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Newell–Whitehead equation.

1◦. Solutions witha > 0 andb > 0:
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whereC1, C2, andC3 are arbitrary constants.

2◦. Solutions witha < 0 andb > 0:
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3◦. Solution witha > 0 (generalizes the first solution of Item1◦):
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whereC1, C2, andC3 are arbitrary constants, and the functionU = U (z) is determined by the
autonomous ordinary differential equationaU ′′

zz = 2bU 3 (whose solution can be written out in
implicit form).

4◦. Solution witha < 0 (generalizes the solution of Item2◦):
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whereC1 andC2 are arbitrary constants, and the functionV = V (ξ) is determined by the autonomous
ordinary differential equationaV ′′

ξξ = −2bV 3 (whose solution can be written out in implicit form).

5◦. Solutions witha = 0 andb > 0:

w(x, t) = ±
√
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2C1x + C2

C1x2 + C2x + 6C1t + C3
.

6◦. Self-similar solution witha = 0:

w(x, t) = t−1/2f (ξ), ξ = xt−1/2,

where the functionf (ξ) is determined by the ordinary differential equationf ′′ξξ + 1
2 ξf ′ξ + 1

2 f −bf 3 = 0.

7◦. Solution witha = 0:

w(x,y) = xu(z), z = t + 1
6 x2,

where the functionu(z) is determined by the autonomous ordinary differential equationu′′zz−9bu3 =0.
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