3. $\frac{\partial}{\partial x}\left[f(w) \frac{\partial w}{\partial x}\right]+\frac{\partial}{\partial y}\left[g(w) \frac{\partial w}{\partial y}\right]=0$.

This is a stationary anisotropic heat (diffusion) equation.
$1^{\circ}$. Traveling-wave solution in implicit form:

$$
\int\left[A^{2} f(w)+B^{2} g(w)\right] d w=C_{1}(A x+B y)+C_{2}
$$

where $A, B, C_{1}$, and $C_{2}$ are arbitrary constants.
$2^{\circ}$. Self-similar solution:

$$
w=w(\zeta), \quad \zeta=\frac{x+A}{y+B},
$$

where the function $w(\zeta)$ is determined by the ordinary differential equation

$$
\begin{equation*}
\left[f(w) w_{\zeta}^{\prime}\right]_{\zeta}^{\prime}+\left[\zeta^{2} g(w) w_{\zeta}^{\prime}\right]_{\zeta}^{\prime}=0 \tag{1}
\end{equation*}
$$

Integrating (1) and taking $w$ to be the independent variable, one obtains the Riccati equation $C \zeta_{w}^{\prime}=g(w) \zeta^{2}+f(w)$, where $C$ is an arbitrary constant.
$3^{\circ}$. The original equation can be represented as the system of the equations

$$
\begin{equation*}
f(w) \frac{\partial w}{\partial x}=\frac{\partial v}{\partial y}, \quad-g(w) \frac{\partial w}{\partial y}=\frac{\partial v}{\partial x} \tag{2}
\end{equation*}
$$

The hodograph transformation

$$
x=x(w, v), \quad y=y(w, v)
$$

where $w, v$ are treated as the independent variables and $x, y$ as the dependent ones, brings (2) to the linear system

$$
\begin{equation*}
f(w) \frac{\partial y}{\partial v}=\frac{\partial x}{\partial w}, \quad-g(w) \frac{\partial x}{\partial v}=\frac{\partial y}{\partial w} . \tag{3}
\end{equation*}
$$

Eliminating $y$ yields the following linear equation for $x=x(w, v)$ :

$$
\frac{\partial}{\partial w}\left[\frac{1}{f(w)} \frac{\partial x}{\partial w}\right]+g(w) \frac{\partial^{2} x}{\partial v^{2}}=0
$$

Likewise, we can obtain another linear equation for $y=y(w, v)$ from system (3).

## Reference

Polyanin, A. D. and Zaitsev, V. F., Handbook of Nonlinear Partial Differential Equations, Chapman \& Hall/CRC, Boca Raton, 2004.

