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1.2. Nonhomogeneous Heat Equation ∂w
∂t

= a∂2w
∂x2 + Φ(x, t)

1.2-1. Domain: –∞ < x < ∞. Cauchy problem for the nonhomogeneous heat equation.

An initial condition is prescribed:
w = f (x) at t = 0.

Solution:

w(x, t) =
∫ ∞

−∞
f (ξ)G(x, ξ, t) dξ +

∫ t

0

∫ ∞

−∞
Φ(ξ, τ )G(x, ξ, t − τ ) dξ dτ ,

where

G(x, ξ, t) =
1

2
√

πat
exp

[
−

(x − ξ)2

4at

]
.

1.2-2. Solutions of boundary value problems in terms of the Green’s function.

We consider boundary value problems for the heat equation* on an interval0 ≤ x ≤ l with the general
initial condition

w = f (x) at t = 0

and various homogeneous boundary conditions. The solution can be represented in terms of the
Green’s function as

w(x, t) =
∫ l

0
f (ξ)G(x, ξ, t) dξ +

∫ t

0

∫ l

0
Φ(ξ, τ )G(x, ξ, t − τ ) dξ dτ .

1.2-3. Domain: 0≤ x < ∞. First boundary value problem for the heat equation.

A boundary condition is prescribed:

w = 0 at x = 0.

Green’s function:

G(x, ξ, t) =
1

2
√

πat

{
exp

[
−

(x − ξ)2

4at

]
− exp

[
−

(x + ξ)2

4at

]}
.

1.2-4. Domain: 0≤ x < ∞. Second boundary value problem for the heat equation.

A boundary condition is prescribed:

∂w

∂x
= 0 at x = 0.

Green’s function:

G(x, ξ, t) =
1

2
√

πat

{
exp

[
−

(x − ξ)2

4at

]
+ exp

[
−

(x + ξ)2

4at

]}
.

* Hereinafter we shell used the term “heat equation” to mean “nonhomogeneous heat equation”.
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1.2-5. Domain: 0≤ x < ∞. Third boundary value problem for the heat equation.

A boundary condition is prescribed:

∂w

∂x
− kw = 0 at x = 0.

Green’s function:

G(x, ξ, t) =
1

2
√

πat

{
exp

[
−

(x − ξ)2

4at

]
+ exp

[
−

(x + ξ)2

4at

]
− 2k

∫ ∞

0
exp

[
−

(x + ξ + η)2

4at
− kη

]
dη

}
.

1.2-6. Domain: 0≤ x ≤ l. First boundary value problem for the heat equation.

Boundary conditions are prescribed:

w = 0 at x = 0, w = 0 at x = l.

Two forms of representation of the Green’s function:

G(x, ξ, t) =
2
l

∞∑

n=1

sin

(
nπx

l

)
sin

(
nπξ

l

)
exp

(
−

an2π2t

l2

)

=
1

2
√

πat

∞∑
n=−∞

{
exp

[
−

(x − ξ + 2nl)2

4at

]
− exp

[
−

(x + ξ + 2nl)2

4at

]}
.

The first series converges rapidly at larget and the second series at smallt.

1.2-7. Domain: 0≤ x ≤ l. Second boundary value problem for the heat equation.

Boundary conditions are prescribed:

∂w

∂x
= 0 at x = 0,

∂w

∂x
= 0 at x = l.

Two forms of representation of the Green’s function:

G(x, ξ, t) =
1
l

+
2
l

∞∑

n=1

cos

(
nπx

l

)
cos

(
nπξ

l

)
exp

(
−

an2π2t

l2

)

=
1

2
√

πat

∞∑
n=−∞

{
exp

[
−

(x − ξ + 2nl)2

4at

]
+ exp

[
−

(x + ξ + 2nl)2

4at

]}
.

The first series converges rapidly at larget and the second series at smallt.
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