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Abstract

We initiate the cryptographic study of order-preserving symmetric encryption (OPE), a
primitive suggested in the database community by Agrawal et al. (SIGMOD ’04) for allowing
efficient range queries on encrypted data. Interestingly, we first show that a straightforward
relaxation of standard security notions for encryption such as indistinguishability against chosen-
plaintext attack (IND-CPA) is unachievable by a practical OPE scheme. Instead, we propose
a security notion in the spirit of pseudorandom functions (PRFs) and related primitives asking
that an OPE scheme look “as-random-as-possible” subject to the order-preserving constraint.
We then design an efficient OPE scheme and prove its security under our notion based on
pseudorandomness of an underlying blockcipher. Our construction is based on a natural relation
we uncover between a random order-preserving function and the hypergeometric probability
distribution. In particular, it makes black-box use of an efficient sampling algorithm for the
latter.
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1 Introduction

Motivation. Order-preserving symmetric encryption (OPE) is a deterministic encryption scheme
(aka. cipher) whose encryption function preserves numerical ordering of the plaintexts. OPE has
a long history in the form of one-part codes, which are lists of plaintexts and the corresponding
ciphertexts, both arranged in alphabetical or numerical order so only a single copy is required for
efficient encryption and decryption. One-part codes were used, for example, during World War I
[3]. A more formal treatment of the concept of order-preserving symmetric encryption (OPE) was
proposed in the database community by Agrawal et al. [1]. The reason for new interest in such
schemes is that they allow efficient range queries on encrypted data. That is, a remote untrusted
database server is able to index the (sensitive) data it receives, in encrypted form, in a data structure
that permits efficient range queries (asking the server to return ciphertexts in the database whose
decryptions fall within a given range, say [a, b]). By “efficient” we mean in time logarithmic (or at
least sub-linear) in the size of the database, as performing linear work on each query is prohibitively
slow in practice for large databases.

In fact, OPE not only allows efficient range queries, but allows indexing and query processing to
be done exactly and as efficiently as for unencrypted data, since a query just consists of the encryp-
tions of a and b and the server can locate the desired ciphertexts in logarithmic-time via standard
tree-based data structures. Indeed, subsequent to its publication, [1] has been referenced widely
in the database community, and OPE has also been suggested for use in in-network aggregation
on encrypted data in sensor networks [32] and as a tool for applying signal processing techniques
to multimedia content protection [14]. Yet a cryptographic study of OPE in the provable-security
tradition never appeared. Our work aims to begin to remedy this situation.

Related Work. Our work extends a recent line of research in the cryptographic community
addressing efficient (sub-linear time) search on encrypted data, which has been addressed by [2]
in the symmetric-key setting and [6, 11, 7] in the public-key setting. However, these works focus
mainly on simple exact-match queries. Development and analysis of schemes allowing more complex
query types that are used in practice (e.g. range queries) has remained open.

The work of [25] suggested enabling efficient range queries on encrypted data not by using OPE
but so-called prefix-preserving encryption (PPE) [33, 5]. Unfortunately, as discussed in [25, 2],
PPE schemes are subject to certain attacks in this context; particular queries can completely reveal
some of the underlying plaintexts in the database. Moreover, their use necessitates specialized data
structures and query formats, which practitioners would prefer to avoid.

Allowing range queries on encrypted data in the public-key setting was studied in [12, 30].
While their schemes provably provide strong security, they are not efficient in our setting, requiring
to scan the whole database on every query.

Finally, we clarify that [1], in addition to suggesting the OPE primitive, does provide a construc-
tion. However, the construction is rather ad-hoc and is designed for a setting where users know all
data in advance. Accordingly the encryption algorithm must take as input all the plaintexts in the
database. Such setting is not always practical, so a stateless scheme whose encryption algorithm
can process single plaintexts on the fly is preferable. Moreover, [1] does not define security nor
provide any formal security analysis.

Defining security of OPE. Our first goal is to devise a rigorous definition of security that OPE
schemes should satisfy. Of course, such schemes cannot satisfy standard notions of security, such as
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indistinguishability against chosen-plaintext attack (IND-CPA), as they are not only deterministic,
but also leak the order-relations among the plaintexts. (In particular, an adversary against an OPE
scheme that queries two pairs with opposite order can trivially break IND-CPA, as the ciphertexts
have the same order as their plaintexts.) So, although we cannot target a notion on the level of
IND-CPA, we want to define the best possible security subject to this order-preserving constraint.
(Such an approach was taken previously in the case of deterministic public-key encryption [6, 11, 7],
on-line ciphers [5], and deterministic authenticated encryption [28].)

Weakening IND-CPA. One approach is to try to weaken the IND-CPA definition appropriately.
Indeed, in the case of deterministic symmetric encryption this was done by [8], which formalizes a
notion called indistinguishability under distinct chosen-plaintext attack or IND-DCPA. (The notion
was subsequently applied to message authentication codes in [4].) Since deterministic encryption
leaks equality of plaintexts, IND-DCPA restricts the adversary in the IND-CPA experiment to make
queries to its left-right-encryption-oracle of the form (x1

0, x
1
1), . . . , (xq

0, x
q
1) such that x1

0, . . . , x
q
0 are

all distinct and x1
1, . . . , x

q
1 are all distinct. We generalize this to a notion we call indistinguishability

under ordered chosen-plaintext attack or IND-OCPA, asking these sequences instead to satisfy the
same order relations. (See Section 3.2.) Surprisingly, we go on to show that this plausible-looking
definition is not useful for us, because it cannot be achieved by an OPE scheme unless the size of
its ciphertext space is prohibitively large.

An alternative approach. Instead of trying to further restrict the adversary in the IND-
OCPA definition, we turn to an approach along the lines of pseudorandom functions (PRFs) or
permutations (PRPs), requiring that no adversary can distinguish between oracle access to the
encryption algorithm of the scheme, and a corresponding “ideal” object. In our case the latter
is a (uniformly) random order-preserving function on the same domain and range. Since order-
preserving functions are injective, it also makes sense to aim for a stronger security notion that
additionally gives the adversary oracle access to the decryption algorithm or the inverse function,
respectively. We call the resulting notion POPF-CCA for pseudorandom order-preserving function
under chosen-ciphertext attack.

Towards a construction. After having settled on the POPF-CCA notion, we would naturally
like to construct an OPE scheme meeting it. Essentially, the encryption algorithm of such a
scheme should behave similarly to an algorithm that samples a random order-preserving function
from a specified domain and range on-the-fly (dynamically as new queries are made). (Here we
note a connection to implementing huge random objects [19] and lazy-sampling [9].) But it is
not immediately clear how this can be done; blockciphers, our usual tool in the symmetric-key
setting, do not seem helpful in preserving plaintext order. Our construction takes a different route,
borrowing some tools from probability theory. We first uncover a relation between a random order-
preserving function and the hypergeometric (HG) and negative hypergeometric (NHG) probability
distributions.

The connection to NHG. To gain some intuition, first observe that any order-preserving func-
tion f from {1, . . . ,M} to {1, . . . , N} can be uniquely represented by a combination of M out of
N ordered items (see Proposition 4.1). Now let us recall a probability distribution that deals with
selections of such combinations. Imagine we have N balls in a bin, out of which M are black and
N −M are white. At each step, we draw a ball at random without replacement. Consider the
random variable Y describing the total number of balls in our sample after we collect the x-th black
ball. This random variable follows the so-called negative hypergeometric (NHG) distribution. Us-
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ing our representation of an order-preserving function, it is not hard to show that f(x) for a given
point x ∈ {1, . . . ,M} has a NHG distribution over a random choice of f . Assuming an efficient
sampling algorithm for the NHG distribution, this gives a rough idea for a scheme, but there are
still many subtleties to take care of.

Handling multiple points. First, assigning multiple plaintexts to ciphertexts independently ac-
cording to the NHG distribution cannot work, because the resulting encryption function is unlikely
to even be order-preserving. One could try to fix this by keeping track of all previously encrypted
plaintexts and their ciphertexts (in both the encryption and decryption algorithms) and adjusting
the parameters of the NHG sampling algorithm appropriately for each new plaintext. But we want
a stateless scheme, so it cannot keep track of such previous assignments.

Eliminating the state. As a first step towards eliminating the state, we show that by assigning
ciphertexts to plaintexts in a more organized fashion, the state can actually consist of a static but
exponentially long random tape. The idea is that, to encrypt plaintext x, the encryption algorithm
performs a binary search down to x. That is, it first assigns Enc(K,M/2), then Enc(K,M/4) if
m < M/2 and Enc(K, 3M/4) otherwise, and so on, until Enc(K,x) is assigned. Crucially, each
ciphertext assignment is made according to the output of the NHG sampling algorithm run on
appropriate parameters and coins from an associated portion of the random tape indexed by the
plaintext. (The decryption algorithm can be defined similarly.) Now, it may not be clear that the
resulting scheme induces a random order-preserving function from the plaintext to ciphertext space
(does its distribution get skewed by the binary search?), but we prove (by induction on the size of
the plaintext space) that this is indeed the case.

Of course, instead of making the long random tape the secret key K for our scheme, we can
make it the key for a PRF and generate portions of the tape dynamically as needed. However,
coming up with a practical PRF construction to use here requires some care. For efficiency it
should be blockcipher-based. Since the size of parameters to the NHG sampling algorithm as
well as the number of random coins it needs varies during the binary search, and also because
such a construction seems useful in general, it should be both variable input-length (VIL) and
variable output-length. Such a construction we call a length-flexible (LF)-PRF. We propose a
generic construction of an LF-PRF from a VIL-PRF and a (keyless) VOL-PRG (pseudorandom
generator). Efficient blockcipher-based VIL-PRFs are known, and we suggest a highly efficient
blockcipher-based VOL-PRG that is apparently folklore. POPF-CCA security of the resulting
OPE scheme can then be easily proved assuming only standard security (pseudorandomness) of the
underlying blockcipher.

Switching from NHG to HG. Finally, our scheme needs an efficient sampling algorithm for
the NHG distribution. Unfortunately, the existence of such an algorithm seems open. It is known
that NHG can be approximated by the negative binomial distribution [27], which in turn can be
sampled efficiently [17, 15], and that the approximation improves as M and N grow. However,
quantifying the quality of approximation for fixed parameters seems difficult.

Instead, we turn to a related probability distribution, namely the hypergeometric (HG) distri-
bution, for which a very efficient exact (not approximated) sampling algorithm is known [23, 24].
In our balls-and-bin model with M black and N−M white balls, the random variable X specifying
the number of black balls in our sample as soon as y balls are picked follows the HG distribution.
The scheme based on this distribution, which is the one described in the body of the paper, is rather
more involved, but nearly as efficient: instead of O(logM) · TNHG running-time it is O(logN) · THG
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(where TNHG, THG are the running-times of the sampling algorithms for the respective distributions),
but we show that it is O(logM) · THG on average.

We note that the hypergeometric distribution was also used in [20] for sampling pseudorandom
permutations and constructing blockciphers for short inputs. The authors of [20] were unaware
of the efficient sampling algorithms for HG [23, 24] and provided their own realizations based on
general sampling methods.

Discussion. It is important to realize that the “ideal” object in our POPF-CCA definition (a ran-
dom order-preserving function), and correspondingly our OPE construction meeting it, inherently
leak some information about the underlying plaintexts. Characterizing this leakage is an important
next step in the study of OPE but is outside the scope of our current paper. (Although we mention
that our “big-jump attack” of Theorem 3.1 may provide some insight in this regard.)

The point is that practitioners have indicated their desire to use OPE schemes in order to achieve
efficient range queries on encrypted data and are willing to live with its security limitations. In
response, we provide a scheme meeting what we believe to be a “best-possible” security notion
for OPE. This belief can be justified by noting that it is usually the case that a security notion
for a cryptographic object is met by a “random” one (which is sometimes built directly into the
definition, as in the case of PRFs and PRPs).

But before one fully understands how not very strong security properties of the ideal object, a
random order-preserving function, fit the security needs of applications, we do not recommend the
practical use of our construction.

On a more general primitive. To allow efficient range queries on encrypted data, it is sufficient
to have an order-preserving hash function family H (not necessarily invertible). The overall OPE
scheme would then have secret key (KEnc,KH) where KEnc is a key for a normal (randomized)
encryption scheme and KH is a key for H, and the encryption of x would be Enc(KEnc, x)‖H(KH , x)
(cf. efficiently searchable encryption (ESE) in [6]). Our security notion (in the CPA case) can also
be applied to such H. In fact, there has been some work on hash functions that are order-preserving
or have some related properties [26, 16, 21]. But none of these works are concerned with security
in any sense. Since our OPE scheme is efficient and already invertible, we have not tried to build
any secure order-preserving hash separately.

On the public-key setting. Finally, it is interesting to note that in a public-key setting one
cannot expect OPE to provide any privacy at all. Indeed, given a ciphertext c computed under
public key pk, anyone can decrypt c via a simple binary-search. In the symmetric-key setting a
real-life adversary cannot simply encrypt messages itself, so such an attack is unlikely to be feasible.

2 Preliminaries

Notation and conventions. We refer to members of {0, 1}∗ as strings. If x is a string then
|x| denotes its length in bits and if x, y are strings then x‖y denotes an encoding from which x, y
are uniquely recoverable. For ` ∈ N we denote by 1` the string of ` “1” bits. If S is a set then
x

$← S denotes that x is selected uniformly at random from S. For convenience, for any k ∈ N
we write x1, x2, . . . , xk

$← S as shorthand for x1
$← S, x2

$← S, . . . , xn
$← S. If A is a randomized

algorithm and Coins is the set from where it draws its coins, then we write A(x, y, . . .) as shorthand
for R $← Coins ; A(x, y, . . . ;R), where the latter denotes the result of running A on inputs x, y, . . .
and coins R. And a $←A(x, y, . . .) means that we assign to a the output of A run on inputs x, y, . . ..

6



We denote the probability of event A by Pr [A ]. If A depends on a random variable X, we
write Pr

X
$←D

[A(X) ] for the probability of A for X sampled randomly from distribution D. If B is

another event, Pr [A |B ] denotes the conditional probability of A given B. Often, the distribution
being used is clear and we omit it, as in Pr

X
[A(X) ] (where X $←D is implied). Let E[X] denote

the expected value of X. Similarly, we use the notation E
Y

$←D

[X(Y ) ] or E
Y

[X(Y ) ] to emphasize

that the expected value is taken over the randomness in selecting related random variable Y from
the distribution D.

For a ∈ N we denote by [a] the set {1, . . . , a}. For sets X and Y, if f : X → Y is a function,
then we call X the domain, Y the range, and the set {f(x) | x ∈ X} the image of the function. An
adversary is an algorithm. By convention, all algorithms are required to be efficient, meaning run
in (expected) polynomial-time in the length of their inputs, and their running-time includes that
of any overlying experiment.

Symmetric Encryption. A symmetric encryption scheme SE = (K, Enc, Dec) with associated
plaintext-space D and ciphertext-space R consists of three algorithms.

• The randomized key generation algorithm K returns a secret key K.

• The (possibly randomized) encryption algorithm Enc takes a secret key K, descriptions of
plaintext and ciphertext-spaces D,R and a plaintext m to return a ciphertext c.

• The deterministic decryption algorithm Dec takes the secret key K, descriptions of plaintext
and ciphertext-spaces D,R, and a ciphertext c to return a corresponding plaintext m or a
special symbol ⊥ indicating that the ciphertext was invalid.

Note that the above syntax differs from the usual one in that we specify the plaintext and
ciphertext-spaces D,R explicitly; this is for convenience relative to our specific schemes. We require
the usual correctness condition, namely that Dec(K,D,R, (Enc(K,D,R,m)) = m for all K output
by K and all m ∈ D. Finally, we say that SE is deterministic if Enc is deterministic.

IND-CPA. Let LR(·, ·, b) denote the function that on inputs m0,m1 returns mb. For a symmetric
encryption scheme SE = (K, Enc, Dec) and an adversary A and b ∈ {0, 1} consider the following
experiment:

Experiment Expind-cpa-b
SE (A)

K
$←K

b′
$←AEnc(K,LR(·,·,b))

Return b′ .

We require that each query (m0,m1) that A makes to its oracle satisfies |m0| = |m1|. For an
adversary A, define its ind-cpa advantage against SE as

Advind-cpa
SE (A) = Pr

[
Expind-cpa-1

SE (A) = 1
]
− Pr

[
Expind-cpa-0

SE (A) = 1
]
.

We say that SE is indistinguishable under chosen-plaintext attacks (IND-CPA-secure) if the ind-cpa
advantage of any adversary against SE is small.

Pseudorandom functions (PRFs). We say that F = (K, F ) is a function family on domain D
and range R if K outputs random keys and for each key K $←K the map F (K, ·) is a function from
D to R. We refer to F (K, ·) as an instance of F .

7



Let FuncD,R denote the set of all functions from D to R. For any adversary A, the prf-advantage
against function family F = (K, F ) is defined as

Advprf
F (A) = Pr

K
$←K

[
AF (K,·) = 1

]
− Pr

f
$← FuncD,R

[
Af(·) = 1

]
We say that F is a pseudorandom function (PRF) if for any efficient adversary A, Advprf

F (A) is
small.

3 Order-Preserving Encryption and its Security

We begin by defining a primitive for deterministic encryption schemes that preserve order on their
plaintext space.

3.1 Order-Preserving Encryption (OPE)

For A,B ⊆ N with |A| ≤ |B|, a function f : A → B is order-preserving (a.k.a. monotonically
increasing) if for all i, j ∈ A, f(i) > f(j) iff i > j. We say that deterministic encryption scheme
SE = (K, Enc,Dec) with plaintext and ciphertext spaces D,R is an order-preserving encryption
(OPE) scheme if Enc(K, ·) is an order-preserving function from D to R for all K output by K (with
elements of D,R interpreted as numbers, encoded as strings).

For simplicity, we will often assume a plaintext space [M ] and ciphertext space [N ] for some
N ≥M ∈ N.

3.2 Security of OPE

OPE obviously cannot be IND-CPA-secure, as it leaks order of plaintexts. A natural question
arises: can we weaken the IND-CPA-notion just enough so that it is achievable by an OPE scheme,
but is still as strong as possible?

A first try. Security of deterministic symmetric encryption was introduced in [8], as a notion
they call security under distinct chosen-plaintext attack (IND-DCPA). (It will not be important to
consider CCA now.) The idea is that because deterministic encryption leaks plaintext equality, the
adversary A in the IND-CPA experiment defined in Section 2 is restricted to make only distinct
queries on either side of its oracle (as otherwise there is a trivial attack). That is, supposing A
makes queries (m1

0,m
1
1), . . . , (mq

0,m
q
1), they require that m1

b , . . .m
q
b are all distinct for b ∈ {0, 1}.

Noting that any OPE scheme analogously leaks order relations of plaintexts, consider extending
the above approach to take this into account. In particular, let us further require the above queries
made by A to have the same “order pattern.”

IND-OCPA. For a symmetric order-preserving encryption scheme OPE = (K, Enc,Dec) and an
adversary A and b ∈ {0, 1} consider the following experiment:

Experiment Expind-ocpa-b
OPE (A)

K
$←K

d
$←AEnc(K,LR(·,·,b))

Return d
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We require that each query (m0,m1) that A makes to its oracle satisfies |m0| = |m1|, and also that
the LR-queries have the same order pattern, i.e. mi

0 < mj
0 iff mi

1 < mj
1 for all 1 ≤ i, j ≤ q. For

an adversary A, define its indistinguishability under ordered chosen-plaintext attack (IND-OCPA)
advantage against OPE as

Advind-ocpa
OPE (A) = Pr

[
Expind-ocpa-1

OPE (A) = 1
]
− Pr

[
Expind-ocpa-0

OPE (A) = 1
]
.

IND-OCPA is not useful. Defining IND-OCPA adversary seems like a plausible way to analyze
security for OPE. Surprisingly, it turns out to be not useful for us. In the following theorem, we
show that IND-OCPA is unachievable by a practical order-preserving encryption scheme, in that
an OPE scheme cannot be IND-OCPA unless its ciphertext space is extremely large, namely, super-
exponential in the size of the plaintext space. [Note: this is an improvement over the corresponding
result in the proceedings version [10] of this paper, in that it holds also for ciphertext spaces that
have size exponential in the plaintext space size.]

Theorem 3.1. Let OPE = (K, Enc,Dec) be an order-preserving encryption scheme on plaintext-
space [M ] and ciphertext-space [N ], where N < tbM/4c for some constant integer t > 1. There exists
an IND-OCPA adversary A against OPE such that

Advind-ocpa
OPE (A) >

1
2t
.

Furthermore, A runs in time O(logN) and makes at most 3 oracle queries.

Proof. Let M ′ = bM/2c. Consider the following IND-OCPA adversary A against OPE:

Adversary AEnc(K,LR(·,·,b))

m0
$← [M ′], m1 ←M −m0 + 1

c← Enc(K,LR(m0,m1, b))
cL ← 0 ; cR ← N + 1
If m0 > 1:

mL ← m0 − 1, mR ← m1 + 1
cL ← Enc(K,LR(mL,mL, b))
cR ← Enc(K,LR(mR,mR, b))

Return 1 with probability c−cL
cR−cL

Else return 0

The IND-OCPA correctness and efficiency claims of A should be clear from the construction.
Fix a key K, so that Enc(K, ·) is a well-defined order-preserving function from [M ] to [N ]. For

m ∈ [M ′], let Xm = Enc(K,M −m+1)−Enc(K,m) and X0 = N +1. Let S be the set of messages
m in [M ′] such that Xm

Xm−1
≤ 1

c . Then if |S| > M ′/2 we have

N + 1 = X0 ≥
X0

XM ′
=

∏
m∈[M ′]

Xm−1

Xm
> tM

′/2 ≥ tbM/4c,

a contradiction to N < tbM/4c. Thus, |S| ≤M ′/2 and so

Pr
[
m

$← [M ′]
∣∣∣∣ Xm

Xm−1
≤ 1
t

]
≤ 1

2
.
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In the following, for given m0 ∈ [M ′] let m1,mL,mR, c0, c1, cL, cR be determined from m0 as in
A. We have

Advind-ocpa
OPE (A) = Pr

[
Expind-ocpa-1

OPE (A) = 1
]
− Pr

[
Expind-ocpa-0

OPE (A) = 1
]

= Pr
[
AEnc(K,LR(·,·,1)) = 1

]
− Pr

[
AEnc(K,LR(·,·,0)) = 1

]
= E

m0
$← [M ′]

[
c1 − cL
cR − cL

]
− E

m0
$← [M ′]

[
c0 − cL
cR − cL

]
= E

m0
$← [M ′]

[
c1 − c0
cR − cL

]
≥ 1
t

Pr
m0

$← [M ′]

[
c1 − c0
cR − cL

≥ 1
t

]
=

1
t

Pr
m0

$← [M ′]

[
Xm

Xm−1
≥ 1
t

]
>

1
2t
.

This completes the proof.

Discussion. Obviously, to have ciphertext space size super-exponential in that of the plaintext
space would be inconceivable, so for all intents and purposes, Theorem 3.1 shows IND-OCPA is
unachievable for all practical OPE schemes.

The adversary in the proof of Theorem 3.1 uses what we call a “big-jump attack” to distinguish
between ciphertexts of messages that are “very close” and “far apart.” The attack shows that
any practical OPE scheme inherently leaks more information about the plaintexts than just their
ordering, namely some information about their relative distances. We return to this point later.

An alternative approach. Since OPE inherently leaks distance information about plaintexts,
further weakening of IND-CPA does not seem very fruitful, as long as attacks can still sample
far-apart versus close-together plaintexts. Instead, we take the approach used in defining security
e.g. of pseudorandom permutations (PRPs) [18] or on-line PRPs [5], where one asks that oracle
access to the function in question be indistinguishable from access to the corresponding “ideal”
random object, e.g. a random permutation or a random on-line permutation. As order-preserving
functions are injective, we consider the “strong” version of such a definition where an inverse oracle
is also given.

POPF-CCA. Fix an order-preserving encryption scheme SE = (K, Enc,Dec) with plaintext space
D and ciphertext spaceR, |D| ≤ |R|. For an adversaryA against SE , define its pseudorandom order-
preserving function advantage under chosen-ciphertext attacks (POPF-CCA) advantage against SE
as

Advpopf-cca
SE (A) = Pr

K
$←K

[
AEnc(K,·),Dec(K,·) = 1

]
− Pr

g
$← OPFD,R

[
Ag(·),g−1(·) = 1

]
,

where OPFD,R denotes the set of all order-preserving functions from D to R. We say SE is POPF-
secure if this advantage is small.

Lazy sampling. Now in order for this notion to be useful, i.e. to be able to show that a scheme
achieves it, we also need a way to implement A’s oracles in the “ideal” experiment efficiently. In
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other words, we need to show how to “lazy sample” (a term from [9]) a random order-preserving
function and its inverse.1

As shown in [9], lazy sampling of “exotic” functions with many constraints can be tricky. In the
case of a random order-preserving function, it turns out that straightforward procedures—which
assign a random point in the range to a queried domain point, subject to the obvious remaining
constraints—do not work (that is, the resulting function is not uniformly distributed over the set of
all such functions). So how can we lazy sample such a function, if it is possible at all? We address
this issue next.

A caveat. Before proceeding, we note that a shortcoming of our POPF-CCA notion is it does not
lead to a nice answer to the question of what information about the data is leaked by a secure OPE
scheme, but only reduces this to the question of what information the “ideal object” (a random
order-preserving function) leaks. Although practitioners have indicated that they are willing to
live with the security limitations of OPE for its useful functionality, more precisely characterizing
the latter remains an important next step before our schemes should be considered for practical
deployment.

4 Lazy Sampling a Random Order-Preserving Function

In this section, we show how to lazy-sample a random order-preserving function and its inverse.
This result may also be of independent interest, since the more general question of what functions
can be lazy-sampled is interesting in its own right, and it may find other applications as well,
e.g. to [29]. We first uncover a connection between a random order-preserving function and the
hypergeometric (HG) probability distribution.

4.1 The Hypergeometric Connection

To gain some intuition we start with the following claim.

Proposition 4.1. There is bijection between the set OPFD,R containing all order-preserving func-
tions from a domain D of size M to a range R of size N ≥M and the set of all possible combinations
of M out of N ordered items.

Proof. Without loss of generality, it is enough to prove the result for domain [M ] and range [N ].
Imagine a graph with its x-axis marked with integers from 1 to M and its y = f(x)-axis marked
with integers from 1 to N . Given S, a set of M distinct integers from [N ], construct an order-
preserving function from [M ] to [N ] by mapping each i ∈ [M ] to the ith smallest element in S.
So, an M -out-of-N combination corresponds to a unique order-preserving function. On the other
hand, consider an order-preserving function f from [M ] to [N ]. The image of f defines a set of
M distinct objects in [N ], so an order-preserving function corresponds to a unique M -out-of-N
combination.

1For example, in the case of a random function from the set of all functions one can simply assign a random point
from the range to each new point queried from the domain. In the case of a random permutation, the former can
be chosen from the set of all previously unassigned points in the range, and lazy sampling of its inverse can be done
similarly. A lazy sampling procedure for a random on-line PRP and its inverse via a tree-based characterization was
given in [5].
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Using the above combination-based characterization it is straightforward to justify the following
equality, defined for M,N ∈ N and any x, x+ 1 ∈ [M ], y ∈ [N ]:

Pr
f

$← OPF[M ],[N ]

[ f(x) ≤ y < f(x+ 1) ] =

(
y
x

)
·
(

N−y
M−x

)(
N
M

) . (1)

Now let us recall a particular distribution dealing with an experiment of selecting from combinations
of items.

Hypergeometric distribution. Consider the following balls-and-bins model. Assume we have
N balls in a bin out of which M balls are black and N −M balls are white. At each step we
draw a ball at random, without replacement. Consider a random variable X that describes the
number of black balls chosen after a sample size of y balls are picked. This random variable has a
hypergeometric distribution, and the probability that X = x for the parameters N,M, y is

PHG(x;N,M, y) =

(
y
x

)
·
(

N−y
M−x

)(
N
M

) . (2)

Intuitively, Equations 1 and 2 imply that we can construct a random order-preserving function
f from [M ] to [N ] as an experiment involving N balls, M of which are black. Choosing balls
randomly without replacement, if the y-th ball we pick is black then the least unmapped point in
the domain is mapped to y under f . Of course, this experiment is too inefficient to be performed
directly. But we will use the hypergeometric distribution to design procedures that efficiently and
recursively lazy sample a random order-preserving function and its inverse.

4.2 The LazySample Algorithms

Here we give our algorithms LazySample, LazySampleInv that lazy sample a random order-
preserving function from domain D to range R, |D| ≤ |R|, and its inverse, respectively. The
algorithms share and maintain joint state. We assume that both D and R are sets of consecutive
integers.

Two subroutines. Our algorithms make use of two subroutines. The first, denoted HG, takes in-
puts M , N , and y ∈ {0, 1, . . . , N} to return x ∈ {0, 1, . . . ,M} such that for each x∗ ∈ {0, 1, . . . ,M}
we have x = x∗ with probability PHG(x;N,M, y) over the coins of HG. (Efficient algorithms for this
exist, and we discuss them in Section 4.5.) The second, denoted GetCoins, takes inputs 1`,D,R,
and b‖z, where b ∈ {0, 1} and z ∈ R if b = 0 and z ∈ D otherwise, to return cc ∈ {0, 1}`.
The algorithms. To define our algorithms, let us denote by w cc← S that w is assigned a value
sampled uniformly at random from set S using coins cc of length `S , where `S denotes the number
of coins needed to do so. Let `1 = `(M,N, y − r) denote the number of coins needed by HG on
inputs M,N, y−r. Our algorithms are given in Figure 1. Note that the arrays F, I, initially empty,
are global and shared between the algorithms; also, for now, think of GetCoins as returning fresh
random coins. We later implement it by using a PRF on the same parameters to eliminate the
joint state.

Overview. To determine the image of input m, LazySample employs a strategy of mapping
“range gaps” to “domain gaps” in a recursive, binary search manner. By “range gap” or “domain
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LazySample(D,R,m)
01 M ← |D| ;N ← |R|
02 d← min(D)− 1 ; r ← min(R)− 1
03 y ← r + dN/2e
04 If |D| = 1 then
05 If F [D,R,m] is undefined then
06 cc

$←GetCoins(1`R ,D,R, 1‖m)
07 F [D,R,m] cc←R
08 Return F [D,R,m]

09 If I[D,R, y] is undefined then
10 cc

$←GetCoins(1`1 ,D,R, 0‖y)
11 I[D,R, y] $← HG(M,N, y − r; cc)
12 x← d+ I[D,R, y]
13 If m ≤ x then
14 D ← {d+ 1, . . . , x}
15 R ← {r + 1, . . . , y}
16 Else
17 D ← {x+ 1, . . . , d+M}
18 R ← {y + 1, . . . , r +N}
19 Return LazySample(D,R,m)

LazySampleInv(D,R, c)
20 M ← |D| ;N ← |R|
21 d← min(D)− 1 ; r ← min(R)− 1
22 y ← r + dN/2e
23 If |D| = 1 then m← min(D)
24 If F [D,R,m] is undefined then
25 cc

$←GetCoins(1`R ,D,R, 1‖m)
26 F [D,R,m] cc←R
27 If F [D,R,m] = c then return m
28 Else return ⊥
29 If I[D,R, y] is undefined then
30 cc

$←GetCoins(1`1 ,D,R, 0‖y)
31 I[D,R, y] $← HG(M,N, y − r; cc)
32 x← d+ I[D,R, y]
33 If c ≤ y then
34 D ← {d+ 1, . . . , x}
35 R ← {r + 1, . . . , y}
36 Else
37 D ← {x+ 1, . . . , d+M}
38 R ← {y + 1, . . . , r +N}
39 Return LazySampleInv(D,R, c)

Figure 1: Algorithms LazySample and LazySampleInv for lazy-sampling a pseudorandom order-
preserving function and its inverse by sampling the hypergeometric distribution.

gap,” we mean an imaginary barrier between two consecutive points in the range or domain, re-
spectively. When run, the algorithm first maps the middle range gap y (the gap between the middle
two range points) to a domain gap. To determine the mapping, on line 11 it sets, according to the
hypergeometric distribution, how many points in D are mapped up to range point y and stores this
value in array I. (In the future the array is referenced instead of choosing this value anew.) Thus
we have that f(x) ≤ y < f(x + 1) (cf. (1)), where x = d + I[D,R, y] as computed on line 12. So,
we can view the range gap between y and y+ 1 as having been mapped to the domain gap between
x and x+ 1.

If the input domain point m is below (resp. above) the domain gap, the algorithm recurses on
line 19 on the lower (resp. upper) half of the range and the lower (resp. upper) part of the domain,
mapping further “middle” range gaps to domain gaps. This process continues until the gaps on
either side of m have been mapped to by some range gaps. Finally, on line 07, the algorithm samples
a range point uniformly at random from the “window” defined by the range gaps corresponding
to m’s neighboring domain gaps. This result is assigned to array F as the image of m under the
lazy-sampled function.

4.3 Correctness

When GetCoins returns truly random coins, it is clear that LazySample and LazySampleInv
are consistent and sample an order-preserving function and its inverse respectively. But we need
a stronger claim, namely, that our algorithms sample a random order-preserving function and its
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inverse. We show this by arguing that any (even computationally unbounded) adversary has no
advantage in distinguishing oracle access to a random order-preserving function and its inverse from
that to the algorithms LazySample, LazySampleInv. The following theorem states this claim.

Theorem 4.2. Suppose GetCoins returns truly random coins on each new input. Then for any
(even computationally unbounded) algorithm A we have

Pr
g

$← OPFD,R

[
Ag(·),g−1(·) = 1

]
= Pr

[
ALazySample(D,R,·),LazySampleInv(D,R,·) = 1

]
,

where g−1 denotes the inverse of OPF g.

Proof. Since we consider unbounded adversaries, we can ignore the inverse oracle in our analysis,
since such an adversary can always query all points in the domain to learn all points in the image.
Let M = |D|, N = |R|, d = min(D) − 1, and r = min(R) − 1. We will say that two functions
g, h : D → R are equivalent if g(m) = h(m) for all m ∈ D. (Note that if D = ∅, any two functions
g, h : D → R are vacuously equivalent.) Let f be any function in OPFD,R. To prove the theorem,
it is enough to show that the function defined by LazySample (D,R, ·) is equivalent to f with
probability 1/|OPFD,R|. We prove this using strong induction on M and N .

Consider the base case where M = 1, i.e., D = {m} for some m, and N ≥ M . When it
is first called, LazySample (D,R,m) will determine an element c uniformly at random from R
and enter it into F [D,R,m], whereupon any future calls of LazySample (D,R,m) will always
output F [D,R,m] = c. Thus, the output of LazySample (D,R,m) is always c, so LazySample
(D,R, ·) is equivalent to f if and only if c = f(m). Since c is chosen randomly from R, c = f(m)
with probability 1/|R|. Thus, LazySample (D,R,m) is equivalent to f(m) with probability
1/|R| = 1/|OPFD,R|.

Now suppose M > 1, and N ≥ M . As an induction hypothesis, assume that for all domains
D′ of size M ′ and ranges R′ of size N ′ ≥ M ′, where either M ′ < M or (M ′ = M and N ′ < N),
and for any function f ′ in OPFD′,R′ , LazySample (D′,R′, ·) is equivalent to f ′ with probability
1/|OPFD′,R′ |.

When it is first called, LazySample (D,R, ·) sets I[D,R, y] to be the value of HG(M,N, y − r; cc),
where y = r + dN/2e, r = min(R) − 1. Henceforth, on this and future calls of LazySam-
ple (D,R,m), the algorithm sets x = d + I[D,R, y − r] and runs LazySample (D1,R1,m) if
m ≤ x, or run LazySample (D2,R2,m) if m > x, where D1 = {1, . . . , x}, R1 = {1, . . . , y},
D2 = {x+ 1, . . . ,M}, R2 = {y+ 1, . . . , N}. Let f1 be f restricted to the domain D1, and let f2 be
f restricted to the domain D2. Let x0 be the unique integer in D ∪ {d} such that f(z) ≤ y for all
z ∈ D with z ≤ x0, and f(z) > y for all z ∈ D with z > x0. Note then that LazySample (D,R, ·)
is equivalent to f if and only if all three of the following events occur:

E1: f restricted to range R1 stays within domain D1, and f restricted to range R2 stays within
domain D2—that is, x is chosen to be x0.

E2: LazySample (D1,R1, ·) is equivalent to f1.

E3: LazySample (D2,R2, ·) is equivalent to f2.

By the law of conditional probability, and since E2 and E3 are independent,

Pr [E1 ∩ E2 ∩ E3 ] = Pr [E1 ] Pr [E2 ∩ E3 | E1 ]
= Pr [E1 ] Pr [E2 | E1 ] Pr [E3 | E1 ] .
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Pr [E1 ] is the hypergeometric probability that HG(M,N, y − r) will return x0 − d, so

Pr [E1 ] = PHG(x0 − d;N,M, dN/2e) =

(dN/2e
x0−d

)( N−dN/2e
M−(x0−d)

)(
N
M

) .

Assuming for the moment that neither D1 nor D2 are empty, notice that both |R1| and |R2| are
strictly less than |R|, and |D1| and |D2| are less than or equal to |D|, so the induction hypothesis
holds for each. That is, LazySample (D1,R1, ·) is equivalent to f1 with probability 1/|OPFD1,R1 | =
1/
(|R1|
|D1|
)
, and LazySample (D2,R2, ·) is equivalent to f2 with probability 1/|OPFD2,R2 | = 1/

(|R2|
|D2|
)
.

Thus, we have that

Pr [E2 | E1 ] =
1(dN/2e

x0−d

) and Pr [E3 | E1 ] =
1(N−dN/2e

d+M−x0

) .
Also, note that if D1 = ∅, then Pr [E2 | E1 ] = 1 = 1

(dN/2e
x0−d)

since x0 = d. Likewise, if D2 = ∅, then

Pr [E3 | E1 ] will be the same as above. We conclude that

Pr [E1 ∩ E2 ∩ E3 ] =

(dN/2e
x0−d

)( N−dN/2e
M−(x0−d)

)(
N
M

) · 1(dN/2e
x0−d

) · 1(N−dN/2e
d+M−x0

) =
1(
N
M

) .
Thus, LazySample (D,R, ·) is equivalent to f with probability

1(
N
M

) =
1

|OPFD,R|
. Since f was an

arbitrary element of OPFD,R, the result follows.

We clarify that in the theorem, A’s oracles for LazySample, LazySampleInv in the right-
hand-side experiment share and update joint state. It is straightforward to check, via simple
probability calculations, that the theorem holds for an adversary A that makes one query. The
case of multiple queries is harder. The reason is that the distribution of the responses given to
subsequent queries depends on which queries A has already made, and this distribution is difficult
to compute directly. Instead our proof uses strong induction in a way that parallels the recursive
nature of our algorithms.

4.4 Efficiency

We characterize efficiency of our algorithms in terms of the number of recursive calls made by
LazySample or LazySampleInv before termination. (The proposition below is just stated in
terms of LazySample for simplicity; the analogous result holds for LazySampleInv.)

Proposition 4.3. The number of recursive calls made by LazySample is at most logN + 1 in
the worst-case and at most 5 logM + 12 on average.

Proof. For the worst case bound, note that LazySample performs a binary search over the range
to map the input domain point, on each recursion cutting the size of the possible range in half. Note
that, by the nature of the hypergeometric probabilities, the size of the domain in each iteration
can never exceed the size of the range. Thus, when the algorithm is called on a range of size 1, its
domain is also of size 1, and the algorithm must terminate. Over the course of logN binary-search
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recursions, the range will shrink to size 1, so we conclude that a worst-case logN + 1 recursions are
required for LazySample to terminate.

For the average case bound, we use a result of Chvátal [13] that the tail of the hypergeometric
distribution can be bounded so that

M∑
i=k+1

PHG(i;N,M, c) ≤ e−2t2M ,

where t is a fraction such that 0 ≤ t ≤ 1− c/N , and k = (c/N + t)M . Taking c = N/2, this implies
an upper bound on the probability of the hypergeometric distribution assigning our middle domain
gap to an “outlying” domain gap:∑

i/∈S

PHG(i;N,M,N/2) ≤ 2e−2t2M (3)

where S is the subdomain [(1/2− t)M, (1/2 + t)M ].
For M < 12, after at most 12 calls to LazySample we will reach a domain of size 1, and

terminate. So suppose that M ≥ 12. Taking t = 1/4 in (3) implies that LazySample assigns the
middle ciphertext gap to a plaintext gap in the “middle subdomain” [M/4, 3M/4] with probability
at least 1 − 2e−2(1/4)2M ≥ 1 − 2e−3/2 > 1/2. When a domain gap in S is chosen it shrinks the
current domain by a fraction of at least 3/4. So, picking in the middle subdomain log4/3M =
log M
log 4/3 < 2.5 logM times will shrink it to size less than 12. Since the probability to pick in the
middle subdomain is greater than 1/2 on each recursive call of LazySample, we expect at most
5 logM recursive calls to reach domain size M < 12. Therefore, in total at most 5 logM + 12
recursive calls are needed on average to map an input domain point.

Note that the algorithms make one call to HG on each recursion, so an upper-bound on their
running-times is then at most (logN +1) ·THG in the worst-case and at most (5 logM +12) ·THG on
average, where THG denotes the running-time of HG on inputs of size at most logN . However, this
does not take into account the fact that the size of these inputs decrease on each recursion. Thus,
better bounds may be obtained by analyzing the running-time of a specific realization of HG.

4.5 Realizing HG

Kachitvichyanukul and Schmeiser [23] designed an efficient implementation of a sampling algorithm
HG for the hypergeometric distribution. Their algorithm is exact; it is not an approximation by
a related distribution. It is implemented in Wolfram Mathematica and other libraries, and is fast
even for large parameters. However, on small parameters the algorithms of [31] perform better.
Since the parameter size to HG in our LazySample algorithms shrinks across the recursive calls
from large to small, it could be advantageous to switch algorithms at some threshold. We refer the
reader to [31, 23, 24, 15] for more details.

We comment that the algorithms of [23] are technically only “exact” when the underlying
floating-point operations can be performed to infinite precision. In practice, one has to be careful of
truncation error. For simplicity, Theorem 4.2 does not take this into account, as in theory the error
can be made arbitrarily small by increasing the precision of floating-point operations (independently
of M,N). But we make this point explicit in Theorem 5.3 where we analyze security of our actual
scheme.
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5 Our OPE Scheme and its Analysis

Algorithms LazySample, LazySampleInv cannot be directly converted into encryption and de-
cryption procedures because they share and update a joint state, namely arrays F and I, which
store the outputs of the randomized algorithm HG. For our actual scheme, we can eliminate this
shared state by implementing the subroutine GetCoins (which produces coins for HG) as a PRF,
and re-constructing entries of F and I on-the-fly as needed. However, coming up with a practi-
cal yet provably secure construction requires some care. Below we give the details of our PRF
implementation, which we call TapeGen.

5.1 The TapeGen PRF

Length-Flexible PRFs. In practice, it is desirable that TapeGen be both variable input-length
(VIL)- and variable output-length (VOL)-PRF,2 a primitive we call a length-flexible (LF)-PRF. (In
particular, the number of coins used by HG can be beyond one block of an underlying blockcipher in
length, ruling out the use of most practical pseudorandom VIL-MACs.) That is, LF-PRF TapeGen
with key-space Keys takes as input a key K ∈ Keys, an output length 1`, and x ∈ {0, 1}∗ to return
y ∈ {0, 1}`. Define the following oracle R taking inputs 1` and x ∈ {0, 1}∗ to return y ∈ {0, 1}`,
which maintains as state an array D:

Oracle R(1`, x)
If |D[x]| < ` then

r
$←{0, 1}`−|D[x]|

D[x]← D[x]‖r
Return D[x]1 . . . D[x]`

Above and in what follows, mi denotes the i-th bit of a string m, and we require everywhere
that ` < `max for an associated maximum output length `max. For an adversary A, define its
length-flexible pseudorandom function (LF-PRF) advantage against TapeGen as

Advprf
TapeGen(A) = Pr

[
ATapeGen(K,·,·) = 1

]
− Pr

[
AR(·,·) = 1

]
,

where the left probability is over the random choice of K ∈ Keys. Most practical VIL-MACs (mes-
sage authentication codes) are PRFs and are therefore VIL-PRFs, but the VOL-PRF requirement
does not seem to have been addressed previously. To achieve it we suggest using a VOL-PRG
(pseudorandom generator) as well. Let us define the latter.

Variable-output-length PRGs. Let G be an algorithm that on input a seed s ∈ {0, 1}k and
an output length 1` returns y ∈ {0, 1}`. Let OG be the oracle that on input 1` chooses a random
seed s ∈ {0, 1}k and returns G(s, `), and let S be the oracle that on input 1` returns a random
string r ∈ {0, 1}`. For an adversary A, define its variable-output-length pseudorandom function
(VOL-PRG) advantage against G as

Advvol-prg
G (A) = Pr

[
AOG(·) = 1

]
− Pr

[
AS(·) = 1

]
.

2That is, a VIL-PRF takes inputs of varying lengths. A VOL-PRF produces outputs of varying lengths specified
by an additional input parameter.
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As mentioned above, we require above that ` < `max for an associated maximum output length
`max. Call G consistent if Pr [G(s, `′) = G(s, `)1 . . . G(s, `)`′ ] = 1 for all `′ < `, with the probability
over the choice of a random seed s ∈ {0, 1}k. Most PRGs are consistent due to their “iterated”
structure.

Our LF-PRF construction. We propose a general construction of an LF-PRF that composes
a VIL-PRF with a consistent VOL-PRG by using the output of the former as the seed for the
latter. Formally, let F be a VIL-PRF and G be a consistent VOL-PRG, and define the associated
pseudorandom tape generation function TapeGen which on inputs K, 1`, x returns G(1`, F (K,x)).

The following says that TapeGen is indeed an LF-PRF if F is a VIL-PRF and G is a VOL-PRG.

Proposition 5.1. Let A be an adversary against TapeGen that makes at most q queries to its oracle
of total input length `in and total output length `out. Then there exists an adversary B1 against F
and an adversary B2 against G such that

Advprf
TapeGen(A) ≤ Advprf

F (B1) + Advvol-prg
G (B2) .

Adversaries B1, B2 make at most q queries of total input length `in and total output length `out to
their respective oracles and run in the time of A.

Proof. We use a standard hybrid argument, changing the experiment whereA has oracle TapeGen(K, ·, ·)
into one with oracle OR(·, ·) in two steps. First change the former oracle to on input `, x output
not G(`, F (K,x)) but G(`, s) for a independent random s ∈ {0, 1}k. The change in A’s advantage
is bounded by Advprf

F (B1), where B1 is the PRF adversary against F that runs A, responding to a
query `, x by querying its own oracle with x to receive response y, and then returning G(`, y) to A.
Next change A’s oracle to on input `, x return OR(`, x). This time the change in A’s advantage is
bounded by Advvol-prg

G (B2), where B2 is the VOL-PRG adversary against G that runs A, respond-
ing to a query `, x with the response it receives to query ` to its own oracle, and the proposition
follows.

Concretely, we suggest the following blockcipher-based consistent VOL-PRG forG. Let E : {0, 1}k×
{0, 1}n → {0, 1}n be a blockcipher. Define the associated VOL-PRG G[E] with seed-length k and
maximum output length n · 2n, where G[E] on input s ∈ {0, 1}k and 1` outputs the first ` bits of
E(s, 〈1〉)‖E(s, 〈2〉)‖ · · · (Here 〈i〉 denotes the n-bit binary encoding of i ∈ N.) The following says
that G[E] is a consistent VOL-PRG if E is a PRF.

Proposition 5.2. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher, and let A be an adversary
against G[E] making at most q oracle queries whose responses total at most p · n bits. Then there
is an adversary B against E such that

Advvol-prg
G[E] (A) 5 q ·Advprf

E (B) .

Adversary B makes at most p queries to its oracle and runs in the time of A. Furthermore, G[E]
is consistent.

Proof. Consider the following adversary.
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Adversary BO(·,·)

i
$← [q]

ctr← 0
Define P as the oracle taking query 1` and running

ctr← ctr + 1
If ctr < i: s $←{0, 1}k ; Return first ` bits of E(s, 〈1〉)‖E(s, 〈2〉)‖ · · ·
If ctr = i: s $←{0, 1}k ; Return first ` bits of O(s, 〈1〉)‖O(s, 〈2〉)‖ · · ·
If ctr > i: r $←{0, 1}` ; Return r

b
$←AP(·)

Return b

In the PRF experiment, B’s oracle O can be either the blockcipher E or a random function
R : {0, 1}k ×{0, 1}n → {0, 1}n. Note that B with oracle E and i = 0 emulates A with oracle G[E];
while B with oracle R and i = q emulates A with oracle S, where S is the oracle that on input 1`

returns a random string in {0, 1}`. Hence,

Pr
[
AOG[E](·) = 1

]
= Pr

[
BE(·,·) = 1 | i = 1

]
,

Pr
[
AS(·) = 1

]
= Pr

[
BR(·,·) = 1 | i = k

]
. (4)

Also, notice that for all j ∈ {2, . . . , q − 1}, B with oracle E and i = j has identical behavior to B
with oracle R and i = j − 1. Thus,

Pr
[
BE(·,·) = 1 | i = j

]
= Pr

[
BR(·,·) | i = j − 1

]
for all j ∈ {2, . . . , q}. (5)

Then,

Advvol-prg
G[E] (A)

= Pr
[
AOG[E](·) = 1

]
− Pr

[
AS(·) = 1

]
= Pr

[
BE(·,·) = 1 | i = 1

]
− Pr

[
BR(·,·) = 1 | i = k

]
[by (4)]

=
q∑

j=1

Pr
[
BE(·,·) = 1 | i = j

]
− Pr

[
BR(·,·) = 1 | i = j

]
[by (5)]

= q

q∑
j=1

Pr
[
BE(·,·) = 1 | i = j

]
Pr [ i = j ]− Pr

[
BR(·,·) = 1 | i = j

]
Pr [ i = j ]

= q

q∑
j=1

Pr
[
BE(·,·) = 1 ∩ i = j

]
− Pr

[
BR(·,·) = 1 ∩ i = j

]
≤ q

(
Pr
[
BE(.,.) = 1

]
− Pr

[
BR(.,.) = 1

])
= qAdvprf

E (B)

The efficiency claims should be clear from the definition of B. It is also obvious that G[E] is
consistent: for `′ < `, note that the first `′ bits of G[E](s, 1`′) and G[E](s, 1`) are the same as they
are just the first `′ bits of E(s, 〈1〉)‖E(s, 〈2〉)‖ · · · .
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Now, to instantiate the VIL-PRF F in TapeGen, we suggest OMAC (a.k.a. CMAC) [22], which
is also blockcipher-based and introduces no additional assumption. Then the secret key for TapeGen
consists only of that for OMAC, which in turn consists of just one key for the underlying blockcipher
(e.g. AES).

5.2 Our OPE Scheme and its Analysis

The scheme. Let TapeGen be as above, with key-space Keys. Our associated order-preserving
encryption scheme OPEHG[TapeGen] = (KHG, EncHG,DecHG) is defined as follows. The plaintext
and ciphertext spaces are sets of consecutive integers D,R, respectively. Algorithm KHG returns
a random K ∈ Keys. Algorithms EncHG,DecHG are the same as LazySample, LazySampleInv,
respectively, except that HG is implemented by the algorithm of [23] and GetCoins by TapeGen
(so there is no need to store the elements of F and I). See Figure 2 for the formal descriptions
of EncHG and DecHG, where as before `1 = `(M,N, y − r) is the number of coins needed by HG
on inputs M,N, y − r, and `R is the number of coins needed to select an element of R uniformly
at random. (The length parameters to TapeGen are just for convenience; one can always generate
more output bits on-the-fly by invoking TapeGen again on a longer such parameter. In fact, our
implementation of TapeGen can simply pick up where it left off instead of starting over.)

EncHG
K (D,R,m)

01 M ← |D| ;N ← |R|
02 d← min(D)− 1 ; r ← min(R)− 1
03 y ← r + dN/2e
04 If |D| = 1 then
05 cc

$← TapeGen(K, 1`R , (D,R, 1‖m))
06 c cc←R
07 Return c

08 cc
$← TapeGen(K, 1`1 , (D,R, 0‖y))

09 x
$← d+ HG(M,N, y − r; cc)

10 If m ≤ x then
11 D ← {d+ 1, . . . , x}
12 R ← {r + 1, . . . , y}
13 Else
14 D ← {x+ 1, . . . , d+M}
15 R ← {y + 1, . . . , r +N}
16 Return EncHG

K (D,R,m)

DecHG
K (D,R, c)

17 M ← |D| ;N ← |R|
18 d← min(D)− 1 ; r ← min(R)− 1
19 y ← r + dN/2e
20 If |D| = 1 then m← min(D)
21 cc

$← TapeGen(K, 1`R , (D,R, 1‖m))
22 w cc←R
23 If w = c then return m
24 Else return ⊥
25 cc

$← TapeGen(K, 1`1 , (D,R, 0‖y))
26 x

$← d+ HG(M,N, y − r; cc)
27 If c ≤ y then
28 D ← {d+ 1, . . . , x}
29 R ← {r + 1, . . . , y}
30 Else
31 D ← {x+ 1, . . . , d+M}
32 R ← {y + 1, . . . , r +N}
33 Return DecHG

K (D,R, c)

Figure 2: Encryption EncHG and decryption DecHG algorithms for our hypergeometric distribution-
based OPE scheme, OPEHG[TapeGen].

Security. The following theorem characterizes security of our OPE scheme, saying that it is
POPF-CCA secure if TapeGen is a LF-PRF. Applying Proposition 5.2, this is reduced to pseudo-
randomness of an underlying blockcipher.
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Theorem 5.3. Let OPEHG[TapeGen] be the above OPE scheme with plaintext space size M , ci-
phertext space size N . For adversary A against OPEHG[TapeGen] making at most q queries to its
oracles combined, there is an adversary B against TapeGen such that

Advpopf-cca
OPEHG[TapeGen]

(A) 5 Advprf
TapeGen(B) + λ .

Adversary B makes at most q1 = q · (logN + 1) queries of size at most 5 logN + 1 to its oracle,
whose responses total q1 · λ′ bits on average, and its running-time is that of A. Above, λ, λ′ are
constants depending only on HG and the precision of the underlying floating-point computations
(not on M,N).

Proof. Define adversary B as follows. Given an oracle for either TapeGen or a random function with
corresponding inputs and outputs lengths, B runs A and replies to its oracle queries by simulating
EncHG and DecHG algorithms. Note that only the procedure TapeGen used by these algorithms uses
the secret key. B simulates it using its own oracle. We have

Advpopf-cca
OPEHG[TapeGen]

(A)

= Pr
[
AEncHG(K,·),DecHG(K,·) = 1

]
− Pr

[
Ag(·),g−1(·) = 1

]
= Pr

[
AEncHG(K,·),DecHG(K,·) = 1

]
− Pr

[
ALazySample(D,R,·),LazySampleInv(D,R,·) = 1

]
≤ Advprf

TapeGen(B) + λ .

The first equation is by definition. The second equation is due to Theorem 4.2. The last inequality
is justified as follows. By construction our EncHG and DecHG algorithms differ from LazySample
and LazySampleInv respectively only in the use of random tape, which is truly random in one
case and pseudorandom in another. Thus any difference in the probabilities in the second line
will equal the difference B’s output distribution which is Advprf

TapeGen(B). Above λ represents an
“error term” due to the fact that the “exact” hypergeometric sampling algorithm of [23] technically
requires infinite floating-point precision, which is not possible in the real world. One way to bound
λ would be to bound the probability that an adversary can distinguish the used HG sampling
algorithm from the ideal (infinite precision) one. B’s running time and resources are justified by
observing the algorithms and their efficiency analysis.

Efficiency. The efficiency of our scheme follows from our previous analyses. Using the suggested
implementation of TapeGen in Subsection 5.1, encryption and decryption require the time for at
most logN + 1 invocations of HG on inputs of size at most logN plus at most (5 logM + 12) ·
(5 logN + λ′ + 1)/128 invocations of AES on average for λ′ in the theorem.

5.3 On Choosing N

Practitioners interested in implementing our scheme might naturally wonder how large we recom-
mend making the ciphertext space size N . In fact, different choices of N have no bearing on our
scheme’s POPF-CCA security. Rather, different choices of N will affect how the ideal object, a
random OPF, behaves. Thus, in order to say something meaningful about the choice of N , we first
need a security definition and analysis for the ideal object, which is a topic of ongoing research.
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6 On Using the Negative Hypergeometric Distribution

In the balls-and-bins model described in Section 4.1 with M black and N −M white balls in the
bin, consider the random variable Y describing the total number of balls in our sample after we pick
the x-th black ball. This random variable follows the negative hypergeometric (NHG) distribution.
Formally,

PNHG(y;N,M, x) =

(
y−1
x−1

)
·
(

N−y
M−x

)(
N
M

) .

As we discussed in the introduction, use of the NHG distribution instead of the HG permits
slightly simpler and more efficient lazy sampling algorithms and corresponding OPE scheme. The
problem is that they require an efficient NHG sampling algorithm, and the existence of such an
algorithm is apparently open. What is known is that the NHG distribution can be approximated
by the negative binomial distribution [27], the latter can be sampled efficiently [17, 15], and the
approximation improves as M and N grow. However, quantifying the quality of the approximation
for fixed parameters seems difficult. If future work either develops an efficient exact sampling
algorithm for the NHG distribution or shows that the approximation by the negative binomial
distribution is sufficiently close, then our NHG-based OPE scheme could be a good alternative to
the HG-based one. Here are the details.

6.1 Construction of the NHG-based OPE Scheme

Assume there exists an efficient algorithm NHG that efficiently samples according to the NHG
distribution, possibly using an approximation to a related distribution as we discussed. NHG
takes inputs M,N, and x ∈ {0, 1, . . . ,M} and returns y ∈ {0, 1, . . . , N} such that for each y∗ ∈
{0, 1, . . . , N} we have y = y∗ with probability PNHG(y∗;N,M, x) over the coins of NHG. Let
`1 = `(M,N, y − r) denote the number of coins needed by NHG on inputs M,N, y − r.

Definte OPENHG[TapeGen] = (K, EncNHG,DecNHG), our NHG-based order-preserving encryption
scheme, as follows. Let TapeGen be the PRF described in Section 5, with key-space Keys. The
plaintext and ciphertext spaces are sets of consecutive integers D,R, respectively. Algorithm K
returns a random K ∈ Keys. Algorithms EncNHG,DecNHG are described in Figure 3.

6.2 Correctness

We prove correctness of the NHG scheme in the same manner as the HG scheme. First, see in
Figure 4 the revised versions LazySample?, LazySampleInv? of the stateful algorithms from
before. The algorithms re-use the subroutine GetCoins, which takes inputs 1`,D,R, and b‖z, where
b ∈ {0, 1} and z ∈ R if b = 0 and z ∈ D otherwise, to return cc ∈ {0, 1}`. Also, recall that the
array I, initially empty, is global and shared between the algorithms.

With these revised versions of LazySample?, LazySampleInv?, we supply a revised version
of Theorem 4.2 for the NHG case.

Theorem 6.1. Suppose GetCoins returns truly random coins on each new input. Then for any
(even computationally unbounded) algorithm A we have

Pr
[
Ag(·),g−1(·) = 1

]
= Pr

[
ALazySample?(D,R,·),LazySampleInv?(D,R,·) = 1

]
,
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EncNHG
K (D,R,m)

01 M ← |D| ;N ← |R|
02 d← min(D)− 1
03 r ← min(R)− 1
04 x← d+ dM/2e
05 cc

$← TapeGen(K, 1`1 , (D,R, x))
06 y ← r + NHG(N,M, x− d; cc)
07 If m = x then
08 Return y
09 If m < x then
10 D ← {d+ 1, . . . , x− 1}
11 R ← {r + 1, . . . , y − 1}
12 Else
13 D ← {x+ 1, . . . , d+M}
14 R ← {y + 1, . . . , r +N}
15 Return EncNHG

K (D,R,m)

DecNHG
K (D,R, c)

16 If |D| = 0 then return ⊥
17 M ← |D| ;N ← |R|
18 d← min(D)− 1
19 r ← min(R)− 1
20 x← d+ dM/2e
21 cc

$← TapeGen(K, 1`1 , (D,R, x))
22 y ← r + NHG(N,M, x− d; cc)
23 If c = y then
24 Return x
25 If c < y then
26 D ← {d+ 1, . . . , x− 1}
27 R ← {r + 1, . . . , y − 1}
28 Else
29 D ← {x+ 1, . . . , d+M}
20 R ← {y + 1, . . . , r +N}
31 Return DecNHG

K (D,R, c)

Figure 3: Encryption EncNHG and decryption DecNHG algorithms for our negative hypergeometric
distribution-based OPE scheme, OPENHG[TapeGen].

where g, g−1 denote an order-preserving function picked at random from OPFD,R and its inverse,
respectively.

Proof. Since we consider unbounded adversaries, we can ignore the inverse oracle in our analysis,
since such an adversary can always query all points in the domain to learn all points in the image.
Let M = |D|, N = |R|, d = min(D) − 1, and r = min(R) − 1. We will say that two functions
g, h : D → R are equivalent if g(m) = h(m) for all m ∈ D. (Note that if D = ∅, any two functions
g, h : D → R are vacuously equivalent.) Let f be any function in OPFD,R. To prove the theorem,
it is enough to show that the function defined by LazySample?(D,R, ·) is equivalent to f with
probability 1/|OPFD,R|. We prove this using strong induction on M and N .

Consider the base case where M = 1, i.e., D = {m} for some m, and N ≥ M . When it
is first called, LazySample?(D,R,m) will determine random coins cc, then enter the result of
NHG(M,N,m− d; cc) into I[D,R,m], whereupon this any future calls of LazySample?(D,R,m)
will always output F [D,R,m] = c. Note that by definition, NHG(M,N,m − d; cc) returns f(m)
with probability

PNHG(f(m)− r;N, 1, 1) =

(
f(m)−r−1

0

)
·
(
N−(f(m)−r)

0

)(
N
1

) =
1
N

=
1
|R|

.

Thus, the output of LazySample?(D,R,m) will always be f(m) with probability 1/|R|, implying
that LazySample?(D,R,m) is equivalent to f(m) with probability 1/|R| = 1/|OPFD,R|.

Now suppose M > 1, and N ≥ M . As an induction hypothesis assume that for all domains
D′ of size M ′ and ranges R′ of size N ′ ≥ M ′, where either M ′ < M or (M ′ = M and N ′ < N),
and for any function f ′ in OPFD′,R′ , LazySample?(D′,R′, ·) is equivalent to f ′ with probability
1/|OPFD′,R′ |.
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LazySample?(D,R,m)

01 M ← |D| ; N ← |R|
02 d← min(D)− 1 ; r ← min(R)− 1
03 x← d+ dM/2e
04 If I[D,R, x] is undefined then
05 cc

$←GetCoins(1`1 ,D,R, 1‖x)
06 I[D,R, x] $←

NHG(M,N, x− d; cc)
07 y ← r + I[D,R, x]
08 If m = x then
09 Return y
10 If m < x then
11 D ← {d+ 1, . . . , x− 1}
12 R ← {r + 1, . . . , y − 1}
13 Else
14 D ← {x+ 1, . . . , d+M}
15 R ← {y + 1, . . . , r +N}
16 Return LazySample?(D,R,m)

LazySampleInv?(D,R, c)
17 If |D| = 0 then return ⊥
18 M ← |D| ; N ← |R|
19 d← min(D)− 1 ; r ← min(R)− 1
20 x← d+ dM/2e
21 If I[D,R, x] is undefined then
22 cc

$←GetCoins(1`1 ,D,R, 1‖x)
23 I[D,R, x] $←

NHG(M,N, x− d; cc)
24 y ← r + I[D,R, x]
25 If c = y then
26 Return x
27 If c < y then
28 D ← {d+ 1, . . . , x− 1}
29 R ← {r + 1, . . . , y − 1}
30 Else
31 D ← {x+ 1, . . . , d+M}
32 R ← {y + 1, . . . , r +N}
33 Return LazySampleInv?(D,R, c)

Figure 4: Algorithms LazySample? and LazySampleInv? for lazy-sampling a pseudorandom
order-preserving function and its inverse by sampling the negative hypergeometric distribution.

The first time it is called, LazySample?(D,R, ·) first computes I[D,R, x] from NHG(M,N, x−
d; cc), where x = d + dM/2e. Henceforth, on this and future calls of LazySample?(D,R, ·), the
algorithm sets y ← r+I[D,R, x], and follows one of three routes: if x = m, the algorithm terminates
and returns y, if m < x it will return the output of LazySample?(D1,R1,m), and if if m > x it
will return the output of LazySample?(D2,R2,m), where D1 = {1, . . . , x−1}, R1 = {1, . . . , y−1},
D2 = {x + 1, . . . ,M}, R2 = {y + 1, . . . , N}. Let f1 be f restricted to the domain D1, and let f2

be f restricted to the domain D2. Note then that LazySample?(D,R, ·) is equivalent to f if and
only if all three of the following events occur:

E1: The invocation of NHG(M,N, x− d; cc) returns the value f(x)− r.

E2: LazySample?(D1,R1, ·) is equivalent to f1.

E3: LazySample?(D2,R2, ·) is equivalent to f2.

By the law of conditional probability, and since E2 and E3 are independent,

Pr [E1 ∩ E2 ∩ E3 ] = Pr [E1 ] Pr [E2 ∩ E3 | E1 ]
= Pr [E1 ] Pr [E2 | E1 ] Pr [E3 | E1 ] .

Pr [E1 ] is the negative hypergeometric probability that NHG(M,N, x− d) will return f(x)− r,
which is

Pr [E1 ] = PNHG(f(x)− r;N,M, dM/2e) =

(f(x)−r−1
dM/2e−1

)(N−f(x)+r
M−dM/2e)

)(
N
M

) .
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Assume that E1 holds, and thus f1 is an element of OPFD1,R1 and f2 is an element of OPFD2,R2 .
By definition, |R1|, |R2| < |R|, and |D1|, |D2| ≤ |D|. So the induction hypothesis holds for each,
and thus LazySample?(D1,R1, ·) is equivalent to f1 with probability 1/|OPFD1,R1 | = 1/

(|R1|
|D1|
)
,

and LazySample?(D2,R2, ·) is equivalent to f2 with probability 1/|OPFD2,R2 | = 1/
(|R2|
|D2|
)
. Thus,

we have that

Pr [E2 | E1 ] =
1(f(x)−r−1

dM/2e−1

) and Pr [E3 | E1 ] =
1(N−f(x)+r

M−dM/2e
) .

Thus,

Pr [E1 ∩ E2 ∩ E3 ] =

(f(x)−r−1
dM/2e−1

)(N−f(x)+r
M−dM/2e)

)(
N
M

) 1(f(x)−r−1
dM/2e−1

) 1(N−f(x)+r
M−dM/2e

) =
1(
N
M

) .
Therefore, LazySample?(D,R, ·) is equivalent to f with probability 1

(N
M) = 1

|OPFD,R| . Since f was

an arbitrary element of OPFD,R, the result follows.

Now, it is straightforward to prove the formal statement of correctness as before.

Theorem 6.2. Let OPENHG[TapeGen] be the OPE scheme defined above with plaintext-space of size
M and ciphertext space of size N . Then for any adversary A against OPENHG[TapeGen] making at
most q queries to its oracles combined, there is an adversary B against TapeGen such that

Advpopf-cca
OPENHG[TapeGen]

(A) 5 Advprf
TapeGen(B) + λ .

Adversary B makes at most q1 = q · (logN + 1) queries of size at most 5 logN + 1 to its oracle,
whose responses total q1 · λ′ bits on average, and its running-time is that of A. Above, λ, λ′ are
constants depending only on NHG and the precision of the underlying floating-point computations
(not on M,N).

Proof. The proof of this theorem is identical to that of Theorem 5.3, except that it uses Theorem 6.1
as a lemma rather than Theorem 4.2.

6.3 Efficiency of the NHG Scheme

Efficiency-wise, it is not hard to see that to encrypt a single plaintext, each algorithm performs
logM+1 recursions in the worst-case (as opposed to logN+1 for the HG-based algorithms), as the
algorithm finds the desired plaintext via a binary search over the plaintext space, at each recursion
calling NHG to determine the encryption of the midpoint (defined as the last plaintext in the first
half of the current plaintext domain). The expected number of recursions is easily deduced as

1
M
·

[
(logM + 1) +

log M∑
k=1

2k−1k

]
.

A simple inductive proof shows that this value is between logM − 1 and logM . This falls in line
with what we expect from a binary-search strategy, where the expected number of iterations is
typically only about 1 fewer than the worst-case number of iterations.
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The algorithms of the corresponding OPE scheme can be obtained following the same idea of
eliminating state by using a length-flexible PRF as described in Section 5.2. The security statement
is the same as that of Theorem 5.3, where the last term now corresponds to the error probability
of the NHG algorithm.
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