
 

 

 

Working Paper M08/02 
Methodology 

Construction Of Exact Simultaneous Confidence Bands In 
Multiple Linear Regression With Predictor Variables 
Constrained In An Ellipsoidal Region  
W. Liu, S. Lin 

 

Abstract 

A simultaneous confidence band provides useful information on the plausible range of the unknown 
regression model. Construction of a simultaneous confidence band has a history going back to Working 
and Hotelling (1929) and is often a hard problem when the region over which a confidence band is 
required is restricted and the number of predictor variables is more than one. This article considers the 
construction of exact one-sided and two-sided simultaneous confidence bands of hyperbolic shape for the 
normal-error multiple linear regression model when the predictor variables are constrained to a particular 
ellipsoidal region that is centered at the point of the means of the predictor variable values used in the 
experiment. MATLAB programmes have been written for easy implementation of the constructions and an 
illustrative example is provided. 



Construction of Exact Simultaneous Confidence

Bands in Multiple Linear Regression with Predictor

Variables Constrained in an Ellipsoidal Region

W. Liu and S. Lin
S3RI and School of Mathematics

University of Southampton, Southampton SO17 1BJ, UK
W.Liu@maths.soton.ac.uk, S.Lin@soton.ac.uk

April 6, 2007

(1st version July 2006, Revision April 2007)

Summary

A simultaneous confidence band provides useful information on the plausible range
of the unknown regression model. There are several recent papers using confidence
bands for various inferential purposes; see, for example, Sun, Raz and Faraway (1999),
Spurrier (1999), Al-Saidy et al. (2003), Liu, Jamshidian and Zhang (2004), and
Piegorsch et al. (2005). Construction of simultaneous confidence band has a his-
tory going back to Working and Hotelling (1929) and is often a hard problem when
the region over which a confidence band is required is restricted and the number of
predictor variables is more than one. This article considers the construction of exact
1−α level one-sided and two-sided simultaneous confidence bands of hyperbolic shape
for the normal-error multiple linear regression model when the predictor variables are
constrained to a particular ellipsoidal region that is centered at the point of the means
of the predictor variable values used in the experiment. MATLAB programmes have
been written for easy implementation of the constructions and an illustrative example
is provided.

Key words: Circular cone; Linear regression; Simultaneous confidence bands; Statistical inference.

1 Introduction

Consider the multiple linear regression model

Y = Xb + e

where Y n×1 is the vector of observed responses, Xn×p is the design matrix with the first column
given by (1, · · · , 1)T and the jth (2 ≤ j ≤ p) column given by (x1,j , · · · , xn,j)T , b = (b1, · · · , bp)T

is the vector of regression coefficients, and en×1 is the error vector with e ∼ N(0, σ2I) and
σ2 unknown. Assume XT X is non-singular, so the least squares estimator of b is given by
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b̂ = (XT X)−1XTY. Let σ̂2 denote the mean square error with degrees of freedom ν = n − p.
Then σ̂2 ∼ σ2χ2

ν/ν and is independent of b̂.
Let x = (1, x2, · · · , xp)T and x(1) = (x2, · · · , xp)T . It should be emphasized that, in this paper,

the p − 1 predictor variables xi are assumed to have no functional relationship between them
(and so polynomial regression, for example, is excluded from the discussion). It is noteworthy
however that results of this paper can be used to construct conservative confidence bands when
the predictor variables do have functional relationships between them (by simply ignoring these
relationships). A simultaneous confidence band for the regression function

xTb = b1 + b2x2 + · · ·+ bpxp

on a given region X of the p−1 predictor variables x(1) = (x2, · · · , xp)T provides useful information
on where the true but unknown regression model lies; a linear regression function is a plausible
candidate of the unknown regression model if and only if it is contained completely inside the
confidence band. There are several recent papers considering various applications of confidence
bands; see for example Sun, Raz and Faraway (1999), Spurrier (1999), Al-Saidy et al. (2003),
Liu, Jamshidian and Zhang (2004), and Piegorsch et al. (2005).

Construction of simultaneous confidence bands has a history going back to Working and
Hotelling (1929). Scheffé (1953) provided a well known two-sided hyperbolic simultaneous con-
fidence band when X = Rp−1, that is, for the case where the p − 1 predictor variables are not
constrained at all.

For p = 2, that is, there is only one predictor variable, Gafarian (1964) considered a two-
sided confidence band with a constant width when the only predictor variable is constrained
to an interval; see also Miller (1981). His effort was followed by Bowden and Graybill (1966)
and Bowden (1970) who considered two-sided confidence bands of other shapes; Piegorsch et al.
(2000) considered the calculation of critical constants of a family of confidence bands from Bowden
(1970). Wynn and Bloomfield (1971) and Uusipaikka (1983) provided exact two-sided hyperbolic
confidence bands, which have width proportional to standard error, when the only predictor
variable is restricted to an interval or union of intervals. Bohrer and Francis (1972) considered
exact one-sided hyperbolic confidence bands when the only predictor variable is constrained
to an interval. Pan, Piegorsch and West (2003) also constructed exact one-sided hyperbolic
confidence bands when the only predictor variable is constrained to an interval by using the idea
of Uusipaikka (1983). Comparisons of different confidence bands for p = 2 have been considered
by Naiman (1983) among others under the average width criterion and by Liu and Hayter (2007)
under the minimum area confidence set criterion.

Construction of exact confidence bands is much harder for p > 2. When p > 2 there are
at least two predictor variables and the region X may assume various forms. Bohrer (1967)
considered a hyperbolic confidence band when the predictor variables are non-negative. One
frequently used region X is the rectangular region

XR = {x(1)
T : ai ≤ xi ≤ bi, i = 2, · · · , p},

where −∞ ≤ ai < bi ≤ ∞, i = 2, · · · , p are given constants. Knafl, Sacks and Ylvisaker (1985) ob-
tained an approximate two-sided hyperbolic confidence band when p ≤ 3 by using an up-crossing
inequality. This approach has been further developed by, among others, Naiman (1986, 1990),
Johnstone and Siegmund (1989), Knowles and Siegmund (1989), Johansen and Johnstone (1990),
Faraway and Sun (1995), and Sun and Loader (1994), to produce conservative or approximate
two-sided hyperbolic simultaneous confidence bands for some linear regression models. All these
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methods are related to the tube method. In particular, Sun and Loader (1994) assumed that the
p− 1 predictor variables are functions of q ≥ 1 independent variables (e.g. in polynomial regres-
sion models) and provided approximate two-sided hyperbolic band for the regression model when
the q independent variables are constrained to intervals for q = 1 and 2. Softwares are available
for implementing these approximations; see for example Loader (2004). Sun and Loader’s (1994)
approach has further been developed by Sun, Loader and McCormick (2000) for more general
regression models, including the generalized linear regression models. Naiman (1987) proposed
a conservative two-sided hyperbolic confidence band by using simulation. Recently, Liu et al.
(2005a) proposed a simulation-based method for constructing a two-sided hyperbolic confidence
band over XR for a general p ≥ 2; the critical constant can be calculated as accurate as one
requires if the number of replications in the simulation is set sufficiently large. The Matlab soft-
ware for implementing this method is given by Jamshedian et al. (2005). This method can also
be adapted to construct a one-sided hyperbolic confidence band over XR. Liu et al. (2005b)
considered the construction of a two-sided constant width confidence band over XR for a general
p ≥ 2 by using both numerical integration and simulation.

The focus of this paper is the construction of exact hyperbolic confidence bands over the
following ellipsoidal region XE for a general p > 2. Let X(1) be the n×(p−1) matrix produced from
the design matrix X by deleting the first column of 1’s from X. Let x·j = 1

n

∑n
i=1 xij be the mean

of the observed values of the jth predictor variable (2 ≤ j ≤ p), and let x̄(1) = (x·2, · · · , x·p)T .
Define a (p− 1)× (p− 1) matrix

S =
1
n

(
X(1) − 1

¯
x̄T

(1)

)T (
X(1) − 1

¯
x̄T

(1)

)
=

1
n

(
XT

(1)X(1) − nx̄(1)x̄
T
(1)

)

where 1
¯

is an n-vector of 1’s. Note that matrix S is just the sample variance-covariance matrix of
the p− 1 predictor variables, and it is non-singular since X is assumed to be of full column-rank.
Now the ellipsoidal region is defined to be

XE =
{
x(1) :

(
x(1) − x̄(1)

)T
S−1

(
x(1) − x̄(1)

)
≤ a2

}
(1)

where a > 0 is a given constant. It is clear that this region is centered at x̄(1) and has an
ellipsoidal shape.

One can show (by noting expression (5) below) that the variance of the fitted regression model
at x is given by

V ar(xT b̂) =
σ2

n

[
1 +

(
x(1) − x̄(1)

)T
S−1

(
x(1) − x̄(1)

)]
.

So, for all the x(1) on the surface of the ellipsoid XE , V ar(xT b̂) are equal and given by σ2

n

[
1 + a2

]
;

the minimum value of V ar(xT b̂) is attained at x = (1, x̄T
(1))

T . All the x(1) on the surface of XE

can therefore be regarded as of equal ‘distance’, in terms of V ar(xT b̂), from x̄(1). Hence it is of
interest to learn via a simultaneous confidence band about the regression model over XE for a
pre-specified a2 value; note that the width of the two-sided hyperbolic band in (3) is a constant
on the surface of XE . If the axes of XE coincide with the axes of the coordinates then the design
is called orthogonal and, in particular, if XE is a sphere then the design is called rotatable; see
e.g. Atkinson and Donev (1992, page 48).

Halperin and Gurian (1968) constructed a conservative two-sided hyperbolic confidence band
over XE by using a result of Harperin et al. (1967). Casella and Strawderman (1980) were able
to construct an exact two-sided hyperbolic confidence band over a region that is more general
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than XE , and this region was further studied by Seppanen and Uusipaikka (1992); see Section
4.2 below. Bohrer (1973) considered the construction of exact one-sided hyperbolic confidence
bands over XE , while Hochberg and Quade (1975) considered the special case of a = ∞, that
is, exact one-sided hyperbolic confidence bands over the whole space of the predictor variables.
One interesting observation made by Bohrer (1973) is that the confidence level of the band can
be expressed as a linear combination of several F probabilities. Wynn (1975) extended this
observation to some other region X , even though the calculation of the coefficients in the linear
combination involves multiple integrals and so is non-trivial.

The details given in Bohrer (1973) have some mistakes however. So the approach of Bohrer
(1973) is re-studied, and two new methods are provided for the construction of exact one-sided
hyperbolic confidence band over XE . These are presented in Section 3. Section 4 gives two new
methods, together with the result from Casella and Strawderman (1980), for the construction
of exact two-sided hyperbolic confidence band over XE . Section 5 contains a numerical example
to illustrate the methodologies discussed in this paper. But firstly some preliminary results are
presented in Section 2.

2 Preliminaries

2.1 Transformation of the problem

In this subsection the original problems of the construction of exact one-sided and two-sided
hyperbolic confidence bands over XE are transformed to the formats that will be the starting
points of Sections 3 and 4 respectively.

The problems are to construct a one-sided confidence band of the form

xTb ≥ xT b̂− rσ̂
√

xT (XT X)−1x for all x(1) = (x2, · · · , xp)T ∈ XE (2)

and to construct a two-sided confidence band of the form

xTb ∈ xT b̂± rσ̂
√

xT (XT X)−1x for all x(1) = (x2, · · · , xp)T ∈ XE , (3)

where XE is defined in (1). In order to determine the critical constants r in (2) and (3) so that
a confidence band has a confidence level equal to pre-specified 1− α, the key is to calculate the
confidence level of the band for a given r: P{U1 ≤ r} and P{U2 ≤ r}, where

U1 = sup
x(1)∈XE

xT (b̂− b)

σ̂
√

xT (XT X)−1x
, U2 = sup

x(1)∈XE

|xT (b̂− b)|
σ̂
√

xT (XT X)−1x
. (4)

Note that an upper confidence band uses the same critical constant as the lower confidence band
in (2).

Let z =
√

n(1, x̄T
(1))

T . Note that zT (XT X)−1z = 1 and hence there exists a p×(p−1) matrix

Z such that (z, Z)T (XT X)−1(z, Z) = Ip. It follows therefore that N = (z, Z)−1(XT X)(b̂−b)/σ
is a standard normal random vector of p-dimension. Also note that zT (XT X)−1x = 1/

√
n.

Denote w = (z, Z)T (XT X)−1x = (1/
√

n,w(1)) where w(1) = (w2, · · · , wp) = ZT (XT X)−1x.
Then xT (XT X)−1x = wTw =‖ w ‖2. From this and the fact that the region XE in (1) can also
be expressed as

XE =

{
x(1) : xT (XT X)−1x ≤ 1 + a2

n

}
, (5)
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all the possible values of w(1), determined from the relationship w = (z, Z)T (XT X)−1x, when
x(1) varies over the region XE , form the set

WE =

{
w(1) : ‖ w ‖2≤ 1 + a2

n

}
. (6)

The random variable U1 in (4) can now be expressed as

U1 = sup
x(1)∈XE

{
(z, Z)T (XT X)−1x

}T {
(z, Z)−1(XT X)(b̂− b)/σ

}

(σ̂/σ)
√
{(z, Z)T (XT X)−1x}T {(z, Z)T (XT X)−1x}

= sup
w(1)∈WE

wTN
(σ̂/σ) ‖ w ‖ . (7)

Furthermore, note from (7) that U1 is invariant if w is replaced with v = uw for any u > 0, and
that

VE =
{

v = uw = (v1, · · · , vp)T : u > 0, w(1) ∈ WE

}

=
{

v = (v1, · · · , vp)T : ‖ v ‖≤ v1

√
1 + a2

}
= { v : v1 ≥ c ‖ v ‖ } ⊂ Rp (8)

with c = 1/
√

1 + a2. We therefore have from (7) and (8) that

P{U1 ≤ r} = P

{
sup
v∈VE

vTN
(σ̂/σ) ‖ v ‖ ≤ r

}
= P

{
vT

{
N

(σ̂/σ)

}
≤ r ‖ v ‖ ∀ v ∈ VE

}
(9)

where VE is given in (8). This is the starting point of the three methods given in Section 3.
Similarly, we have

P{U2 ≤ r} = P

{
sup
v∈VE

|vTN|
(σ̂/σ) ‖ v ‖ ≤ r

}
= P

{ ∣∣∣∣vT
{

N
(σ̂/σ)

}∣∣∣∣ ≤ r ‖ v ‖ ∀ v ∈ VE

}
(10)

where VE is given in (8). This is the starting point of the three methods given in Section 4.

2.2 Polar coordinates

Polar coordinates are used in several places below and so reviewed briefly here. For a p-
dimensional vector v = (v1, · · · , vp)T , define its polar coordinates (Rv, θv1, . . . , θv,p−1)T by





v1 = Rv cos θv1

v2 = Rv sin θv1 cos θv2

v3 = Rv sin θv1 sin θv2 cos θv3

· · · · · ·
vp−1 = Rv sin θv1 sin θv2 · · · sin θv,p−2 cos θv,p−1

vp = Rv sin θv1 sin θv2 · · · sin θv,p−2 sin θv,p−1

where 



0 ≤ θv1 ≤ π
0 ≤ θv2 ≤ π
· · · · · ·
0 ≤ θv,p−2 ≤ π
0 ≤ θv,p−1 ≤ 2π
Rv ≥ 0
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The Jacobian of the transformation is

|J | = Rp−1
v sinp−2 θv1 sinp−3 θv2 · · · sin θv,p−2.

When t = N/(σ̂/σ), one can directly find the joint density function of (Rt, θt1, . . . , θt,p−1)T .
In particular, all the polar coordinates are independent random variables, the marginal density
of θt1 is given by

f(θ) = k sinp−2 θ, 0 ≤ θ ≤ π (11)

where k = 1/(
∫ π
0 sinp−2 θdθ) is the normalizing constant, and the marginal distribution of Rt is

given by

Rt = ‖N/(σ̂/σ)‖ ∼
√

pFp,ν (12)

where Fp,ν denotes an F random variable that has p and ν degrees of freedom.

3 One-sided hyperbolic bands

3.1 The method of Bohrer

From (9), we have
P{U1 ≤ r} = P{N/(σ̂/σ) ∈ Ar,1} (13)

where
Ar,1 = Ar,1(c) = {t = (t1, · · · , tp)T : vT t ≤ r‖v‖ ∀ v in VE}, (14)

where VE is given in (8). This is the form given in Bohrer (1973, page 647, expressions (1.1) and
(1.2)).

Note that the set VE is a circular cone in RP with its vertex at the origin and its central
direction given by the v1-axis. The half angle of this circular cone, i.e. the angle between any ray
on the boundary of the cone and the v1-axis, is θ∗ = arccos(c). Also note that each vT t ≤ r‖v‖
in the definition of Ar,1 restricts t to the origin-containing side of the plane that is perpendicular
to the vector v and r-distance away from the origin in the direction of v. So the set Ar,1 has
the shape given in Figure 1(a). What is interesting, following the idea of Bohrer (1973), is that
the set Ar,1 can be partitioned into three sets which can be expressed easily using the polar
coordinates.

Figure 1(a) and Figure 1(b) are here

Lemma 1. We have Ar,1 = T1 + T2 + T3 where

T1 = {t : 0 ≤ θt1 ≤ θ∗, Rt ≤ r},
T2 = {t : θt1 − θ∗ ∈ (0, π/2] , Rt cos(θt1 − θ∗) ≤ r} ,

T3 = {t : θ∗ + π/2 < θt1 ≤ π}.

This can be proved by introducing the notation fj for j = 1, . . . , p − 1 as in Bohrer (1973);
the detail is omitted here but available from the authors. Note that T1 is the intersection of the
circular cone VE and the p-dimension ball centered at the origin with radius r, T3 is the dual
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cone of VE , and T2 = T1 ⊕ T3. These three sets are depicted in Figure 1(b). In Bohrer (1973),
Ar,1 is partitioned into four sets where the second and the third sets are in fact the same.

Now the three probabilities can be calculated as follows by using the distributional results in
Section 2.2. Firstly,

P{t ∈ T1} =
∫ θ∗

0
k sinp−2 θdθ · P{Rt ≤ r}

=
∫ θ∗

0
k sinp−2 θdθ · P{pFp,ν ≤ r2}

=
∫ θ∗

0
k sinp−2 θdθ · Fp,ν(r2/p) (15)

where Fp,ν(·) denotes the cdf of the random variable Fp,ν . Secondly,

P{t ∈ T3} =
∫ π

θ∗+π
2

k sinp−2 θdθ =
∫ π

2
−θ∗

0
k sinp−2 θdθ. (16)

Thirdly,

P{t ∈ T2} =
∫ θ∗+π

2

θ∗
k sinp−2 θ · P{Rt cos(θ − θ∗) ≤ r}dθ

=
∫ π

2

0
k sinp−2(θ + θ∗) · P

{
Rt ≤ r

cos θ

}
dθ

=
∫ π

2

0
k sinp−2(θ + θ∗) · Fp,ν

{
r2

p cos2 θ

}
dθ. (17)

The confidence level can therefore be calculated from

P{U1 ≤ r} = P{t ∈ T1}+ P{t ∈ T2}+ P{t ∈ T3}. (18)

One can express P{t ∈ T2} as a linear combination of several F probabilities by following
the idea of Bohrer (1973). While this is interesting mathematically, expression (17) is easier for
numerical calculation and is used for computation in this paper.

When a = ∞ it is clear that c = 0 and θ∗ = π/2. In this special case, T1 is a half ball in Rp

and so
P{t ∈ T1} =

1
2
Fp,ν(r2/p),

T2 is a half cylinder that has the expression

T2 = {t : t1 < 0, ‖t(1)‖ ≤ r}, where t(1) = (t2, · · · , tp)T

and so
P{t ∈ T2} =

1
2
Fp−1,ν(r2/(p− 1)),

and T3 is empty. Hence the confidence level is given by

1
2
Fp,ν(r2/p) +

1
2
Fp−1,ν(r2/(p− 1));

which agrees with the result of Hochberg and Quade (1975, expression (2.4)).
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3.2 An algebraical method

The key idea of this method is to find the supreme in (9) explicitly, as given in Lemma 2 below,
from which the confidence level can be evaluated. This approach is similar to that of Casella and
Strawderman (1980).

Lemma 2. We have

sup
v∈VE

vTN
‖v‖ =




‖N‖ if N ∈ VE
qN1+‖N(1)‖√

q2+1
if N /∈ VE

where N1 is the first element of N, N(1) = (N2, · · · , Np)T , and q =
√

c2/(1− c2) = 1/a.

This can be proved by using basic calculus and the detail is omitted here. From this lemma
and by denoting S = σ̂/σ, the confidence level of the band is given by

P

{
sup
v∈VE

vTN
‖v‖ ≤ rS

}

= P {N ∈ VE , ‖N‖ ≤ rS}+ P

{
N /∈ VE ,

qN1 + ‖N(1)‖√
q2 + 1

≤ rS

}
.

= P
{
N1 ≥ q‖N(1)‖, ‖N1‖2 + ‖N(1)‖2 ≤ r2S2

}

+ P

{
N1 < q‖N(1)‖,

qN1 + ‖N(1)‖√
q2 + 1

≤ rS

}
.

Figure 2 is here

The two regions
{
N1 ≥ q‖N(1)‖, ‖N1‖2 + ‖N(1)‖2 ≤ r2S2

}
and

{
N1 < q‖N(1)‖,

qN1 + ‖N(1)‖√
q2 + 1

≤ rS

}

are depicted in Figure 2 in the (N1, ‖N(1)‖)-coordinate system. The union of these two regions
can be re-partitioned into two regions. The first region is the half disc

{R2 ≤ r2S2} where R2 = N2
1 + ‖N(1)‖2.

The second region is the remaining part which has the expression
{

r2S2 < R2 < ∞, −∞ <
N1

‖N(1)‖
≤ drS − b

√
R2 − r2S2

brS + d
√

R2 − r2S2

}

where d = q/
√

q2 + 1 = c and b = 1/
√

q2 + 1 =
√

1− c2; this expression comes from the
fact that, when the point (N1, ‖N(1)‖) varies on the segment of the circle N2

1 + ‖N(1)‖2 =
R2 (> r2S2) that is within the second region, N1/‖N(1)‖ attains its minimum value −∞ at
the lower end of the circle-segment (N1, ‖N(1)‖) = (−R, 0) and attains its maximum value
(drS − b

√
R2 − r2S2)/(brS + d

√
R2 − r2S2) at the upper end of the circle-segment whose co-

ordinates can be solved from the simultaneous equations N2
1 + ‖N(1)‖2 = R2 and (qN1 +

‖N(1)‖)/
√

q2 + 1 = rS. From this new partition, the confidence level is further equal to

P{R2 ≤ r2S2}+ P

{
r2S2 < R2 < ∞, −∞ <

N1

‖N(1)‖
≤ drS − b

√
R2 − r2S2

brS + d
√

R2 − r2S2

}
. (19)
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Now note that R2 = N2
1 + ‖N(1)‖2 and N1/‖N(1)‖ are independent random variables, and

both are independent of S. So the first probability in (19) is equal to Fp,ν(r2/p), and the second
probability in (19) is equal to

P

{
r2 <

R2

S2
< ∞, −∞ <

N1

‖N(1)‖
≤ dr − b

√
(R2/S2)− r2

br + d
√

(R2/S2)− r2

}
=

∫ ∞
r2

p

g(w)dFp,ν(w)

where

g(w) = P

{
−∞ <

N1

‖N(1)‖
≤ dr − b

√
pw − r2

br + d
√

pw − r2

}
.

Next we express g(w) in term of the cdf of an F distribution. Note that

dr − b
√

pw − r2 < 0 ⇐⇒ w > r2/(pb2).

Hence for w > r2/(pb2) we have (dr − b
√

pw − r2)/(br + d
√

pw − r2) < 0 and so

g(w) =
1
2
P





N2
1

‖N(1)‖2
≥

(
dr − b

√
pw − r2

br + d
√

pw − r2

)2




=
1
2
− 1

2
F1,p−1



(p− 1)

(
dr − b

√
pw − r2

br + d
√

pw − r2

)2


 , (20)

and for r2/p < w ≤ r2/(pb2) we have (dr − b
√

pw − r2)/(br + d
√

pw − r2) ≥ 0 and so

g(w) = P{N1 ≤ 0}+ P

{
0 ≤ N1

‖N(1)‖
≤ dr − b

√
pw − r2

br + d
√

pw − r2

}

=
1
2

+
1
2
F1,p−1



(p− 1)

(
dr − b

√
pw − r2

br + d
√

pw − r2

)2


 . (21)

Finally, the confidence level is given by

Fp,ν

(
r2

p

)
+

∫ ∞
r2

p

g(w)dFp,ν(w) (22)

with the function g(w) being given by (20) and (21).

3.3 A method based on volume of tubular neighborhoods

This method is based on the volume of tubular neighborhoods of a spherical circular cone and
similar to that used by Naiman (1986, 1990) and Sun and Loader (1994) among others. Due to
the special form of the cone VE , the exact volume of its tubular neighborhoods can be calculated
easily. From (9), the confidence level is given by

P

{
sup
v∈VE

vTN
‖ v ‖‖ N ‖ ≤ r

(σ̂/σ)
‖ N ‖

}
(23)
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where VE is given in (8). Note that N/‖N‖ depends on only the θN,i’s and ‖N‖ = RN. Hence
N/‖N‖ is independent of ‖N‖ and so (σ̂/σ)/‖ N ‖. Furthermore, the supreme in (23) is no larger
than one, and r/

√
pw < 1 if and only if w > r2/p. So the confidence level is equal to

1−
∫ ∞

0
P

{
sup
v∈VE

vTN
‖ v ‖‖ N ‖ >

r√
pw

}
dFp,ν(w)

= 1−
∫ ∞

r2/p
P

{
sup
v∈VE

vTN
‖ v ‖‖ N ‖ >

r√
pw

}
dFp,ν(w). (24)

The key of this method is to find the probability in (24). This is facilitated by the following
observation.

Lemma 3. Let 0 < h < 1, α = arccos(h) ∈ (0, π/2), and (RN, θN1, . . . , θN,p−1) be the polar
coordinates of N as defined in Section 2.2. We have

{
N : sup

v∈VE

vTN
‖ v ‖‖ N ‖ > h

}
= {N : θN1 < θ∗ + α}

where θ∗ is defined in Section 3.1.

Again the proof involves only calculus and the detail is omitted here. From this lemma and
the fact that the pdf of θN1 is given in (11) since θN1 = θt1, we have for 0 < h < 1

P

{
sup
v∈VE

vTN
‖ v ‖‖ N ‖ > h

}
= P{θN1 < θ∗ + arccos(h)} =

∫ θ∗+arccos(h)

0
k sinp−2 θdθ.

Substituting this expression for the probability in (24) with h = r/
√

pw and changing the order
of the double integration give the confidence level equal to

1−
∫ ∞

r2

p

∫ θ∗+arccos(h)

0
k sinp−2 θdθdFp,ν(w)

= 1−
∫ θ∗

0

∫ ∞
r2

p

k sinp−2 θdFp,ν(w)dθ

−
∫ θ∗+π

2

θ∗

∫ ∞
r2

p cos2(θ−θ∗)

k sinp−2 θdFp,ν(w)dθ

= 1−
∫ θ∗

0
k sinp−2 θdθ · P

{
Fp,ν >

r2

p

}

−
∫ θ∗+π

2

θ∗
k sinp−2 θ · P

{
Fp,ν >

r2

p cos2(θ − θ∗)

}
dθ.

Now by replacing the one in the last expression above by

1 =
∫ π

0
k sinp−2 θdθ =

∫ θ∗

0
k sinp−2 θdθ +

∫ θ∗+π
2

θ∗
k sinp−2 θdθ +

∫ π
2
−θ∗

0
k sinp−2 θdθ

and straightforward manipulation, the confidence level is finally given by
∫ θ∗

0
k sinp−2 θdθ · Fp,ν(r2/p)

+
∫ π

2

0
k sinp−2(θ + θ∗) · Fp,ν

{
r2

p cos2 θ

}
dθ +

∫ π
2
−θ∗

0
k sinp−2 θdθ, (25)
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which is the same as the expression in (18).
Numerical computations for various parameter values of a, r, p and ν do confirm that the

two expressions (22) and (18) are equal. For example, both expressions are equal to 0.77887 for
a = 2.0, r = 2.5, p = 6 and ν = ∞, and equal to 0.95620 for a = 1.5, r = 3.0, p = 4 and ν = 20.
Among the three methods for deriving the confidence level, the third method given in Section
3.3 is the simplest. For numerical computation, expression (18) is easier to use than expression
(22). A MATLAB program to computer the critical value r for given values of p, ν = n − p, a
in the definition of XE , and simultaneous confidence level 1− α is available from the authors on
request.

4 Two-sided hyperbolic bands

4.1 A method based on Bohrer’s approach

This method is similar to Bohrer’s (1973) method for one-sided bands given in Section 3.1. From
(10), the confidence level is given by

P{N/(σ̂/σ) ∈ Ar,2} (26)

where
Ar,2 = Ar,2(c) = {t = (t1, · · · , tp)T : |vT t| ≤ r‖v‖ ∀ v in VE}, (27)

where VE is given in (8).
Note that, in the definition of Ar,2 in (27), each |vT t| ≤ r‖v‖ restricts t to the origin-

containing stripe that is bounded the two planes which are perpendicular to the vector v and
r-distance away from the origin. So the set Ar,2 has the shape given in Figure 3, and can be
partitioned into four sets, also depicted in Figure 3, which can be expressed easily using the polar
coordinates, as given by the following lemma.

Figure 3 is here

Lemma 4. We have Ar,2 = T1 + T2 + T3 + T4 where

T1 = {t : 0 ≤ θt1 ≤ θ∗, Rt ≤ r},
T2 = {t : θ∗ < θt1 ≤ π

2
, Rt cos(θt1 − θ∗) ≤ r},

T3 = {t :
π

2
< θt1 ≤ π − θ∗, Rt cos(π − θ∗ − θt1) ≤ r},

T4 = {t : π − θ∗ < θt1 ≤ π, Rt ≤ r}.

Again the lemma can be proved using basic calculus and so the detail is omitted here but
available from the authors. Now the four probabilities can be calculated in the following way.
Firstly,

P{t ∈ T1} = P{t ∈ T4} =
∫ θ∗

0
k sinp−2 θdθ · P{Rt ≤ r}

=
∫ θ∗

0
k sinp−2 θdθ · P{pFp,ν ≤ r2}

=
∫ θ∗

0
k sinp−2 θdθ · Fp,ν

(
r2

p

)
.
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Secondly,

P{t ∈ T2} = P{t ∈ T3} =
∫ π

2

θ∗
k sinp−2 θ · P{Rt cos(θ − θ∗) ≤ r}dθ

=
∫ π

2
−θ∗

0
k sinp−2(θ + θ∗) · P

{
Rt ≤ r

cos θ

}
dθ

=
∫ π

2
−θ∗

0
k sinp−2(θ + θ∗) · Fp,ν

{
r2

p cos2 θ

}
dθ.

The confidence level is therefore given by
∫ θ∗

0
2k sinp−2 θdθ · Fp,ν

(
r2

p

)
+

∫ π/2−θ∗

0
2k sinp−2(θ + θ∗) · Fp,ν

{
r2

p cos2 θ

}
dθ. (28)

4.2 The method of Casella and Strawderman

Using the results of Casella and Strawderman (1980) one can show that the simultaneous confi-
dence level P{U2 ≤ r} is given by

Fp,ν

(
r2

p

)
+

∫ r2/(b2p)

r2/p
F1,p−1



(p− 1)

(
cr − b

√
pw − r2

br + c
√

pw − r2

)2


 dFp,ν(w) (29)

where c = 1/
√

1 + a2 and b = a/
√

1 + a2 =
√

1− c2 as before. We refer the reader to Casella
and Strawderman (1980) for details, which are similar to those given in Section 3.2.

In fact, Casella and Strawderman (1980) considered the construction of an exact two-sided hy-
perbolic confidence band over a constrained region of the predictor variables whose simultaneous
confidence level can be reduced to the form

P

{
sup

v∈V∗(m)

|vTN|
(σ̂/σ) ‖ v ‖ ≤ r

}
where V∗(m) =



v :

m∑

i=1

v2
i ≥

c2

1− c2

p∑

i=m+1

v2
i





where 1 ≤ m ≤ p is a given integer. Note that VE = V∗(1). Seppanen and Uusipaikka (1992)
provided an explicit form of the predictor variable region over which the two-sided hyperbolic
confidence band has its simultaneous confidence level given by this form. It is noteworthy that
for 2 ≤ m ≤ p, the predictor variable region corresponding to V∗(m) is not bounded, and so
a confidence band over such a predictor variable region is of less interest considering that a
regression model holds most likely only over a finite region of the predictor variables in real
problems. The main purpose of studying V∗(m) for 2 ≤ m ≤ p in Casella and Strawderman
(1980) seems to find a conservative two-sided hyperbolic band over the rectangular predictor
variable region XR: use the predictor variable regions corresponding to V∗(m) for 1 ≤ m ≤ p
to bound the given XR, calculate the critical values for these V∗(m)’s, and use the smallest
calculated critical values as a conservative critical value for the confidence band over XR.

4.3 A method based on volume of tubular neighborhoods

From (10), the confidence level is given by

P

{
sup
v∈VE

|vTN|
‖ v ‖‖ N ‖ ≤ r

(σ̂/σ)
‖ N ‖

}
(30)
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where VE is given in (8). Similar to the one-sided case in Section 3.3, the confidence level is
further equal to

1−
∫ ∞

r2/p
P

{
sup
v∈VE

|vTN|
‖ v ‖‖ N ‖ >

r√
pw

}
dFp,ν(w). (31)

The key of this method is to find the probability in (31), which hinges on the following result.

Lemma 5. Let 0 < h = r/
√

pw < 1, α = arccos(h) ∈ (0, π/2), and (RN, θN1, . . . , θN,p−1) be the
polar coordinates of N, and θ∗ = arccos(c). We have

{
N : sup

v∈VE

vTN
‖ v ‖‖ N ‖ > h

}

=

{
{N : θN1 ∈ [0, θ∗ + α] ∪ [π − θ∗ − α, π]} if θ∗ + α < π

2
{N : θN1 ∈ [0, π]} if θ∗ + α ≥ π

2

Again the proof involves only calculus and the detail is omitted here. From this lemma, the
fact that θ∗ + arccos(r/

√
pw) < π/2 if and only if w < r2/(b2p), and that the pdf of θN1 is given

in (11), we have, for r2/p ≤ w < r2/(b2p),

P

{
sup
v∈VE

vTN
‖ v ‖‖ N ‖ >

r√
pw

}

= P { θN1 ∈ [0, θ∗ + arccos(r/
√

pw)] ∪ [π − θ∗ − arccos(r/
√

pw), π]}

= 2
∫ θ∗+arccos(r/

√
pw)

0
k sinp−2 θdθ

and, for w ≥ r2/(b2p),

P

{
sup
v∈VE

vTN
‖ v ‖‖ N ‖ >

r√
pw

}
= P { θN1 ∈ [0, π]} = 1.

Substituting these two expressions into (31), the confidence level is equal to

1−
∫ r2/(b2p)

r2/p

∫ θ∗+arccos(r/
√

pw)

0
2k sinp−2 θdθdFp,ν(w)−

∫ ∞

r2/(b2p)
1dFp,ν(w). (32)

By changing the order of integrations, it is straightforward to show that the double integral above
is equal to

∫ θ∗

0
2k sinp−2 θdθ ·

{
Fp,ν

(
r2

b2p

)
− Fp,ν

(
r2

p

)}

+
∫ π

2

θ∗
2k sinp−2 θ ·

{
Fp,ν

(
r2

b2p

)
− Fp,ν

(
r2

p cos2(θ − θ∗)

)}
dθ.

By substituting this into (32), it is clear that the confidence level is equal to the expression given
in (28).

Numerical computations have been done to confirm that the results computed from expres-
sions (28) and (29) agree with the entries of Seppanen and Uusipaikka (1992, Table 1 for r = 1).
A MATLAB program to computer the critical value r for given values of p, ν = n − p, a and
1− α is available from the authors on request.
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5 A numerical Example

In this section, a portion of the acetylene data in Snee (1977) is used to illustrate the method-
ologies discussed in this paper; the same data set was also used for illustration by Casella and
Strawderman (1980) and Naiman (1987). The two predictor variables are reactor temperature
(x2) and ratio of H2 to n-Heptane (x3). The response variable (y) is conversion of n-Heptane
to Acetylene. There are sixteen data points. So p = 3, n = 16 and ν = 13. The fitted linear
regression model is given by y = −130.69 + 0.134x2 + 0.351x3, σ̂ = 3.624, and R2 = 0.92.

The observed values of x2 range from 1100 to 1300 with average x·2 = 1212.5, and the
observed values of x3 range from 5.3 to 23 with average x·3 = 12.4. So the ellipsoidal region XE

is centered at (x·2, x·3)T = (1212.5, 12.4)T . The size of XE increases with the value of a. Figures
4 gives five XE ’s corresponding to a = 0.1(0.6)2.5 respectively. The rectangular region indicates
the observed range [1100, 1300]× [5.3, 23] of the predictor variables (x2, x3)T .

Figure 4 is here

For a chosen XE , one can use a two-sided confidence band to quantify the plausible range
of the unknown regression model over XE . Suppose a = 1.9 and so XE is given by the second
largest ellipse in Figure 4, and simultaneous confidence level is 1−α = 90%. Then our MATLAB
programme calculates r = 2.7229 for the two-sided hyperbolic band. This confidence band is
plotted in Figure 5: the band is given only by the part that is inside the cylinder which is in the
y-direction and has the XE as the cross-section in the (x2, x3)T -plane. Note from the discussion
immediately below expression (1) that the width of this confidence band on the boundary of the
XE is a constant given by

2rσ̂
√

xT (XT X)−1x = 2rσ̂
√

(1 + a2)/n = 2 ∗ 2.723 ∗ 3.624 ∗
√

(1 + 1.92)/16 = 10.594.

Figure 5 is here

On the other hand if one is only interested in quantifying the unknown regression model in
one direction then a one-sided confidence should be used. For example, if one wants to learn how
low the true model can plausibly be over XE then a lower hyperbolic band over XE can be used.
For this data set with a = 1.9 and 1−α = 90%, our MATLAB programme calculates r = 2.3697
for the one-sided hyperbolic band.
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Figure 1(a). The set Ar,1 and the circular cone VE

Figure 1(b). The partition of Ar,1 = T1 + T2 + T3
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Figure 2. The regions used in Section 3.2

Figure 3. The set Ar,2 and its partition Ar,2 = T1 + T2 + T3 + T4
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Figure 4. Several ellipsoidal region XE ’s
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Figure 5. The 90% two-sided hyperbolic band over the XE
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