http://eqworld.ipmnet.ru

Exact Solutions > Linear Partial Differential Equations >
Second-Order Elliptic Partial Differential Equations > Laplace Equation

3.1. Laplace Equation $\Delta w=0$

The Laplace equation is often encountered in heat and mass transfer theory, fluid mechanics, elasticity, electrostatics, and other areas of mechanics and physics.

The two-dimensional Laplace equation has the following form:

$$
\begin{aligned}
\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}} & =0 \quad \text { in the Cartesian coordinate system, } \\
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial w}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} w}{\partial \varphi^{2}} & =0 \quad \text { in the polar coordinate system, }
\end{aligned}
$$

where $x=r \cos \varphi, y=r \sin \varphi$, and $r=\sqrt{x^{2}+y^{2}}$.

3.1-1. Particular solutions and methods for their construction.

1°. Particular solutions of the Laplace equation in the Cartesian coordinate system:

$$
\begin{aligned}
& w(x, y)=A x+B y+C, \\
& w(x, y)=A\left(x^{2}-y^{2}\right)+B x y, \\
& w(x, y)=A\left(x^{3}-3 x y^{2}\right)+B\left(3 x^{2} y-y^{3}\right), \\
& w(x, y)=\frac{A x+B y}{x^{2}+y^{2}}+C, \\
& w(x, y)=\exp (\pm \mu x)(A \cos \mu y+B \sin \mu y), \\
& w(x, y)=(A \cos \mu x+B \sin \mu x) \exp (\pm \mu y), \\
& w(x, y)=(A \sinh \mu x+B \cosh \mu x)(C \cos \mu y+D \sin \mu y), \\
& w(x, y)=(A \cos \mu x+B \sin \mu x)(C \sinh \mu y+D \cosh \mu y),
\end{aligned}
$$

where A, B, C, D, and μ are arbitrary constants.
2°. Particular solutions of the Laplace equation in the polar coordinate system:

$$
\begin{aligned}
w(r) & =A \ln r+B \\
w(r, \varphi) & =\left(A r^{m}+\frac{B}{r^{m}}\right)(C \cos m \varphi+D \sin m \varphi)
\end{aligned}
$$

where A, B, C, and D are arbitrary constants, and $m=1,2, \ldots$.
3°. A fairly general method for constructing particular solutions involves the following. Let $f(z)=$ $u(x, y)+i v(x, y)$ be any analytic function of the complex variable $z=x+i y$ (u and v are real functions of the real variables x and $y ; i^{2}=-1$). Then the real and imaginary parts of f both satisfy the two-dimensional Laplace equation,

$$
\Delta_{2} u=0, \quad \Delta_{2} v=0
$$

Thus, by specifying analytic functions $f(z)$ and taking their real and imaginary parts, one obtains various solutions of the two-dimensional Laplace equation.

3.1-2. Domain: $-\infty<x<\infty, 0 \leq y<\infty$. First boundary value problem.

A half-plane is considered. A boundary condition is prescribed:

$$
w=f(x) \quad \text { at } \quad y=0 .
$$

Solution:

$$
w(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y f(\xi) d \xi}{(x-\xi)^{2}+y^{2}}=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} f(x+y \tan \theta) d \theta
$$

3.1-3. Domain: $\mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{a}, \mathbf{0} \leq \boldsymbol{y} \leq \boldsymbol{b}$. First boundary value problem for the Laplace equation. A rectangle is considered. Boundary conditions are prescribed:

$$
\begin{array}{lllll}
w=f_{1}(y) & \text { at } & x=0, & w=f_{2}(y) & \text { at } \\
w=f_{3}(x) & \text { at } & y=0, & w=f_{4}(x) & \text { at }
\end{array} \quad y=b .
$$

Solution:

$$
\begin{aligned}
w(x, y) & =\sum_{n=1}^{\infty} A_{n} \sinh \left[\frac{n \pi}{b}(a-x)\right] \sin \left(\frac{n \pi}{b} y\right)+\sum_{n=1}^{\infty} B_{n} \sinh \left(\frac{n \pi}{b} x\right) \sin \left(\frac{n \pi}{b} y\right) \\
& +\sum_{n=1}^{\infty} C_{n} \sin \left(\frac{n \pi}{a} x\right) \sinh \left[\frac{n \pi}{a}(b-y)\right]+\sum_{n=1}^{\infty} D_{n} \sin \left(\frac{n \pi}{a} x\right) \sinh \left(\frac{n \pi}{a} y\right),
\end{aligned}
$$

where the coefficients A_{n}, B_{n}, C_{n}, and D_{n} are expressed as

$$
\begin{array}{lll}
A_{n}=\frac{2}{\lambda_{n}} \int_{0}^{b} f_{1}(\xi) \sin \left(\frac{n \pi \xi}{b}\right) d \xi, & B_{n}=\frac{2}{\lambda_{n}} \int_{0}^{b} f_{2}(\xi) \sin \left(\frac{n \pi \xi}{b}\right) d \xi, & \lambda_{n}=b \sinh \left(\frac{n \pi a}{b}\right), \\
C_{n}=\frac{2}{\mu_{n}} \int_{0}^{a} f_{3}(\xi) \sin \left(\frac{n \pi \xi}{a}\right) d \xi, & D_{n}=\frac{2}{\mu_{n}} \int_{0}^{a} f_{4}(\xi) \sin \left(\frac{n \pi \xi}{a}\right) d \xi, & \mu_{n}=a \sinh \left(\frac{n \pi b}{a}\right) .
\end{array}
$$

3.1-4. Domain: $0 \leq r \leq R$. First boundary value problem for the Laplace equation.

A circle is considered. A boundary condition is prescribed:

$$
w=f(\varphi) \quad \text { at } \quad r=R .
$$

Solution in the polar coordinates:

$$
w(r, \varphi)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\psi) \frac{R^{2}-r^{2}}{r^{2}-2 R r \cos (\varphi-\psi)+R^{2}} d \psi
$$

This formula is conventionally referred to as the Poisson integral.
3.1-5. Domain: $0 \leq r \leq R$. Second boundary value problem for the Laplace equation.

A circle is considered. A boundary condition is prescribed:

$$
\partial_{r} w=f(\varphi) \quad \text { at } \quad r=R
$$

Solution in the polar coordinates:

$$
w(r, \varphi)=\frac{R}{2 \pi} \int_{0}^{2 \pi} f(\psi) \ln \frac{r^{2}-2 R r \cos (\varphi-\psi)+R^{2}}{R^{2}} d \psi+C
$$

where C is an arbitrary constant; this formula is known as the Dini integral.
Remark. The function $f(\varphi)$ must satisfy the solvability condition $\int_{0}^{2 \pi} f(\varphi) d \varphi=0$.

References

Babich, V. M., Kapilevich, M. B., Mikhlin, S. G., et al., Linear Equations of Mathematical Physics [in Russian], Nauka, Moscow, 1964.
Carslaw, H. S. and Jaeger, J. C., Conduction of Heat in Solids, Clarendon Press, Oxford, 1984.
Polyanin, A. D., Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman \& Hall/CRC, 2002.

Laplace Equation
Copyright © 2004 Andrei D. Polyanin
http://eqworld.ipmnet.ru/en/solutions/lpde/lpde301.pdf

