10. $\frac{\partial w}{\partial t}=\frac{\partial}{\partial x}\left[f(w) \frac{\partial w}{\partial x}\right]+g(w)$.

This equation occurs in nonlinear problems of heat and mass transfer with volume reaction.
1°. Traveling-wave solution:

$$
w=w(z), \quad z=k x+\lambda t,
$$

where k and λ are arbitrary constants, and the function $w(z)$ is determined by the autonomous ordinary differential equation $k^{2}\left[f(w) w_{z}^{\prime}\right]_{z}^{\prime}-\lambda w_{z}^{\prime}+g(w)=0$.
2°. Let the function $f=f(w)$ be arbitrary and let $g=g(w)$ be defined by

$$
g(w)=\frac{A}{f(w)}+B
$$

where A and B are some numbers. In this case, there is a functional separable solution, which is defined implicitly by

$$
\int f(w) d w=A t-\frac{1}{2} B x^{2}+C_{1} x+C_{2}
$$

where C_{1} and C_{2} are arbitrary constants.
3°. Let now $g=g(w)$ be arbitrary and let $f=f(w)$ be defined by

$$
\begin{align*}
f(w) & =\frac{A_{1} A_{2} w+B}{g(w)}+\frac{A_{2} A_{3}}{g(w)} \int Z d w, \tag{1}\\
Z & =-A_{2} \int \frac{d w}{g(w)} \tag{2}
\end{align*}
$$

where A_{1}, A_{2}, and A_{3} are some numbers. Then there are generalized traveling-wave solutions of the form

$$
w=w(Z), \quad Z=\frac{ \pm x+C_{2}}{\sqrt{2 A_{3} t+C_{1}}}-\frac{A_{1}}{A_{3}}-\frac{A_{2}}{3 A_{3}}\left(2 A_{3} t+C_{1}\right)
$$

where the function $w(Z)$ is determined by the inversion of (2), and C_{1} and C_{2} are arbitrary constants. 4°. Let $g=g(w)$ be arbitrary and let $f=f(w)$ be defined by

$$
\begin{align*}
f(w) & =\frac{1}{g(w)}\left(A_{1} w+A_{3} \int Z d w\right) \exp \left[-A_{4} \int \frac{d w}{g(w)}\right], \tag{3}\\
Z & =\frac{1}{A_{4}} \exp \left[-A_{4} \int \frac{d w}{g(w)}\right]-\frac{A_{2}}{A_{4}}, \tag{4}
\end{align*}
$$

where A_{1}, A_{2}, A_{3}, and A_{4} are some numbers $\left(A_{4} \neq 0\right)$. In this case, there are generalized travelingwave solutions of the form

$$
w=w(Z), \quad Z=\varphi(t) x+\psi(t)
$$

where the function $w(Z)$ is determined by the inversion of (4),

$$
\varphi(t)= \pm\left(C_{1} e^{2 A_{4} t}-\frac{A_{3}}{A_{4}}\right)^{-1 / 2}, \quad \psi(t)=-\varphi(t)\left[A_{1} \int \varphi(t) d t+A_{2} \int \frac{d t}{\varphi(t)}+C_{2}\right]
$$

and C_{1} and C_{2} are arbitrary constants.
5°. Let the functions $f(w)$ and $g(w)$ be as follows:

$$
f(w)=\varphi^{\prime}(w), \quad g(w)=\frac{a \varphi(w)+b}{\varphi^{\prime}(w)}+c[a \varphi(w)+b],
$$

where $\varphi(w)$ is an arbitrary function and a, b, and c are any numbers (the prime denotes a derivative with respect to w). Then there are functional separable solutions defined implicitly by

$$
\begin{array}{ll}
\varphi(w)=e^{a t}\left[C_{1} \cos (x \sqrt{a c})+C_{2} \sin (x \sqrt{a c})\right]-\frac{b}{a} & \text { if } a c>0, \\
\varphi(w)=e^{a t}\left[C_{1} \cosh (x \sqrt{-a c})+C_{2} \sinh (x \sqrt{-a c})\right]-\frac{b}{a} & \text { if } a c<0
\end{array}
$$

6°. Let $f(w)$ and $g(w)$ be as follows:

$$
f(w)=w \varphi_{w}^{\prime}(w), \quad g(w)=a\left[w+2 \frac{\varphi(w)}{\varphi_{w}^{\prime}(w)}\right]
$$

where $\varphi(w)$ is an arbitrary function and a is any number. Then there are functional separable solutions defined implicitly by

$$
\varphi(w)=C_{1} e^{2 a t}-\frac{1}{2} a\left(x+C_{2}\right)^{2} .
$$

7°. Let $f(w)$ and $g(w)$ be defined by the formulas

$$
f(w)=A \frac{V(z)}{V_{z}^{\prime}(z)}, \quad g(w)=B\left[2 z^{-1 / 2} V_{z}^{\prime}(z)+B z^{-3 / 2} V(z)\right]
$$

where $V(z)$ is an arbitrary function of z, A and B are arbitrary constants $(A B \neq 0)$, and the function $z=z(w)$ is determined implicitly by

$$
\begin{equation*}
w=\int z^{-1 / 2} V_{z}^{\prime}(z) d z+C_{1} \tag{5}
\end{equation*}
$$

with C_{1} being an arbitrary constant. Then, there is a functional separable solution of the form (5) where

$$
z=-\frac{\left(x+C_{3}\right)^{2}}{4 A t+C_{2}}+2 B t+\frac{B C_{2}}{2 A}
$$

C_{2} and C_{3} are arbitrary constants.

References

Dorodnitsyn, V. A., On invariant solutions of the nonlinear heat equation with a source [in Russian], Zhurn. vychisl. matem. i matem. fiziki, Vol. 22, No. 6, pp. 1393-1400, 1982.
Galaktionov, V. A., Quasilinear heat equations with first-order sign-invariants and new explicit solutions, Nonlinear Analys., Theory, Meth. and Applications, Vol. 23, pp. 1595-1621, 1994.
Vorob'ev, E. M., Weak and partial symmetries of nonlinear PDE in two independent variables, Nonlinear Mathematical Physics, Vol. 3, N 3-4, pp. 330-335, 1996.
Polyanin, A. D. and Zaitsev, V. F., Handbook of Nonlinear Partial Differential Equations, Chapman \& Hall/CRC, Boca Raton, 2004.
Polyanin, A. D. and Vyazmina, E. A., EqWorld, 2004 (Private communication: Item 7°, received 12 April 2004).

