

UNIVERSITY OF MACEDONIA

DOCTORAL STUDIES PROGRAMME

DEPARTMENT OF APPLIED INFORMATICS

Decision Making in Multiplayer Environments: Application in

backgammon variants

Doctoral Thesis

of

Nikolaos Papahristou

Thessaloniki, 10/2015

 ii

 iii

DECISION MAKING IN MULTIPLAYER ENVIRONMENTS: APPLICATION IN

BACKGAMMON VARIANTS

Nikolaos Papahristou

B.Sc. in Automation Engineering, Alexander Technological Educational Institute of

Thessaloniki, 1998

M.Sc. in Applied Informatics, University of Macedonia, Greece, 2010

Doctoral Thesis

Submitted in partial fulfilment of the requirements for the

DEGREE OF DOCTOR OF PHILOSOPHY

IN APPLIED INFORMATICS

Supervisor: Dr. Ioannis Refanidis, Associate Professor

Approved by the 7-membered examining committee at /10/2015

Dr. Ioannis Refanidis

Associate Professor

Dr. Nikolaos Samaras,

Associate Professor

Dr. Ilias Sakellariou

Lecturer

Dr. Georgios Stefanidis

Professor

Dr. Maria Satratzemi,

Professor

Dr. Angelo Sifaleras

Assistant Professor

Dr. Konstantinos Vergidis

Lecturer

 iv

 v

Acknowledgements

I would like to gratefully acknowledge the guidance, support and encouragement

of my doctoral advisor, Dr. Ioannis Refanidis.

I would like to thank my wife, Spyridoula, for her long-lasting support and patience.

I would like to thank the Greek State Scholarship Foundation (IKY) for its financial

support during my master’s degree (2008-2010) as well as the first year of my PhD (2010-

2011).

I would like to thank my friend and colleague Anastasios Alexiadis for lending

computing power during the first year of my PhD when my computer back then was not

powerful enough to conduct experiments in a timely fashion.

I would like to thank the people from all over the world who played against Pala-

medes and gave feedback in the form of bug reports or feature requests. Their support was

critical in ensuing that Palamedes would compete without any problems in the backgam-

mon competitions.

Finally, I would like to thank all the reviewers and editors of my published work

for their helpful comments.

 vi

Ευχαριστίες

Θα ήθελα να ευχαριστήσω τον επιβλέποντα της διατριβής αυτής, Δρ. Ιωάννη Ρε-

φανίδη, για την καθοδήγηση, τη συμπαράσταση και την υποστήριξη που μου παρείχε κατά

τη διάρκεια της διδακτορικής μου έρευνας.

Θα ήθελα να ευχαριστήσω τη σύζυγό μου, Σπυριδούλα, για τη μακρόχρονη υπο-

στήριξη και υπομονή που επέδειξε.

Θα ήθελα να ευχαριστήσω το Ίδρυμα Κρατικών Υποτροφιών (ΙΚΥ) για την οικο-

νομική βοήθεια που μου παρείχε μέσω υποτροφίας κατά τη διάρκεια του μεταπτυχιακού

μου (2008-2010) αλλά και κατά τον πρώτο χρόνο της διδακτορικής μου έρευνας (2010-

2011).

Θα ήθελα να ευχαριστήσω τον φίλο και συμφοιτητή, κ. Αναστάσιο Αλεξιάδη, για

το δανεισμό υπολογιστή ισχύος κατά τον πρώτο χρόνο της διδακτορικής μου έρευνας, όταν

ο υπολογιστής μου εκείνη την περίοδο δεν ήταν αρκετά δυνατός για την εκτέλεση των

πειραμάτων μου σε εύλογο χρονικό διάστημα.

Θα ήθελα να ευχαριστήσω τους χρήστες του Παλαμήδη απ’ όλον τον κόσμο για

την ανατροφοδότηση που μου παρείχαν με τη μορφή επισημάνσεων, σφαλμάτων και αι-

τημάτων νέων δυνατοτήτων. Η συμβολή τους ήταν ιδιαίτερα καθοριστική για τη απρόσκο-

πτη συμμετοχή του Παλαμήδη στους διαγωνισμούς.

Τέλος, θα ήθελα να ευχαριστήσω όλους τους κριτές και επιμελητές των δημοσιεύ-

σεών μου για τις επoικοδομητικές παρατηρήσεις τους.

 vii

Abstract:

Tesauro’s TD-Gammon was the first major success of machine learning and artifi-

cial intelligence in general, when it demonstrated world-class performance against the hu-

man backgammon champion of that time. Even more impressively, the method used re-

quired little expert knowledge, relying on self-playing and training neural networks using

reinforcement learning. However, apart from standard backgammon, several – yet unex-

plored – variants of the game exist, which use the same board, number of checkers and

dice, but have different rules for moving the checkers, starting positions or movement di-

rection.

In this thesis we focus our research on three such popular variants in Greece and

neighboring countries, named Portes, Plakoto, and Fevga (collectively called Tavli). Mo-

tivated by the successful methods of TD-Gammon, we extend and devise new reinforce-

ment learning methods for building artificial intelligent agents and show that expert-level

play can also be achieved in these games. All the resulting agents created in this thesis are

packaged in a freely available program, PALAMEDES, where everyone can play against

the AI. To test the effectiveness of our approach, PALAMEDES participated in two back-

gammon Computer Olympiads, in 2011 and 2015, with opponents some of the best back-

gammon-playing programs in the world, emerging victorious in both of them.

Additionally, we used the trained agents and self-play experiments to analyze key

characteristics of these games for the first time, identifying one major flaw in the Fevga

variant. The resulting statistics are then used to devise better strategies when playing in a

match setting.

 Finally, in order to facilitate later research efforts, we devised a framework called

bcdGammon for reducing/extending the complexity of backgammon games, preserving the

key characteristics of the originals.

 viii

TABLE OF CONTENTS

LIST OF TABLES ...XIII

LIST OF FIGURES ... XIV

CHAPTER 1: INTRODUCTION ..18

1.1 Artificial Intelligence in Games ...18

1.2 The Problem ...19

1.3 Contribution ...20

1.4 Outline..21

CHAPTER 2: BACKGROUND ...25

2.1 Rules of backgammon variants ..25

2.1.1 Standard backgammon ...26

2.1.1.1 Setup and direction of movement ..26

2.1.1.2 Movement rules ...27

2.1.1.3 The doubling cube ..28

2.1.2 Portes..29

2.1.3 Plakoto ...29

2.1.3.1 Tapa subvariant ..30

2.1.4 Fevga ..31

2.1.5 Modes of play ..33

2.1.5.1 Money Game ..33

2.1.5.2 Match Play ...33

2.1.5.3 Tavli ...33

2.1.5.4 First player resolution ..34

2.1.6 Extending backgammon to arbitrary board sizes34

2.1.6.1 The bcdGAMMON Framework ..35

2.1.6.3 AnyGammon: A program that supports the bcdGammon

framework ...37

 ix

2.1.6.4 AI agents used in AnyGammon ...39

2.1.6.5 Contribution and future work...39

2.2 Reinforcement Learning ..40

2.2.1 Core Elements ..41

2.2.2 Markov Decision Process ..42

2.2.3 Value functions ..43

2.2.4 Basic Reinforcement Learning Methods ...44

2.2.4.1 Dynamic Programming ..44

2.2.4.2 Monte Carlo methods ...45

2.2.4.2.1 Bandit-Based methods ...46

2.2.4.2.2 Monte Carlo Tree Search ...47

2.2.4.2.3 MC algorithms for games ..48

2.2.4.3 Temporal Difference Methods ...48

2.2.4.3.1 One step TDL methods ..48

2.2.4.3.2 Multi-step TD methods ..51

2.2.4.3.3 TD(λ) – forward view ..51

2.2.4.3.4 TD(λ) – Backward view...52

2.2.4.4 Function approximation ...53

2.2.4.4.1 Approximating Value Functions54

2.2.4.4.2 Gradient-Descent Methods ..54

2.3 TDL in games and AI for backgammon ..55

2.3.1 TDL methods in games ..55

2.3.1.1 TD(λ) and TD-Gammon ..56

2.3.1.2 TD-Leaf and KnightCap ..59

2.3.1.3 Rootstrap and Treestrap ...61

2.3.1.4 Self-play or expert tutoring? ..63

2.3.1.5 Learning from databases ..63

2.3.1.6 Summary ..65

2.3.2 Other methods in backgammon ...66

 x

CHAPTER 3: TRAINING NNS TO PLAY BACKGAMMON GAMES USING TD71

3.1 Learning architecture ...71

3.2 Initial Experiments ...72

3.2.1 Determining the effect of expert vs raw features72

3.2.1.1 Experiments in Fevga ..73

3.2.1.2 Experiments in Plakoto ..76

3.2.2 Determining the target of the update ...77

3.2.2.1 Sequence creation and how to update78

3.2.2.2 Results in the Plakoto and Fevga variants with expert features80

3.2.2.3 Mother point feature selection in the Plakoto variant83

3.3 Final Learning Setup ..85

3.3.1 Training the NN using TDL ...85

3.3.2 Choosing learning rate α and parameter Λ ...87

3.3.3 Expert Features ..88

3.3.3.1 Expert features for Portes/Backgammon88

3.3.3.2 New expert features for Plakoto ..89

3.3.3.3 New expert features for Fevga ...90

3.3.4 Experimental Results ...92

CHAPTER 4: OPENING STATISTICS AND MATCH PLAY ..96

4.1 Introduction ..96

4.2 Experimental setup and results ..96

4.3 Discussion ..100

4.3.1 Portes..100

4.3.2 Plakoto ...101

4.3.3 Fevga ..102

4.4 Match Play ...103

4.4.1 Experiments in Match Play ..106

 xi

4.5 Conclusions and future work ...107

CHAPTER 5: CONSTRUCTING PIN ENDGAME DATABASES FOR PLAKOTO111

5.1 Endgames with pins ...112

5.2 Number of endgame positions ...114

5.3 Algorithm ...115

5.3.1 Plakoto endgame pin database algorithm ..115

5.3.2 Storage and Hashing ..116

5.4 Discussion ..117

5.4.1 Potential problems with one-sided databases117

5.4.2 Using the databases to evaluate the neural networks117

5.5 Conclusion and future work ...118

CHAPTER 6: PALAMEDES ..122

6.1 Feature list ..123

6.1.1 Variants supported ...123

6.1.2 Human vs AI play ..125

6.1.3 Look-ahead and difficulty ..126

6.1.4 Endgame databases ..127

6.1.5 Modes of play ..127

6.1.6 Player Statistics ..128

6.1.7 Analysis..129

6.1.8 Dice Generators ...129

6.1.9 Load/save games ..131

6.2 Backgammon Computer Olympiad Participation ..131

6.2.1 Backgammon Computer Olympiad 2011 ..131

6.2.2 Backgammon Computer Olympiad 2015 ..132

 xii

CHAPTER 7: CONCLUSION AND FUTURE WORK ..136

7.1 TDL training of NNs ..136

7.2 Generating Statistics for Tavli games ..137

7.3 Plakoto Pin Endgame Databases ..139

7.4 Palamedes program ..140

REFERENCES ..141

 xiii

LIST OF TABLES

Table 3.1. Analysis of the match Fevga-2 vs Fevga-3 __________________________ 75

Table 3.2: Summary of techniques used by the various agents ___________________ 82

Table 3.3: Comparison of various agents at 1-ply and 2-ply for Plakoto (Left) and Fevga

(Right). All results are in points per game (ppg) with respect to the player on

the row. Players on columns always use 1-ply. _______________________ 82

Table 3.4: Analysis of some of the matches of Fevga-4 and Fevga-5 ______________ 82

Table 3.5: Evaluation and rollout analysis of the two best moves of the position in Figure

3.7. The first four columns show the evaluation of the Plakoto-3 and Plakoto-4

NNs after 1-ply and 2-ply look-ahead. The fifth and sixth column show the

equity of the position by making a rollout analysis using Plakoto-3 and

Plakoto-4. The last column shows the equity that was lost by selecting the

inferior move. The equity loss was calculated on the average of the two

rollouts.__ 84

Table 3.6: Selected values of α and λ parameters. _____________________________ 88

Table 3.7: Expert features for the Portes/backgammon variant. _________________ 89

Table 3.9: Performance of the new bots against benchmark opponents ____________ 92

Table 4.1: Best move of all opening rolls per variant examined __________________ 97

Table 4.2: Gammon rates of Tavli variants __________________________________ 99

Table 4.3: Comparison of Tapa and Plakoto estimated results for the first player ___ 102

Table 4.4: MWC (%) for player A on Portes variant __________________________ 104

Table 4.5: MWC (%) for player A on Plakoto variant _________________________ 105

Table 4.6: MWC (%) for player A on Fevga variant __________________________ 105

Table 4.7: Performance of match strategy vs money play strategy in 10000 5-point

matches ___ 106

Table 5.1: Evaluation of Palamedes AI in Plakoto pin endgames _______________ 118

 xiv

LIST OF FIGURES

Figure 2.1: Backgammon board___ 25

Figure 2.2: Starting position of standard backgammon and Portes _______________ 27

Figure 2.3: Starting position and direction of play in the Plakoto variant __________ 30

Figure 2.4: Starting position of the tapa variant ______________________________ 31

Figure 2.5: Starting position of the Fevga variant_____________________________ 32

Figure 2.6 Flow of a typical Tavli match. ___________________________________ 34

Figure 2.7: Screenshots of AnyGammon showing playable backgammon configurations.

Upper Left: b=8, c=5, d=2, Upper middle: b=16, c=10, d=4, Upper right:

b=24, c=15, d=6 (Standard backgammon), Lower left: b=32, c=19, d=8,

Lower right: b=40, c=23, d=10 _________________________________ 36

Figure 2.8: Screenshot of AnyGammon windows version _______________________ 38

Figure 2.9: The Reinforcement Learning Framework (Sutton & Barto, 1998, pp. 71) _ 42

Figure 2.10: Tabular TD(0) for estimating Vπ ________________________________ 49

Figure 2.11: Tabular Sarsa algorithm ______________________________________ 50

Figure 2.12: Q-Learning algorithm __ 51

Figure 2.13: Tabular TD(λ) with accumulating eligibility traces _________________ 53

Figure 3.1: The neural network architecture used in our learning system. All units of the

hidden and output layer use sigmoid transfer functions. _______________ 71

Figure 3.2: Left. Training progress of all agents against the Tavli3D benchmark

program. Right. Training progress of Fevga-3 against stored weights. ___ 73

Figure 3.3: Left. Training progress of Plakoto-1 and Plakoto-2 against Tavli3D. Right.

Training progress of Plakoto-2 against stored weights at 10,000, 100,000,

and 1,000,000 games trained. ___________________________________ 76

Figure 3.4: Alternate updating methods of the temporal difference in two player zero-

sum games. Method a: Update the values without flipping the board.

Requires input(s) to designate which player is on the move. Method b:

Updates are split in two. Method c: Updates are done on the inverted value of

 xv

the next player. Circles indicate a position after a player (A or B) has made a

move (afterstate). ___ 78

Figure 3.5: Training progress of methods for sequence creation and update in

Backgammon (left), Fevga (middle) and Plakoto (right). Every line is the

average of 10 different training runs starting from the same random weights.

For speed reasons, NNs in all games have 10 hidden units and no expert

features. Benchmark opponents are pubeval for backgammon, Fevga-1 for

Fevga and Plakoto-1 for Plakoto. ________________________________ 79

Figure 3.6: Training progress of all trained NNs against the Tavli3D benchmark

program in the Plakoto variant (Left) and the Fevga variant (Right). ____ 81

Figure 3.7: Example of a position where agents Plakoto1-3 fail to produce the best move.

The green player is to play roll 42. The best move here is 24/18, since the 24-

point cannot be pinned by any dice roll. However, Plakoto1-3 agents prefer

the clearly inferior move 24/20, 24/22 which gives the opponent a pinning

opportunity to get back into the game. _____________________________ 83

Figure 3.8: Reverse offline recalc algorithm with TD(0) ________________________ 86

Figure 4.1: Comparison of estimated equity of all opening rolls _________________ 98

Figure 4.2: Expected outcome (%) of the first player __________________________ 99

Figure 4.3: Total estimated equity of the first player __________________________ 100

Figure 5.1: Various Plakoto positions a) Upper left: Starting position. Red player starts

at point 1 and bears off at point 24, while green player starts at point 24 and

bears off at point 1, b) Upper right: Typical middle-game position c) Lower

Left: Endgame position where both players have pins in their bearoff

quadrant d) Lower right: Both players have pins in their bearoff quadrants

and some checkers in the previous quadrant. ______________________ 113

Figure 5.2: Plakoto endgame pin database algorithm _________________________ 116

16

CHAPTER 1

 17

 18

CHAPTER 1: INTRODUCTION

Games have proven to be an ideal domain for the study of artificial intelligence, as

not only are they fun to play and interesting to observe, but they also provide competitive

and dynamic environments that model many real-world problems. Additionally, having

increased their popularity in recent years, games are now a major part of the entertainment

and software industry and an important cultural phenomenon. Methods from artificial in-

telligence promise to have a big impact on game technology and development, assisting

designers and developers and enabling new types of computer games.

1.1 Artificial Intelligence in Games

Since the beginnings of Artificial Intelligence as a subfield of computer science,

games have played an important role as a testing environment for the various algorithms,

providing a much harder challenge than it is typically used in computer science research,

the so called “toy problems”. Moreover, due to familiarity of games to the general public,

strong game-playing programs generated publicity, especially when the derived systems

won matches against the best human opposition.

Over the decades of game AI research, there are many examples of high-perfor-

mance game-playing systems. The first successful example was the checkers program Chi-

nook, that managed to win the world’s champion checker player in 1994 (Schaeffer, 1997).

TD-Gammon, a program that played backgammon was the next to reach world champion-

ship level. Even it did not win a human champion in its several matches against human

experts, later analysis showed that it played better than its human opponents (Tesauro,

2002). In 1997 Logistello, a program that played Othello, defeated Takeshi Mukarami, the

human world Othello champion (Buron, 1998). In 1998, Maven, a scrabble playing pro-

gram defeated scrabble grandmaster Adam Logan 9 – 5 (Sheppard, 2002).

An important milestone in game AI research was IBM’s Deep Blue (Campell,

Hoane Jr, & Hsu, 2002), the chess machine that defeated then-reigning World Chess Cham-

pion Garry Kasparov in a six-game match in 1997. In the years following this important

match, human grandmasters had some success by managing to draw several matches in

 19

(KramniK-Deep Fritz 4-4 (2002), Kasparov-Deep Junior 3-3 (2003), Kasparov-X3D Fritz

2-2 (2003)). However, after 2005 and the loss of grandmaster Michael Dams to Hydra 5.5-

0.5, and the rematch Kramnik-Deep Fritz 2-4, the superiority of the machine was obvious.

Nowadays, matches between humans and computers are still played – just not on equal

terms anymore. Computer programs play with odds, by giving the human player some kind

of advantage.

Recently, as computer resources grow, there have been several efforts that suc-

ceeded in solving complex games. Most notable achievements were the solving of Check-

ers (Schaeffer, et al., 2007) and Cepheus (Bowling, et al., 2015), a program that plays a

variant of poker called heads-up limit Texas hold’em essentially perfectly.

1.2 The Problem

While many games have been studied extensively by Computer Science and Arti-

ficial Intelligence scientists, many more exist that are still unexplored. In this thesis, a fam-

ily of still unexplored games will be examined, the variations of backgammon that are

popular in Greece, Portes, Plakoto, Fevga, collectively called Tavli. Since Portes is similar

to standard backgammon, a game that expert playing programs such as the aforementioned

TD-Gammon exist, we will focus most of the research to other two games.

Concretely, the main research questions of this thesis are the following:

Question 1: Can strong game-playing agents be built that can play at expert level

the backgammon variants popular in Greece (Tavli – Portes, Plakoto, Fevga)?

Question 2: Can the learning algorithms and training setups be improved in order

to enable AI agents to learn to play backgammon games effectively by self-play?

After successfully building an expert AI agent we will then try to answer the fol-

lowing secondary research question:

Question 3: Can the expert agents be used to extract useful characteristics of the

games?

 20

1.3 Contribution

During the research for this thesis, the following contributions have been made:

A. Publications and Poster Presentations

Papahristou, N., & Refanidis, I. (2011). Training Neural Networks to Play

Backgammon Variants Using Reinforcement Learning, Proceedings of Evogames

2011, EvoApplications 2011, Part I, LNCS 6624, (pp. 113-122). Springer.

Papahristou, N., & Refanidis, I. (2012a) Improving Temporal Difference Per-

formance in Backgammon Variants, 13th Advances in Computer Games Confer-

ence (ACG 2011), Tilburg, The Netherlands, November 20-22, 2011, LNCS 7168,

(pp 134-145). Springer.

 Papahristou, N., & Refanidis, I. (2012b) On the Design and Training of Bots

to Play Backgammon Variants, 8th IFIP WG 12.5 Artificial Intelligence Applica-

tion and Innovations Conference (AIAI 2012), Halkidiki, Greece, September 27-

30, 2012, Proceedings, Part I, Volume 381/2012, (pp 78-87). Springer.

Papahristou, N., & Refanidis, I. (2013) AnyGammon: Playing Backgammon

Variants Using Any Board Size, Entry at the Research and Experimental Festival

of the 8th International Conference on the Foundations of Digital Games (FDG

2013), Chania, Crete, May 2013, (pp. 410-412).

Papahristou, N., & Refanidis, I. (2014) Opening Statistics and Match Play for

Backgammon Games, 8th Hellenic Conference on Artificial Intelligence (SETN

2014), Ioannina, Greece, LNCS 8445, (pp 569-582). Springer.

Papahristou, N., & Refanidis, I. (2015) Constructing Pin Endgame Databases

for the Backgammon Variant Plakoto, 14th Advances in Computer Games Confer-

ence (ACG 2015), Leiden, The Netherlands, to be published by Springer.

B. Software

 Palamedes (Chapter 6)

(http://ai.uom.gr/nikpapa/Palamedes/)

 AnyGammon (Section 2.1.6.3)

(http://ai.uom.gr/nikpapa/AnyGammon/)

C. Competitions

 1st place and gold medal in the 16th Backgammon Computer Olympiad at Til-

burg, The Nederlands, organized by the International Computer Games As-

sociation (ICGA) from 18 November to 26 November 2011 (International

Computer Games Association, 2011).

http://ai.uom.gr/nikpapa/Palamedes/
http://ai.uom.gr/nikpapa/AnyGammon/

 21

 1st place and gold medal in the 18th Backgammon Computer Olympiad at Lei-

den, The Nederlands, organized by the International Computer Games Asso-

ciation (ICGA) from 29 June to 6 July 2015 (International Computer Games

Association, 2015).

1.4 Outline

This thesis is outlined as follows:

Chapter 2 describes the necessary theoretical background. Section 2.1 describes the

rules of all the backgammon variants discussed in this thesis. We also present a framework,

called bcdGammon, which generalizes the backgammon games. Section 2.2 gives an over-

view of the reinforcement learning field. Reinforcement learning is a huge field, so a subset

of its algorithms, the ones most related to this work, is presented.

Chapter 3 describes the self-play training procedure we used to train Neural Net-

works to play tavli games at expert level. We describe all our attempts to create intelligent

agents in detail, compare different training setups and the rational about which features are

important to include for successful learning.

In Chapter 4, the expert-playing agents constructed in the previous chapter are used

in Monte-Carlo simulations, to extract useful statistics about the games. The distribution

of the outcomes, the gammon rate and the first player advantage are some interesting char-

acteristics of the games that are measured. These statistics are then used to enhance the

match strategy of our agents.

Chapter 5 shows the construction of pin endgame databases for the game of plakoto.

These databases generalize a huge amount of states to only a few million records. When

they are utilized in our program, it is shown that the play of the plakoto agent is improved.

In Chapter 6 we describe the program that includes all the research done in this

thesis, Palamedes. Palamedes is a program that provides an attractive user interface for

everyone to play against the AI in the tavli and other variants. In this chapter, the two

participations of Palamedes in backgammon competitions leading in two gold medals are

also discussed.

 22

Finally, Chapter 7 concludes the thesis and avenues of future work are presented.

23

Chapter 2

 24

 25

CHAPTER 2: BACKGROUND

2.1 Rules of backgammon variants

This section presents the rules of all the backgammon variants encountered in this

thesis. The main target of this thesis are the variants that are popular in Greece, Portes,

Plakoto, and Fevga, collectively called Tavli. Several other variants are also mentioned,

when we attempt to explain some of our findings. All backgammon games are played on a

board consisting of 24 triangles also called points divided in 4 quadrants of 6 points each.

Figure 2.1: Backgammon board

The following rules are common in every variant examined in this thesis:

Each player starts the game with a number of pieces at his disposal, commonly

called checkers (usually 15), placed in fixed starting positions.

The players take turns playing their checkers using an element of chance in the form

of two six-sided dice according to the game rules. After rolling the dice, players must, if

possible, move their checkers according to the number shown on each die. For example, if

 26

the player rolls a 5 and a 4 (notated as "5-4" or “54”), the player must move one checker

five points forward and another or the same checker four points forward. The same checker

may be moved twice, as long as the two moves can be made separately and legally: five

and then four or four and then five. If a player rolls two of the same number, called doubles,

that player must play each die twice. For example, a roll of 3-3 allows the player to make

up to four moves of three spaces each. On any roll, a player must move according to the

numbers on both dice, if it is at all possible to do so. If one or both numbers do not allow

a legal move, the player forfeits that portion of the roll and his/her turn ends. If moves can

be made according to either one die or the other, but not both, the higher number must be

used. If one die is unable to be moved but such a move is made possible by the moving of

the other die, that move is compulsory.

When all the checkers of a player are inside his last quadrant of the board (called

the home board), he can start removing them; this is called bearing off. The player that

removes all his checkers first is the winner of the game.

If one player has not borne off any checkers by the time that player's opponent has

borne off all fifteen, then the player has lost a double game (or gammon in standard back-

gammon terminology), which counts for double a normal loss or two points. Otherwise,

the win is called “single” and is worth one point.

2.1.1 STANDARD BACKGAMMON

Standard backgammon is the most commonly used backgammon game in the west-

ern world. Widely known as just “backgammon”, we use the naming “standard backgam-

mon” in this thesis in order to distinguish the game more easily from other variants which

we may generally call “backgammon games” or “backgammon variants”. The following

description of the rules is taken by the Wikipedia entry on backgammon (2015).

2.1.1.1 Setup and direction of movement

Each player begins with fifteen checkers, two are placed on their 24-point, three on

their 8-point and five each on their 13-point and their 6-point. The two players move their

checkers in opposing directions, from the 24-point towards the 1-point. Points 1 through 6

 27

are called the home board or inner board and points 7 through 12 are called the outer board.

The 7-point is referred to as the bar point and the 13-point as the midpoint.

Figure 2.2: Starting position of standard backgammon and Portes

2.1.1.2 Movement rules

To start the game, each player rolls one die and the player with the higher number

moves first using the numbers shown on both dice. If the players roll the same number,

they must roll again. The players then alternate turns, rolling two dice at the beginning of

each turn.

In the course of a move, a checker may land on any point that is unoccupied or is

occupied by one or more of the player's own checkers. It may also land on a point occupied

by exactly one opposing checker or "blot". In this case, the blot has been "hit" and is placed

in the middle of the board on the bar that divides the two sides of the playing surface. A

checker may never land on a point occupied by two or more opposing checkers.

Checkers placed on the bar must re-enter the game through the opponent's home

board, before any other move can be made. A roll of 1 allows the checker to enter on the

 28

24-point (opponent's 1), a roll of 2 on the 23-point (opponent's 2), and so forth, up to a roll

of 6 allowing entry on the 19-point (opponent's 6). As in regular movement, checkers may

not enter on a point occupied by two or more opposing checkers. More than one checker

can be on the bar at a time. A player may not move any other checkers, until all checkers

on the bar belonging to that player have re-entered the board. If a player has checkers on

the bar, but rolls a combination that does not allow any of those checkers to re-enter, the

player does not move.

When all of a player's checkers are in that player's home board, that player may

start removing them; this is called "bearing off". A roll of 1 may be used to bear off a

checker from the 1-point, a 2 from the 2-point and so on. A die may not be used to bear off

checkers from a lower-numbered point, unless there are no checkers on any higher points.

If the losing player has not borne off any checkers and still has checkers on the bar

or in the opponent's home board, then the player has lost a triple game (or backgammon in

standard backgammon terminology), which counts for three times a normal loss or three

points.

2.1.1.3 The doubling cube

To speed up match play and to provide an added dimension for strategy, a doubling

cube is usually used. The doubling cube is not a die to be rolled but rather a marker with

the numbers 2, 4, 8, 16, 32 and 64 inscribed on its sides to denote the current stake. At the

start of each game, the doubling cube is placed on the bar showing number 64; the cube is

then said to be "centered, on 1". When the cube is centered, the player about to roll may

propose that the game be played for twice the current stakes. Their opponent must either

accept ("take") the doubled stakes or resign ("drop") the game immediately.

Whenever a player accepts doubled stakes, the cube is placed on their side of the

board with the corresponding power of two facing upward, to indicate that the right to re-

double belongs exclusively to the player who last accepted a double. If the opponent drops

the doubled stakes, he loses the game at the current value of the doubling cube. Although

 29

64 is the highest number depicted on the doubling cube, the stakes may rise to 128, 256

and so on, though in expert play rarely does the cube exceed 4.

The doubling cube is a rule that was added in the 1930’s in New York City. In order

to take accurate doubling decisions, players must calculate the probabilities of winning/los-

ing the game accurately, adding another strategy layer to the checker play. While it is used

almost all the time in standard backgammon, the doubling cube is not used in other back-

gammon variants (with the exception of hypergammon).

2.1.2 PORTES

Portes is the first backgammon variant played in a tavli match. The starting position

is the same with standard backgammon (Figure 2.2) and most of the rules are the same with

the following exceptions:

 The winner of the opening roll rerolls for his first turn. Thus, unlike standard back-

gammon, a double roll is possible on the first move.

 The winner scores one point for a normal win and two points for a double win.

There is no triple wins.

 There is no doubling cube.

2.1.3 PLAKOTO

The key feature of game Plakoto is the ability to pin hostile checkers, in order to

prevent opponent movement. The general rules of the game are the same as Portes apart

from the procedure of hitting. Players start the game with fifteen checkers placed in oppos-

ing corners and move around the board in opposite directions, till they reach the home

board which is located opposite from the starting area (Figure 2.3).

When a checker of a player is alone in a point, the opponent can move a checker of

his own in this point thus pinning (or trapping) the opponent’s checker. This point counts

then as a made point as in standard backgammon, which means that the pinning player can

move checkers in this point, while the pinned player cannot. The pinned checker is allowed

to move normally only when all opponent pinning checkers have left the point (unpinning).

 30

Figure 2.3: Starting position and direction of play in the Plakoto variant

Bearing off is done as usual with the following exception: bearing off is not per-

mitted, if the opponent has one pin or more inside the player’s home board. In other words,

a player can be permitted to bearoff any of his checkers only when all his checkers inside

his home board are pin-free.

The 24-point or the starting point is called the mother point. If a checker in this

point gets pinned by the opponent, the game is over and you lose two points. The only

exception is, if the opponent still has checkers on his starting point, since in this case his

own mother is still threatened. A game in which both mothers are pinned is a tie.

2.1.3.1 Tapa subvariant

An interesting variation of Plakoto is the Tapa variant where the rules are exactly

the same with Plakoto except for the initial checker placement: instead of placing all check-

ers in the last point the checkers are equally distributed in the last three points (5 checkers

for each point (Figure 4). The change seems small, but has significant effect on important

characteristics such as gammon rate and first player advantage (Chapter 5).

 31

Figure 2.4: Starting position of the tapa variant

2.1.4 FEVGA

The main difference of Fevga from the other games is that there is no pinning or

hitting. If the player has even a single checker in one point, this point counts as a made

point, effectively preventing the movement of the opponent’s checkers in this point. Each

player starts with fifteen checkers on the rightmost point of the far side of the board, at

diagonally opposite corners from each other, whereas the two players move to the same

direction (Figure 5).

The game begins with a starting phase, where the players must move only one

checker, until it passes the opponent’s starting point, before they may move any other of

their checkers. The formation of primes (six consecutive made points) is easier in this

game, because a made point can be constructed using a single checker. The formation of

primes has the following exceptions:

1. No player can form a prime in his starting quadrant.

 32

2. No player can form a prime immediately in front of the opponent’s starting

point1.

Figure 2.5: Starting position of the Fevga variant

Finally, it is not permitted to completely block the opponent (no-blocking rule).

This means that for a move to be allowed, there must exist a dice roll that the opponent can

use to move at least one checker2.

As in Portes and Plakoto, triple games and the doubling cube do not exist.

1 Rules 1 and 2 are not enforced in all Greek regions. Fevga in some regions is played with no prime ex-

ceptions, while in some others only the first exception is used. Because primes are powerful, we prefer to

apply both exceptions in order to give more chances to the defending player to avoid getting primed. How-

ever, after analyzing all possible combinations, we concluded that enforcing 1 and/or 2 rule did not change

the characteristics of the game in a statistically significant way.
2 Sometimes the moving player that has completely blocked his opponent does not have a legal move to un-

block the opponent. In this very rare situation, the player is allowed to play any legal move and play contin-

ues as usual (i.e. the opponent remains completely blocked).

 33

2.1.5 MODES OF PLAY

2.1.5.1 Money Game

A money game is a style of competition where games are played individually and

the participants bet on the result. At the end of each game the loser pays the winner the

agreed initial stake multiplied by 2, if the result was a double win, or 3, if the result was a

triple win. If the doubling cube is used, then the stake is further multiplied by the value of

the doubling cube at the end of the game. From a game-theoretic point of view, a money

game is like playing a match with infinite length. Unless otherwise stated, the experiments

performed in this thesis are done under a money game mode; that is the agents try to max-

imize the result of the current game.

2.1.5.2 Match Play

This is the most common mode of competition used in tournaments on the internet

and in casual play. The opponents play a series of games, until one of them reaches a pre-

determined number of points. Points (1, 2 or 3) are awarded normally after the end of each

individual game (multiplied by the doubling cube in standard backgammon). The termi-

nology used is “n-point match”, which means that a player wins, when he acquires n points.

The most popular match types used are the 7-point matches and 5-point matches because

of the relative small amount of time needed to finish. In important competitions like cham-

pionships, where the effect of luck needs to be reduced, longer matches are usually played

(15-point or 19-point).

2.1.5.3 Tavli

In Greece, the most popular way of playing backgammon games is a Tavli match

(Figure 2.6), where Portes, Plakoto and Fevga are played one after the other, until a player

 34

reaches a predefined number of points. Using the rules described in match play, one could

also play a Plakoto match or a Fevga match, but this is a very rare proposition in Greece.

Figure 2.6 Flow of a typical Tavli match.

2.1.5.4 First player resolution

As it was shown earlier, in standard backgammon the first player to move is deter-

mined by the result of single die roll. The result of this roll is also used for the first dice

roll of the game. This rule is applied before the start of each money game or, when playing

a standard backgammon match, before the start of each individual match game. In a Tavli

match, however, there are the following changes:

a) In the first game, the player that won the initial die roll rerolls again to begin

his first turn.

b) After the first game, the winner of the previous game goes first.

These two match rules essentially permit doubles as the first roll on any tavli game,

something that is not happening in standard backgammon matches. Disallowing a doubles

as a starting roll, as we will see in chapter 5, has a positive effect in reducing the advantage

of the first player.
2.1.6 EXTENDING BACKGAMMON TO ARBITRARY BOARD SIZES

Like other popular board games such as chess and go, backgammon has been stud-

ied with great interest by computer scientists. While game AI for standard backgammon

has reached world-class strength (Tesauro, 2002), as it will be shown in chapter 3, the same

claim cannot be stated for other variants i.e. Narde, Plakoto, Fevga, Acey-Deucey.

 35

A popular method for developing, troubleshooting and understanding any game

evaluation function in board games is to try it out first in smaller board sizes. For example

in Go, apart from the standard 19x19 board, the game can be played at any board size, with

9x9 and 13x13 being the most popular ones. Standard practice for AI Go programmers is

to start developing their algorithms in smaller board sizes like 9x9 and upscale from there.

Furthermore, small board sized games (like 5x5 Go) can be solved more easily, giving an

additional evaluation tool for the developers (van der Werf, & Winands, 2009).

In this section we attempt to reduce/extend the complexity of backgammon games

in a consistent way. Previously, the only other attempt to simplify the backgammon games

is the hypergammon variant (Keith, n.d.) that uses the same board size as standard back-

gammon but only 3 checkers for each opponent. The resulting game is simple enough in

order to be strongly solved (Fang, Glenn, & Kruskal, 2008), but does not offer the strategic

elements found in the original. In contrast, our underlying framework not only captures the

key elements of the games in reduced versions, but also can easily extend the game into

virtually any board size.

Another extendible game worth mentioning is Nannon (Pollack, 2005). This game

is played on a backgammon board and can be extended on the number of checkers and the

number of points on the board. However, the rules for moving the checkers are much dif-

ferent from the typical backgammon games (e.g. the player cannot stack checkers on a

point) making the strategies required completely different. Another drawback of Nannon

is that it uses a single six-sided die in all configurations, thus prohibiting the study of the

effects of different chance events.

2.1.6.1 The bcdGAMMON Framework

In this section we present bcdGammon, a framework for full parameterization of

all key characteristics of a backgammon game. The name of the framework is inspired by

its three core parameters, b, c, d:

b: is the total number of points on the board,

c: the number of available checkers for each player, and

 36

d: the maximum number available when rolling a die.

Figure 2.7: Screenshots of AnyGammon showing playable backgammon configurations. Upper
Left: b=8, c=5, d=2, Upper middle: b=16, c=10, d=4, Upper right: b=24, c=15, d=6 (Standard

backgammon), Lower left: b=32, c=19, d=8, Lower right: b=40, c=23, d=10

For example, parameterizing backgammon with b=16, c=10, d=4, named in short

Backgammon(b=16, c=10, d=4) or Backgammon(16, 10, 4), results in a board with 16

points (4 for each quadrant), 10 checkers for each player and 4-sided dice (Figure 2.7, upper

middle).

Theoretically, any number can be assigned to the three parameters, as far as b>3,

c>0, d>1. In practice, and in order to preserve the look-and-feel of the original games,

additional constraints should be added: b mod 4 = 0 and d = b/4. The former constraint is

necessary in order to retain the look of the board as four quadrants; otherwise, the board

must be represented in a straight line and additional rules regarding the home board must

be added. The latter constraint is needed in order to preserve the strategic elements of the

original games. We are not certain what would happen, if d is different from b/4, so we

leave this investigation for future work. In all configurations, two dice are used as in the

 37

original games. Most backgammon games examined in this thesis (standard backgammon,

Portes, Plakoto, Fevga etc) can be considered a subset of the bcdGammon framework

where b=24, c=15, d=6.

Another crucial element of backgammon variants is the initial position. For some

variants like Fevga and Plakoto, all checkers are placed in the starting point, so there is no

problem in adapting any version of bcdGammon. Standard backgammon, however, has a

specific placement of the checkers at the start of the game. In all configurations supported,

we adjusted the initial position to resemble standard backgammon.

2.1.6.3 AnyGammon: A program that supports the bcdGammon framework

In order to promote and support the bcdGammon framework, we authored

AnyGammon (Figure 2.8), a game where players can play backgammon variants against

the computer. Currently, supported game types are the tavli games (Portes, Plakoto and

Fevga) but the goal of this project is to support dozens of backgammon variants. The pro-

gram is available for free and can be downloaded from http://ai.uom.gr/nik-

papa/AnyGammon. Currently the program runs on the Windows operating system and on

Android devices (https://play.google.com/store/apps/details?id=gr.uom.ai.nikpapa.

anygammon). AnyGammon was showcased at the FDG-2013 Research and Experiment

Festival.

Players start a game in AnyGammon by selecting the key parameters of the game:

game type, b, c, d. Currently, supported game types are Portes, Plakoto and Fevga variants.

The goal of this project is to support dozens of backgammon variants. Notable variants

planned for the immediate future are Narde, a variant similar to Fevga that is popular in

Russia, and Acey-Decuey, a variant popular within the US military personnel. All games

are played without the doubling cube; we plan to support this in future updates.

https://play.google.com/store/apps/details?id=gr.uom.ai.nikpapa.%20anygammon
https://play.google.com/store/apps/details?id=gr.uom.ai.nikpapa.%20anygammon

 38

Figure 2.8: Screenshot of AnyGammon windows version

We placed several restrictions to the b and d parameters: board size (b) is restricted

to a maximum of 40 points in increments of four and maximum number on the dice (d) is

always b / 4. The number of checkers is also limited to a maximum of 30. Under these

restrictions the player can select between 3x9x30=810 possible configurations at the start

of a game. We plan to lift these restrictions, once we have fully investigated all aspects of

these parameters.

 39

2.1.6.4 AI agents used in AnyGammon

The AI of AnyGammon is currently in its initial stages. The user can select between

two simple Monte Carlo methods, FlatMC and FlatUCB (Browne, et al., 2012), as well as

the thinking time in seconds per move. Monte Carlo methods were chosen because of their

simplicity and the easy application to all available configurations without parameterization.

These methods can be further enhanced by inserting heuristic rules to the simulation spe-

cific to each variant. We are also planning to compare many algorithms such as the NN

which is very popular in backgammon software, the NN methods we propose in chapter 4,

and MCTS/UCT (Coulom, 2006), currently the dominant method in Go computer pro-

grams (Browne, et al., 2012). Finally, we want to investigate methods for transferring game

evaluation functions learned for small boards to large boards and vice-versa.

2.1.6.5 Contribution and future work

The bcdGammon was created primarily for research purposes as a testbed for game

AI. Small board sizes make it easier to analyze algorithms and game evaluation functions.

Large board sizes make the original games more challenging and interesting for the players.

Especially for the smaller configurations, we believe that bcdGammon will be of great

importance in solving the full game for the following reason: Because backgammon games

are not deterministic, every attempt to solve them requires to determine the minimum

amount of precision that will be needed to store the floating point values in a database.

Minimum precision is critical to reduce the memory requirements of the resulting database.

This approach was used by (Bowling, et al., 2015) in the solving of the card game Heads-

Up Limit Hold’em (HULFE), when another smaller card game was used (Rhode island

poker) first to determine the optimal amount of precision both for reducing disk space and

for best performance of the solving algorithm. A similar approach can be used for solving

the game of standard backgammon: first one can try a solving algorithm in smaller

bcdGammon setups (e.g. b=16 or b=20), and then use the tuned precision parameter to

solve the full game.

 40

2.2 Reinforcement Learning

Reinforcement Learning (RL) is an area of Machine Learning (ML) itself, a sub-

field of Artificial Intelligence (AI) and Computer Science (CS). Initially, inspired by be-

haviorist psychology, RL essentially gives a computational system where software agents

learn behaviors in an environment under some notion of cumulative reward. This reward

can be anything the agent deems valuable. Examples of reward in computer games reward

are the eating of dots in pacman, the killing of an enemy in first person shooter games or

the winning of a game in board games such as chess or backgammon.

The ultimate goal of RL research is to find ways to program “smart” agents without

having necessarily knowledge of the environment, by giving them only rewards and pun-

ishments, and by making them react efficiently to environmental changes. In other words,

learning in RL should be done using trial and error, having constant interaction with the

environment. In recent years, RL has been given a lot of focus, because of the large number

of practical applications that it can be used to address.

This chapter gives a brief overview of RL, focusing mainly on its main algorithms,

the temporal difference type of algorithms, because these algorithms are used to construct

backgammon evaluation function in later chapters. The presentation of these algorithms

follows mainly (Sutton & Barto, 1998) and (Szepesvari, 2010), which we consider the main

background references for RL. Obviously, an attempt of presenting the key concepts will

be made having game applications in mind, and in particular, backgammon.

 41

2.2.1 CORE ELEMENTS

The core elements found in RL problems are:

The agent is the learner and the decision-maker.

The environment is everything else outside the agent. An agent interacts continually

with the environment by executing actions and the environment responds by presenting

new information to the agent.

The policy that defines how the agent acts at any given moment. Policy is just a

mapping of all the states of the environment to actions that can be executed in those states.

In simple cases, a policy can be expressed with a lookup table; for example the game tic-

tac-toe has 765 possible different positions, so a policy can be easily created by means of

a table. However, real-world problems have huge amount of states that cannot be mapped

in a table. In games, chess, backgammon and go are some examples with huge state spaces

that are impractical to use tables.

The reward function is a critical element, because it defines the goal of the agent.

It maps every state of the environment to a number, the reward, that determines how de-

sirable is to the agent to be in this position. The goal of the agent is to maximize its long-

term reward. In board games such as backgammon, the only reward that the agent gets is

in the end of the game (terminal positions); for backgammon games this reward is usually

+1 for a single win, +2 for a double win, -1 for a single loss and -2 for a double loss (and

for standard backgammon +3, -3 for triple wins and losses respectively).

The value function shows the value of a state (or state-action pair) with respect to

the cumulative perceived future rewards from the current state onwards. Contrast to the

reward function that shows the imminent gain or loss, the value function shows if the state

is good or bad long-term. A state can yield low reward, but still can have a high value,

because there will be a following sequence of states that will give high reward. In game AI

the value function is usually called game evaluation function, but has essentially the same

definition: it is a value that determines how good or bad a state is with respect to the final

outcome. In backgammon games another term for the value function is equity and is a

number in the [-2, 2] interval ([-3, 3] in standard backgammon).

 42

Finally, the environment model is a function that takes the current state and an ac-

tion as inputs and returns the next state (also called afterstate) and the reward. Most RL

algorithms target problems where the model of the environment is unknown, but they can

also be used in environments where the model is usually known such as computer games.

Figure 2.9: The Reinforcement Learning Framework (Sutton & Barto, 1998, pp. 71)

2.2.2 MARKOV DECISION PROCESS

RL problems are usually modelled as Markov Decision Processes (MDP) (Puter-

man, 1994). An MDP can be described as a quadruple {S, A, T, R}. S is a set of environment

states, (S1, S2, … ST), A is a set of actions available to the agent, with the subset of actions

applicable to state s denoted as A(s). T is a transition function, P(s, a, s’), which gives the

probability of moving from state s to some other state s’, provided that action a was chosen

in state s. Transitions can be deterministic or non-deterministic. Finally, R is a reward func-

tion R: S ↦ ℝ, maps every possible state of the environment to a real number.

At each time t, the agent being in st  S chooses an action at A(st), where A(st) is

the set of available actions in st, perceives the new state st+1 and receives the reward rt=R(st,

a, st+1). Based on these interactions the goal of the agent is to choose a behavior that max-

imizes the expected return. The expected return for MDPs can be defined as Rt =

∑ 𝛾𝑘𝑟𝑡+𝑘+1
𝛵

𝑘=0
, , where 0 ≤ γ ≤ 1 is the discount rate. There is the possibility that T=∞

(for continuing tasks) or γ=1 but not both. The discount is necessary for continuing tasks,

because in an infinite time horizon the sum of rewards can be infinite. Tasks that terminate

 43

are called episodic tasks. In episodic tasks the agent usually tries to maximize the mean of

the sum of rewards for every episode.

A desired property of state representations is to retain all relevant information lead-

ing up to the current point of time, in order for the agent to be able to make a correct

decision for the future. A state having this property is called Markov or having the Markov

property. In the game of backgammon for example, we can have backgammon positions

of the board as states. A backgammon position has the Markov property, because we do

not need any other information in order to determine the best course of action successfully.

The moves that led to the current position need not be retained so are irrelevant.

2.2.3 VALUE FUNCTIONS

The success of an agent following a policy π depends on how much more reward

can be accumulated in the long run. The optimal policy π* is a policy that maximizes the

expected return. A RL algorithm tries to optimize its policy so as to come as close as pos-

sible to the optimal policy π*.

Instead of trying to directly find the optimal policy π* a class of RL algorithms try

to calculate first a value function and then extract the policy using this function. Value

functions can be defined for states or for state-action pairs.

A value function V: S ↦ ℝ, maps a state to a real number value which expresses

the expected return of the agent in a state, when it follows policy π from the current point

of time onwards:

𝑉𝜋(𝑠) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠} = 𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+1
∞

𝑘=0
| 𝑠𝑡 = 𝑠}

Another way of using value functions is state-actions pairs, Q: S x A ↦ ℝ. These

values are usually called Q-values and similarly to state values, express the expected return

of an agent in a state s, that makes action a, and follows policy π afterwards:

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} = 𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+1
∞

𝑘=0
| 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎}

Qπ(s,a) is called action-value function for policy π.

 44

In order to find an optimal policy π, the agent can learn either the optimal Q* or the

optimal V*. A policy π is better than another policy π’, if and only if Vπ (s) ≥ Vπ’(s) for

every state. All optimal policies share the same optimal value function:

𝑉∗(𝑠) = max
𝜋

𝑉𝜋(𝑠)

Similarly, the optimal policies have the same optimal action-value function:

𝑄∗(𝑠, 𝑎) = max
𝜋

𝑄𝜋(𝑠, 𝑎)

2.2.4 BASIC REINFORCEMENT LEARNING METHODS

We will examine the following methods for solving the reinforcement learning

problem: Dynamic Programming (DP), Monte Carlo (MC) and Temporal Difference

Learning (TDL). DP methods need a complete model of the environment and are compu-

tationally expensive, but are well understood and offer the mathematical basis for many

RL algorithms. MC methods are simple and do not require a model, but do not work well

for step-by-step computation. Finally, TDL methods also do not need a model, are fully

incremental, but are more complex to analyze. A little more emphasis is given to MC and

much more to TDL, because these are the methods used in this thesis.

2.2.4.1 Dynamic Programming

DP is a family of algorithms for finding the optimal policies in a MDP given the

model of the environment. Value functions are essential here for guiding the agent towards

a good policy. We first start by finding the value function of a policy π using the Bellman

equation:

𝑉𝜋(𝑠) = ∑𝜋(𝑠, 𝑎)

𝑎

∑𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)],

𝑠′

where 𝑃𝑠𝑠′
𝑎 is the probability of the agent being in state 𝑠′,when it chooses action a in state

s, and 𝑅𝑠𝑠′
𝑎 is the corresponding reward received.

The Bellman equation is a recursive equation that defines a |S| simultaneous linear

equations in |S| unknowns. A simple iterative method to find the optimal policy involves

 45

two steps: a) starting from some random value function (say V0), we use the above equation

iteratively to find Vπ, b) then in the second step, we improve the policy (𝜋′) choosing the

best action that maximizes the value function:

𝜋′(𝑠) = 𝑎𝑟𝑔max
𝑎

∑𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾𝑉𝜋′
(𝑠′)]

𝑠′

By alternating these two steps (policy evaluation and policy improvement) we are

guaranteed to gradually improve the policy and eventually converge to the optimal policy.

This algorithm is called policy iteration.

 One drawback of policy iteration is that the policy evaluation step is a computa-

tional costly operation, because it needs many iterations in order to converge. If the policy

evaluation step stops after only one sweep of the state space, then we have the value itera-

tion algorithm:

𝑉𝑘+1(𝑠) = max
𝑎

∑𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾𝑉𝑘(𝑠
′)]

𝑠′

More information about DP methods is available in (Bertsekas, 1995) and

(Bertsekas and Tsitsiklis, 1996).

2.2.4.2 Monte Carlo methods

Contrary to DP methods, Monte Carlo methods do not need a full model of the

environment; only a way of generating sample transitions and not the explicit model of

transition probabilities. They utilize accumulated experience, i.e. sequences of states, ac-

tions and rewards. These sequences are frequently called trajectories or samples or simu-

lations. MC methods are based on the fact that we could estimate a state value by averaging

the returns from observed visits to that state. As more returns are observed (i.e. more sam-

ples experienced), the average should converge to the expected value.

For example, suppose we want to find Vπ(s), the value of state s under policy π.

Under the MC method first visit Monte Carlo, the agent creates samples following policy

π and for each time s is encountered, it records the return after the first encounter of s.

 46

When the episode is finished, the returns are accumulated and the average of all the accu-

mulated rewards asymptotically converges to Vπ(s). The same algorithm can be applied to

state-action (Q) values.

2.2.4.2.1 Bandit-Based methods

The term Monte Carlo is also often used for estimation methods involving random

components. An important class of problems are bandit problems, where the agent must

choose between n actions in order to maximize the cumulative reward over some time pe-

riod. The problem resembles slot machines, where a player would like to maximize his

winnings having n slot machines at his disposal. If he knew which arm will give the best

value, he will surely play only this one; without this knowledge, however, one must rely

on previous observations. This leads to the exploration-exploitation dilemma: one needs to

balance exploitation of the bandit currently believed to be optimal with the exploration of

other bandits, which now appear suboptimal, but may turn out to be superior in the long

run.

Bandit-based methods aim to minimize the agent’s regret, in other words the ex-

pected loss due to not selecting the best bandit:

𝑅 = 𝜇∗𝑛 − 𝜇𝑗 ∑𝐸[𝑇𝑗(𝑛)],

𝐾

𝑗=1

where 𝜇∗ is the best possible expected reward, n is the number of plays (simula-

tions) so far, K is the total number of arms and 𝐸[𝑇𝑗(𝑛)] is the expected selections of arm

j in the first n trials. It is important to ensure that all bandits are sufficiently explored in

order not to get stuck in a suboptimal arm that seems temporarily promising. In other

words, it is important to place an upper confidence bound (UCB) on the rewards observed

so far.

The simplest UCB policy was proposed by Auer, Cesa-Bianchi, N., & Fischer,

(2012) and is called the UCB1 policy, in which the arm j selected is the one that maximizes

𝑈𝐶𝐵1 = 𝑋̅𝑗 + √
2 ln 𝑛

𝑛𝑗

 47

where 𝑋̅𝑗 is the average reward of move j, n is the number of times the parent of

node j was traversed and nj is the number of times that j was selected. When the reward

distribution is in the [0, 1] interval, this bound is guaranteed to be optimal.

2.2.4.2.2 Monte Carlo Tree Search

Building on the above algorithms, instead of only updating the values of our possi-

ble actions, one can build a tree of underlying state-actions towards the end of the episode.

This is especially important in games where the sequence of actions can be expressed as a

game-tree. This class of algorithms are Monte Carlo Tree Search Algorithms (MCTS) and

have shown to be effective in several games (Arneson, Hayward, & Henderson, 2010; Lo-

renz, 2010; Winands, Björnsson, & Saito, 2010), most notably go (Gelly, 2007; Coulom,

2007).

The basic idea of the algorithm is to progressively build a partial tree/graph in

memory, guided by the results of previous simulations. For each stored node, MCTS stores

statistics of the simulations traversing that node, including at least the minimum of which

are the total rewards gained and the visit count, i.e. the number of simulations that traversed

that node.

The following four steps are applied for each iteration of the algorithm iteratively:

1) Selection: Starting from the root node, a child is recursively selected according

to the selection policy, until a node is found that must be expanded. Nodes must be ex-

panded, if they are not terminal and have at least one child not in the tree.

2) Expansion: One or more nodes are added to the tree at the end of the selection

point.

3) Simulation: A simulation (or playout) is run from the new node(s) according

to a simulation policy, until a terminal state is reached, where we receive the total reward.

The most trivial simulation policy is a uniformly random policy.

4) Backpropagation: The reward is “backed up” through the selected nodes of the

tree, to update their statistics.

 48

2.2.4.2.3 MC algorithms for games

In this thesis we utilize or refer to the following MC algorithms:

 flat Monte Carlo: a Monte Carlo method with uniform move selection and no

tree growth.

 flat UCB: a Monte Carlo method with the bandit-based move selection UCB1

but no tree growth.

 MCTS: a Monte Carlo method that builds a tree to inform its policy online.

 UCT: MCTS with any UCB tree selection policy.

The above terminology is borrowed from (Browne, et al., 2012).

2.2.4.3 Temporal Difference Methods

Temporal Difference Learning (TDL) is a branch of algorithms that combines char-

acteristics from MC and DP methods. Like MC methods, TDL does not need the full model

of the environment, just a way to extract experience (samples). Like DP methods, the up-

dates to the value function estimations are based in part on estimations of later steps (a

process also called bootstrapping) without waiting for the episode to end.

2.2.4.3.1 One step TDL methods

The most commonly used TDL methods are the ones that base their updates on the

estimation of the next step only. We will examine three such simple methods, TD(0), Sarsa,

and Q-learning.

In TD(0) the update rule is the following:

𝑉(𝑠𝑡) ← 𝑉(𝑠𝑡) + 𝑎[𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡)],

where 𝑠𝑡 is a state in time t and 0 < a ≤ 1 is a parameter called the learning rate.

From the above equation it can be seen that TD(0) is using another estimate (𝑉(𝑠𝑡+1)) to

update the current value. Specifically, the value that we want the value function to shift to

is 𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1) term, also called the target of the update, and whole term 𝑟𝑡+1 +

𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡) is called the TD-error. Figure 2.10 presents the algorithm in pseudo-

code form:

 49

V(s) ← Arbitrate initialization to the policy π for all states

a ← Initialize to a fixed learning rate

γ ← Initialize to a fixed discount rate

For each episode do

 s ← Initial state

 Repeat (for every step of the episode)

 a ← action given by π for s

 Take action a

 𝑠′ ← next state after taking action a

 r ← reward observed after taking action a in state s

 𝑉(𝑠) ← 𝑉(𝑠) + 𝑎[𝑟 + 𝛾𝑉(𝑠′) − 𝑉(𝑠)]
 s ← 𝑠′

 Until s is terminal

End For

Figure 2.10: Tabular TD(0) for estimating Vπ

The equivalent algorithm of TD(0) for state-action (Q) values is the SARSA (State

Action Reward State Action) algorithm (Singh and Sutton, 1996). The update rule in

SARSA becomes:

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡, 𝑎𝑡)],
where 𝑠𝑡 is the state the agent is originally in time t, 𝑎𝑡 is the action selected in that

time step and 𝑠𝑡+1 the state results in after the action 𝑎𝑡. The reward received is 𝑟𝑡+1 and

the next action taken under the current policy is 𝑎𝑡+1. The Q value function is updated after

each time step, towards the target: 𝑟𝑡+1 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) and the rate of learning is con-

trolled by parameter a. Figure2.11 presents the algorithm in pseudocode:

 50

Q(s, a) ← Arbitrate initialization for all states-actions

a ← Initialize to a fixed learning rate

γ ← Initialize to a fixed discount rate

For each episode do

s ← Initial state

a ← selected action evaluating Q in s

repeat

 Take action a

 𝑠′ ← next state after taking action a

 r ← reward observed after taking action a in state s

 a′← selected action evaluating Q in 𝑠′

𝑄(𝑠, a) ← 𝑄(s, a) + 𝛼[r + 𝛾𝑄(s′, a′) − 𝑄(s, a)]
s ← s′ , a ← a′

Until s is terminal

End For

Figure 2.11: Tabular Sarsa algorithm

Another popular TDL algorithm for state-action value is the Q-Learning algorithm

(Watkins, 1989; Watkins & Dayan, 1992). The update rule in this algorithm is:

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 [𝑟𝑡+1 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)]

The term max
𝑎

𝑄(𝑠𝑡+1, 𝑎) denotes that the target state-action pair may not be the

same with the state-action pair followed by the sampling policy. This is important because

it allows an arbitrary selection of sampling strategies. These kind of algorithms, where the

learning agent tries to find a policy that may be unrelated to the policy followed, are called

off-policy methods. On the other hand, on-policy methods (like TD(0) and SARSA) learn

the same policy they use to explore the environment. Provided that all state-action pairs

are updated infinitely often, Q-Learning has been proven to converge to Q*.

 51

Q(s, a) ← Arbitrate initialization for all states-actions

a ← Initialize to a fixed learning rate

γ ← Initialize to a fixed discount rate

For each episode do

s ← Initial state

repeat

 a ← selected action using policy derived from Q (e.g. ε-greedy)

 Take action a

 𝑠′ ← next state after taking action a

 r ← reward observed after taking action a in state s

𝑄(𝑠, a) ← 𝑄(s, a) + 𝛼 [r + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′) − 𝑄(s, a)]

s ← s′

Until s is terminal

End For

Figure 2.12: Q-Learning algorithm

2.2.4.3.2 Multi-step TD methods

There is a way to bridge methods with one-step backups (TD(0)) and full backups

(DP) by using a number of backups more than one but less than all of them until termina-

tion. For example, we could extend the TD(0) and instead of taking the target from the

transition to the next state, we could use n-step backups, when the target of the update

extends to the nth step under the following general case:

𝑅𝑡
(𝑛)

= 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3+ . . . +𝛾𝑛−1𝑟𝑡+𝑛 + 𝛾𝑛𝑉𝑡(𝑠𝑡+𝑛)

Similarly, the updates can be made not only by using n-step returns, but also using

the average of the following n returns. Every mix of returns can be considered as long as

the weights of the returns are positive and have a sum of 1. This kind of return is called a

complex backup. This kind of backups are used in one of the most popular TDL algorithm,

TD(λ).

2.2.4.3.3 TD(λ) – forward view

The TD(λ) algorithm uses complex backups with weights proportionally to λn-1

where 0 ≤ λ ≤ 1. Adding a (1 – λ) factor to normalize the weights to 1 we have the following

return at each time step t:

 52

𝑅𝑡
𝜆 = (1 − 𝜆) ∑ 𝜆𝑛−1

𝑇−𝑡−1

𝑛=1

𝑅𝑡
(𝑛)

+ 𝜆𝑇−𝑡−1𝑅𝑡

The return of the first step has the larger weight (1 – λ), the return of the second

step has the second best with (1-λ)λ, the third step reward is (1-λ)λ2 and so forth. An im-

portant implementation point is that after a terminal state has been reached, all subsequent

returns are equal to the terminal return. Another implementation point is that while theo-

retically we could go till the end of the episode to get to the average return, in practice we

stop when the (1-λ)λn becomes a sufficiently small number.

In the extreme cases, when λ = 0, only the one-step return is used (𝑅𝑡
(1)

) making

the algorithm equivalent to TD(0), while, when λ = 1, the first term is zero, so only the

terminal reward (𝑅𝑡) is backed-up, making the algorithm equivalent to MC methods.

This approach is called the forward view of TD(λ), because the agent at each time

step must know in advance the subsequent returns in order to make the updates to the value

function. In practice, this can be achieved by sampling the environment, keeping the policy

“frozen” and, after the episode ends, then updating the value function.

2.2.4.3.4 TD(λ) – Backward view

The forward view has the drawback that the episode must end in order for the up-

dates to begin to take place. In typical RL problems, it is desirable to update the value

function incrementally, (i.e. at each time sampling step, also called online learning). For-

tunately, there is a way to make TD(λ) an incremental algorithm by introducing another

variable for every state s, called eligibility trace, denoted with et(s). For the tabular case the

algorithm is shown in Figure 2.13.

Contrary to the forward view, here we observe the current TD error and we update

it backwards to every previous state proportionally to the state’s current eligibility trace.

Except for the accumulating traces presented in Figure 2.13, other types of eligibility traces

has been proposed such as replacing traces and resetting traces, to name a few. We will

not discuss further more all the different traces, since we are focused in this thesis mainly

 53

in the forward view. It has been proved that in the online case, eligibility traces are a good,

but not exactly equal, approximation to the theoretical forward view.

V(s) ← Arbitrate initialization to the policy π for all states

 e(s) ← 0 for all states s

a ← Initialize to a fixed learning rate

γ ← Initialize to a fixed discount rate

For each episode do

 s ← Initial state

 Repeat (for every step of the episode)

 a ← action given by π for s

 Take action a

 𝑠′ ← next state after taking action a

 r ← reward observed after taking action a in state s

 𝛿 ← 𝑟 + 𝛾𝑉(𝑠′) − 𝑉(𝑠)

 𝑒(𝑠) ← 𝑒(𝑠) + 1

 For all s do

 𝑉(𝑠) ← 𝑉(𝑠) + 𝑎𝛿𝑒(𝑠)

 𝑒(𝑠) ← 𝛾𝜆𝑒(𝑠)

 End For

 s ← 𝑠′

 Until s is terminal

End For

Figure 2.13: Tabular TD(λ) with accumulating eligibility traces

2.2.4.4 Function approximation

Value functions in tasks with small state action spaces can be represented as tables

where each position stores the value of a state or state-action pair. As the state (or action)

space increases, however, the use of tables becomes difficult not only because of the in-

creased memory needed, but also because of the time needed to update all the values. This

is especially critical in games where the state space of most games of interest is huge. For

example, standard backgammon has a state space in the vicinity of 1018, a size which pro-

hibits the use of tables, and makes some form of generalization of the value function man-

datory. This kind of generalization is known as function approximation, since it tries to

approximate a function - in our case the value function.

 54

2.2.4.4.1 Approximating Value Functions

All the prediction methods examined so far have used incremental updates, where

the value function of a state shifts towards the direction of a backed-up value also known

as target value. Another way of viewing these backups is using supervised learning, where

the backups translate as a training example (input-output pair) and then we interpret the

derived approximation function as the prediction of the desired value function. This way

we can use many supervised learning algorithms like neural networks, decision trees, linear

regression, etc. In this thesis we will examine mostly neural networks, because this is the

method that we used for approximating the value function in backgammon games.

In order to use function approximation to predict the value function Vπ, we repre-

sent the value function Vt using a parameter vector 𝜃𝑡
⃗⃗ ⃗. For example, we could use a neural

network with 𝜃𝑡
⃗⃗ ⃗ being the weights of the network. Usually the number of parameters are

much smaller than the total number of states, so changing a parameter changes the value

in many states. Consequently, when we apply a backup in some time step multiple states

are affected.

2.2.4.4.2 Gradient-Descent Methods

An extremely popular class of methods is gradient descent methods, where the pa-

rameter vector is a column vector with a fixed number of real components, 𝜃𝑡
⃗⃗ ⃗ =

(𝜃𝑡(1), 𝜃𝑡(2), . . . , 𝜃𝑡(𝑛))𝑇 and Vt(s) is a smooth differentiable function of 𝜃𝑡
⃗⃗ ⃗ for

every s Є S. These states are usually successive states derived through sampling of the en-

vironment.

A good strategy for updating 𝜃𝑡
⃗⃗ ⃗ is to minimize to MSE error of the observer exam-

ples using gradient descent by adjusting the parameter vector towards the direction that

reduces the error:

𝜃 𝑡+1 = 𝜃𝑡
⃗⃗ ⃗ + 𝑎[𝜐𝑡 − 𝑉𝑡(𝑠𝑡)] ∇𝜃𝑡

⃗⃗⃗⃗ 𝑉𝑡(𝑠𝑡),

where a is the usual learning rate constant, 𝜐𝑡 is some prediction of the value func-

tion for the state st and ∇𝜃𝑡
⃗⃗⃗⃗ 𝑓(𝜃𝑡

⃗⃗ ⃗) is the vector of partial derivatives of our approximation

 55

function. If 𝜐𝑡 is an unbiased estimate for each t, then 𝜃𝑡
⃗⃗ ⃗ is guaranteed to converge to a

local optimum under the condition of sufficiently decreasing a.

Applying gradient descent to TD(λ) and its n-step returns averages we have to fol-

lowing update rule:

𝜃 𝑡+1 = 𝜃𝑡
⃗⃗ ⃗ + 𝑎[𝑅𝑡

𝜆 − 𝑉𝑡(𝑠𝑡)] ∇𝜃𝑡
⃗⃗⃗⃗ 𝑉𝑡(𝑠𝑡)

where 𝑅𝑡
𝜆 is the usual λ-return term of the forward view TD(λ). Unfortunately, for

λ < 1, 𝑅𝑡
𝜆 is not a unbiased estimate of Vπ(st), so it is not guaranteed to converge to a local

optimum. Nevertheless, such bootstrapping methods have been found to work very well in

practice.

2.3 TDL in games and AI for backgammon

In this section we will examine the most important research related to the work

done in this thesis. Due to the nature of the research performed in this thesis, which is

mainly focused on building expert AIs on backgammon variants, the related work pre-

sented in this section is split into two areas: a) research related in TDL methods applied in

games, our main focus on building successful backgammon agents and b) research related

in building AI in backgammon other than TDL. Both have considerable depth, so, for space

reasons, we limited our survey in research deemed as the most significant.

2.3.1 TDL METHODS IN GAMES

The earliest attempt that used TDL-like methods was Samuel’s checker program

(Samuel, 1959). Even though TDL methods would take around 25 years, until they were

conceived, Samuel used a form of bootstrapping to update an evaluation function towards

the value of a minimax search, after black and white had each played a move. We call this

algorithm TD-Root following the name used in (Veness, et al., 2009). This approach ena-

bled Samuel’s program to achieve checker play equivalent to an amateur human. His ef-

forts were limited by the computing resources of the time and by the fact that the evaluation

function was directed to measure the material advantage and not the actual result of the

game.

 56

There is plenty of researchers that effectively trained game-playing agents to some

degree. Being in line of our original intentions to produce expert-level playing agents, in

the following sections we analyze related work that produced strong game-playing agents

equivalent to human masters or above.

2.3.1.1 TD(λ) and TD-Gammon

The first major success of TDL, and probably of machine learning in general, was

the TD-Gammon program (Tesauro, 1992; 1995; 2002). TD-Gammon used the TD(λ) al-

gorithm and self-play to train from scratch a standard MLP-type neural network that

learned the evaluation function of standard backgammon. TD-Gammon played several

matches against backgammon world champions and, even though it was defeated in all of

them, later rollout analysis showed that it made fewer errors than its human opponents

(Tesauto, 2002). In this section we analyze in detail Tesauro’s training setup, since it is the

most relevant compared to our training enhancements presented in this thesis.

Td-Gammon’s learning procedure works as follows: a sequence of states is created

starting from the initial position and ending at the terminal position during the course of a

self-play game (meaning that the neural network plays with itself in order to produce the

game-moves). These states are represented as vectors to the inputs of the neural network

(x1, x2, …, xT) by means of a special encoding. Every step of the sequence represents a

move from one side (1-ply in game terminology). For every vector xt, a corresponding

output vector Υt exists that represents the estimated value of xt. In the TD-Gammon system,

the output signal is composed by four outputs, one for each possible outcome of the game

([p1, p2, p3, p4] → [win single, loss single, win double, loss double]).

With this approach the weights of the neural network are used as function approxi-

mation (Section 2.2.4.4) to the value function and the backpropagation procedure is used

to compute the gradients in the gradient-descend form of TD(λ) according to the following

equation for every output unit:

𝛥𝑤𝑡 = 𝛼 (𝑌𝑡+1 − 𝑌𝑡) ∑ 𝜆𝑡−𝑘∇𝑤𝑌𝑘

𝑡

𝑘=1

 57

where w is the vector of neural network weights being tuned, Yt is the prediction for

the output at time step t, ∇𝑤𝑌𝑘 is a set of partial derivatives for each component of the

weights w, α is the standard learning rate and λ is the factor controlling how much future

estimates affect the current update. At the end of the game a terminal signal z, composed

of 4 elements as described earlier, is returned based on the final game outcome. At the

terminal position the above equation is applied as well, with one difference: the target is

replaced by the terminal signal z instead of the next state 𝑌𝑡+1. Under this condition, every

output of the neural network can be thought as a probability of reaching the corresponding

outcome given the input state. Combing the outputs together, an estimation of the value

(also called equity in backgammon terminology) can be easily calculated.

During the learning process, the moves of the game selected by both players were

determined by the learning agent with following procedure: on every time-step the agent

grades all afterstate positions resulting after every possible move. The move actually

played is then determined by selecting the one that leads to the afterstate with the most

equity. When the training starts, the weights of the neural network were initialized uni-

formly in the [-0.5, 0.5] interval. Surprisingly, this setup was able to learn expert behavior

from self-play, even though at the start of the training the moves selected are random.

A crucial factor for the success of the method was the encoding of the backgammon

position to the input layer of the neural network. The final encoding was used after many

experiments: for every point of the 24 points of the backgammon board, 4 inputs were used

for every player. The first input is binary and is set when the player has exactly 1 checker

on the point, the second is also binary and is set when there are 2 or more checkers of the

player on the point, the third is binary as well and is set when there are 3 exactly three

checkers and the fourth is a float and is proportional to the amount of checkers >= 4 the

player is having on the point. Under the above reasoning, the total amount of inputs is 192.

Another 6 inputs were added, 2 encoding the bar points, 2 for the beared-off checkers and

2 for the side to move. This encoding of the backgammon states at every time step without

including inputs representing expert knowledge is called raw encoding. The neural network

architecture is shown in Figure 2.14.

 58

Figure 2.14: Neural network architecture of earlier TD-Gammon versions. Only 1 of the 4 out-
puts is shown. (Sutton & Barto, 1998)

Using the raw encoding only, TD-Gammon was able to surpass in strength all avail-

able backgammon programs of the time. Adding features representing expert knowledge

of the game, e.g. “pipcount”, a heuristic progress measure (the total distance of pieces from

the goal) that were taken from Tesauro’s previous program NeuroGammon, TD-Gammon

was able to reach a playing level equaling, and maybe surpassing, the best human players

of the time.

The parameters used were as follows: the learning rate a was fixed at 0.1 and the

bootstrapping value λ initially was 0.7, but later it was reduced to 0, because no significant

difference was noticed and, without eligibility traces, the updates were simpler and faster

to compute. Hidden layer units started at 40 and were gradually increased to 160 in the

final version. Training time was also increased as time went by, reaching 6 million games

in the final version (TD-Gammon 3.1).

Eventually TD-Gammon was retired, but the influence in the backgammon world

was tremendous. Firstly, many backgammon programs successfully replicated the TD(λ)

+ neural network combination, the first examples were the Snowie and the Jellyfish pro-

grams. Currently, all strong backgammon programs use some variant of the original TD-

Gammon setup:

 59

 BgBlitz, a shareware program authored by Frank Berger and frequent partici-

pant in backgammon computer Olympiads, uses neural networks with 200 hid-

den units and self-play TD(0) training procedure.

 GNUBG, an open source program also participating many times in the back-

gammon computer Olympiads, uses 3 different neural networks (contact,

crashed, race) for the three different stages of the game. Earlier versions were

trained by TD(0), whereas nowadays all training is supervised which means

that the targets of the training set were calculated by rollouts by the same pro-

gram. All neural networks have 128 hidden units.

 eXtreme Gammon is another commercial program believed by many to be the

best in the world in standard backgammon. Little details are known except for

the description in its site (Extreme Gammon, 2015): “eXtreme Gammon engine

uses a Neural Network to determine the value of every position. The Neural

Network has been trained for years to achieve a very high accuracy in estimat-

ing positions”

TD-Gammon and the other backgammon programs later inspired by it had also

great influence to the human backgammon world. In some situations, TD-Gammon sug-

gested different moves than the ones thought as best at the time. Expert players began

carefully studying the program’s evaluations and rollouts and began to change their con-

cepts and strategies. As a result, the new knowledge generated has been widely dissemi-

nated and the overall level of play in backgammon tournaments has greatly improved in

recent years.

2.3.1.2 TD-Leaf and KnightCap

While TD(λ) and neural networks were very successful in standard backgammon,

researchers struggled to effectively apply the same procedure to other deterministic board

games such as chess, checkers, othello or Go. In all these games, finding an evaluation

function accurate enough to evaluate a position at one-ply is a very difficult task, since

there may occur tactical sequences that end the game after a few moves. For example, in

 60

chess sequences of forced mate in 2, 3, 4 or more moves frequently occur both at actual

play and in analysis. Consequently, almost all successful programs in these games use some

sort of deep lookahead involving variants of minimax search. As this search results in ex-

ponentially more states to be evaluated, expensive evaluation functions such as neural net-

works are not typically used and fast linear functions are preferred because of their speed.

The first successful TDL approach in domains, where search is important, was the

chess program KnightCap (Baxter, J., Tridgell, A., & Weaver, L., 1998a; 1998b; 2000) that

introduced a new TDL algorithm, TD-Leaf(λ). TD-Leaf(λ) is similar to standard TD(λ)

with the only change being the root and the target of the updates; instead of the root being

the current state and the target being the next state of the actual game, now the root is the

leaf node of the principal variation searched in the current state and the target is the leaf

node of the principal variation of the next state. Figure 2.15 explains the differences of the

various backups in diagrammatic form. The idea is that the updates are now more informed

about the tactical sequences found by search, so updates are more accurate in situations

where tactical sequences play an important role.

KnightCap with TD-Leaf was able to reach master level play by training a linear

evaluation function of 5,872 expert features in 300 games but had two major concessions.

Firstly, initial results showed that self-play training was very slow, so the training was

performed in an online chess server, ICC1, with humans as opponents. For this reason ad-

ditional measures were put in place, so that updates were not performed, when blunders

from the opponents were recognized. Secondly, in order to give a head-start in the

knowledge gained, the features representing the material value of the pieces were initial-

ized to the default values. Good initial conditions were important for fast convergence,

because without “smart” initialization of the features learning was found to be very slow.

Under this setup, KnightCap reached a performance of 2150 ELO in blitz2 time

controls without utilizing an opening tree. When an opening tree was added, KnightCap

1 Inter Chess Club: www.chessclub.com
2 A fast time control that gives each player at most 5 minutes for the whole game.

 61

reached a rating 2,400-2,500 (peak 2,575) on the ICC server, a rating equivalent to a human

International Master (IM) level. The parameters used were λ = 0.7 and a = 1.0, the latter

was unusually high on purpose in order that big updates and, as consequence, faster learn-

ing would be encouraged. These parameters seems to be fixed throughout the learning pro-

cess.

The authors of KnighCap developed another algorithm called TD-Directed(λ). The

difference with TD-Leaf(λ) is that the updates are performed on the actual states played in

the game and not on the leaves, like TD(λ). Unlike TD(λ), the states are selected based on

the result of a d-ply search and not by 1-ply. TD-Directed was also tried on chess but found

to be less fast than TD-Leaf.

A comparison with TD(λ) in standard backgammon was also performed. The au-

thors took LGammon, an already trained neural network with the TD(λ) procedure of TD-

Gammon, and tried to improved it by further training with TD-Directed and TD-Leaf.

However, after 50000 training games the resulting networks were not found to be statisti-

cally better than the original. This is confirmed from our own preliminary experiments,

where we tried to train a neural network from scratch using self-play, TD-Directed(0), and

d=2 and found it to be very slow on the time used. This is because of the huge branching

factor found in backgammon games which makes d-ply search very computationally ex-

pensive.

TD-Leaf was successfully applied to checkers (Schaeffer, Hlynka, & Jussila, 2001)

where it was able to train a linear evaluation function with self-play, which was found to

be equally strong to Chinook, the World Man Checkers Champion, which had an evalua-

tion function that was manually tuned over a period of 5 years. The learning rate a was set

to 0.01 and the λ parameter was chosen to be 0.95. These values, however, were not tuned;

rather their values were influenced by the KnightCap research.

2.3.1.3 Rootstrap and Treestrap

Extending the idea of TD-Leaf algorithm, one could also update towards the trajec-

tory of the principal variation, not only on the leaf nodes (TD-Leaf) or on the actual states

 62

of the game (TD). This way the tree created during the search process is better utilized by

the learning process, since the potential exists to update much more per move played. This

is exactly what is done in the RootStrap and TreeStrap algorithms (Veness, et al., 2009).

The author stresses another advantage: the updated states are more representative of the

types of states that can occur in a search-based evaluation, a potential problem with TD-

Leaf which only updates leaf nodes. In Rootstrap the target of the update, when the agent

is in a state of “thinking” its move via search, is the leaf state in the principal variation,

while in Treestrap all interior nodes of the tree are updated. The different backups of all

the algorithms discussed so far are shown in Figure 2.15:

Figure 2.15: Diagrams of various TD backups (Veness, et al., 2009)

The authors also made alpha-beta versions of the algorithms exploiting the αβ cut-

offs produced by the alpha-beta algorithm by using a one-sided loss function and truncating

the evaluation function inside the αβ cutoff bounds. All the algorithms were tested in the

Meep chess program, which used 1812 linear features that were initialized to small random

values and a small opening book to maintain diversity in the starting moves. After 10,000

games under this training regime, Meep was able to learn a good evaluation function, with

the better performing algorithm to be the TreeStrap(αβ). In blitz play on the ICC server,

Meep reached 1,950-2,197 Elo under self-play training, and 2,154-2,338 Elo when trained

against Shredder, a very strong chess engine.

 63

The learning rates used were: 10-6 for TreesStrap (minimax) and 10-7 for

Treestrap(αβ). Both KnightCap and Meep used online incremental updates, meaning that

the updates were performed after each move of a training game.

2.3.1.4 Self-play or expert tutoring?

When we have an expert, it is tempting to use it to learn against it instead of self-

play training. As it was shown in the previous sections, KnightCap and Meep benefited

from having an expert as an opponent; KnightCap by playing against humans (not always

expert) and Meep by playing against a strong chess engine (Shredder). This was also con-

firmed in a study in the game of backgammon in (Wiering, 2010). Three paradigms were

tested, self-play training, training by watching experts and training by playing against an

expert. Training against an expert was the fastest. The TD(λ) setup used had many similar-

ities to the one proposed in this thesis; a) neural networks were used as function approxi-

mators, as it is usual in backgammon, b) learning was offline, meaning that the updates

were performed after the game ended, c) the second player position was inverted, making

the network see only the position as the first player. However, unlike our setup, the learning

trajectory started from the beginning, probably resembling the forward offline method dis-

cussed in Section 3.2.2.1.

The experiments showed that learning by observing an expert was approximately

two or three times slowest than the other methods. Learning against an expert was the

fastest, closely followed by self-play. Unfortunately, the resulting networks were tested

only against themselves and not against some known benchmark such as pubeval (Tesauro,

1994), so we do not know exactly how strong they were. The learning rate parameter a was

set at 0.01, and interestingly, the λ value of 0.6 was found to give the best performance,

something not observed in TD-Gammon or in our results. In line with our observations,

starting with high values of λ (0.8) seemed to make the training faster.

2.3.1.5 Learning from databases

One could also try to learn from a database of games already played by expert play-

ers. Looking at the results of the previous paragraph, this seems to be the same as training

 64

by watching an expert, however there are several advantages. Firstly, the agent does not

need to waste resources on exploring the environment, which is important in games where

the function that produces the available moves is costly. Secondly, not learning the values

of weaker moves, the disadvantage of learning only from expert play can be easily miti-

gated by introducing randomness or other techniques. A successful example is the Giraffe

chess program (Lai, 2015), where a variant of TD-Leaf was used to train a deep neural

network utilizing a database of random positions taken by databases of computer games.

Figure 2.16: Giraffe’s neural network architecture (Lai, 2015)

Instead of using each position directly, the author introduced variations by ran-

domly applying a legal move to each position before putting it in the actual training data-

base. This approach gives variety to the positions and at the same time it keeps the distri-

bution close to one actually encountered during game-play. These positions were then the

start of a ten-move self-play game that was used by the TD-Leaf algorithm to train the

network using standard backpropagation. The learning rate was auto-tuned by the Adadelta

algorithm (Zeiler, 2012) and the λ value was fixed to 0.7. The resulting network reached

the performance of an international master (IM) in blitz play.

 65

We believe that whenever possible database of experts should be utilized at least

for initial training. If this is not enough to reach adequate performance, self-play can be

used afterwards. However, for our purposes of building a strong agent for the backgammon

variants in which we are interested, such databases do not exist for the games Plakoto and

Fevga. So we concentrate our efforts on learning by self-play, a useful paradigm for agents

trying to learn new problems in general.

2.3.1.6 Summary

The most key characteristics of the TDL training setups described so far, along with

our method, are shown in Table 2.1. In the first row the program name is shown except for

the backgammon program trained in (Weiring, 2012) where the name of the researcher is

shown.

Table 2.1: Summary of the key characteristics of various TDL applications in games

Program TDGammon KnightCap Chinook Meep Weiring Bg Giraffe Palamedes

Game BG1 Chess Checkers Chess BG1 Chess BG1

Algorithm TD(λ) TD-Leaf(λ) TD-Leaf
TreeStrap

(αβ)
TD(λ) TD-Leaf(λ) TD(λ)

Parameter

λ
0.7, 0 0.7 0.95 - 0.6 0.7 decreasing

Parameter

α
0.1 1.0 0.01 10-7 0.01

Autotuned

(AdaDelta)
decreasing

Function

Approx.

Neural

Networks

Linear

Weights

Linear

Weights

Linear

Weights

Neural

Networks

Deep

Networks

Neural

Networks

Training

setup

Online

Self-play

Online vs

Expert

Online

Self-play

Online vs

Expert

Offline vs

Expert

Online play

from db of

positions

Reverse Of-

fline Recalc

Self-play

The λ parameter selected in most setups is 0.7 or close to it, noting that most at-

tempts did not optimize this value. An exception is TreeStrap, because the λ parameter

does not exist in this algorithm. The learning rate has much diversity in the setups exam-

ined, starting from 10-7 in Meep and reaching 1.0 in KnightCap. This value seems to be

highly dependent on the features and setup used. Objectively speaking, an automatic tuning

1 BG = Backgammon games

 66

algorithm (like Giraffe) or a decreasing rate like the one we used in our setup should be

used, in order to be able to escape local optima when stuck. In practice, these two algo-

rithms are very difficult to tune together, because the time needed for all the training runs

is usually in the factor of days due to the complexity of the games.

2.3.2 OTHER METHODS IN BACKGAMMON

After the success of TD-Gammon, many researchers tried to apply different tech-

niques to learn to play standard backgammon but without much success. This section pre-

sents some of the most important work that used different kind of methods other than

TDL+NN.

The first attempt after TD-Gammon was by Pollack, Blair and Land (1997), when

they presented HC-Gammon, a program that used a much simpler Hill-Climbing algorithm

that trained the weights of neural networks. Under their model the current network is de-

clared `Champion,' and by adding Gaussian noise to the biases of this champion network,

a `Challenger' is created. The Champion and the Challenger then engage in a short tourna-

ment and, if the Challenger outperforms the Champion, small changes are made to the

Champion in the direction of the Challenger biases. HC-Gammon won only 40% of the

games against the pubeval program.

Another interesting work is that of Sanner et al. (2000), whose approach is based

on ACT-R theory of cognition (Anderson & Lebiere, 1998). Rather than trying to analyze

the exact board state, they defined a representational abstraction of the domain, consisting

of general backgammon features such as blocking, exposing and attacking. They main-

tained a database of feature neighborhoods, recording the statistics of winning and losing

for each such neighborhood. All possible moves were encoded as sets of the above features;

then, the move with the highest win probability (according to the record obtained so far)

was selected. This system reached a 45.94% win rate against pubeval.

Darwen (2001) studied the coevolution of standard backgammon players using sin-

gle and multi-node neural networks, focusing on whether non-linear functions could be

discovered. He concluded that with coevolution there is no advantage in using multi-node

 67

networks and that coevolution is not capable of evolving non-linear solutions. His best

agent scored 52.7% against pubeval.

Qi and Sun (2003) presented a genetic algorithm-based multiagent reinforcement

learning bidding approach (GMARLB). The system comprises several evolving teams,

each team composed of a number of agents. The agents learn through reinforcement using

the Q-learning algorithm. Each agent has two modules, Q and CQ. At any given moment

only one member of the team is in control and chooses the next action for the whole team.

The Q module selects the actions to be performed at each step, while the CQ module de-

termines whether the agent should continue to be in or relinquish control. Once an agent

relinquishes control, a new agent is selected through a bidding process, whereby the mem-

ber which bids highest becomes the new member-in control. Their system reached a 56%

winning rate against the pubeval benchmark.

GP-Gammon was another line of research by Azaria and Sipper (2005), where Ge-

netic Programming (GP) (Koza, 1992) was applied to evolve computer programs to play

backgammon. GP starts with an initial set of general and domain specific features and then

lets evolution evolve the structure of backgammon-playing strategy. In addition, GP read-

ily affords the easy addition of control structures such as conditional statements, which

may also evolve automatically. Two methods were tried, evolving backgammon strategies

with external opponent as teacher and GP with self-learning. The self-learning approach

was the better of the two, scoring 62.4% wins against pubeval, whereas the teacher-learning

approach scored 56.8% wins.

All the above approaches have one major flaw: the performance is measured in win

rate against pubeval and not in points per game, from which we assume that the learned

agents try to learn the game only to win and do not account the double wins as something

more valuable. However, building a win only agent takes much of the complexity out of

the game, since the double wins are very common in standard backgammon (Section 4.3.1).

Moreover, some of the above results were evaluated with very few test games

against pubeval: GMARLB-Gammon only with 50, HC-Gammon used 200 and GP-

 68

Gammon 1000. We believe that only ACT-R-Gammon, which used 5,000 games, and Dar-

wen which used 10,000 games, have sufficient amount of games to compensate for the

randomness of the game.

Finally, the MCTS algorithm (Section 2.2.4.2.2) was also applied to standard back-

gammon in (Van Lishout, Chaslot, & Uiterwijk, 2007). In this work, the UCT algorithm

was used in the selection phase and random games in the playout phase. They also built a

high performance move generation algorithm so that the random games can be finished

quickly. The resulting program, MC-Gammon 1.0, makes a simplification of the game

rules by declaring the game won, when all the checker are inside the home board. An up-

dated version, which played the full game, competed in the backgammon computer Olym-

piad in 2007, losing all its games.

 69

Chapter 3

 70

 71

CHAPTER 3: TRAINING NNS TO PLAY BACKGAMMON GAMES

USING TD

3.1 Learning architecture

The architecture of the learning system that we used for all our experiments is

shown in Figure 3.1.

ʃ

ʃ ʃ ʃ

ʃ ʃ

INPUT LAYER

HIDDEN LAYER

.

OUTPUT LAYER

W WD LDOUTPUTS

Figure 3.1: The neural network architecture used in our learning system. All units of the hidden

and output layer use sigmoid transfer functions.

The learning procedure is executed as follows: we start by creating a sequence of

game positions beginning with the starting position and ending in the last position, when

the game is over. For each of these positions we use the backpropagation procedure of the

neural network to compute the TD(λ) update. The various methods of selecting input-out-

put-target sequences are mentioned in Section 3.3.2.1. The self-play learning process is

repeated, until we can no longer improve the NN.

The inputs of the NN may represent the board position and/or some other features.

We used a modified version of the unary truncated encoding scheme used by TD-Gammon

(Section 2.3.1.1) to map the board positioning of the checkers to the inputs of the neural

network. We used three binary outputs to describe the final outcome of the game from the

side of the first player. The first output (W) represents the outcome of the game, win or

loss; the second output (WD) represents whether a double game is won; and the third output

(LD) represents whether a double game is lost.

 72

Under these training conditions, the neural network learns the “probability” of all

three outputs at any time in the game, also called position equity. For the creation of the

game sequences, we used the same NN currently in training to select the moves for both

sides. Whenever a move selection must be made, the agent scores the states resulting from

all legal moves by combining all three outputs. At every time-step the agent scores all legal

moves available and selects the one with the highest score.

For the evaluation of the learned agents, three procedures were examined:

a) Evaluation against an independent benchmark opponent, the open source pro-

gram Tavli3D 0.3.4.1 beta (Varouhakis, 2007), the only freely available program that can

play all the backgammon variants that we are interested in.

b) Evaluation against stored weights taken by the agent at different stages of the

learning process. Examples are weights after 104 training games, weights after 105 training

games etc.

c) Evaluation against previously trained agents.

During the training procedure the weights of the network were periodically saved

and tested with procedures (a) and (b), until no more improvement was observed. All the

tests were conducted in matches of 10000 games each. The result of the tested games sum

up to the form of estimated points per game (ppg) and is calculated as the mean of the

points won and lost.

3.2 Initial Experiments

3.2.1 DETERMINING THE EFFECT OF EXPERT VS RAW FEATURES

Our first learning experiment was done to determine how the agents learned with

and without expert features. This was mainly done to Plakoto and Fevga variant since in

Portes we can use the standard backgammon research available by TD-Gammon (Tesauro,

1992; Tesuaro 1995;Tesauro, 2002). We used the same approach for all the variants exam-

ined: First, we trained a neural network with inputs consisting only of the raw position of

the board. As with TD-Gammon, we observed a significant amount of learning even with-

out the addition of “smart” features. It only took few thousands learning games for the

 73

agent to surpass the playing performance of the Tavli3D benchmark program for Plakoto

and Fevga games and the pubeval benchmark program for Portes. We evaluated the result-

ing agent and tried to improve its evaluation function by identifying expert features. A

second neural network was trained from scratch including these expert features to the in-

puts of the previous NN architecture.

3.2.1.1 Experiments in Fevga

The raw board position in the game of Fevga was encoded as follows: for every

point of the board four binary inputs were used, each one designating whether there was

one, two, three, or four and more checkers in the point. This coding thus used 96 input units

for every player to encode the checkers inside the board and additional 2 units to encode

the number of checkers off the board, for a total of 194 units. We named the agent trained

with this coding scheme and the procedure described earlier Fevga-1.

Fevga-1 was assessed as average in strength by human standards. Concepts learned

include the understanding of protecting the starting quadrant and attacking the starting

quadrant of the opponent in the early phase of the game, as well as the smooth spreading

of checkers. However, a major weakness was also found: a complete disregard for primes.

The creation and sustainment of the prime formation is considered by human experts the

most powerful strategy available in the Fevga variant.

Figure 3.2: Left. Training progress of all agents against the Tavli3D benchmark program. Right.
Training progress of Fevga-3 against stored weights.

-0,5

0

0,5

1

1,5

2

0 200000 400000 600000

p
p

g
vs

 T
av

li3
D

Trained Games

Fevga-1

Fevga-2

Fevga-3

-2

-1,5

-1

-0,5

0

0,5

1

1,5

0 200000 400000 600000

p
o

in
ts

 p
er

 g
am

e
(p

p
g)

Trained Games

vs Fevga-3 10000

vs Fevga-3 100000

vs Fevga-3 500000

 74

Adding expert features. Given the drawback in the playing strategy of Fevga-1, it

was decided to add the special knowledge of primes in the inputs of the neural network as

smart (or expert) features. The different formations of primes were divided in two catego-

ries according to their significance: a) early primes that are formed in the first two quad-

rants of the player and b) late primes that are formed in the last two quadrants as well as

between the 4th and the 1st quadrant. Late primes are more powerful, because they restrict

the opponent earlier in his/her development and frequently result in the winning of a double

game. These features take the form of four binary input units of the neural network that are

enabled, when the player and/or the opponent makes a prime and at least one opponent

checker is left behind it. In addition, two more special features common to regular back-

gammon were also added: a) one input unit for the pipcount of each player, which is the

total amount of points (or pips) that a player must move his checkers to bring them to the

home board and bear them off, and b) two input units for the existence of a race situation,

which is a situation in the game where the opposing forces have disengaged, so there is no

opportunity of further blocking. The total number of input units in this encoding (which

we named Fevga-2) is 201. The evaluation of Fevga-2 (Figure 3.2 Left) showed only a

marginal increase in performance that was verified by manual human analysis: while not

totally ignorant of the value of prime formation as Fevga-1, Fevga-2 failed to grasp the

essence of primes.

Adding intermediate reward. To clarify more precisely the importance of primes,

a third neural network was trained where the agent learned with the same input units as

Fevga-2, but with one important difference: when reaching a position with a prime for-

mation, the target of the TD update was made a constant value instead of the next position

value. This constant value was for primes of type (a) equivalent with winning a single game

and for primes of type (b) equivalent with winning a double game. In other words, inter-

mediate rewards were introduced, when primes were formed in the game. This had the

result that the strategy learned was a strategy based on the creation of primes, which is

roughly equivalent to what is perceived by experts as the best strategy. We named this

agent Fevga-3. Its training progress can be seen in Figure 3.2 Right.

 75

Indeed, after manual examination, the playing style of Fevga-3 was very similar to

the way humans play the game. Not only did it recognize the value of primes and did not

lose opportunities to make one, but was also able to play moves that facilitated the creation

of primes at later stages. The results of the evaluation against the Tavli3D benchmark show

that Fevga-2 gains slightly more points per game than Fevga-3 (+1.61ppg vs +1.52ppg).

However, when we compared Fevga-2 to Fevga-3 by selecting the best set of weights and

playing 5000 games against each other, the results of this match showed a marginal supe-

riority of the Fevga-3 player (+0.03ppg).

Table 3.1. Analysis of the match Fevga-2 vs Fevga-3

Result/Points Fevga-2 Fevga-3 Total

Single Wins 1704 (34.08%) 2513 (50.26%) 4217 (84.34%)

Double Wins 556 (11.12%) 227 (4.54%) 783 (15.66%)

Total Wins 2260 (45.2%) 2740 (54.8%) 5000

Total Points 2816 2967 5783

The analysis of the match between Fevga-2 and Fevga-3 (Table 3.1) gives some

interesting information. The “human” strategy of Fevga-3 seems to win more games

(54.8%). Nevertheless, the final result is almost equal, because Fevga-2 wins more double

games (11.12% vs 4.54%). This is also confirmed after careful analysis of the results

against Tavli3D: the two agents win the same number of games, but the Fevga-2 emerges

superior, because it wins more double games. We believe that the Fevga-2 strategy is better

against weak opponents, because in the long run it wins more points than Fevga-3 due to

more double games won. But when playing against a strong opponent, a little better strat-

egy seems to be the more “human-like” strategy of Fevga-3, which maximizes total won

games at the cost of doubles. Looking it from another perspective, we can say that the two

versions have different playing styles: Fevga-2 plays more aggressively, trying to win more

double games, while Fevga-3 plays more cautiously, paying more attention in securing the

win than risking for doubles.

 76

3.2.1.2 Experiments in Plakoto

Encoding the raw board position. The input units of the neural network for the

first version of Plakoto were the same 194 units of Fevga-1 plus 24 binary units for every

player that indicated if the player had pinned a checker of his opponent at each point of the

board. Thus, there were 242 input units in total. The agent with this coding scheme was

named Plakoto-1. As in Fevga, after only a few thousand games Plakoto-1 easily surpasses

in strength the Tavli3D benchmark program. This improvement finally reaches a peak per-

formance of about 1.15ppg (Figure 3.3, Left).

Using manual play, the level of Plakoto-1 was assessed as average by human stand-

ards. Strong aspects were the understanding of the value of pinning the opponent, espe-

cially in the home board. At the same time, it was also careful not to leave open checkers,

thus not giving the opponent the chance to pin, because it understood that this will greatly

increase the chances of losing. Mistakes, however, occurred often, when it had to select a

move that left at least one checker open: it did not take into account the possibility of the

opponent pinning the open checker in the next move, thus rejecting moves resulting in

positions with little or no chance for the opponent to pin and preferring moves resulting in

open checkers very easily pinned.

Figure 3.3: Left. Training progress of Plakoto-1 and Plakoto-2 against Tavli3D. Right. Training
progress of Plakoto-2 against stored weights at 10,000, 100,000, and 1,000,000 games trained.

Adding expert features. The following single feature was able to increase the per-

formance considerably: the 24 binary inputs representing the pins of the opponent at each

-1,5

-1

-0,5

0

0,5

1

1,5

0 500000 1000000 1500000p
p

g
vs

 T
av

li3
D

Trained Games

Plakoto-1

Plakoto-2

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

0 500000 1000000 1500000

p
o

in
ts

 p
er

 g
am

e
(p

p
g)

Trained Games

vs 10000

vs 100000

vs 1000000

 77

point were replaced by the probability of the opponent pinning a point, if an open checker

of the agent exists. This probability starts at 0/36 = 0, when no dice roll exists that can pin

the open checker or no open checker exists and maxes to 36/36 = 1, when all dice rolls pin

the open checker or the checker is already pinned. This added feature required no additional

input units, as it utilized units already used by the neural network, only a little more com-

putational overhead for computing the pinning probabilities. The resulting agent was

named Plakoto-2. Compared to Plakoto-1, Plakoto-2 achieved better peak performance by

about 0.3 ppg against Tavli3D (Figure 3.3, Left). A match of 5000 games between the two

agents resulted in a comfortable win for Plakoto-2 (6687-1771, +0.98 ppg), further con-

firming the superiority of Plakoto-2. The level of Plakoto-2 was assessed as that of an

experienced player.

Figure 3.2 Right and Figure 3.3, Right show the training progress of Fevga-3 and

Plakoto-2 against previously stored weights. In both figures we see that the initial strategy

improves rapidly for the first few thousand games and then improves more slowly to its

peak performance.

3.2.2 DETERMINING THE TARGET OF THE UPDATE

In order to find the best move in a given situation, backgammon programs usually

score each possible afterstate (that is the states resulting, after the player has played a move)

and select the move that produces the afterstate with the biggest score.

An important implementation detail for a TD+NN learning system is the selection

of input-target pairings for the TD update. In previous work we split up each training game

into two training sequences, one for the afterstates of the first player and another for the

afterstates of the second player, and we updated these sequences separately (Figure 3.4b).

In this work we made one simple, yet very effective improvement: instead of splitting up

each training game in two, we keep one training sequence and we update each player's

afterstate using as target the inverted value of the other's player afterstate on the next move

(Figure 3.4c). Both methods flip the board, so as both players' afterstates are given to the

neural network, as if it is the first player to move. This is different from the approach used

 78

originally by TD-Gammon (Figure 3.4a), where there was no flipping of the board and the

neural network learned to play the game for both sides, identifying the side to move by two

binary inputs. We believe the board-flipping approach has the potential of getting improved

performance, as the expressiveness of the neural network is increased.

A B A B

V1 V2 V3 V4

A B A

V1 V2 V3inverted inverted

FLIP

BOARD BOARD

FLIP

A B A B

V1 V2

FLIP

BOARD BOARD

FLIP

BOARD

FLIP

Y1 Y2

a

b

c

Figure 3.4: Alternate updating methods of the temporal difference in two player zero-sum games.
Method a: Update the values without flipping the board. Requires input(s) to designate which

player is on the move. Method b: Updates are split in two. Method c: Updates are done on the in-
verted value of the next player. Circles indicate a position after a player (A or B) has made a

move (afterstate).

3.2.2.1 Sequence creation and how to update

Contrary to standard backgammon, when we started making programs for the var-

iants Plakoto and Fevga, there was no other program close to expert play, nor were data-

bases of games available. Therefore, self-play was for us the only option for creating a

game sequence. We examined the following options for creating and updating a self-play

game:

 Learning online (each update is done immediately after a move is played).

 Learning offline (updates are done incrementally after the game ends).

 Forward offline: Updates are done starting from the first position of the game and

ending at the terminal position.

 Reverse offline: Updates are done starting from the terminal position of the game

and ending at the first.

 79

 Reverse offline recalc: As previous, but recalculate target value after each update.
The intuition of updating backwards an offline game is that updates of non-terminal

states will be more informed as the reward of the outcome of the game is received on the

first update of the game. This is enhanced with the addition of the recalculation of the target

value. Online updates have the benefit of learning while the game is in progress; however,

there is a chance that at the start of training, where moves are more or less random, the

agent will get stuck or progress slowly.

Preliminary experiments with all of the above methods showed that the slowest

method was forward offline, particularly in the Fevga variant, with the others resulting in

more or less the same performance (Figure 3.5). The reverse offline method with recalcu-

lation of the target value learns the fastest than all others at the start of the training and

continues to have good performance afterwards. The downside is that more computation is

needed in order to recalculate the target value at every step. However, this was not felt in

our case since the creation of a game sequence is much more time consuming than the time

to make the updates. Even with slower learning progress, all methods were found to reach

the same level, so whatever final performance gains described later in the paper were only

due to changing the updating method from (b) to (c) (Figure 3.4).

Figure 3.5: Training progress of methods for sequence creation and update in Backgammon
(left), Fevga (middle) and Plakoto (right). Every line is the average of 10 different training runs

starting from the same random weights. For speed reasons, NNs in all games have 10 hidden units
and no expert features. Benchmark opponents are pubeval for backgammon, Fevga-1 for Fevga

and Plakoto-1 for Plakoto.

-2

-1,5

-1

-0,5

0

0 50000 100000

Reverse offline recalc

Online

Reverse Offline

Forward Offline

p
p

g
vs

 p
u

b
ev

al

Backgammon

-2

-1,5

-1

-0,5

0

0 50000 100000

p
p

g
vs

 F
e

vg
a

-1

Fevga

Reverse Offline Recalc

Online

Reverse Offline

Forward Offline

-2

-1,5

-1

-0,5

0

0,5

0 50000 100000

p
p

g
vs

 P
la

ko
to

1

Plakoto

Reverse Offline Recalc

Online

Reverse Offline

Forward Offline

 80

In our previous experiments, we used the forward offline method. Following the

experiments mentioned in this section, all experiments from now on were conducted using

reverse offline recalc.

3.2.2.2 Results in the Plakoto and Fevga variants with expert features

We compared the proposed training method to the previous one (Section 3.2.1) by

training again the NNs with the added expert features. For Plakoto, the new agent was

named Plakoto-3 and has exactly the same inputs as Plakoto-2. For Fevga, we trained two

new NNs: Fevga-4 has the same procedure as Fevga-2, whereas Fevga-5 has the same

intermediate reward as Fevga-3. Table 3.2 shows all the techniques used by the various

versions examined in this paper.

Results in 3.2.1.1 showed that Fevga-2’s strategy was much different from the one

considered by the human experts, even with features recognized the presence of primes

(six consecutive made points) in a position. To clarify the importance of primes more pre-

cisely, a new NN was trained (Fevga-3), where the agent learned with the same input units

as Fevga-2, but with one important difference: when reaching a position with a prime for-

mation, the target of the TD update was made a constant value instead of the next position

value. This had the result that the learned strategy was based on the creation of primes,

which is roughly equivalent to what is perceived by experts as the best strategy. Results

showed that the riskier strategy of Fevga-2 scores more points against the benchmark pro-

gram Tavli3D than Fevga-3, but when getting them to play against each other Fevga-2 was

a little bit inferior. To preserve continuity with our previous work, we continued to bench-

mark our training progress with the open source program Tavli3D, which at the time of

writing was the only open source program that can play these variants.

All networks had 100 hidden neurons and were trained to 1.5 million games. For

simplicity, we fixed the value of λ to zero for the experiments conducted in this paper. For

λ>0 and reverse updates, care must be taken when taking future time steps into considera-

tion: since every time step is viewed as the first player, any value taken by future time steps

that is not a move by the player making the current update must be inverted. As the initial

 81

training of Fevga-2 and Fevga-3 were only 700,000 games, we extended their training (with

the same initial λ=0.7) to match the new ones. During the training, we periodically saved

the weights of each NN and we tested the networks against Tavli3D for 10,000 test games

each, half as the first player and half as the second player (Figure 3.6). The result of the

tested games sum up to the form of estimated points per game (ppg) and is calculated as

the mean of the points won and lost.

Figure 3.6: Training progress of all trained NNs against the Tavli3D benchmark program in the
Plakoto variant (Left) and the Fevga variant (Right).

We also tested the best set of weights of each NN by playing tournaments against

each other at (1-ply) as well as by implementing a simple look-ahead procedure using the

expectimax algorithm (Michie, 1966) at 2-ply depth (Table 3.3). In order to speed up the

testing time, this expansion of depth-2 was performed only for the best 15 candidate moves

(forward pruning). For the same reason, the total amount of testing games using 2-ply was

reduced to 1,000 per test.

The results in Plakoto show a significant increase in final performance. The perfor-

mance of Plakoto-3 at 1-ply is equivalent to the performance of Plakoto-2 at 2-ply against

Tavli3D. Additionally, Plakoto-3 learns faster than the other two agents.

0

0,4

0,8

1,2

1,6

0 0,5 1 1,5

p
o

in
ts

 p
er

 g
am

e
(p

p
g)

 v
s

Ta
vl

i3
D

Games trained (millions)

Plakoto-1

Plakoto-2

Plakoto-3

1,0

1,2

1,4

1,6

0 0,5 1 1,5

p
o

in
ts

 p
er

 g
am

e
(p

p
g)

 v
s

Ta
vl

i3
D

Games trained (millions)

Εκατομμύρια

Fevga2

Fevga3

Fevga4

Fevga5

 82

Table 3.2: Summary of techniques used by the various agents

Plakoto

Agent

Updating

method

(Figure 3.4)

Sequence crea-

tion and update

direction

Fevga

agent

Updating

method

(Fig. 3.4)

Sequence crea-

tion and up-

date direction

Intermediate

reward

Plakoto-1 b Forward offline Fevga-2 b Forward offline No

 Plakoto-2 b Forward offline Fevga-3 b Forward offline Yes

Plakoto-3 c
Reverse offline re-

calc
 Fevga-4 c

Reverse offline

recalc
No

 Fevga-5 c
Reverse offline

recalc
Yes

Table 3.3: Comparison of various agents at 1-ply and 2-ply for Plakoto (Left) and Fevga
(Right). All results are in points per game (ppg) with respect to the player on the row.

Players on columns always use 1-ply.

 Tavli3D Plakoto1 Plakoto2 Tavli3D Fevga-2 Fevga-3 Fevga-4

Plakoto-1
1-ply: +1.15

2-ply: +1.36
* * Fevga-2

1-ply: +1.60

2-ply: +1.61
* * *

 Plakoto-2
1-ply: +1.46

2-ply: +1.60

1-ply: +0.98

2-ply: +1.35
* Fevga-3

1-ply: +1.52

2-ply: +1.53

1-ply: +0.03

2-ply: +0.49
* *

Plakoto-3
1-ply: +1.60

2-ply: +1.68

1-ply: +1.10

2-ply: +1.24

1-ply: +0.35

2-ply: +0.62
 Fevga-4

1-ply: +1.63

2-ply: +1.64

1-ply: +0.35

2-ply: +0.53

1-ply: +0.26

2-ply: +0.48
*

 Fevga-5
1-ply: +1.58

2-ply: +1.59

1-ply: +0.42

2-ply: +0.60

1-ply: +0.32

2-ply: +0.45

1-ply: +0.02

2-ply: +0.14

Table 3.4: Analysis of some of the matches of Fevga-4 and Fevga-5

Match: Fevga-5 vs Fevga-4 Fevga-4 vs Tavli3D Fevga-5 vs Tavli3D

 Fevga-5 Fevga-4 Fevga-4 Tavli3D Fevga-5 Tavli3D

Single Wins 47.54% 39.52% 28.93% 2.74% 32.84% 2.86%

Double Wins 4.9% 8.04% 68.32% 0.01% 64.26% 0.04%

Total Wins 52.44% 47.56% 97.25% 2.75% 97% 3%

Final Score +0.02ppg -0.02ppg +1.63ppg -1.63ppg +1.54ppg -1.54ppg

In Fevga, Fevga-4 outperforms both Fevga-2 and Fevga-3 agents, while Fevga-5

outperforms all others except in the Tavli3D benchmark, where it is inferior to Fevga-4

and Fevga-2 (Table 3.3). The explanation of this phenomenon is shown at Table 3.4:

Against an inferior opponent, Fevga-4 achieves more points, because it wins more doubles

due to its riskier strategy, while Fevga-5’s safer strategy of building primes wins the same

amount of games overall but fewer doubles. These new results show that the strategy

learned by Fevga-4 and Fevga-5 is no different than the one learned from their previous

 83

counterparts (Fevga-2 and Fevga-3); simply the proposed training method learns the

strategies better.

Figure 3.7: Example of a position where agents Plakoto1-3 fail to produce the best move. The
green player is to play roll 42. The best move here is 24/18, since the 24-point cannot be pinned

by any dice roll. However, Plakoto1-3 agents prefer the clearly inferior move 24/20, 24/22 which
gives the opponent a pinning opportunity to get back into the game.

3.2.2.3 Mother point feature selection in the Plakoto variant

An interesting observation was made while testing the strategies that were learned

in the Plakoto variant. The resulting strategy was very conservative with regard to its start-

ing point (also called the “mother” point). The agent correctly identified that it must not let

the starting point with one checker, as it would be potentially open to a pinning attack that

would automatically lose the maximum amount of points (double game). However, it could

not discriminate the positions that such an attack could not be carried out by the opponent

and protected its first point even after we added the expert feature of pinning probability in

Plakoto2 and Plakoto3. This resulted in obvious errors in a small number of positions. For

 84

example, the amount of equity lost for selecting the wrong move in Figure 3.7 was calcu-

lated to 0.276ppg by making a 100,000 games rollout on each of the moves in question

(Table 3.5).

We suspected that the agent learned the harmful concept of leaving the first point

open by the four raw features instead of the added expert feature "pinning probability at

point 1". In order to confirm this, we trained another agent (Plakoto-4) without the first of

the four features for point 1, leaving only three features, one, if 2 or more checkers are

present, another, if 3 or more checkers are present and a last one, if 4 or more checkers are

present. The resulting agent confirmed our suspicions, as it managed to learn the concept

of "leaving the first point unprotected is bad" in a correct way, without committing the

same mistakes of its predecessors. Evaluating Plakoto-4 final performance of 1.5 million

trained games against Plakoto-3 in a 10,000 tournament resulted in equal performance.

This may mean either that: a) positions of this kind do not appear frequently and when they

appear they do not seem to have a significant impact to the result or b) Plakoto-4 simply

needs more training for the difference to tell.

Table 3.5: Evaluation and rollout analysis of the two best moves of the position in Figure
3.7. The first four columns show the evaluation of the Plakoto-3 and Plakoto-4 NNs after
1-ply and 2-ply look-ahead. The fifth and sixth column show the equity of the position by

making a rollout analysis using Plakoto-3 and Plakoto-4. The last column shows the
equity that was lost by selecting the inferior move. The equity loss was calculated on the

average of the two rollouts.

Move
Plakoto-3

(1-ply) eval

Plakoto-3

(2-ply) eval

Plakoto-4

(1-ply) eval

Plakoto-4

(2-ply) eval

Rollout

Plakoto-3

Rollout

Plakoto-4

equity

loss

24/22 24/20 1.020 1.048 0.942 1.046 0.983 0.968 0.276

24/18 0.692 1.082 1.140 1.248 1.259 1.243 -

Why was this concept not learned correctly by the other agents, especially when

the other points where learned correctly? The concept of protecting the 1st point is one of

the first things the agents learn, because it is the closest to the terminal position, the only

position that receives reward, and because the random character of the first self-play train-

ing games result in many "mother doubles". When confronted with two features to learn

the concept, one being a binary input, and one a float input between 0 and 1, the neural

 85

network chooses the first one because it is the easier and the faster to learn. It would appear

that the agent would have a chance to “unlearn” this later, as learning progresses, when the

estimates of the NN are closer to the optimal. However, this is never done, as these kind of

positions rarely appear, because the agent has learned how (wrongly) to defend against.

3.3 Final Learning Setup

After determining the target of the update and some expert features we were able

to finalize the training procedure. We also reevaluated the play of the agents and decided

to add a few more expert features that will be shown in this section.

Another parameter that needed resolution was how many hidden layers should we

have used and what their size would be. Following the successful application of TD-

Gammon we used one hidden layer in all our backgammon NNs. The number of hidden

neurons is 160 for backgammon, 100 for Fevga and 100 for Plakoto. These numbers were

chosen based on preliminary experiments. A higher number of hidden neurons increases

performance cost for evaluating each state. This results in increased thinking time for each

move, especially when utilizing lookahead in greater depths . Thus, the number of hidden

neurons chosen is a compromise between performance and computational cost. 160 hidden

neurons were also used by the TD-Gammon program.

Using the above architecture, the procedure of obtaining an estimation of the game-

theoretic value of each state is straightforward: set the inputs of the NN according to the

board positioning, execute the forward-propagate procedure of the NN to update the out-

puts, and finally linearly combine the outputs according to the following formula: V= 2 *

W - 1 + WD – LD.

3.3.1 TRAINING THE NN USING TDL

Training a neural network requires training examples in a supervised learning set-

ting. We use TD(λ) algorithm (Sutton, 1988) and the NN’s backpropagation algorithm to

update the TD error. The exact training procedure is summarized in Algorithm 1. This

 86

training scheme, named reverse offline recalc, was selected among several similar self-

play methods (Section 3.3.2.1).

Algorithm1. Training a backgammon NN using TD(0)
// nn: the neural network that we want to train

// nn.inputs: a vector representing the input layer

// nn.outputs: a vector representing the output layer (W, WD, LD)

// nn.target: a vector representing the target of the update

// states: a vector holding the all the positions of a game

1. nn.initialize(input layer size, hidden layer size, output layer size = 3, learning rate α)

2. randomize(nn) // randomize all weights to [-0.5, 0.5]

3. while (stopping condition) do

 4. states = selfplaygame(nn)

 5. for (t=T to 1 step -1) do

 6. if(states(t) is terminal)

 7. nn.targets = reward(states(t))

 8. else

 9. nn.inputs = encoding(states(t+1))

 10. nn.forwardpropagate() // calculate outputs

 11. nn.targets = invert(nn.outputs)

 12. endif

 13. nn.inputs = encoding(states(t))

 14. nn.forwardpropagate() // calculate outputs

 15. nn.backpropagate() // apply backpropagation algorithm

 16. end for

 17. end while

Figure 3.8: Reverse offline recalc algorithm with TD(0)

In the adopted training procedure, the updates are applied (Lines 5-15), after a self-

play game (Line 4) is ended, starting from the last position of the game and ending at the

first (Line 5). At each time step, we recalculate the target for each update (Lines 9-11), in

order to get as much accuracy for the estimation of the example label as possible. The

function encoding (Lines 9, 13) encodes the raw and expert features in their predefined

positions at the input layer. Note that the value of the next state is inverted (Line 11). This

is necessary because the NN plays the game for both sides always as the first player. When

all the moves up to the first are updated, the algorithm starts a new self-game producing

the moves according to the updated NN. The procedure is repeated, until the selected stop-

ping criterion is satisfied. Possible stopping criteria are: (1) a predefined number of self-

 87

play games is reached or (2) no more performance improvement according to a predefined

benchmark is found after a prespecified number of self-play games.

Algorithm 1 uses TD(λ) with λ=0, that is the current state is updated only according

to the estimation of the next state (Lines 9-11). Thus, the target of the update is Vtarget(st) =

V(st+1). If we want the target of the update to be based on more than one future move

estimates, we can use the forward view of TD(λ) (Section 2.2.4.3.3), where (0<λ≤1), and

the target of the update becomes

𝑉𝑡𝑎𝑟𝑔𝑒𝑡(𝑠𝑡) = (1 − 𝜆) ∑ 𝜆𝑛−1𝑉(𝑠𝑡+𝑛)

∞

𝑛=1

+ 𝜆𝛵−𝑡−1𝑉(𝑠𝑇)

In case of λ>0, lines 8-10 of Algorithm 1 must be changed accordingly. Similarly

to V(st+1), all values 𝑉(𝑠𝑡+𝑛) for n being any odd number must be inverted.

The updates of the network weights are done incrementally and not in a batch set-

ting. This procedure is similar to stochastic or “online” training (Wilson & Martinez, 2003).

The main difference is that there are no fixed labels in the training examples; the labels are

given by TD(λ). We prefer incremental training, because it has been shown to perform at

least equally to the standard batch training using fewer computational resources (Wilson &

Martinez, 2003).

3.3.2 CHOOSING LEARNING RATE Α AND PARAMETER Λ

One of the advantages of incremental training is that one can use a larger learning

rate than in a batch setting. We also made some experiments with different values of λ with

mixed results. In the Plakoto variant, values of λ>0.6 resulted in divergence, whereas lower

values sometimes became unstable. So it was decided to keep λ=0 for this variant. For

Portes and Fevga variants it was possible to increase the λ value without problems and this

always resulted in faster learning, but unlike other reported results (Wiering, 2010) final

performance did not exceed experiments with λ=0.

 88

Table 3.6: Selected values of α and λ parameters.

Games Trained Portes Plakoto Fevga

0-10,000 λ=0.7 α=1 λ=0 α=0.3 λ=0.7 α=1

10,000-100,000 λ=0.7 α=0.3 λ=0 α=0.3 λ=0.7 α=0.3

100,000-250,000 λ=0.7 α=0.1 λ=0 α=0.1 λ=0.7 α=0.1

250,000-500,000 λ=0 α=0.3 λ=0 α=0.1 λ=0 α=0.3

500,000-1,500,000 λ=0 α=0.1 λ=0 α=0.1 λ=0 α=0.1

1,500,000-5,000,000 λ=0 α=0.1 λ=0 α=0.01 λ=0 α=0.01

5,000,000- λ=0 α=0.01 - -

Previous experiments were conducted with constant λ and α=0.1. Following the

above preliminary experiments we use a decreasing value for λ and α for the experiments

in this paper (with the exception of Plakoto where λ is kept constant to zero). Starting with

high values of λ=0.7 and α=1 we gradually decrease these values, when performance starts

to flatten. The exact values of these parameters are shown in Table 3.6. Using this setup

the performance of Plakoto and Fevga variants maxes out at 5 million games and Portes at

around 15 million games.

3.3.3 EXPERT FEATURES

The features included in the input layer of each NN are divided to “raw” and “ex-

pert” features. Raw features represent the placement of each checker on the board, while

expert features are important game concepts that would otherwise be very difficult for the

NN to infer from the raw encoding alone. The raw features of Plakoto and Fevga are pre-

sented in 3.2.1, while the raw features of our Portes NN are exactly the same as used in

(Tesauro, 1992). The remaining of this section presents the selected expert features for the

Portes game as well as the new expert features that we used in Plakoto and Fevga. The

remaining expert features of Plakoto and Fevga are described in 3.2.1.

3.3.3.1 Expert features for Portes/Backgammon

All the expert features of our Portes/Backgammon bot are shown in Table 3.7. The

features capture important game playing concepts according to the current literature from

expert backgammon players. For example EnterFromBar_1 and EnterFromBar_2 capture

the concept of home board strength. This feature, however, is useless, when the position

 89

has no contact (race feature). The NN takes care of combining the features in the correct

way taking the current position into account. Additionally, the hidden neurons can create

features not existent in the expert list, if necessary. For example, we found that the prime

formation (six consecutive made points) was handled correctly by the program, so we did

not include it in the list of expert features, even if it is an important concept. The features

PipDiff_1, PipDiff_2, PipBearoff_1, PipBearoff_2 were normalized to the [0, 1] interval

by a dividing with 60.

Table 3.7: Expert features for the Portes/backgammon variant.

Feature name Description

HitProb_1 Probability of one player checker being hit on the next roll

HitProb_2 Probability of two player checkers being hit on the next roll

Race Boolean feature showing the position is a no contact position

PipDiff_1 Pipcount difference when the player is behind (when ahead = 0)

PipDiff_2 Pipcount difference when the player is ahead (when behind = 0)

PipBearoff_1 Pipcount to bearoff for player on roll

PipBearoff_2 Pipcount to bearoff for opponent

EnterFromBar_1 Probability of player entering from bar

EnterFromBar_2 Probability of opponent entering from bar

OppContain_1
Probability of opponent’s last checker escaping from player’s

home board

OppContain_2
Probability of opponent’s second to last checker escaping from

player’s home board

UsContain_1
Probability of player’s last checker escaping from opponent’s

home board

UsContain_2
Probability of player’s second to last checker escaping from op-

ponent’s home board

3.3.3.2 New expert features for Plakoto

After manual examination and with the help of comments from users that down-

loaded Palamedes, we identified two key problems of our Plakoto bots. The first one pre-

sented itself in positions, when the bot has pinned the opponent inside the bot’s home

board. In such positions it is advisable for the bot to “stack” its checkers in the pinned

 90

point, whenever possible, so as to prolong the duration of the pin even in the bearoff situ-

ation. Such a strategy most often leads to a double game. However, our bots were position-

ing their checkers, as if it was a normal bearoff, greatly reducing their chances of a double

game. This problem was addressed by adding the ChFrontOfPin_1 and the ChFron-

tOfPin_2 features. These two features were scaled to [0, 1] interval by dividing each by 14.

We also added the Esc_Prob1 and EscProb2 features hoping that the bot can advance its

made points more fluidly, not leaving behind made points that cannot escape easily. Finally

we added five features from Portes that are relevant to Plakoto as well. The complete set

of features is shown in Table 3.8.

Table 3.8: Expert features for the Plakoto variant.

Feature name Description

Race Boolean feature showing if the position is a no contact position

PipDiff_1 Pipcount difference when the player is behind (when ahead = 0)

PipDiff_2 Pipcount difference when the player is ahead (when behind = 0)

PipBearoff_1 Pipcount to bearoff for player on roll

PipBearoff_2 Pipcount to bearoff for opponent

ChFrontOfPin_1
Number of player checkers in front of last pin when the player

has the opponent pinned in the player’s homeboard

ChFrontOfPin_2
Number of opponent checkers in front of last pin when the op-

ponent has the player pinned in the opponent’s homeboard

Esc_Prob1 Escape probability of player’s last made point

Esc_Prob2 Escape probability of opponent’s last made point

3.3.3.3 New expert features for Fevga

The most important concept in the Fevga variant is the existence of a prime for-

mation. In previous work we addressed this by adding one binary feature for every type of

prime, when it was encountered in the game. While this resulted in the desired effect of the

NN learning the concept of making primes when necessary, it did not always understand

when it was important to prevent the opponent from making primes of its own. The bot

could not understand by this feature alone when the opponent was close to making a prime

so as to take immediate measures to disrupt his plan. The inclusion of 2-ply look-ahead

 91

improved the situation, as now the bot had access to the next moves of the opponent, but it

would be desirable to have this knowledge without reverting to the computational expen-

sive procedure of looking ahead at greater depths.

 To address this problem we changed the binary features of making primes in the

following way: When a prime is made, the feature is set to one as before. When there is no

prime present, instead of setting the feature to zero, we replaced it with a heuristic that

computes the probability of making the prime. This was done both for the primes of the

bot as well as for the primes of the opponent. Computing accurately this heuristic is very

complex and takes much time especially for middle game positions. In order to keep the

computational requirements low, we compute the heuristic only for the most common sce-

nario: when there is only one checker left to make the prime. Positions where the prime

needs two or more checkers to be achieved are less frequent and usually have smaller prob-

ability of success. Thus, the resulting heuristic is a compromise between accuracy and ex-

ecuting time.

These updated features resemble the way we added the pinning probabilities in the

Plakoto variant as shown in 3.2.1.2. It has the advantage of putting knowledge in the NN

while at the same time keeping low the size of the inputs. We also added the features

PipDiff_1, PipDiff_2, PipBearoff_1, PipBearoff_2 of Portes and Plakoto, because they are

relevant to Fevga as well.

We also experimented by combining the above new features with the intermediate

reward procedure during the training of Fevga3 and Fevga5 bots (3.2.1.1). Such a proce-

dure results in a strategy that tries to build primes and maintain them at all cost. While the

resulting performance was higher than previous bots, it was lower than Fevga6, i.e. without

the intermediate reward. One possible explanation is that without the intermediate reward

the bot can identify situations where a prime is not the best course of action. It seems that

finding exceptions to the rule of building primes even with an incomplete heuristic is more

fruitful than a “dogmatic” behavior regarding primes.

 92

3.3.4 EXPERIMENTAL RESULTS

Being consistent with our previous naming scheme, we name the new bots Plakoto-

5 and Fevga-6. We compare them by taking the best set of trained weights and make them

playing a tournament against a benchmark opponent without look-ahead (1-ply). For Pla-

koto and Fevga this benchmark is our best previous bot, namely Plakoto-4 and Fevga-4

respectively. For the Portes/Backgammon we chose the pubeval benchmark, because we

can indirectly compare the performance with others backgammon bots that published re-

sults against it. We also report on the performance when applying a simple look-ahead

procedure using the expectimax algorithm (Michie, 1966) at 2-ply depth. The bot is

awarded a +1 point for a single win, +2 points for a double win, -1 for a single loss, -2 for

a double loss. The result of the tested games sum up to the form of estimated points per

game (ppg) and is calculated as the mean of the points won and lost. The number of games

played are 100,000 for 1-ply and 10,000 for 2-ply. In order to speed up the testing time of

2-ply, the expansion of depth-2 was performed only for the best 15 candidate moves (for-

ward pruning). Table 3.9 presents the results.

The performance of the Portes/Backgammon bot is comparable to most top playing

bots. TD-Gammon 2.1 reported a 0.596 performance against pubeval (Tesauro, 2011),

while another backgammon program, GNUBG (Gnubg.org, 2015), frequent participant to

backgammon Computer Olympiads, recently reported similar performance (0.6046 ppg) in

its mailing list, while using a more complex training scheme and three different NNs for

three different stages of the game (Gnubg mailing list, 2012).

Table 3.9: Performance of the new bots against benchmark opponents

Bot Opponent ppg

Portes-1(1-ply) Pubeval (1-ply) 0.603

Plakoto-5(1-ply) Plakoto-4(1-ply) 0.356

Plakoto-5(2-ply) Plakoto-4(1-ply) 0.422

Fevga-6(1-ply) Fevga-4(1-ply) 0.215

Fevga-6(2-ply) Fevga-4(1-ply) 0.323

 93

Since the training procedure and the NN architecture is the same for the old and

new bots for the Fevga and Plakoto variants, it is safe to assume that the gain was due to

the addition/alteration of the expert features. We believe that the common features of Portes

that were added to Plakoto and Fevga played a minor role to the improved performance.

More important for Fevga was the alteration of the prime features and for Plakoto the ad-

dition ChFrontOfPin_1 andChFrontOfPin_2.

 94

Chapter 4

 95

 96

CHAPTER 4: OPENING STATISTICS AND MATCH PLAY

4.1 Introduction

In this chapter we use our expert playing agents of Palamedes to make the first ever

computer assisted analysis of the opening rolls for the backgammon variants Portes, Pla-

koto and Fevga (collectively called Tavli in Greece). We then use these results to build

effective match strategies for each game variant.

Our methodology is similar to the one used in (Keith, 2006): After the opening roll

and for each roll, the most promising continuations are analyzed by means of rollout anal-

ysis, a Monte Carlo method that is commonly used in backgammon. The rollouts start from

the resulting position after each candidate move and a fixed number of games is played,

until a terminal position is reached. Counting the results of these games we can finally get

the probabilities of single wins (WS), double wins (WD), single losses (LS) and double

losses (LD). Based on these probabilities, we can then compute the estimated equity of

each position using the following equation:

E = WS – LS + 2 * (WD – LD)

This kind of evaluation is considered to offer accurate results in standard backgam-

mon, despite the fact that the move selection algorithm of the rollout phase is not so strong

in terms of performance (Tesauro, 2002). Rollouts can also be truncated, which means that

they could stop after a fixed amount of plies (instead of going till the end of the game) and

average together the estimates of the resulting positions, with a negligible change in their

estimates. In the presence of an endgame database that can offer the exact equity of end-

game positions (e.g. a 2-sided endgame database), a rollout can go as far as the first position

encountered in the endgame database and return the database value.

4.2 Experimental setup and results

We used our latest and best Neural Networks (NN) game evaluation functions for

selecting each move on the rollouts. For Portes we used Portes_ACG13 NN, for Plakoto

we used Plakoto5 and for Fevga we used Fevga6 (Section 3.3.4). The rollouts were per-

formed using 1-ply playing mode, which means that Palamedes looked ahead only at the

 97

current roll for each play during the rollouts, selecting the best play of each trial. After the

opening roll, we rolled out the five most promising candidate moves (selected using 2-ply

evaluation), using 100,000 games per position. The standard error of the estimated equity

E when performing this number of trials is less than 0.02. Rollouts were performed using

cubeless untruncated money play. Cubeless means that games are played without a dou-

bling cube. Untruncated means that rollouts were played out until the end of the game.

Money play means that each game is played individually and not as a part of a match.

Table 4.1: Best move of all opening rolls per variant examined

 PORTES PLAKOTO FEVGA

ROLL BEST MOVE EQ BEST MOVE EQ

BEST

MOVE EQ

SINGLE ROLLS

21 24/23 13/11 0.006 24/22 24/23 0.042 24/21 -0.030

31 8/5 6/5 0.155 24/21 24/23 0.037 24/20 0.012

41 24/23 13/9 0.002 24/20 24/23 0.070 24/19 0.086

51 24/23 13/8 0.011 24/19 24/23 0.043 24/18 0.090

61 13/7 8/7 0.108 24/18 24/23 0.097 24/17 0.194

32 24/21 13/11 0.017 24/21 24/22 0.050 24/19 0.086

42 8/4 6/4 0.110 24/20 24/22 0.065 24/18 0.090

52 24/22 13/8 0.015 24/19 24/22 0.066 24/17 0.194

62 24/18 13/11 0.017 24/18 24/22 0.106 24/16 0.259

43 24/20 13/10 0.015 24/20 24/21 0.056 24/17 0.194

53 8/3 6/3 0.059 24/19 24/21 0.039 24/16 0.259

63 24/18 13/10 0.018 24/18 24/21 0.096 24/15 0.336

54 24/20 13/8 0.029 24/19 24/20 0.073 24/15 0.336

64 8/2 6/2 0.016 24/18 24/20 0.121 24/14 0.385

65 24/18 18/13 0.072 24/18 24/19 0.117 24/13 0.440

DOUBLE ROLLS

11 8/7 (2) 6/5(2) 0.213 24/23 (4) 0.129 24/20 0.012

22 13/11(2) 6/4(2) 0.240 24/20 24/22 (2) 0.137 24/16 0.259

33 8/5 (2) 6/3 (2) 0.259 24/18 24/21 (2) 0.187 24/15 0.336

44 24/20(2) 13/9(2) 0.348 24/16 (2) 0.247 24/16 0.259

55 13/8 (2) 8/3 (2) 0.160 24/14 24/19 (2) 0.361 24/9 24/19 0.831

66 24/18(2) 13/7(2) 0.398 24/12 (2) 0.521 24/18 0.090

Opening rolls were split in two groups, single and double, in order to shed more

light into the effect of rolling a double at the start of the game. This is most useful in stand-

ard backgammon, which does not allow a double opening roll like the Portes variant does.

 98

The move selected for each roll was picked as the best after rolling out the most promising

candidate moves available. These figures were constructed by singling out the move with

best equity after each roll. The actual moves selected can be seen in Table 4.1.

Figures 4.1 – 4.3 summarize the results for each roll and game variant and compares the

games. All numbers shown are with regard to the first player making the move. Averages

of all single rolls are marked with the word ‘SINGLE’. Averages of all double rolls are

marked with the word ‘DOUBLE’. Finally the word ‘ALL’ is the weighted (according to

the probability of each roll) average of all 21 rolls.

 Figure 4.1: Comparison of estimated equity of all opening rolls

In Figure 4.1 the estimated equity of all opening moves for all games is presented.

The starting roll with the greatest equity is by far the 55 in Fevga, while the least useful

roll is the 21 in Fevga.

Figure 4.2 summarizes the outcome of all rolls to produce the expected result of the

first player. From this figure we can derive the percentage of games that result in doubles,

also called “gammon rate”, by adding WD and LD (Table 4.2).

-0,1

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Portes Plakoto Fevga

 99

 Figure 4.2: Expected outcome (%) of the first player

Table 4.2: Gammon rates of Tavli variants

Variant Gammon Rate

Portes 26.85%

Plakoto 40.48%

Fevga 14.27%

Perhaps the most interesting result of this study is the total estimated equity of the

first player shown in Figure 4.3. Ideally, a perfectly designed backgammon game would

give zero equity to the first player. This would mean that the opening roll does not favor

one player over the other. Our study shows that the “best” variant in that regard is Portes,

closely followed by Plakoto. On the other hand, Fevga gives a significant advantage to the

first player.

37,45%

41,84%

38,18%

30,31%

27,85%

29,90%

47,30%

47,39%

47,31%

14,03%

17,57%

14,62%

21,55%

28,91%

22,77%

9,69%

12,89%

10,22%

35,70%

30,68%

34,87%

30,09%

27,30%

29,62%

38,89%

36,06%

38,42%

12,82%

9,73%

12,31%

18,06%

15,95%

17,71%

4,12%

3,66%

4,05%

0% 100%

Portes Single Rolls

Portes Double Rolls

Portes All Rolls

Plakoto Single Rolls

Plakoto Double Rolls

Plakoto All Rolls

Fevga Single Rolls

Fevga Double Rolls

Fevga All Rolls

Single Wins (WS) Double Wins (WD) Single Losses (LS) Double Losses (LD)

 100

Figure 4.3: Total estimated equity of the first player

4.3 Discussion

This section discusses and compares the results of the three games to each other, as

well as to previous similar studies. We also attempt to explain some of the results found

from a strategic point of view.

4.3.1 PORTES

The results for the single rolls of the Portes variant are very similar to a previous

study on standard backgammon openings (Keith, 2006). In that study, the rollouts were

performed by GnuBG (Gnubg.org, 2015), a very strong open source backgammon program

at a 2-ply depth. The estimated equity of all single rolls in (Keith, 2006) is 0.039, ours is

0.042. Almost all best opening moves coincide with our best selected moves. The gammon

rate is estimated in (Keith, 2006) at 27.6%. If we count the backgammons, which according

to Portes rules are counted as gammons, this rate is increased to 28.8%. Our results estimate

this at a more modest 26.9%, almost a 2% difference. We give two possible explanations

for this behavior: a) 1-ply rollouts are not accurate enough and b) the playing style of Pal-

amedes is more conservative compared to that of GnuBG, resulting in somewhat fewer

gammons.

Since the analysis of the single opening rolls is nothing new, we concentrate the

discussion on the effect of the double rolls. The inclusion of doubles in the opening roll

0,042

0,267

0,079

0,072

0,265

0,104

0,195

0,298

0,213

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35

SINGLE ROLLS

DOUBLE
ROLLS

ALL ROLLS

Portes

Plakoto

Fevga

 101

gives more advantage to the first player. The average equity of all double rolls is 0.267

(Figure 4.3), six times larger than the equity of the single rolls. This was expected, since:

a) doubles usually result in more distance travelled than the average single roll and b) even

small doubles like 11 give the opportunity to construct strategically made points without

risking getting hit by the opponent. The best double roll is 66 with 0.41 equity; even the

worst double roll (11, E=0.22) is better than the best single roll (31, E=0.16). The effect of

doubles can be seen in the weighted average of all rolls (Figure 4.3, E=0.079), which is

almost twice that of the single rolls.

4.3.2 PLAKOTO

Plakoto results, compared to the other games, demonstrate an increased gammon

rate. 41% of Plakoto games are won as doubles, 14% more than the rate we calculated in

Portes. This rate can be explained by the strategic strength of pinning an opponent checker

inside his home board. It is well known that this kind of pin can result in double games,

because, if the pinning player manages not to get pinned himself, he can place his checkers

in such a way that during bear off most of his pieces will be borne off, before the pinning

checker is unpinned. This places the pinned player at a great disadvantage, because usually

he does not have enough time to return the last checker to his home board and avoid the

double loss. Of course, one can play a very conservative game and avoid leaving lone

checkers in his home board at all costs. However, this can lead to other problems: building

large stacks of checkers, that are extremely inflexible and also minimize the chances of

hitting lone checkers of the opponent. For this reason, Palamedes and most expert players

prefer a “restrained aggressive approach” during the opening, leaving some lone checkers

open, when there is a small chance that the opponent can pin them. This strategy, never-

theless, inevitably falls victim to a lucky pinning roll by the opponent, which may be

enough to result in a double loss. This reasoning strongly suggests that the starting position

of Plakoto greatly influences the gammon rate and the equity of the first player.

In order to test the hypothesis above, we made another experiment changing the

starting position: Instead of having all 15 checkers at the starting point, the checkers are

 102

distributed evenly in the first three points. This variant is known in some regions as the

Tapa variant (Section 2.1.3.1) and we will use this naming also in this paper. The starting

position of Tapa makes the pinning of checkers inside the home board during the opening

more difficult, because the players can construct made points more easily during the start

of the game. We used the same methodology and the same Neural Network (Plakoto-5) for

the rollouts. Even if this NN was not trained for this specific variant, we believe that it is

sufficient to produce strong play, because the type of positions resulting from a Tapa game

are well within the range of positions the NN has seen during self-play training1.

Table 4.3: Comparison of Tapa and Plakoto estimated results for the first player

Vari-

ant

WS

(%)

WD

(%)

LS

(%)

LD

(%)
EQUITY

GAMMON

RATE (%)

Plakoto 29.89 22.77 29.62 17.71 0.104 40.48

Tapa 37.40 13.12 37.91 11.55 0.026 24.67

The results of the Tapa experiment (Table 4.3) confirm our hypothesis. The gam-

mon rate is reduced from 40.48 to 24.67%. Also the equity of the first player is reduced to

0.026, which is even lower than the equity of the single rolls in the Portes variant (Figure

4.3).

Another notable point that can be seen in Table 4.3 is that the first player wins about

the same amount of single games as the second player (29.9% vs 29.6%). Consequently all

the advantage that the first player has can be attributed to the difference in double games

won, which is 22.77% compared to 17.71% of the second player.

4.3.3 FEVGA

The first interesting result in the Fevga experiments is that the expected equity of

the first player (0.213) is the highest amongst all games examined, more than twice that of

1 The opposite situation could be problematic: a Tapa trained NN may not evaluate correctly Plakoto’s

opening positions with early home board pins in points 2 and 3, because this kind of experience would

have been extremely rare in its self-play training.

 103

the Plakoto (0.104). Winning 57.5% of the games gives the player who plays first a dis-

tinctive advantage. Fevga also has the roll with the most gained equity in all games, the 55

roll at 0.84 equity. We also observe that all high sum rolls (e.g. 63, 64, 65) give very high

equity for the first player, with 65 (E=0.44), even surpassing the best Portes roll (66,

E=0.41). However, unlike the two other variants, doubles do not increase the equity of the

single rolls that much (from 0.19 to 0.21). This can be attributed to the fact that apart form

55, the other two large doubles (44 and 66), that typically have increased equity, have a

reduced effect because of Fevga’s starting rule (Section 2.1.4). Overall, we note that the

further the starting checker is able to move during the first roll, the better the chances are

for the first player. This observation fully justifies the name of the game (‘Fevga’ means

‘run’ in Greek).

Another surprising observation is that the gammon rate (14.27%) is very low com-

pared to the other variants. The greatest factor that affects this statistic is the very small

chance of the second player winning a double game. With 4.05% the second player wins

less than half doubles that the first player does (10.22%).

4.4 Match Play

In this section we show how we can use the statistics from the previous sections to

construct effective match strategies for Tavli variants. When playing a match, the goal of

the players is to win the match and not to maximize their expected reward at the individual

games. For this reason all strong backgammon programs select the best move by approxi-

mating the Match Winning Chance (MWC) at each move selection. We present a simple

method, similar to the one used in backgammon, for approximating MWC, using the esti-

mates of the NN evaluations and the gammon rate computed in Table 4.2. For simplicity,

we examine only matches of the same game type where the player that starts each game is

determined randomly.

First, we build a table estimating MWC before the start of the game for all possible

score differences during the course of the match. In the most simple case, that is, when the

 104

score is tied, the players have the same chance of winning the match. The table is calculated

using the following recursive definition:

mwc(Α,Β) = S * mwc(A-1, B) + D * mwc(A-2, B) + S * mwc(A, B-1) + D * mwc(A, B-2)

where A is the remaining points left for player A to win the match, B is the remain-

ing points left for player B to win the match, mwc(A,B) is the table entry specifying the

probability of winning the match for the A player when the current score is A points away

– B points away, S is the probability each player has of winning a single game (= (1 -

gammon rate) / 2), D is the probability each player has of winning a double game (=gam-

mon rate / 2). Tables 4.4, 4.5, 4.6 show the tables computed with this method for the games

Portes, Plakoto, Fevga respectively and match away scores up to 9.

Table 4.4: MWC (%) for player A on Portes variant

A

away

MATCH WINNING CHANCE (MWC)

 B

away
1 2 3 4 5 6 7 8 9

1 50.00 68.28 81.68 89.04 93.53 96.16 97.73 98.65 99.20

2 31.73 50.00 65.85 76.78 84.56 89.83 93.37 95.72 97.25

3 18.32 34.15 50.00 62.91 73.20 80.98 86.72 90.84 93.75

4 10.96 23.22 37.09 50.00 61.39 70.85 78.41 84.26 88.69

5 6.47 15.44 26.80 38.61 50.00 60.25 69.07 76.36 82.23

6 3.84 10.17 19.02 29.15 39.75 50.00 59.41 67.68 74.71

7 2.27 6.63 13.28 21.59 30.93 40.59 50.00 58.74 66.56

8 1.35 4.28 9.16 15.74 23.64 32.32 41.26 50.00 58.20

9 0.80 2.75 6.25 11.31 17.77 25.29 33.44 41.80 50.00

 105

Table 4.5: MWC (%) for player A on Plakoto variant

A

away

MATCH WINNING CHANCE (MWC)

 B

away
1 2 3 4 5 6 7 8 9

1 50.00 64.88 79.43 86.77 91.90 94.91 96.85 98.03 98.78

2 35.12 50.00 65.87 75.78 83.47 88.67 92.34 94.84 96.55

3 20.57 34.13 50.00 61.90 71.98 79.55 85.33 89.56 92.65

4 13.23 24.22 38.10 50.00 60.91 69.87 77.20 82.97 87.43

5 8.10 16.53 28.02 39.09 50.00 59.69 68.13 75.17 80.93

6 5.09 11.33 20.45 30.13 40.31 50.00 58.94 66.82 73.60

7 3.15 7.66 14.67 22.80 31.87 41.06 50.00 58.29 65.75

8 1.97 5.16 10.44 17.03 24.83 33.18 41.71 50.00 57.79

9 1.22 3.45 7.35 12.57 19.07 26.40 34.25 42.21 50.00

Table 4.6: MWC (%) for player A on Fevga variant

A

away

MATCH WINNING CHANCE (MWC)

 B

away
1 2 3 4 5 6 7 8 9

1 50.00 71.43 84.18 91.18 95.09 97.27 98.48 99.15 99.53

2 28.57 50.00 66.69 78.37 86.25 91.39 94.68 96.74 98.02

3 15.82 33.31 50.00 63.91 74.72 82.70 88.39 92.33 95.00

4 8.82 21.63 36.09 50.00 62.19 72.20 80.03 85.93 90.26

5 4.91 13.75 25.28 37.81 50.00 60.98 70.32 77.92 83.88

6 2.73 8.61 17.30 27.80 39.02 50.00 60.07 68.85 76.19

7 1.52 5.32 11.61 19.97 29.68 39.93 50.00 59.35 67.65

8 0.85 3.26 7.67 14.07 22.08 31.15 40.65 50.00 58.77

9 0.47 1.98 5.00 9.74 16.12 23.81 32.35 41.23 50.00

Finally, for move selection, a similar equation is used for determining the MWC of

each move:

MWC = WS * mwc(A-1, B) + WD * mwc(A-2, B) + LS * mwc(A, B-1) + LD * mwc(A, B-2),

where WS, WD, LS and LD are the output estimations of our neural network evaluation

function.

 106

4.4.1 EXPERIMENTS IN MATCH PLAY

In order to test the above method, we made an experiment playing 10,000 5-point

matches in the three variants examined, where one player uses the “match” strategy and

the other player uses the “money play” strategy that tries to maximize the value of each

individual game. The match started half the time by the “match” player and the other half

by the “money” player. The results along with some useful statistics that we stored during

the course of the matches are shown in Table 4.7. All results are from the point of the match

player.

Table 4.7: Performance of match strategy vs money play strategy in 10000 5-point mat-
ches

Variant
Match

Wins

Diff.

moves

Games

WS

Games

WD

Games

LS

Games

LD

Total

game

points

Portes 5144±98 7.1% 22937 7094 19558 9066 -565

Plakoto 5103±98 4.6% 15994 10627 15238 11007 -4

Fevga 5067±98 5.3% 28395 4453 27358 5401 -635

The performance of the match strategy is better than the money-play strategy in all

games, in terms of matches won by the match player, although the total points won by the

match player are less than the points won by the money player. In other words, the match

player is able to win the points, when they are more important, in order to win the current

match. This observation is clearer in Portes and Plakoto and less significant in Fevga, due

to the low gammon rate of Fevga that does not give many opportunities for the players to

take justified risks for a gammon. We also kept counters whether the money player would

play the same move with the match strategy in a non trivial decision (number of possible

moves > 1) when it was the turn of the match player (column Diff. moves). As it can be

seen in this column, the two strategies differ very slightly and this can be an explanation

why the match strategy is only better by a small margin.

 107

Finally, we also measured the result of each game (columns: WS, WD, LS, LD)

and the total game points from the point of the match player. Interestingly, the match player

wins more single games and less double games in all three variants. This can be explained

with the following reasoning: when the match player is ahead on the score, it will play

more conservatively trying to keep its lead and not take unnecessary chances to win a gam-

mon that could give also winning chances to the opponent. On the other hand, when he is

behind, he will go more aggressively for a gammon in order to try to close the gap, before

it is too late. This risky strategy will be sometimes successful, but most of the times it will

result in gammons for the opponent.

4.5 Conclusions and future work

In this chapter we used Palamedes bot to conduct rollout experiments on the open-

ing moves of the first player for three popular backgammon games: Portes, Plakoto and

Fevga. Our findings for Portes without the double rolls are very close to those found in the

literature. To the best of our knowledge, this is the first time that an analysis of the opening

moves was conducted for the other two variants, Plakoto and Fevga.

Our results show that the advantage of the first player is significant in the Fevga

variant, small in Plakoto and very small in Portes. The superiority of the Portes variant in

this statistic was expected, because Portes (and backgammon) has the advantage of a spe-

cially crafted starting position, which is not present in the other variants. Another interest-

ing result is that the gammon rates of the three games fall in completely different ranges.

The smallest gammon rate is for the Fevga variant (14.27%), followed by Portes/Backgam-

mon (26.9%), whereas Plakoto has the largest rate (at 41%).

We also showed the effect of the starting position on the statistics examined in the

Plakoto variant. Changing the starting position (Tapa variant) only slightly, we managed

to lower the gammon rate and the advantage of the first player significantly, making Tapa

the most “fair” backgammon variant examined so far. It would be interesting to try the

opposite procedure in the backgammon/Portes variant: what would be the gammon rate

and equity of a variant with the same rules as backgammon but a starting position, where

 108

all starting checkers are placed in the player’s first point? If the results of our Plakoto/Tapa

experiments are any indication, we suspect that we would see an increase in both of these

measurements. We could have tried out an experiment using the Portes NN in this variant.

However, unlike the Plakoto/Tapa case, here the change of the starting position is signifi-

cant, so we feel that the Portes NN will not generalize well. A new NN-based evaluation

function should be self-trained, but as this is not trivial, we leave it for future work.

Finally, as a practical application, we used the computed gammon rates to construct

a match strategy that outperformed our previous money play strategy when playing 5-point

matches in Portes and Plakoto. In the future we plan to extend this method in matches,

where the starting player of the game is the one that wins the previous game, and in matches

that consist of different game types like a Tavli match.

 109

Chapter 5

 110

 111

CHAPTER 5: CONSTRUCTING PIN ENDGAME DATABASES FOR

PLAKOTO

Computer game programs have been using endgame databases to great effect, es-

pecially in board games. Examples of complex games benefiting from such databases are

chess (Nalimov, Haworth & Heinz, 2000), Chinese chess (Fang, Hhu & Hhu, 2002), check-

ers (Schaeffer et al., 2003), awari (Romein,& Bal, 2003), Kriegspiel (Ciancarini & Favini,

2010) and nine-men morris (Gasser, 1996), to name a few. Moreover, endgame databases

are catalytic in every attempt to solve a game, as it can be seen in solved games like check-

ers (Schaeffer et al., 2007), nine-men morris (Gasser, 1996) and more recently heads-up

limit texas holdem poker (Bowling et al., 2015).

An endgame database usually contains precomputed game-theoretical values (or

near perfect heuristics) for each position record. The game playing program can use this

database by searching the records, when an endgame position contained in the database is

reached by the AI search. The benefits for the program are multiple: firstly, the value re-

trieved from the database is more accurate than the program’s evaluation function; sec-

ondly, the retrieval of the database value is typically faster than the evaluation function

execution speed; thirdly, there is no need to search any further down the tree.

The endgame databases can also provide a powerful analytical tool for game pro-

fessionals and for understanding the game in general. A prominent example is chess, where

positions which humans had analyzed as draws were proven winnable and vice-versa. Also

the database constructed when heads-up limit texas holdem poker was solved (Bowling et

al., 2015) offered insights that contradicted some human beliefs about the best play in this

game.

Backgammon programs also make use of endgame databases. These usually cover

the positions where both players have their checkers in the bearoff quadrant (also known

as bearoff databases). In the two-sided version, these databases offer the game-theoretic

value of the position, whereas in the one-sided version, the goal is to minimize the average

number of rolls to bearoff, so the values stored represent a distribution of the expected

 112

number of rolls to bearoff. The one-sided version is much smaller than the two-sided one,

but it is not as accurate with respect to finding the best move.

The aforementioned bearoff endgame databases can be used in many of the variants

in which we are interested in (Portes, Plakoto, Fevga, Narde), since the bearoff positions

of backgammon can occur in all of these games as well. For this purpose, Palamedes al-

ready contains a two-sided bearoff database that was constructed using similar techniques

used by other programs. This database gives the game theoretical value of all bearoff po-

sitions when the doubling cube is not used and is 5.48GB in size.

This chapter describes our efforts of our first attempt to construct endgame data-

bases for positions only seen in the Plakoto variant. To the best of our knowledge, this is

the first time this kind of endgame database is constructed. We believe this is the first step

towards constructing bigger and better endgame databases for the game of Plakoto in the

future.

5.1 Endgames with pins

Strategically thinking, pinning is the most important characteristic of the Plakoto

variant for the following reasons:

 A “made point” can be constructed with only one checker instead of the usual two,

which makes primes and other formations easier.

 Players can nullify bad luck, when they roll small rolls and/or the opponent rolls big

rolls. This is true because running to the bearoff phase is unimportant, when one or

more checkers are trapped.

 The side that has pinned without getting pinned usually gets a few rolls ahead in the

bearoff race. The further ahead the pin is, the bigger the advantage.

 113

Figure 5.1: Various Plakoto positions a) Upper left: Starting position. Red player starts at point 1
and bears off at point 24, while green player starts at point 24 and bears off at point 1, b) Upper
right: Typical middle-game position c) Lower Left: Endgame position where both players have
pins in their bearoff quadrant d) Lower right: Both players have pins in their bearoff quadrants

and some checkers in the previous quadrant.

A typical occurrence in a Plakoto game is for both players to have pinned each

other. Then the best strategy usually is to try to maintain the pin(s) for as long as possible

trying to make the opponent unpin his own pins. This is especially true in race situations

(like Figure 5.1.c, Figure.5.1.d.), where no more pins are possible. For this initial explora-

tion on Plakoto pin databases, we are interested in positions with the following character-

istics:

 114

 The side to move has pinned the opponent exactly once inside her bearoff quadrant

(points 2-6)1.

 The opponent has pinned the moving player exactly once.

 No further pins are possible. In this paper, these no-contact positions are also called

race positions.

These endgames eventually resolve by one player unpinning his pin, followed by

the other player moving his newly freed checker to begin the bearoff. One reason that we

are interested in these endgames is that they take place frequently in practice. In an initial

100,000-game self-play experiment with Palamedes best neural network Plakoto-5 (Sec-

tion 3.3.4) at the highest settings, we found out that these endgames occur in 14% of games

played.

5.2 Number of endgame positions

The number of positions (R) of C checkers residing inside P points can be calcu-

lated by the following formula (Ross, Benjamin & Munson, 2007):

𝑅 = (
𝐶 + 𝑃 − 1

𝐶
) =

(𝑃 + 𝐶 − 1)!

𝐶! (𝑃 − 1)!

The number of checkers for the positions of interest is 13 (one checker is pinned by

the opponent and one checker must always be at the pinning point to maintain the pin).

Depending on the memory needs of the game playing program a different number of points

(P) can be used. For example, for P = 6 (all the non-pinned checkers are under the 6-point,

i.e. inside the bearoff quadrant) the total number of positions is 8568 per pin placement.

Such a position is shown in Figure 5.1.c. For the remainder of this paper all discussion

takes place under the assumption that all unpinned checkers of the player to move is under

the 12 point (P = 12, R = 2496144). A sample position can be seen in Figure 5.1.d. Note

1 No-contact positions where a player has pinned the 1-point (also known as “mother” point) are proven

double wins for the pinning player except for the rare cases, when the opponent has also pinned the 1-point

(tie).

 115

that in both Figure 5.1.c and Figure 5.1.d the position is valid for database retrieval for

either player to move.

We have constructed a different database for each possible pin point of the moving

player (2-6), so we have 5 databases and 12,480,720 positions in total for the 12-point

version. This database is one-sided and corresponds to half the board. If we assume that

the opponent has a similar position to the other half, the total possible 2-sided “true” posi-

tions that these databases can apply is 12,480,7202 = 155,768,371,718,400. If we further

assume that the opponent is pinning at the full half of his board (points 13-23), then the

total applicable positions are 12,480,720 x 2,496,144 x 11 = 342,690,417,780,480. This

number is the lower bound, because the endgame characteristics set in the previous section

can be met in positions where the opponent player has checkers below the 12 point.

5.3 Algorithm

The goal of the players in the endgame positions already discussed is to maintain

his pin as long as possible. Essentially, the player is playing a mini-game where he tries to

maximize the number of moves keeping the pin. Since the game has a chance layer, this

goal becomes the maximization of the average distance to unpin. Due to the fact that there

is no contact, this metric can be computed using a one-sided database.

5.3.1 PLAKOTO ENDGAME PIN DATABASE ALGORITHM

The procedure we use is inspired by retrograde analysis (Thompson, 1986), where

the algorithm starts from a terminal position and works backwards. In our case we do not

have terminal positions, but we start at a position where all checkers have been moved the

furthest. This is the position where all 13 checkers are placed at the last point (point 1).

The procedure then works backwards as usual.

The database creation algorithm is shown in Figure 5.2. For every position encoun-

tered and all 21 rolls, we find all the legal afterstates, retrieve the distances and return the

max distance. The distance of the current position is then calculated as the weighted aver-

age of all rolls and stored in the database. The algorithm increments the position and begins

 116

the next iteration, until all positions are exhausted. The position is incremented in such a

way that the resulting afterstates will always have a distance in the database. The only

exception is when the roll has no moves, but we can find the distance of this case with a

simple recursive operation.

During actual play the database is activated, when the position before the roll has

the characteristics described in section 2.2. We retrieve the distances of all the afterstates

and we select the move which results in the largest distance.

Algorithm1. Plakoto endgame pin database creation

pinDatabase(p, pinPlacement)

position ← createStartPosition(pinPlacement)

endPos ← createEndPosition(pinPlacement, p)

while position is not endPos do

 saveInDB(hash(position), findDistance(position))

 increment(position)

end while

function findDistance(position)

 avgDistance ← 0

 for every roll d of the 21 possible rolls do

 afterStates ← findMoves(position, d)

 distances ← readDistancesFromDB(afterStates)

 distance ← max(distances)

 if d is double roll

 avgDistance += distance

 else

 avgDistance += 2 * distance

 end if

 end for
 return avgDistance / 36

Figure 5.2: Plakoto endgame pin database algorithm

5.3.2 STORAGE AND HASHING

Important properties for many endgame databases are the storage and the compres-

sion mechanisms used. We use a modified version of the hashing function used in (Benja-

min, Ross & Andrew, 1996) to encode the board position to a 32-bit integer. This function

is fast, gives a perfect hash and can be easily decoded for the reversed procedure (int to

 117

position). Since the number of records is relatively small, we have not made any attempts

to compress the database. For the same reason, we store the distance value as a double for

maximum precision, although it may not be needed. The minimum amount of precision

that is acceptable for best play is left for future work. The final database size is 19MB for

the 12-point and 67Kb for the 6-point version per pin placement.

5.4 Discussion

In this section we discuss potential problems with the one-sided databases and con-

duct two experiments to evaluate our existing AI in positions from the database.

5.4.1 POTENTIAL PROBLEMS WITH ONE-SIDED DATABASES

One problem with one-sided databases is that it may give errors in actual play, when

we take the opponent into account. This is already documented for the one-sided bear-off

databases used in backgammon (Ross, Benjamin & Munson, 2007). We identified one pos-

sible problem case in our databases in a very rare situation. where the player to move has

a high average distance to unpin for all available moves and the opponent is almost ready

to unpin. In this case, because the unpinning of the opponent is almost certain, it may be

best for the moving player to prepare for a better placement in the bearoff quadrant instead

of continuing to maximize his distance to unpin. However, rollout experiments in 5 sam-

ples of such cases have not given evidence that one strategy is better than the other. We

believe the problem exists in the bearoff databases, because the problematic bearoff posi-

tions are near the end of the game, while our “problematic” positions, being much further

away from terminal, allow the luck factor to “wash out” any small errors.

5.4.2 USING THE DATABASES TO EVALUATE THE NEURAL NETWORKS

Another interesting use of endgame databases (or databases of solved games) is to

evaluate existing AI implementations. We conducted experiments with Palamedes using

the best neural network (NN) available for Plakoto: a) firstly, for all database positions and

all possible rolls we checked if the best move of the NN coincided with the best as seen in

the databases and b) secondly, we played 100,000 self-play games with the NN and, when

 118

a database position was encountered, we compared the move chosen by the NN to the da-

tabase’s optimal. For the first experiment we constructed the opponent position as a mirror

of the player to move.

Table 5.1: Evaluation of Palamedes AI in Plakoto pin endgames

Comparison Method Correct moves by the NN (%)

All positions 15%

Self-play positions 64%

As it can be seen, the NN does not select the best move 85% of the time in the first

test, however it does noticeably better at positions found in practical play. We believe this

is normal behavior for the NN to score so low in the first test, because the self-play proce-

dure used to train the network certainly could not generalize well to all possible cases most

of which are corner cases rarely to be seen in expert play. The result of the second test

shows the importance of such databases to enhance the move selection mechanism of the

existing AI.

5.5 Conclusion and future work

We have presented an algorithm that created several one-sided endgame databases

for the game of Plakoto. The databases are small but can be applied to a huge number of

endgame positions. To the best of our knowledge, this is the first time that endgame data-

bases are created for the game of Plakoto. We have also shown that the usage of these

databases greatly enhances our AI’s move selection.

There are several avenues to build upon these results. An obvious one is to construct

more databases with the same method. We have only built databases for 2-6 pinned points,

pinned points 7-18 can be easily created. Also, databases with more than one pin per side

are possible. The conversion of our algorithm to race endgames where the opponent has

pinned more than one checker is straitghtforward. A more difficult case is when the moving

player has two or more pins.

 119

With the presence of these databases our neural network evaluation function does

not need to generalize in these types of positions. We could improve the representation

power of our network by retraining the NN without taking into account these endgames.

Finally, we would also like to explore compression techniques for storage. This will

be essential for the creation of larger pin endgame databases.

 120

Chapter 6

 121

 122

CHAPTER 6: PALAMEDES

All the agents described in this thesis are packaged in the Palamedes program. The

users of Palamedes can play against the AI agents through an attractive graphical user in-

terface (Figure 6.1). Palamedes is freely available for Windows from the web page of the

project1 or from the Google Play Store2 for Android devices. The description in this chapter

is based on the Windows Palamedes version 0.50 unless otherwise stated expressively. The

Android version has limited configurability, following the general practice in mobile

games “as simple as possible”.

Figure 6.1: Typical Palamedes Screen when playing a game (Windows version)

Palamedes is programed in the C++ language. The graphical interface is provided

by the Qt framework3 (Open Source Version, LGPL licence) and the neural networks are

implemented with Eigen (Guennebaud, et al., 2010), a matrix and linear operations library.

1 http://ai.uom.gr/nikpapa/Palamedes
2 https://play.google.com/store/apps/details?id=gr.nikpapa.palamedes
3 http://www.qt.io/

 123

Palamedes does not provide a learning component, meaning that all agents have fixed,

deterministic strategies.

6.1 Feature list

6.1.1 VARIANTS SUPPORTED

Palamedes 0.50 supports the following backgammon variants: Portes, Plakoto, Fe-

vga, Narde, HyperGammon, NackGammon, Tapa, Takhteh and standard backgammon

with more variants planned in the future. Most of these variants have been discussed in

Section 2.1. The remaining variants are discussed here.

HyperGammon is a variant that has the same rules as standard backgammon, with

the only exception that the players have only 3 checkers instead of 15, and these checkers

start at the first points (24, 23, 22). Palamedes support of Hypergammon extends these

rules by allowing 3 to 6 checkers per side.

Narde is a variant popular in Russia that is similar to Fevga. The starting position

and the direction of movement are the same. The differences in the rules are the following:

 Players can move only on checker off the starting point each turn.The first point

is only allowed one checker movement each roll. There is no staring rule as in

Fevga.

 Primes are allowed only when a checker of the opponent has moved ahead of the

last point of the prime we want to make.

 All other special rules of Fevga (blocking rule, prime rules) do not apply.

We use the Fevga NNs for the AI in Narde. The play is “good enough” but a spe-

cialized network trained specifically for this game would certainly be more effective. This

is left for future work.

Nackgammon is a variant of standard backgammon invented by Nack Ballard that

has a different starting position, adding 2 checkers at point 23 and removing 1 checker

from the two big stacks (6, 13). The games tend to be quite a bit longer, because one cannot

 124

easily run quickly with the back checkers. It is a positional game, with more emphasis on

priming and back games, and less on attacking and blitzing.

Takhteh is a variant similar to Portes that is popular in the Middle East and has the

following additional rules:

 No hit and run: When a checker hits an opponent checker, this checker can be

moved again in the same turn.

 No pip wastage in bearoff: This means that one should always bear off a checker

where possible rather than use a smaller number to move that checker forward.

Figure 6.2: Palamedes options for changing the game rules

Palamedes offers some support for enabling/disabling some of the rules of the

games (Figure 6.2). This is mainly used in Fevga, in order to support the different variations

popular in some Greek regions.

 125

The android version currently allows only Portes, Plakoto and Fevga games without

the option of changing the game rules.

6.1.2 HUMAN VS AI PLAY

The user can play against any of the available neural network agents. In the 0.50

version the following NNs are available:

 Portes, Backgammon, Hypergammon, Takhteh:

o Portes_ACG13. This is the best NN trained in Section 3.3.

o Portes160. This is a NN with 160 hidden nodes but no expert features,

trained using the same procedure as the other NNs. This NN is weaker

than Portes_ACG13 NN.

 Plakoto, Tapa:

o Plakoto-3

o Plakoto-4

o Plakoto-5

 Fevga, Narde:

o Fevga-4

o Fevga-5

o Fevga-6

The other NNs mentioned in Chapter 3 can be found in earlier program versions

and can be downloaded in the program’s site. There is also an option to load a valid neural

network from file. This option is mainly used for testing and troubleshooting. In the android

version, only the best neural network for each game is installed.

Finally, the AI can resign the game, when its evaluation function shows that it has

very little chances to win the game. This gives Palamedes human-like behavior and speeds-

 126

up gameplay. Palamedes resigns a double game, when the probability of losing a double

game is perceived above 99% (LD > 0.99). Similarly, a single game resignation occurs,

when the probability of winning a single game is calculated by the NN to be less than 1%

(W < 0.01).

6.1.3 LOOK-AHEAD AND DIFFICULTY

All the agents can be modified to play in two modes 1-ply and 2-ply, as it is de-

scribed in section 3.2. The 2-ply look-ahead can be refined using forward pruning through

configuration of two settings in the general program settings (Figure 6.3) under AI pruning.

Both options are based on the fact that at 1-ply all candidate moves are graded by

the agent and then sorted. The first option (maximum number of moves expanding in 2-ply)

expands to 2-ply only up to the number of moves selected. This is useful, because some-

times the available moves are very high (up to 1000) and expanding all moves is very

computationally expensive. If we believe that the NNs are accurate enough to ensure that

the best move lies in the best x moves as graded by 1-ply, then we can confidently set this

option to x. The second option (Prune when value difference greater than) prunes the 2-

ply expansion based on the value difference from the best move. Moves that have values

greater than value of (first move + this option value) are not expanded.

The depth of look-ahead can be selected at the start of each game/match. In the

android version, there is no such selection, the player just selects a difficulty setting (easy,

normal, expert) at game start. The normal difficulty is equivalent to 1-ply, the expert diffi-

culty is 2-ply with pruning the 15 moves pruning and the easy difficulty is 1-ply look-ahead

but instead of selecting the best move, the agent selects one move randomly from the top

five moves.

Searching at greater depths is straightforward and it is planned for inclusion in fu-

ture program updates.

 127

Figure 6.3: Palamedes general program options

6.1.4 ENDGAME DATABASES

Palamedes supports the Plakoto Endgame Databases created with the methods pre-

sented in Chapter 5. For space reasons, all Palamedes versions include the “small” version,

i.e. the 6-point databases. In the future, when the “large” 12-point databases will be com-

pressed sufficiently enough, these databases could be included.

Palamedes also supports a two-sided 6-point bearoff database that can be used in

all games. This database is very large (5.48 GB) and so it is not included in the available

version for download. This database is mainly used in competitions. The program searches

if this database exists at program startup.

6.1.5 MODES OF PLAY

Palamedes can play both “money games” and matches in any variant supported

(Figure 6.4). Match length can be 1, 3, 5, 7, 9, 11, 13 or 15 (Android: 1, 3, 5, 7). Money

games are identified by the infinity symbol (∞). AI decisions in a match are influenced by

 128

the match score as described in Section 4.4. The doubling cube can be used only in standard

backgammon, in the future we plan to make it available to the other variants as well.

Figure 6.4: Game/Match Start

6.1.6 PLAYER STATISTICS

Figure 6.5: Player statistics in Palamedes

 129

Results of every game are recorded in a database where the player can see his/her

overall points against any combination of Game/NN/Look-ahead (Figure 6.5). Values

stored are how many single/double games were won/lost and the average score of the

player (in PPG – Points per Game).

6.1.7 ANALYSIS

Users can analyze a game, after it is finished. Selecting a position or dice roll in the

scoresheet and pressing the Analyze button shows the Analysis window (Figure 6.6).

Figure 6.6: Analysis window

There are options to change all the AI settings available (NN, LookAhead, etc). In

the right part of the dialog the report of the analysis is shown. All the available moves are

shown along with the output values from the evaluation function (Val columns) and the

outputs of the neural network (W, WD, LD). 2-ply columns are computed taking the

weighted average of all 21 opponent rolls. The moves are sorted by descending value (Best

moves first). When the positions belongs to an endgame database loaded by the program

the values from the databases are shown instead of the NN.

6.1.8 DICE GENERATORS

Palamedes also lets users control the pseudo-random generator used by the program

for producing the dice rolls (Figure 6.7).

 130

The available pseudo-random generation algorithms are: Linear Congruential,

Mersenne Twister and Ranlux. All these are default algorithms supplied by the C++11

<random> library. The default algorithm is Mersenne Twister.

Figure 6.7: Dice options

The seed of the algorithm is randomly set at program startup. The user has the op-

tion to change the seed to whichever value he wants. Setting the seed to a value will always

reset the dice algorithm to a state determined by the seed value. This means that the dice

rolls after setting the seed will always be the same, if the same seed is entered.

There is also the option for entering the dice manually. When setting this option, a

dialog appears prompting the user to enter the dice roll, when a player must roll the dice.

The manual dice option can be used in combination with physical dice or with independent

dice generators such as the Aias Floating Dice Roller1 app on Android devices.

1 https://play.google.com/store/apps/details?id=com.aiassoft.floatingDice

 131

6.1.9 LOAD/SAVE GAMES

All games can be saved in files. These files are text files, have a .tavli extension

and have a special formatting that supports backgammon variants. This function is useful

for loading previously saved games and analyzing them. The current version of Palamedes

supports a single game per file.

6.2 Backgammon Computer Olympiad Participation

Palamedes participated two times in the backgammon computer Olympiad orga-

nized by the ICGA, in 2011 and in 2015. This event gathers every other year researchers

and programmers that are interested in making computer programs for board games and

games in general. In the backgammon tournament, only a standard backgammon tourna-

ment is run. This is done mostly because: a) the other variants are not so popular globally

and b) only a few backgammon programs know how to play backgammon variants other

than the standard game. The Computer Olympiad is organized since 1987. Palamedes won

the first place out of three participants (GNUBG, BgBlitz, see Section 2.3.1.1) in both of

its participations.

6.2.1 BACKGAMMON COMPUTER OLYMPIAD 2011

The 2011 Computer Olympiad was staged in Tilburg, The Nederlands. At that time

Palamedes (version 0.41) did not yet know how to play with the doubling cube. The organ-

izers gratefully allowed Palamedes to participate as a full participant, with opponents mak-

ing the necessary adjustments to disable the doubling cube when playing against Pala-

medes. However, the triple wins of standard backgammon were kept intact, something that

was problematic for Palamedes, since its trained NN was trained having Portes in mind,

without taking triple wins into account. Thankfully, triple wins in standard backgammon

are very rarely encountered, about 1% of all games. Moreover, in these days, Palamedes

played in “money-game” mode only, that is it did not take the match score into account

when making decisions.

The tournament format was round-robin with each round consisting best of three

15-point matches and best of three 7-point matches. The results of all rounds were:

 132

1. Palamedes – BgBlitz 2-0 (7-5, 7-6)

2. GnuBg – BgBlitz 2-1 (14-15, 15-12, 16-12)

3. Palamedes – GnuBg 2-1 (7-5, 5-9, 7-3)

Palamedes made some small errors mainly, because it did not take the match score

into consideration. Also, at the match lost against GnuBg, it lost a triple game that could

easily be avoided, if it had trivial knowledge of triple wins. Despite these shortcomings,

Palamedes managed to win the tournament and the gold medal.

6.2.2 BACKGAMMON COMPUTER OLYMPIAD 2015

After four years the same participants gathered again for a rematch of the 2011

tournament1. The opponents of Palamedes all had trained slightly better Neural Networks

than their respective versions in 2011. Palamedes did not have a new NN, but was able to

play according to match score (Match mode) and had a simple doubling algorithm, based

on publicly available market tables. To counter triple loss situations, a special function was

constructed called “backgammon avoidance” which checks if the agent is in danger of los-

ing a triple game, and when triggered, discards the normal NN evaluation function in favor

of another function that tries to avoid a triple game.

The tournament format was the same as last time: best of 3 15-point matches. In

case of a tie the tiebreaker was agreed to be the number of matches won. The results were

the following:

1. Palamedes-BGBlitz 2-1 (9-20, 17-10, 16-11)

2. GnuBg-BGBlitz 1-2 (15-10, 6-16, 1-15)

3. Palamedes-GnuBg 1-2 (15-11, 7-16, 7-17)

The result was dead equal with match points also the same. In this case, it was

agreed to play another (smaller) match in 7 points. Palamedes won both the tiebreak

1 In the 2013 Computer Olympiad the backgammon competition didn’t take place.

 133

matches thus winning its second gold medal in two appearances. The full results of the

tiebreaks were:

1. GnuBg-BGBlitz 1-0 (9-4)

2. Palamedes-BGBlitz 1-0 (8-4)

3. Palamedes-GnuBg 1-0 (11-0)

The “backgammon-avoidance” function was triggered only once in all the games

played.

 134

Chapter 7

 135

 136

CHAPTER 7: CONCLUSION AND FUTURE WORK

This chapter summarizes the results of the thesis and shows some avenues for future

work. The chapter is split in four sections, referencing the four main chapters (Chapters 3-

6) of this thesis.

7.1 TDL training of NNs

In Chapter 3 it was shown that Temporal Difference Learning combined with arti-

ficial neural networks as function approximators is capable of producing high performance

game playing programs in backgammon variants Portes, Fevga and Plakoto. For the games

of Plakoto and Fevga the resulting agents greatly outperform the only available program

for comparison, Tavli3D. In Portes and standard backgammon, Palamedes showed its

strength by winning two times the Backgammon Computer Olympiad organized by the

ICGA, the most prestigious competition for backgammon software.

These results answer the first research question (Section 1.2) of this thesis: that

strong game-playing agents can be built that can play at expert level the backgammon

variants popular in Greece: Portes, Plakoto and Fevga.

In all games we used expert features to enhance performance. The problems found

by learning overlapping features indicate that one must choose the features to be trained

very carefully, or else risking suboptimal performance.

We have managed to increase the performance of our temporal difference learning

architecture by making the target of the update the inverted value of the opponent's next

state and by updating the game sequence starting from the terminal and working to the

starting position, a procedure we call reverse offline recalc. This algorithm was found to

be the most effective compared to several different training algorithms that we experi-

mented with.

Our experiments with different values for the learning rate α and the λ parameter

show that the best choice for either of them is domain specific. Using our setup, it is pos-

sible to start the training with high values and gradually decrease them.

 137

The proposed method answers the second research question (Section 1.2) of this

thesis: that the learning algorithms and training setups can be improved in order to enable

AI agents to learn to play backgammon games effectively by self-play.

In the future, we intend to investigate further improving the playing strength of the

agents by adding or modifying more features. In the Fevga variant for example, the heuris-

tic for calculating the probability of making a prime formation on the next roll can be im-

proved by including cases with two or more missing checkers and by making it faster to

compute. An automatic process of selecting, comparing and training the available features

could be used in order to detect the beneficial from the problematic ones. This process,

however, can be very time consuming, especially when many games must be played for

good learning (as is in backgammon) or the number of features is large (as is in chess for

example). These enhancements can be used in other games as well as in conjunction with

other TD learning algorithms.

Ultimately, however, it would be best if no expert features were added by the pro-

grammer and these features where automatically detected by the agents. A training setup

where a self-trained agent reached expert knowledge of a complex game without including

expert knowledge as features would be a major scientific breakthrough.

The learning hyperparameters, α and λ, were manually tuned. As we did not exhaust

all possible combinations, it may possible that an even more aggressive approach could

yield faster learning. It would be interesting to investigate an algorithm that automatically

decreases these parameters during training, as it would free the human designer of the oth-

erwise cumbersome trial and error approach.

Finally, we would like to apply the proposed method, reverse offline recalc, to other

games.

7.2 Generating Statistics for Tavli games

In Chapter 4, we used the trained NNs of Palamedes to extract useful statistics for

the Tavli variants that we are interested in, that is Portes, Plakoto and Fevga. Rollout ex-

periments were conducted, where the following was calculated: the distribution of all the

 138

result outcomes, the gammon rate, and the advantage of the first player. Our findings for

Portes (without a starting double roll) are very close to those found in the literature. As far

as we know, these statistics were constructed for the first time for the other two variants,

Plakoto and Fevga.

The gammon rates, interestingly, fall in different ranges for each game. The small-

est gammon rate is for the Fevga variant (14.27%), followed by Portes/Backgammon

(26.9%), whereas Plakoto has the largest rate (at 41%). As for the advantage of the first

player, this is significant in the Fevga variant, small in Plakoto and very small in Portes.

The superiority of the Portes variant in this statistic was expected, because Portes (and

backgammon) has the advantage of a specially crafted starting position, which is not pre-

sent in the other variants.

The effect of the starting position on the statistics examined in the Plakoto variant

was also shown. Changing the starting position of Plakoto only slightly, transforming it to

the Tapa variant, had the effect of lowering the gammon rate and the advantage of the first

player significantly, making Tapa the most “fair” backgammon variant examined so far.

Finally, as a practical application, the computed gammon rates was used to con-

struct tables to be used when a match strategy is required. Experiments showed that such a

strategy outperforms the money play strategy when playing 5-point matches in Portes and

Plakoto.

These results answer the third research question (Section 1.2) of this thesis: that the

expert agents can be used to extract useful characteristics of the games.

One of the conclusions of Chapter 4 was that the first player has a large advantage

over the second player in the Fevga variant. It would be preferable if this advantage were

as small as possible. What changes can we make to the Fevga rules so as to make the game

fairer to the second player? Also, another interesting experiment is to compare Fevga with

Narde, a variant with similar rules. However, we would need to train an expert agent for

the Narde variant, so we leave this for future work.

One interesting experiment would be to try the following procedure in the back-

gammon/Portes variant: what would be the gammon rate and equity of a variant with the

 139

same rules as backgammon but a starting position, where all starting checkers are placed

in the player’s first point? This would show how much the starting position of standard

backgammon influences the outcomes of the game. If the results of our Plakoto/Tapa ex-

periments are any indication, we suspect that an increase in both of these measurements is

expected. We could have tried out an experiment using the Portes NN in this variant. How-

ever, unlike the Plakoto/Tapa case, here the change of the starting position is significant,

so we feel that the Portes NN will not generalize well. A new NN-based evaluation function

should be self-trained, but as this is not trivial, this is left for future work.

The match strategies created in this thesis can be applied to matches of the same

game type, when at the start of a game the first player is determined randomly. In the future,

we plan to extend this method to matches, where the starting player of the game is the one

that wins the previous game, and in matches that consist of different game types like a

Tavli match.

7.3 Plakoto Pin Endgame Databases

In chapter 5, an algorithm was presented that created several one-sided endgame

databases for the game of Plakoto. These databases improve the AI’s move selection when

these endgames are encountered. The databases are small but can be applied to a huge

number of endgame positions. To the best of our knowledge, this is the first time that end-

game databases are created for the game of Plakoto.

The Plakoto endgame databases built in this thesis cover only the special case when

there is a race situation, when both players have a pinned point, with the moving player

having the pin in points 2-6. Also all checkers of the moving player must be in the last 12

points. An obvious improvement is to construct more databases with the same method.

Databases with pinned points 7-18 and/or checker placement under the 12 point can be

easily created. Also, databases with more than one pin per side are possible. The conversion

of the proposed algorithm to race endgames where the opponent has pinned more than one

checker is straitghtforward. A more difficult case is when the moving player has two or

more pins.

 140

With the presence of these databases our neural network evaluation function does

not need to generalize in these types of positions. We could improve the representation

power of our network by retraining the NN without taking these endgames into account.

Finally, an important improvement would be to compress the databases. This will

be essential for the creation of larger pin endgame databases. A simple way would be to

investigate if the float values can be stored with lower precision than the current (double).

More complex compression techniques can be tried, like the one used by Tammelin, et al.

(2015) in Texas Holdem‘ poker.

7.4 Palamedes program

The Palamedes program offers an attractive graphical interface where anyone can

play against the AI agents shown in this thesis in several variants (Chapter 2). Palamedes

includes the neural networks trained in Chapter 3, it can play in a match setting (Chapter

4), and supports the Plakoto Endgame Databases created in Chapter 5. Palamedes is

available for free for the Windows and Android platforms.

Palamedes can be improved in several ways. Firstly, a human vs human mode can

be made for the users to be able to play with one another, either on the same device or via

the internet. Also, in order to be able to test its agents against other agents, a backgammon

connection protocol could be developed. Saved games, at the time of writing this thesis,

are not compatible with other backgammon programs. It would be helpful, if Palamedes

could save the games/matches in a format readable by other programs, at least for standard

backgammon.

We also plan to increase the number of backgammon variants that can be handled

by Palamedes. Interesting candidates towards this direction are the acey-deucey, gioul and

gul-bara variants. Finally, we plan to improve the look-ahead procedure by searching in

greater depths and by utilizing cutoff algorithms as in (Hauk, Buro, & Schaeffer, 2006).

141

REFERENCES

Allis, L.V., van der Meulen M., & van den Herik H.J. (1994). Proof-Number Search. Arti-

ficial Intelligence, Vol. 66, ISSN 0004-3702, (pp. 91–124).

Anderson, J. R. & Lebiere C. (1998). The Atomic Components of Thought. Lawrence Erl-

baum Associates.

Andrews R., Diederich J., & Tickle A. (1995). Survey and critique of techniques for ex-

tractingrules from trained artificial neural networks. Knowledge-Based Systems Vol

8(6), (pp. 373-389).

Arneson, B., Hayward, R. B., & Henderson, P. (2010). Monte Carlo tree search in hex.

IEEE Transactions of Computational Intelligence AI Games, vol. 2(4), (pp. 251–

258).

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed

bandit problem,” Machine Learning, Vol. 47, no. 2, (pp. 235–256).

Azaria, Y. & Sipper M. (2005). GP-gammon: Genetically programming backgammon

players, Genetic Programming and Evolvable Machines, vol. 6(3), (pp. 283–300).

Backgammon (2015), Wikipedia, Accessed September 18, 2015 at http://en.wikipe-

dia.org/wiki/Backgammon

Baxter, J., Tridgell, A., & Weaver, L. (1998a). Tdleaf(): Combining temporal difference

learning with game-tree search. Australian Journal of Intelligent Information Pro-

cessing Systems, Vol 5(1), (pp. 39-43).

Baxter, J., Tridgell, A., & Weaver, L. (1998b). Knightcap: a chess program that learns by

combining td(lambda) with game-tree search. 15th International Conference on

Machine Learning (pp. 28-36). Morgan Kaufmann, San Francisco, CA.

Baxter, J., Tridgell, A., & Weaver, L. (2000). Learning to Play Chess Using Temporal

Differences. Machine Learning, 40(3), (pp 243-263)

Benjamin, A., & Ross, A.M. (1996). Enumerating backgammon positions: the perfect hash.

Interface: Undergraduate Research at Harvey Mudd College, Vol 16 (1), (pp. 3-

10).

Bertsekas, D. (1995) Dynamic Programming and Optimal Control. Athena Scientific.

Bertsekas, D., & Tsitsiklis, J. (1996) Neuro-Dynamic Programming. Athena Scientific.

Bowling, M., Burch, N., Johanson, M., & Tammelin, O. (2015). Heads-up limit hold’em

poker is solved. Science, Vol 347(6218), (pp. 145-149).

Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen, P.,

Tavener, S., Perez, D., Samothrakis, S., & Colton, S. (2012). A Survey of Monte

 142

Carlo Tree Search Methods. IEEE Transactions on Comp. Intell. and AI in Games,

Vol 4(1), (pp. 1-43).

Buro, M. (1998). From Simple Features to Sophisticated Evaluation Functions. Proceed-

ings of the 1st International Conference on Computers and Games. Springer,

LNCS(1558), (pp. 126-145).

Campell, M., Hoane Jr, A.J., Hsu, F-h. (2002). Deep Blue. Artificial Intelligence, Vol

134(1-2), (pp 57-83).

Cazenave, T., & Saffidine, A. (2011). Score Bounded Monte-Carlo Tree Search. Comput-

eras and Games Conference, (CG 2010), LNCS, Vol. 6515, (pp. 93–104). Springer,

Heidelberg.

Ciancarini, P., & Favini, G.P. (2010). Solving kriegspiel endings with brute force: the case

of KR vs. K. Advances in Computer Games (ACG 2010). (pp. 136-145).

Coulom.R. (2006). Efficient Selectivity and Backup Operators in Monte-Carlo Tree

Search. 5th International Conference on Computers and Games, Turin, Italy, (pp.

72-83).

Coulom, R. (2007). Monte-Carlo tree search in crazy stone. Procedeeings of Game Pro-

gramming Workshop, Tokyo, Japan, (pp. 74–75).

Darwen, P. (2001). Why Co-Evolution beats Temporal-Difference Learning at Backgam-

mon for a Linear Architecture, but not a Non-Linear Architecture. Proceedings of

the 2001 Congress on Evolutionary Computation (CEC-01). Seoul, Korea,

(pp.1003-1010).

Extreme Gammon. (2015). About XG Mobile, Available from: <http://www.xg-

mobile.com/about.aspx>. [8 September 2015]

Fang, H.R., Glenn, J. & Kruskal, CP. (2008). Retrograde approximation algorithms for

jeopardy stochastic games. ICGA Journal, (pp. 29-2).

Fang, H.R., Hsu, T.-s., & Hsu, S.C. (2002). Construction of Chinese chess endgame data-

bases by retrograde analysis. Computers and Games Conference (CG 2002). (pp.

96–114). Springer, Heidelberg.

Finnsson, H., & Björnsson, Y. (2008). Simulation-based approach to general game playing.

23rd Association of Advancement of Artificial Intelligence Conference, (AAAI

2008), (pp. 259–264). AAAI Press.

Gasser, R. (1996). Solving nine men's morris. Computational Intelligence, Vol 12(1), (pp.

24-41).

Gelly, S. (2007). A contribution to reinforcement learning; Application to computer-Go,

Ph.D. dissertation, Informatique, Univ. Paris-Sud, Paris, France.

http://www.xg-mobile.com/about.aspx
http://www.xg-mobile.com/about.aspx

 143

Gelly, S., & Silver, D. (2008). Achieving master level play in 9 x 9 computer Go. 23rd

Association of Advancement of Artificial Intelligence Conference, (AAAI 2008),

(pp. 1537–1540). AAAI Press.

Gnubg.org, computer software 2015. Available from <www.gnubg.org> [8 September

2015].

GnuBg Mailing list post (2012), pubeval benchmark, Available from:

<http://lists.gnu.org/archive/html/bug-gnubg/2012-01/msg00034.html> [8 Sep-

tember 2015].

Guennebaud, G., Beno, J. and others (2010), Eigen v3, Avalaible from:

<http://eigen.tuxfamily.org> [8 September 2015].

Hauk, T., Buro, M., & Schaeffer, J. (2004). *-minimax performance in backgammon.

Proc. Computers and Games, (pp. 35-50).

Hauk, T., Buro, M., & Schaeffer, J. (2006). *-minimax performance in backgammon. Com-

puters and Games (CG 2006), LNCS, vol 3846, (pp. 51-66). Springer.

International Computer Games Association (2011). Computer Olympiad 2011 Results,

Available from <https://icga.leidenuniv.nl/?page_id=106> [8 September 2015].

International Computer Games Association (2015). Computer Olympiad 2015 Results,

Available from <https://icga.leidenuniv.nl/?page_id=1315#backgammon> [8 Sep-

tember 2015].

Keith, T. (n.d.) HyperGammon. Avalaible from: <http://www.bkgm.com/variants/ Hyper-

Backgammon.html> [8 September 2015].

Keith, T. (2006), Backgammon openings. Rollouts of opening moves. Available from:

<http://www.bkgm.com/openings/rollouts.html> [8 September 2015].

Koza, J. R. (1992). Genetic programming: On the Programming of Computers by Means

of Natural Selection. Cambridge, MA: MIT Press.

Kuittinen, J., Kultima, A., Niemelä, J., & Paavilainen, J. (2007). Casual games discussion.

Conference on Future Play (Future Play '07). New York, NY, USA, (pp. 105-112).

ACM.

Lai, M. (2015) Giraffe: Using Deep Reinforcement Learning to Play Chess, MSc Disser-

tation, mperial College London.

Libro de los juegos, (2015). Wikipedia, Accessed September 18, 2015 at http://en.wikipe-

dia.org/wiki/Libro_de_los_juegos.

Lorentz, R.J. (2008). Amazons discover monte-carlo. Computer and Games Conference

(CG 2008). LNCS, Vol. 5131, (pp. 13–24). Springer, Heidelberg.

Lorentz, R. J. (2010). Improving Monte-Carlo tree search in Havannah. Proceedings of

Computer Games, Kanazawa, Japan, (pp. 105–115).

http://www.gnubg.org/
http://lists.gnu.org/archive/html/bug-gnubg/2012-01/msg00034.html
http://eigen.tuxfamily.org/
https://icga.leidenuniv.nl/?page_id=106
https://icga.leidenuniv.nl/?page_id=1315#backgammon
http://www.bkgm.com/variants/HyperBackgammon.html
http://www.bkgm.com/variants/HyperBackgammon.html

 144

Michie, D. (1996) Game-playing and game-learning automata. Advances in Programming

and Non-Numerical Computation, (pp 183-200).

Nalimov, E.V., Haworth, G. McC., & Heinz, E.A. (2000). Space-efficient indexing of

chess endgame tables. ICGA Journal, Vol 23(3), (pp. 148-162).

Papahristou, N., & Refanidis, I. (2011). Training Neural Networks to Play Backgammon

Variants Using Reinforcement Learning. EvoApplications 2011, LNCS, Vol 6624,

(pp. 113-122). Springer.

Papahristou, N., & Refanidis, I. (2012a). Improving Temporal Difference Learning Perfor-

mance in Backgammon Variants. Advances in Computer Games (ACG-13).

LNCS, Vol 7168, (pp 134-145). Springer.

Papahristou, N., & Refanidis I. (2012b). On the Design and Training of Bots to play Back-

gammon Variants. 8th Artificial Intelligence Applications and Innovations Con-

ference. (AIAI 2012), Halkidiki, Greece, IFIP Advances in Information and Com-

munication Technology, Vol 381, (pp. 78-87). Springer.

Pollack J.B. (2005). Nannon: A Nano Backgammon for Machine Learning Research. In

Computation Intelligence in Games Conference (CIG 2005).

Pollack, J.B., Blair, A.D., & Land, M. (1997). Coevolution of a backgammon player. Arti-

ficial Life V: Proceedings of the Fifth International Workshop on the Synthesis and

Simulation of Living Systems, Cambridge, MA, MIT Press, (pp. 92-98).

Puterman. M. L. (1994). Markov Decision Processes. John Wiley & Sons.

Qi, D., & Sun, R. (2003). Integrating Reinforcement Learning, Bidding and Genetic Algo-

rithms, International Conference on Intelligent Agent Technology (IAT-2003),

IEEE Computer Society Press, Los Alamitos, CA, (pp. 53-59).

Romein, J.W., & Bal, H.E. (2003). Solving awari with parallel retrograde analysis. Com-

puter, Vol 36(10), (pp. 26-33).

Ross, A.M., Benjamin, A.T., & Munson, M. (2007). Estimating winning probabilities in

backgammon races. Optimal Play: Mathematical Studies of Games and Gambling,

Institute for the Study of Gambling and Commercial Gaming, (pp. 269-291). Uni-

versity of Nevada, Reno.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM

Journal of Research and Development, 3.

Sanner, S., Anderson, J.R., Lebiere, C., & Lovett, M. (2000). Achieving Efficient and Cog-

nitively Plausible Learning in Backgammon, Proceedings of the Seventeenth Inter-

national Conference on Machine Learning (ICML-2000), Stanford, California, (pp.

823-830).

 145

Saito, J.-T., Chaslot, G., Uiterwijk, J.W.H.M., & van den Herik, H.J. (2007). Monte-carlo

proof-number search for computer Go. Computer and Games Conference (CG

2006). LNCS, Vol. 4630, (pp. 50–61). Springer, Heidelberg.

Schaeffer, J. (1997). One Jump Ahead: Challenging Human Supremacy in Checkers. New

York: Springer-Verlag.

Schaeffer, J., Bjornsson, Y., Burch, N., Lake, R., Lu, P., & Sutphen, S. (2003). Building

the checkers 10-piece endgame databases. Advances in Computer Games (ACG

2013), (pp. 193-210). Kluwer Academic Publishers.

Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M., Lake, R., Lu, P., &

Sutphen, S. (2007). Checkers is solved. Science, Vol 317, (pp. 1518-1522).

Schaeffer, J., Hlynka, M., & Julissa, V. (2001). Temporal Difference Learning Applied to

a High-Performance Game-Playing Program. Proceedings IJCAI, (pp. 529-534).

Sheppard, B. (2002), World-championship-caliber Scrabble. Artificial Intelligence, 134

(pp. 241–275)

Singh, S.P., & Sutton, R.S. (1996). Reinforcement learning with replacing eligibility traces.

Machine Learning, Vol 22(1-3), (pp. 123-158).

Sutton, R.S. (1988). Learning to predict by the methods of temporal differences. Machine

Learning, (pp 9-44).

Sutton, R.S., & Barto, A.G. (1998). Reinforcement Learning: An Introduction, MIT Press

Szepesvári, C. (2010). Algorithms for Reinforcement Learning (Electronic Draft Version),

http://www.sztaki.hu/~szcsaba/papers/RLAlgsInMDPs-lecture.pdf

Tammelin, O., Burch, N., Johanson, M., & Bowling, M. (2015). Solving Heads-up Limit

Texas Hold’em. 24th International Joint Conference of Artificial Intelligence

(IJCAI-15), (to be published).

Tesauro, G. (1992). Practical issues in temporal difference learning. Machine Learning,

Vol 4, (pp. 257-277), (1992).

Tesauro, G. (1994). Benchmark player "pubeval.c". Backgammon Galore Website, Avail-

able from <http://www.bkgm.com/rgb/rgb.cgi?view+610>. [8 September 2015]

Tesauro, G. (1995). Temporal Difference Learning and TD-Gammon. Communications of

the ACM, Vol 38(3), (pp. 58-68).

Tesauro, G. (2002). Programming backgammon using self-teaching neural nets. Artificial

Intelligence, Vol 134, (pp. 181-199).

Tesauro, G. (2011). Td-Gammon computer software, Available from:

<http://www.scholarpedia.org/article/User:Gerald_Tesauro/Proposed/Td-

gammon>. [8 September 2015]

http://www.bkgm.com/rgb/rgb.cgi?view+610
http://www.scholarpedia.org/article/User:Gerald_Tesauro/Proposed/Td-gammon
http://www.scholarpedia.org/article/User:Gerald_Tesauro/Proposed/Td-gammon

 146

Thompson, K. (1986). Retrograde analysis of certain endgames. ICCA Journal, Vol 9(3),

(pp. 131-139).

Varouhakis, J. 2007. Tavli3D computer software 2007, Available from:
<http://sourceforge.net/projects/tavli3d>. [8 September 2015]

van der Werf, E. C.D., & Winands, M, H.M. (2009). Solving go for rectangular boards.

ICGA Journal, Vol. 30-2, (pp. 77–88).

Wiering, M.A. (2010). Self-Play and Using an Expert to Learn to Play Backgammon with

Temporal Difference Learning. Journal of Intelligent Learning Systems and Appli-

cations, Vol 2, (pp. 57-68).

Wikipedia (2015). Backgammon, Available from: <https://en.wikipedia.org/wiki/ Back-

gammon>. [8 September 2015]

Wilson D.R., & Martinez T.R. (2003). The general inefficiency of batch training for gra-

dient descent learning. Neural Networks, Vol 16(10), (pp. 1429-1451).

Winands, M.H.M., Björnsson, Y., & Saito, J.-T. (2008). Monte-carlo tree search solver.

Computer and Games Conference (CG 2008). LNCS, Vol. 5131, (pp. 25–36).

Springer, Heidelberg.

Winands, M.H.M., & Björnsson, Y. (2009). Evaluation Function Based Monte-Carlo LOA.

Advances in Computer Games (ACG 2009). LNCS, Vol. 6048, (pp. 33–44).

Springer, Heidelberg.

Winands, M.H.M., Björnsson, Y. & Saito J.-T. (2010). Monte Carlo tree search in lines of

action. IEEE Transanctions of Computational Intelligence AI Games, vol. 2(4), (pp.

239–250).

Van Eck, N.J., & van Wezel, M. (2008). Application of reinforcement learning to the game

of Othello. Computers and Operations Research, Vol 35(6), (pp. 1999-2017).

Van Lishout, F., Chaslot, G., & Uiterwijk, W.H.M. (2007). Monte-Carlo Tree Search in

Backgammon, Computer Games Workshop, Amsterdam, the Netherlands, (pp.

175–184).

Veness, J., Silver, D., Uther, W., & Blair, A. (2009). Bootstrapping from Game Tree

Search. Advances in Neural Information Processing Systems, Vol 22, (pp. 1937-

1945).

Zeiler, M.D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint arXiv:

1212.5701.

http://sourceforge.net/projects/tavli3d
https://en.wikipedia.org/wiki/%20Backgammon
https://en.wikipedia.org/wiki/%20Backgammon

	Εξώφυλλο
	Acknowledgements
	Ευχαριστίες
	Abstract
	Table of contents
	List of tables
	LIst of figures
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References

