Exact Solutions > Nonlinear Partial Differential Equations >
Third-Order Partial Differential Equations > Boundary Layer Equations
5. $\frac{\partial w}{\partial y} \frac{\partial^{2} w}{\partial x \partial y}-\frac{\partial w}{\partial x} \frac{\partial^{2} w}{\partial y^{2}}=\nu \frac{\partial^{3} w}{\partial y^{3}}$.

This is an equation of a steady-state laminar boundary layer on a flat plate (it is obtained from the boundary layer equations by introducing the stream function w, see Remark).
1°. Suppose $w(x, y)$ is a solution of the equation in question. Then the function

$$
w_{1}=C_{1} w\left(C_{2} x+C_{3}, C_{1} C_{2} y+\varphi(x)\right)+C_{4}
$$

where $\varphi(x)$ is an arbitrary function and C_{1}, \ldots, C_{5} are arbitrary constants, is also a solution of the equation.
2°. Solutions involving arbitrary function:

$$
\begin{aligned}
& w(x, y)=C_{1} y+\varphi(x), \\
& w(x, y)=C_{1} y^{2}+\varphi(x) y+\frac{1}{4 C_{1}} \varphi^{2}(x)+C_{2}, \\
& w(x, y)=\frac{6 \nu x+C_{1}}{y+\varphi(x)}+\frac{C_{2}}{[y+\varphi(x)]^{2}}+C_{3}, \\
& w(x, y)=\varphi(x) \exp \left(-C_{1} y\right)+\nu C_{1} x+C_{2}, \\
& w(x, y)=C_{1} \exp \left[-C_{2} y-C_{2} \varphi(x)\right]+C_{3} y+C_{3} \varphi(x)+\nu C_{2} x+C_{4}, \\
& w(x, y)=6 \nu C_{1} x^{1 / 3} \tanh \xi+C_{2}, \quad \xi=C_{1} \frac{y}{x^{2 / 3}}+\varphi(x), \\
& w(x, y)=-6 \nu C_{1} x^{1 / 3} \tan \xi+C_{2}, \quad \xi=C_{1} \frac{y}{x^{2 / 3}}+\varphi(x),
\end{aligned}
$$

where C_{1}, \ldots, C_{4} are arbitrary constants and $\varphi(x)$ is an arbitrary function. The first and second solutions are degenerate solutions; its are independent of ν and correspond to inviscid fluid flows.
3°. Table 5 lists invariant solutions to the hydrodynamic boundary layer equation. Solution 1 is expressed in additive separable form, solution 2 is in multiplicative separable form, solution 3 is self-similar, and solution 4 is generalized self-similar. Solution 5 degenerates at $a=0$ into a selfsimilar solution (see solution 3 with $\lambda=-1$). Equations 3-5 for F are autonomous and generalized homogeneous; hence, their order can be reduced by two.

TABLE

Invariant solutions to the hydrodynamic boundary layer equation (the additive constant is omitted)

No.	Solution structure	Function F or equation for F	Remarks
1	$w=F(y)+\nu \lambda x$	$F(y)= \begin{cases}C_{1} \exp (-\lambda y)+C_{2} y & \text { if } \lambda \neq 0, \\ C_{1} y^{2}+C_{2} y & \text { if } \lambda=0\end{cases}$	λ is any
2	$w=F(x) y^{-1}$	$F(x)=6 \nu x+C_{1}$	-
3	$w=x^{\lambda+1} F(z), z=x^{\lambda} y$	$(2 \lambda+1)\left(F_{z}^{\prime}\right)^{2}-(\lambda+1) F F_{z z}^{\prime \prime}=\nu F_{z z z}^{\prime \prime \prime}$	λ is any
4	$w=e^{\lambda x} F(z), z=e^{\lambda x} y$	$2 \lambda\left(F_{z}^{\prime}\right)^{2}-\lambda F F_{z z}^{\prime \prime}=\nu F_{z z z}^{\prime \prime \prime}$	λ is any
5	$w=F(z)+a \ln \|x\|, z=y / x$	$-\left(F_{z}^{\prime}\right)^{2}-a F_{z z}^{\prime \prime}=\nu F_{z z z}^{\prime \prime \prime}$	a is any

4°. Generalized separable solution linear in x :

$$
\begin{equation*}
w(x, y)=x f(y)+g(y) \tag{1}
\end{equation*}
$$

where the functions $f=f(y)$ and $g=g(y)$ are determined by the autonomous system of ordinary differential equations

$$
\begin{align*}
\left(f_{y}^{\prime}\right)^{2}-f f_{y y}^{\prime \prime} & =\nu f_{y y y}^{\prime \prime \prime}, \tag{2}\\
f_{y}^{\prime} g_{y}^{\prime}-f g_{y y}^{\prime \prime} & =\nu g_{y y y}^{\prime \prime \prime} . \tag{3}
\end{align*}
$$

Equation (2) has the following particular solutions:

$$
\begin{aligned}
& f=6 \nu(y+C)^{-1}, \\
& f=C e^{\lambda y}-\lambda \nu,
\end{aligned}
$$

where C and λ are arbitrary constants.
Let $f=f(y)$ is a solution of equation $(2)(f \not \equiv$ const $)$. Then, the corresponding general solution of equation (3) can be written out in the form

$$
g(y)=C_{1}+C_{2} f+C_{3}\left(f \int \psi d y-\int f \psi d y\right), \quad \text { where } \quad \psi=\frac{1}{\left(f_{y}^{\prime}\right)^{2}} \exp \left(-\frac{1}{\nu} \int f d y\right)
$$

Remark. The system of hydrodynamic boundary layer equations

$$
\begin{aligned}
u_{1} \frac{\partial u_{1}}{\partial x}+u_{2} \frac{\partial u_{1}}{\partial y} & =\nu \frac{\partial^{2} u_{1}}{\partial y^{2}} \\
\frac{\partial u_{1}}{\partial x}+\frac{\partial u_{2}}{\partial y} & =0
\end{aligned}
$$

where u_{1} and u_{2} are the longitudinal and normal components of the fluid velocity, respectively, is reduced to the equation in question by the introduction of a stream function w such that $u_{1}=\frac{\partial w}{\partial y}$ and $u_{2}=-\frac{\partial w}{\partial x}$.

References

Pavlovskii, Yu. N., Investigation of some invariant solutions to the boundary layer equations [in Russian], Zhurn. Vychisl. Mat. i Mat. Fiziki, Vol. 1, No. 2, pp. 280-294, 1961.
Schlichting, H., Boundary Layer Theory, McGraw-Hill, New York, 1981.
Ignatovich, N. V., Invariant-irreducible, partially invariant solutions of steady-state boundary layer equations [in Russian], Mat. Zametki, Vol. 53, No. 1, pp. 140-143, 1993.
Loitsyanskiy, L. G., Mechanics of Liquids and Gases, Begell House, New York, 1996.
Polyanin, A. D. and Zaitsev, V. F., Handbook of Nonlinear Mathematical Physics Equations [in Russian], Fizmatlit / Nauka, Moscow, 2002.
Polyanin, A. D. and Zaitsev, V. F., Handbook of Nonlinear Partial Differential Equations, Chapman \& Hall/CRC, Boca Raton, 2004.

Boundary Layer Equations

