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Abstract 

This paper deals with the problem of identifying material parameters for modelling the mechanical 

behaviour of masonry. The conventional method of obtaining material parameters, for masonry 

constitutive models, from the results of small sample tests was thought to be problematic and may not 

produce material parameters that are representative for masonry structures under complex loading 

conditions and stress states. This paper proposes a novel approach by which the material parameters 

were obtained from an optimization process and validated by the large scale tests carried out in the 

laboratory on single leaf wall panels. The wall panel tests were modelled using a Discrete Element Code 

UDEC. An optimization procedure was then used to tune the masonry material parameters in order to 

better simulate the pre- and post-cracking behaviour and the behaviour close to collapse as observed in 

the laboratory tests. The obtained material parameters were then validated by comparing the UDEC-

predicted behaviour of a new set of wall panel, against the results obtained from the laboratory test. In 

spite the great variability of masonry properties, good correlation was obtained between the results 

from the computational model and those obtained from tests in the laboratory. The developed method 

provides an effective way to reduce uncertainties associated with  the parameter identification of 

constitutive models for masonry, and can be further applied to other numerical methods and the studies 

of many other type of masonry structures including the reinforcement. 

Keywords: Parameter identification, brickwork masonry, Discrete element modeling, optimization. 

 

1.0 Introduction 
Many existing masonry structures are of complex construction and are subjected to complex loadings. 

Engineers often need the use of relatively sophisticated numerical or analytical methods in order to 

obtain a realistic assessment of the in-service behaviour or strength of such structures. However, any 

numerical or analytical model of analysis requires some forms of constitutive model to simulate the 

mechanical response of structures under various loading conditions. Constitutive models require a 

number of input material parameters to be identified in order to characterize the behaviour of the 

masonry. In the last few years, with the development of the sophisticated numerical models, the 
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number of parameters for material models has increased significantly (Roca, 2010). Conventionally, 

material parameters for masonry constitutive models are determined directly from the results of tests 

on small masonry prisms or material samples. However, it is often the case that representative values of 

material parameters cannot be obtained accurately from the small scale tests due to the intrinsic variety 

of the masonry materials. In other cases, material parameters are difficult to be measured directly from 

physical tests. This paper investigates the parameter identification problem for modelling masonry 

structures and proposes an alternative identification procedure in which the unknown parameters are 

optimized against a series of full scale laboratory tests on wall panels. To demonstrate the effectiveness 

of the method, the material parameters for a constitutive model used in numerical modeling to 

represent the mechanical behaviour of low bond strength masonry construction are identified. 

Computational models have been developed using Discrete Element Method (DEM) to recreate full scale 

experiments. The load to cause first visible cracking, the ultimate load and the load versus mid-span 

displacement relationship obtained from the laboratory tests are compared with the computational 

predictions obtained from DEM modelling. An optimization method is adopted so that the material 

parameters used in DEM models can be tuned to minimize the difference between responses measured 

from the large scale tests and those obtained by the computational simulation. The optimised material 

parameters are then used in a new DEM model to predict the behaviour of a different lab test of 

masonry wall panel to validate the developed process for the identification of the masonry material 

parameters..  

 

2.0 Discrete element modelling of masonry 
Experimental evidence (Abdou et al., 2006; Adami et al., 2008; Garrity et al., 2010) has shown that at 

low values of normal stress, the principal failure mode of masonry with low strength mortar is either in 

the brick/mortar interface or in the mortar itself. This result in joint opening due to tensile cracking or 

sliding along a bed or head joint with friction. The Discrete Element Method (DEM) was originally 

developed by Cundall for rock engineering. More recently, it has been used to model masonry structures 

(Lemos, 2007; Schlegel et al., 2004; Toth, 2009;  Zhuge, 2002)  due to its intrinsic advantages over other 

numerical methods on modelling the interfaces and discontinuous media subjected to either static or 

dynamic loading. When used to model brickwork structures, the bricks can be represented in a DEM 

model as an assemblage of rigid or deformable distinct blocks which may take any arbitrary geometry. 

Rigid blocks do not change their geometry as a result of any applied loading and are mainly used when 

the behaviour of the system is dominated by the mortar joints. Deformable blocks are internally 

discretised into finite difference triangular zones and each element responds according to a prescribed 

linear or non-linear stress-strain law. These zones are continuum elements as they occur in the finite 

element method (FEM). Mortar joints are represented as zero thickness interfaces between the blocks. 

The interactions between the blocks at interfaces are governed by interfacial constitutive laws, for 

example, the mechanical interaction between the blocks could be simulated at the contacts by spring 

like joints with normal (Jkn) and shear stiffness (Jks) as well as frictional (Jfric), cohesive (Jcoh) and tensile 

strengths (Jten), see Figure 1.  
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Fig. 1. Interface model in UDEC (after Idris et al., 2009). 

 

As with the Finite Element Method, the unknown variables in DEM equations are the nodal 

displacements and rotations of the blocks. However, unlike FEM, in DEM the unknowns are acquired by 

solving explicitly the differential equations of Newton’s Second law of motion at all blocks and the force-

displacement law at all contacts. The force-displacement law is used to find the contact forces from 

known displacements while Newton’s second law gives the motion of the blocks resulting from the 

known forces acting on them. In this way, large displacements along the mortar joints and the rotations 

of the bricks are allowed with the sequential contact detection and update (ITASCA, 2004). In this study, 

a commercial DEM code Universal Distinct Element Code (UDEC) developed by ITASCA is adopted to 

model the masonry wall panels.  

 

3.0 Methods for masonry material parameter identification 
Conventionally, material parameters for masonry constitutive models are determined directly from the 

results of compressive, tensile and shear strength tests on small masonry prisms (Lourenco, 1996) as 

shown in Figure 2. These usually consist of a small number of bricks and mortar joints, usually assumed 

that the stress and strain fields in the specimen are uniform.  
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Fig. 2. Different types of shear tests: a) couplet test; b) Van der Pluijim test [1993] and c) triplet test 

(Lourenco, 1996). 

 

In some other cases, separate tests are carried out on material samples, such as masonry units and/or 

mortar specimens (Rots, 1997; Van der Pluijm, 1999). The testing of small specimens is simple, relatively 

inexpensive and involves little specialist equipment. However, the conventional approach is considered 

to be problematic and may not produce material parameters that are representative for masonry under 

complex loading and stress conditions. This is a particular problem for DEM modelling of masonry, which 

uses parameters that represent the behaviour of the interfaces between the masonry units and the 

mortar joints, as brick and mortar properties are highly variable and depend primarily on the local 

supply of raw materials and manufacturing methods (Hendry, 1998). Also, the assumption that the 

stress and strain in the specimen are uniform is not applicable for masonry which is an intrinsically 

inhomogeneous material. Moreover, the simple conditions under which the small specimens are tested 

in the laboratory do not usually reflect the more complex boundary conditions, the combinations of 

stress-state types and load spreading effects that exist in a large scale masonry structure. In addition, 

some of the parameters obtained from small scale tests are variable and sensitive to the method of 

testing. This is likely to be due to the combined effects of eccentric loading, stress concentrations and 

variations in the resistance to applied stress that are likely to exist in the test specimens (Hendry, 1998). 

According to Vermeltfoort (1997), the effects of boundary conditions such as platen restraint and the 

shape and size of the test specimen can have a significant influence on the magnitude of the measured 

parameter. Also, the restraint conditions on the mortar in the cube test will be different to those 

existing in the mortar joint between masonry units. The situation is made more complex when 

workmanship is considered. The variations in workmanship will not be captured if the material 

parameters are based on the results from the testing of the limit number of small scale specimens. As a 

result of these difficulties it is often necessary to adjust the material parameter values obtained from 

small scale experiments before they can be used in the numerical model. The authors have found a 

further complication when using the Distinct Element Method (DEM) to model masonry. As the material 

parameters define the characteristics of the zero thickness interfaces between the mortar joints and the 

blocks, they can be difficult to measure directly from physical tests. The UDEC user manual (ITASCA, 
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2004a) states that “it is important to recognize that joint properties measured in the lab typically are not 

representative of those for real joints in the field”. It further states that “scale dependence of joint 

properties is a major question and the only way to guide the choice of appropriate parameters is by 

comparison to similar joint properties derived from field tests”. The use of field test results presents 

another set of difficulties. The stress and strain levels that are found in structures in the field are likely to 

be very low and affected by effects such as moisture movements, shrinkage and creep. Any material 

parameters determined from field measurements are unlikely to represent the behaviour of masonry in 

the post-cracking and near-collapse conditions. Other factors such as load spreading effects, residual 

thermal stresses in bricks and large inclusions sometimes found in bricks are all contribute to the 

uncertainty of material parameters obtained from small scale experiments. Therefore, it is essential to 

develop a more reliable method to identify the parameters for modelling the masonry.  

 

4.0 Proposed methodology for material parameter identification 
 

An alternative method of identifying material parameter that better reflects the complex nature of 

masonry is adopted based on the optimization of the responses of larger scale masonry structures 

(Toropov and Garrity, 1998). The identification procedure of the material parameters is based not on the 

conventional try-and-error approach but on an optimization procedure. According to the proposed 

method, numerical analysis for each large scale experiment is carried out and values of material 

parameters are tuned so that the difference between responses measured from a series of large scale 

laboratory experiments and those obtained from the numerical simulation can be minimized. Initially, a 

range of material parameters based on results of conventional small-scale experiments or on the codes 

of practice or on engineering judgment are used in the model for the simulation of the large 

experiments. . These material parameters can then be modified and fine tuned through an optimization 

process in which the function to be minimized is an error function that expresses the difference 

between the responses measured from the large scale experiments and those obtained from the 

numerical analysis. Such responses can include: failure load, load at initial visual cracks, load-deflection 

characteristics etc.. An optimization software, Altair HyperStudy 10 (Altair, 2010) is used for the 

implementation of the optimization process. The proposed method for material parameter 

identification is illustrated diagrammatically in Figure 3 and described as following.  
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Fig. 3. Schematic chart for the proposed material parameters identification method. 

The aim of the identification problem is to obtain the optimum estimate of the unknown model 

parameters taking into account uncertainties which may exist in the problem, such as the inherent 

variation of material properties, experimental errors and errors in the model estimation method. The 

estimates of the material parameters obtained from this approach could be referred to as the maximum 

likelihood estimates and can be used to “inform” the computational model. Examples validating the use 

of the proposed material parameter identification technique for large deformation plasticity models 

include: a) test data of a solid bar in torsion (Toropov et al., 1993) and b) test data for the cyclic bending 

of thin sheets (Yoshida et al., 1998). Later, Morbiducci (2003) applied the method to two different 

masonry problems in order to: a) identify the parameters of a non-linear interface model (Gambarotta 

et al., 1997a) to describe the shear behaviour of masonry joints under monotonic loading, where shear 
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tests were chosen as the experimental tests; and b) to evaluate the parameters of a continuum model 

for brick masonry walls under cyclic loading (Gambarotta et al., 1997b). Based on the above mentioned 

studies, the following points need to be considered in the optimization process: 

a) When modelling masonry, different material parameters influence different stages of 

mechanical behaviour;   

b) large number of full scale experiments may be required; and  

c) a significant amount of computational time is required to carry out parameter sensitivity 

studies.  

 

4.1 Formulation of the alternative material parameter identification problem as an 

optimization problem 

Consider an experimental test performed on ℳ = 1,2, … , 𝓂 specimens in order to estimate the design 

variables or unknown parameters 𝒫 = 1,2, . . , p of the constitutive model. Let 𝒩 = 1,2, … 𝓃 be the 

number of responses of interest recorded from the experimental data. Also, consider R𝓃
exp

 as the value 

of the 𝓃th measured response quantity corresponding to the large scale experiment carried out in the 

laboratory. Consider R𝓃
comp

 as the value of the 𝓃th measured response quantity corresponding to the 

computational simulation. Then, the responses ℛ are functions of the design variables of the model 𝒫. 

The model takes the general function form 𝓍 =ℛ(𝒫). To calculate values of this specific function for the 

specific set of parameters, 𝓍, requires the use of a non-linear numerical simulation (e.g. discrete/finite 

element) of the experimental test under consideration. The difference between the experimental and 

the numerical response is an error function that can be expressed by the difference D=ℛM,N
exp

− ℛM,N
comp

. 

The optimization problem can then be formulated as follows: 

F(𝓍)
1 =  ∑ [(ℛ1,1

exp
− ℛ1,1

comp
)

2
+ (ℛ1,2

exp
− ℛ1,2

comp
)

2
… … . +(ℛ1,n

exp
− ℛ1,n

comp
)

2
  ]       (1) 

F(𝓍)
2 = ∑ [(ℛ2,1

exp
− ℛ2,1

comp
)

2
+ (ℛ2,2

exp
− ℛ2,2

comp
)

2
… … . +(ℛ2,n

exp
− ℛ2,n

comp
)

2
  ]       (2) 

⋮ 

F(𝓍)
𝓂 = ∑ [(ℛ𝓂,1

exp
− ℛ𝓂,1

comp
)

2
+ (ℛ𝓂,2

exp
− ℛ𝓂,2

comp
)

2
… … . +(ℛ𝓂,n

exp
− ℛ𝓂,n

comp
)

2
  ]        (3) 

𝐹𝑀(𝐱) = F(𝔁)
1 + F(𝔁)

2 + ⋯ + F(𝔁)
𝓂  is a dimensionless function. The problem is then to find the vector 𝒙 =

[𝑥1, 𝑥2, 𝑥3 … 𝑥𝑝] that minimizes the objective function: 

 

F(𝔁)
total = ∑ θℳ(𝐹𝑀(𝐱)),         𝐴𝑖 ≤ 𝑋𝑖 ≤ 𝐵𝑖           (𝑖 = 1 … … . . 𝑁)       (4) 

where F(𝔁)
total is a function of the unknown parameters (𝑥1, 𝑥2, 𝑥3 … 𝑥𝑝), θℳ is the weight coefficient 

which determines the relative contribution of information yielded by the M-th set of experimental data, 
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and 𝐴𝑖 , 𝐵𝑖 are the lower and upper limits on the values of material parameters. The optimization 

problem equation (4) has the following characteristic features: 

 The objective function is an implicit function of parameters 𝑥, wher 𝑥 ∈ ℝ; 

 to calculate the values of this function for the specific set of parameters 𝑥 requires the use of a 

non-linear numerical (e.g. discrete element) simulation of the process under consideration, 

which is usually involves a considerable amount of computational time; 

 function values may present some level of numerical noise. 

 

The computational simulations of masonry wall panels with UDEC would require a large amount of 

computational time. Also, convergence of the above method cannot be guaranteed due to the presence 

of noise in the objective function values. Thus, routine task analysis such as design optimization, design 

space exploration and sensitivity analysis becomes impossible since a large amount of simulation 

evaluations is required. One way to mitigate against such a problem is by constructing surrogate models 

(also referred to as response surface models or metamodels) (Queipo et al., 2005). These models mimic 

the behaviour of the model as closely as possible while at the same time they are time effective to 

evaluate. Surrogate models are constructed based on modelling the response predicted from the 

computational model to a limited number of intelligently chosen data points. New combinations of 

parameter settings, not used in the original design, can be plugged into the approximate model to 

quickly estimate the response of that model without actually running it through the entire analysis. 

Different methods of regression analysis (i.e. Least Squares Regression and Moving Least Squares) can 

be used to construct the expression for the function F(𝔁)
total. This approach can result in less 

computational iterations and lead to substantial saving of computational resources and time. Using this 

approach, the initial optimization problem, eq. (4), is replaced with the succession of simpler 

mathematical programming sub-problems as: finding the vector 𝒙𝑘
∗  that minimizes the objective 

function: 

 

�̃�𝑘(𝑥) = ∑ θℳ�̃�𝑘
𝑀(𝑥),     𝐴𝑖

𝑘 ≤ 𝑋𝑖 ≤ 𝐵𝑖
𝑘 , 𝐴𝑖

𝑘 ≥ 𝐴𝑖, 𝐵𝑖
𝑘 ≤ 𝐵𝑖     (𝑖 = 1 … … . . 𝑁)                 (5) 

where 𝑘 is the iteration number. The limits 𝐴𝑖
𝑘   and 𝐵𝑖

𝑘  define a sub-region of the optimization 

parameter space where the simplified functions �̃�𝑘
𝑀(𝑥) are considered as current approximations of the 

original implicit functions 𝐹𝑀(x). To estimate their accuracy, the error parameter 𝑟𝑘 = |[𝐹(𝑥𝑘
∗) −

�̃�𝑘(𝑥𝑘
∗)]/𝐹(𝑥𝑘

∗)| is evaluated. The value of the error parameter gives a measure of discrepancy between 

the values of the initial functions and the simplified ones. Any conventional optimization technique 

(Toropov and Yoshida, 2005) can be used to solve a sub-problem in equation (5), because the functions 

involved in its formulation are simple and noiseless.  

 

5.0 Material parameter identification for low bond strength masonry  
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To demonstrate the general procedure of the proposed method of material parameter identification for 

masonry modeling, a simple but typical masonry structure was used for this purpose. A series of single 

leaf low bond strength masonry wall panels with opening were used in this study. For validation of the 

developed procedure, the parameters from the optimization method will then be used to predict the 

behavior of a wall panel in different geometry, but constructed from similar brick and mortar 

combination. The stages of the material parameter identification method are described in further details 

below.  

5.1 Experimental stage 

Seven single leaf brickwork masonry wall panels were tested in the laboratory. The wall panels were 

developed to represent the clay brickwork outer leaf of an external cavity wall containing openings for 

windows. Panels were built with a soldier course immediately above the opening with the remainder of 

the brickwork being constructed in stretcher bond. Four of the wall panels (S1 to S4), as listed in Table 1, 

had an opening of 2.025m and six courses of stretcher bonded brickwork above the opening; two of the 

wall panels (L1 & L2) had an opening of 2.925m and 6 courses of stretcher bonded brickwork above the 

opening and the final wall panel had an opening of 2.025m and nine courses of stretcher bonded 

brickwork above the opening (DS1). Typical details of the panels are shown in Figure 4. All panels have 

been constructed with UK standard size 215mm x 102.5mm x 65mm Ibstock Artbury Red Multi Stock 

bricks with water absorption of 14% and a sand faced finish. The joints were all 10mm thick with 1:12 

(opc:sand) weigh-batched mortar. The bricks and mortar were selected deliberately to produce 

brickwork with low bond strength. The aim is to represent low quality, high volume wall construction 

which, in the authors’ experience, is fairly typical of low rise domestic construction in the UK. Each wall 

panel was tested by applying a central point load to the top of the wall at midspan. The load was applied 

to each panel using a hydraulic ram and was distributed through a thick steel spreader plate which was 

embedded in mortar on the top of the brickwork. A structural steel frame bolted to the laboratory floor 

provided the support. The load was applied to each wall incrementally until the panel could no longer 

carry the applied load. At each load increment, vertical deflections were measured at midspan using a 

dial gauge supported on a magnetic stand and a steel base plate. The painted surfaces of the panels 

were inspected visually for signs of cracking at each load increment. Typically the first visible cracks were 

observed in the order of 0.2mm wide. In addition, cracking in the each panel under test was identified 

from the dial gauges readings. For example, sudden increases in the deflection measurements during 

testing indicated crack formation and other effects such as stress redistribution following cracking and 

very short-term creep effects. Deflections at ultimate load were not taken for safety reasons and to 

avoid damage to the dial gauge. The experimental test results are summarised in Table 1.  

 

 

 

 

Applied Load 

6 courses (450mm) 

(9 for panel DS1) 

Soldier course (225mm) 

6 courses (450mm) 

2025mm clear opening 665m 665m
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Fig. 4. Typical details of masonry wall panel tested in the laboratory. 

 

Table 1. Masonry wall panel experimental test results. 

Panel Clear 

opening 

(mm) 

Courses of 

stretcher bond 

above opening 

Type of 

masonry 

Mortar 

compressive 

strength (MPa) 

Load at 

first visible 

crack (KN) 

Failure 

load 

(KN) 

S1 2025 Six Unreinforced 0.72 0.72 3.69 

S2 2025 Six Unreinforced 0.79 1.6 4.6 

S3 2025 Six Unreinforced 0.86 1.6 5.1 

S4 2025 Six Unreinforced 1.18 1.71 5.67 

L1 2925 Six Unreinforced 0.64 0.1 1.6 

L2 2925 Six Unreinforced 0.71 0.6 2.6 

DS1 2925 Nine Unreinforced 0.96 0.72 10.6 

Notations: (S) refers to short span panels, (L) refers to long span panels and (D) refers to deep panels. 

 

 

5.2 Computational model for masonry wall panels 

The brickwork panels tested in the laboratory were recreated in UDEC models. Bricks were represented 

by a deformable block separated by interfaces at each mortar bed and perpend joint. To represent for 

the 10mm thick mortar joints in the real wall panels, each deformable block was based on the nominal 

brick size increased by 5mm in each face direction to give a UDEC block size of 225mm x 102.5mm x 

75mm. The expanded dimensions of the bricks have no significant influence on the accuracy of the 

model’s mechanical behaviour predictions (Sarhosis, 2011). The UDEC model for a masonry wall panel 

with a 2.025m long opening is shown in Figure 5. 
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Fig. 5. Typical UDEC geometric model of a masonry wall panel with a 2.025m opening. 

 

It was assumed that each brick in UDEC model would behave as a homogeneous, isotropic continuum 

which will exhibit linear stress-strain behaviour as they would be loaded well below their strength limit. 

Material properties have been selected such that the bricks would remain intact at all stages of applied 

loading and the predominant failure mode would be slips and openings along the brick/mortar 

interfaces. Similar failure modes have also been observed in the full scale lab experiments. The block 

parameters required by UDEC to represent the behaviour of the bricks are listed in Table 3. The mortar 

joints were represented by interfaces modelled using UDEC’s elastic-perfectly plastic coulomb slip-joint 

area contact option (ITASCA 2004). This option is intended for closely packed blocks of any shape with 

area contact, such as masonry, and provides a linear representation of the mortar joint stiffness and 

yield limit. It is based on six input material parameters namely: the elastic normal (JKn) and shear (JKs) 

stiffnesses, frictional (Jfric), cohesive (Jcoh) and tensile (Jten) strengths, as well as the dilation (Jdil) 

characteristics of the mortar joints. According to the model, If, in the numerical calculation, the bond 

tensile strength or shear strength is exceeded, then the tensile strength and cohesion are reduced to 

zero in accordance with the Mohr-Coulomb relationship for low bond strength masonry, it has been 

assumed that tension softening will be insignificant. Finally, it was assumed that the mortar properties 

would be the same for the vertical and horizontal joints.  

 

The bottom edges of the UDEC wall panels were modelled as rigid supports in the vertical and horizontal 

direction whilst the vertical edges of the wall panel were left free. Self weight effects have also been 

included in the model as a gravitational load. Local damping was assigned to the model to simulate 

quasi-static loading.  

 

In order to determine the collapse load, displacement-controlled boundary conditions was used in the 

UDEC modelling (UTASCA, 2004). As a result, a constant vertical velocity was applied at the load 

spreader plate on the top of the wall panel. The velocity was converted to a vertical displacement and 

the force acting on the spreader plate for each load increment. Hence, a load versus mid-span 
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displacement relationship could be determined for the panel. The modelling results are compared in the 

optimization process to the experimental results obtained in the laboratory.  

 

5.3 Identification of masonry material parameters for UDEC models  

5.3.1 Optimization aims  

The material parameters used in UDEC were optimized to produce similar responses to the following 

aspects of behaviour observed from the large-scale tests in the laboratory: 

a). The applied load and deflection of the panel at the occurrence of first cracking (point 1 in Figure 

6); 

b). The maximum load supported by the wall/beam panels (point 4 in Figure 6); 

c). The intermedian load-displacement relationships (points 2 and 3 in Figure 6). 

d). The propagation of cracks in the wall/beam panels with increasing applied load; 

e). The mode of failure. 
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Fig. 6. Response evaluation points for Level 1 and Level 2 optimization (R, L and D denotes response, 

load and displacement, respectively). 

 

5.3.2 Sensitivity analysis  

Initially a sensitivity analysis was carried out to identify the effect of the brick and brick/mortar joint 

interface parameters used in UDEC on the pre- and post-cracking behaviour (Sarhosis et al., 2011). As 

expected, behaviour was found to be independent of the brick properties and was dominated by the 

brick/mortar joint interface properties. From the analysis it was found that: 

a). The load versus displacement relationship for the masonry wall/beam panels was linear up to 

the occurrence of first cracking; 

b). Of the six parameters used by UDEC to define the characteristics of the brick/mortar joint 

interface: 

i). The normal stiffness(JKn); the shear stiffness (JKs) and the tensile strength (Jten) of the 

interface, have dominate influences the behaviour of panels up to and including the 

occurrence of the first crack; 

ii). The cohesive strength (Jcoh); the angle of friction (Jfric) and angle of dilation (Jdil) influence 

more on the behaviour of the panels after first cracking up to collapse.  

To reflect results from the sensitivity study and to minimise the computational time, the optimization of 

the material parameters was carried out in two different Levels as indicated in Figure 6.  
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 First Optimization (Level 1): Optimization of the joint interface material parameters JKn, JKs and 

Jten up to the occurrence of the first crack; and 

 Second Optimization(Level 2): Optimization of the joint interface material parameters Jfric, Jcoh 

and Jdil just after the occurrence of first crack and up to the ultimate load in the panel. 

 

The two levels of optimization are described in more detailsbelow. 

 

5.3.3 Level 1 Optimization  

For the Level 1 optimization, the material parameters to be optimized up to the occurrence of first crack 

in the panel are: JKn, JKs, and Jten. After Lourenco (1996), the normal and shear stiffness of mortar joint 

can be estimated according to the brick and mortar properties as follows:  

 

𝐽𝐾𝑛 =
𝐸𝑏𝐸𝑚

ℎ𝑚(𝐸𝑏−𝐸𝑚)
          (6) 

𝐽𝐾𝑠 =
𝐺𝑏𝐺𝑚

ℎ𝑚(𝐺𝑏−𝐺𝑚)
           (7) 

𝐺 =
𝐸

2(1+𝑣)
            (8) 

 

where 𝐸𝑏 and 𝐸𝑚  are the Young’s moduli and 𝐺𝑏 and 𝐺𝑚 are the shear moduli, respectively, for the 

blocks and mortar and ℎ𝑚 is the actual thickness of the mortar joint. These equations give the ration of 

normal to shear stiffness as:  

 

 𝐽𝐾𝑛/𝐽𝐾𝑠 = 2 [1 +
𝐸𝑏𝑣𝑚−𝐸𝑚𝑣𝑏

𝐸𝑏−𝐸𝑚
]          (9) 

 

Table 2 demonstrates a range of material properties determined by using the data from the literature 

(Hendry, 1998; Rots, 1991 & 1997; Sarangapani et al., 2005 and Van der Pluijm, 1999) for brick and 

mortar combinations similar to these used for the construction of the large scale experiments described 

in Section 5.1. These properties have been obtained from the testing of small samples of material or 

small assemblages.  
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Table 2.Variation of brick and mortar properties as identified from the literature. 

Interface 

parameter 

Young’s 

modulus of 

brick (N/m2) 

Young’s 

modulus of 

mortar (N/m2) 

Poisson’s 

ratio of 

brick 

Poisson’s 

ratio of 

mortar 

Height of 

mortar 

joint (m) 

Symbol Eb Em νb νm hm 

Range (4 to 10) x109 (1 to 11) x108 0.1 to 0.2 0.1 to 0.2 0.01 

 

Using the range of material parameters from Table 2, a variation analysis of the minimum and maximum 

values of the normal and shear stiffness has been carried out. The analysis showed that: 

 Normal stiffness ranged from 10 𝑡𝑜 150 𝐺𝑃𝑎/𝑚 ; 

 Shear stiffness ranged from 4.3 𝑡𝑜 65 𝐺𝑃𝑎/𝑚; and 

 The ratio of normal to shear stiffness ranged from 2.18 to 2.5.  

 

From the above findings it is reasonable to assume that the ratio of normal to shear stiffness of masonry 

with brick and mortar properties varying according to the values given in Table 8.1 can be taken as the 

average of 2.18 and 2.52, namely a value of 2.3. The influnce of taking the average value of the normal 

to shear stiffness ratio has been investigated and found to be negligible (Sarhosis, 2011). Also, since the 

normal stiffness is directly related to the shear stiffness, only the joint normal stiffness and the joint 

tensile strength were consideres as independent parameters and included in the optimization process. A 

factorial design of 28 experiments has been proposed for each of the short (S1 to S4) and long panels (L1 

and L2) referred in Table 1. The material parameters used in the computational experiments for the 

Level 1 optimization are shown in Table 3. Such ranges have also been adopted in the literature (Hendry, 

1998; Rots, 1991 & 1997; Van der Pluijm, 1999). While the joint normal stiffness, joint shear stiffness 

and joint tensile strength values were varied, the rest of the input parameters were assumed to be 

constant and equal to the values reported by Lourenço (1996). As has been identified from the 

sensitivity analysis, such values do not have significant influence to the behaviour of the panel up to the 

occurrence of first crack.    
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Table 3. Range of brick and mortar joint properties used in UDEC models. 

 
Brick Properties Symbol         Value Units 

El
as

ti
c 

p
ar

am
e

te
rs

 

Density d 2000 Kg/m3 

Elastic modulus E 6050 MPa 

Poisson’s ratio ν 0.14 - 

Mortar Joint Properties 

Joint normal stiffness JKn 10, 25, 50,..., 150 GPa/m 

Joint shear stiffness JKs JKn/2.3 GPa/m 

In
e

la
st

ic
 p

ar
am

e
te

rs
 Joint friction angle Φ 36.8 Degrees 

Joint cohesion Jcoh 0.375 MPa 

Joint tensile strength Jten 0.09, 0.1, 0.11, 0.12 MPa 

Joint dilation angle Ψ 0 Degrees 

 

The least squares differences between the experimental and computational test results , up to the 

occurrence of first cracking, for each of the short and long panels were then estimated. All the response 

quantities were considered to be equally weighted for the formulation of the objective function. A 

surrogate model was constructed with the use of the Moving Least Squares (MLS) approximation 

method. The predicted response surface created using Altair HyperStudy 10 (Altair, 2010) is shown in 

Figure 7. 
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Fig. 7. Response surface for relating the objective function with the normal stiffness and the 

tensile strength of mortar joint interface as derived from the MLS approximation. 

 

An optimization study has also been carried out using Altair HyperStudy 10. An evolutionary algorithm 

method i.e. the Genetic Algorithm (GA) in HyperStudy 10 has been adopted. According to Toropov and 

Yoshida (2005), GA is more likely to find a non-local solution (i.e. the global minimum) when compared 

to other gradient based methods such as Sequential Quadratic Method or the Adaptive Response 

Surface method. Further details of the optimization process are described elswhere (Sarhosis 2011). 

From the Level 1 optimization exercise it was found that: JKn = 13.5GPa/m; JKs = 5.87GPa/m and Jten = 

0.101MPa. These values and the brick properties shown in Table 3 were then used in the Level 2 

optimization.  
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5.3.4 Level 2 Optimization  

For the Level 2 optimization, a factorial design of 175 experiments was carried out for each of the short 

and long panels used in the level 1 optimization. The values of the interface parameters used when 

planning the computational experiments are shown in Table 4 (Rots, 1998; Pluijm, 1997). The procedure 

adopted was similar as per Level 1 Optimization. Response surfaces were created as shown in Figure 8 

and an optimization study was carried out using a genetic algorithm in Hyperstudy 10. From the 

optimization analysis, the results conmverge to: Jfric = 400; Jcoh = 0.062MPa and Jdil = 400. 

 

Table 4. Range of brick and interface material properties. 

 

Brick Properties Symbol         Value Units 

El
as

ti
c 

p
ar

am
e

te
rs

 

Density d 2000 kg/m3 

Elastic modulus E 6050 MPa 

Poisson’s ratio v 0.14 - 

Mortar Joint Properties 

Joint normal stiffness JKn 13.5 GPa/m 

Joint shear stiffness JKs 5.87 GPa/m 

In
e

la
st

ic
 p

ar
am

e
te

rs
 Joint friction angle Φ 20 to 40 Degrees 

Joint cohesion Jcoh 0.04 to 0.016 MPa 

Joint tensile strength Jten 0.101 MPa 

Joint dilation angle Ψ 0 to 40 Degrees 
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Fig. 8. Response surface for relating the objective function with the cohesive and frictional 

characteristics of the mortar joint interface (the dilation angle is 35 degrees). 

 

5.3.5 Verification study  

In order to verify the effectiveness of the optimization process, the experimental results for the short 

and long panels were compared with the results obtained from the UDEC modelling results using the 

optimized material parameters, as can be seen in Figures 9 and 10. Bearing in mind the inherent 

variations that occur in masonry, a good level of correlation between modelling and test results was 

achieved for the load at first crack and the ultimate load that the panel can carry.  

 

Jcoh Jfric 
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Fig. 9. Comparison of experimental and computational results for the short panels  
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Fig. 10. Comparison of experimental and computational results for the long panels 
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6.0 Validation study 

 

To validate the material parameter identification procedure, the UDEC model with the optimized 

parameters was used to predict the behaviour of a new set of deeper wall/beam panel (DS1). Both 

experimental and computational results contain four notable aspects of behaviour namely: a) initial 

flexural cracking in the soffit of the panel; followed by b) the development of flexural cracks in the bed 

joint of each support; with increasing load leading to c) propagation of diagonal stepped cracks at mid 

depth both up (towards the loading point) and down (towards the corner of the opening); and d) 

collapse as a result of what is usually referred as a shear failure (or excessive diagonal tension). Figure 

11 show the distribution of cracks at collapse predicted by UDEC. A similar pattern of cracks was 

observed in the laboratory testing, as shown in Figures 12, 13 and 14.  

 

 

 

Fig. 11.  Failure mode for panel DS1 predicted using UDEC. 

 

a 

b 

c 
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Fig. 12. Shear development propagated from the corners of the opening to the top of the panel. 

 

Fig. 13. Flexural crack at the right hand support.  
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Fig. 14. View of the right hand side of the panel. 

 

Figure 15 shows the observed and the UDEC predicted load versus displacement behaviour of the panel 

DS1. The UDEC predicted value of the load at first cracking (2.0kN) is close to that observed from the 

laboratory testing (1.72kN). Also, the ultimate load recorded in the laboratory (10.6kN) compares well 

with the load predicted by UDEC model (10.4kN). The stiffness of the panel observed from the 

experiment is similar to that found from UDEC modelling. However, as the load applied to the panel 

increases the two stiffness results start to deviate from each other. This could be due to short term 

creep effects and load redistribution that occurred in the panel with the application of load, both are 

very difficult to record in the lab test. Another factor contributing towards this difference is that as the 

panel neared a state of impending collapse, the dial gauge reading from the mid span displacement 

varied a great deal under constant applied load as cracks developed and propagated throughout the 

panel. This has influenced the accuracy of the record of the test results.  
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Fig. 15. Observed and UDEC-predicted load versus displacement relationships for panel DS1.   

 

6.0 Conclusion 
 

A study of the identification of material parameters for modelling masonry structures with UDEC has 

been carried out and reported in this paper. Traditionally, the material parameters used for modelling 

masonry in computational models are based on the results of small scale tests that do not reflect the 

more complex boundary conditions and stress-state types that exist in a real masonry structure. A 

method which is considered likely to provide more representative material parameters for masonry 

constitutive models has been proposed. The method  involves the computational analysis of large scale 

experimental tests on masonry structures, and an optimization process to fine tunethe masonry 

material parameters by minimizing the difference between the responses measured from the large scale 

lab tests and those obtained from the computational simulation.  
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This research has used the results of a series of low bond strength masonry wall panels with opening 

tested in the laboratory. Such panels have also been modeled with a DEM software UDEC.  The material 

parameters for UDEC models were “tuned” using an optimization process in order to achieve similar 

responses to those obtained in the laboratory. The tuning was based on the need to achieve good 

correlation between the pre-cracking, post-cracking and near-collapse behaviour of the masonry wall 

panels. Surrogate models that relate the output responses of the UDEC model to the input material 

parameters have been constructed to minimize the computational costs. Optimization of the material 

parameters was then performed using the surrogate model and a single set of optimized material 

parameters were obtained by this process. The use of surrogate modelling for creating approximations 

has proved to be a useful approach as it resulted in less computational iterations, and led to substantial 

saving of computational resources and time. To validate the optimization results, the material 

parameters obtained from the optimization process were then used in a UDEC model to predict the 

structural response of different wall panels. In spite of the inherent variability of masonry, good 

correlation was achieved between the predicted behaviour from UDEC model and that observed in the 

laboratory. The developed method provides a more rigourous tool for the identification of the material 

parameters for modelling masonry structures, and has reduced the uncertainties associated with the 

traditional methods. As for the future study, the accuracy of the optimization method can be improved 

by using larger number of test data and the developed computational model for masonry can be used to 

study the strengthening of masonry structures.   

 

Acknowledgement 
The work presented in this paper is supported by an EPSRC Comparative Award in Science and 

Engineering (CASE/CAN/07/22) and Bersche-Rolt Ltd. Particular thanks are due to George Edscer and 

Chris Smith of Bersche-Rolt Limited for their continued support and encouragement. Thanks are also 

due to Professor V. V. Toropov and Dr. J. Eves of the Faculty of Engineering for their assistance with the 

optimization elements of this research. 

 

References 
Abdou, L., Ami, S.R., Meftah, F. and Mebarki, A., 2006. Experimental investigations of the joint-mortar 

behaviour. Mechanics Research Communications, 33(3), pp.370-384.  

 

Adami, C.E. and Vintzileou, E., 2008. Investigations of the bond mechanism between stones or bricks and 

grouts. Materials and Structures, 41(2), pp.255-267. 

 

Altair Engineering, 2010. Altair Hyperstudy 10, User’s Manual, Design of experiments, Optimization and 

Stochastic studies. Alter Engineering Inc. 

 

Cundall, P.  

 



27 
 

Gambarotta, L. and Lagomarsino, S., 1997a. Damage models for the seismic response of brick masonry 

shear walls. Part I: The mortar joint model and its applications. Journal of Earthquake Engineering and 

Structural Dynamics, 26(4), pp.423-439.  

 

Gambarotta, L. and Lagomarsino, S., 1997b. Damage models for seismic response of brick masonry shear 

walls. Part II: The continuum model and its applications. Journal of Earthquake Engineering and 

Structural Dynamics, 26(4), pp.441-462. 

 

Garrity, S.W., Ashour, A.F. and Chen, Y., 2010. An experimental investigation of retro-reinforced clay 

brick arches. In: Proceedings of the 8th International Masonry Conference. Dresden, July 2010, Germany, 

pp.733-742. [CD-ROM proceedings]. 

 

Hendry, A.W., 1998. Structural masonry. 2nd Edition. Palgrave Macmillan, London, UK. 

 

Idris, J., Al-Heib, M. and Verdel, T., 2009. Numerical modelling of masonry joints degradation in built 

tunnels. Tunnelling and Underground Space Technology, 24(6), pp.617-626.  

 

ITASCA 2004. UDEC - Universal Distinct Element Code Manual. Theory and Background, Itasca consulting 

group, Minneapolis, USA. 

 

Lemos, J.V., 2007. Discrete element modelling of masonry structures. International Journal of 

Architectural Heritage, 1, pp.190-213. 

 

Lourenço, P.B., 1996. Computational strategies for masonry structures, Ph.D thesis, Delft University of 

Technology, Delft, Netherlands.  

 

Morbiducci, R., 2003. Non-linear parameter identification of models for masonry. International Journal 

of Solids and Structures, 40(15), pp.4071-4090. 

 

Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidyanathan, R., Tucker, P.K., 2005. Surrogate-based 

analysis and optimization. Progress in Aerospace Sciences, 41(1), pp. 1-28. 

 

Roca, P., Cervera, M., Gariup, G. and Pela, L., 2010. Structural analysis of masonry historical 

constructions. Classical and advanced approaches. Archives of Computational Methods in Engineering, 

17(3), pp.299-325.   

 

Rots, J.G., 1991. Numerical simulation of cracking in masonry. HERON, 36(2), pp.49-63. 

 

Rots, J.G., 1997. Structural masonry: An experimental/numerical basis for practical design rules. Balkema 

Publishers, Netherlands.  

 

http://en.wikipedia.org/wiki/Wei_Shyy


28 
 

Sarangapani, G., Venkatarama, R.B.V. and Jagadish, K.S., 2005. Brick-mortar bond and masonry 

compressive strength. Journal of Materials in Civil Engineering, 17(2), pp.229-237. 

 

Sarhosis, V.  2011. Computational modelling of low bond strength masonry. PhD thesis, University of 

Leeds, UK.  

 

Schlegel, R. and Rautenstrauch, K., 2004. Failure analyses of masonry shear walls. In: H. Konietzky (ed.), 

Numerical modelling of discrete materials in geotechnical engineering, civil engineering and earth 

sciences. Taylor and Francis Group London, UK, pp.15-20.  

 

Toropov, V.V. and Garrity, S.W., 1998. Material parameter identification for masonry constitutive 

models. In: Proceedings of the 8th Canadian Masonry Symposium. Jasper, Alberta, Canada, pp.551-562. 

 

Toropov, V.V. and Van der Giessen, E., 1993. Parameter identification for nonlinear constitutive models: 

Finite element simulation - optimization - nontrivial experiments. In: Pedersen, P. (ed.), Proceedings of 

IUTAM Symposium, Optimal design with advanced materials - The Frithiof Niordson volume. Lyngby, 

Denmark, pp.113-130. 

 

Toropov, V.V. and Yoshida, F., 2005. Application of advanced optimization techniques to parameter and 

damage identification problems. In: Mroz, Z. and Stavroulakis, G.E. (eds.), Parameter Identification of 

Materials and Structures. CISM Courses and Lectures vol. 469, International Centre for Mechanical 

Sciences, pp.177-263. 

 

Toth, A.R., Orban, Z. and Bagi, K., 2009. Discrete element analysis of a masonry arch. Mechanics 

Research Communications, 36(4), pp.469-480. 

 

Van der Pluijm, R., 1993. Shear behaviour of bed joints. In: A.A. Hamid and H.G. Harris (eds.), 

Proceedings of the 6th North American Masonry Conference. Drexel University, Philadelphia, 

Pennsylvania, USA, pp.125-136.  

 

Van der Pluijm, R., 1999. Out-of-plane bending of masonry behaviour and strength, Ph.D thesis, 

Eindhoven University of Technology, The Netherlands. 

 

Vermeltfoort, A.T., 1997. Effects of the width and boundary conditions on the mechanical properties of 

masonry prisms under compression. In: Proceedings of the 11th International Brick/Block Masonry 

Conference. Shanghai, 27-29 October, pp.181-190.  

 

Yoshida, F., Urabe, M. and Toropov, V.V., 1998. Identification of material parameters in constitutive 

model for sheet metals from cyclic bending tests. International Journal of Mechanical Sciences, 40(2), 

pp.237-249. 

 

http://ebookee.org/Numerical-Modelling-of-Discrete-Materials-in-Geotechnical-Engineering-Civil-Engineering-and-Earth-Sciences_261713.html
http://ebookee.org/Numerical-Modelling-of-Discrete-Materials-in-Geotechnical-Engineering-Civil-Engineering-and-Earth-Sciences_261713.html


29 
 

Zhuge, Y., 2002. Micro-modelling of masonry shear panels with distinct element approach. In: L. 

Chowdhury and Fragomeni (eds.), Advances in Mechanics of Structures and Materials, Swets & Zeitinger, 

Lisse, pp.131-136. 


