identifying expert features. A 

second neural network was trained from scratch including these expert features to the in-

puts of the previous NN architecture. 

3.2.1.1 Experiments in Fevga 

The raw board position in the game of Fevga was encoded as follows: for every 

point of the board four binary inputs were used, each one designating whether there was 

one, two, three, or four and more checkers in the point. This coding thus used 96 input units 

for every player to encode the checkers inside the board and additional 2 units to encode 

the number of checkers off the board, for a total of 194 units. We named the agent trained 

with this coding scheme and the procedure described earlier Fevga-1. 

Fevga-1 was assessed as average in strength by human standards. Concepts learned 

include the understanding of protecting the starting quadrant and attacking the starting 

quadrant of the opponent in the early phase of the game, as well as the smooth spreading 

of checkers. However, a major weakness was also found: a complete disregard for primes. 

The creation and sustainment of the prime formation is considered by human experts the 

most powerful strategy available in the Fevga variant.  

      

Figure 3.2: Left. Training progress of all agents against the Tavli3D benchmark program. Right. 
Training progress of Fevga-3 against stored weights. 
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Adding expert features. Given the drawback in the playing strategy of Fevga-1, it 

was decided to add the special knowledge of primes in the inputs of the neural network as 

smart (or expert) features. The different formations of primes were divided in two catego-

ries according to their significance: a) early primes that are formed in the first two quad-

rants of the player and b) late primes that are formed in the last two quadrants as well as 

between the 4th and the 1st quadrant. Late primes are more powerful, because they restrict 

the opponent earlier in his/her development and frequently result in the winning of a double 

game. These features take the form of four binary input units of the neural network that are 

enabled, when the player and/or the opponent makes a prime and at least one opponent 

checker is left behind it. In addition, two more special features common to regular back-

gammon were also added: a) one input unit for the pipcount of each player, which is the 

total amount of points (or pips) that a player must move his checkers to bring them to the 

home board and bear them off, and b) two input units for the existence of a race situation, 

which is a situation in the game where the opposing forces have disengaged, so there is no 

opportunity of further blocking. The total number of input units in this encoding (which 

we named Fevga-2) is 201. The evaluation of Fevga-2 (Figure 3.2 Left) showed only a 

marginal increase in performance that was verified by manual human analysis: while not 

totally ignorant of the value of prime formation as Fevga-1, Fevga-2 failed to grasp the 

essence of primes.  

Adding intermediate reward. To clarify more precisely the importance of primes, 

a third neural network was trained where the agent learned with the same input units as 

Fevga-2, but with one important difference: when reaching a position with a prime for-

mation, the target of the TD update was made a constant value instead of the next position 

value. This constant value was for primes of type (a) equivalent with winning a single game 

and for primes of type (b) equivalent with winning a double game. In other words, inter-

mediate rewards were introduced, when primes were formed in the game. This had the 

result that the strategy learned was a strategy based on the creation of primes, which is 

roughly equivalent to what is perceived by experts as the best strategy. We named this 

agent Fevga-3. Its training progress can be seen in Figure 3.2 Right.  
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Indeed, after manual examination, the playing style of Fevga-3 was very similar to 

the way humans play the game. Not only did it recognize the value of primes and did not 

lose opportunities to make one, but was also able to play moves that facilitated the creation 

of primes at later stages. The results of the evaluation against the Tavli3D benchmark show 

that Fevga-2 gains slightly more points per game than Fevga-3 (+1.61ppg vs +1.52ppg). 

However, when we compared Fevga-2 to Fevga-3 by selecting the best set of weights and 

playing 5000 games against each other, the results of this match showed a marginal supe-

riority of the Fevga-3 player (+0.03ppg). 

Table 3.1. Analysis of the match Fevga-2 vs Fevga-3 

Result/Points Fevga-2 Fevga-3 Total 

Single Wins 1704 (34.08%) 2513 (50.26%) 4217 (84.34%) 

Double Wins 556 (11.12%) 227 (4.54%) 783 (15.66%) 

Total Wins 2260 (45.2%) 2740 (54.8%) 5000 

Total Points 2816 2967 5783 

 

The analysis of the match between Fevga-2 and Fevga-3 (Table 3.1) gives some 

interesting information. The “human” strategy of Fevga-3 seems to win more games 

(54.8%). Nevertheless, the final result is almost equal, because Fevga-2 wins more double 

games (11.12% vs 4.54%). This is also confirmed after careful analysis of the results 

against Tavli3D: the two agents win the same number of games, but the Fevga-2 emerges 

superior, because it wins more double games. We believe that the Fevga-2 strategy is better 

against weak opponents, because in the long run it wins more points than Fevga-3 due to 

more double games won. But when playing against a strong opponent, a little better strat-

egy seems to be the more “human-like” strategy of Fevga-3, which maximizes total won 

games at the cost of doubles. Looking it from another perspective, we can say that the two 

versions have different playing styles: Fevga-2 plays more aggressively, trying to win more 

double games, while Fevga-3 plays more cautiously, paying more attention in securing the 

win than risking for doubles. 
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3.2.1.2 Experiments in Plakoto 

Encoding the raw board position. The input units of the neural network for the 

first version of Plakoto were the same 194 units of Fevga-1 plus 24 binary units for every 

player that indicated if the player had pinned a checker of his opponent at each point of the 

board. Thus, there were 242 input units in total. The agent with this coding scheme was 

named Plakoto-1. As in Fevga, after only a few thousand games Plakoto-1 easily surpasses 

in strength the Tavli3D benchmark program. This improvement finally reaches a peak per-

formance of about 1.15ppg (Figure 3.3, Left).  

Using manual play, the level of Plakoto-1 was assessed as average by human stand-

ards. Strong aspects were the understanding of the value of pinning the opponent, espe-

cially in the home board. At the same time, it was also careful not to leave open checkers, 

thus not giving the opponent the chance to pin, because it understood that this will greatly 

increase the chances of losing. Mistakes, however, occurred often, when it had to select a 

move that left at least one checker open: it did not take into account the possibility of the 

opponent pinning the open checker in the next move, thus rejecting moves resulting in 

positions with little or no chance for the opponent to pin and preferring moves resulting in 

open checkers very easily pinned. 

 

Figure 3.3: Left. Training progress of Plakoto-1 and Plakoto-2 against Tavli3D. Right. Training 
progress of Plakoto-2 against stored weights at 10,000, 100,000, and 1,000,000 games trained.  

Adding expert features. The following single feature was able to increase the per-
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point were replaced by the probability of the opponent pinning a point, if an open checker 

of the agent exists. This probability starts at 0/36 = 0, when no dice roll exists that can pin 

the open checker or no open checker exists and maxes to 36/36 = 1, when all dice rolls pin 

the open checker or the checker is already pinned. This added feature required no additional 

input units, as it utilized units already used by the neural network, only a little more com-

putational overhead for computing the pinning probabilities. The resulting agent was 

named Plakoto-2. Compared to Plakoto-1, Plakoto-2 achieved better peak performance by 

about 0.3 ppg against Tavli3D (Figure 3.3, Left). A match of 5000 games between the two 

agents resulted in a comfortable win for Plakoto-2 (6687-1771, +0.98 ppg), further con-

firming the superiority of Plakoto-2. The level of Plakoto-2 was assessed as that of an 

experienced player.  

Figure 3.2 Right and Figure 3.3, Right show the training progress of Fevga-3 and 

Plakoto-2 against previously stored weights. In both figures we see that the initial strategy 

improves rapidly for the first few thousand games and then improves more slowly to its 

peak performance.  

3.2.2 DETERMINING THE TARGET OF THE UPDATE 

In order to find the best move in a given situation, backgammon programs usually 

score each possible afterstate (that is the states resulting, after the player has played a move) 

and select the move that produces the afterstate with the biggest score.  

An important implementation detail for a TD+NN learning system is the selection 

of input-target pairings for the TD update. In previous work we split up each training game 

into two training sequences, one for the afterstates of the first player and another for the 

afterstates of the second player, and we updated these sequences separately (Figure 3.4b). 

In this work we made one simple, yet very effective improvement: instead of splitting up 

each training game in two, we keep one training sequence and we update each player's 

afterstate using as target the inverted value of the other's player afterstate on the next move 

(Figure 3.4c). Both methods flip the board, so as both players' afterstates are given to the 

neural network, as if it is the first player to move. This is different from the approach used 
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originally by TD-Gammon (Figure 3.4a), where there was no flipping of the board and the 

neural network learned to play the game for both sides, identifying the side to move by two 

binary inputs. We believe the board-flipping approach has the potential of getting improved 

performance, as the expressiveness of the neural network is increased. 

A B A B

V1 V2 V3 V4

A B A

V1 V2 V3inverted inverted

FLIP

BOARD BOARD

FLIP 

A B A B

V1 V2

FLIP

BOARD BOARD

FLIP

BOARD

FLIP

Y1 Y2

a

b

c
 

Figure 3.4: Alternate updating methods of the temporal difference in two player zero-sum games. 
Method a: Update the values without flipping the board. Requires input(s) to designate which 

player is on the move. Method b: Updates are split in two. Method c: Updates are done on the in-
verted value of the next player. Circles indicate a position after a player (A or B) has made a 

move (afterstate). 

3.2.2.1 Sequence creation and how to update 

Contrary to standard backgammon, when we started making programs for the var-

iants Plakoto and Fevga, there was no other program close to expert play, nor were data-

bases of games available. Therefore, self-play was for us the only option for creating a 

game sequence. We examined the following options for creating and updating a self-play 

game: 

 Learning online (each update is done immediately after a move is played). 

 Learning offline (updates are done incrementally after the game ends). 

 Forward offline: Updates are done starting from the first position of the game and 

ending at the terminal position. 

 Reverse offline: Updates are done starting from the terminal position of the game 

and ending at the first. 



 

 

 

 79 

 Reverse offline recalc: As previous, but recalculate target value after each update. 
The intuition of updating backwards an offline game is that updates of non-terminal 

states will be more informed as the reward of the outcome of the game is received on the 

first update of the game. This is enhanced with the addition of the recalculation of the target 

value. Online updates have the benefit of learning while the game is in progress; however, 

there is a chance that at the start of training, where moves are more or less random, the 

agent will get stuck or progress slowly. 

Preliminary experiments with all of the above methods showed that the slowest 

method was forward offline, particularly in the Fevga variant, with the others resulting in 

more or less the same performance (Figure 3.5). The reverse offline method with recalcu-

lation of the target value learns the fastest than all others at the start of the training and 

continues to have good performance afterwards. The downside is that more computation is 

needed in order to recalculate the target value at every step. However, this was not felt in 

our case since the creation of a game sequence is much more time consuming than the time 

to make the updates. Even with slower learning progress, all methods were found to reach 

the same level, so whatever final performance gains described later in the paper were only 

due to changing the updating method from (b) to (c) (Figure 3.4).  

 

Figure 3.5: Training progress of methods for sequence creation and update in Backgammon 
(left), Fevga (middle) and Plakoto (right). Every line is the average of 10 different training runs 

starting from the same random weights. For speed reasons, NNs in all games have 10 hidden units 
and no expert features. Benchmark opponents are pubeval for backgammon, Fevga-1 for Fevga 

and Plakoto-1 for Plakoto. 
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In our previous experiments, we used the forward offline method. Following the 

experiments mentioned in this section, all experiments from now on were conducted using 

reverse offline recalc. 

3.2.2.2 Results in the Plakoto and Fevga variants with expert features 

We compared the proposed training method to the previous one (Section 3.2.1) by 

training again the NNs with the added expert features. For Plakoto, the new agent was 

named Plakoto-3 and has exactly the same inputs as Plakoto-2. For Fevga, we trained two 

new NNs: Fevga-4 has the same procedure as Fevga-2, whereas Fevga-5 has the same 

intermediate reward as Fevga-3. Table 3.2 shows all the techniques used by the various 

versions examined in this paper. 

Results in 3.2.1.1 showed that Fevga-2’s strategy was much different from the one 

considered by the human experts, even with features recognized the presence of primes 

(six consecutive made points) in a position. To clarify the importance of primes more pre-

cisely, a new NN was trained (Fevga-3), where the agent learned with the same input units 

as Fevga-2, but with one important difference: when reaching a position with a prime for-

mation, the target of the TD update was made a constant value instead of the next position 

value. This had the result that the learned strategy was based on the creation of primes, 

which is roughly equivalent to what is perceived by experts as the best strategy. Results 

showed that the riskier strategy of Fevga-2 scores more points against the benchmark pro-

gram Tavli3D than Fevga-3, but when getting them to play against each other Fevga-2 was 

a little bit inferior. To preserve continuity with our previous work, we continued to bench-

mark our training progress with the open source program Tavli3D, which at the time of 

writing was the only open source program that can play these variants. 

All networks had 100 hidden neurons and were trained to 1.5 million games. For 

simplicity, we fixed the value of λ to zero for the experiments conducted in this paper. For 

λ>0 and reverse updates, care must be taken when taking future time steps into considera-

tion: since every time step is viewed as the first player, any value taken by future time steps 

that is not a move by the player making the current update must be inverted. As the initial 
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training of Fevga-2 and Fevga-3 were only 700,000 games, we extended their training (with 

the same initial λ=0.7) to match the new ones. During the training, we periodically saved 

the weights of each NN and we tested the networks against Tavli3D for 10,000 test games 

each, half as the first player and half as the second player (Figure 3.6). The result of the 

tested games sum up to the form of estimated points per game (ppg) and is calculated as 

the mean of the points won and lost.  

 

  

Figure 3.6: Training progress of all trained NNs against the Tavli3D benchmark program in the 
Plakoto variant (Left) and the Fevga variant (Right). 

We also tested the best set of weights of each NN by playing tournaments against 

each other at (1-ply) as well as by implementing a simple look-ahead procedure using the 

expectimax algorithm (Michie, 1966) at 2-ply depth (Table 3.3). In order to speed up the 

testing time, this expansion of depth-2 was performed only for the best 15 candidate moves 

(forward pruning). For the same reason, the total amount of testing games using 2-ply was 

reduced to 1,000 per test.   

The results in Plakoto show a significant increase in final performance. The perfor-

mance of Plakoto-3 at 1-ply is equivalent to the performance of Plakoto-2 at 2-ply against 

Tavli3D. Additionally, Plakoto-3 learns faster than the other two agents. 
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Table 3.2: Summary of techniques used by the various agents 

Plakoto 

Agent 

Updating 

method 

(Figure 3.4) 

Sequence crea-

tion and update 

direction 

 
Fevga 

agent 

Updating 

method 

(Fig. 3.4) 

Sequence crea-

tion and up-

date direction 

Intermediate 

reward 

Plakoto-1 b Forward offline  Fevga-2 b Forward offline No 

  Plakoto-2 b Forward offline  Fevga-3 b Forward offline Yes 

Plakoto-3  c 
Reverse offline re-

calc 
 Fevga-4 c 

Reverse offline 

recalc 
No 

    Fevga-5 c 
Reverse offline 

recalc 
Yes 

Table 3.3: Comparison of various agents at 1-ply and 2-ply for Plakoto (Left) and Fevga 
(Right). All results are in points per game (ppg) with respect to the player on the row. 

Players on columns always use 1-ply. 

 Tavli3D Plakoto1  Plakoto2    Tavli3D Fevga-2 Fevga-3 Fevga-4 

Plakoto-1 
1-ply: +1.15  

2-ply: +1.36 
* *  Fevga-2 

1-ply: +1.60  

2-ply: +1.61 
* * * 

  Plakoto-2 
1-ply: +1.46 

2-ply: +1.60 

1-ply: +0.98 

2-ply: +1.35 
*  Fevga-3 

1-ply: +1.52 

2-ply: +1.53 

1-ply: +0.03 

2-ply: +0.49 
* * 

Plakoto-3  
1-ply: +1.60 

2-ply: +1.68 

1-ply: +1.10 

2-ply: +1.24 

1-ply: +0.35 

2-ply: +0.62 
 Fevga-4 

1-ply: +1.63  

2-ply: +1.64 

1-ply: +0.35  

2-ply: +0.53 

1-ply: +0.26  

2-ply: +0.48 
* 

     Fevga-5 
1-ply: +1.58  

2-ply: +1.59 

1-ply: +0.42  

2-ply: +0.60 

1-ply: +0.32  

2-ply: +0.45 

1-ply: +0.02  

2-ply: +0.14 

Table 3.4: Analysis of some of the matches of Fevga-4 and Fevga-5 

Match: Fevga-5 vs Fevga-4 Fevga-4 vs Tavli3D Fevga-5 vs Tavli3D 

 Fevga-5 Fevga-4 Fevga-4 Tavli3D Fevga-5 Tavli3D 

Single Wins 47.54% 39.52% 28.93% 2.74% 32.84% 2.86% 

Double Wins 4.9% 8.04% 68.32% 0.01% 64.26% 0.04% 

Total Wins 52.44% 47.56% 97.25% 2.75% 97% 3% 

Final Score +0.02ppg -0.02ppg +1.63ppg -1.63ppg +1.54ppg -1.54ppg 

 

In Fevga, Fevga-4 outperforms both Fevga-2 and Fevga-3 agents, while Fevga-5 

outperforms all others except in the Tavli3D benchmark, where it is inferior to Fevga-4 

and Fevga-2 (Table 3.3). The explanation of this phenomenon is shown at Table 3.4: 

Against an inferior opponent, Fevga-4 achieves more points, because it wins more doubles 

due to its riskier strategy, while Fevga-5’s safer strategy of building primes wins the same 

amount of games overall but fewer doubles. These new results show that the strategy 

learned by Fevga-4 and Fevga-5 is no different than the one learned from their previous 
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counterparts (Fevga-2 and Fevga-3); simply the proposed training method learns the 

strategies better. 

Figure 3.7: Example of a position where agents Plakoto1-3 fail to produce the best move. The 
green player is to play roll 42. The best move here is 24/18, since the 24-point cannot be pinned 

by any dice roll. However, Plakoto1-3 agents prefer the clearly inferior move 24/20, 24/22 which 
gives the opponent a pinning opportunity to get back into the game. 

3.2.2.3 Mother point feature selection in the Plakoto variant 

An interesting observation was made while testing the strategies that were learned 

in the Plakoto variant. The resulting strategy was very conservative with regard to its start-

ing point (also called the “mother” point). The agent correctly identified that it must not let 

the starting point with one checker, as it would be potentially open to a pinning attack that 

would automatically lose the maximum amount of points (double game). However, it could 

not discriminate the positions that such an attack could not be carried out by the opponent 

and protected its first point even after we added the expert feature of pinning probability in 

Plakoto2 and Plakoto3. This resulted in obvious errors in a small number of positions. For 
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example, the amount of equity lost for selecting the wrong move in Figure 3.7 was calcu-

lated to 0.276ppg by making a 100,000 games rollout on each of the moves in question 

(Table 3.5).  

We suspected that the agent learned the harmful concept of leaving the first point 

open by the four raw features instead of the added expert feature "pinning probability at 

point 1". In order to confirm this, we trained another agent (Plakoto-4) without the first of 

the four features for point 1, leaving only three features, one, if 2 or more checkers are 

present, another, if 3 or more checkers are present and a last one, if 4 or more checkers are 

present. The resulting agent confirmed our suspicions, as it managed to learn the concept 

of "leaving the first point unprotected is bad" in a correct way, without committing the 

same mistakes of its predecessors. Evaluating Plakoto-4 final performance of 1.5 million 

trained games against Plakoto-3 in a 10,000 tournament resulted in equal performance. 

This may mean either that: a) positions of this kind do not appear frequently and when they 

appear they do not seem to have a significant impact to the result or b) Plakoto-4 simply 

needs more training for the difference to tell. 

Table 3.5: Evaluation and rollout analysis of the two best moves of the position in Figure 
3.7. The first four columns show the evaluation of the Plakoto-3 and Plakoto-4 NNs after 
1-ply and 2-ply look-ahead. The fifth and sixth column show the equity of the position by 

making a rollout analysis using Plakoto-3 and Plakoto-4. The last column shows the 
equity that was lost by selecting the inferior move. The equity loss was calculated on the 

average of the two rollouts. 

Move 
Plakoto-3  

(1-ply) eval 

Plakoto-3 

(2-ply) eval 

Plakoto-4  

(1-ply) eval 

Plakoto-4  

(2-ply) eval 

Rollout 

Plakoto-3 

Rollout 

Plakoto-4 

equity 

loss 

24/22 24/20 1.020 1.048 0.942 1.046 0.983 0.968 0.276 

24/18 0.692 1.082 1.140 1.248 1.259 1.243 - 

 

Why was this concept not learned correctly by the other agents, especially when 

the other points where learned correctly? The concept of protecting the 1st point is one of 

the first things the agents learn, because it is the closest to the terminal position, the only 

position that receives reward, and because the random character of the first self-play train-

ing games result in many "mother doubles". When confronted with two features to learn 

the concept, one being a binary input, and one a float input between 0 and 1, the neural 
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network chooses the first one because it is the easier and the faster to learn. It would appear 

that the agent would have a chance to “unlearn” this later, as learning progresses, when the 

estimates of the NN are closer to the optimal. However, this is never done, as these kind of 

positions rarely appear, because the agent has learned how (wrongly) to defend against. 

3.3 Final Learning Setup 

After determining the target of the update and some expert features we were able 

to finalize the training procedure. We also reevaluated the play of the agents and decided 

to add a few more expert features that will be shown in this section. 

Another parameter that needed resolution was how many hidden layers should we 

have used and what their size would be. Following the successful application of TD-

Gammon we used one hidden layer in all our backgammon NNs. The number of hidden 

neurons is 160 for backgammon, 100 for Fevga and 100 for Plakoto. These numbers were 

chosen based on preliminary experiments. A higher number of hidden neurons increases 

performance cost for evaluating each state. This results in increased thinking time for each 

move, especially when utilizing lookahead in greater depths . Thus, the number of hidden 

neurons chosen is a compromise between performance and computational cost. 160 hidden 

neurons were also used by the TD-Gammon program. 

Using the above architecture, the procedure of obtaining an estimation of the game-

theoretic value of each state is straightforward: set the inputs of the NN according to the 

board positioning, execute the forward-propagate procedure of the NN to update the out-

puts, and finally linearly combine the outputs according to the following formula: V= 2 * 

W - 1 + WD – LD.  

3.3.1 TRAINING THE NN USING TDL 

Training a neural network requires training examples in a supervised learning set-

ting. We use TD(λ) algorithm  (Sutton, 1988) and the NN’s backpropagation algorithm to 

update the TD error. The exact training procedure is summarized in Algorithm 1. This 
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training scheme, named reverse offline recalc, was selected among several similar self-

play methods (Section 3.3.2.1). 

Algorithm1. Training a backgammon NN using TD(0) 
// nn:  the neural network that we want to train 

// nn.inputs: a vector representing the input layer 

//  nn.outputs: a vector representing the output layer (W, WD, LD) 

//  nn.target: a vector representing the target of the update 

// states: a vector holding the all the positions of a game 

1. nn.initialize(input layer size, hidden layer size, output layer size = 3, learning rate α) 

2. randomize(nn)      // randomize all weights to [-0.5, 0.5] 

3. while (stopping condition) do 

    4.    states = selfplaygame(nn) 

    5.    for (t=T to 1 step -1) do 

    6.        if(states(t) is terminal) 

    7.          nn.targets = reward(states(t))  

    8.       else 

    9.          nn.inputs = encoding(states(t+1)) 

  10.          nn.forwardpropagate() // calculate outputs  

  11.          nn.targets = invert(nn.outputs) 

  12.       endif 

  13.        nn.inputs = encoding(states(t)) 

  14.       nn.forwardpropagate()   // calculate outputs 

  15.       nn.backpropagate()        // apply backpropagation algorithm 

  16.    end for 

  17.  end while 

Figure 3.8: Reverse offline recalc algorithm with TD(0) 

In the adopted training procedure, the updates are applied (Lines 5-15), after a self-

play game (Line 4) is ended, starting from the last position of the game and ending at the 

first (Line 5). At each time step, we recalculate the target for each update (Lines 9-11), in 

order to get as much accuracy for the estimation of the example label as possible. The 

function encoding (Lines 9, 13) encodes the raw and expert features in their predefined 

positions at the input layer. Note that the value of the next state is inverted (Line 11). This 

is necessary because the NN plays the game for both sides always as the first player. When 

all the moves up to the first are updated, the algorithm starts a new self-game producing 

the moves according to the updated NN. The procedure is repeated, until the selected stop-

ping criterion is satisfied. Possible stopping criteria are: (1) a predefined number of self-
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play games is reached or (2) no more performance improvement according to a predefined 

benchmark is found after a prespecified number of self-play games. 

Algorithm 1 uses TD(λ) with λ=0, that is the current state is updated only according 

to the estimation of the next state (Lines 9-11). Thus, the target of the update is Vtarget(st) = 

V(st+1). If we want the target of the update to be based on more than one future move 

estimates, we can use the forward view of TD(λ) (Section 2.2.4.3.3), where (0<λ≤1),  and 

the target of the update becomes 

𝑉𝑡𝑎𝑟𝑔𝑒𝑡(𝑠𝑡)  =  (1 − 𝜆) ∑ 𝜆𝑛−1𝑉(𝑠𝑡+𝑛)

∞

𝑛=1

+ 𝜆𝛵−𝑡−1𝑉(𝑠𝑇) 

In case of λ>0, lines 8-10 of Algorithm 1 must be changed accordingly. Similarly 

to V(st+1), all values 𝑉(𝑠𝑡+𝑛) for n being any odd number must be inverted. 

The updates of the network weights are done incrementally and not in a batch set-

ting. This procedure is similar to stochastic or “online” training (Wilson & Martinez, 2003). 

The main difference is that there are no fixed labels in the training examples; the labels are 

given by TD(λ). We prefer incremental training, because it has been shown to perform at 

least equally to the standard batch training using fewer computational resources (Wilson & 

Martinez, 2003).  

3.3.2 CHOOSING LEARNING RATE Α AND PARAMETER Λ 

One of the advantages of incremental training is that one can use a larger learning 

rate than in a batch setting. We also made some experiments with different values of λ with 

mixed results. In the Plakoto variant, values of λ>0.6 resulted in divergence, whereas lower 

values sometimes became unstable. So it was decided to keep λ=0 for this variant. For 

Portes and Fevga variants it was possible to increase the λ value without problems and this 

always resulted in faster learning, but unlike other reported results (Wiering, 2010) final 

performance did not exceed experiments with λ=0. 
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Table 3.6: Selected values of α and λ parameters. 

Games Trained Portes Plakoto Fevga 

0-10,000 λ=0.7 α=1 λ=0 α=0.3 λ=0.7 α=1 

10,000-100,000 λ=0.7 α=0.3 λ=0 α=0.3 λ=0.7 α=0.3 

100,000-250,000 λ=0.7 α=0.1 λ=0 α=0.1 λ=0.7 α=0.1 

250,000-500,000 λ=0 α=0.3 λ=0 α=0.1 λ=0 α=0.3 

500,000-1,500,000 λ=0 α=0.1 λ=0 α=0.1 λ=0 α=0.1 

1,500,000-5,000,000 λ=0 α=0.1 λ=0 α=0.01 λ=0 α=0.01 

5,000,000- λ=0 α=0.01 - - 

 

Previous experiments were conducted with constant λ and α=0.1. Following the 

above preliminary experiments we use a decreasing value for λ and α for the experiments 

in this paper (with the exception of Plakoto where λ is kept constant to zero). Starting with 

high values of λ=0.7 and α=1 we gradually decrease these values, when performance starts 

to flatten. The exact values of these parameters are shown in Table 3.6. Using this setup 

the performance of Plakoto and Fevga variants maxes out at 5 million games and Portes at 

around 15 million games. 

3.3.3 EXPERT FEATURES 

The features included in the input layer of each NN are divided to “raw” and “ex-

pert” features. Raw features represent the placement of each checker on the board, while 

expert features are important game concepts that would otherwise be very difficult for the 

NN to infer from the raw encoding alone. The raw features of Plakoto and Fevga are pre-

sented in 3.2.1, while the raw features of our Portes NN are exactly the same as used in 

(Tesauro, 1992). The remaining of this section presents the selected expert features for the 

Portes game as well as the new expert features that we used in Plakoto and Fevga. The 

remaining expert features of Plakoto and Fevga are described in 3.2.1. 

3.3.3.1 Expert features for Portes/Backgammon 

All the expert features of our Portes/Backgammon bot are shown in Table 3.7. The 

features capture important game playing concepts according to the current literature from 

expert backgammon players. For example EnterFromBar_1 and EnterFromBar_2 capture 

the concept of home board strength. This feature, however, is useless, when the position 
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has no contact (race feature). The NN takes care of combining the features in the correct 

way taking the current position into account. Additionally, the hidden neurons can create 

features not existent in the expert list, if necessary. For example, we found that the prime 

formation (six consecutive made points) was handled correctly by the program, so we did 

not include it in the list of expert features, even if it is an important concept. The features 

PipDiff_1, PipDiff_2, PipBearoff_1, PipBearoff_2 were normalized to the [0, 1] interval 

by a dividing with 60. 

Table 3.7:  Expert features for the Portes/backgammon variant. 

Feature name Description 

HitProb_1 Probability of one player checker being hit on the next roll 

HitProb_2 Probability of two player checkers being hit on the next roll 

Race Boolean feature showing the position is a no contact position 

PipDiff_1 Pipcount difference when the player is behind (when ahead = 0) 

PipDiff_2 Pipcount difference when the player is ahead (when behind = 0) 

PipBearoff_1 Pipcount to bearoff for player on roll 

PipBearoff_2 Pipcount to bearoff for opponent 

EnterFromBar_1 Probability of player entering from bar 

EnterFromBar_2 Probability of opponent entering from bar 

OppContain_1 
Probability of opponent’s last checker escaping from player’s 

home board 

OppContain_2 
Probability of opponent’s second to last checker escaping from 

player’s home board 

UsContain_1 
Probability of player’s last checker escaping from opponent’s 

home board 

UsContain_2 
Probability of player’s second to last checker escaping from op-

ponent’s home board 

3.3.3.2 New expert features for Plakoto 

After manual examination and with the help of comments from users that down-

loaded Palamedes, we identified two key problems of our Plakoto bots. The first one pre-

sented itself in positions, when the bot has pinned the opponent inside the bot’s home 

board. In such positions it is advisable for the bot to “stack” its checkers in the pinned 
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point, whenever possible, so as to prolong the duration of the pin even in the bearoff situ-

ation. Such a strategy most often leads to a double game. However, our bots were position-

ing their checkers, as if it was a normal bearoff, greatly reducing their chances of a double 

game. This problem was addressed by adding the ChFrontOfPin_1 and the ChFron-

tOfPin_2 features. These two features were scaled to [0, 1] interval by dividing each by 14. 

We also added the Esc_Prob1 and EscProb2 features hoping that the bot can advance its 

made points more fluidly, not leaving behind made points that cannot escape easily. Finally 

we added five features from Portes that are relevant to Plakoto as well. The complete set 

of features is shown in Table 3.8. 

Table 3.8:  Expert features for the Plakoto variant. 

Feature name Description 

Race Boolean feature showing if the position is a no contact position 

PipDiff_1 Pipcount difference when the player is behind (when ahead = 0) 

PipDiff_2 Pipcount difference when the player is ahead (when behind = 0) 

PipBearoff_1 Pipcount to bearoff for player on roll 

PipBearoff_2 Pipcount to bearoff for opponent 

ChFrontOfPin_1 
Number of player checkers in front of last pin when the player 

has the opponent pinned in the player’s homeboard 

ChFrontOfPin_2 
Number of opponent checkers in front of last pin when the op-

ponent has the player pinned in the opponent’s homeboard 

Esc_Prob1 Escape probability of player’s last made point 

Esc_Prob2 Escape probability of opponent’s last made point 

3.3.3.3 New expert features for Fevga 

The most important concept in the Fevga variant is the existence of a prime for-

mation. In previous work we addressed this by adding one binary feature for every type of 

prime, when it was encountered in the game. While this resulted in the desired effect of the 

NN learning the concept of making primes when necessary, it did not always understand 

when it was important to prevent the opponent from making primes of its own. The bot 

could not understand by this feature alone when the opponent was close to making a prime 

so as to take immediate measures to disrupt his plan. The inclusion of 2-ply look-ahead 
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improved the situation, as now the bot had access to the next moves of the opponent, but it 

would be desirable to have this knowledge without reverting to the computational expen-

sive procedure of looking ahead at greater depths.  

 To address this problem we changed the binary features of making primes in the 

following way: When a prime is made, the feature is set to one as before. When there is no 

prime present, instead of setting the feature to zero, we replaced it with a heuristic that 

computes the probability of making the prime. This was done both for the primes of the 

bot as well as for the primes of the opponent. Computing accurately this heuristic is very 

complex and takes much time especially for middle game positions. In order to keep the 

computational requirements low, we compute the heuristic only for the most common sce-

nario: when there is only one checker left to make the prime. Positions where the prime 

needs two or more checkers to be achieved are less frequent and usually have smaller prob-

ability of success. Thus, the resulting heuristic is a compromise between accuracy and ex-

ecuting time. 

These updated features resemble the way we added the pinning probabilities in the 

Plakoto variant as shown in 3.2.1.2. It has the advantage of putting knowledge in the NN 

while at the same time keeping low the size of the inputs. We also added the features 

PipDiff_1, PipDiff_2, PipBearoff_1, PipBearoff_2 of Portes and Plakoto, because they are 

relevant to Fevga as well. 

We also experimented by combining the above new features with the intermediate 

reward procedure during the training of Fevga3 and Fevga5 bots (3.2.1.1). Such a proce-

dure results in a strategy that tries to build primes and maintain them at all cost. While the 

resulting performance was higher than previous bots, it was lower than Fevga6, i.e. without 

the intermediate reward. One possible explanation is that without the intermediate reward 

the bot can identify situations where a prime is not the best course of action. It seems that 

finding exceptions to the rule of building primes even with an incomplete heuristic is more 

fruitful than a “dogmatic” behavior regarding primes.  
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3.3.4 EXPERIMENTAL RESULTS 

Being consistent with our previous naming scheme, we name the new bots Plakoto-

5 and Fevga-6. We compare them by taking the best set of trained weights and make them 

playing a tournament against a benchmark opponent without look-ahead (1-ply). For Pla-

koto and Fevga this benchmark is our best previous bot, namely Plakoto-4 and Fevga-4 

respectively. For the Portes/Backgammon we chose the pubeval benchmark, because we 

can indirectly compare the performance with others backgammon bots that published re-

sults against it. We also report on the performance when applying a simple look-ahead 

procedure using the expectimax algorithm (Michie, 1966) at 2-ply depth. The bot is 

awarded a +1 point for a single win, +2 points for a double win, -1 for a single loss, -2 for 

a double loss. The result of the tested games sum up to the form of estimated points per 

game (ppg) and is calculated as the mean of the points won and lost. The number of games 

played are 100,000 for 1-ply and 10,000 for 2-ply. In order to speed up the testing time of 

2-ply, the expansion of depth-2 was performed only for the best 15 candidate moves (for-

ward pruning). Table 3.9 presents the results. 

The performance of the Portes/Backgammon bot is comparable to most top playing 

bots. TD-Gammon 2.1 reported a 0.596 performance against pubeval (Tesauro, 2011), 

while another backgammon program, GNUBG (Gnubg.org, 2015), frequent participant to 

backgammon Computer Olympiads, recently reported similar performance (0.6046 ppg) in 

its mailing list, while using a more complex training scheme and three different NNs for 

three different stages of the game (Gnubg mailing list, 2012).  

Table 3.9: Performance of the new bots against benchmark opponents 

Bot Opponent ppg 

Portes-1(1-ply) Pubeval (1-ply) 0.603 

Plakoto-5(1-ply) Plakoto-4(1-ply) 0.356 

Plakoto-5(2-ply) Plakoto-4(1-ply) 0.422 

Fevga-6(1-ply) Fevga-4(1-ply) 0.215 

Fevga-6(2-ply) Fevga-4(1-ply) 0.323 
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Since the training procedure and the NN architecture is the same for the old and 

new bots for the Fevga and Plakoto variants, it is safe to assume that the gain was due to 

the addition/alteration of the expert features. We believe that the common features of Portes 

that were added to Plakoto and Fevga played a minor role to the improved performance. 

More important for Fevga was the alteration of the prime features and for Plakoto the ad-

dition ChFrontOfPin_1 andChFrontOfPin_2. 
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CHAPTER 4: OPENING STATISTICS AND MATCH PLAY  

4.1 Introduction 

In this chapter we use our expert playing agents of Palamedes to make the first ever 

computer assisted analysis of the opening rolls for the backgammon variants Portes, Pla-

koto and Fevga (collectively called Tavli in Greece). We then use these results to build 

effective match strategies for each game variant.  

Our methodology is similar to the one used in (Keith, 2006): After the opening roll 

and for each roll, the most promising continuations are analyzed by means of rollout anal-

ysis, a Monte Carlo method that is commonly used in backgammon. The rollouts start from 

the resulting position after each candidate move and a fixed number of games is played, 

until a terminal position is reached. Counting the results of these games we can finally get 

the probabilities of single wins (WS), double wins (WD), single losses (LS) and double 

losses (LD). Based on these probabilities, we can then compute the estimated equity of 

each position using the following equation: 

E = WS – LS + 2 * (WD –  LD)   

This kind of evaluation is considered to offer accurate results in standard backgam-

mon, despite the fact that the move selection algorithm of the rollout phase is not so strong 

in terms of performance (Tesauro, 2002). Rollouts can also be truncated, which means that 

they could stop after a fixed amount of plies (instead of going till the end of the game) and 

average together the estimates of the resulting positions, with a negligible change in their 

estimates. In the presence of an endgame database that can offer the exact equity of end-

game positions (e.g. a 2-sided endgame database), a rollout can go as far as the first position 

encountered in the endgame database and return the database value.  

4.2 Experimental setup and results 

We used our latest and best Neural Networks (NN) game evaluation functions for 

selecting each move on the rollouts. For Portes we used  Portes_ACG13 NN, for Plakoto 

we used Plakoto5 and for Fevga we used Fevga6 (Section 3.3.4). The rollouts were per-

formed using 1-ply playing mode, which means that Palamedes looked ahead only at the 
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current roll for each play during the rollouts, selecting the best play of each trial. After the 

opening roll, we rolled out the five most promising candidate moves (selected using 2-ply 

evaluation), using 100,000 games per position. The standard error of the estimated equity 

E when performing this number of trials is less than 0.02. Rollouts were performed using 

cubeless untruncated money play. Cubeless means that games are played without a dou-

bling cube. Untruncated means that rollouts were played out until the end of the game. 

Money play means that each game is played individually and not as a part of a match. 

Table 4.1: Best move of all opening rolls per variant examined 

 PORTES PLAKOTO FEVGA 

ROLL BEST MOVE EQ BEST MOVE EQ 

BEST 

MOVE EQ 

SINGLE ROLLS 

21 24/23 13/11 0.006 24/22 24/23 0.042 24/21 -0.030 

31 8/5 6/5 0.155 24/21 24/23 0.037 24/20 0.012 

41 24/23 13/9 0.002 24/20 24/23 0.070 24/19 0.086 

51 24/23 13/8 0.011 24/19 24/23 0.043 24/18 0.090 

61 13/7 8/7 0.108 24/18 24/23 0.097 24/17 0.194 

32 24/21 13/11 0.017 24/21 24/22 0.050 24/19 0.086 

42 8/4 6/4 0.110 24/20 24/22 0.065 24/18 0.090 

52 24/22 13/8 0.015 24/19 24/22 0.066 24/17 0.194 

62 24/18 13/11 0.017 24/18 24/22 0.106 24/16 0.259 

43 24/20 13/10 0.015 24/20 24/21 0.056 24/17 0.194 

53 8/3 6/3 0.059 24/19 24/21 0.039 24/16 0.259 

63 24/18 13/10 0.018 24/18 24/21 0.096 24/15 0.336 

54 24/20 13/8 0.029 24/19 24/20 0.073 24/15 0.336 

64 8/2 6/2 0.016 24/18 24/20 0.121 24/14 0.385 

65 24/18 18/13 0.072 24/18 24/19 0.117 24/13 0.440 

DOUBLE ROLLS 

11 8/7 (2)  6/5(2) 0.213 24/23 (4) 0.129 24/20 0.012 

22 13/11(2)  6/4(2) 0.240 24/20 24/22 (2) 0.137 24/16 0.259 

33 8/5 (2)  6/3 (2) 0.259 24/18 24/21 (2) 0.187 24/15 0.336 

44 24/20(2) 13/9(2) 0.348 24/16 (2) 0.247 24/16 0.259 

55 13/8 (2)  8/3 (2) 0.160 24/14 24/19 (2) 0.361 24/9 24/19 0.831 

66 24/18(2) 13/7(2) 0.398 24/12 (2) 0.521 24/18 0.090 

 

Opening rolls were split in two groups, single and double, in order to shed more 

light into the effect of rolling a double at the start of the game. This is most useful in stand-

ard backgammon, which does not allow a double opening roll like the Portes variant does. 
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The move selected for each roll was picked as the best after rolling out the most promising 

candidate moves available. These figures were constructed by singling out the move with 

best equity after each roll. The actual moves selected can be seen in Table 4.1.  

Figures 4.1 – 4.3 summarize the results for each roll and game variant and compares the 

games. All numbers shown are with regard to the first player making the move. Averages 

of all single rolls are marked with the word ‘SINGLE’. Averages of all double rolls are 

marked with the word ‘DOUBLE’. Finally the word ‘ALL’ is the weighted (according to 

the probability of each roll) average of all 21 rolls. 

 Figure 4.1: Comparison of estimated equity of all opening rolls  

In Figure 4.1 the estimated equity of all opening moves for all games is presented. 

The starting roll with the greatest equity is by far the 55 in Fevga, while the least useful 

roll is the 21 in Fevga.  

Figure 4.2 summarizes the outcome of all rolls to produce the expected result of the 

first player. From this figure we can derive the percentage of games that result in doubles, 

also called “gammon rate”, by adding WD and LD (Table 4.2). 
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 Figure 4.2: Expected outcome (%) of the first player 

Table 4.2: Gammon rates of Tavli variants 

Variant Gammon Rate 

Portes 26.85% 

Plakoto 40.48% 

Fevga 14.27% 

 

Perhaps the most interesting result of this study is the total estimated equity of the 

first player shown in Figure 4.3. Ideally, a perfectly designed backgammon game would 

give zero equity to the first player. This would mean that the opening roll does not favor 

one player over the other. Our study shows that the “best” variant in that regard is Portes, 

closely followed by Plakoto. On the other hand, Fevga gives a significant advantage to the 

first player.  
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Figure 4.3: Total estimated equity of the first player 

4.3 Discussion 

This section discusses and compares the results of the three games to each other, as 

well as to previous similar studies. We also attempt to explain some of the results found 

from a strategic point of view. 

4.3.1 PORTES 

The results for the single rolls of the Portes variant are very similar to a previous 

study on standard backgammon openings (Keith, 2006). In that study, the rollouts were 

performed by GnuBG (Gnubg.org, 2015), a very strong open source backgammon program 

at a 2-ply depth. The estimated equity of all single rolls in (Keith, 2006) is 0.039, ours is 

0.042. Almost all best opening moves coincide with our best selected moves. The gammon 

rate is estimated in (Keith, 2006) at 27.6%. If we count the backgammons, which according 

to Portes rules are counted as gammons, this rate is increased to 28.8%. Our results estimate 

this at a more modest 26.9%, almost a 2% difference. We give two possible explanations 

for this behavior: a) 1-ply rollouts are not accurate enough and b) the playing style of Pal-

amedes is more conservative compared to that of GnuBG, resulting in somewhat fewer 

gammons.  

Since the analysis of the single opening rolls is nothing new, we concentrate the 

discussion on the effect of the double rolls. The inclusion of doubles in the opening roll 
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gives more advantage to the first player. The average equity of all double rolls is 0.267 

(Figure 4.3), six times larger than the equity of the single rolls. This was expected, since: 

a) doubles usually result in more distance travelled than the average single roll and b) even 

small doubles like 11 give the opportunity to construct strategically made points without 

risking getting hit by the opponent. The best double roll is 66 with 0.41 equity; even the 

worst double roll (11, E=0.22) is better than the best single roll (31, E=0.16). The effect of 

doubles can be seen in the weighted average of all rolls (Figure 4.3, E=0.079), which is 

almost twice that of the single rolls. 

4.3.2 PLAKOTO 

Plakoto results, compared to the other games, demonstrate an increased gammon 

rate. 41% of Plakoto games are won as doubles, 14% more than the rate we calculated in 

Portes. This rate can be explained by the strategic strength of pinning an opponent checker 

inside his home board. It is well known that this kind of pin can result in double games, 

because, if the pinning player manages not to get pinned himself, he can place his checkers 

in such a way that during bear off most of his pieces will be borne off, before the pinning 

checker is unpinned. This places the pinned player at a great disadvantage, because usually 

he does not have enough time to return the last checker to his home board and avoid the 

double loss. Of course, one can play a very conservative game and avoid leaving lone 

checkers in his home board at all costs. However, this can lead to other problems: building 

large stacks of checkers, that are extremely inflexible and also minimize the chances of 

hitting lone checkers of the opponent. For this reason, Palamedes and most expert players 

prefer a “restrained aggressive approach” during the opening, leaving some lone checkers 

open, when there is a small chance that the opponent can pin them. This strategy, never-

theless, inevitably falls victim to a lucky pinning roll by the opponent, which may be 

enough to result in a double loss. This reasoning strongly suggests that the starting position 

of Plakoto greatly influences the gammon rate and the equity of the first player. 

In order to test the hypothesis above, we made another experiment changing the 

starting position: Instead of having all 15 checkers at the starting point, the checkers are 
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distributed evenly in the first three points. This variant is known in some regions as the 

Tapa variant (Section 2.1.3.1) and we will use this naming also in this paper. The starting 

position of Tapa makes the pinning of checkers inside the home board during the opening 

more difficult, because the players can construct made points more easily during the start 

of the game. We used the same methodology and the same Neural Network (Plakoto-5) for 

the rollouts. Even if this NN was not trained for this specific variant, we believe that it is 

sufficient to produce strong play, because the type of positions resulting from a Tapa game 

are well within the range of positions the NN has seen during self-play training1.   

Table 4.3: Comparison of Tapa and Plakoto estimated results for the first player 

Vari-

ant 

WS 

(%) 

WD 

(%) 

LS 

(%) 

LD 

(%) 
EQUITY 

GAMMON 

RATE (%) 

Plakoto 29.89 22.77 29.62 17.71 0.104 40.48 

Tapa 37.40 13.12 37.91 11.55 0.026 24.67 

 

The results of the Tapa experiment (Table 4.3) confirm our hypothesis. The gam-

mon rate is reduced from 40.48 to 24.67%. Also the equity of the first player is reduced to 

0.026, which is even lower than the equity of the single rolls in the Portes variant (Figure  

4.3). 

Another notable point that can be seen in Table 4.3 is that the first player wins about 

the same amount of single games as the second player (29.9% vs 29.6%). Consequently all 

the advantage that the first player has can be attributed to the difference in double games 

won, which is 22.77% compared to 17.71% of the second player. 

4.3.3 FEVGA 

The first interesting result in the Fevga experiments is that the expected equity of 

the first player (0.213) is the highest amongst all games examined, more than twice that of 

                                                 

 
1 The opposite situation could be problematic: a Tapa trained NN may not evaluate correctly Plakoto’s 

opening positions with early home board pins in points 2 and 3, because this kind of experience would 

have been extremely rare in its self-play training. 
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the Plakoto (0.104). Winning 57.5% of the games gives the player who plays first a dis-

tinctive advantage. Fevga also has the roll with the most gained equity in all games, the 55 

roll at 0.84 equity. We also observe that all high sum rolls (e.g. 63, 64, 65) give very high 

equity for the first player, with 65 (E=0.44), even surpassing the best Portes roll (66, 

E=0.41). However, unlike the two other variants, doubles do not increase the equity of the 

single rolls that much (from 0.19 to 0.21). This can be attributed to the fact that apart form 

55, the other two large doubles (44 and 66), that typically have increased equity, have a 

reduced effect because of Fevga’s starting rule (Section 2.1.4). Overall, we note that the 

further the starting checker is able to move during the first roll, the better the chances are 

for the first player. This observation fully justifies the name of the game (‘Fevga’ means 

‘run’ in Greek). 

Another surprising observation is that the gammon rate (14.27%) is very low com-

pared to the other variants. The greatest factor that affects this statistic is the very small 

chance of the second player winning a double game. With 4.05% the second player wins 

less than half doubles that the first player does (10.22%). 

4.4 Match Play 

In this section we show how we can use the statistics from the previous sections to 

construct effective match strategies for Tavli variants. When playing a match, the goal of 

the players is to win the match and not to maximize their expected reward at the individual 

games. For this reason all strong backgammon programs select the best move by approxi-

mating  the Match Winning Chance (MWC) at each move selection. We present a simple 

method, similar to the one used in backgammon, for approximating MWC, using the esti-

mates of the NN evaluations and the gammon rate computed in Table 4.2. For simplicity, 

we examine only matches of the same game type where the player that starts each game is 

determined randomly.  

First, we build a table estimating MWC before the start of the game for all possible 

score differences during the course of the match. In the most simple case, that is, when the 
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score is tied, the players have the same chance of winning the match. The table is calculated 

using the following recursive definition: 

mwc(Α,Β) = S * mwc(A-1, B) + D * mwc(A-2, B) + S * mwc(A, B-1) + D * mwc(A, B-2)  

where A is the remaining points left for player A to win the match, B is the remain-

ing points left for player B to win the match, mwc(A,B) is the table entry specifying the 

probability of winning the match for the A player when the current score is A points away 

– B points away, S is the probability each player has of winning a single game (= (1 - 

gammon rate) / 2), D is the probability each player has of winning a double game (=gam-

mon rate / 2). Tables 4.4, 4.5, 4.6 show the tables computed with this method for the games 

Portes, Plakoto, Fevga respectively and match away scores up to 9. 

Table 4.4: MWC (%) for player A on Portes variant 

A 

away 

 
MATCH WINNING CHANCE (MWC) 

 B 

away 
1 2 3 4 5 6 7 8 9 

1  50.00 68.28 81.68 89.04 93.53 96.16 97.73 98.65 99.20 

2  31.73 50.00 65.85 76.78 84.56 89.83 93.37 95.72 97.25 

3  18.32 34.15 50.00 62.91 73.20 80.98 86.72 90.84 93.75 

4  10.96 23.22 37.09 50.00 61.39 70.85 78.41 84.26 88.69 

5  6.47 15.44 26.80 38.61 50.00 60.25 69.07 76.36 82.23 

6  3.84 10.17 19.02 29.15 39.75 50.00 59.41 67.68 74.71 

7  2.27 6.63 13.28 21.59 30.93 40.59 50.00 58.74 66.56 

8  1.35 4.28 9.16 15.74 23.64 32.32 41.26 50.00 58.20 

9  0.80 2.75 6.25 11.31 17.77 25.29 33.44 41.80 50.00 
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Table 4.5: MWC (%) for player A on Plakoto variant 

A 

away 

 
MATCH WINNING CHANCE (MWC) 

 B 

away 
1 2 3 4 5 6 7 8 9 

1  50.00 64.88 79.43 86.77 91.90 94.91 96.85 98.03 98.78 

2  35.12 50.00 65.87 75.78 83.47 88.67 92.34 94.84 96.55 

3  20.57 34.13 50.00 61.90 71.98 79.55 85.33 89.56 92.65 

4  13.23 24.22 38.10 50.00 60.91 69.87 77.20 82.97 87.43 

5  8.10 16.53 28.02 39.09 50.00 59.69 68.13 75.17 80.93 

6  5.09 11.33 20.45 30.13 40.31 50.00 58.94 66.82 73.60 

7  3.15 7.66 14.67 22.80 31.87 41.06 50.00 58.29 65.75 

8  1.97 5.16 10.44 17.03 24.83 33.18 41.71 50.00 57.79 

9  1.22 3.45 7.35 12.57 19.07 26.40 34.25 42.21 50.00 

 

Table 4.6: MWC (%) for player A on Fevga variant 

A 

away 

 
MATCH WINNING CHANCE (MWC) 

 B 

away 
1 2 3 4 5 6 7 8 9 

1  50.00 71.43 84.18 91.18 95.09 97.27 98.48 99.15 99.53 

2  28.57 50.00 66.69 78.37 86.25 91.39 94.68 96.74 98.02 

3  15.82 33.31 50.00 63.91 74.72 82.70 88.39 92.33 95.00 

4  8.82 21.63 36.09 50.00 62.19 72.20 80.03 85.93 90.26 

5  4.91 13.75 25.28 37.81 50.00 60.98 70.32 77.92 83.88 

6  2.73 8.61 17.30 27.80 39.02 50.00 60.07 68.85 76.19 

7  1.52 5.32 11.61 19.97 29.68 39.93 50.00 59.35 67.65 

8  0.85 3.26 7.67 14.07 22.08 31.15 40.65 50.00 58.77 

9  0.47 1.98 5.00 9.74 16.12 23.81 32.35 41.23 50.00 

 

Finally, for move selection, a similar equation is used for determining the MWC of 

each move: 

MWC = WS * mwc(A-1, B) + WD * mwc(A-2, B) + LS * mwc(A, B-1) + LD * mwc(A, B-2), 

where WS, WD, LS and LD are the output estimations of our neural network evaluation 

function. 
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4.4.1 EXPERIMENTS IN MATCH PLAY 

In order to test the above method, we made an experiment playing 10,000 5-point 

matches in the three variants examined, where one player uses the “match” strategy and 

the other player uses the “money play” strategy that tries to maximize the value of each 

individual game. The match started half the time by the “match” player and the other half 

by the “money” player. The results along with some useful statistics that we stored during 

the course of the matches are shown in Table 4.7. All results are from the point of the match 

player.  

Table 4.7: Performance of match strategy vs money play strategy in 10000 5-point mat-
ches  

Variant 
Match 

Wins 

Diff. 

moves 

Games 

WS 

Games 

WD 

Games 

LS 

Games 

LD 

Total 

game 

points 

Portes 5144±98 7.1% 22937 7094 19558 9066 -565 

Plakoto 5103±98 4.6% 15994 10627 15238 11007 -4 

Fevga 5067±98 5.3% 28395 4453 27358 5401 -635 

 

The performance of the match strategy is better than the money-play strategy in all 

games, in terms of matches won by the match player, although the total points won by the 

match player are less than the points won by the money player. In other words, the match 

player is able to win the points, when they are more important, in order to win the current 

match. This observation is clearer in Portes and Plakoto and less significant in Fevga, due 

to the low gammon rate of Fevga that does not give many opportunities for the players to 

take justified risks for a gammon. We also kept counters whether the money player would 

play the same move with the match strategy in a non trivial decision (number of possible 

moves > 1) when it was the turn of the match player (column Diff. moves). As it can be 

seen in this column, the two strategies differ very slightly and this can be an explanation 

why the match strategy is only better by a small margin.  
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Finally, we also measured the result of each game (columns: WS, WD, LS, LD) 

and the total game points from the point of the match player. Interestingly, the match player 

wins more single games and less double games in all three variants. This can be explained 

with the following reasoning: when the match player is ahead on the score, it will play 

more conservatively trying to keep its lead and not take unnecessary chances to win a gam-

mon that could give also winning chances to the opponent. On the other hand, when he is 

behind, he will go more aggressively for a gammon in order to try to close the gap, before 

it is too late. This risky strategy will be sometimes successful, but most of the times it will 

result in gammons for the opponent.  

4.5 Conclusions and future work 

In this chapter we used Palamedes bot to conduct rollout experiments on the open-

ing moves of the first player for three popular backgammon games: Portes, Plakoto and 

Fevga. Our findings for Portes without the double rolls are very close to those found in the 

literature. To the best of our knowledge, this is the first time that an analysis of the opening 

moves was conducted for the other two variants, Plakoto and Fevga.  

Our results show that the advantage of the first player is significant in the Fevga 

variant, small in Plakoto and very small in Portes. The superiority of the Portes variant in 

this statistic was expected, because Portes (and backgammon) has the advantage of a spe-

cially crafted starting position, which is not present in the other variants. Another interest-

ing result is that the gammon rates of the three games fall in completely different ranges. 

The smallest gammon rate is for the Fevga variant (14.27%), followed by Portes/Backgam-

mon (26.9%), whereas Plakoto has the largest rate (at 41%).   

We also showed the effect of the starting position on the statistics examined in the 

Plakoto variant. Changing the starting position (Tapa variant) only slightly, we managed 

to lower the gammon rate and the advantage of the first player significantly, making Tapa 

the most “fair” backgammon variant examined so far. It would be interesting to try the 

opposite procedure in the backgammon/Portes variant: what would be the gammon rate 

and equity of a variant with the same rules as backgammon but a starting position, where 
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all starting checkers are placed in the player’s first point? If the results of our Plakoto/Tapa 

experiments are any indication, we suspect that we would see an increase in both of these 

measurements. We could have tried out an experiment using the Portes NN in this variant. 

However, unlike the Plakoto/Tapa case, here the change of the starting position is signifi-

cant, so we feel that the Portes NN will not generalize well. A new NN-based evaluation 

function should be self-trained, but as this is not trivial, we leave it for future work. 

Finally, as a practical application, we used the computed gammon rates to construct 

a match strategy that outperformed our previous money play strategy when playing 5-point 

matches in Portes and Plakoto. In the future we plan to extend this method in matches, 

where the starting player of the game is the one that wins the previous game, and in matches 

that consist of different game types like a Tavli match. 
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CHAPTER 5: CONSTRUCTING PIN ENDGAME DATABASES FOR 

PLAKOTO 

Computer game programs have been using endgame databases to great effect, es-

pecially in board games. Examples of complex games benefiting from such databases are 

chess (Nalimov, Haworth & Heinz, 2000), Chinese chess (Fang, Hhu & Hhu, 2002), check-

ers (Schaeffer et al., 2003), awari (Romein,& Bal, 2003), Kriegspiel (Ciancarini & Favini, 

2010) and nine-men morris (Gasser, 1996), to name a few. Moreover, endgame databases 

are catalytic in every attempt to solve a game, as it can be seen in solved games like check-

ers (Schaeffer et al., 2007), nine-men morris (Gasser, 1996) and more recently heads-up 

limit texas holdem poker (Bowling et al., 2015).  

An endgame database usually contains precomputed game-theoretical values (or 

near perfect heuristics) for each position record. The game playing program can use this 

database by searching the records, when an endgame position contained in the database is 

reached by the AI search. The benefits for the program are multiple: firstly, the value re-

trieved from the database is more accurate than the program’s evaluation function; sec-

ondly, the retrieval of the database value is typically faster than the evaluation function 

execution speed; thirdly, there is no need to search any further down the tree. 

The endgame databases can also provide a powerful analytical tool for game pro-

fessionals and for understanding the game in general. A prominent example is chess, where 

positions which humans had analyzed as draws were proven winnable and vice-versa. Also 

the database constructed when heads-up limit texas holdem poker was solved (Bowling et 

al., 2015) offered insights that contradicted some human beliefs about the best play in this 

game. 

Backgammon programs also make use of endgame databases. These usually cover 

the positions where both players have their checkers in the bearoff quadrant (also known 

as bearoff databases). In the two-sided version, these databases offer the game-theoretic 

value of the position, whereas in the one-sided version, the goal is to minimize the average 

number of rolls to bearoff, so the values stored represent a distribution of the expected 



 

 

 

 112 

number of rolls to bearoff. The one-sided version is much smaller than the two-sided one, 

but it is not as accurate with respect to finding the best move. 

The aforementioned bearoff endgame databases can be used in many of the variants 

in which we are interested in (Portes, Plakoto, Fevga, Narde), since the bearoff positions 

of backgammon can occur in all of these games as well. For this purpose, Palamedes al-

ready contains a two-sided bearoff database that was constructed using similar techniques 

used by other programs. This database gives the game theoretical value of all bearoff po-

sitions when the doubling cube is not used and is 5.48GB in size. 

This chapter describes our efforts of our first attempt to construct endgame data-

bases for positions only seen in the Plakoto variant. To the best of our knowledge, this is 

the first time this kind of endgame database is constructed. We believe this is the first step 

towards constructing bigger and better endgame databases for the game of Plakoto in the 

future.  

5.1 Endgames with pins 

Strategically thinking, pinning is the most important characteristic of the Plakoto 

variant for the following reasons: 

 A “made point” can be constructed with only one checker instead of the usual two, 

which makes primes and other formations easier.  

 Players can nullify bad luck, when they roll small rolls and/or the opponent rolls big 

rolls. This is true because running to the bearoff phase is unimportant, when one or 

more checkers are trapped. 

 The side that has pinned without getting pinned usually gets a few rolls ahead in the 

bearoff race. The further ahead the pin is, the bigger the advantage.  
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Figure 5.1: Various Plakoto positions a) Upper left: Starting position. Red player starts at point 1 
and bears off at point 24, while green player starts at point 24 and bears off at point 1, b) Upper 
right: Typical middle-game position c) Lower Left: Endgame position where both players have 
pins in their bearoff quadrant d) Lower right: Both players have pins in their bearoff quadrants 

and some checkers in the previous quadrant. 

A typical occurrence in a Plakoto game is for both players to have pinned each 

other. Then the best strategy usually is to try to maintain the pin(s) for as long as possible 

trying to make the opponent unpin his own pins. This is especially true in race situations 

(like Figure 5.1.c, Figure.5.1.d.), where no more pins are possible. For this initial explora-

tion on Plakoto pin databases, we are interested in positions with the following character-

istics: 
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 The side to move has pinned the opponent exactly once inside her bearoff quadrant 

(points 2-6)1. 

 The opponent has pinned the moving player exactly once. 

 No further pins are possible. In this paper, these no-contact positions are also called 

race positions. 

These endgames eventually resolve by one player unpinning his pin, followed by 

the other player moving his newly freed checker to begin the bearoff. One reason that we 

are interested in these endgames is that they take place frequently in practice. In an initial 

100,000-game self-play experiment with Palamedes best neural network Plakoto-5 (Sec-

tion 3.3.4) at the highest settings, we found out that these endgames occur in 14% of games 

played. 

5.2 Number of endgame positions 

The number of positions (R) of C checkers residing inside P points can be calcu-

lated by the following formula (Ross, Benjamin & Munson, 2007): 

𝑅 =  (
𝐶 + 𝑃 − 1

𝐶
) =

(𝑃 + 𝐶 − 1)!

𝐶! (𝑃 − 1)!
     

The number of checkers for the positions of interest is 13 (one checker is pinned by 

the opponent and one checker must always be at the pinning point to maintain the pin). 

Depending on the memory needs of the game playing program a different number of points 

(P) can be used. For example, for P = 6 (all the non-pinned checkers are under the 6-point, 

i.e. inside the bearoff quadrant) the total number of positions is 8568 per pin placement. 

Such a position is shown in Figure 5.1.c. For the remainder of this paper all discussion 

takes place under the assumption that all unpinned checkers of the player to move is under 

the 12 point (P = 12, R = 2496144). A sample position can be seen in Figure 5.1.d. Note 

                                                 

 
1 No-contact positions where a player has pinned the 1-point (also known as “mother” point) are proven 

double wins for the pinning player except for the rare cases, when the opponent has also pinned the 1-point 

(tie). 
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that in both Figure 5.1.c and Figure 5.1.d the position is valid for database retrieval for 

either player to move.  

We have constructed a different database for each possible pin point of the moving 

player (2-6), so we have 5 databases and 12,480,720 positions in total for the 12-point 

version. This database is one-sided and corresponds to half the board. If we assume that 

the opponent has a similar position to the other half, the total possible 2-sided “true” posi-

tions that these databases can apply is 12,480,7202 = 155,768,371,718,400. If we further 

assume that the opponent is pinning at the full half of his board (points 13-23), then the 

total applicable positions are 12,480,720 x 2,496,144 x 11 = 342,690,417,780,480. This 

number is the lower bound, because the endgame characteristics set in the previous section 

can be met in positions where the opponent player has checkers below the 12 point.  

5.3 Algorithm 

The goal of the players in the endgame positions already discussed is to maintain 

his pin as long as possible. Essentially, the player is playing a mini-game where he tries to 

maximize the number of moves keeping the pin. Since the game has a chance layer, this 

goal becomes the maximization of the average distance to unpin. Due to the fact that there 

is no contact, this metric can be computed using a one-sided database.  

5.3.1 PLAKOTO ENDGAME PIN DATABASE ALGORITHM 

The procedure we use is inspired by retrograde analysis (Thompson, 1986), where 

the algorithm starts from a terminal position and works backwards. In our case we do not 

have terminal positions, but we start at a position where all checkers have been moved the 

furthest. This is the position where all 13 checkers are placed at the last point (point 1). 

The procedure then works backwards as usual.  

The database creation algorithm is shown in Figure 5.2. For every position encoun-

tered and all 21 rolls, we find all the legal afterstates, retrieve the distances and return the 

max distance. The distance of the current position is then calculated as the weighted aver-

age of all rolls and stored in the database. The algorithm increments the position and begins 
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the next iteration, until all positions are exhausted. The position is incremented in such a 

way that the resulting afterstates will always have a distance in the database. The only 

exception is when the roll has no moves, but we can find the distance of this case with a 

simple recursive operation. 

During actual play the database is activated, when the position before the roll has 

the characteristics described in section 2.2. We retrieve the distances of all the afterstates 

and we select the move which results in the largest distance. 

Algorithm1. Plakoto endgame pin database creation 

pinDatabase(p, pinPlacement)  

position ← createStartPosition(pinPlacement)  

endPos ← createEndPosition(pinPlacement, p) 

while position is not endPos do 

   saveInDB(hash(position), findDistance(position)) 

   increment(position) 

end while 

 

function findDistance(position) 

   avgDistance ← 0 

   for every roll d of the 21 possible rolls do 

      afterStates ← findMoves(position, d) 

      distances ← readDistancesFromDB(afterStates) 

     distance ← max(distances) 

      if d is double roll 

         avgDistance += distance 

      else 

 avgDistance += 2 * distance  

      end if 

   end for  
   return avgDistance / 36 

Figure 5.2: Plakoto endgame pin database algorithm 

5.3.2 STORAGE AND HASHING 

Important properties for many endgame databases are the storage and the compres-

sion mechanisms used. We use a modified version of the hashing function used in (Benja-

min, Ross & Andrew, 1996) to encode the board position to a 32-bit integer. This function 

is fast, gives a perfect hash and can be easily decoded for the reversed procedure (int to 
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position). Since the number of records is relatively small, we have not made any attempts 

to compress the database. For the same reason, we store the distance value as a double for 

maximum precision, although it may not be needed. The minimum amount of precision 

that is acceptable for best play is left for future work. The final database size is 19MB for 

the 12-point and 67Kb for the 6-point version per pin placement.  

5.4 Discussion 

In this section we discuss potential problems with the one-sided databases and con-

duct two experiments to evaluate our existing AI in positions from the database. 

5.4.1 POTENTIAL PROBLEMS WITH ONE-SIDED DATABASES 

One problem with one-sided databases is that it may give errors in actual play, when 

we take the opponent into account. This is already documented for the one-sided bear-off 

databases used in backgammon (Ross, Benjamin & Munson, 2007). We identified one pos-

sible problem case in our databases in a very rare situation. where the player to move has 

a high average distance to unpin for all available moves and the opponent is almost ready 

to unpin. In this case, because the unpinning of the opponent is almost certain, it may be 

best for the moving player to prepare for a better placement in the bearoff quadrant instead 

of continuing to maximize his distance to unpin. However, rollout experiments in 5 sam-

ples of such cases have not given evidence that one strategy is better than the other. We 

believe the problem exists in the bearoff databases, because the problematic bearoff posi-

tions are near the end of the game, while our “problematic” positions, being much further 

away from terminal, allow the luck factor to “wash out” any small errors.  

5.4.2 USING THE DATABASES TO EVALUATE THE NEURAL NETWORKS 

Another interesting use of endgame databases (or databases of solved games) is to 

evaluate existing AI implementations. We conducted experiments with Palamedes using 

the best neural network (NN) available for Plakoto: a) firstly, for all database positions and 

all possible rolls we checked if the best move of the NN coincided with the best as seen in 

the databases and b) secondly, we played 100,000 self-play games with the NN and, when 
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a database position was encountered, we compared the move chosen by the NN to the da-

tabase’s optimal. For the first experiment we constructed the opponent position as a mirror 

of the player to move. 

Table 5.1:  Evaluation of Palamedes AI in Plakoto pin endgames 

Comparison Method Correct moves by the NN (%) 

All positions 15% 

Self-play positions 64% 

 

As it can be seen, the NN does not select the best move 85% of the time in the first 

test, however it does noticeably better at positions found in practical play. We believe this 

is normal behavior for the NN to score so low in the first test, because the self-play proce-

dure used to train the network certainly could not generalize well to all possible cases most 

of which are corner cases rarely to be seen in expert play. The result of the second test 

shows the importance of such databases to enhance the move selection mechanism of the 

existing AI. 

5.5 Conclusion and future work 

We have presented an algorithm that created several one-sided endgame databases 

for the game of Plakoto. The databases are small but can be applied to a huge number of 

endgame positions. To the best of our knowledge, this is the first time that endgame data-

bases are created for the game of Plakoto. We have also shown that the usage of these 

databases greatly enhances our AI’s move selection.  

There are several avenues to build upon these results. An obvious one is to construct 

more databases with the same method. We have only built databases for 2-6 pinned points, 

pinned points 7-18 can be easily created. Also, databases with more than one pin per side 

are possible. The conversion of our algorithm to race endgames where the opponent has 

pinned more than one checker is straitghtforward. A more difficult case is when the moving 

player has two or more pins.  
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With the presence of these databases our neural network evaluation function does 

not need to generalize in these types of positions. We could improve the representation 

power of our network by retraining the NN without taking into account these endgames. 

Finally, we would also like to explore compression techniques for storage. This will 

be essential for the creation of larger pin endgame databases.  
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CHAPTER 6: PALAMEDES 

All the agents described in this thesis are packaged in the Palamedes program. The 

users of Palamedes can play against the AI agents through an attractive graphical user in-

terface (Figure 6.1). Palamedes is freely available for Windows from the web page of the 

project1 or from the Google Play Store2 for Android devices. The description in this chapter 

is based on the Windows Palamedes version 0.50 unless otherwise stated expressively. The 

Android version has limited configurability, following the general practice in mobile 

games “as simple as possible”. 

 

Figure 6.1: Typical Palamedes Screen when playing a game (Windows version) 

Palamedes is programed in the C++ language. The graphical interface is provided 

by the Qt framework3 (Open Source Version, LGPL licence) and the neural networks are 

implemented with Eigen (Guennebaud, et al., 2010), a matrix and linear operations library. 

                                                 

 
1 http://ai.uom.gr/nikpapa/Palamedes 
2 https://play.google.com/store/apps/details?id=gr.nikpapa.palamedes 
3 http://www.qt.io/ 
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Palamedes does not provide a learning component, meaning that all agents have fixed, 

deterministic strategies. 

6.1 Feature list 

6.1.1 VARIANTS SUPPORTED 

Palamedes 0.50 supports the following backgammon variants: Portes, Plakoto, Fe-

vga, Narde, HyperGammon, NackGammon, Tapa, Takhteh and standard backgammon 

with more variants planned in the future. Most of these variants have been discussed in 

Section 2.1. The remaining variants are discussed here. 

HyperGammon is a variant that has the same rules as standard backgammon, with 

the only exception that the players have only 3 checkers instead of 15, and these checkers 

start at the first points (24, 23, 22). Palamedes support of Hypergammon extends these 

rules by allowing 3 to 6 checkers per side.  

Narde is a variant popular in Russia that is similar to Fevga. The starting position 

and the direction of movement are the same. The differences in the rules are the following: 

 Players can move only on checker off the starting point each turn.The first point 

is only allowed one checker movement each roll. There is no staring rule as in 

Fevga. 

 Primes are allowed only when a checker of the opponent has moved ahead of the 

last point of the prime we want to make. 

 All other special rules of Fevga (blocking rule, prime rules) do not apply. 

We use the Fevga NNs for the AI in Narde. The play is “good enough” but a spe-

cialized network trained specifically for this game would certainly be more effective. This 

is left for future work. 

Nackgammon is a variant of standard backgammon invented by Nack Ballard that 

has a different starting position, adding 2 checkers at point 23 and removing 1 checker 

from the two big stacks (6, 13). The games tend to be quite a bit longer, because one cannot 



 

 

 

 124 

easily run quickly with the back checkers. It is a positional game, with more emphasis on 

priming and back games, and less on attacking and blitzing.  

Takhteh is a variant similar to Portes that is popular in the Middle East and has the 

following additional rules: 

 No hit and run: When a checker hits an opponent checker, this checker can be 

moved again in the same turn. 

 No pip wastage in bearoff: This means that one should always bear off a checker 

where possible rather than use a smaller number to move that checker forward.  

 

Figure 6.2: Palamedes options for changing the game rules 

Palamedes offers some support for enabling/disabling some of the rules of the 

games (Figure 6.2). This is mainly used in Fevga, in order to support the different variations 

popular in some Greek regions. 
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The android version currently allows only Portes, Plakoto and Fevga games without 

the option of changing the game rules. 

6.1.2 HUMAN VS AI PLAY 

The user can play against any of the available neural network agents. In the 0.50 

version the following NNs are available: 

 Portes, Backgammon, Hypergammon, Takhteh:  

o Portes_ACG13. This is the best NN trained in Section 3.3. 

o Portes160. This is a NN with 160 hidden nodes but no expert features, 

trained using the same procedure as the other NNs. This NN is weaker 

than Portes_ACG13 NN. 

 Plakoto, Tapa: 

o Plakoto-3 

o Plakoto-4 

o Plakoto-5 

 Fevga, Narde: 

o Fevga-4 

o Fevga-5 

o Fevga-6  

The other NNs mentioned in Chapter 3 can be found in earlier program versions 

and can be downloaded in the program’s site. There is also an option to load a valid neural 

network from file. This option is mainly used for testing and troubleshooting. In the android 

version, only the best neural network for each game is installed.  

Finally, the AI can resign the game, when its evaluation function shows that it has 

very little chances to win the game. This gives Palamedes human-like behavior and speeds-
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up gameplay. Palamedes resigns a double game, when the probability of losing a double 

game is perceived above 99% (LD > 0.99). Similarly, a single game resignation occurs, 

when the probability of winning a single game is calculated by the NN to be less than 1% 

(W < 0.01). 

6.1.3 LOOK-AHEAD AND DIFFICULTY 

All the agents can be modified to play in two modes 1-ply and 2-ply, as it is de-

scribed in section 3.2. The 2-ply look-ahead can be refined using forward pruning through 

configuration of two settings in the general program settings (Figure 6.3) under AI pruning. 

Both options are based on the fact that at 1-ply all candidate moves are graded by 

the agent and then sorted. The first option (maximum number of moves expanding in 2-ply) 

expands to 2-ply only up to the number of moves selected. This is useful, because some-

times the available moves are very high (up to 1000) and expanding all moves is very 

computationally expensive. If we believe that the NNs are accurate enough to ensure that 

the best move lies in the best x moves as graded by 1-ply, then we can confidently set this 

option to x.  The second option (Prune when value difference greater than) prunes the 2-

ply expansion based on the value difference from the best move. Moves that have values 

greater than value of (first move + this option value) are not expanded. 

The depth of look-ahead can be selected at the start of each game/match. In the 

android version, there is no such selection, the player just selects a difficulty setting (easy, 

normal, expert) at game start. The normal difficulty is equivalent to 1-ply, the expert diffi-

culty is 2-ply with pruning the 15 moves pruning and the easy difficulty is 1-ply look-ahead 

but instead of selecting the best move, the agent selects one move randomly from the top 

five moves.  

Searching at greater depths is straightforward and it is planned for inclusion in fu-

ture program updates. 
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Figure 6.3: Palamedes general program options 

6.1.4 ENDGAME DATABASES 

Palamedes supports the Plakoto Endgame Databases created with the methods pre-

sented in Chapter 5. For space reasons, all Palamedes versions include the “small” version, 

i.e. the 6-point databases. In the future, when the “large” 12-point databases will be com-

pressed sufficiently enough, these databases could be included.  

Palamedes also supports a two-sided 6-point bearoff database that can be used in 

all games. This database is very large (5.48 GB) and so it is not included in the available 

version for download. This database is mainly used in competitions. The program searches 

if this database exists at program startup.  

6.1.5 MODES OF PLAY 

Palamedes can play both “money games” and matches in any variant supported 

(Figure 6.4). Match length can be 1, 3, 5, 7, 9, 11, 13 or 15 (Android: 1, 3, 5, 7). Money 

games are identified by the infinity symbol (∞). AI decisions in a match are influenced by 
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the match score as described in Section 4.4. The doubling cube can be used only in standard 

backgammon, in the future we plan to make it available to the other variants as well. 

 

Figure 6.4: Game/Match Start 

6.1.6 PLAYER STATISTICS 

 

Figure 6.5: Player statistics in Palamedes 
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Results of every game are recorded in a database where the player can see his/her 

overall points against any combination of Game/NN/Look-ahead (Figure 6.5). Values 

stored are how many single/double games were won/lost and the average score of the 

player (in PPG – Points per Game). 

6.1.7 ANALYSIS 

Users can analyze a game, after it is finished. Selecting a position or dice roll in the 

scoresheet and pressing the Analyze button shows the Analysis window (Figure 6.6). 

 

Figure 6.6: Analysis window 

There are options to change all the AI settings available (NN, LookAhead, etc). In 

the right part of the dialog the report of the analysis is shown. All the available moves are 

shown along with the output values from the evaluation function (Val columns) and the 

outputs of the neural network (W, WD, LD). 2-ply columns are computed taking the 

weighted average of all 21 opponent rolls. The moves are sorted by descending value (Best 

moves first). When the positions belongs to an endgame database loaded by the program 

the values from the databases are shown instead of the NN. 

6.1.8 DICE GENERATORS 

Palamedes also lets users control the pseudo-random generator used by the program 

for producing the dice rolls (Figure 6.7). 
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The available pseudo-random generation algorithms are: Linear Congruential, 

Mersenne Twister and Ranlux. All these are default algorithms supplied by the C++11 

<random> library. The default algorithm is Mersenne Twister.   

 

Figure 6.7: Dice options 

The seed of the algorithm is randomly set at program startup. The user has the op-

tion to change the seed to whichever value he wants. Setting the seed to a value will always 

reset the dice algorithm to a state determined by the seed value. This means that the dice 

rolls after setting the seed will always be the same, if the same seed is entered.  

There is also the option for entering the dice manually. When setting this option, a 

dialog appears prompting the user to enter the dice roll, when a player must roll the dice. 

The manual dice option can be used in combination with physical dice or with independent 

dice generators such as the Aias Floating Dice Roller1 app on Android devices. 

                                                 

 
1 https://play.google.com/store/apps/details?id=com.aiassoft.floatingDice 
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6.1.9 LOAD/SAVE GAMES 

All games can be saved in files. These files are text files, have a .tavli extension 

and have a special formatting that supports backgammon variants. This function is useful 

for loading previously saved games and analyzing them. The current version of Palamedes 

supports a single game per file.  

6.2 Backgammon Computer Olympiad Participation 

Palamedes participated two times in the backgammon computer Olympiad orga-

nized by the ICGA, in 2011 and in 2015. This event gathers every other year researchers 

and programmers that are interested in making computer programs for board games and 

games in general. In the backgammon tournament, only a standard backgammon tourna-

ment is run. This is done mostly because: a) the other variants are not so popular globally 

and b) only a few backgammon programs know how to play backgammon variants other 

than the standard game. The Computer Olympiad is organized since 1987. Palamedes won 

the first place out of three participants (GNUBG, BgBlitz, see Section 2.3.1.1) in both of 

its participations. 

6.2.1 BACKGAMMON COMPUTER OLYMPIAD 2011 

The 2011 Computer Olympiad was staged in Tilburg, The Nederlands. At that time 

Palamedes (version 0.41) did not yet know how to play with the doubling cube. The organ-

izers gratefully allowed Palamedes to participate as a full participant, with opponents mak-

ing the necessary adjustments to disable the doubling cube when playing against Pala-

medes. However, the triple wins of standard backgammon were kept intact, something that 

was problematic for Palamedes, since its trained NN was trained having Portes in mind, 

without taking triple wins into account. Thankfully, triple wins in standard backgammon 

are very rarely encountered, about 1% of all games. Moreover, in these days, Palamedes 

played in “money-game” mode only, that is it did not take the match score into account 

when making decisions.  

The tournament format was round-robin with each round consisting best of three 

15-point matches and best of three 7-point matches. The results of all rounds were: 
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1. Palamedes – BgBlitz 2-0 (7-5, 7-6) 

2. GnuBg – BgBlitz 2-1 (14-15, 15-12, 16-12) 

3. Palamedes – GnuBg 2-1 (7-5, 5-9, 7-3) 

Palamedes made some small errors mainly, because it did not take the match score 

into consideration. Also, at the match lost against GnuBg, it lost a triple game that could 

easily be avoided, if it had trivial knowledge of triple wins. Despite these shortcomings, 

Palamedes managed to win the tournament and the gold medal. 

6.2.2 BACKGAMMON COMPUTER OLYMPIAD 2015 

After four years the same participants gathered again for a rematch of the 2011 

tournament1. The opponents of Palamedes all had trained slightly better Neural Networks 

than their respective versions in 2011. Palamedes did not have a new NN, but was able to 

play according to match score (Match mode) and had a simple doubling algorithm, based 

on publicly available market tables. To counter triple loss situations, a special function was 

constructed called “backgammon avoidance” which checks if the agent is in danger of los-

ing a triple game, and when triggered, discards the normal NN evaluation function in favor 

of another function that tries to avoid a triple game. 

The tournament format was the same as last time: best of 3 15-point matches. In 

case of a tie the tiebreaker was agreed to be the number of matches won. The results were 

the following: 

1. Palamedes-BGBlitz 2-1 (9-20, 17-10, 16-11)  

2. GnuBg-BGBlitz 1-2 (15-10, 6-16, 1-15) 

3. Palamedes-GnuBg 1-2 (15-11, 7-16, 7-17)  

The result was dead equal with match points also the same. In this case, it was 

agreed to play another (smaller) match in 7 points. Palamedes won both the tiebreak 

                                                 

 
1 In the 2013 Computer Olympiad the backgammon competition didn’t take place. 
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matches thus winning its second gold medal in two appearances. The full results of the 

tiebreaks were: 

1. GnuBg-BGBlitz 1-0 (9-4) 

2. Palamedes-BGBlitz 1-0 (8-4) 

3. Palamedes-GnuBg 1-0 (11-0)  

The “backgammon-avoidance” function was triggered only once in all the games 

played.  
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CHAPTER 7: CONCLUSION AND FUTURE WORK 

This chapter summarizes the results of the thesis and shows some avenues for future 

work. The chapter is split in four sections, referencing the four main chapters (Chapters 3-

6) of this thesis.  

7.1 TDL training of NNs 

In Chapter 3 it was shown that Temporal Difference Learning combined with arti-

ficial neural networks as function approximators is capable of producing high performance 

game playing programs in backgammon variants Portes, Fevga and Plakoto. For the games 

of Plakoto and Fevga the resulting agents greatly outperform the only available program 

for comparison, Tavli3D. In Portes and standard backgammon, Palamedes showed its 

strength by winning two times the Backgammon Computer Olympiad organized by the 

ICGA, the most prestigious competition for backgammon software.  

These results answer the first research question (Section 1.2) of this thesis: that 

strong game-playing agents can be built that can play at expert level the backgammon 

variants popular in Greece: Portes, Plakoto and Fevga. 

In all games we used expert features to enhance performance. The problems found 

by learning overlapping features indicate that one must choose the features to be trained 

very carefully, or else risking suboptimal performance. 

We have managed to increase the performance of our temporal difference learning 

architecture by making the target of the update the inverted value of the opponent's next 

state and by updating the game sequence starting from the terminal and working to the 

starting position, a procedure we call reverse offline recalc. This algorithm was found to 

be the most effective compared to several different training algorithms that we experi-

mented with. 

Our experiments with different values for the learning rate α and the λ parameter 

show that the best choice for either of them is domain specific. Using our setup, it is pos-

sible to start the training with high values and gradually decrease them.  
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The proposed method answers the second research question (Section 1.2) of this 

thesis: that the learning algorithms and training setups can be improved in order to enable 

AI agents to learn to play backgammon games effectively by self-play. 

In the future, we intend to investigate further improving the playing strength of the 

agents by adding or modifying more features. In the Fevga variant for example, the heuris-

tic for calculating the probability of making a prime formation on the next roll can be im-

proved by including cases with two or more missing checkers and by making it faster to 

compute. An automatic process of selecting, comparing and training the available features 

could be used in order to detect the beneficial from the problematic ones. This process, 

however, can be very time consuming, especially when many games must be played for 

good learning (as is in backgammon) or the number of features is large (as is in chess for 

example).  These enhancements can be used in other games as well as in conjunction with 

other TD learning algorithms.  

Ultimately, however, it would be best if no expert features were added by the pro-

grammer and these features where automatically detected by the agents. A training setup 

where a self-trained agent reached expert knowledge of a complex game without including 

expert knowledge as features would be a major scientific breakthrough. 

The learning hyperparameters, α and λ, were manually tuned. As we did not exhaust 

all possible combinations, it may possible that an even more aggressive approach could 

yield faster learning. It would be interesting to investigate an algorithm that automatically 

decreases these parameters during training, as it would free the human designer of the oth-

erwise cumbersome trial and error approach. 

Finally, we would like to apply the proposed method, reverse offline recalc, to other 

games. 

7.2 Generating Statistics for Tavli games 

In Chapter 4, we used the trained NNs of Palamedes to extract useful statistics for 

the Tavli variants that we are interested in, that is Portes, Plakoto and Fevga. Rollout ex-

periments were conducted, where the following was calculated: the distribution of all the 
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result outcomes, the gammon rate, and the advantage of the first player. Our findings for 

Portes (without a starting double roll) are very close to those found in the literature. As far 

as we know, these statistics were constructed for the first time for the other two variants, 

Plakoto and Fevga.  

The gammon rates, interestingly, fall in different ranges for each game. The small-

est gammon rate is for the Fevga variant (14.27%), followed by Portes/Backgammon 

(26.9%), whereas Plakoto has the largest rate (at 41%). As for the advantage of the first 

player, this is significant in the Fevga variant, small in Plakoto and very small in Portes. 

The superiority of the Portes variant in this statistic was expected, because Portes (and 

backgammon) has the advantage of a specially crafted starting position, which is not pre-

sent in the other variants.  

The effect of the starting position on the statistics examined in the Plakoto variant 

was also shown. Changing the starting position of Plakoto only slightly, transforming it to 

the Tapa variant, had the effect of lowering the gammon rate and the advantage of the first 

player significantly, making Tapa the most “fair” backgammon variant examined so far.  

Finally, as a practical application, the computed gammon rates was used to con-

struct tables to be used when a match strategy is required. Experiments showed that such a 

strategy outperforms the money play strategy when playing 5-point matches in Portes and 

Plakoto.  

These results answer the third research question (Section 1.2) of this thesis: that the 

expert agents can be used to extract useful characteristics of the games. 

One of the conclusions of Chapter 4 was that the first player has a large advantage 

over the second player in the Fevga variant. It would be preferable if this advantage were 

as small as possible. What changes can we make to the Fevga rules so as to make the game 

fairer to the second player? Also, another interesting experiment is to compare Fevga with 

Narde, a variant with similar rules. However, we would need to train an expert agent for 

the Narde variant, so we leave this for future work. 

One interesting experiment would be to try the following procedure in the back-

gammon/Portes variant: what would be the gammon rate and equity of a variant with the 
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same rules as backgammon but a starting position, where all starting checkers are placed 

in the player’s first point? This would show how much the starting position of standard 

backgammon influences the outcomes of the game. If the results of our Plakoto/Tapa ex-

periments are any indication, we suspect that an increase in both of these measurements is 

expected. We could have tried out an experiment using the Portes NN in this variant. How-

ever, unlike the Plakoto/Tapa case, here the change of the starting position is significant, 

so we feel that the Portes NN will not generalize well. A new NN-based evaluation function 

should be self-trained, but as this is not trivial, this is left for future work. 

The match strategies created in this thesis can be applied to matches of the same 

game type, when at the start of a game the first player is determined randomly. In the future, 

we plan to extend this method to matches, where the starting player of the game is the one 

that wins the previous game, and in matches that consist of different game types like a 

Tavli match. 

7.3 Plakoto Pin Endgame Databases 

In chapter 5, an algorithm was presented that created several one-sided endgame 

databases for the game of Plakoto. These databases improve the AI’s move selection when 

these endgames are encountered. The databases are small but can be applied to a huge 

number of endgame positions. To the best of our knowledge, this is the first time that end-

game databases are created for the game of Plakoto.  

The Plakoto endgame databases built in this thesis cover only the special case when 

there is a race situation, when both players have a pinned point, with the moving player 

having the pin in points 2-6. Also all checkers of the moving player must be in the last 12 

points. An obvious improvement is to construct more databases with the same method. 

Databases with pinned points 7-18 and/or checker placement under the 12 point can be 

easily created. Also, databases with more than one pin per side are possible. The conversion 

of the proposed algorithm to race endgames where the opponent has pinned more than one 

checker is straitghtforward. A more difficult case is when the moving player has two or 

more pins.  
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With the presence of these databases our neural network evaluation function does 

not need to generalize in these types of positions. We could improve the representation 

power of our network by retraining the NN without taking these endgames into account. 

Finally, an important improvement would be to compress the databases. This will 

be essential for the creation of larger pin endgame databases. A simple way would be to 

investigate if the float values can be stored with lower precision than the current (double). 

More complex compression techniques can be tried, like the one used by Tammelin, et al. 

(2015) in Texas Holdem‘ poker. 

7.4 Palamedes program 

The Palamedes program offers an attractive graphical interface where anyone can 

play against the AI agents shown in this thesis in several variants (Chapter 2). Palamedes 

includes the neural networks trained in Chapter 3, it can play in a match setting (Chapter 

4), and supports the Plakoto Endgame Databases created in Chapter 5. Palamedes is 

available for free for the Windows and Android platforms.  

Palamedes can be improved in several ways. Firstly, a human vs human mode can 

be made for the users to be able to play with one another, either on the same device or via 

the internet. Also, in order to be able to test its agents against other agents, a backgammon 

connection protocol could be developed. Saved games, at the time of writing this thesis, 

are not compatible with other backgammon programs. It would be helpful, if Palamedes 

could save the games/matches in a format readable by other programs, at least for standard 

backgammon.   

We also plan to increase the number of backgammon variants that can be handled 

by Palamedes. Interesting candidates towards this direction are the acey-deucey, gioul and 

gul-bara variants. Finally, we plan to improve the look-ahead procedure by searching in 

greater depths and by utilizing cutoff algorithms as in (Hauk, Buro, & Schaeffer, 2006).   
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