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1.4. Heat Equation with Axial Symmetry W = a(a w, 1 Bw)
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Thisis the heat (diffusion) equation with axial symmetry, wherg,/x2 + 32 is the radial coordinate.
1.4-1. Particular solutions of the heat equation with axial symmetry:

w(r)=A+BlInr,
w(r,t) = A+ B(r? + 4at),
w(r,t) = A+ B(r* + 16atr? + 32a2t?),
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w(r,t) = A+B(4at|nr+r2|nr —7‘2),
2
wir )= A+ ? exp(—t) ,
w(r,t) = A+ Bexpap’t)Jo(ur),
w(r,t) = A+ Bexpap’t)Yo(ur),
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w(r,t) =A+§exp<—7a il )Io<ﬂ>,
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w(r,t)= A - exp( = )Ko< = )

whereA, B, andy are arbitrary constants, is an arbitrary positive integedp(z) andYp(z) are the
Bessel functions, anf(z) and Ko(z) are the modified Bessel functions.

1.4-2. Formulas allowing the construction of particular solutions.
Supposev = w(r, t) is a solution of the heat equation. Then the functions
w1 = Aw(EAr, Nt + C)+ B,
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whereA, B, C, 3, ¢, and are arbitrary constants, are also solutions of this equation. The second
formula usually may be encountered with= 1, v = -1, andd = A =0.
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1.4-3. Boundary value problems for the heat equation with axial symmetry.
For solutions of various boundary value problems, Sedsection 1.5
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