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levels of the money stock (M) and real output (). The calculation of such price
level forecasts becomes reievant now that many national authorities publish

medium-term projections for the money supply. Since the ultimate aim of
monetary policy is to create stable inflationary expectations, it is vital to know
which future path of the price level is implied by any proposed path for the
money stock. In this paper, no extraneous information will be used for the
computation of the forecasts, apart from historic data for p, M, and y; the
forecasts are based on a limited quantity of information. In a static world,
therefore, it should not be hard to perform this particular problem in macro-
economic forecasting. Ciie could use an "off-line" statistical method, such as
ordinary least squares or vector autoregression, to estimate the laws cf motion
of p, M, and y and subsequently feed in projections for M and y to compute
the corresponding values for p. The residual variance of the ex-post "forecast"
errors would indicate the degree of precision with which genuine ex-ante fore-
casts could be made.

How relevant the static
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The first type of event is that studied by Brunner, Cukierman,
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Meltzer (1980). It leads to serially correlated forecast errors for p but does not
yet force agents to rethink the model they have been using to compute the
forecasts. The second and third types of events to be discussed require agents
to undertake a leamning process for updating the forecasting formulas. Th: three
ciasses of events that will be treated ir. this paper far from exhaust all possible
ways in which a break with the past might occur. I shall mention briefly ad-
ditional radical changes of regime and attempt to arz .2 why their consequences
cannot be analysed within the context of our simple model.

In sections IV and V of the paper I make an attempt to show how
Kalman filtering methods can be used to model tlie learning processes that are
associated with the types of events that can be analysed with the model.
Quarterly data on money, real output, and prices from five Western Eurcpean
countries «nd the United States are used for the empirical work. Section IV
shows how the Multi-State Kalman Filter (MSKF) can be used to simulate the
way in which agents learn about a restricted class of changes in the law of
motion of an exogenous variable. Section V is concerned with the Recursive
Prediction Error (RPE) method of Anderson, Moore, and Ljung that can be
used to model a learning process regarding transitory and permanent shifts in
the demand for money. Both the MSKF method and the RPE algorithm are
"on-kine" methods, so that the forecasts and the parameter values generated
~re rurely ex-ante and do not require any information from time periods that
are yet to come. The paper terminates with a brief conciuding section.

II. ATHREE-VARIALE MODEL FOR THE PRICE LEVEL

Exhibit 1 gives the three-equation model that will be analysed in this
paper. The central equation of the model is equation (2) that uses an inverted
demand for money function to connect the expected future price level in a
closed economy with expected values of the money stock and the level of real
output. (1-05) is the income elasticity of the demand for money, and 07 is

minus the elasticity of the demand for money with respect to the opportunity
costs of holding money as measured by the expected rate of change of the price
leve.. if the expected real rate of interest were constant, then -67 could also

represent the interest elasticity of the demand for money. I do not deny that
ik.e fit of this inverted demand for money function over a historical perioc could
be improved by including observed values for interest rates in addition to the
term in expected inflation. However, such a procedure would only make it more
difficult to use the results for assessing the feasibility Hf forming medium-term



Exhibit 1. - a three variable mode! for prices, inoney, and output

state equations ﬁ] c +0g+ €5Ayt+1 +04¢, (1) ‘
RPE
e _.¢e € 4 : method
Pl =€t TMppy Vg 107045 (2)
cbservation equation  p, = pt+6 M M) - 0,09, (3)
auxiliary equations M‘I, =Mt M 1 (4)
e _ e -
Vi1 Ve Ve )
expecntions It +1 =M+ (1 )M M) (6ﬂ
of exogenous MSKF
variables yt_,_1 yt+(1 w )16} -y ) (7)—] method
mearing of symbols:
p - the natural logarithm of the aggregate p-ice level
M - the natural logarithm of the money stock
Yy - the natuial logarithm of the level of real output
A caret " ™" indicates the relative rate of growth cf a variable.

61, 62, 04, s, 8¢, 07 and Yy, n,by are pgrame:ters; agents icarn about their

optimal values as time :0es on. €, is a serially uncorrelated error-term.

projections of the price level, because our ability to predict movements in real
interest rates is still limited. Therefore I have limited ¢{he information set in this
model to data on money and output, past data on the price level and internally
generated rational expectaiions of future rates of inflation. This information
set can be appropriate for a model of a closed economy or an economy on
flexible exchange rates: in an op:n economy wiih fixed exchange rates, one
would want to include the rate of change of some foreign price iidex in the
information set that agents use to form their inflation forecasts.

Equation (2) is an inverted demand-for-money function in the levels
of M, y, and p. If the income velocity of money is subject to permanent shifts
over time, with the precise extent and the timing of such shifts unknown t» the
econometrician, then estimation of an ordinary least squares equation in terms



of levels runs inte difficulties. Thus, many researchers prefer tc work with rates
oi growth of M, y, and p, since permanent shifts in vetocity have a transitory
influence cnly on the rate of change of velocity. (sec Fioss:r and Schwert
(1978) for additional arguments in favor of working with differenced data).

However, a specificaiion in terms of growih rates makes the estimation
of any lagped efiects ruch :nore difficult. To see this, assume, for example,
that the time series model that connects two variables x and y is:

Ye=xp 1ty
with u, a seriaily uncorrelated residual term
let x, be a pure random walk:

Xp=Xpy ¥y

with v, a serially uncorrelzted white noise term.

If a rescarcher is unaware of the one period lag and mistakingly re-
gresses ¥, on x . instead of x, ¢, he will still obtain a consistent and unbiased
estimate of the true regression coefficient, since

Yp=Xptup-vy

However. if the regression is run .n first-difference form, then the coefficient
of Ax will only be 1 if the lag is specitied orrectly. A regression of Ay, on the

contemporaneous change in x, Ax,, will produce a regression coefficient that
tends to O:

Ly, =0.8x,+ v, tup-upy

As in the case of the demand for money, we are often confronted with
botk problems at the same time: permanent shifts of unknown magnitude and
tiriing in the "constant i2rm" of our model if it is specified in terms of levels,
cnd lack of guiday:e from >conomic thecry wiia respect to time lags that makes
it hazardous 1o werk witii differenced data. With the Recursive Prediction Error
method that will I discussed below we are avle to work with levels, because
the “constant term ' in our model can inzorporite permanent shifts that may
SoCur.

Equation (1) explains the evalution over time of the "constant term"

e



in the inverted demand for money function. 0 represents a trend term about
which agents learn as time goes on. The term 05Ayﬁ+l indicates whether the
expected path of velocity is incom= dependent. If 65 equals O, then the elasticity

nf the expected demand for real balances with respect to expected real income
is unity. The final term in equation (1), 0 4¢€;, has to be seen in connection with

the error term in equation (3). It shows which proportion of the unexplained
surprises in the price level is relevant for the prediction of next period's p iwe
level. '

Together, equations (1) and (2) are the "state equations’’ in our model.
They indicate the movement of the unobservable variables c:;’_,_l and p‘;_ﬂ.

An anchor is provided by equation (3), which is called an "observation equation"
in the terminology of Kalman filtciing. This equation shows how the observed
value of the current price level p, is related to the expectation plf that was
formed at the end ¢ #w gsevious period.. Part of the discrepancy can be ex-
plaired by the currer: surprises in the two exogenous variables of the model:
‘[Mt -Mf ) and (v; - y?). €; represents that portion of (p; - pf) whicii cannot be
eXplained by these two variables.

Our model does not explore the interconnecticns between current
surprises in money, output, ar.d all the reievant opportunity costs in the demand
for money. Therefore it is impossible to deduce on theoretical grounds the
signs of the coefficients of M - M€ and y - ¥¢ in equation (3). If the predominant
eifect of an unanticipated monetary surprise is to shift the aggregate demand
curve outward in an aggregate p - y diagram, then such a surprise raiscs both
output and prices beyond their expected values, and the siga of 6; should be

positive. If, however, the expectational errors (v, - yef) are primarily caused by

unforeseen changes in productivity, these should be represented by unforeseen
shifts of the aggregative supply-curve along the aggregative demand-curve and the
coefficient of Y- yi should be negative. 0] and 6, do not have an interpretation

as elasticities and do not shed light upon the nature of the fransmission process.
The observaticn equation has been extended with terms in (¥, —M‘;} and v -y,)

only to sharpen the estimates of tie state varizble pj;' and the parameters 6,
”6’ 64, and 04 in the state equutions. The discrepancies (@ g4q - pf;:'+1) are the
‘inal measure of the u.ctulness of this model in predicting future price levels;

~ L &

the residuals of the observation equation €, serve to steer the evolution of the

state variables and the parameters. Details of the computational procedure zre

given in section I'V below.
Equaticns (1) and (5) are auxiliary eyuations that connect the expected
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leveis and the exoecte ' growra rates of M and y. Levels of variables are used in
the two state equation: and .n the observation equation that are to be estimated
with the Recursive Prediction Error method. Since the univariate models for
money and output com pute expected growth rates of these variables (equations
(6} and (7,), the auxiliiwy equations (4) and (5) are needed to connect the two.

Equations (6) and (7) govern the evolution of expectations with respect
to money growth and output growth. This particular type of simple error-
leamning pro ¢ss is appropriate if the actual growth rates of M and y follow an
ARIMA (0, I, 1) process. As will be explained below, the Multi-State Kalman
Fiiter not cnly allows us to 'earn about the current value of the state variables
M? +1 and ;’fﬂ but also :llows for learning with respect to the parameter

values Yge and %~ Morcover, the methad allows for the values of Yy and n,liy
to differ according to the magnitude of the current error M - Mf and j’t - j'f.

In other words, the MSKF aigcrithm can cope with situations in which small
errors in predicting morey growth or cutput growth have to be incorporated
almost one-to-one into the revisions of expected future growth rates (y close
to zero), whereas any exceptionally large prediction errors that might occur
should not be incorporated one-to-one into the expected growth rates, being
more¢ temporary { close to one).

As the luyout of the model in Exhibit I shows, the problem of forming
rational forecasts ot the two input variables M and y is considered prior to the
problem >f computing ¢ptimal forecasts of the expected future price level. An
alternativ: procedure would be to corpute forecasts of the input variables
jointly with forecasts of the endogenous variables of the model. I have not
followed the simultaneous approach, since to do so would viol.ite to some extent
the asumption that M and y are exogenous input variables. The problem to be
considered in this paper is that of forecasting price levels for given projections
of moncy and ouiput. This setting doss not allow for feedback from prices to
money and output, anc therefore the expectations of future money growth
and output growth have not been calculated in a simultaneous multivariate
context

If. DIFFERENT WAYS IN WHICH THE WORLD MAY CHANGE

Taroughout this section I shall assume that economic agents are aware
of the currernt vaoives of the parameters 91, 02, 84, 05, 06, 3-,- and the parame-

ters ¢y, and wfry in the models for A€ and y°. Agents are also aware of the

current variance-covariance matrix of these parameters and of the variance in
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the error term €;. They do not possess a

v insight into the future nlane af the
- p TEYETT ALATRS ALY LW VMAW pAMMIO VI Vit
manntam? anthAanitias memAl all Sluo s Jea i e LL_,, TR VO .
moneiary auumoritics, and au tiie new nformation y get 1S imited to the
ocnerant valnee ~f 2 A nmd ar £ aman dles 4B mcs ~
CRITCNY Yauds O p, o1, and y. Lonsequenily, they can leam omy about any
| PPN 1. PO Ty e A AL 4

(CCULTC mruugn aeaucmg neu' nature from the patiems
diction errors M ¢ e ¢ and y, yt and the model erross ;.

Within the context of sur simple mod:l, the following three types of
unexpected events can be profitatly studied:

1. A purely temporary change in the mi and permanent
shocks that derermine .the evolution
2. A permanent change in the relative importance of the transito:y and

permanent shocks that govern the behavior of M, and/or 3.

3 A permanent change in the relative importance of temporary and
permanent shi/'ts in the inverted demand for money function, equation
791
(<

These three types of events will be studied in some detail, and the empirical
work in sections IV and V will show how the learning processes necessitated
by these events can be modelled. The present section will conclude with a
brief discussion of sore radical types of events, such as the mdney supply
process getting into a "higher gear," or a qualitative change in the inflationary
process. Such events are frequently discussed in the literature; for example,
in connection with the dynamic stability of the demand for money, but I shall
t

argue th ey are of bounds within the context of the present model,
because thev would involve a learning nrocess that quires changes not only

W RIS I ‘IIIVJ VI PLS ANV \JAVY W - l"‘ll.‘llb xll\wvvvv waAe AW o o
in the wvalua nf the narametere hut alen in the snecification of the demand for
A5k i T QRAVW Wi ViAW "U-‘w.lwlvl\’ UWs QAU 23k ViAV Upvwaiawiswatoas s wasw wew =

f AR SN Fasdiomen o e

A purely temporary change in the mixtire of transit
shocks that determines the evolution of f‘vft and/or f’t This type o

best studied when writing the ARIMA (0, 1, 1) model in the Kalman filter way:

Mi=M,; +my, (8)
M,=M,+ ey, 9)
€y ; and 7y , are mutually independent and serially uncorrelated error terms.

n be wiritten down for y, In these Kalnan



expected growth-rate of money moves as a pure random walk over time.
Equation (9) is the observation equation that shows how the actuil growth-rate
of money anchors the expectational values. The connection betw:en equations
(8) and (9) with the first order moving average model becomes clear wh=n we
shif{t equation {9) one period backwards and subtract the result from the original
equatiun (9). We get:

AMp= MMy )+ €pp p€0p 2.1 = Tt Y €M, 7€M 1-1 (10

It follows from equation (10) that the autocorrelation function (ACF) of
AM, must be zero for all lags greater than one. The corresponding time series

model, therefore, must be the first order moving average model:
AM, = (1 - yBa, (1)

Here, ¥ is & constant moving average parameter and the a; arc the nois:s that

drive this time series model. Box and Jenkins (1970, 122-125) show how a
rompa-ison of the ACFs of (10} and (11) results in an equation expressing the
value of ¥ as a function of the variaaces of =y, , and ngy ;.

As long as the ratio of the variances of ey , and 73y , does not . hange,

both the Box-Jenkins model (11) and tte Kalman filter madel (8) :ind (9)
produce serially uncorrelated errors. Assurr.c now that there is a purely tempo-
rary deviation from the usual patterns of the shocks. A useful example would be
the simultaneous occurrence of an ¢xceptionally large value for the permanent
shock n, and a zero value for the transitory shock €, after v hich both noise
terms return to normal. This particular case of a tempcrary aberration is studied
extensively by Brunner, Cukierman and Meltzer (1980) within the context of a
model that incorporates more markets than the one-market model of section
II but is constructed out of building blocks similar to those I have employed.

perind n €
0 normal normal
H large 0
2 normal nonmal
3 normal nommal
17 " "

With ¢ between zero and one, the above sequence of shocks must result in
serially correlated forecast errors for M, because agents are not aware that the
large shock i1 period 1 is of a purely permanent nature. Thus, as is stressed by

14



Brunner, Cukierman, and Meltzer, a single event gives rise to a series of corre-
‘ated errors:

Evidence of ex post serial ccrrelation in a particular sample
is not evidence of mefficier.c use of information. Rational
agents, looking back on the period, find support for the hy-
pothesis that a large permunent shock occurred but was
misperceived at the time, (Brunner et al., p. 486)

Branner, Cukierman, and Meltzer showw how an unavoidable confusion beiween
trensitory and permanent shocks helps to explain why real wages appear to be
"s:icky," and why a single unexpecte«t event that is misinterpreted by econcmic
ag:nts can lead to a iengthy period d iring which the actual unemployment :ate
deviates from the natural rate.

A leaming process tskes place, of course, with respect to the correct
value of the und:rlying, permanent jrowth-rate of the money stock M’t. How-

cver, as long as the event described :bove occurs in isolation. there is no need
fcr agents to update their estimate of the moving average parameter Y. Only
if the frequency with which this type of event occurs increases will agents hav:
tc revise their cstimates of the varian e of the permanent shocks and will their
estimate of ¥ cl:ange accordingly. B it then we have reached the next itera on
our agenda: an event that permanently alters agents' perception of the law of
motion for an exogenous variable.

Type 2
A permcnent change in the relative importance of the transitory and
permanent shock: that govern the belavior of M, and/or )3,. This second type of

change can occur in at least three way:

Firzt, it is possible that ager:ts perceive that the variance of their fore-
cast errors in predicting the growth-rites of money and/or output has increased;
second, they mav have doubts about the purely incidental charzcter of a change
of the first type described above and therefore, wish to adapt taeir prior proba-
b:iities regarding the expected futur: variances of € and m; third, agents may
fir d that their ¢urrent estimate of y' is no longer optimal and that a diffcrent
vare for the pa:imeter results in forc cagt errors that better approximate serially
u.icorrelatec white noise.

In all three cases, it remains -orrect to describe the evolution ot M »d
7. by means of an ARIMA (0, I, 1) model. There is a quanfitat’ve chunsc n

that ihe optimal value of the moviig average parameter and/or the estimate
of the residual variance changes, bur there is no quali‘anive change to an 7
time series model. Similarly, the simole Kalman filter of equatiors /%, a2

e
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can stii! describe the laws of motion of xflt. and J3t; it is only the variances of the

transitory and/or permanent noises tha‘ have changed. As a consequence, one
important property of this particular time series model has been preserved,
namely, the fact that there is a constant term structure of expectations for M°
and ;**. It follows that a constant term structure of expectations for :5‘: is also

preserved (see Bomhoff, 1980). Agents are unable to foresee any changes in the
expected rates of growth of money, output, and prices.

This featurr of a flat term structure of inflationary expectations leads
to important and welcome simplifications ii. the demand for money function.
in theory the current demand for money “oldings shculd depend on the ex-
pected rate of price change between now and period #+1, between periods
t+1 and ¢+2, between periods ¢t+2 and 1+ 3, etc. (see Motley, 1967; Brock,
1972, 1974). With a constant teim structure of expertations, this whole string
of expectational variables collapses intu the single representative expectation
g}f‘;H. Thrs, we can limit the substitution margin in the demand fer moncy

functicn to just the expected rate of change of prices between the current and
next period, and it is oniy this single term that has been included in our inverted
sdlemand for money equation (2).

The specification of the inverted demand for money function remains
the same, but an event of this second type wiil affect the magnitnde of the
estimated parameters, both in equation (2) for the expected values of the price
level and in equation (3) for the aifferer; s betwee: expected axd actual price
levels. As a matter of principle, it shouid be possible to deduce ihe changc: o
these coefficients from e changss in the stochastic processes for M, and of

¥p One would have to formahize the appropriate intertemporal maxiimmization

nroblem and to vicw the parameters that govem the law of mction of the
exogenons varigbles as constraints upon this optimization problem. Within this
context, ‘ne derznd for . “nzy function would have the status of a lower-level
"decision rule" (Sargent, 1981), and it shouid - in theory - be possible to deduce
the paramete~s of the demeati. for monrcy as functions of the parameters of
preferences, technologies, and corstraints in the intertemporal maximization
problem.

A+ the present state of the art, it is feasible to perform exercises in
comparative statics with stochastic equilibrium modeis, but it does not yet seem
possible to siinulate the leaming process that must occur during the transition
from one state to another (see Sargent, 1981, for the i¢asons why learning is
hard to incorporate within the stochastic equilibrium models). However con-
venient it may be for econometric and theoretical reasons {o abstract from
leaming processes, it inay still be worthwhile for economic reasons to incorpo-
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rate a suboptimal lzaming mechanism if the behavior of tA Jus variables

4

over time shows that thee is much to be learned. Ti 1 es imates ol
the models for M” and 9? to be d'scussed in the next el ¥ if.at rzticnal

]
agents would continuously have 1o adapt their estim.a ¢ 2nd gby and t{ @

residaal v .riances in the models for Mﬁ and jzi s of the mone]f;'
supply and of real output were ch:nging, and tl. : s meters in the
inverted demand for money function (2) and 7N tion equation 3)
r- st have been changing as well. Something hasSEREEE ecither the cross-
.Hation restrictions between equations (6} and PENSEEEE-quations (1) - (3),
or the incorporation of learning processes. I have GFET o neglect the cross-
equation restrictions, because the data for the two exogenous variables show so
clearly that the laws of motion for M and ¥ were charging during the period

under review (1961-1978).
The parameters 6 - 64 must change over time as agents learn about

the laws of motion of the exogenous variables. However, the general specifi-
calion of equations (2) and (3) remains correct; " sparticular, the restriction
of the term structure of inflationary expectati-- % the single term ﬁf +7-

Events cf this second type are thus aimissible within the context of the model.

Typc ~

A permanent change in the relative importance of the temporary and
permanent shifts in the inverted demand for money function, equation (2).
It is unaveidable in empirical macroeconomics that not all factors determining
the movements of a macroeconomic \iriable can e modelled satisfactorily.
The demand for money, for example, is influenced by changing payment habits
and by technological developments in the financial sector, but it is far from easy
to find quantitative time series data that represent these developments well.
The researcher has to take recourse in less-than-perfect proxy variables, or he
has to assumc that the constant term and/or any deterministic trend terms in
his model will serve as stand-ins for the omitted variables.

Assume, for instance, that one wishes to explain variable ¥ and that
quantitative data are available for two important exogenous influences, x| and

x9. All other factors that influence y have been subsumed in the constant term

¢ and a linear deterministic trend z, so that the researcher estimates the following
regression equation:

ye=¢ + alxl’t + GzXz,r + 0.3.t+€t

If this equation is estimated by simple or generalized least squares, then the

Y
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constant term ¢ is treated as just one more parameter, namely, the coefficient
of a fictitious variable that takes on the vame 1 at ai times. The role of c,
however, is to stand in for all the nonspecified influences on y, and, therefore,
it would be more appropriate if ¢ were regarded as an unobservable exogenous
variable. Proceeding further, a natural assumption would be that the time
series behavior of ¢ is similar to that of the observed exogenous variables v,

and x4. If, for example, x| and x, are nonstationary time series, then it would
seem logical to assume that the uncoservable exogenous influences proxied by
¢ are nonstationary also.

The Recursive Prediction Error algorithm is capable of estimating both
the values of regression parameters, such as aj, ay and ag, and of producing

an estimate of the current positions of one or more unobservable variables
such as ¢. The time series properties of the "constant terra" can be specified to
conform either with the time series properties of the observable exogenous
variables, or to agree with the researcher's prior notions of the evolution over
time of the unobservable variables that ¢ is meant io represent. Here I have
modelled 1z "constant term” as a random walk, augmented with a trend term
plus a term that allows for an infiuence of the expected increase in real income:

e _ e e
Ct+1-ct+e6+ BSAyt+l+94et (1)

The RPE algorithm provides recursive estimates of 84, 05, and 84 that reflect
ongoing learning about the correct values of these parameters. 64 indicates
the relative weights of the transitc:y and permanent shifts in expected velocity
that are not explained by y‘fﬂ and i)‘;ﬂ. If 6,4 is zero, than any current
inexplicable errors in predicting the price level p, are of a purely temporary

nature and do not lead to adjustments in the predictions of future price levels.
If §4 is equal to 1, then the error in the observation equation €, is incorporated

fully into the path of expected future price levels. With 64 > 1 the erross €,

lead to more than proportionai corrections for pf_{_l.l

Just as in the case of type 2, changes in the estimated value 04 should

be accompanied by changes in the other coefficients of equations (2) and (3).
But, since the change is not of a qualitative nature - the unobservables variable
cf remains a pure random walk plus trena - the original specification of
equations (2) and, (3) should stili be correct. Only if the time series process for
cf did cnange - ror example, if c‘; became constant over time - would it become

tOur algvithm constraing 84 1o lie botween O and 2 in order to ensure stability (see Moo-e
and Weiss, 1979).

18



necessary to return to first principles to investigate whether the forms of
equations (2} and (3) were still correct or whether the intertemporal maxi-
mization problem that underlies the decision rule for money holdings wouid
require a different specification for the demand for money. A learning process
with respect to €4 is not such a break with the past that it would require a

different demand for money function and is, therefore, admissible within our
model. Changes in 6,4 are accompanied by changes in 8y, 05, 05, 0, and6 4;

once again the cross-equation restrictions emphasized by Sargent and others
have not been imposed because these are not suitable in a context of learning.

Inadmissible Experiments

The demand for money function is - in the terminology of Lucas and
Sargent - a "decision rule," derivable zt least in principle from some higher-level
intertemporal maximization problem. The specification of this decision rule
already tells us much about the constraints under which economic agents maxi-
mize their utility. If, for example, consumers live in constant fear of hyper-
inflation, then their demand for money holdings would depend not cnly on the
expected rate of inflation in the immediate future, ﬁfﬂ, but also on a whole

string of expectutions with respect to the price level in later periods. As soon as
a rescarcher decides to limit the term structure of expectations ir. the demand-
for-money function to just the expected rate of inflation between now and the
next period, he has implicitly decided already that agents base their decisions
on a term structure of inflationary expectations that can be renresented by the
single expectation, i)fﬂ\ Having opted for that particularly simple form of the

demand for money, the analyst has to abstain, in my opinion, from certain
thought experiments, such as what would happen if agents came to expect a
long-term systematic acceleration in the money supply or agents became fearful
of a self-propelling hyperinflation (see Bomhoff, 1980, Chapter 5). If the prior
probability of such events were different from zero, then one could only con-
clude that the demand-for-money function had been specified incorrectly and
should contain a more complete term structure of inflationary expectations.

The intertemporal stability of the relationship between money and
prices has to be investigzated within ihe context of Motley (1969) and Brock
(1972) and not with a given demand-for-money function that is confrented with
different assumptions about the money supply or the dynaaics of inflationary
expectations. A demand-for-money function that omits the term structure of
inflationary expectations is incompatible with assumptions about the money
supply that allow for the possibility of explosive growth over any length of tine,
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and is incompatible also with speculation about self-propelling take-offs into
hyperinflation.

IV. LEARNING ABOUT TRANSITORY AND PERMANENT SHOCKS WITH
THE MSKF-METHOD

Expectations of the growth rates of the two exogerous variables M
and y have been computed using Kalman Filters and the auxiliary equatioas
(4) and (5) of the model in Exhibit I subsequently connect these expected
growth rates to expected future leiels of the money stock and real output that
are needed for the state and observation equations of the modei. The expected
growth rates are, as is customary with Kalman filtering, determined recursively;
the forecasts for perioc ¢ are computed without using in any way the realizations
of the time series for periods f+1 and beyond. In this respect Kalman filter
methods are comparable to me.hods such as adaptive expectations with a
fixed coefficient or to moving average methods. All such "on-line" algorithms
imitate the actual formation of forecasts by economic agents - who have to
base their predictions on the past and cannot make use of future observations -
better than "off-line" methods such as autoregressive least-squares or Box-
Jenkins modeis that use dala from the complete sample period.

The so-called Mul:i-State-Kalman filter (MSKF') (Harrison and Stevens,
1971, 1976) goes beyond other "on-line" methods, since it allows for feedback
from the data to the forecasting algorithm. A number of separate fixed filters
are applied to the data, and the forecasts are computed as a weighted average
of the forecasts from the individual filters, with weights that are adjusted over
time according to the success of each separate filter over the recent past. The
composite forecasts therefore are both recursively determined and adapt to new
information about the law of motion of the exogenous variable: The MSKF-
method can cope with changes over time in the probability mixture of perma-
nent and transitory shocks. Brunner et al (1980), Meltzer (1981) and Cukierman
and Meltzer (19£1) have emphasized the relevance of the simultaneous oc-
currence of permanent and transitory shocks in their theoretical work; empirical
applications in economics include papers by Lawson (1980) and Bomhoff and
Korteweg {1983).

Tabte 1 illustrates the working of the MSKF aigorithm. The first
column contans a segment of one of the time series used in this paper. the
actual growth rates of the French money supply (M2) between late 1968 and
rnid-197%. The complete input series starts in 1961 I, and expectations are
computed with the MEKF algorithm beginning in 1961 IV. Thus, the segment
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Table 1

An Hiustratior. of the MSKF Algorithn

Expected Growth Rates of the French Money Supply

Pricr Probabilities for the next shock {percent)

Actual Expected Error small smat outlier outlier
nermznent temporary permanen.’ temporary
19€8-IV .l 3.13 -1.02 34 216 0.1 4.9
1969-1 1.02 2.76 -0.74 9.9 85.1 0.4 4.6
H 2.33 2.50 20.18 6.7 88.3 03 4.7
m 1.85 2.44 0.58 9.5 85.5 0.3 4.7
v 024 2.27 2.04 9.3 85.7 04 4.6
1970-1 143 210 0.66 8.9 86.1 0.1 49
It 2.82 1.97 0.86 4.9 90.1 0.1 4.9
m 2.7 230 047 104 4.6 0.2 4.8
v 513 248 2.65 8.2 86.8 0.2 4.8
1971-1 4.58 262 1.96 8.2 86.8 3.5 1.5
I 4.22 438 0.16 12.5 82.5 16 3.4
m 339 462 .72 139 81.1 30 20
IV 424 428 .03 129 82.1 26 2.4
1972-1 3.75 4.26 20.51 13.7 81.3 2.7 23
11 5.02 4.12 0.90 9.5 85.5 24 2o
m 498 437 061 15.1 79.9 28 2.2
IV 334 4.53 0.70 10.1 849 2.5 2.5
1973-1 0.93 431 -3.38 15.5 79.5 28 2.2
i 4.84 2.75 2.0% 13.1 81.9 0.2 4.8
m 2.9 435 -1.39 10.7 843 0.7 43
IV 3.86 4.01 20.15 11.0 84.0 0.5 4.5
1974-1 3.75 3.99 0.24 11.2 8338 0.6 4.4
1| 434 3.53 0.40 1.0 84.0 0.6 4.4
o 228 4.01 -1.74 %6 854 0.5 4.5
IV 4,68 3.67 1.01 6.7 88.3 04 4.6
1975-1 3.65 3.94 ©.29 7.3 87.7 04 4.6
It 2.79 3.88 -1.10 7 815 04 4.6
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in Table 1 shows tlie opeiation of the method at a time when any transient
influences from the initialization conditions have disappeared.

The second column shows the expected growth rates as calculated
with the filter, and column three indicates the resulting forecast errors. The
predictions are weighted averages of four distinct forecasting models. Each
model can be written in the form of equations (8) and (9) as on page 13.

Me=Mg |+ npy,
My=M;+ ey,

The models differ in the values that have been assumed for the variances of
€y ¢ and nyy ;. The first two of these four models are appropriate to "normal”
situations; the remaining two models are designed to deal with outlier situations.

The following values have been assumed for the variances of € and n in the
four Kalman filters:

state V] varn Var€ Vara,
small permanent 0.05 0.9025 0.0 1
small temporacy 0.95 0.0025 0.95 1
cutlier permanent 0.01 15,6816 A6 16
outlier temporary 0.99 0.0016 1584 16
\

The first column indicates the value.- for the parameter ¥ in the corre-
sponding ARIMA (C, 1, 1) model:

AM, = (1-yBu, an

I have assumed that the, agz e ﬁ.‘fc (. tliers is s1"teen times as large as the
variance of the proce@. %‘ noo) A" periods. The "normal” value of the
variance has been.‘\v,“al 1.0 in mﬁ, chari‘ above to facilitate inspection of
the relative vaillf ces of ¢ &' duns&i\ estimation & robust estimate of the
vanance of a, r adaptively O puted \)‘\q\ 'm the ferecast ¢ ors. Statistical
Appendix A gives further details about te computation of the univanatc
expectations with the MSKF method.

The final four columns of Table 1 indicate the prior probabiiities of
the four different simple Kalman filters as they are recomputed each period
after the observation of that period's growth-rate of the money supply. The
priors have been constrained so that the sum of the prior probabilities of ihe two
"normal" modeis is constant at 95%, which leaves a 5% probability for the two
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outlier models. The numbers on the first line of the Tzble indicate, fcr example,
that after the final quarter of 1968 both normal-sized shocks to the growth-
rate of the money stock as well as any exceptionally large disturbances were
considered to be largely temporary. A large forecast error is made, for example,
in 1969 IV, with the actual growth-rate 2 percentage points on a guarterly
basis below the expected growth rate. When the priors have to be adjusted
after this shock, it is too early to tell whether this ou'lier will prove to be
permanent or transitory, and therefore we see little change in the prior proba-
bilities of the two outlier models.

When the actual growth-rate for 1970 I has been observed, it becomes
clear that the outlier in 1969 IV was temporary: the prior probabilities of the
two outlier models change with an even larger weight being attached now to the
temporary outlier model. The four prior probabilities subsequently change
little until a new outlier occurs during 1670 IV. The forecast for 1971 I confirms
that the outlier is assumed to he more temporary then pe: manent, since less
than 10% of the forecast error in 1970 IV is incorporated into the expected
growth-rate, which increases only from 2.48 to 2.62. However, when agents
observe the actual growth rate ir 1971 I, they realize that the change ir: mor.ey-
growth that occurred during 1970 IV was of a permanent nature, and thus the
weight of the permanent outlier model increases sharply. The prediction for
1971 H reflects this, and so does the prediction for 1973 11, when it is assumed
that the sharp drop in 1973 I is partly permanent: the expected growth de-
creases from 4.31 to 2.75 only.

This data seginent shows nicely the changes in the prior probabilities
of the two outlier models over time according to whether the most recent
outliers have been permanent or transitory. Less visible to the naked eye are the
causes for shifts in the priors of the two Kalman filters for normal-sized ecrors,
but it is obvious that a learning process is going on with respect to these priors,
t0o.

Table 2 shows the success of the MSKF filter in predicting the quarterly
growth-rates of money (M2) and real output in the six countries studied in this
paper. All European data have been taken from the recent study by Den Butter
anc Fase (1981) of the demand for money in eight European couniries. Den
Buiter and Fase also investigate the demand for money in Denmark, Ireland,
and the United Kingdom, but the time series data for these countrics cover
considerably shorter periods of time. For that reason they have been diccarded
for the current analysis which is limited to the five countries listed in Table 2.
The United States data were provided by the Federal Reserve Bank of St Louis.

Growth-rates have been computed as first differences of natural loga-
rithms, but all error statistics have been multiplied by 100 in otder to achieve
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Table 2

Residusgls of the Univariate Models

n @ 3) (8)) 16))
ex ante forecast ex-ante ex-gnte ex{post errors expost
errors errors errors of ordinary least errogs
. £ e _ - =2 .
MSKF -algorthm y SX,y %, Smean x t) squares X = mean (x r)
(pre-sample (no comrection for  (sample period)
period) degrees of freedom)
Money
Belgium 1.54 196 2.21 152 1.77
France 1.13 132 1.16 1.02 1.15
Gemany 1.82 2.13 1.91 1.55 1.82
Italy 1.11 141 1.65 1.06 139
Netherlands 1.09 2,23 2,23 1.82 199
US.A. G.50 0.52 0.82 041 0.53
Output
Beigium 1.45 2,12 1.42 134 1.40
France 1.46 1.67 1.40 1.28 134
Germany 135 1.53 1.21 1.20 1.19
Italy 1.83 225 1.66 1.52 1.64
Netherlands 1.89 2.83 1.78 1.77 1.77
US.A. 1.00 1.1 111 0.90 098
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comparability with errors that are expressed as a percentage. Data on the levels
of money and output arc available from 196! I, so that growth-rates can be
computed beginning 1961 II. The MSKF filter looks back at the latest two
observations when the prior probabilities are updated, so that the first expected
growthrrate is that computed for 1961 IV (see Harrison and Stevens, 1971,
1976, for details on the computation of the posterior probabilities; and Lawson,
1980, for the Bayesian manner in which the priors are updated). The period
terminates w'*i. the final quarter of 1978 for the European countries; the
statistics for the United States refer to this same period, with an exception for
Table 8 below.

During the first part of the period, the expectations are influenced
by the way in which the prior probabilities are set initially and by the initial
estimate of the "normal variance" of the process. In our implementation the
filters are initialized automatically and in an identical way for all time series
(see Bomhoff and Kortweg, forthcoming 1983, appendix 2, for details). The
initial estimate of the normal variance of the process contairs an ex-post ele-
ment, since it is based on the first ten observations.

In order to minimize the transient effects of the manner in which the
filter is initialized, I have disregarded the first five years of the resulting series
for the expected growth-rates when computing the standard errors of the fore-
casts in the first column of Table 2. The numbers in all the remaining columns
of the Table refer also to the final 49 observations of the sample. Columns 2
and 3 show the ex-ante errors of two simple naive models: column 2 shows the
errors made when the last observed value for the growth-rate is taken as the
expectation for the next period, and column tiiree shows the errors made if
one uses the mean of the first 22 observations as an estimate of the growth-
rates for the remaining «9 periods. Column four shows the ex-post residuai
errors of an ordinary least squares regression, estimated over the whole sample
period, :n which the growth-rates of money and output are regressed on a
constant term plus their own growth rates, lagged 1-6 periods. The final column
of Table: two shows the root mean square error of a naive ex-post model that
puts each exnpected growth rate equal to the mean growth rate over the period
under investigation. The Table shows that our version of the MSKF filter pro-
duces reasonable forecasts for the growth-rates of the money supply in the six
countries. The MSKF algorithm leads both ¢x-ante naive models and performs
roughly a: well as the ex-post naive model.

Less sasisfactory are the results of the six series of the growth-rates
of real output. One way to improve the results might be to construct multi-
variate expectations of the growth-rate of real output that incorporate explicitly
one or more of the determinants of the business cycle.
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Clemens J.M. Kool and I are currently working on these problems. We
also plan to investigate whether one additional "level" (Jacobs and Jones, 1980)
needs to be incorporated in the Kalman filter models. We presently limit the
types of shocks to transitory and permanent shifts in the growth-rates, but it
may be necessary to zllow for transitory shocks to the level of the series. More
experiments are needed to determine the ideal form of the MSKF algorithm
for macroeconomic forecasting; the effort should be worthwhile, since the
MSKF method produces forecasts that (1) are purely ex-ante, (2] incorporate
a leaming mechanism, and (3) can deal with situations in whick most small
shocks are transitory and most large shocks permanent, or vice versa.

V. LEARNING ABOUT VELOCITY WITH THE RPE-ALGORITHM

In this section i discuss the way in which expected future values of the
price level arz computed for given expectations of future levels of the money
supply and real output. The estimates are made recursively, and predictions
are thus purely ex-ante. In the course of each period ¢ agents discover the
current values of the money supply, the level of real output, and the price level.
A fraction of the ex-post prediction error, which they now know was made
when predicting the price level p,, can be assigned to the prediction errors in

the two exogenous variables: (M - Mf) and (yt- yf}. ihe remaining unexplained
part of the prediction error is called €, (cee equation (3) in section II above).
Each non-zero value for ¢; leads to adaptations of the current values of the
parameters of the model. The adjusted values of the parameters 6y, 04, 04, 0,
6. and6 7 are used to compute a forecast for #+1 that is based slso on the

expectations at time ¢ of the levels of money and output in that next period
(Mfﬂ R yfﬂ). The prediction is made with the two state equations from the

model, equations (1) and (2):

e _ e e

ct+l“'t+94et+05Ayt+l+06 (1)
e - .C + € +0 ‘-e 2)
o1 =Cpat T Mpgy V1 ¥ 090 10) (

The ex-ante prediction error p M1 pf +1 is a measure of the success of the model
in predici..g price levels. However, it is the ex-post residual €, from the obser-

vation equation that is used to steer the eveolution of the model paran.eters over
tirne:
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Pr=pi+ 0 (M -M5)-05(,-3¥5) v ¢ 3)

The Recursive Prediction Error method has been developed by Ljung
(1977, 1978), and by Moore and Weiss (1979). It is closely related to the Ex-
tended Kalman Filter method (see Anderson and Moore (1979), Goodwin aad
Payne (1977)}.2 Statistical Appendix B contains the principal features of the
aigorithm that [ have used for this paper. The only other application of the
RPE method to a macroeconomic problem that I am currently aware of is a
paper by Burmeister and Wall (1980). These authors are not concerned with
ex-ante predictions or adaptive learning processes, however, and focus attention
upon parameter estimates based on repeated runs through the data, both
forward and backward.

The RPE method requires initiai estimates of all parameters and of their
variance-covariance matrix. Clemens J.M. Kool and I have used an ordinary
least squares regression:

= e e
Pr=c H UM -Ly] +6,(M,- M) - 0,07, ¥ + 0.t

over the period 1961 IV - 1966 I in order to find initial estimates of 91, 92,
06’ and c. The initia! variances of 0], 92, and 96 are taken also from this least
squares regression. 64 is initialized at i value of 1.0 with a standard error of
0.5; 65 has an initial value of zero with an initial standard error of 0.25. Finally,
6+ has been initiaiized both at 0.0 and z: 0.19, the lacter value being the averap:

interest elasticity of th2 demand-for-money functions estimated by Den Butter
and Fase for the five countries under review. In both cases, ti.2 standard error
of 6~ has been initialized at 0.095. As the starting value of 64 had a minimal

effect on the results, I report only on the estimates thut used a starting vaiue of
0 for 97

The covariance terms between the parameters were initially set at
zero. In the course of the RPE estimation, all parameters and the variance-
covariance matrix are updated after each period, according to the formulas given
in Statistical Appendix B, taken from Moore and VVeiss (1979). The required
partial derivatives of the state variables and the residuals with respect to the
parameters are calculated analytically. Estimation with the KPE algorithm
starts at 1963 IV and continues until the end of the estimation period in 1978

2The early werl: by Peter Young and associates is very useful on the remiomhﬁp between
recursive least squares and {alman filtering; see Yo ing (1974), Young, Shellsweli, and Neethling (1971),
and Young and Whitehead (1975).
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Table 3 shows how the parameters 85, 61, 64, anau7 change between
the starting points of the RPE algorithm and the final vear of the estimation.
Printed below each coeflicient is the square root of th= corresponding element
on the main diagonal of :natrix £, the inverse of the Information Matrix
(see Anderson and Moore, 1979). The numbers in the Table can thus serve
to indicate the degree of variability of the estimated parameters. Somc note-
worthy features of this Table are:

The final estimates for the coefficients of (M_ - M) and (v, - %)
A dsw aissia: Vonisaal Y aNsa ~ ~ t !I o t v t.'
are closer togemer t'nan the mitlai estu‘na‘es Apparcntiy there are similarities

estimates but become visibie as leammg proceeds.
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The coefficient of p,. +7 ‘ums negative for all six countries if p"l;_,_2
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positive and generally insignificant if [7"; +2 is measured over a 4-quarter span
and proxied by:
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Possibly these results te’! us something about the difference between the shori-
iquidity effect and the longer-run inflationary effect of a surge in money
grc»wm but any mterpn*tatlon is hazardous, both because of the presence of
(y! ) and (M -M¢ ) ia the observation equations and because the model does

§

not mclude a theory about changes in the real rate of interest.
Tables 4 and 5 show the leaming processes that take place with respect
to the trend parameter €4 and the "constant term" ¢®. Values are presented for

10-guarter intervals, Nole that the trend 64 has been assumed to be represen-
iable by a parameter abtout which agents learn more as time goes by, whereas



Table 3

Adaptively Estima‘ed Parameters

coeff. of Ay coeff. of (A-M) coeff. of - (v-%) coeff. of p,,.

i : t t 2
s 6, 0, 7

country start 1978.I11 start 1978-Ii start 1978-111 start 1973-IM
Belgium 0.0 0.0567 | 04007 | 04936 | 09994 | 0.5080 | 0.0 0.1169
(0.2500) | (0.1387) | (03072) | (0.1005) | (0.2229) | (0.1130) | (0.0950) | (0.6717)
France 0.0 0.1862 | 0.8542 | 04953 | 08160 | 035i71 | 09 0.1367
(0.2500) | (0.1280) | (0.6596) | (0.1107) | (0.3352) | (0.1112) | (0.0950) | (0.0677)
Germany 0.0 0.0733 | 04822 | 0.6071 | 05416 | G.4/99 | 0.0 0.1751
£0,2500) | (0.1051) | (0.2360) | (0.0743) | (0.1003) | (8.9716) | (0.0950) | (0.0525)

Italy 0.0 0.0036 | 0.0232 | 03466 | 1.5563 | 0.5089 | 0.0 -0.1561
(0.2500) | (0.1319) | (0.4327) | (0.1316) | (0.4328) | (0.1194) | (0.0950) | (0.0601)
Netherlands [ 0.0 0.0491 | 0.8337 | 6.5023 | 09493 | 06843 | 00 0.1016
0.2500) | (0.1328) | (0.3746) | (0.1149) | (0.1513) | (0.0913) | (0.0950) | (0.0750)
U.S.A. 0.0 0.1129 | 06328 | 0.5756 | 1.0505 | 0.5514 | 0.0 0.1489
0.2500) | (0.1063) | (0.4222) | (0.1903) | (0.2420) | (0.1164) | (0.0950) | (0.0667)
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Table 4

Evolution of the Trend Term, 0

country 1966-1 1968-111 19711 1973-10 1976-1 1978-11
Belgium 0.32 030 0.31 030 0.29 0.28
(0.08)
France £0.58 90.58 0.56 0.58 €0.5¢ 0.59
(0.10)
Germany 0.37 036 0.36 035 035 035
(0.05)
italy 0.31 0.32 0.33 0.35 0.35 0.36
(0.09)
Netherlands 0.80 0.78 0.78 0.78 0.75 0.74
©.11)
U.S.A. 0.76 0.76 0.76 0.76 0.76 0.76
(0.04)
Note: all entries have been multiplied by 100
Table 5

The Evolution of the “Constant Term” €

country 1966-1 19681} 1971 % 1$73-1H0 19761 1978-11
Belgium 5.399 5.359 5.411 5.224 5.112 5.015
France 5.408 5.360 5398 5.290 5.269 §.200
Cermany 6.128 6.013 6.064 5.955 6.001 5.987
Iraly 4.887 4.795 4,768 4.637 4.584 4.546
Metherlands 5.710 5.711 5.736 5.812 5.716 5679
L.S.A, 6.065 6.134 6.160 6.241 6.336 6.435
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the "constant” term is an unobservable state variable that does not converge
to a final value but continues to behave like a random-walk-plus trend.
Table 6 shows the evolution of parameter 04. The activity of this

parameter relates to the third type of change discussed in section III above.
The final value of the parameter differs considerably from its initial value for
Belgium and Germany, which indicates that it is worthwhile to incorporate a
leaming mechanism about the relative importance of trensitory and permanent
shocks to the demand for money.

Table 7 shows the prediction errors of the RPE algorithm and compares
the errors to the standard errors of two naive models for predicting the price
level:

e, .
pt _pt"l )

e

Pi=pp 1t Py -Pry) .

Part I of the Table gives summary statistics for the two naive inodels. Part il
indicates the forecast errors of the model that was used also in Tables 3 through
6. On average, the errors are 1% times as large as those of the best naive model:
pf -P4.] =Py -Pyy- This shows that the relationship between the money stock
and the price level, although primarily a phenomenon that is relevant in the
Ionger-run, is nevertheless useful for very-short-run forecasts and not that much
poorer than forecasts that exploit the inertia in the actually ohserved rate of
change of the price level.

Parts Il - V of Table 7 provide information about the marginal contri-
butions of y - ¥ and M - M® to the forecasts of p t+1- A comparison between
parts III and IV shows that knowledge about M - M€ is more valuable for the
inflation forecasts than information about y - ¥¢. The final part VI of Table 7
gives the errors made if the expected rate of inflation is proxieda by peﬁ_z %)
instead of 4x [p‘;f_H2 -p‘ta_]] as in parts I1-V.

The Table shows the average size of the one-period-ahead errors pro-
duced by applying the state equation. If multi-period projections are available
for money and output, then the model can be used also to generatc multi-
period predictions for the price level. The errors in such multi-period forecasts
depend also on the magnitude of the residuals in the observation equaiion, €,
since 04.€; is incorporated permanently into the expected future path of the

price level. The root mean square errors of the observation equations (nct shown
in Tuble 7) are similar in magaitude to the errors of the state equat:ons. As-
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The Evolution of the Degree of Permanence of the Shocks, As Measured By 04

Table &

country 1966-1 1968111 19711 1973-1K 1976-1 1978-I11
Belgium 0.985 0.927 1.126 1.233 1235 1.259
®.120)
Frasce 1.101 1.082 1.48 1352 1.505 1,252
(0.151)
W. Germany 0.908 1.512 1351 1.320 1.389 1413
©.127)
Italy 1.234 1.207 10090 1.167 1.283 1355
(0.140)
Netnerlands 1.139 1.065 1.133 1.097 1.255 1367
(0.154)
USA. 1.008 1.051 1.128 1.099 1.086 1.114
(0.12)
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Table 7

Prediction Errors of the RPE Algorithm (in perc.)

Belgium France W. Germany Iialy Neth, US.A,

RMSE (M/-M°) 1.541 1.129 1.821 1.114 2.087 0.503

RMSE (y-y€) 1.451 1.462 1.347 1.8%6 1.893  0.998
I RMSE (p-py) 2053 2.000 1.399 3.006 2083 1.526

Robust estimate of the

starda:d ervor (p-p_g) 1958 2655 1.791 3.5:8 2671 2,001

RMSE A(pt-p_l) 1.784 0.863 0914 1.019 1.58¢  0.437

Robust estimate of the

standard ervor A(p -p.l) 1.382 0.796 1.007 1.065 1700 0436
II RMSE state equation  (p-p%){ 1.973 1.085 1.379 1.580 1667 0.651

Rot:ust estimate of the

standazd esror (r-p®)| 2161 1.120 1.401 1.616 1.947 0.684
MIRMSE state equation  (p-p®}| 2.144 1314 1.818 1.690 2412 0806

Robust estimate of the

standard error P8 2450 1.626 1.979 1.695 2649 0.733
IVRMSE state equation  (p-p3| 2.451 1.516 2135 1.763 2417 0.857

Robuss estimate of the

standard error -r9| 3.104 1678 2.148 1911 2.534  1.007
V RMSE state equation  {(p-p%)| 2.7¢0 1.656 2391 1.748 4888 0904

Robust estimate of the

standard error 05| 3383 1.656 2,486 1.531 3.139 0988
VI RMSE state equation  (p-p®) | 1.967 1.105 1.553 1.594 1647 0687

Robust estimate of the

standaxd esror %} 2158 1.182 1.694 1.714 1.929 0.746

I : two naive models

I :  complete model

I : withouty -y€

IV : withoutM-M e

V  :  withouty -y and M - M*®

Vi :

model with pi 2P ; as proxy for expected inflation.

Note:  All eniries have been multiplied by 100.



suming equality betwezen the RMSEs of the state and observation equations,
plus a value of one for the parameter 64, which is about average for the six

countries, we can compute a rough estimate of the standard ervcr in a n-period-
ahead-prediction with the help of the formula:

EP iy - E @ pan))? = EfP 1 - Efp p41))

If, for -example, the residual errors of the one-eriod-ahead predictions are
about 1.5 percent - as is roughly the situation for the five European countries
studied - and if we assume that projections for M and y ace availatle for the next
three years, then the estimated standard error of the ccrresponding price level
three years from today would be:

1.5 £/ 12 = 5 percent

Tte residual errors in the United States are considerably smaller; in that country,
the estimated standard error of a conditional forecast of the price level three
years into the future would be 0.7 /12 = 2% percent. Parameter uncertainty
would add something to this estimate, but noi much, because tie parameters
tenc to be well determined and change comparatively little over periods that
do not extend beyond a few years.

Finally, Table & shows outcomes for the United States over the second
half of the sample period. All summary statistics in Tabies 2-7 refer to a period
that terminates in 1978 IV, but in T:5le 8 I have continued the computations
up to 1981. The results show thai the RPE algorithm is capable of tracking the
actual path of the United States price level quite well. There is no evidence of
persistent runs of positive or negative forecast errors.

VI. CONCLUSIONS

During the early seventies, exciting work was done in the field cf
adaptive parameter estimation by Cooley, Prescott, and others (see Swamy and
Tinsley, 1980, for a recent review of this literature). Interest in adaptive esti-
mation waned somewhat in recent years for two reasons: first, there were
severe technical problems in implementing adaptive estimation, particularly in
an "on-line" conzext, and second, beccuse the important advances in formu-
lating and estimating rational expectations equilibrium models did not fit in
well with the assumption that agents are unsure of and have much to learn
about relevant parameters as time goes on.



Table 8

U.S.A. - Quarterly Average Data For the Expected Levels of the Money $tock,

Real GNP and the GNP Deflator
; it =
1np, npf inp§ inMf 1ny§ Inc§
(GNP ‘state ‘obsegvation (GNP-
defiator) equation’ equation’ (M1B) 1972 doliars)

1970- 1 4.499 4.496 4.504 5.332 6.992 6.159
1] 4.512 4,516 4.515 5.345 6.984 6.160

11 4.520 4.529 4,522 5357 6.988 6.165

v 4.533 4,535 4.549 5370 7.001 6.170
1971-1 4.548 4.556 4.535 5.389 6.937 6.160
I 4.561 4570 457 5.409 7.014 6.181

i1 4.570 4,588 4.580 5.438 7.021 6.177

v 4.579 4,585 4.577 5.448 7.031 6.173
1972-1 4.592 4.588 4.585 5.450 7.041 6.182
11 4.599 4.607 4,600 5479 7.054 6.197

m 4.608 4.608 4.611 5.496 7.088 6.203

A4 4.620 4.621 4,621 5.517 7.098 6.206
1973-1 4.634 4.633 4.625 5.543 7.118 6.212
i | 4.651 4.640 4.647 5.563 7.149 6.229

11 4.668 4.666 4.666 5.570 7.141 6.241

v 4.688 4.680 4.680 5.578 7.144 6.2.0
1974-1 4.706 %701 4.716 5.589 7.152 6.267
I 4.730 4.730 4.726 5.609 7.135 6.264

i 4.756 4,747 4.751 5.613 7.137 6.277

w 4.784 4,777 4,785 5.622 7.128 6.289
1975-1 4.809 4,812 4.819 5.635 7.110 6.296
1 4.822 4,840 4.828 5.640 7.081 6.292

HI 4.840 4.838 4.828 5.659 7.108 6.295

v 4.858 4.849 4.847 5.681 7.143 6317

1976 -1 4.867 4.866 4.861 5.684 7.149 6336
H 4.876 4,873 4.881 5.699 7.176 6353

111 4.888 4.889 4,889 5.718 7477 6355

v 4.903 4.900 4.903 5.727 7.181 6.361
1977-1 4917 4.919 4.916 5.748 7.190 6370
1] 4,934 4.930 4.931 5.7715 7.220 6.382

11 4.947 4.947 4,945 5.792 7.231 6.394

v 4.962 4.959 4.967 5.808 7.249 6.406
1978-1 4.976 4.981 4.932 5.831 7.248 6.408
)1 5.001 4.993 4.988 5.849 1,258 6.A10

11 5.020 5.018 5.020 5.874 7.282 6.435

v 5.043 5.037 5.035 5.893 7.285 .443
1979.1 5.064 5.060 5.058 5,910 7303 6.462
I 5.082 5.078 5.091 5921 7.311 6.477

{14 5.101 5.108 5.106 5.950 7300 6.473

v 5.121 5.122 5.121 5.973 7314 6.477




Tablz 8 continued

i e e
: Inp lnp,e lnp:.v lnM,e Iny, inc,
(GNP ‘state ‘obsexviition (GNP-
deflaton) equation’ equation’ (M1B) 1972 dollars)

1980-1 5.143 5.139 5.133 5.980 7313 6.485
1| 5.166 5.162 5.166 5.997 7321 6.499
i 5.188 5.183 5.19% 5973 7.285 6.502
v 5.214 5.218 5.216 6.032 7.300 6.504
1981-1 5.237 5.1 5,227 6.061 7311 6.510
n 5.253 5.249 5.260 6.061 7336 6.534
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hae reculted in a new form of Kalman filterine that nroduces ".-... B fnbi ndae
&S Aveiaiol U 1 Vi AZGUIIGH JITVILEEE LdL Pruuulis ITIUIC COULIAITD
nf hntlh narar iatare and otata vamahlao wiél miad $lan amamcrmscr mme ccembloe o 41 o
Ul vULL paladdCiCls aliQ Sudil Variaos vaadl-Jut UIc LOnveigense prooicins tnat
marod aneliae varctmca AFf avbawm dd Vot [3 PRI I r~ 4t o
imar LO Canicr veisions O1 €Xiwendacd Rauman iliering rthermore, the work of
Dmnmcnne Mkl AE_fa_ . _ L

prunner, Cukierman, and Meltzer has rightly stressed ihe enormous importance

b
of the transitory/permanent confusion and the need for agents to vccome
familiar with changes in the relative importance of transitory and permanent
shocks. For these two reasons I opted to neglect the cross-equation restrictions
and investigated the potential of adaptive estimation for a simple problem in
monetary economics (sec Sargent, 1981; Hansen and Sargent, 1980; Tumer
and Whiteman, 1981 ; for the imporiance of cruss-equation restrictions and their
apparently unavoidable neglect in a learning context)

The results in section IV of the paper show that univariate expectations
of future levels of money and output must take into account that the relative
weights of permanent and transitory shocks change continually. A static past
during which the laws of motion of such variables did not ckange, and which
would provide, therefore, a solid basis for analysis of future changes in these
laws of motion simply does not exist. We may be able to roll back cur theoreti-
cal models tc the levels where parameters of technologies and preferences reinain
invariant, but the world does not oblige by offering an historical base period
during which the constraints also remained constant. The world changes all the
time; if we do not learn, we are lost.

Recursive and adaptive estimation of a simple three-equation model in
section V shows that the RPE method is capable of producing well-behaved
gstimates of both the model parameters and the unobservable state variables.
it foilows that it is no longer necessary tu regard each and every unpredicted
shift in the demand for money as prima facie evidence of the impossibility of
computing price level paths that conrespond to medium-term targets for money
growth. The relationship between monstary actions and the price level is pre-
dictable and can incorporate rational learning about recent shifts in the demand
for money. With recursive and adaptive estination of the link between money
and prices, it becomes easier to implement "rules rather than discretion” (see
Kydland and Prescott, 1977, who suggest that no changes in monetary policy
be executed uatil after a two-year waiting period). With that perspective in
mind, the resuits of the paper indicate that Kalman filter methods can be pro-
fitably put to work on the two major problems which Karl Brunner mentions
as predominantly confronting monetary policymaking at this time: choosing,
anc adhering to a monetary strategy; and the reliable interpretation of monetary
events (Brunne;, 1981).
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DATA APPENDIX

The data for this study have teen taken from Den Butter ar.d Fase
(1981), apart from the U.S. data that were kindly provided by the Federal
Reserve Bank of St. Louis. The series from the money stock consists of quarterly
averages of monthly M2 data, apart from Italy where Den Butter and Fase used
end-of-quarter figures, and the United States where M| is used. y refers to rcal
g.n.p. apart from Italy and France, wheiz Den Eutter and Fase work with data
on g.d.p. Den Butter and Fase employ seasonal dummy variables in their esti-
mation of the demand-for-money function; I have used the "fixed-multiplicative"
method to descasonalize the money data so that the least possible damage is
done to the underlying time series structure of the money supply process. All
the real g.n.p. or gd.p. data are seasonally adjusted in the original sources.
Details about three minor corrections to the data foliow:

I have made one change in the real output series for the Netherlands.
The value which Den Butter and Fase give for the first quarter of 1970
differs considerably 'rom that given by the Central Planning Bureau
{CPB), an agency of the Dutch Ministry of Economic Affairs. Both
s.1ies consist of estimates only, since no official quarterly national
accounts data exist for the Netheilands. As the estimate by the Dutch
Central Bank for 1970 used hy Den Butter and Fase appears implausi-
ble, I have substituted the CPB astimate for real g.n.p. in that quarter.
Den Butter and Fase and I have corrected a discor:tinuity in the money
{M?2) data for Belgium in 1969.

Finally, 1 have presumed that agents were aware at the time of the
exceptional nature of the negative shock to real output in France
during the second gquarter of 1968. In order to avoid letting this ex-
ceptional event ur.duly influence the expectations regarding real output
in France, I have replaced the value for 1968 II by a straight inter-
polation of the vziues for 1968 I and 1968 111. The Multi-State-Kalman
filter method has beer applied to the French output series after cor-
rection for this episode.
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