
*For correspondence:

blake.richards@utoronto.ca

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 34

Received: 02 November 2016

Accepted: 22 October 2017

Published: 05 December 2017

Reviewing editor: Peter

Latham, University College

London, United Kingdom

Copyright Guerguiev et al.

This article is distributed under

the terms of the Creative

Commons Attribution License,

which permits unrestricted use

and redistribution provided that

the original author and source are

credited.

Towards deep learning with segregated
dendrites
Jordan Guerguiev1,2, Timothy P Lillicrap3, Blake A Richards1,2,4*

1Department of Biological Sciences, University of Toronto Scarborough, Toronto,
Canada; 2Department of Cell and Systems Biology, University of Toronto, Toronto,
Canada; 3DeepMind, London, United Kingdom; 4Learning in Machines and Brains
Program, Canadian Institute for Advanced Research, Toronto, Canada

Abstract Deep learning has led to significant advances in artificial intelligence, in part, by

adopting strategies motivated by neurophysiology. However, it is unclear whether deep learning

could occur in the real brain. Here, we show that a deep learning algorithm that utilizes multi-

compartment neurons might help us to understand how the neocortex optimizes cost functions.

Like neocortical pyramidal neurons, neurons in our model receive sensory information and higher-

order feedback in electrotonically segregated compartments. Thanks to this segregation, neurons

in different layers of the network can coordinate synaptic weight updates. As a result, the network

learns to categorize images better than a single layer network. Furthermore, we show that our

algorithm takes advantage of multilayer architectures to identify useful higher-order

representations—the hallmark of deep learning. This work demonstrates that deep learning can be

achieved using segregated dendritic compartments, which may help to explain the morphology of

neocortical pyramidal neurons.

DOI: https://doi.org/10.7554/eLife.22901.001

Introduction
Deep learning refers to an approach in artificial intelligence (AI) that utilizes neural networks with

multiple layers of processing units. Importantly, deep learning algorithms are designed to take

advantage of these multi-layer network architectures in order to generate hierarchical representa-

tions wherein each successive layer identifies increasingly abstract, relevant variables for a given task

(Bengio and LeCun, 2007; LeCun et al., 2015). In recent years, deep learning has revolutionized

machine learning, opening the door to AI applications that can rival human capabilities in pattern

recognition and control (Mnih et al., 2015; Silver et al., 2016; He et al., 2015). Interestingly, the

representations that deep learning generates resemble those observed in the neocortex

(Kubilius et al., 2016; Khaligh-Razavi and Kriegeskorte, 2014; Cadieu et al., 2014), suggesting

that something akin to deep learning is occurring in the mammalian brain (Yamins and DiCarlo,

2016; Marblestone et al., 2016).

Yet, a large gap exists between deep learning in AI and our current understanding of learning

and memory in neuroscience. In particular, unlike deep learning researchers, neuroscientists do not

yet have a solution to the ‘credit assignment problem’ (Rumelhart et al., 1986; Lillicrap et al.,

2016; Bengio et al., 2015). Learning to optimize some behavioral or cognitive function requires a

method for assigning ‘credit’ (or ‘blame’) to neurons for their contribution to the final behavioral out-

put (LeCun et al., 2015; Bengio et al., 2015). The credit assignment problem refers to the fact that

assigning credit in multi-layer networks is difficult, since the behavioral impact of neurons in early

layers of a network depends on the downstream synaptic connections. For example, consider the

behavioral effects of synaptic changes, that is long-term potentiation/depression (LTP/LTD), occur-

ring between different sensory circuits of the brain. Exactly how these synaptic changes will impact
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behavior and cognition depends on the downstream connections between the sensory circuits and

motor or associative circuits (Figure 1A). If a learning algorithm can solve the credit assignment

eLife digest Artificial intelligence has made major progress in recent years thanks to a

technique known as deep learning, which works by mimicking the human brain. When computers

employ deep learning, they learn by using networks made up of many layers of simulated neurons.

Deep learning has opened the door to computers with human – or even super-human – levels of skill

in recognizing images, processing speech and controlling vehicles. But many neuroscientists are

skeptical about whether the brain itself performs deep learning.

The patterns of activity that occur in computer networks during deep learning resemble those

seen in human brains. But some features of deep learning seem incompatible with how the brain

works. Moreover, neurons in artificial networks are much simpler than our own neurons. For

instance, in the region of the brain responsible for thinking and planning, most neurons have

complex tree-like shapes. Each cell has ‘roots’ deep inside the brain and ‘branches’ close to the

surface. By contrast, simulated neurons have a uniform structure.

To find out whether networks made up of more realistic simulated neurons could be used to

make deep learning more biologically realistic, Guerguiev et al. designed artificial neurons with two

compartments, similar to the ‘roots’ and ‘branches’. The network learned to recognize hand-written

digits more easily when it had many layers than when it had only a few. This shows that artificial

neurons more like those in the brain can enable deep learning. It even suggests that our own

neurons may have evolved their shape to support this process.

If confirmed, the link between neuronal shape and deep learning could help us develop better

brain-computer interfaces. These allow people to use their brain activity to control devices such as

artificial limbs. Despite advances in computing, we are still superior to computers when it comes to

learning. Understanding how our own brains show deep learning could thus help us develop better,

more human-like artificial intelligence in the future.

DOI: https://doi.org/10.7554/eLife.22901.002

Figure 1. The credit assignment problem in multi-layer neural networks. (A) Illustration of the credit assignment problem. In order to take full

advantage of the multi-circuit architecture of the neocortex when learning, synapses in earlier processing stages (blue connections) must somehow

receive ‘credit’ for their impact on behavior or cognition. However, the credit due to any given synapse early in a processing pathway depends on the

downstream synaptic connections that link the early pathway to later computations (red connections). (B) Illustration of weight transport in

backpropagation. To solve the credit assignment problem, the backpropagation of error algorithm explicitly calculates the credit due to each synapse

in the hidden layer by using the downstream synaptic weights when calculating the hidden layer weight changes. This solution works well in AI

applications, but is unlikely to occur in the real brain.

DOI: https://doi.org/10.7554/eLife.22901.003
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problem then it can take advantage of multi-layer architectures to develop complex behaviors that

are applicable to real-world problems (Bengio and LeCun, 2007). Despite its importance for real-

world learning, the credit assignment problem, at the synaptic level, has received little attention in

neuroscience.

The lack of attention to credit assignment in neuroscience is, arguably, a function of the history of

biological studies of synaptic plasticity. Due to the well-established dependence of LTP and LTD on

presynaptic and postsynaptic activity, current theories of learning in neuroscience tend to emphasize

Hebbian learning algorithms (Dan and Poo, 2004; Martin et al., 2000), that is, learning algorithms

where synaptic changes depend solely on presynaptic and postsynaptic activity. Hebbian learning

models can produce representations that resemble the representations in the real brain

(Zylberberg et al., 2011; Leibo et al., 2017) and they are backed up by decades of experimental

findings (Malenka and Bear, 2004; Dan and Poo, 2004; Martin et al., 2000). But, current Hebbian

learning algorithms do not solve the credit assignment problem, nor do global neuromodulatory sig-

nals used in reinforcement learning (Lillicrap et al., 2016). As a result, deep learning algorithms

from AI that can perform multi-layer credit assignment outperform existing Hebbian models of sen-

sory learning on a variety of tasks (Yamins and DiCarlo, 2016; Khaligh-Razavi and Kriegeskorte,

2014). This suggests that a critical, missing component in our current models of the neurobiology of

learning and memory is an explanation of how the brain solves the credit assignment problem.

However, the most common solution to the credit assignment problem in AI is to use the back-

propagation of error algorithm (Rumelhart et al., 1986). Backpropagation assigns credit by explic-

itly using current downstream synaptic connections to calculate synaptic weight updates in earlier

layers, commonly termed ‘hidden layers’ (LeCun et al., 2015) (Figure 1B). This technique, which is

sometimes referred to as ‘weight transport’, involves non-local transmission of synaptic weight infor-

mation between layers of the network (Lillicrap et al., 2016; Grossberg, 1987). Weight transport is

clearly unrealistic from a biological perspective (Bengio et al., 2015; Crick, 1989). It would require

early sensory processing areas (e.g. V1, V2, V4) to have precise information about billions of synaptic

connections in downstream circuits (MT, IT, M2, EC, etc.). According to our current understanding,

there is no physiological mechanism that could communicate this information in the brain. Some

deep learning algorithms utilize purely Hebbian rules (Scellier and Bengio, 2016; Hinton et al.,

2006). But, they depend on feedback synapses that are symmetric to feedforward synapses

(Scellier and Bengio, 2016; Hinton et al., 2006), which is essentially a version of weight transport.

Altogether, these artificial aspects of current deep learning solutions to credit assignment have ren-

dered many scientists skeptical of the proposal that deep learning occurs in the real brain

(Crick, 1989; Grossberg, 1987; Harris, 2008; Urbanczik and Senn, 2009).

Recent findings have shown that these problems may be surmountable, though. Lillicrap et al.

(2016), Lee et al., 2015 and Liao et al., 2015 have demonstrated that it is possible to solve the

credit assignment problem even while avoiding weight transport or symmetric feedback weights.

The key to these learning algorithms is the use of feedback signals that convey enough information

about credit to calculate local error signals in hidden layers (Lee et al., 2015; Lillicrap et al., 2016;

Liao et al., 2015). With this approach it is possible to take advantage of multi-layer architectures,

leading to performance that rivals backpropagation (Lee et al., 2015; Lillicrap et al., 2016;

Liao et al., 2015). Hence, this work has provided a significant breakthrough in our understanding of

how the real brain might do credit assignment.

Nonetheless, the models of Lillicrap et al. (2016), Lee et al., 2015 and Liao et al., 2015 involve

some problematic assumptions. Specifically, although it is not directly stated in all of the papers,

there is an implicit assumption that there is a separate feedback pathway for transmitting the infor-

mation that determines the local error signals (Figure 2A). Such a pathway is required in these mod-

els because the error signal in the hidden layers depends on the difference between feedback that is

generated in response to a purely feedforward propagation of sensory information, and feedback

that is guided by a teaching signal (Lillicrap et al., 2016; Lee et al., 2015; Liao et al., 2015). In

order to calculate this difference, sensory information must be transmitted separately from the feed-

back signals that are used to drive learning. In single compartment neurons, keeping feedforward

sensory information separate from feedback signals is impossible without a separate pathway. At

face value, such a pathway is possible. But, closer inspection uncovers a couple of difficulties with

such a proposal.
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First, the error signals that solve the credit assignment problem are not global error signals (like

neuromodulatory signals used in reinforcement learning). Rather, they are cell-by-cell error signals.

This would mean that the feedback pathway would require some degree of pairing, wherein each

neuron in the hidden layer is paired with a feedback neuron (or circuit). That is not impossible, but

there is no evidence to date of such an architecture in the neocortex. Second, the error signal in the

hidden layer is signed (i.e. it can be positive or negative), and the sign determines whether LTP or

LTD occur in the hidden layer neurons (Lee et al., 2015; Lillicrap et al., 2016; Liao et al., 2015).

Communicating signed signals with a spiking neuron can theoretically be done by using a baseline

firing rate that the neuron can go above (for positive signals) or below (for negative signals). But, in

practice, such systems are difficult to operate with a single neuron, because as the error gets closer

to zero any noise in the spiking of the neuron can switch the sign of the signal, which switches LTP

to LTD, or vice versa. This means that as learning progresses the neuron’s ability to communicate

error signs gets worse. It would be possible to overcome this by using many neurons to communi-

cate an error signal, but this would then require many error neurons for each hidden layer neuron,

which would lead to a very inefficient means of communicating errors. Therefore, the real brain’s

specific solution to the credit assignment problem is unlikely to involve a separate feedback pathway

for cell-by-cell, signed signals to instruct plasticity.

However, segregating the integration of feedforward and feedback signals does not require a

separate pathway if neurons have more complicated morphologies than the point neurons typically

used in artificial neural networks. Taking inspiration from biology, we note that real neurons are

much more complex than single-compartments, and different signals can be integrated at distinct

dendritic locations. Indeed, in the primary sensory areas of the neocortex, feedback from higher-

order areas arrives in the distal apical dendrites of pyramidal neurons (Manita et al., 2015;

Budd, 1998; Spratling, 2002), which are electrotonically very distant from the basal dendrites where

feedforward sensory information is received (Larkum et al., 1999; 2007; 2009). Thus, as has been

noted by previous authors (Körding and König, 2001; Spratling, 2002; Spratling and Johnson,

2006), the anatomy of pyramidal neurons may actually provide the segregation of feedforward and

feedback information required to calculate local error signals and perform credit assignment in bio-

logical neural networks.

Here, we show how deep learning can be implemented if neurons in hidden layers contain segre-

gated ‘basal’ and ‘apical’ dendritic compartments for integrating feedforward and feedback signals

separately (Figure 2B). Our model builds on previous neural networks research (Lee et al., 2015;

Lillicrap et al., 2016) as well as computational studies of supervised learning in multi-compartment

Figure 2. Potential solutions to credit assignment using top-down feedback. (A) Illustration of the implicit feedback pathway used in previous models of

deep learning. In order to assign credit, feedforward information must be integrated separately from any feedback signals used to calculate error for

synaptic updates (the error is indicated here with d). (B) Illustration of the segregated dendrites proposal. Rather than using a separate pathway to

calculate error based on feedback, segregated dendritic compartments could receive feedback and calculate the error signals locally.

DOI: https://doi.org/10.7554/eLife.22901.004
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neurons (Urbanczik and Senn, 2014; Körding and König, 2001; Spratling and Johnson, 2006).

Importantly, we use the distinct basal and apical compartments in our neurons to integrate feedback

signals separately from feedforward signals. With this, we build a local error signal for each hidden

layer that ensures appropriate credit assignment. We demonstrate that even with random synaptic

weights for feedback into the apical compartment, our algorithm can coordinate learning to achieve

classification of the MNIST database of hand-written digits that is better than that which can be

achieved with a single layer network. Furthermore, we show that our algorithm allows the network

to take advantage of multi-layer structures to build hierarchical, abstract representations, one of the

hallmarks of deep learning (LeCun et al., 2015). Our results demonstrate that deep learning can be

implemented in a biologically feasible manner if feedforward and feedback signals are received at

electrotonically segregated dendrites, as is the case in the mammalian neocortex.

Results

A network architecture with segregated dendritic compartments
Deep supervised learning with local weight updates requires that each neuron receive signals that

can be used to determine its ‘credit’ for the final behavioral output. We explored the idea that the

cortico-cortical feedback signals to pyramidal cells could provide the required information for credit

assignment. In particular, we were inspired by four observations from both machine learning and

biology:

1. Current solutions to credit assignment without weight transport require segregated feedfor-
ward and feedback signals (Lee et al., 2015; Lillicrap et al., 2016).

2. In the neocortex, feedforward sensory information and higher-order cortico-cortical feedback
are largely received by distinct dendritic compartments, namely the basal dendrites and distal
apical dendrites, respectively (Spratling, 2002; Budd, 1998).

3. The distal apical dendrites of pyramidal neurons are electrotonically distant from the soma,
and apical communication to the soma depends on active propagation through the apical den-
dritic shaft, which is predominantly driven by voltage-gated calcium channels. Due to the
dynamics of voltage-gated calcium channels these non-linear, active events in the apical shaft
generate prolonged upswings in the membrane potential, known as ‘plateau potentials’, which
can drive burst firing at the soma (Larkum et al., 1999; 2009).

4. Plateau potentials driven by apical activity can guide plasticity in pyramidal neurons in vivo
(Bittner et al., 2015; Bittner et al., 2017).

With these considerations in mind, we hypothesized that the computations required for credit

assignment could be achieved without separate pathways for feedback signals. Instead, they could

be achieved by having two distinct dendritic compartments in each hidden layer neuron: a ‘basal’

compartment, strongly coupled to the soma for integrating bottom-up sensory information, and an

‘apical’ compartment for integrating top-down feedback in order calculate credit assignment and

drive synaptic plasticity via ‘plateau potentials’ (Bittner et al., 2015; Bittner et al., 2017)

(Figure 3A).

As an initial test of this concept we built a network with a single hidden layer. Although this net-

work is not very ‘deep’, even a single hidden layer can improve performance over a one-layer archi-

tecture if the learning algorithm solves the credit assignment problem (Bengio and LeCun, 2007;

Lillicrap et al., 2016). Hence, we wanted to initially determine whether our network could take

advantage of a hidden layer to reduce error at the output layer.

The network architecture is illustrated in Figure 3B. An image from the MNIST data set is used to

set the spike rates of ‘ ¼ 784 Poisson point-process neurons in the input layer (one neuron per image

pixel, rates-of-fire determined by pixel intensity). These project to a hidden layer with m ¼ 500 neu-

rons. The neurons in the hidden layer (which we index with a ‘0’) are composed of three distinct

compartments with their own voltages: the apical compartments (with voltages described by the

vector V0aðtÞ ¼ ½V0a
1
ðtÞ; :::;V0a

m ðtÞ�), the basal compartments (with voltages V0bðtÞ ¼ ½V0b
1
ðtÞ; :::;V0b

m ðtÞ�),
and the somatic compartments (with voltages V0ðtÞ ¼ ½V0

1
ðtÞ; :::;V0

mðtÞ�). (Note: for notational clarity,

all vectors and matrices in the paper are in boldface.) The voltage of the ith neuron in the hidden

layer is updated according to:
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t
dV0

i ðtÞ
dt

¼�V0

i ðtÞþ
gb

gl
ðV0b

i ðtÞ�V0

i ðtÞÞþ
ga

gl
ðV0a

i ðtÞ�V0

i ðtÞÞ (1)

where gl, gb and ga represent the leak conductance, the conductance from the basal dendrites, and

the conductance from the apical dendrites, respectively, and t¼Cm=gl where Cm is the membrance

capacitance (see Materials and methods, Equation (16)). For mathematical simplicity we assume in

our simulations a resting membrane potential of 0 mV (this value does not affect the results). We

implement electrotonic segregation in the model by altering the ga value—low values for ga lead to

electrotonically segregated apical dendrites. In the initial set of simulations we set ga ¼ 0, which

effectively makes it a feed-forward network, but we relax this condition in later simulations.

We treat the voltages in the dendritic compartments simply as weighted sums of the incoming

spike trains. Hence, for the ith hidden layer neuron:

V0b
i ðtÞ ¼

X

‘

j¼1

W0

ijs
input
j ðtÞþ b0i

V0a
i ðtÞ ¼

X

n

j¼1

Yijs
1

j ðtÞ
(2)

where W0

ij and Yij are synaptic weights from the input layer and the output layer, respectively, b0i is a

Figure 3. Illustration of a multi-compartment neural network model for deep learning. (A) Left: Reconstruction of a

real pyramidal neuron from layer five mouse primary visual cortex. Right: Illustration of our simplified pyramidal

neuron model. The model consists of a somatic compartment, plus two distinct dendritic compartments (apical

and basal). As in real pyramidal neurons, top-down inputs project to the apical compartment while bottom-up

inputs project to the basal compartment. (B) Diagram of network architecture. An image is used to drive spiking

input units which project to the hidden layer basal compartments through weights W0. Hidden layer somata

project to the output layer dendritic compartment through weights W1. Feedback from the output layer somata is

sent back to the hidden layer apical compartments through weights Y. The variables for the voltages in each of

the compartments are shown. The number of neurons used in each layer is shown in gray. (C) Illustration of

transmit vs. plateau computations. Left: In the transmit computation, the network dynamics are updated at each

time-step, and the apical dendrite is segregated by a low value for ga, making the network effectively feed-

forward. Here, the voltages of each of the compartments are shown for one run of the network. The spiking output

of the soma is also shown. Note that the somatic voltage and spiking track the basal voltage, and ignore the

apical voltage. However, the apical dendrite does receive feedback, and this is used to drive its voltage. After a

period of Dts to allow for settling of the dynamics, the average apical voltage is calculated (shown here as a blue

line). Right: The average apical voltage is then used to calculate an apical plateau potential, which is equal to the

nonlinearity sð�Þ applied to the average apical voltage.

DOI: https://doi.org/10.7554/eLife.22901.005
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bias term, and sinput and s1 are the filtered spike trains of the input layer and output layer neurons,

respectively. (Note: the spike trains are convolved with an exponential kernel to mimic postsynaptic

potentials, see Materials and methods Equation (11).)

The somatic compartments generate spikes using Poisson processes. The instantaneous rates of

these processes are described by the vector f0ðtÞ ¼ ½f0

1
ðtÞ; :::;f0

mðtÞ�, which is in units of spikes/s or

Hz. These rates-of-fire are determined by a non-linear sigmoid function, sð�Þ, applied to the somatic

voltages, that is for the ith hidden layer neuron:

f0

i ðtÞ ¼fmaxsðV0

i ðtÞÞ

¼fmax

1

1þ e�V0

i
ðtÞ

(3)

where fmax is the maximum rate-of-fire for the neurons.

The output layer (which we index here with a ‘1’) contains n ¼ 10 two-compartment neurons (one

for each image category), similar to those used in a previous model of dendritic prediction learning

(Urbanczik and Senn, 2014). The output layer dendritic voltages (V1bðtÞ ¼ ½V1b
1
ðtÞ; :::;V1b

n ðtÞ�) and

somatic voltages (V1ðtÞ ¼ ½V1

1
ðtÞ; :::;V1

n ðtÞ�) are updated in a similar manner to the hidden layer basal

compartment and soma:

t
dV1

i ðtÞ
dt

¼�V1

i ðtÞþ
gd

gl
ðV1b

i ðtÞ�V1

i ðtÞÞþ IiðtÞ

V1b
i ðtÞ ¼

X

‘

j¼1

W1

ijs
0

j ðtÞþ b1i

(4)

where W1

ij are synaptic weights from the hidden layer, s0 are the filtered spike trains of the hidden

layer neurons (see Equation (11)), gl is the leak conductance, gd is the conductance from the den-

drites, and t is given by Equation (16). In addition to the absence of an apical compartment, the

other salient difference between the output layer neurons and the hidden layer neurons is the pres-

ence of the term IiðtÞ, which is a teaching signal that can be used to force the output layer to the cor-

rect answer. Whether any such teaching signals exist in the real brain is unknown, though there is

evidence that animals can represent desired behavioral outputs with internal goal representations

(Gadagkar et al., 2016). (See below, and Materials and methods, Equations (19) and (20) for more

details on the teaching signal).

In our model, there are two different types of computation that occur in the hidden layer neurons:

‘transmit’ and ‘plateau’. The transmit computations are standard numerical integration of the simula-

tion, with voltages evolving according to Equation (1), and with the apical compartment electrotoni-

cally segregated from the soma (depending on ga) (Figure 3C, left). In contrast, the plateau

computations do not involve numerical integration with Equation (1). Instead, the apical voltage is

averaged over the most recent 20–30 ms period and the sigmoid non-linearity is applied to it, giving

us ‘plateau potentials’ in the hidden layer neurons (we indicate plateau potentials with a, see Equa-

tion (5) below, and Figure 3C, right). The intention behind this design was to mimic the non-linear

transmission from the apical dendrites to the soma that occurs during a plateau potential driven by

calcium spikes in the apical dendritic shaft (Larkum et al., 1999), but in the simplest, most abstract

formulation possible.

Importantly, plateau potentials in our simulations are single numeric values (one per hidden layer

neuron) that can be used for credit assignment. We do not use them to alter the network dynamics.

When they occur, they are calculated, transmitted to the basal dendrite instantaneously, and then

stored temporarily (0–60 ms) for calculating synaptic weight updates.

Calculating credit assignment signals with feedback driven plateau
potentials
To train the network we alternate between two phases. First, during the ‘forward’ phase we present

an image to the input layer without any teaching current at the output layer (IðtÞi ¼ 0; 8i). The for-

ward phase occurs between times t0 to t1. At t1 a plateau potential is calculated in all the hidden

layer neurons (af ¼ ½af
1
; :::;af

m�) and the ‘target’ phase begins. During this phase, which lasts until t2,
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the image continues to drive the input layer, but now the output layer also receives teaching current.

The teaching current forces the correct output neuron to its max firing rate and all the others to

silence. For example, if an image of a ‘9’ is presented, then over the time period t1-t2 the ‘9’ neuron

in the output layer fires at max, while the other neurons are silent (Figure 4A). At t2 another set of

plateau potentials (at ¼ ½at
1
; :::;at

m�) are calculated in the hidden layer neurons. The result is that we

have plateau potentials in the hidden layer neurons for both the end of the forward phase (af ) and

the end of the target phase (at), which are calculated as:

a
f
i ¼ s

 

1

Dt1

Z t1

t1�Dt1

V0a
i ðtÞdt

!

at
i ¼ s

 

1

Dt2

Z t2

t2�Dt2

V0a
i ðtÞdt

! (5)

where Dts is a time delay used to allow the network dynamics to settle before integrating the pla-

teau, and Dti ¼ ti�ðti�1þDtsÞ (see Materials and methods, Equation (22) and Figure 4A).

Similar to how targets are used in deep supervised learning (LeCun et al., 2015), the goal of

learning in our network is to make the network dynamics during the forward phase converge to the

same output activity pattern as exists in the target phase. Put another way, in the absence of the

teaching signal, we want the activity at the output layer to be the same as that which would exist

with the teaching signal, so that the network can give appropriate outputs without any guidance. To

do this, we initialize all the weight matrices with random weights, then we train the weight matrices

W0 and W1 using stochastic gradient descent on local loss functions for the hidden and output

layers, respectively (see below). These weight updates occur at the end of every target phase, that is

the synapses are not updated during transmission. Like Lillicrap et al. (2016), we leave the weight

Figure 4. Illustration of network phases for learning. (A) Illustration of the sequence of network phases that occur

for each training example. The network undergoes a forward phase where IiðtÞ ¼ 0; 8i and a target phase where

IiðtÞ causes any given neuron i to fire at max-rate or be silent, depending on whether it is the correct category of

the current input image. In this illustration, an image of a ‘9’ is being presented, so the ’9’ unit at the output layer

is activated and the other output neurons are inhibited and silent. At the end of the forward phase the set of

plateau potentials af are calculated, and at the end of the target phase the set of plateau potentials at are

calculated. (B) Illustration of phase length sampling. Each phase length is sampled stochastically. In other words,

for each training image, the lengths of forward and target phases (shown as blue bar pairs, where bar length

represents phase length) are randomly drawn from a shifted inverse Gaussian distribution with a minimum of 50

ms.

DOI: https://doi.org/10.7554/eLife.22901.006
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matrix Y fixed in its initial random configuration. When we update the synapses in the network we

use the plateau potential values af and at to determine appropriate credit assignment (see below).

The network is simulated in near continuous-time (except that each plateau is considered to be

instantaneous), and the temporal intervals between plateaus are randomly sampled from an inverse

Gaussian distribution (Figure 4B, top). As such, the specific amount of time that the network is pre-

sented with each image and teaching signal is stochastic, though usually somewhere between 50–60

ms of simulated time (Figure 4B, bottom). This stochasticity was not necessary, but it demonstrates

that although the system operates in phases, the specific length of the phases is not important as

long as they are sufficiently long to permit integration (see Lemma 1). In the data presented in this

paper, all 60,000 images in the MNIST training set were presented to the network one at a time,

and each exposure to the full set of images was considered an ‘epoch’ of training. At the end of

each epoch, the network’s classification error rate on a separate set of 10,000 test images was

assessed with a single forward phase for each image (see Materials and methods). The network’s

classification was judged by which output neuron had the highest average firing rate during these

test image forward phases.

It is important to note that there are many aspects of this design that are not physiologically accu-

rate. Most notably, stochastic generation of plateau potentials across a population is not an accurate

reflection of how real pyramidal neurons operate, since apical calcium spikes are determined by a

number of concrete physiological factors in individual cells, including back-propagating action

potentials, spike-timing and inhibitory inputs (Larkum et al., 1999, 2007, 2009). However, we note

that calcium spikes in the apical dendrites can be prevented from occurring via the activity of distal

dendrite targeting inhibitory interneurons (Murayama et al., 2009), which can synchronize pyramidal

activity (Hilscher et al., 2017). Furthermore, distal dendrite targeting interneurons can themselves

can be rapidly inhibited in response to temporally precise neuromodulatory inputs (Pi et al., 2013;

Pfeffer et al., 2013; Karnani et al., 2016; Hangya et al., 2015; Brombas et al., 2014). Therefore, it

is entirely plausible that neocortical micro-circuits would generate synchronized plateaus/bursts at

punctuated periods of time in response to disinhibition of the apical dendrites governed by neuro-

modulatory signals that determine ‘phases’ of processing. Alternatively, oscillations in population

activity could provide a mechanism for promoting alternating phases of processing and synaptic

plasticity (Buzsáki and Draguhn, 2004). But, complete synchrony of plateaus in our hidden layer

neurons is not actually critical to our algorithm—only the temporal relationship between the plateaus

and the teaching signal is critical. This relationship itself is arguably plausible given the role of neuro-

modulatory inputs in dis-inhibiting the distal dendrites of pyramidal neurons (Karnani et al., 2016;

Brombas et al., 2014). Of course, we are engaged in a great deal of speculation here. But, the point

is that our model utilizes anatomical and functional motifs that are loosely analogous to what is

observed in the neocortex. Importantly for the present study, the key issue is the use of segregated

dendrites which permit an effective feed-forward dynamic, punctuated by feedback driven plateau

potentials to solve the credit assignment problem.

Co-ordinating optimization across layers with feedback to apical
dendrites
To solve the credit assignment problem without using weight transport, we had to define local error

signals, or ‘loss functions’, for the hidden layer and output layer that somehow took into account the

impact that each hidden layer neuron has on the output of the network. In other words, we only

want to update a hidden layer synapse in a manner that will help us make the forward phase activity

at the output layer more similar to the target phase activity. To begin, we define the target firing

rates for the output neurons, f1� ¼ ½f1�
1
; :::;f1�

n �, to be their average firing rates during the target

phase:

f1�
i ¼f1

i

t

¼ 1

Dt2

Z t2

t1þDts

f1

i ðtÞdt
(6)

(Throughout the paper, we use f� to denote a target firing rate and f to denote a firing rate
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averaged over time.) We then define a loss function at the output layer using this target, by taking

the difference between the average forward phase activity and the target:

L1 » jjf1� �f1
f

jj2
2

¼ jjf1
t

�f1
f

jj2
2

¼
�

�

�

�

�

�

�

�

�

�

1

Dt2

Z t2

t1þDts

f1ðtÞdt� 1

Dt1

Z t1

t0þDts

f1ðtÞdt
�

�

�

�

�

�

�

�

�

�

2

2

(7)

(Note: the true loss function we use is slightly more complex than the one formulated here, hence

the » symbol in Equation (7), but this formulation is roughly correct and easier to interpret. See

Materials and methods, Equation (23) for the exact formulation.) This loss function is zero only when

the average firing rates of the output neurons during the forward phase equals their target, that is

the average firing rates during the target phase. Thus, the closer L1 is to zero, the more the net-

work’s output for an image matches the output activity pattern imposed by the teaching signal, IðtÞ.
Effective credit assignment is achieved when changing the hidden layer synapses is guaranteed

to reduce L1. To obtain this guarantee, we defined a set of target firing rates for the hidden layer

neurons that uses the information contained in the plateau potentials. Specifically, in a similar man-

ner to Lee et al., 2015, we define the target firing rates for the hidden layer neurons,

f0� ¼ ½f0�
1
; :::;f0�

m �, to be:

f0�
i ¼f0

i

f

þat
i �a

f
i (8)

where at
i and a

f
i are the plateaus defined in Equation (5). As with the output layer, we define the

loss function for the hidden layer to be the difference between the target firing rate and the average

firing rate during the forward phase:

L0 » jjf0��f0
f

jj2
2

¼ jjf0
f

þat �a
f
i �f0

f

jj2
2

¼ jjat �af jj2
2

(9)

(Again, note the use of the » symbol, see Equation (30) for the exact formulation.) This loss func-

tion is zero only when the plateau at the end of the forward phase equals the plateau at the end of

the target phase. Since the plateau potentials integrate the top-down feedback (see Equation (5)),

we know that the hidden layer loss function, L0, is zero if the output layer loss function, L1, is zero.

Moreover, we can show that these loss functions provide a broader guarantee that, under certain

conditions, if L0 is reduced, then on average, L1 will also be reduced (see Theorem 1). This provides

our assurance of credit assignment: we know that the ultimate goal of learning (reducing L1) can be

achieved by updating the synaptic weights at the hidden layer to reduce the local loss function L0

(Figure 5A). We do this using stochastic gradient descent at the end of every target phase:

DW1 ¼�h
0

qL1

qW1

DW0 ¼�h1

qL0

qW0

(10)

where hi and DW i refer to the learning rate and update term for weight matrix W i (see Materials

and methods, Equations (28), (29), (33) and (35) for details of the weight update procedures). Per-

forming gradient descent on L1 results in a relatively straight-forward delta rule update for W1 (see

Equation (29)). The weight update for the hidden layer weights, W0, is similar, except for the pres-

ence of the difference between the two plateau potentials at �af (see Equation (35)). Importantly,

given the way in which we defined the loss functions, as the hidden layer reduces L0 by updating

W0, L1 should also be reduced, that is hidden layer learning should imply output layer learning,

thereby utilizing the multi-layer architecture.
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To test that we were successful in credit assignment with this design, and to provide empirical

support for the proof of Theorem 1, we compared the loss function at the hidden layer, L0, to the

output layer loss function, L1, across all of the image presentations to the network. We observed

that, generally, whenever the hidden layer loss was low, the output layer loss was also low. For

example, when we consider the loss for the set of ‘2’ images presented to the network during the

second epoch, there was a Pearson correlation coefficient between L0 and L1 of r ¼ 0:61, which was

much higher than what was observed for shuffled data, wherein output and hidden activities were

randomly paired (Figure 5B). Furthermore, these correlations were observed across all epochs of

training, with most correlation coefficients for the hidden and output loss functions falling between

r ¼ 0:2 - 0:6, which was, again, much higher than the correlations observed for shuffled data

(Figure 5C).

Interestingly, the correlations between L0 and L1 were smaller on the first epoch of training (see

data in red oval Figure 5C) . This suggests that the guarantee of coordination between L0 and L1

only comes into full effect once the network has engaged in some learning. Therefore, we inspected

whether the conditions on the synaptic matrices that are assumed in the proof of Theorem 1 were,

in fact, being met. More precisely, the proof assumes that the feedforward and feedback synaptic

Figure 5. Co-ordinated errors between the output and hidden layers. (A) Illustration of output loss function (L1) and local hidden loss function (L0). For

a given test example shown to the network in a forward phase, the output layer loss is defined as the squared norm of the difference between target

firing rates f1� and the average firing rate during the forward phases of the output units. Hidden layer loss is defined similarly, except the target is f0�

(as defined in the text). (B) Plot of L1 vs. L0 for all of the ‘2’ images after one epoch of training. There is a strong correlation between hidden layer loss

and output layer loss (real data, black), as opposed to when output and hidden loss values were randomly paired (shuffled data, gray). (C) Plot of

correlation between hidden layer loss and output layer loss across training for each category of images (each dot represents one category). The

correlation is significantly higher in the real data than the shuffled data throughout training. Note also that the correlation is much lower on the first

epoch of training (red oval), suggesting that the conditions for credit assignment are still developing during the first epoch.

DOI: https://doi.org/10.7554/eLife.22901.007

The following source data and figure supplement are available for figure 5:

Source data 1. Fig_5B.csv.

DOI: https://doi.org/10.7554/eLife.22901.009

Figure supplement 1. Weight alignment during first epoch of training.

DOI: https://doi.org/10.7554/eLife.22901.008
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matrices (W1 and Y, respectively) produce forward and backward transformations between the out-

put and hidden layer whose Jacobians are approximate inverses of each other (see Proof of Theorem

1). Since we begin learning with random matrices, this condition is almost definitely not met at the

start of training. But, we found that the network learned to meet this condition. Inspection of W1

and Y showed that during the first epoch, the Jacobians of the forward and backwards functions

became approximate inverses of each other (Figure 5—figure supplement 1). Since Y is frozen, this

means that during the first few image presentations W1 was being updated to have its Jacobian

come closer to the inverse of Y’s Jacobian. Put another way, the network was learning to do credit

assignment. We have yet to resolve exactly why this happens, though the result is very similar to the

findings of Lillicrap et al. (2016), where a proof is provided for the linear case. Intuitively, though,

the reason is likely the interaction between W1 and W0: as W0 gets updated, the hidden layer learns

to group stimuli based on the feedback sent through Y. So, for W1 to transform the hidden layer

activity into the correct output layer activity, W1 must become more like the inverse of Y, which

would also make the Jacobian of W1 more like the inverse of Y’s Jacobian (due to the inverse func-

tion theorem). However, a complete, formal explanation for this phenomenon is still missing, and

the the issue of weight alignment deserves additional investigation Lillicrap et al. (2016). From a

biological perspective, it also suggests that very early development may involve a period of learning

how to assign credit appropriately. Altogether, our model demonstrates that deep learning using

random feedback weights is a general phenomenon, and one which can be implemented using seg-

regated dendrites to keep forward information separate from feedback signals used for credit

assignment.

Deep learning with segregated dendrites
Given our finding that the network was successfully assigning credit for the output error to the hid-

den layer neurons, we had reason to believe that our network with local weight-updates would

exhibit deep learning, that is an ability to take advantage of a multi-layer structure (Bengio and

LeCun, 2007). To test this, we examined the effects of including hidden layers. If deep learning is

indeed operational in the network, then the inclusion of hidden layers should improve the ability of

the network to classify images.

We built three different versions of the network (Figure 6A). The first was a network that had no

hidden layer, that is the input neurons projected directly to the output neurons. The second was the

network illustrated in Figure 3B, with a single hidden layer. The third contained two hidden layers,

with the output layer projecting directly back to both hidden layers. This direct projection allowed

us to build our local targets for each hidden layer using the plateaus driven by the output layer,

thereby avoiding a ‘backward pass’ through the entire network as has been used in other models

(Lillicrap et al., 2016; Lee et al., 2015; Liao et al., 2015). We trained each network on the 60,000

MNIST training images for 60 epochs, and recorded the percentage of images in the 10,000 image

test set that were incorrectly classified. The network with no hidden layers rapidly learned to classify

the images, but it also rapidly hit an asymptote at an average error rate of 8.3% (Figure 6B, gray

line). In contrast, the network with one hidden layer did not exhibit a rapid convergence to an

asymptote in its error rate. Instead, it continued to improve throughout all 60 epochs, achieving an

average error rate of 4.1% by the 60th epoch (Figure 6B, blue line). Similar results were obtained

when we loosened the synchrony constraints and instead allowed each hidden layer neuron to

engage in plateau potentials at different times (Figure 6—figure supplement 1). This demonstrates

that strict synchrony in the plateau potentials is not required. But, our target definitions do require

two different plateau potentials separated by the teaching signal input, which mandates some tem-

poral control of plateau potentials in the system.

Interestingly, we found that the addition of a second hidden layer further improved learning. The

network with two hidden layers learned more rapidly than the network with one hidden layer and

achieved an average error rate of 3.2% on the test images by the 60th epoch, also without hitting a

clear asymptote in learning (Figure 6B, red line). However, it should be noted that additional hidden

layers beyond two did not significantly improve the error rate (data not shown), which suggests that

our particular algorithm could not be used to construct very deep networks as is. Nonetheless, our

network was clearly able to take advantage of multi-layer architectures to improve its learning, which

is the key feature of deep learning (Bengio and LeCun, 2007; LeCun et al., 2015).
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Figure 6. Improvement of learning with hidden layers. (A) Illustration of the three networks used in the simulations. Top: a shallow network with only an

input layer and an output layer. Middle: a network with one hidden layer. Bottom: a network with two hidden layers. Both hidden layers receive

feedback from the output layer, but through separate synaptic connections with random weights Y0 and Y1. (B) Plot of test error (measured on 10,000

MNIST images not used for training) across 60 epochs of training, for all three networks described in A. The networks with hidden layers exhibit deep

learning, because hidden layers decrease the test error. Right: Spreads (min – max) of the results of repeated weight tests (n ¼ 20) after 60 epochs for

each of the networks. Percentages indicate means (two-tailed t-test, 1-layer vs. 2-layer: t38 ¼ 197:11, p ¼ 2:5� 10
�58; 1-layer vs. 3-layer: t38 ¼ 238:26,

p ¼ 1:9� 10
�61; 2-layer vs. 3-layer: t38 ¼ 42:99, p ¼ 2:3� 10

�33, Bonferroni correction for multiple comparisons). (C) Results of t-SNE dimensionality

reduction applied to the activity patterns of the first three layers of a two hidden layer network (after 60 epochs of training). Each data point

corresponds to a test image shown to the network. Points are color-coded according to the digit they represent. Moving up through the network,

images from identical categories are clustered closer together and separated from images of different categories. Thus the hidden layers learn

increasingly abstract representations of digit categories.

DOI: https://doi.org/10.7554/eLife.22901.010

The following source data and figure supplement are available for figure 6:

Source data 1. Fig_6B_errors.csv.

DOI: https://doi.org/10.7554/eLife.22901.012

Figure supplement 1. Learning with stochastic plateau times.

DOI: https://doi.org/10.7554/eLife.22901.011
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Another key feature of deep learning is the ability to generate representations in the higher layers

of a network that capture task-relevant information while discarding sensory details (LeCun et al.,

2015; Mnih et al., 2015). To examine whether our network exhibited this type of abstraction, we

used the t-Distributed Stochastic Neighbor Embedding algorithm (t-SNE). The t-SNE algorithm

reduces the dimensionality of data while preserving local structure and non-linear manifolds that

exist in high-dimensional space, thereby allowing accurate visualization of the structure of high-

dimensional data (Maaten and Hinton, 2008). We applied t-SNE to the activity patterns at each

layer of the two hidden layer network for all of the images in the test set after 60 epochs of training.

At the input level, there was already some clustering of images based on their categories. However,

the clusters were quite messy, with different categories showing outliers, several clusters, or merged

clusters (Figure 6C, bottom). For example, the ‘2’ digits in the input layer exhibited two distinct clus-

ters separated by a cluster of ‘7’s: one cluster contained ‘2’s with a loop and one contained ‘2’s with-

out a loop. Similarly, there were two distinct clusters of ‘4’s and ‘9’s that were very close to each

other, with one pair for digits on a pronounced slant and one for straight digits (Figure 6C, bottom,

example images). Thus, although there is built-in structure to the categories of the MNIST dataset,

there are a number of low-level features that do not respect category boundaries. In contrast, at the

first hidden layer, the activity patterns were much cleaner, with far fewer outliers and split/merged

clusters (Figure 6C, middle). For example, the two separate ‘2’ digit clusters were much closer to

each other and were now only separated by a very small cluster of ‘7’s. Likewise, the ‘9’ and ‘4’ clus-

ters were now distinct and no longer split based on the slant of the digit. Interestingly, when we

examined the activity patterns at the second hidden layer, the categories were even better segre-

gated, with only a little bit of splitting or merging of category clusters (Figure 6C, top). Therefore,

the network had learned to develop representations in the hidden layers wherein the categories

were very distinct and low-level features unrelated to the categories were largely ignored. This

abstract representation is likely to be key to the improved error rate in the two hidden layer net-

work. Altogether, our data demonstrates that our network with segregated dendritic compartments

can engage in deep learning.

Coordinated local learning mimics backpropagation of error
The backpropagation of error algorithm (Rumelhart et al., 1986) is still the primary learning algo-

rithm used for deep supervised learning in artificial neural networks (LeCun et al., 2015). Previous

work has shown that learning with random feedback weights can actually match the synaptic weight

updates specified by the backpropagation algorithm after a few epochs of training (Lillicrap et al.,

2016). This fascinating observation suggests that deep learning with random feedback weights is

not completely distinct from backpropagation of error, but rather, networks with random feedback

connections learn to approximate credit assignment as it is done in backpropagation (Lillicrap et al.,

2016). Hence, we were curious as to whether or not our network was, in fact, learning to approxi-

mate the synaptic weight updates prescribed by backpropagation. To test this, we trained our one

hidden layer network as before, but now, in addition to calculating the vector of hidden layer synap-

tic weight updates specified by our local learning rule (DW0 in Equation (10)), we also calculated the

vector of hidden layer synaptic weight updates that would be specified by non-locally backpropagat-

ing the error from the output layer, (DW0

BP). We then calculated the angle between these two alter-

native weight updates. In a very high-dimensional space, any two independent vectors will be

roughly orthogonal to each other (i.e. DW0ffDW0

BP » 90
�). If the two synaptic weight update vectors

are not orthogonal to each other (i.e. DW0ffDW0

BP<90
�), then it suggests that the two algorithms are

specifying similar weight updates.

As in previous work (Lillicrap et al., 2016), we found that the initial weight updates for our net-

work were orthogonal to the updates specified by backpropagation. But, as the network learned the

angle dropped to approximately 65
�, before rising again slightly to roughly 70

� (Figure 7A, blue

line). This suggests that our network was learning to develop local weight updates in the hidden

layer that were in rough agreement with the updates that explicit backpropagation would produce.

However, this drop in orthogonality was still much less than that observed in non-spiking artificial

neural networks learning with random feedback weights, which show a drop to below

45
�(Lillicrap et al., 2016). We suspected that the higher angle between the weight updates that we

observed may have been because we were using spikes to communicate the feedback from the
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upper layer, which could introduce both noise and bias in the estimates of the output layer activity.

To test this, we also examined the weight updates that our algorithm would produce if we propa-

gated the spike rates of the output layer neurons, f1ðtÞ, back directly through the random feedback

weights, Y. In this scenario, we observed a much sharper drop in the DW0ffDW0

BP angle, which

reduced to roughly 35
� before rising again to 40

� (Figure 7A, red line). These results show that, in

principle, our algorithm is learning to approximate the backpropagation algorithm, though with

some drop in accuracy introduced by the use of spikes to propagate output layer activities to the

hidden layer.

Figure 7. Approximation of backpropagation with local learning rules. (A) Plot of the angle between weight

updates prescribed by our local update learning algorithm compared to those prescribed by backpropagation of

error, for a one hidden layer network over 10 epochs of training (each point on the horizontal axis corresponds to

one image presentation). Data was time-averaged using a sliding window of 100 image presentations. When

training the network using the local update learning algorithm, feedback was sent to the hidden layer either using

spiking activity from the output layer units (blue) or by directly sending the spike rates of output units (red). The

angle between the local update DW0 and backpropagation weight updates DW0

BP remains under 90� during

training, indicating that both algorithms point weight updates in a similar direction. (B) Examples of hidden layer

receptive fields (synaptic weights) obtained by training the network in A using our local update learning rule (left)

and backpropagation of error (right) for 60 epochs. (C) Plot of correlation between local update receptive fields

and backpropagation receptive fields. For each of the receptive fields produced by local update, we plot the

maximum Pearson correlation coefficient between it and all 500 receptive fields learned using backpropagation

(Regular). Overall, the maximum correlation coefficients are greater than those obtained after shuffling all of the

values of the local update receptive fields (Shuffled).

DOI: https://doi.org/10.7554/eLife.22901.013

The following source data is available for figure 7:

Source data 1. Fig_7A.csv.

DOI: https://doi.org/10.7554/eLife.22901.014
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To further examine how our local learning algorithm compared to backpropagation we compared

the low-level features that the two algorithms learned. To do this, we trained the one hidden layer

network with both our algorithm and backpropagation. We then examined the receptive fields (i.e.

the synaptic weights) produced by both algorithms in the hidden layer synapses (W0) after 60 epochs

of training. The two algorithms produced qualitatively similar receptive fields (Figure 7B). Both pro-

duced receptive fields with clear, high-contrast features for detecting particular strokes or shapes.

To quantify the similarity, we conducted pair-wise correlation calculations for the receptive fields

produced by the two algorithms and identified the maximum correlation pairs for each. Compared

to shuffled versions of the receptive fields, there was a very high level of maximum correlation

(Figure 7C), showing that the receptive fields were indeed quite similar. Thus, the data demonstrate

that our learning algorithm using random feedback weights into segregated dendrites can in fact

come to approximate the backpropagation of error algorithm.

Conditions on feedback weights
Once we had convinced ourselves that our learning algorithm was, in fact, providing a solution to

the credit assignment problem, we wanted to examine some of the constraints on learning. First, we

wanted to explore the structure of the feedback weights. In our initial simulations we used non-

sparse, random (i.e. normally distributed) feedback weights. We were interested in whether learning

could still work with sparse weights, given that neocortical connectivity is sparse. As well, we won-

dered whether symmetric weights would improve learning, which would be expected given previous

findings (Lillicrap et al., 2016; Lee et al., 2015; Liao et al., 2015). To explore these questions, we

trained our one hidden layer network using both sparse feedback weights (only 20% non-zero val-

ues) and symmetric weights (Y ¼ W1T ) (Figure 8A,C). We found that learning actually improved

slightly with sparse weights (Figure 8B, red line), achieving an average error rate of 3.7% by the 60th

epoch, compared to the average 4.1% error rate achieved with fully random weights. But, this result

appeared to depend on the magnitude of the sparse weights. To compensate for the loss of 80% of

the weights we initially increased the sparse synaptic weight magnitudes by a factor of 5. However,

when we did not re-scale the sparse weights learning was actually worse (Figure 8—figure supple-

ment 1), though this could likely be dealt with by a careful resetting of learning rates. Altogether,

our results suggest that sparse feedback provides a signal that is sufficient for credit assignment.

Similar to sparse feedback weights, symmetric feedback weights also improved learning, leading

to a rapid decrease in the test error and an error rate of 3.6% by the 60th epoch (Figure 8D, red

line). This is interesting, given that backpropagation assumes symmetric feedback weights

(Lillicrap et al., 2016; Bengio et al., 2015), though our proof of Theorem 1 does not. However,

when we added noise to the symmetric weights any advantage was eliminated and learning was, in

fact, slightly impaired (Figure 8D, blue line). At first, this was a very surprising result: given that

learning works with random feedback weights, why would it not work with symmetric weights with

noise? However, when we considered our previous finding that during the first epoch the feedfor-

ward weights, W1, learn to have the feedforward Jacobian match the inverse of the feedback Jaco-

bian (Figure 5—figure supplement 1) a possible answer emerges. In the case of symmetric

feedback weights the synaptic matrix Y is changing as W1 changes. This works fine when Y is set to

W1
T

, since that artificially forces something akin to backpropagation. But, if the feedback weights

are set to W1
T

plus noise, then the system can never align the Jacobians appropriately, since Y is

now a moving target. This would imply that any implementation of feedback learning must either be

very effective (to achieve the right feedback) or very slow (to allow the feedforward weights to

adapt).

Learning with partial apical attenuation
Another constraint that we wished to examine was whether total segregation of the apical inputs

was necessary, given that real pyramidal neurons only show an attenuation of distal apical inputs to

the soma (Larkum et al., 1999). Total segregation (ga ¼ 0) renders the network effectively feed-for-

ward in its dynamics, which made it easier to construct the loss functions to ensure that reducing L0

also reduces L1 (see Figure 5 and Theorem 1). But, we wondered whether some degree of apical

conductance to the soma would be sufficiently innocuous so as to not disrupt deep learning. To

examine this, we re-ran our two hidden layer network, but now, we allowed the apical dendritic
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voltage to influence the somatic voltage by setting ga ¼ 0:05. This value gave us twelve times more

attenuation than the attenuation from the basal compartments, since gb ¼ 0:6 (Figure 9A). When we

compared the learning in this scenario to the scenario with total apical segregation, we observed

very little difference in the error rates on the test set (Figure 9B, gray and red lines). Importantly,

though, we found that if we increased the apical conductance to the same level as the basal

(ga ¼ gb ¼ 0:6) then the learning was significantly impaired (Figure 9B, blue line). This demonstrates

that although total apical attenuation is not necessary, partial segregation of the apical compartment

from the soma is necessary. That result makes sense given that our local targets for the hidden layer

neurons incorporate a term that is supposed to reflect the response of the output neurons to the

feedforward sensory information (af ). Without some sort of separation of feedforward and feedback

information, as is assumed in other models of deep learning (Lillicrap et al., 2016; Lee et al., 2015),

Figure 8. Conditions on feedback synapses for effective learning. (A) Diagram of a one hidden layer network trained in B, with 80% of feedback weights

set to zero. The remaining feedback weights Y 0 were multiplied by five in order to maintain a similar overall magnitude of feedback signals. (B) Plot of

test error across 60 epochs for our standard one hidden layer network (gray) and a network with sparse feedback weights (red). Sparse feedback

weights resulted in improved learning performance compared to fully connected feedback weights. Right: Spreads (min – max) of the results of

repeated weight tests (n ¼ 20) after 60 epochs for each of the networks. Percentages indicate mean final test errors for each network (two-tailed t-test,

regular vs. sparse: t38 ¼ 16:43, p ¼ 7:4� 10
�19). (C) Diagram of a one hidden layer network trained in D, with feedback weights that are symmetric to

feedforward weights W1, and symmetric but with added noise. Noise added to feedback weights is drawn from a normal distribution with variance

s ¼ 0:05. (D) Plot of test error across 60 epochs of our standard one hidden layer network (gray), a network with symmetric weights (red), and a network

with symmetric weights with added noise (blue). Symmetric weights result in improved learning performance compared to random feedback weights,

but adding noise to symmetric weights results in impaired learning. Right: Spreads (min – max) of the results of repeated weight tests (n ¼ 20) after 60

epochs for each of the networks. Percentages indicate means (two-tailed t-test, random vs. symmetric: t38 ¼ 18:46, p ¼ 4:3� 10
�20; random vs.

symmetric with noise: t38 ¼ �71:54, p ¼ 1:2� 10
�41; symmetric vs. symmetric with noise: t38 ¼ �80:35, p ¼ 1:5� 10

�43, Bonferroni correction for multiple

comparisons).

DOI: https://doi.org/10.7554/eLife.22901.015

The following source data and figure supplement are available for figure 8:

Source data 1. Fig_8B_errors.csv.

DOI: https://doi.org/10.7554/eLife.22901.017

Figure supplement 1. Importance of weight magnitudes for learning with sparse weights.

DOI: https://doi.org/10.7554/eLife.22901.016
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this feedback signal would get corrupted by recurrent dynamics in the network. Our data show that

electrontonically segregated dendrites is one potential way to achieve the separation between feed-

forward and feedback information that is required for deep learning.

Discussion
Deep learning has radically altered the field of AI, demonstrating that parallel distributed processing

across multiple layers can produce human/animal-level capabilities in image classification, pattern

recognition and reinforcement learning (Hinton et al., 2006; LeCun et al., 2015; Mnih et al., 2015;

Silver et al., 2016; Krizhevsky et al., 2012; He et al., 2015). Deep learning was motivated by anal-

ogies to the real brain (LeCun et al., 2015; Cox and Dean, 2014), so it is tantalizing that recent

studies have shown that deep neural networks develop representations that strongly resemble the

representations observed in the mammalian neocortex (Khaligh-Razavi and Kriegeskorte, 2014;

Yamins and DiCarlo, 2016; Cadieu et al., 2014; Kubilius et al., 2016). In fact, deep learning mod-

els can match cortical representations better than some models that explicitly attempt to mimic the

real brain (Khaligh-Razavi and Kriegeskorte, 2014). Hence, at a phenomenological level, it appears

that deep learning, defined as multilayer cost function reduction with appropriate credit assignment,

may be key to the remarkable computational prowess of the mammalian brain (Marblestone et al.,

2016). However, the lack of biologically feasible mechanisms for credit assignment in deep learning

algorithms, most notably backpropagation of error (Rumelhart et al., 1986), has left neuroscientists

with a mystery. Given that the brain cannot use backpropagation, how does it solve the credit

assignment problem (Figure 1)? Here, we expanded on an idea that previous authors have explored

(Körding and König, 2001; Spratling, 2002; Spratling and Johnson, 2006) and demonstrated that

segregating the feedback and feedforward inputs to neurons, much as the real neocortex does

(Larkum et al., 1999; 2007; 2009), can enable the construction of local targets to assign credit

appropriately to hidden layer neurons (Figure 2). With this formulation, we showed that we could

Figure 9. Importance of dendritic segregation for deep learning. (A) Left: Diagram of a hidden layer neuron. ga represents the strength of the coupling

between the apical dendrite and soma. Right: Example traces of the apical voltage in a single neuron V0a
i and the somatic voltage V0

i in response to

spikes arriving at apical synapses. Here ga ¼ 0:05, so the apical activity is strongly attenuated at the soma. (B) Plot of test error across 60 epochs of

training on MNIST of a two hidden layer network, with total apical segregation (gray), strong apical attenuation (red) and weak apical attenuation (blue).

Apical input to the soma did not prevent learning if it was strongly attenuated, but weak apical attenuation impaired deep learning. Right: Spreads (min

– max) of the results of repeated weight tests (n ¼ 20) after 60 epochs for each of the networks. Percentages indicate means (two-tailed t-test, total

segregation vs. strong attenuation: t38 ¼ �4:00, p ¼ 8:4� 10
�4; total segregation vs. weak attenuation: t38 ¼ �95:24, p ¼ 2:4� 10

�46; strong attenuation

vs. weak attenuation: t38 ¼ �92:51, p ¼ 7:1� 10
�46, Bonferroni correction for multiple comparisons).

DOI: https://doi.org/10.7554/eLife.22901.018

The following source data is available for figure 9:

Source data 1. Fig_9B_errors.csv.

DOI: https://doi.org/10.7554/eLife.22901.019
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use segregated dendritic compartments to coordinate learning across layers (Figure 3, Figure 4 and

Figure 5). This enabled our network to take advantage of multiple layers to develop representations

of hand-written digits in hidden layers that enabled better levels of classification accuracy on the

MNIST dataset than could be achieved with a single layer (Figure 6). Furthermore, we found that

our algorithm actually approximated the weight updates that would be prescribed by backpropaga-

tion, and produced similar low-level feature detectors (Figure 7). As well, we showed that our basic

framework works with sparse feedback connections (Figure 8) and more realistic, partial apical

attenuation (Figure 9). Therefore, our work demonstrates that deep learning is possible in a biologi-

cally feasible framework, provided that feedforward and feedback signals are sufficiently segregated

in different dendrites.

In this work we adopted a similar strategy to the one taken by Lee et al., 2015 in their difference

target propagation algorithm, wherein the feedback from higher layers is used to construct local fir-

ing-rate targets at the hidden layers. One of the reasons that we adopted this strategy is that it is

appealing to think that feedback from upper layers may not simply be providing a signal for plastic-

ity, but also a predictive and/or modulatory signal to push the hidden layer neurons towards a ‘bet-

ter’ activity pattern in real-time. This sort of top-down control could be used by the brain to improve

sensory processing in different contexts and engage in inference (Bengio et al., 2015). Indeed, fram-

ing cortico-cortical feedback as a mechanism to predict or modulate incoming sensory activity is a

more common way of viewing feedback signals in the neocortex (Larkum, 2013; Gilbert and Li,

2013; Zhang et al., 2014; Fiser et al., 2016; Leinweber et al., 2017). In light of this, it is interesting

to note that distal apical inputs in sensory cortical areas can predict upcoming stimuli

(Leinweber et al., 2017; Fiser et al., 2016), and help animals perform sensory discrimination tasks

(Takahashi et al., 2016; Manita et al., 2015). However, in our model, we did not actually implement

a system that altered the hidden layer activity to make sensory computations—we simply used the

feedback signals to drive learning. In-line with this view of top-down feedback, two recent papers

have found evidence that cortical feedback can indeed guide feedforward sensory plasticity

(Thompson et al., 2016; Yamada et al., 2017), and in the hippocampus, there is evidence that pla-

teau potentials generated by apical inputs are key determinants of plasticity (Bittner et al., 2015;

Bittner et al., 2017). But, ultimately, there is no reason that feedback signals cannot provide both

top-down predicton/modulation and a signal for learning (Spratling, 2002). In this respect, a poten-

tial future advance on our model would be to implement a system wherein the feedback makes pre-

dictions and ‘nudges’ the hidden layers towards appropriate activity patterns in order to guide

learning and shape perception simultaneously. This proposal is reminiscent of the approach taken in

previous computational models (Urbanczik and Senn, 2014; Spratling and Johnson, 2006;

Körding and König, 2001). Future research could study how top-down control of activity and a sig-

nal for credit assignment can be combined.

In a number of ways, the model that we presented here is more biologically feasible than other

deep learning models. We utilized leaky integrator neurons that communicate with spikes, we simu-

lated in near continuous-time, and we used spatially local synaptic plasticity rules. Yet, there are still

clearly unresolved issues of biological feasibility in our model. Most notably, the model updates syn-

aptic weights using the difference between two plateau potentials that occur following two different

phases. There are three issues with this method from a biological standpoint. First, it necessitates

two distinct global phases of processing (the ‘forward’ and ‘target’ phases). Second, the plateau

potentials occur in the apical compartment, but they are used to update the basal synapses, mean-

ing that this information from the apical dendrites must somehow be communicated to the rest of

the neuron. Third, the two plateau potentials occur with a temporal gap of tens of milliseconds,

meaning that this difference must somehow be computed over time.

These issues could, theoretically, be resolved in a biologically realistic manner. The two different

phases could be a result of a global signal indicating whether the teaching signal was present. This

could be accomplished with neuromodulatory systems (Pi et al., 2013), or alternatively, with oscilla-

tions that the teaching signal and apical dendrites are phase locked to (Veit et al., 2017). Communi-

cating plateau potentials to the basal dendrites is also possible using known biological principles.

Plateau potentials induce bursts of action potentials in pyramidal neurons (Larkum et al., 1999), and

the rate-of-fire of the bursts would be a function of the level of the plateau potential. Given that

action potentials would propagate back through the basal dendrites (Kampa and Stuart, 2006), any

cellular mechanism in the basal dendrites that is sensitive to rate-of-fire of bursts could be used to
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detect the level of the plateau potentials in the apical dendrite. Finally, taking the difference

between two events that occur tens of milliseconds apart is possible if such a hypothetical cellular

signal that is sensitive to bursts had a slow decay time constant, and reacted differently depending

on whether the global phase signal was active. A simple mathematical formulation for such a cellular

signal is given in the methods (see Equations (36) and (37)). It is worth noting that incorporation of

bursting into somatic dynamics would be unlikely to affect the learning results we presented here.

This is because we calculate weight updates by averaging the activity of the neurons for a period

after the network is near steady-state (i.e. the period marked with the blue line in Figure 3C, see

also Equation (5)). Even if bursts of activity temporarily altered the dynamics of the network, they

would not significantly alter the steady-state activity. Future work could expand on the model pre-

sented here and explore whether bursting activity might beneficially alter somatic dynamics (e.g. for

on-line inference), as well as driving learning.

These possible implementations are clearly speculative, and only partially in-line with experimen-

tal evidence. As the adage goes, all models are wrong, but some models are useful. Our model aims

to inspire new ways to think about how the credit assignment problem could be solved by known cir-

cuits in the brain. Our study demonstrates that some of the machinery that is known to exist in the

neocortex, namely electrotonically segregated apical dendrites receiving top-down inputs, may be

well-suited to credit assignment computations. What we are proposing is that the neocortex could

use the segregation of top-down inputs to the apical dendrites in order to solve the credit assign-

ment problem, without using a separate feedback pathway as is implicit in most deep learning mod-

els used in machine learning. We consider this to be the core insight of our model, and an important

step in making deep learning more biologically plausible. Indeed, our model makes both a generic,

and a specific, prediction about the role of synaptic inputs to apical dendrites during learning. The

generic prediction is that the sign of synaptic plasticity, that is whether LTP or LTD occur, in the

basal dendrites will be modulated by different patterns of inputs to the apical dendrites. The more

specific prediction that our model makes is that the timing of apical inputs relative to basal inputs

should be what determines the sign of plasticity for synapses in the basal dendrites. For example, if

apical and basal inputs arrive at the same time, but the apical inputs disappear before the basal

inputs do, then presumably plateau potentials will be stronger early in the stimulus presentation (i.e.

af>at), and so the basal synapses should engage in LTD. In contrast, if the apical inputs only arrive

after the basal inputs have been active for some period of time, then plateau potentials will be stron-

ger towards the end of stimulus presentation (i.e. af<at), and so the basal synapses should engage

in LTP. Both the generic and specific predictions should be experimentally testable using modern

optical techniques to separate the inputs to the basal and apical dendrites (Figure 10).

Another direction for future research should be to consider how to use the machinery of neocorti-

cal microcircuits to communicate credit assignment signals without relying on differences across

phases, as we did here. For example, somatostatin positive interneurons, which possess short-term

facilitating synapses (Silberberg and Markram, 2007), are particularly sensitive to bursts of spikes,

and could be part of a mechanism to calculate differences in the top-down signals being received by

pyramidal neuron dendrites. If a calculation of this difference spanned the time before and after a

teaching signal arrived, it could, theoretically, provide the computation that our system implements

with a difference between plateau potentials. Indeed, we would argue that credit assignment may

be one of the major functions of the canonical neocortical microcircuit motif. If this is correct, then

the inhibitory interneurons that target apical dendrites may be used by the neocortex to control

learning (Murayama et al., 2009). Although this is speculative, it is worth noting that current evi-

dence supports the idea that neuromodulatory inputs carrying temporally precise salience informa-

tion (Hangya et al., 2015) can shut off interneurons to disinhibit the distal apical dendrites (Pi et al.,

2013; Karnani et al., 2016; Pfeffer et al., 2013; Brombas et al., 2014), and presumably, promote

apical communication to the soma. Recent work suggests that the specific patterns of interneuron

inhibition on the apical dendrites are spatially precise and differentially timed to motor behaviours

(Muñoz et al., 2017), which suggests that there may well be coordinated physiological mechanisms

for determining when and how cortico-cortical feedback is transmitted to the soma and basal den-

drites. Future research should examine whether these inhibitory and neuromodulatory mechanisms

do, in fact, control plasticity in the basal dendrites of pyramidal neurons, as our model, and some

recent experimental work (Bittner et al., 2015; Bittner et al., 2017), would predict.
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A non-biological issue that should be recognized is that the error rates which our network

achieved were by no means as low as can be achieved with artificial neural networks, nor at human

levels of performance (Lecun et al., 1998; Li et al., 2016). As well, our algorithm was not able to

take advantage of very deep structures (beyond two hidden layers, the error rate did not improve).

In contrast, increasing the depth of networks trained with backpropagation can lead to performance

improvements (Li et al., 2016). But, these observations do not mean that our network was not

engaged in deep learning. First, it is interesting to note that although the backpropagation algo-

rithm is several decades old (Rumelhart et al., 1986), it was long considered to be useless for train-

ing networks with more than one or two hidden layers (Bengio and LeCun, 2007). Indeed, it was

only the use of layer-by-layer training that initially led to the realization that deeper networks can

achieve excellent performance (Hinton et al., 2006). Since then, both the use of very large datasets

(with millions of examples), and additional modifications to the backpropagation algorithm, have

been key to making backpropagation work well on deeper networks (Sutskever et al., 2013;

LeCun et al., 2015). Future studies could examine how our algorithm could incorporate current

techniques used in machine learning to work better on deeper architectures. Second, we stress that

our network was not designed to match the state-of-the-art in machine learning, nor human capabili-

ties. To test our basic hypothesis (and to run our leaky-integration and spiking simulations in a

Figure 10. An experiment to test the central prediction of the model. (A) Illustration of the basic experimental set-up required to test the predictions

(generic or specific) of the deep learning with segregated dendrites model. To test the predictions of the model, patch clamp recordings could be

performed in neocortical pyramidal neurons (e.g. layer 5 neurons, shown in black), while the top-down inputs to the apical dendrites and bottom-up

inputs to the basal dendrites are controlled separately. This could be accomplished optically, for example by infecting layer 4 cells with

channelrhodopsin (blue cell), and a higher-order cortical region with a red-shifted opsin (red axon projections), such that the two inputs could be

controlled by different colors of light. (B) Illustration of the specific experimental prediction of the model. With separate control of top-down and

bottom-up inputs a synaptic plasticity experiment could be conducted to test the central prediction of the model, that is that the timing of apical inputs

relative to basal inputs should determine the sign of plasticity at basal dendrites. After recording baseline postsynaptic responses (black lines) to the

basal inputs (blue lines) a plasticity induction protocol could either have the apical inputs (red lines) arrive early during basal inputs (left) or late during

basal inputs (right). The prediction of our model would be that the former would induce LTD in the basal synapses, while the later would induce LTP.

DOI: https://doi.org/10.7554/eLife.22901.020
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reasonable amount of time) we kept the network small, we stopped training before it reached its

asymptote, and we did not implement any add-ons to the learning to improve the error rates, such

as convolution and pooling layers, initialization tricks, mini-batch training, drop-out, momentum or

RMSProp (Sutskever et al., 2013; Tieleman and Hinton, 2012; Srivastava et al., 2014). Indeed, it

would be quite surprising if a relatively vanilla, small network like ours could come close to matching

current performance benchmarks in machine learning. Third, although our network was able to take

advantage of multiple layers to improve the error rate, there may be a variety of reasons that ever

increasing depth didn’t improve performance significantly. For example, our use of direct connec-

tions from the output layer to the hidden layers may have impaired the network’s ability to coordi-

nate synaptic updates between hidden layers. As well, given our finding that the use of spikes

produced weight updates that were less well-aligned to backpropagation (Figure 7A) it is possible

that deeper architectures require mechanisms to overcome the inherent noisiness of spikes.

One aspect of our model that we did not develop was the potential for learning at the feedback

synapses. Although we used random synaptic weights for feedback, we also demonstrated that our

model actually learns to meet the mathematical conditions required for credit assignment (Figure 5—

figure supplement 1). This suggests that it would be beneficial to develop a synaptic weight update

rule for the feedback synapses that made this aspect of the learning better. Indeed, Lee et al., 2015

implemented an ‘inverse loss function’ for their feedback synapses which promoted the develop-

ment of feedforward and feedback functions that were roughly inverses of each other, leading to

the emergence of auto-encoder functions in their network. In light of this, it is interesting to note

that there is evidence for unique, ‘reverse’ spike-timing-dependent synaptic plasticity rules in the dis-

tal apical dendrites of pyramidal neurons (Sjöström and Häusser, 2006; Letzkus et al., 2006), which

have been shown to produce symmetric feedback weights and auto-encoder functions in artificial

spiking networks (Burbank and Kreiman, 2012; Burbank, 2015). Thus, it is possible that early in

development the neocortex actually learns cortico-cortical feedback connections that help it to

assign credit for later learning. Our work suggests that any experimental evidence showing that

feedback connections learn to approximate the inverse of feedforward connections could be consid-

ered as evidence for deep learning in the neocortex.

A final consideration, which is related to learning at feedback synapses, is the likely importance of

unsupervised learning for the real brain, that is learning without a teaching signal. In this paper, we

focused on a supervised learning task with a teaching signal. Supervised learning certainly could

occur in the brain, especially for goal-directed sensorimotor tasks where animals have access to

examples that they could use to generate internal teaching signals Teşileanu et al. (2017). But,

unsupervised learning is likely critical for understanding the development of cognition

(Marblestone et al., 2016). Importantly, unsupervised learning in multilayer networks still requires a

solution to the credit assignment problem (Bengio et al., 2015), so our work here is not completely

inapplicable. Nonetheless, future research should examine how the credit assignment problem can

be addressed in the specific case of unsupervised learning.

In summary, deep learning has had a huge impact on AI, but, to date, its impact on neuroscience

has been limited. Nonetheless, given a number of findings in neurophysiology and modeling

(Yamins and DiCarlo, 2016), there is growing interest in understanding how deep learning may

actually be achieved by the real brain (Marblestone et al., 2016). Our results show that by moving

away from point neurons, and shifting towards multi-compartment neurons that segregate feedfor-

ward and feedback signals, the credit assignment problem can be solved and deep learning can be

achieved. Perhaps the dendritic anatomy of neocortical pyramidal neurons is important for nature’s

own deep learning algorithm.

Materials and methods
Code for the model can be obtained from a GitHub repository (https://github.com/jordan-g/Segre-

gated-Dendrite-Deep-Learning) (Guerguiev, 2017), with a copy archived at https://github.com/eli-

fesciences-publications/Segregated-Dendrite-Deep-Learning. For notational simplicity, we describe

our model in the case of a network with only one hidden layer. We describe how this is extended to

a network with multiple layers at the end of this section. As well, at the end of this section in Table 1

we provide a table listing the parameter values we used for all of the simulations presented in this

paper.
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Neuronal dynamics
The network described here consists of an input layer with ‘ neurons, a hidden layer with m neurons,

and an output layer with n neurons. Neurons in the input layer are simple Poisson spiking neurons

whose rate-of-fire is determined by the intensity of image pixels (ranging from 0 - fmax). Neurons in

the hidden layer are modeled using three functional compartments—basal dendrites with voltages

V0bðtÞ ¼ ½V0b
1
ðtÞ;V0b

2
ðtÞ; :::;V0b

m ðtÞ�, apical dendrites with voltages V0aðtÞ ¼ ½V0a
1
ðtÞ;V0a

2
ðtÞ; :::;V0a

m ðtÞ�, and
somata with voltages V0ðtÞ ¼ ½V0

1
ðtÞ;V0

2
ðtÞ; :::;V0

mðtÞ�. Feedforward inputs from the input layer and

feedback inputs from the output layer arrive at basal and apical synapses, respectively. At basal syn-

apses, presynaptic spikes from input layer neurons are translated into filtered spike trains sinputðtÞ ¼
½sinput
1

ðtÞ; sinput
2

ðtÞ; :::; sinput‘ ðtÞ� given by:

s
input
j ðtÞ ¼

X

k

kðt� t
input
jk Þ (11)

where t
input
jk is the k th spike time of input neuron j is the response kernel given by:

kðtÞ ¼ ðe�t=tL � e�t=tsÞQðtÞ=ðtL� tsÞ

where ts and tL are short and long time constants, and Q is the Heaviside step function. Since the

network is fully-connected, each neuron in the hidden layer will receive the same set of filtered spike

trains from input layer neurons. The filtered spike trains at apical synapses, s1ðtÞ ¼ ½s1
1
ðtÞ; s1

2
ðtÞ; :::; s1nðtÞ�,

are modeled in the same manner. The basal and apical dendritic potentials for neuron i are then

given by weighted sums of the filtered spike trains at either its basal or apical synapses:

V0b
i ðtÞ ¼

X

‘

j¼1

W0

ijs
input
j ðtÞþ b0i

V0a
i ðtÞ ¼

X

n

j¼1

Yijs
1

j ðtÞ
(13)

where b0 ¼ ½b0
1
;b0

2
; :::;b0m� are bias terms, W0 is the m� ‘ matrix of feedforward weights for neurons in

the hidden layer, and Y is the m� n matrix of their feedback weights. The somatic voltage for neuron

i evolves with leak as:

Table 1. List of parameter values used in our simulations.

Parameter Units Value Description

dt ms 1 Time step resolution

fmax Hz 200 Maximum spike rate

ts ms 3 Short synaptic time constant

tL ms 10 Long synaptic time constant

Dts ms 30 Settle duration for calculation of average voltages

gb S 0.6 Hidden layer conductance from basal dendrites to the soma

ga S 0, 0.05, 0.6 Hidden layer conductance from apical dendrites to the soma

gd S 0.6 Output layer conductance from dendrites to the soma

gl S 0.1 Leak conductance

VR mV 0 Resting membrane potential

Cm F 1 Membrane capacitance

P0 – 20=fmax Hidden layer error signal scaling factor

P1 – 20=f2

max
Output layer error signal scaling factor

DOI: https://doi.org/10.7554/eLife.22901.021
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t
dV0

i ðtÞ
dt

¼ ðVR�V0

i ðtÞÞþ
gb

gl
ðV0b

i ðtÞ�V0

i ðtÞÞþ
ga

gl
ðV0a

i ðtÞ�V0

i ðtÞÞ (14)

¼ ðVR�V0

i ðtÞÞþ
gb

gl

�

X

‘

j¼1

W0

ijs
input
j ðtÞþ b0i �V0

i ðtÞ
�

þ ga

gl

�

X

n

j¼1

Y0

ijs
1

j ðtÞ�V0

i ðtÞ
�

(15)

where VR is the resting potential, gl is the leak conductance, gb is the conductance from the basal

dendrite to the soma, and ga is the conductance from the apical dendrite to the soma, and t is a

function of gl and the membrance capacitance Cm:

t¼Cm

gl
(16)

Note that for simplicity’s sake we are assuming a resting potential of 0 mV and a membrane

capacitance of 1 F, but these values are not important for the results. Equations (13) and (14) are

identical to the Equation (1) in results.

The instantaneous firing rates of neurons in the hidden layer are given by

f0ðtÞ ¼ ½f0

1
ðtÞ;f0

2
ðtÞ; :::;f0

mðtÞ�, where f0

i ðtÞ is the result of applying a nonlinearity, sð�Þ, to the somatic

potential V0

i ðtÞ. We chose sð�Þ to be a simple sigmoidal function, such that:

f0

i ðtÞ ¼fmaxsðV0

i ðtÞÞ ¼fmax

1

1þ e�V0

i
ðtÞ (17)

Here, fmax is the maximum possible rate-of-fire for the neurons, which we set to 200 Hz. Note

that Equation (17) is identical to Equation (3) in results. Spikes are then generated using Poisson

processes with these firing rates. We note that although the maximum rate was 200 Hz, the neurons

rarely achieved anything close to this rate, and the average rate of fire in the neurons during our sim-

ulations was 24 Hz.

Units in the output layer are modeled using only two compartments, dendrites with voltages

V1bðtÞ ¼ ½V1b
1
ðtÞ;V1b

2
ðtÞ; :::;V1b

n ðtÞ� and somata with voltages V1ðtÞ ¼ ½V1

1
ðtÞ;V1

2
ðtÞ; :::;V1

n ðtÞ� is given by:

V1b
i ðtÞ ¼

X

m

j¼1

W1

ijs
0

j ðtÞþ b1i (18)

where s0ðtÞ ¼ ½s0
1
ðtÞ; s0

2
ðtÞ; :::;s0mðtÞ� are the filtered presynaptic spike trains at synapses that receive

feedforward input from the hidden layer, and are calculated in the manner described by Equa-

tion (11). V1

i ðtÞ evolves as:

t
dV1

i ðtÞ
dt

¼ ðVR�V1

i ðtÞÞþ
gd

gl
ðV1b

i ðtÞ�V1

i ðtÞÞþ IiðtÞ (19)

where gl is the leak conductance, gd is the conductance from the dendrite to the soma, and IðtÞ ¼
½I1ðtÞ; I2ðtÞ; :::; InðtÞ� are somatic currents that can drive output neurons toward a desired somatic volt-

age. For neuron i, Ii is given by:

IiðtÞ ¼ gEi
ðtÞðEE �V1

i ðtÞÞþ gIiðtÞðEI �V1

i ðtÞÞ (20)

where gEðtÞ ¼ ½gE1
ðtÞ;gE2

ðtÞ; :::;gEn
ðtÞ� and gIðtÞ ¼ ½gI1ðtÞ;gI2ðtÞ; :::;gInðtÞ� are time-varying excitatory and

inhibitory nudging conductances, and EE and EI are the excitatory and inhibitory reversal potentials.

In our simulations, we set EE ¼ 8 V and EI ¼�8 V. During the target phase only, we set gIi ¼ 1 and

gEi
¼ 0 for all units i whose output should be minimal, and gEi

¼ 1 and gIi ¼ 0 for the unit whose out-

put should be maximal. In this way, all units other than the ‘target’ unit are silenced, while the ‘tar-

get’ unit receives a strong excitatory drive. In the forward phase, IðtÞ is set to 0. The Poisson spike

rates f1ðtÞ ¼ ½f1

1
ðtÞ;f1

2
ðtÞ; :::;f1

nðtÞ� are calculated as in Equation (17).

Plateau potentials
At the end of the forward and target phases, we calculate plateau potentials af ¼ ½af

1
;af

2
; :::;af

m� and
at ¼ ½at

1
;at

2
; :::;at

m� for apical dendrites of hidden layer neurons, where a
f
i and at

i are given by:
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a
f
i ¼ s

 

1

Dt1

R t1
t1�Dt1

V0a
i ðtÞdt

!

at
i ¼ s

 

1

Dt2

Z t2

t2�Dt2

V0a
i ðtÞdt

! (21)

where t1 and t2 are the end times of the forward and target phases, respectively, Dts ¼ 30 ms is the

settling time for the voltages, and Dt1 and Dt2 are given by:

Dt1 ¼ t1 �ðt0 þDtsÞ
Dt2 ¼ t2 �ðt1 þDtsÞ

(22)

Note that Equation (21) is identical to Equation (5) in results. These plateau potentials are used

by hidden layer neurons to update their basal weights.

Weight updates
All feedforward synaptic weights are updated at the end of each target phase. Output layer units

update their synaptic weights W1 in order to minimize the loss function

L1 ¼ jjf1��fmaxsðV1
f

Þjj2
2

(23)

where f1� ¼f1
t

as in Equation (6). Note that, as long as neuronal units calculate averages after the

network has reached a steady state, and the firing-rates of the neurons are in the linear region of the

sigmoid function, then for layer x,

fmaxsðVxf Þ »fmaxsðVxÞf

¼fxf
(24)

Thus,

L1 » jjf1
t

�f1
f

jj2
2

(25)

as in Equation (7).

All average voltages are calculated after a delay Dts from the start of a phase, which allows for the

network to reach a steady state before averaging begins. In practice this means that the average

somatic voltage for output layer neuron i in the forward phase, V1
i

f
, has the property

V1
i

f
»kdV

1b
i

f
¼ kd

�

X

m

j¼1

W1

ijs
0

j

f þ b1i
�

(26)

where kd is given by:

kd ¼
gd

glþ gd
(27)

Thus,

qL1

qW1
» � kdfmaxðf1� �fmaxsðV1

f

ÞÞs0ðV1
f

Þ � s0f

qL1

qb1
» � kdfmaxðf1� �fmaxsðV1

f

ÞÞs0ðV1
f

Þ
(28)

Note that these partial derivatives assume that the activity during the target phase is fixed. We

do this because the goal of learning is to have the network behave as it does during the target

phase, even when the teaching signal is present. Thus, we do not update synapses in order to alter

the target phase activity. As a result, there are no terms in the equation related to the partial deriva-

tives of the voltages or firing-rates during the target phase.
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The dendrites in the output layer use this approximation of the gradient in order to update their

weights using gradient descent:

W1 !W1 �h1P1
qL1

qW1

b1 ! b1 �h1P1
qL1

qb1

(29)

where h1 is a learning rate constant, and P1 is a scaling factor used to normalize the scale of the

rate-of-fire function.

In the hidden layer, basal dendrites update their synaptic weights W0 by minimizing the loss

function

L0 ¼ jjf0��fmaxsðV0
f

Þjj2
2

(30)

We define the target rates-of-fire f0� ¼ ½f0�
1
;f0�

2
; :::;f0�

m � such that

f0�
i ¼f0

i

f

þat
i �a

f
i (31)

where af ¼ ½af
1
;af

2
; :::;af

m� and at ¼ ½at
1
;at

2
; :::;at

m� are forward and target phase plateau potentials

given in Equation (21). Note that Equation (31) is identical to Equation (8) in results. These hidden

layer target firing rates are similar to the targets used in difference target propagation (Lee et al.,

2015).

Using Equation (24), we can show that

L0 » jjat �af jj2
2

(32)

as in Equation (9). Hence:

qL0

qW0
» � kbðat �af Þfmaxs

0ðV0
f

Þ � sinput f

qL0

qb0
» � kbðat �af Þfmaxs

0ðV0
f

Þ
(33)

where kb is given by:

kb ¼
gb

glþ gbþ ga
(34)

Note that although f0� is a function of W0 and b0, we do not differentiate this term with respect

to the weights and biases. Instead, we treat f0� as a fixed state for the hidden layer neurons to learn

to reproduce. Basal weights are updated in order to descend this approximation of the gradient:

W0 !W0 �h0P0
qL0

qW0

b0 ! b0 �h0P0
qL0

qb0

(35)

Again, we assume that the activity during the target phase is fixed, so no derivatives are taken

with respect to voltages or firing-rates during the target phase.

Importantly, this update rule is spatially local for the hidden layer neurons. It consists essentially

of three terms, (1) the difference in the plateau potentials for the target and forward phases

(at � af ), (2) the derivative of the spike rate function (fmaxs
0ðV0

f

Þ), and (3) the filtered presynaptic

spike trains (sinput
f
). All three of these terms are values that a real neuron could theoretically calculate

using some combination of molecular synaptic tags, calcium currents, and back-propagating action

potentials.

One aspect of this update rule that is biologically questionable, though, is the use of the term

(at � af ). This requires a difference between plateau potentials that are separated by tens of
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milliseconds. How could such a signal be used by basal dendrite synapses to guide their updates?

Plateau potentials can drive bursts of spikes (Larkum et al., 1999), which can propagate to basal

dendrites (Kampa and Stuart, 2006). Since the plateau potentials are similar to rate variables (i.e. a

sigmoid applied to the voltage), the number of spikes during the bursts, Nf ¼ ½N f
1
;N f

2
; :::;N f

m� and
Nt ¼ ½N t

1
;N t

2
; :::;N t

m�, for the forward and target plateaus, respectively, could be sampled from a Pois-

son distribution with rate parameter equal to the plateau potential level:

N f
~Poissonðaf Þ

N t
~PoissonðatÞ

(36)

If the distinct phases (forward and target) were marked by some global signal, fðtÞ, that was com-

municated to all of the neurons, for example a neuromodulatory signal, the phase of a global oscilla-

tion, or some blanket inhibition signal, then we can imagine an internal cellular memory mechanism

in the basal dendrites of the ith neuron, Mi (e.g. a molecular signal like the activity of an enzyme, the

phosphorylation level of some protein, or the amount of calcium released from intracellular stores),

which could be differentially sensitive to the inter-spike interval of bursts, depending on f. So, for

example, if we define:

fðtÞ ¼ �1; if in the forward phase; i:e: x¼ f

1; if in the target phase; i:e: x¼ t

�

dMiðtÞ
dt

/fðtÞNx
i

(37)

where x indicates the forward or target phase. Then, the change in Mi from before the bursts occur

to afterwards would be, on average, proportional to the difference (at �af ), and could be used to

calculate the weight updates.

However, this is highly speculative, and it is not clear that such a mechanism would be present in

real neurons. We have outlined the mathematics here to make the reality of implementing the cur-

rent model explicit, but we would predict that the brain would have some alternative method for cal-

culating differences between top-down inputs at different times, for example by using somatostatin

positive interneurons that are preferentially sensitive to bursts and which target the apical dendrite

(Silberberg and Markram, 2007). We are ultimately agnostic as to this mechanism, and so, it was

not included in the current model.

Multiple hidden layers
In order to extend our algorithm to deeper networks with multiple hidden layers, our model incorpo-

rates direct synaptic connections from the output layer to each hidden layer. Thus, each hidden layer

receives feedback from the output layer through its own separate set of fixed, random weights. For

example, in a network with two hidden layers, both layers receive the feedback from the output

layer at their apical dendrites through backward weights Y0 and Y1. The local targets at each layer

are then given by:

f2
� ¼f2

t

(38)

f1� ¼f1
t

þa1t �a1f (39)

f0� ¼f0
t

þa0t �a0f (40)

where the superscripts 0 and 1 denote the first and second hidden layers, respectively, and the

superscript 2 denotes the output layer.

The local loss functions at each layer are:

L2 ¼ jjf2
� �fmaxsðV2

f

Þjj2
2

L1 ¼ jjf1��fmaxsðV1
f

Þjj2
2

L0 ¼ jjf0��fmaxsðV0
f

Þjj2
2

(41)
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where L2 is the loss at the output layer. The learning rules used by the hidden layers in this scenario

are the same as in the case with one hidden layer.

Learning rate optimization
For each of the three network sizes that we present in this paper, a grid search was performed in

order to find good learning rates. We set the learning rate for each layer by stepping through the

range ½0:1; 0:3� with a step size of 0:02. For each combination of learning rates, a neural network was

trained for one epoch on the 60, 000 training examples, after which the network was tested on

10,000 test images. The learning rates that gave the best performance on the test set after an epoch

of training were used as a basis for a second grid search around these learning rates that used a

smaller step size of 0:01. From this, the learning rates that gave the best test performance after 20

epochs were chosen as our learning rates for that network size.

In all of our simulations, we used a learning rate of 0.19 for a network with no hidden layers,

learning rates of 0.21 (output and hidden) for a network with one hidden layer, and learning rates of

0.23 (hidden layers) and 0.12 (output layer) for a network with two hidden layers. All networks with

one hidden layer had 500 hidden layer neurons, and all networks with two hidden layers had 500

neurons in the first hidden layer and 100 neurons in the second hidden layer.

Training paradigm
For all simulations described in this paper, the neural networks were trained on classifying handwrit-

ten digits using the MNIST database of 28 pixel � 28 pixel images. Initial feedforward and feedback

weights were chosen randomly from a uniform distribution over a range that was calculated to pro-

duce voltages in the dendrites between �6 - 12 V.

Prior to training, we tested a network’s initial performance on a set of 10,000 test examples. This

set of images was shuffled at the beginning of testing, and each example was shown to the network

in sequence. Each input image was encoded into Poisson spiking activity of the 784 input neurons

representing each pixel of the image. The firing rate of an input neuron was proportional to the

brightness of the pixel that it represents (with spike rates between ½0 - fmax�. The spiking activity of

each of the 784 input neurons was received by the neurons in the first hidden layer. For each test

image, the network underwent only a forward phase. At the end of this phase, the network’s classifi-

cation of the input image was given by the neuron in the output layer with the greatest somatic

potential (and therefore the greatest spike rate). The network’s classification was compared to the

target classification. After classifying all 10,000 testing examples, the network’s classification error

was given by the percentage of examples that it did not classify correctly.

Following the initial test, training of the neural network was done in an on-line fashion. All 60,000

training images were randomly shuffled at the start of each training epoch. The network was then

shown each training image in sequence, undergoing a forward phase ending with a plateau poten-

tial, and a target phase ending with another plateau potential. All feedforward weights were then

updated at the end of the target phase. At the end of the epoch (after all 60,000 images were

shown to the network), the network was again tested on the 10,000 test examples. The network was

trained for up to 60 epochs.

Simulation details
For each training example, a minimum length of 50 ms was used for each of the forward and target

phases. The lengths of the forward and target training phases were determined by adding their min-

imum length to an extra length term, which was chosen randomly from a Wald distribution with a

mean of 2 ms and scale factor of 1. During testing, a fixed length of 500 ms was used for the forward

transmit phase. Average forward and target phase voltages were calculated after a settle duration

of Dts ¼ 30 ms from the start of the phase.

For simulations with randomly sampled plateau potential times (Figure 5—figure supplement 1),

the time at which each neuron’s plateau potential occurred was randomly sampled from a folded

normal distribution (� ¼ 0;s2 ¼ 3) that was truncated (max ¼ 5) such that plateau potentials occurred

between 0 ms and 5 ms before the start of the next phase. In this scenario, the average apical volt-

age in the last 30 ms was averaged in the calculation of the plateau potential for a particular neuron.
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The time-step used for simulations was dt ¼ 1 ms. At each time-step, the network’s state was

updated bottom-to-top beginning with the first hidden layer and ending with the output layer. For

each layer, dendritic potentials were updated, followed by somatic potentials, and finally their spik-

ing activity. Table 1 lists the simulation parameters and the values that were used in the figures

presented.

All code was written using the Python programming language version 2.7 (RRID: SCR_008394)

with the NumPy (RRID: SCR_008633) and SciPy (RRID: SCR_008058) libraries. The code is open

source and is freely available at https://github.com/jordan-g/Segregated-Dendrite-Deep-Learning

(Guerguiev, 2017). The data used to train the network was from the Mixed National Institute of

Standards and Technology (MNIST) database, which is a modification of the original database from

the National Institute of Standards and Technology (RRID: SCR_006440) (Lecun et al., 1998). The

MNIST database can be found at http://yann.lecun.com/exdb/mnist/. Some of the simulations were

run on the SciNet High-Performance Computing platform (Loken et al., 2010).

Proofs
Theorem for loss function coordination
The targets that we selected for the hidden layer (see Equation (8)) were based on the targets used

in Lee et al., 2015. The authors of that paper provided a proof showing that their hidden layer tar-

gets guaranteed that learning in one layer helped reduce the error in the next layer. However, there

were a number of differences between our network and theirs, such as the use of spiking neurons,

voltages, different compartments, etc. Here, we modify the original Lee et al., 2015 proof slightly

to prove Theorem 1.

One important thing to note is that the theorem given here utilizes a target for the hidden layer

that is slightly different than the one defined in Equation (8). However, the target defined in Equa-

tion (8) is a numerical approximation of the target given in Theorem 1. After the proof of we

describe exactly how these approximations relate to the targets given here.

Theorem 1

Consider a neural network with one hidden layer and an output layer. Let ~f0� ¼ f0
f

þ sðYf1
t

Þ �

sðYfmaxsðE½V1
f

�ÞÞ be the target firing rates for neurons in the hidden layer, where sð�Þ is a differen-

tiable function. Assume that V1
f

» kdV
1b

f

. Let f1� ¼ f1
t

be the target firing rates for the output layer.

Also, for notational simplicity, let bðxÞ � fmaxsðkdW1xÞ and gðxÞ � sðYxÞ. Theorem 1 states that if

f1� � fmaxsðE½V1
f

�Þ is sufficiently small, and the Jacobian matrices Jb and Jg satisfy the condition

that the largest eigenvalue of ðI � JbJgÞTðI � JbJgÞ is less than 1, then

jjf1��fmaxsðkdW1~f0�Þjj2
2
<jjf1� �fmaxsðE½V1

f

�Þjj2
2

We note again that the proof for this theorem is essentially a modification of the proof provided

in Lee et al., 2015 that incorporates our Lemma 1 to take into account the expected value of s0
f
,

given that spikes in the network are generated with non-stationary Poisson processes.

Proof.

f1� �fmaxsðkdW1~f0�Þ �f1� �bð~f0�Þ

¼f1� �bðf0
f

þgðf1
t

Þ�gðfmaxsðE½V1
f
�ÞÞÞ

Lemma 1 shows that fmaxsðE½V1
f
�Þ ¼fmaxsðE½kdW1s0

f �Þ»fmaxsðkdW1f0
f

Þ given a sufficiently large

averaging time window. Assume that fmaxsðE½V1
f

�Þ ¼fmaxsðkdW1f0
f

Þ � bðf0
f

Þ. Then,

f1� �bð~f0�Þ ¼f1� �bðf0
f

þgðf1
t

Þ�gðbðf0
f

ÞÞÞ

Let e¼f1
t

�bðf0
f

Þ. Applying Taylor’s theorem,
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f1��bð~f0�Þ ¼f1� �bðf0
f

þ Jgeþ oðjjejj
2
ÞÞ

where oðjjejj
2
Þ is the remainder term that satisfies lime!0 oðjjejj2Þ=jjejj2 ¼ 0. Applying Taylor’s theo-

rem again,

f1��bð~f0�Þ ¼f1� �bðf0
f

Þ� JbðJgeþ oðjjejj
2
ÞÞ

� oðjjðJgeþ oðjjejj
2
Þjj

2
Þ

¼f1� �bðf0
f

Þþ JbJge� oðjjejj
2
Þ

¼ ðI� JbJgÞe� oðjjejj
2
Þ

Then,

jjf1� �bð~f0�Þjj2
2
¼ ððI� JbJgÞe� oðjjejj

2
ÞÞTððI� JbJgÞe� oðjjejj

2
ÞÞ

¼ eTðI� JbJgÞTðI� JbJgÞe� oðjjejj
2
ÞTðI� JbJgÞe

� eTðI� JbJgÞToðjjejj2Þþ oðjjejj
2
ÞToðjjejj

2
Þ

¼ eTðI� JbJgÞTðI� JbJgÞeþ oðjjejj2
2
Þ

� �jjejj2
2
þ joðjjejj2

2
Þj

where � is the largest eigenvalue of ðI� JbJgÞTðI� JbJgÞ. If e is sufficiently small so that

joðjjejj2
2
ÞÞj<ð1��Þjjejj2

2
, then

jjf1��fmaxsðkdW1~f0�Þjj2
2
� jjejj2

2
¼ jjf1� �fmaxsðE½V1

f

�Þjj2
2

Note that the last step requires that �, the largest eigenvalue of ðI� JbJgÞTðI� JbJgÞ, is below 1.

Clearly, we do not actually have any guarantee of meeting this condition. However, our results show

that even though the feedback weights are random and fixed, the feedforward weights actually learn

to meet this condition during the first epoch of training (Figure 5—figure supplement 1).

Hidden layer targets

Theorem 1 shows that if we use a target ~f0� ¼ f0
f

þ sðYf1
t

Þ � sðYfmaxsðkdW1f0
f

ÞÞ for the hidden

layer, there is a guarantee that the hidden layer approaching this target will also push the upper

layer closer to its target f1�, if certain other conditions are met. Our specific choice of f0� defined in

the results (Equation (8)) approximates this target rate vector using variables that are accessible to

the hidden layer units.

If neuronal units calculate averages after the network has reached a steady state and the firing

rates of neurons are in the linear region of the sigmoid function, fmaxsðV1
f

Þ»f1
f

. Using Lemma 1,

E½V1
f

� » kdW1f0
f

and E½V0a
f

� »Yf1
f

. If we assume that V1
f

»E½V1
f

� and V0a
f

»E½V0a
f

�, which is true on

average, then:

af ¼ sðV0a
f

Þ»sðYf1
f

Þ»sðYfmaxsðV1
f

ÞÞ»sðYfmaxsðkdW1f0
f

ÞÞ (42)

and:

at ¼ sðV0a
t

Þ»sðYf1
t

Þ (43)

Therefore, f0�
» ~f0�.

Thus, our hidden layer targets ensure that our model employs a learning rule similar to difference

target propagation that approximates the necessary conditions to guarantee error convergence.
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Lemma for firing rates
Theorem 1 had to rely on the equivalence between the average spike rates of the neurons and their

filtered spike trains. Here, we prove a lemma showing that this equivalence does indeed hold as

long as the integration time is long enough relative to the synaptic time constants ts and tL.

Lemma 1
Let X be a set of presynaptic spike times during the time interval Dt ¼ t1 � t0, distributed according

to an inhomogeneous Poisson process. Let N ¼ jXj denote the number of presynaptic spikes during

this time window, and let xk 2 X denote the kth presynaptic spike time, where 0<k � N. Finally, let

fðtÞ denote the time-varying presynaptic firing rate (i.e. the time-varying mean of the Poisson pro-

cess), and sðtÞ be the filtered presynaptic spike train at time t given by Equation (11). Then, during

the time window Dt, as long as Dt � 2t
2

Lt
2

sf
2=ðtL � tsÞ2ðtL þ tsÞ,

E½sðtÞ�»f

Proof.The average of sðtÞ over the time window Dt is

s¼ 1

Dt

Z t1

t0

sðtÞdt

¼ 1

Dt

X

k

Z t1

t0

e�ðt�xkÞ=tL � e�ðt�xkÞ=ts

tL� ts
Qðt� xkÞdt

Since Qðt� xkÞ ¼ 0 for all t<xk,

s¼ 1

Dt

X

k

Z t1

xk

e�ðt�xkÞ=tL � e�ðt�xkÞ=ts

tL� ts
dt

¼ 1

Dt

 

N�
X

k

tLe
�ðt1�xkÞ=tL � tse

�ðt1�xkÞ=ts

tL� ts

!

The expected value of s with respect to X is given by

EX ½s� ¼ EX

"

1

Dt

 

N�
X

k

tLe
�ðt1�xkÞ=tL � tse

�ðt1�xkÞ=ts

tL � ts

!#

¼ EX ½N�
Dt

� 1

Dt
EX

"

X

N

k¼1

 

tLe
�ðt1�xkÞ=tL � tse

�ðt1�xkÞ=ts

tL � ts

!#

Since the presynaptic spikes are an inhomogeneous Poisson process with a rate f, EX ½N� ¼
R t1
t0
fdt.

Thus,

EX ½s� ¼
1

Dt

Z t1

t0

fdt� 1

Dt
EX

"

X

N

k¼1

gðxkÞ
#

¼f� 1

Dt
EX

"

X

N

k¼1

gðxkÞ
#

where we let gðxkÞ � ðtLe�ðt1�xkÞ=tL � tse
�ðt1�xkÞ=tsÞ=ðtL� tsÞ. Then, the law of total expectation gives

EX

"

X

N

k¼1

gðxkÞ
#

¼ EN

"

EX

"

X

N

k¼1

gðxkÞ
�

�

�

�

�

N

##

¼
X

¥

n¼0

 

EX

"

X

N

k¼1

gðxkÞ
�

�

�

�

�

N ¼ n

#

�PðN ¼ nÞ
!

Letting fxk ðtÞ denote Pðxk ¼ tÞ, we have that
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EX

"

X

N

k¼1

gðxkÞ
�

�

�

�

�

N ¼ n

#

¼
X

n

k¼1

EX ½gðxkÞ�

¼
X

n

k¼1

Z t1

t0

gðtÞfxk ðtÞdt

Since Poisson spike times are independent, for an inhomogeneous Poisson process:

fxk ðtÞ ¼
fðtÞ

R t1
t0
fðuÞdu

¼fðtÞ
fDt

for all t 2 ½t0; t1�. Since Poisson spike times are independent, this is true for all k. Thus,

EX

"

X

N

k¼1

gðxkÞ
�

�

�

�

�

N ¼ n

#

¼ 1

fDt

X

n

k¼1

Z t1

t0

gðtÞfðtÞdt

¼ n

fDt

Z t1

t0

gðtÞfðtÞdt

Then,

EX

"

X

N

k¼1

gðxkÞ
#

¼
X

¥

n¼0

 

n

fDt

 

Z t1

t0

gðtÞfðtÞdt
!

�PðN ¼ nÞ
!

¼ 1

fDt

 

Z t1

t0

gðtÞfðtÞdt
! 

X

¥

n¼0

n �PðN ¼ nÞ
!

Now, for an inhomogeneous Poisson process with time-varying rate fðtÞ,

PðN ¼ nÞ ¼
½
R t1
t0
fðtÞdt�ne�

R t1

t0

fðtÞdt

n!

¼ ½fDt�ne�ðfDtÞ

n!

Thus,

EX

"

X

N

k¼1

gðxkÞ
#

¼ e�ðfDtÞ

fDt

 

Z t1

t0

gðtÞfðtÞdt
! 

X

¥

n¼0

n
½fDt�n
n!

!

¼ e�ðfDtÞ

fDt

 

Z t1

t0

gðtÞfðtÞdt
!

ðfDtÞefDt

¼
Z t1

t0

gðtÞfðtÞdt

Then,

EX ½s� ¼f� 1

Dt

 

Z t1

t0

gðtÞfðtÞdt
!

The second term of this equation is always greater than or equal to 0, since gðtÞ � 0 and fðtÞ � 0

for all t. Thus, EX ½s� �f. As well, the Cauchy-Schwarz inequality states that
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Z t1

t0

gðtÞfðtÞdt�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z t1

t0

gðtÞ2dt
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z t1

t0

fðtÞ2dt
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z t1

t0

gðtÞ2dt
s

ffiffiffiffiffiffiffiffiffiffi

f2
Dt

q

where

Z t1

t0

gðtÞ2dt¼
Z t1

t0

�

tLe
�ðt1�tÞ=tL � tse

�ðt1�tÞ=ts

tL� ts

�2

dt

� 1

2ðtL� tsÞ2

 

4
t
2

Lt
2

s

tL þ ts

!

¼ 2t
2

Lt
2

s

ðtL� tsÞ2ðtL þ tsÞ

Thus,

Z t1

t0

gðtÞfðtÞdt�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2t2Lt
2
s

ðtL� tsÞ2ðtLþ tsÞ

s

ffiffiffiffiffiffiffiffiffiffi

f2
Dt

q

¼
ffiffiffiffiffi

Dt
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2t2Lt
2
sf

2

ðtL� tsÞ2ðtLþ tsÞ

v

u

u

t

Therefore,

EX ½s� �f� 1

Dt

ffiffiffiffiffi

Dt
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2t2Lt
2
sf

2

ðtL� tsÞ2ðtLþ tsÞ

v

u

u

t

¼f�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2t2Lt
2
sf

2

DtðtL � tsÞ2ðtL þ tsÞ

v

u

u

t

Then,

f�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2t2Lt
2
sf

2

DtðtL� tsÞ2ðtLþ tsÞ

v

u

u

t � EX ½s� �f

Thus, as long as Dt� 2t
2

Lt
2

sf
2=ðtL � tsÞ2ðtLþ tsÞ, EX ½s�»f.

What this lemma says, effectively, is that the expected value of s is going to be roughly the aver-

age presynaptic rate of fire as long as the time over which the average is taken is sufficiently long in

comparison to the postsynaptic time constants and the average rate-of-fire is sufficiently small. In

our simulations, Dt is always greater than or equal to 50 ms, the average rate-of-fire is approximately

20 Hz, and our time constants tL and ts are 10 ms and 3 ms, respectively. Hence, in general:

2t
2

Lt
2

sf
2=ðtL � tsÞ2ðtL þ tsÞ ¼ 2ð10Þ2ð3Þ2ð0:02Þ2=ð10� 3Þ2ð10þ 3Þ

»0:001

� 50

Thus, in the proof of Theorem 1, we assume EX ½s� ¼f.
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