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3.1. Laplace Equation Aw =0

The Laplace equation is often encountered in heat and mass transfer theory, fluid mechanics,

elasticity, electrostatics, and other areas of mechanics and physics.
The two-dimensional Laplace equation has the following form:

Pw 0w . . .
—— +——= =0 inthe Cartesian coordinate system,
0x2  Oy?

10 [ ow 1 0%w . .
o (rg) + ﬁa_<p2 =0 inthe polar coordinate system,

wherez = r cosy, y = rsing, andr = \/x2 +y2.

3.1-1. Particular solutions and methods for their construction.

1°. Particular solutions of the Laplace equation in the Cartesian coordinate system:

w(x,y) = Az + By + C,
w(z,y) = Az? - %) + Bay,

w(z,y) = A(e® - 3zy?) + B3?y - ¢°),
Ax + By
22 + 2

w(z,y) = expepuz)(Acosuy + B sinuy),
w(z,y) = (A cosux + B sinuzx) exptuy),
w(z,y) = (Asinhux + B coshuz)(C cosuy + D sinpuy),
w(z,y) = (Acosux + Bsinux)(C sinhuy + D coshuy),

w(z,y) = +C,

whereA, B, C, D, andy are arbitrary constants.
2°. Particular solutions of the Laplace equation in the polar coordinate system:
w(r)=Alnr+ B,

w(r, @) = (Arm + rﬁm) (C cosmey + D sinmy),

whereA, B, C, andD are arbitrary constants, amd =1, 2, .. ..

3°. Afairly general method for constructing particular solutions involves the following.flL&t=
u(z,y) +iw(x,y) be any analytic function of the complex variable= x + iy (u andv are real
functions of the real variablesandy; i2 = —1). Then the real and imaginary partsoboth satisfy
the two-dimensional Laplace equation,

Azu = 0, sz =0.

Thus, by specifying analytic functiongz) and taking their real and imaginary parts, one obtains
various solutions of the two-dimensional Laplace equation.
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3.1-2. Domain:; -e0 < x < 00, 0 < y < oco. First boundary value problem.
A half-plane is considered. A boundary condition is prescribed:

w=f(x) at y=0.

o] d /2
w(x,y):%[ %=%[ /zf(x+ytan9)d0.

Solution:

3.1-3. Domain: 0< x < a, 0< y < b. First boundary value problem for the Laplace equation.
A rectangle is considered. Boundary conditions are prescribed:

w=fi(y) at z=0, w=fo(y) at z=a,
w = f3(x) at y=0, w = fa(x) at y=0.

Solution:
v ni;An sinh[nbﬂ(a _x)] Sin<nbﬂy> ZB Slnh<bx> Sln<b )
+ ; Cn Siﬂ(Tx) sinh{n;r(b - y)} + nz;l D, Sin(T(p) Sinh(Ty)

where the coefficientd,,, B,,, C,, andD,, are expressed as

/ ﬁ(&)sm(mf)dﬁ B, = / fz(5)8n<m€) e, An:bsinh(”za),
/fs(f)SIn< éh>d§ D, /f4(.£)sm< 5)d{ un-asmh< ab>.

3.1-4. Domain: 0< r < R. First boundary value problem for the Laplace equation.
A circle is considered. A boundary condition is prescribed:
w=f(p) at r=R.
Solution in the polar coordinates:
17 R? =72
win ) = o0 0 Uy cosfp — 1) + R2

This formula is conventionally referred to as the Poisson integral.

.

3.1-5. Domain: 0< r < R. Second boundary value problem for the Laplace equation.
A circle is considered. A boundary condition is prescribed:

ow=f(p) at r=R.
Solution in the polar coordinates:

27 2 _ — 2
w(r,@):% i F@)In = ZRTCO:EEO DR e,

whereC'is an arbitrary constant; this formula is known as the Dini integral.

27
Remark. The functionf(¢) must satisfy the solvability conditioq/0 flp)de =0.



LAPLACE EQUATION 3

References
Babich, V. M., Kapilevich, M. B., Mikhlin, S. G, et al., Linear Equations of Mathematical Physiis Russian], Nauka,
Moscow, 1964.
Carslaw, H. S. and Jaeger, J. C.Conduction of Heat in Solid€larendon Press, Oxford, 1984.

Polyanin, A. D., Handbook of Linear Partial Differential Equations for Engineers and Scieiti€tsapman & Hall/CRC,
2002.

Laplace Equation

Copyright(© 2004 Andrei D. Polyanin http://feqworld.ipmnet.ru/en/solutions/Ipde/lpde301.pdf


http://www.crcpress.com/shopping_cart/products/product_detail.asp?sku=C2999�

