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features and the best GMM configuration for this task. In addition we introduce
several methods for combining the ’color’ and ’structure’ information in order to
improve the classification performances. We then apply the resulting models to
the classification of texture databases and to the classification of man-made and
natural areas in aerial images. We compare the GMM model with other models in
the literature, and show an overall improvement in performance.
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1 Introduction

In many domains of image processing, there is a strong correspondence be-
tween entities in the scene and textures 1 in the image. This implies that the
ability to recognize these textures can furnish important semantic informa-
tion about the scene. Consequently, the problems of texture description and
classification, and the closely related problem of segmentation, have received
considerable attention, with numerous approaches being proposed ( [1,2] and
references therein). In particular, in the field of content-based image retrieval,
the ability to answer the question: “Is there a significant amount of such-and-
such texture in this image?”, can be the basis for many types of query.

Two variations on the problem exist: supervised and unsupervised segmen-
tation. In the former, models of the texture associated with different entities
in the scene are assumed known, and are then applied to the image in the
hope of segmenting it into regions corresponding to those entities. Clearly this
requires a training stage in which human beings group texture exemplars into
classes, corresponding to the entities involved, from which the corresponding
model parameters are then learnt. In the unsupervised case, no models are
known a priori. Instead, the aim is to discover similarities in the data that
betray the existence of one or more distinct classes into which the data can be
divided. This may or may not involve explicitly learning the model parame-
ters. When the entities in the scene into which the image should be segmented
are not decided upon beforehand, as they often are not, unsupervised segmen-
tation is methodologically ill-defined, since no specification of the ideal result
is given. In supervised segmentation on the other hand, texture classes neces-
sarily correspond to distinct entities in the scene, and the success or failure of
the segmentation can be decided on this basis. In this paper, we consider the
supervised texture segmentation problem.

1.1 Literature

Many kinds of statistical models have been applied to texture classification.
These include Bayes classifiers assuming multivariate Gaussian distributions
for the features [3], [4], [5], [6]; Fisher transformation [7], [8]; nonparamet-
ric nearest neighbor classification [9], [10], [11], [12]; classification trees [8];
learning vector quantization [13], [14]; feed-forward neural networks [15]; and
recently support vector machine [16,17] and multiple histogram combined with
self organized map [18] . In some earlier cases, the statistical modelling after

1 By the word ‘texture’, we denote both what we will later call ‘structure’ informa-
tion, and color information
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the feature extraction is just thresholding [19], [20], [21], [22]; or simple ex-
tremum picking [23], [24], [25]. Markov random fields, and especially Gaussian
Markov random fields have been extensively used for texture modelling and
segmentation since the early work in [26]. For a good review, see the paper
by Geman and Graffigne [27]. Li and Gray [28] proposed a 2D hidden Markov
model (HMM) for image classification, while a somewhat different model is
the noncausal HMM described in [29].

Another recent class of models uses hidden Markov trees (HMTs) to model
the joint statistics of wavelet coefficients. Tree models sacrifice some descrip-
tive power (usually only inter- rather than intra-scale dependencies) to ease
of implementation (many algorithms that work in the case of linear graphs,
also work on trees, but not on more complicated models). Hidden Markov
tree models were first introduced in [30], and were applied to texture analysis
in [31] and [32]. They are typically used, even in texture applications, with
binary-valued hidden state variables that switch between high and low vari-
ance Gaussian distributions for the wavelet coefficients. This behavior is in-
tended to capture the difference between edges and noisy but otherwise smooth
regions in images, an important distinction for ‘edge-preserving denoising’. In-
deed, for denoising, HMTs result in state of the art algorithms. It is not clear
however that they remain appropriate for single textures, whose statistics may
differ markedly from those for natural images considered as a whole. In par-
ticular, the division into ‘edges’ and ‘noise’ seems strange in this context.
HMTs are used in [33], where texture and color are combined in an HMT
model. Texture is described using hidden Markov trees of greyscale wavelet
coefficient magnitudes, while color is described using independent Gaussian
distributions at each scale for the colored scaling coefficients.

In recent work [34], we proposed the use of Gaussian mixture models for
texture classification, demonstrating improved performance over other, com-
putationally more expensive methods. This paper is an extension of the work
presented there. In related but differently directed work, Gray and et. al. [35]
also used GMMs for image classification.

2 Classification, GMMs, and Feature Spaces

In this section, we describe in top-down fashion the models we will use. We
begin with our general approach to the classification problem, and continue by
describing the place of GMMs within that framework. Finally, we describe the
various feature spaces on which the GMMs are defined. We assume throughout
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that we are dealing with N classes, labelled by n ∈ N . 2

2.1 Classification

Any classification model is defined on the space N of maps from the image do-
main to the set N of classes (each class n corresponds to an entity of interest in
the scene), the possible ‘classifications’. Thus each classification ν ∈ N assigns
a class n = ν(p) ∈ N to each pixel p giving the class of that pixel. By defining
a posterior probability distribution on N , and using a suitable loss function,
an optimal classification can be chosen. The loss function is more often than
not taken to be the negative of a delta function, the resulting estimate then
being a maximum a posteriori (MAP) estimate. The posterior distribution
is expressed as the (normalized) product of a likelihood, such as the GMM
models that we will discuss in this paper, which gives the distribution of im-
ages corresponding to a given class, and a prior probability distribution on
the classifications.

Prior models for the classification ν usually have a minimum sub-image that
can be analyzed. Typically such a model assumes that the regions correspond-
ing to classes are larger than the minimum sub-image. A similar but different
restriction is that the neighboring pixels of a given pixel will be with a higher
probability from the same class than from an other class. A standard choice
for the prior is thus the Potts model, which penalizes a classification by the
total length of class boundary it contains. Unfortunately, the use of such a
model renders the MAP estimation problem hard to solve, at least rapidly. In
order to avoid this problem of computational complexity while producing a
similar effect, we use two heuristics: we assume that ν is constant on S × S
subimages, called ‘blocks’, but that its values on different blocks are inde-
pendent and equiprobable; and we use a loss function/classification rule that
incorporates a local ‘averaging’ of the class over block neighborhoods called
‘patches’. The set of blocks in an image will be denoted B, and individual
blocks by b. The neighborhood patch P (b) of a block b is the set of blocks in
a larger T × T subimage with b at its center.

For the likelihood, we assume that while the pixels within a block may be
strongly dependent, the data in two different blocks are independent given
their classes. Thus the likelihood of an image I given the classification ν is
given by

Pr(I|ν) =
∏

b∈B

Pr(Ib|νb) , (1)

2 Throughout we use an integer N to represent both the number itself and the set
{1, . . . , N}.

4



where the subscript b indicates a function restricted to the block b. Given our
assumptions about the prior probability of ν, the posterior probability of ν
given an image is then

Pr(ν|I) =
1

Pr(I)
Pr(I|ν)Pr(ν) =

∏

b∈B

1

Pr(Ib)
Pr(Ib|νb)

1

N
=

∏

b∈B

Pr(νb|Ib) . (2)

In order to derive estimates of ν, we introduce the following loss function:

L(ν∗, ν) = −∑

b∈B

∏

b′∈P (b)

δ(ν∗b , νb′) , (3)

where ν∗ is the proposed classification, and ν is the true classification for
which we know only the posterior probability Pr(ν|I). The expected value of
this loss function is

〈L〉(ν∗) =
∑
ν

L(ν∗, ν)Pr(ν|I) = −∑
ν

∑

b∈B


 ∏

b′∈P (b)

δ(ν∗b , νb′)





 ∏

b′′∈B

Pr(νb′′ |Ib′′)




= −∑

b∈B

∑
νP (b)


 ∏

b′∈P (b)

δ(ν∗b , νb′)Pr(νb′|Ib′)


 = −∑

b∈B


 ∏

b′∈P (b)

Pr(νb′ = ν∗b |Ib′)


 .

(4)

Minimization of the mean loss and use of equation (2) then leads to the clas-
sification rule

ν̂b = arg max
n∈N


 ∏

b′∈P (b)

Pr(Ib′|νb′ = n)


 . (5)

This says: “Assign to a block b that class n which, if all the blocks in the patch
P (b) had class n, would maximize the probability of the data in P (b)”. The
effect of this classification rule is similar to that of a Potts prior, in that it
encourages spatial homogeneity of the classification and smooth boundaries,
because neighboring blocks have overlapping patches. Its great advantage is
that it is not necessary to consider the unknown classes of neighboring blocks
in making a classification decision. This reduces computation time consider-
ably. The nature of the classification rule is elucidated by considering that if
P (b) = {b}, the loss function reduces to the negative of the number of correctly
classified pixels, i.e. up to an additive constant, the number of misclassified
pixels, which is the loss function used for maximum posterior marginal (MPM)
classification.

Note what happens to the loss function when the two classifications ν∗ and
ν are identical, i.e. when the proposed classification is correct. The loss func-
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tion then computes the negative of the number of blocks that are surrounded
by blocks of the same class, which is the same up to an additive constant as
the number of blocks that have at least one neighbor with a different class.
Although this is not the Potts prior, it is clearly similar in spirit. Note how-
ever the strange occurrence that even the correct classification is penalized
according to its nature, which renders the loss function unusual.

2.2 Gaussian Mixture Models

The only thing missing above is the probability of a block b given its class,
Pr(Ib|νb). Here we assume that this is given by

Pr(Ib|νb) = A(I)Pr(F (Ib)|νb) , (6)

where F is a feature map from the set of possible block subimages to some
feature space F , and A(I) is class-independent. This assumption is equivalent
to assuming that

Pr(νb|Ib) = C(I)Pr(νb|F (Ib)) , (7)

where C(I) is also class-independent, and thus that the features are sufficient
for MAP estimation. Henceforth we drop the class-independent factors.

Given a feature map, F , the likelihood of the data in a block given its class
will be described by a Gaussian mixture model. Denoting the feature vector
associated to a block by ~x, the probability of ~x is given by

Pr(~x|{pi, ~µi, Σi}) =
M∑

i=1

piG(~x, ~µi, Σi) (8)

=
M∑

i=1

pibi(~x) , (9)

where bi(~x) = G(~x, ~µi, Σi) and G(~x, ~µ, Σ) is a Gaussian of mean ~µ and covari-
ance Σ. The parameters for a given class are thus {pi, ~µi, Σi|i ∈ M}. We have
not indicated the class explicitly.

In order to calculate the value of Pr(~x|νb), we should integrate over the para-
meters of this model using their prior probability, which will be given by the
posterior probability of the parameters given training data. If we assume that
this probability is very sharply peaked about its maximum, we can simply
MAP estimate the parameters from the training data and substitute into the
above likelihood to obtain the integral.
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Figure 1 shows the block diagram of the classification that is applied to an
image block by using the GMMs for modelling the classes . First a feature
extraction is applied on the textured block. Then, each texture model emits
the likelihood that the features of the texture block were generated by the
GMM that models the texture class. Finally, those likelihoods are used for the
final decision.

A GMM is a natural model to use if a class contains a number of distinct
subclasses, as is often the case (for example, forest textures of different types
of trees in an aerial image). An alternative to GMMs would then seem to be to
treat the components of the GMMs for each block as hidden states (effectively,
‘subclasses’), and to couple them to each other spatially, thus producing a 2D
HMM. While this might seem like a good idea, the parameter estimation
problem becomes much harder, both algorithmically and because there are
more parameters to be estimated from the same limited amount of data. In
addition, since the semantics of the hidden states is a priori unknown, it is not
clear that the dependencies introduced by the HMM are present. We choose
to adopt the simpler approach, to be confirmed a posteriori by comparison
with the HMM alternative as used, for example, by Li and Gray [28].

To apply the above classification procedure, we must learn the parameters of
the GMM models given a training set consisting of the data from T blocks of
a single class, X = {~xt|t ∈ T}. We will use maximum likelihood estimation
for this purpose. As is well-known, local maxima of the likelihood for GMMs
can be found using the EM algorithm [36].

2.2.1 Training procedure and the BKG class

In addition to the classes that we wish to classify, we introduce the background
(‘BKG’) class. Its parameters are learned from the blocks in the union of the
training sets of each class. The BKG model has two roles. First, it is used
to initialize the training of the individual texture models, thus ensuring that
the initialization is the same for all classes and not biased towards any one.
Second, the BKG model is used as a ‘no decision’ class. If the BKG model is
more likely than any of the individual classes, then no decision is made.

Although in principle the EM algorithm could be used to train the BKG model,
it becomes computationally expensive for the larger amounts of data involved.
Experimentally we found that using a k-means algorithm instead reduced this
computational expense considerably. Although the likelihood value attained
was lower than that achieved with EM, for the amount of data involved in
training the BKG model the difference was not too large. Coupled with the
nature of the BKG class as a ‘no decision’ and initialization class, a nature
that does not justify a large computational expense, this led us to use the
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k-means algorithm to train the BKG class.

2.3 Feature spaces

We have not yet defined the feature map F , which takes the space of S × S
images to a feature space F , but first we must choose S and T , the sizes of a
block and a patch. For segmentation purposes, there is a trade-off between our
ability to discriminate classes and the accuracy of boundary estimation. How-
ever, for retrieval purposes, the accuracy of texture boundaries is less critical.
We choose a block size of S = 16, because the results from our experiences
showed that it is large enough to capture a reasonable sample of the largest
structures in the textures in the images with which we are dealing. The block
size, should ideally be adaptive to the texture pattern and to the image reso-
lution such that it will change for different textures/resolutions of the images,
however in this work we fixed the block size. Choosing patch size is equivalent
to choosing a degree of smoothing for the classifications: there is a tendency
for blocks near the center of a given patch to be assigned the same class, since
their corresponding patches have many blocks in common. We choose square
patches containing nine blocks.

We divide the feature spaces into two subspaces: structure features and color
features. Structure features are designed to capture spatial regularity of the
image over the block, and will be extracted from the intensity images alone.
Color features will use the full RGB information. Practically speaking, color
provides an extremely powerful cue for the distinguishing of different classes
in the scene.

2.3.1 Structure Features

For the structure features we used three main kind of features : 2D Autore-
gressive model, energies in different wavelet subbands and energies of DCT
regions. The reason for using those kind of features is because they have been
proved to be efficient in texture analysis and because they can be applied on
small blocks of texture. In general the only restriction on the feature extrac-
tion used as an input to the GMM is that it will extract the information from
small blocks of image without the need of the image surround the block.

The Auto-Regressive features are the coefficients estimated by a least square
estimator of non symmetric half plan directly from the image data. In table 1
we presents two model orders (1,1) and (2,2) which consists 4 and 12 coeffi-
cients respectively. In addition to the AR coefficients we added the mean and
the variance of the image block because this information is not represented by
the AR coefficients.
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The second kind of features are based on the energies in different wavelet sub-
bands. We evaluated four diffident wavelet decomposition: Haar, Daubechies-4,
and two kind of biorthogonal spline wavelets. More details about those wavelet
decompositions can be found in [37]. For each wavelet we evaluated several
levels of decomposition which define the number of subbands.

The last kind of features is the energies of DCT coefficients in regions of
frequency space corresponding to a wavelet decomposition. This set of features
(which are similar to the features used in [28,38]) are defined as follows, for a
2s × 2s block: f00 = D0,0 and, for m ∈ [1, . . . , s], by

fm0 =
2m−1∑

i=2m−1

2m−1−1∑

j=0

|Di,j| (10a)

f0m =
2m−1−1∑

i=0

2m−1∑

j=2m−1

|Di,j| (10b)

fmm =
2m−1∑

i=2m−1

2m−1∑

j=2m−1

|Di,j| , (10c)

where {Di,j : i, j ∈ {0, . . . , 2s}} are the DCT coefficients of the block and s is
the scale of the feature extraction. This is illustrated in figure 2.

2.3.2 Color features

As color features, we used the data mean and covariance over a block of the
RGB and LAB values which is a non linear transformation of RGB. Since
the covariance matrix is symmetric, only half of it, including the diagonal, is
included in the feature vector. The color feature vector is thus a 9-dimensional
vector, 3 coming from the mean and 6 from the covariance.

2.3.3 Combining color and structure

Since we have both color and structure features available, we have to com-
bine this information. We experimented with five different ways of doing this:
three ways are decision-level fusion based on defining a confidence value for
the classifications and the other two ways are at the feature-base level by
combining the structure feature vector and the color feature vector into one
feature vector.

The first method works as follows. For each block, and for both structure and
color features, we compute the right hand side of equation (5) for all classes.
Let n1(b) and n2(b) be the maximizing and next-to-maximizing classes for
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block b. We define the ‘confidence’ of the classification decision by

C1(b) = Pr(Ib|νb = n1(b))/Pr(Ib|νb = n2(b))] . (11)

If the classifications resulting from using the structure features and the color
features conflict, we choose the decision with the highest confidence.

The second method is similar to the first one just that the confidence value
is the ratio between the maximum likelihood and the likelihood of the Back-
ground class, as given by:

C2(b) = Pr(Ib|νb = n1(b))/Pr(Ib|νb = bkg)] . (12)

The confidence measure used above can be replaced by the negative entropy
of the posterior distribution Pr(ν(b) = n|Ib) . This is the third method.

The fourth and fifth methods are different from the previous methods because
the fusion is done already at the feature extraction stage. The idea of the
forth method is to create one feature vector by concatenating the structure
feature to the color feature. The fifth method idea is to apply the structure
extraction to each component of color. The advantage of those methods is
that the statistical model take into account the dependencies between the
structure feature and the color feature. However it suffers from ”course-of-
dimensionality” because the dimension of feature vector is larger then the
dimension of the color and structure feature. Therefore the number of unknown
parameters of the model is much larger and there is the need for much more
data in order to estimate the parameters.

As discovered, at least for the experiments reported here the fusion based on
the confidence value that is the difference between the maximum likelihood
and the next to maximum likelihood results with the best performances.

3 Experimental results

We used several databases in order to evaluate the GMM classification perfor-
mances, to study more about the GMM properties and to compare the GMM
performances with other statistical models. The experiments were conducted
on the MIT Vision Texture (VisTex) database, on mosaic images created from
the VisTex database, and on the aerial images of the San Francisco Bay area
that were used in [38,28,39,40].
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3.1 Vistex texture database

We chose randomly 24, 512× 512 textured color images from the Vistex data-
base. The textures are displayed in figure 3. The feature extraction was done
on blocks of size 16, with overlap of 8 pixels. The patch size for classification
was 3. Each image was divided into subimages of size 32 × 32 pixels, corre-
sponding to one patch. All blocks extracted from the first 96 subimages of
each texture were used for training, while the remaining 160 subimages were
used for testing.

For each class we trained a GMM with five components using 30 iterations of
the EM algorithm. We chose five components because increasing the number
of components did not improve the results significantly. We used 30 iterations
for a similar reason: the EM algorithm appeared to have converged after this
number of iterations. We used the same initialization for each texture class:
the BKG model. The results of the classification using the color features (RGB
mean with covariance), the structure features (DCT scale 4) and the combined
decision by using confidence value based on second to maximum are shown in
table 4.

3.2 Choosing the Feature Extraction

Even though the main focus in this paper is the use of GMM for texture
classification, an important question is which feature extraction is the most
appropriate to be used as the input for the GMM. As mentioned in subsection
2.3.1 we have evaluated the performances of several kind of feature extraction
for the structure information including the energies in different wavelet sub-
bands, coefficient of 2D Autoregressive , and the DCT coefficients in regions of
frequency space corresponding to a wavelet decomposition. The performance
of the classification by using difference feature extraction on the Vistex Data-
base are given in table 5. As can be seen from the table the DCT like wavelet
perform a lightly better classification than the other feature extraction.

For the ’color’ feature we evaluate the mean and the covariance of the three
components color in the RGB and LAB color space. As can be seen from table
6 the classification performance of LAB and RGB space is very close to each
other. However as shown in the next sub-section, we found that the fusion of
classifications based on the features RGB and DCT-like wavelet gave the best
results.
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3.3 Fusing the ’structure’ and ’color’ information

As explained in subsection 2.3.3 we applied five methods for fusing the ’struc-
ture’ and ’color’ information in order to improve the performance of classifi-
cation. Three of the methods are based on defining a confidence value for the
classifications based on ’structure’ and ’color’ features. Table 7 presents the
main results of fusing the ’structure’ and ’color’ decision on Vistex database
by using confidence values methods. As can be seen from table 7, fusing the
decisions improve the performances. However, the fusion method that is based
on the difference between the maximum likelihood and the 2nd maximum like-
lihood had the best performances especially when using the RGB mean and
covariance as the color features and the DCT of 4th scale as the structure
features.

Another interested experience is combining the ’structure’ and ’color’ features
into one feature vector and using it as the input feature for the GMM. We used
two ways in order to combine the ’structure’ and the ’color’ features. The first
way was concatenating the two vectors in one vector and the second way was
applying the ’structure’ feature extraction on each color component R G B.
The results of this experience are shown in table 8. Comparing those results to
the results achieved by fusing the ’color’ and the ’structure’ classification by
the confidence value, we can notice that fusing by confidence value is prefer-
able. The main reason for that is that high dimension of the feature vector
cause to ”course of dimensions”. As the feature vector has a higher dimension
the GMM has more parameters that needs to be trained and hence there is a
need for much more training data. The ”course of dimension” is the most ob-
vious in the case that the feature extraction is DCT like wavelet of scale 4 and
is applied to each component color R,G and B. In such a case the dimension of
the feature vector is 13X3=39 and therefore each Gaussian covariance matrix
consists 780 unknown parameters which is an enormous number of unknown
parameters.

3.4 Full or diagonal covariance?

In the experiments described above, we used an unrestricted covariance for
the GMMs because the different features could be arbitrarily correlated. It is
also possible to restrict the GMM to have diagonal covariance. The use of a
diagonal covariance has two practical advantages:

(1) There are less parameters to be estimated.
(2) Calculation of the inverse matrix is trivial.
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Because of these advantages, there are applications, for example speaker ver-
ification, in which a diagonal covariance is used [41]. The obvious disadvan-
tage of assuming diagonality is that the different features may in practice be
strongly correlated, in which case the model will be incapable of representing
the feature distribution accurately.

Figure 4 illustrates the point. We chose randomly two features from the struc-
ture features ”DCT of scale 4”, and two features from the color features ”RGB
cov. and mean”. The first row of the figure shows scatter plots of these two
pairs of features for a sample of the “Bark0” texture. The second row shows
typical isoprobability contours from each of the components of the full covari-
ance GMMs trained on these two feature pairs, while the third row shows the
same contours for the corresponding diagonal covariance GMMs. Each GMM
has five components. For the diagonal covariance GMM, the axes of the iso-
probability contours, which are ellipses, are constrained to be parallel to the
feature axes, which is not the case for the full covariance models. In figure 4,
we see that the color features we selected are strongly dependent, and that
therefore the GMM must use a full covariance matrix in order to model the
color feature distribution correctly. For the structure features, the difference is
far less clear, and it seems that a diagonal covariance matrix is sufficient. An
evaluation of the two types of model in the Vistex experiments is presented
in table 3. There is a large decrease in the classification accuracy when diag-
onality is enforced for the color features, while for the structure features the
decrease is small.

3.5 Choosing the number of GMM components

An important issue in mixture modelling is the selection of the number of
components. The usual tradeoff in model order selection arises: with too many
components, the mixture may over-fit the data, while a mixture with too few
components may not be flexible enough to approximate the true underlying
model. There are many algorithms that discuss how to select the model order,
for example [42,43]. Selecting the number of components in the GMM is crucial
for unsupervised segmentation tasks in which each component represents a
separate class. In our case however, when each GMM models a single texture
class and segmentation is supervised, selecting the number of components
becomes less important. It can be seen from table 9 that the results of the
classification are very similar for all model orders greater than one (Selecting
the GMM order to be one means that we are using a multivariate Gaussian.)
and for both the color and structure features the GMM with five Gaussians
has the best classification performances.
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3.6 Classification at the boundary of two different textures

By using the Vistex Database we have created several mosaic images in order
to illustrate the results of the classification at the boundary of the textures.
Figure 5 shows the results of classifying a mosaic image with straight lines
boundaries while figure 6 shows the results of classifying a mosaic with a
round boundary. In both figures we can clearly see that the error rate is much
higher at the boundary of the textures then at the center of the textures.
However the general shape of the boundary can be recognized even after the
classification. The reason of the higher misclassification at the boundary is
due to the fact the GMM algorithm is based on the assumption that there is a
patch of 3X3 blocks that contain the same texture. This assumption is false at
the boundary between two texture, however if most of the blocks in the patch
are from the same texture there is a high chance that the algorithm will still
work. The error at the boundary was our main reason for choosing a small
patch even though choosing a bigger patch would increase the performance in
the center of the texture.

Part (c) and (d) in the figures 5,6 show the classification results when using
the ’structure’ and ’color’ feature respectively. Part (b) shows the classification
results after the fusion by using the confidence value based on the difference of
the ML and the second ML as described in section 2.3.3. It can be seen from
both figures that some of the textures are better classified by the ’structure’
features while others by the ’color’ features. For instance, the textures on the
right side of the image in figure 5 (food and fabric13) have dominant colors
components and therefore is better classified by the ’color’ features. On the
other hand the texture on the left-button side (tile7) in the same image has
a very unique structure and therefore is better classified by the ’structure’
features. From both figures it can be seen very clearly that the fusion of the
classifications improves the classification both at the edges and at the center
of the textures.

3.7 Aerial images

This database includes six 512× 512 grey-scale images with manual segmen-
tations of the images into man-made and natural areas. We used the manual
segmentations as ground truth for evaluating the algorithm. The images are
displayed in Figure 7.

We used this database for evaluation exactly as it was used in [38,28]. For each
iteration, one image was used as test data, and the other five were used as
training data. Overall performances are evaluated by averaging over all itera-
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tions. Each class (‘man-made’ and ‘natural’) was modelled by a five-component
GMM of the structure features only, since clearly there is no color information.
For initialization we used the BKG model.

The results from the GMM algorithm were compared to the results from other
statistical models reported in [28,38]: the 2D HMM (two-dimensional hidden
Markov model) [28]; the 2D MHMM (two-dimensional multi-resolution hid-
den Markov model) [38]; CART (a decision tree algorithm) [44]; and LVQ1
(version 1 of Kohonen’s learning vector quantization) [45]. The classification
performance for each test image in the six-fold cross-validation and the aver-
age performance rates are listed in table 10. The results in table 10 indicate
that for this specific experiment the GMM model perform slightly better then
the MHMM and HMM and superior to the CART and LVQ algorithm. This
result is significant because the complexity of the GMM is much smaller then
the MHNN and the HMM model.

By comparing the average classification of the aerial images with the average
classification of the Vistex database (Table 4) we notice that the performances
of the Vistex database are better then those in the aerial photos. The main
reason for the difference is due to the fact that the aerial images contain much
more boundaries between textures then the Vistex database. As we saw from
the experiments of the mosaic images in section 3.6, the error rate is much
higher at the boundary of two textures then in the areas that there is only
one kind of texture.

4 Conclusion

We have described Gaussian mixture models of texture and color features. We
have evaluated the classification performances variety of ’color’ and ’structure’
features and found which are the most appropriate one. In addition we sug-
gested several methods for combining the ’color’ and ’structure’ information
and analyzed the influence of the model selection of the GMM and the influ-
ence of using a diagonal covariance versus the full covariance of the Gaussian.
The advantage of using the Gaussian mixture models presented here, is that
they provide improved performance over other existing methods, while requir-
ing only modest computational requirements.
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Fig. 1. Block diagram of texture classification algorithm using GMM
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Fig. 2. “Wavelet-like” DCT features for a 16 × 16 block. Each feature component
is the sum of the square magnitudes of the DCT coefficients in the appropriate
sub-block. The sub-block are of 4 different scales, 1x1,2x2,3x3,4x4, hence we call it
DCT scale 4.
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Fig. 3. Textures from the Vistex Database: Bark0; Bark12; Fabric0; Fabric4; Fab-
ric7; Fabric8; Fabric11; Fabric13; Fabric15; Fabric17; Fabric19; flowers0; Food0;
Leaves12; Grass1; Clouds0; Brick0; Wood2; water0; Tile7; Stone4; Sand0; Misc2;
Metal0.
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dot plot of two color feature

GMM full covariance

GMM diagonal covariance

dot plot of two structure feature

GMM full covariance

GMM diagonal covariance

Fig. 4. Modelling the distribution of two structure features and two color features
using a full covariance GMM (second row) and a diagonal covariance GMM (third
row).
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Fig. 5. Mosaic Image and its classification by using color and structure features.
Subplot (a) is the Mosaic image created from the Vistex Database. Subplot (c)
and (d) are the classification results by using the ’structure’ and ’color’ feature
respectively. Subplot (b) is the classification results after the fusion process. The
color bar on the right of subplots (b,c,d) represents the index of the 24 textures
that exists in our database.
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Fig. 6. Mosaic Image and its classification by using color and structure features.
Subplot (a) is the Mosaic image created from the Vistex Database. Subplot (c)
and (d) are the classification results by using the ’structure’ and ’color’ feature
respectively. Subplot (b) is the classification results after the fusion process. The
color bar on the right of subplots (b,c,d) represents the index of the 24 textures
that exists in our database.
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Fig. 7. Aerial images. On the left of each pair, the original images. On the right, the
manual segmentations. The dark areas are natural, the lighter areas, man-made.
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Table 1
Different structure features used with the GMM
Name of the feature Description Dimension

AR with Mean 2D Auto-Regressive coefficients of order 1,1 4+1

AR with Mean 2D Auto-Regressive coefficients of order 2,2 12+1

AR with Mean with Variance 2D Auto-Regressive model of order 1,1 and its variance 4+1+1

AR with Mean with Variance 2D Auto-Regressive model of order 2,2 and its variance 12+1+1

Wavelet Haar scale 3 Energies in Haar-wavelet subbands of level 3 10

Wavelet Haar scale 4 Energies in Haar-wavelet subbands of level 4 13

Wavelet Daubechies4 scale 4 Energies in Daubechies4-wavelet subbands of level 4 13

Wavelet Biorthogonal-1 scale 4 Energies in Biorthogonal-1 wavelet subbands of level 4 13

Wavelet Biorthogonal-2 scale 4 Energies in Biorthogonal-4 wavelet subbands of level 4 13

DCT scale 3 DCT like wavelet of scale 3 10

DCT scale 4 DCT like wavelet of scale 4 13
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Table 2
Different color features used with the GMM
Name of the feature Description Dimension

RGB Mean Mean of the R, G, B over block 16X16 pixels 3

RGB Mean and Cov RGB Mean and Cov Matrix over block 9

LAB Mean Mean of the L A B over block of 16X16 pixels 3

LAB Mean and Cov LAB Mean and Cov Matrix over block 9
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Table 3
Classification accuracies (percentage) of the full and diagonal covariance GMMs
using color (RGB mean and cov.) and structure features (DCT of scale 4).

Color Structure

Diagonal cov. GMM 71.2 90.9

Full cov. GMM 90.6 91.2
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Table 4
Classification results (in percents) on 24 textures from the VisTex Database.

Index Texture Structure Color Both

1 Bark0 99 96 100

2 Bark12 66 91 94

3 Fabric0 100 100 100

4 Fabric4 69 86 89

5 Fabric7 99 93 99

6 Fabric8 96 99 99

7 Fabric11 83 98 96

8 Fabric13 93 93 99

9 Fabric15 98 100 100

10 Fabric17 98 88 97

11 Fabric19 99 94 99

12 Flowers0 91 98 98

13 Food0 98 100 100

14 Leaves12 94 28 93

15 Grass1 94 95 98

16 Clouds0 100 99 100

17 Brick0 93 96 96

18 Wood2 100 100 100

19 Water0 41 88 84

20 Tile7 99 65 88

21 Stone4 98 71 91

22 Sand0 99 100 100

23 Misc2 95 100 100

24 Metal0 97 98 99

Avg. Structure Avg. Color Avg. Both

91.2 90.6 96.6
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Table 5
Texture classification performance using structure features on Vistex Database

Name of the feature Performance

2D AR of oredr 1,1 with Mean 80.9

2D AR of order 2,2 with Mean 86.0

2D AR of order 1,1 with Mean with Variance 89.6

2D AR of ordere 2,2 with Mean with Variance 90.4

Wavelet Haar scale 3 87.2

Wavelet Haar scale 4 90.1

Wavelet Daubechies scale 4 89.5

Wavelet Biorthogonal-1 scale 4 88.6

Wavelet Biorthogonal-2 scale 4 86.0

DCT scale 3 89.8

DCT scale 4 91.2
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Table 6
Texture classification performance using color features on Vistex database

Name of the feature Performance

RGB Mean 74.7

RGB Mean and Cov 90.6

LAB Mean 77.0

LAB Mean and Cov 90.8
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Table 7
Texture classification performance after fusing color and structure features at the
decision level by using confidence value that is based on 2nd maximum likelihood,
on the BKG class likelihood,and on the entropy of the posterior distribution

2nd maximum likelihood BKG likelihood entropy of the posterior
XXXXXXXXXXXColor

Structure
AR DCT scale 4 AR DCT scale 4 AR DCT scale 4

RGB Mean and cov 90.8 96.6 90.9 92.0 90.4 92.3

LAB mean and cov 94.5 91.9 92.9 91.9 91.5 92.2

32



Table 8
Texture classification performances of combined colored and structured featured

The feature performances

concatenating the DCT like wavelet scale 3 and the mean of RGB 86.9

concatenating the DCT like wavelet scale 4 and the mean of RGB 87.2

dct scale 3 on each component color R,G and B 90.8

dct scale 4 on each component color R,G and B 79.6
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Table 9
Estimated probability of correct classification as a function of the selected order of
the GMM, using structure features (DCT of scale 4) and color features (RGB mean
and cov.) on the Vistex database

GMM order 1 2 3 4 5 6 7 8 9 10

’structure’ Pcorrect .563 .889 .895 .903 .912 .906 .904 .902 .898 .896

’color’ Pcorrect .702 .882 .902 .904 .906 .902 .898 .897 .898 .895
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Table 10
Classification performances (correct rates) by algorithm

Iteration CART LVQ1 HMM MHMM GMM

1 77.4 78.4 81.0 82.7 83.6

2 92.0 80.9 82.4 83.7 86.0

3 71.1 71.6 79.7 72.2 80.4

4 74.8 75.1 76.0 79.5 80.9

5 85.8 81.3 81.7 87.5 95.8

6 79.8 81.9 86.7 88.5 84.6

Ave. 78.5 78.2 81.2 84.0 85.2
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