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dw H*w
+ —— + flw)w = 0.

Nonlinear Schrodinger equation (Sctidinger equation) of general formyf(w) is a real function
of a real variable.

1°. Supposev(z,t) is a solution of the Schrodinger equation in question. Then the function
wy = e_i(’\“’\zﬁcl)w(x +2Xt + Co, t + C3),
whereC1, Cy, C3, and) are arbitrary real constants, is also a solution of the equation.
2°. Traveling-wave solution:
w(z, t) = Crexplip(z,1)],  a,1) = Coz = C3L+ f(IC1Dt + Ca.
3°. Multiplicative separable solution:
w(z, t) = u(x)e e,
where the function: = u(z) is defined implicitly by

du
\/Cru2 = 2F (u) + C3

=Chtu, F(u)=/uf(|u|)du.

Here,C4, ..., Cy4 are arbitrary real constants.

4°. Solution: ‘
w(z, t) = UE)eAs*BHCO) ¢ = ¢ -2 A¢, 1)

where the functionU = U(¢) is determined by the autonomous ordinary differential equation

Ué’g + f(JUNU - (A? + B)U = 0. Integrating yields the general solution in implicit form:

dUu
V(A2 + B)U2-2F(U) + C1
Relations (1) and (2) involve arbitrary real constaAts3, C', C1, andC5.

=Cyxe, F(U)= / UF(U) dU. @

5°. Solution (4, B, andC are arbitrary constants):
w(z,t) = P(2) exp[i(Axt = %A2t3 + Bt + C)] . z=z - At?

where the function) = v(z) is determined by the ordinary differential equatigrf, + f(j¢[)¢> -
(Az+ B)y =0.
6°. Solutions:

(z + 02)2

w(zx, t) = \/_ explip(z,t)],  olz.t) = /f |C1 t|_1/2) dt + Cj,

whereC1, C,, andCj3 are arbitrary real constants.
7°. Solution:

w(z, t) = u(z) explio@. )], o(x,t) = Cit +Cy / +Cs,

dx
u?(x)
where(C1, C>, andC; are arbitrary real constants, and the function u(x) is determined by the
autonomous ordinary differential equatie|, — C1u — C5u™3 + f(jul)u = 0.
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8°. There is an exact solution of the form
w(z,t) = u(z) eXp[iAt + z<p(z)] . z=kx+ A,
whereA, k, and) are arbitrary real constants.

See also special cases of the nonlinear Schrodinger equation:
 'Schrodinger equation with a cubic nonlineagity
 'Schrodinger equation with a power-law nonlinearity
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