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1   Introduction 

 

The following brief guide to moment tensor inversion discusses the characteristics of moment 

tensors, its physical interpretation and the different ways to decompose moment tensors. It 

reviews the basic equations used in different inversion schemes, clarifies the role of Green’s 
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functions, and summarizes different practical aspects of moment tensor inversions for 

different types of waves and different distance ranges (local, regional and global earthquakes). 

Typical resolution problems of moment tensor components are discussed. The IS provides 

some guidelines to start moment tensor studies, and thereby introduces a modern, python 

based moment tensor toolbox (Kiwi Tools) that is flexible to adapt to all specific source 

studies and incorporates pre-calculated Green’s function databases. The complementing 

exercise EX 3.6 provides a practical on moment tensor inversion using the Kiwi Tools. The IS 

does not derive the fundamental concepts and the theory of source representations, since this 

is given in chapter 3 and IS3.1 of the NMSOP-2. 

 

The material is based in large parts on a review paper by Jost and Herrmann (1989) and on 

lecture notes and practicals we developed during several training courses on moment tensors 

between 2000 and 2012 (e.g. ESC and IUGG training courses, ICTP workshops in Trieste, 

Winterschool Sudelfeld). The material updates and extends IS3.8 in NMSOP by Günther 

Bock on moment tensor determination and decomposition.   

 

 

1.1  Nomenclature and terms 

 

The following nomenclature is used (unit in parentheses): 

 

Table 1: Nomenclature 
 

Parameter Explanation Type 

t and τ Time, referenced to receiver and source, 

respectively 

Scalars (s) 

ω Angular frequency Scalar (rad) 

x and ξ Spatial coordinates of source and receivers Vectors (m) 

M and m Moment tensor and moment tensor density 2
nd

 rank tensors, (Nm and 

Nm/m
2
) 

G Green’s tensor 3
rd

 rank tensor (m) 

u and D Displacement and dislocation across fault Vectors (m) 

c Elasticity tensor 4
th

 rank tensor (Pa) 

A and V Surface and volume of source Scalars (m
2
 and m

3
) 

ϕ, φ, λ, δ,α,β Angles Scalars (rad) 

δ, δ or δij Kronecker symbol, see e.g. IS3.1 Scalar or 2
nd

 rank tensor 

N, η, K 1
st
 and 2

nd
 Lame’s constant and bulk modul Scalars (Pa) 

F and f Point force and force density Vector (N or N/m
3
 ) 

r Distance Scalar (m) 

γ Direction cosine Vector (rad) 

n, l Unit vectors (e.g. fault normal or slip direction)  

s Slowness vector Vector (s/m) 

e Eigenvalue vector of moment tensor Vector (Nm) 

h(t) Source time function of the point source Dimensionless 

 

We use bold face letters (e.g. x) to express vectors and tensors. Scalars are denoted in normal 

(not bold face) letters. Components of vectors and tensors are denoted by xi and Mij, 

respectively, where indices usually vary between 1, 2, and 3. We further apply the Einstein 

summation convention, meaning that repeating indices in one term imply summation over the 

index, i.e. eknk = ∑ eknk = e1n1 + e2n2 + e3n3.  Indices separated by comma “,” denote partial 
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derivatives to space coordinates, i.e. Gij,k = ∂Gij/∂xk. Note that the summation convention will 

also apply to terms like Mkk or Mkj Gik,j.  The * symbol denotes a temporal convolution 

integral and we partly drop the implicit time variable in the convolution formulas, e.g., 

  

 

 

 

2   Moment tensors: interpretation and decomposition 
 

Moment tensors provide a general theoretical framework to describe seismic sources based on 

generalized force couples (Fig. 1). The moment tensor description is not restricted to 

earthquake sources, but covers also other types of seismic sources such as explosions, 

implosions, rock falls, landslides, meteorite terminal explosions (e.g. atmospheric), and mixed 

mode ruptures driven by fluid and gas injections. Thus, the concept of moment tensors is 

quite general and flexible making moment tensor inversions a very important tool in seismic 

source characterization. Moment tensors have the potential to substitute other, more 

traditional, source parameter estimations, such as e.g. magnitude or focal solutions from first 

motion polarities.  

 

We denote a point source moment tensor by M, a moment tensor density by m. A moment 

tensor M defines the strength of a seismic source in terms of its seismic moment, usually 

denoted by the scalar quantity M0, and the radiation pattern of seismic waves. The moment 

tensor (3x3 matrix) is symmetric, i.e. it has six independent components. The diagonal 

elements represent linear vector dipoles, the off diagonal elements represent the force couples 

with arms (moment) (Fig. 1). 

 

 
 

Figure 1  The system of force couples representing the components of a Cartesian moment 

tensor. Diagonal elements of the moment tensor represent linear vector dipoles, while off-

diagonal elements represent force couples with moment. 
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The moment tensor has components Mij where i,j = 1,2, or 3. Often, a local geographic 

coordinate system is used to define a Cartesian system tensor, with positive x1 being north-, 

positive x2 eastward, and positive x3 being downward (NED). The NED coordinate system is 

used below to derive relations between the angles of a ruptured fault (strike and dip angle) 

and the dislocation direction on the rupture plane (rake angle).  

 

A system commonly used in free-oscillation analysis is a local r-Θ-Φ-system, with r, Θ, Φ 

pointing upward, southward, and eastward (USE), respectively. This system is used for the 

routinely reported Global Centroid Moment tensors (Global CMT, formerly Harvard CMT). 

The geographic Cartesian tensor (NED) transforms by: 

 

 

        Mrr  = +Mzz,     MΘΘ = +Mnn ,      MΦΦ = +Mee ,  

        MrΘ = +Mnz,      MrΦ = −Mez,       MΘΦ = −Mne.                     (1) 

 

Additional coordinate systems in use are ENU (e.g. Jost and Herrmann, 1989) and NWU (e.g. 

Box 8.3 in Lay and Wallace, 1995 and section 4.2.1 in Stein and Wysession, 2003). Different 

definitions lead to a different ordering and polarities of individual matrix components of the 

tensor. A wrong association may lead to mis-interpretation of components and fault 

directions. Therefore, the coordinate system should always be published together with the 

moment tensor solution.      

 
With the exception of microseisms (ambient noise), earthquakes or explosions are the most 

common localized sources for seismic waves in the Earth. Other source such as tensile cracks, 

rock bursts or mass slope are significant sources close to the Earth’s surface or in regions 

under high fluid overpressure (e.g. at volcanoes). All internal sources can be represented by a 

specific combination of generalized force couples (moment tensor components), which radiate 

at low frequencies the same waves as, for instance, the dislocation process on the geological 

fault. Having estimated a moment tensor, a decomposition and interpretation of the moment 

tensor is often needed to find the most appropriate geological or physical source process. In 

general, two concepts are followed when decomposing moment tensors:  

 

(1) the decomposition into physical (geological) source components to aid  interpretation, for 

instance explosions, shear and tensile cracks or   

(2) the purely mathematical decomposition as a technique to simplify the inversion or 

numerical analysis. 

 

We briefly introduce the source representations of the most elementary physical sources and 

then discuss different decompositions. 
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2.1  Elementary physical sources  
 

2.1.1 The isotropic source (explosion and implosion) 

 

            
Figure 2  Shape and radiation of the isotropic (volumetric) moment tensor 

 

 

An explosion in a drill hole at depth is associated with abrupt volume change. In terms of 

pressure and force dipoles it is represented by an abrupt, isotropic pressure change and by 

means of three orthogonal linear force dipoles, respectively (see Fig. 2). The explosion (or 

implosion) radiates, theoretically, P waves with equal amplitude and polarity in all directions 

(isotropic source). S waves are not excited by the buried isotropic source. Most often, the 

polarity of the P wave radiation is plotted to visualize the radiation of the source. The lower 

hemisphere of a virtual sphere around the source is projected in a horizontal plane; examples 

and explanations are given in, e.g., chapter 3 of the NMSOP-2. The radiation pattern plot of 

an isotropic source is then a uni-colored sphere (black for explosion and white for implosion).    

 

The only free parameter of the isotropic moment tensor, Miso, is the pre-factor of the unity 

matrix in Fig. 2, which defines the strength, or moment M0 = tr = (M11+M22+M33)/3, of the 

isotropic source. Knowing M0 and the elastic constants N and η (see table 1) of the rocks at 

the source, the volume change ∆V of the explosion or implosion source can be estimated by  

 

tr = (M11+M22+M33) / 3 = ∆V (η + 2N) (explosion) (2) 

 

Note that dislocation sources can also generate isotropic components in the radiation pattern 

of the source. The volume change associated with these sources is, however, different to 

equation (2) (see Müller, 1973, 2001) and given below. Note further that the moment of an 

explosion in the atmosphere has to be treated differently (e.g., Heimann et al., 2013). 

 

 

2.1.2  The general dislocation source  

  
 

Figure 3a: Dislocation of a shear crack  

with n=(0,0,1) and DS=(0,-1,0). 

 

Figure 3b: Dislocation of a tensile crack with 

n=(0,0,1) and DN=(0,0,1). 
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A source associated with a planar crack and a dislocation vector D in an arbitrary direction 

(shear as well as opening mode, see Fig. 3) may be termed a ”general dislocation source”. 

While tectonic earthquakes rupture in pure shear mode, rupture under the presence of fluids 

with high overpressure may involve an additional opening of the rupture plane. This may 

occur during magma- or fluid-intrusions, although the validity of observations of mixed-mode 

rupture are often debated among experts. The moment tensor of a general dislocation source 

is (eq. 3.21 in Aki and Richards, 2002) 

 

Mpq = N A (np Dq + nq Dp) + η A nk Dk δpq  (3) 

 

The general dislocation source has five independent parameters. Equation (3) can be 

described in terms of strike (ϕ), dip (δ), rake (λ), and the magnitudes of the shear (DS) and 

opening (DN) dislocation. If the moment tensor is defined in a NED system the relation to 

these parameters is (e.g., Dahm, 1998) 

 

M11/A = −DS N (sin2ϕsinδcosλ + sin
2
ϕ sin2δsinλ)     +DN (η + 2Nsin

2
ϕ sin

2
δ) 

M12/A = +DS N (cos2ϕsinδcosλ +0.5sin2ϕsin2δsinλ) −DN Nsin2ϕsin
2
δ 

M13/A = −DS N (cosϕcosδcosλ + sinϕcos2δsinλ)       +DN Nsinϕsin2δ  

M22/A = +DS N (sin2ϕsinδcosλ − cos
2
ϕsin2δsinλ)     +DN (η + 2Ncos

2
ϕsin

2
δ)  

M23/A = −DS N (sinϕcosδcosλ − cosϕcos2δsinλ)       −DN Ncosϕsin2δ  

M33/A = +DS N sin2δsinλ                                           +DN (η + 2Ncos
2
δ) 

 

 

(4) 

 

 

2.1.3  The shear dislocation  source  

 

The shear dislocation source is a special case of (4) if DN=0 and is usually associated with a 

tectonic earthquake. It has four independent parameters. The earthquake rupture is an 

expression of the rapid dislocation (described by the rake angle and slip) of the two surfaces 

of a geological fault (described by strike and dip angles) relative to each other. The rupture 

plane of an earthquake may become quite large if the earthquake is strong. For instance, a 

magnitude MW 6 earthquake may rupture a fault of several kilometer length. The ruptured 

portion of the geological fault is usually approximated by a plane of area A, e.g. with length L 

and width W. The earthquake source is therefore idealized by the physical model of a “planar 

shear crack” or “shear dislocation” source. In terms of forces, a shear crack can be represented 

by two perpendicular force dipoles with zero angular momentum. Therefore, the shear crack 

source is often termed “double couple” (DC). Fig. 3a gives an example of a shear dislocation 

on a horizontal plane with the associated moment tensor, 

 

 

 

,                                                                                     (5) 

 

where DS is the average shear dislocation over the plane A. The seismic moment of the shear 

crack depends on the product between dislocation, the area of the ruptured plane and the shear 

modulus  (see equation 3 and, e.g., equation 43 in IS3.1) 

 

M0 = √(0.5 Mpq Mpq) = ADSN .                                                                                     (6) 
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2.1.4  The tensile crack 

 

For DS=0 in equation (4) we have a pure tensile crack. The tensile crack has only three 

independent parameters, since the direction of the dislocation vector is always perpendicular 

to the rupture plane (no rake angle defined). The principal axis moment tensor of the tensile 

crack of Fig. 3b, for instance, is given by 

 

 

 

(7) 

  

The strength of the tensile crack may be defined in a similar manner as before. Calculating the 

volume change ∆V can be of interest, for instance to estimate the volume of the intruded 

material. The decomposition in equation (7) shows how the volume change is related to the 

isotropic component of the tensile crack, Miso. Note this relation is different to equation (2) of 

the explosion source,  

 

                  tr = (M11+M22+M33) / 3   = ∆V (η + 2N/3)               (tensile crack). (8) 

 

 

2.2  Decomposition into elementary sources 
 

The decomposition of Mpq into physical sources is not unique. Several decompositions have 

been introduced depending on the source region and range of interpretations considered. The 

review paper by Jost and Herrmann (1989) gives an excellent overview and introduction to 

decompositions in use today The paper describes the concepts of moment tensor 

decomposition, and how they can be coded by using dyadics. A brief summary is given 

below, and we refer to the original publication for details.  

 

The moment tensor is first decomposed in its principal axis system 

 

 

 

(9) 

 

Here, ai represent eigenvectors associated to eigenvalues ei. The next step is to split the full 

tensor into an isotropic and a deviatoric tensor. If M’ represents the moment tensor in its 

principal axis system with eigenvalues ei the decomposition is    

 

 

(10) 

 

with tr = (e1 + e2 + e3)/3 being 1/3 of the trace of M’ and e’k = ek - tr being the eigenvalues of 

the deviatoric tensor. 
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Figure 4  The two possibilities to decompose a full moment tensor, either into an isotropic 

and deviatoric tensor or into a general mixed-mode shear crack and a residual isotropic 

component. The deviatoric component can be further decomposed into different elementary 

sources. 

 

 

The decomposion into Miso and Mdev is unique. The Miso tensor radiates only P waves, 

Rayleigh waves and spheroidal normal modes with no directional preference. The deviatoric 

tensor (Mdev) often has no direct geological meaning and is therefore further decomposed into 

different geologically reasonable sources. Several decompositions have been suggested for 

the deviatoric tensor, for instance (e.g. Jost and Herrmann, 1989 and Fig. 4): 

 

 a best double-couple (DC) and a CLVD, 

 a strike slip, a pure dip slip and a vertical compensated linear vector dipole (vsCLVD), 

 an isotropic source and a mixed mode double couple and tensile crack on the same 

crack (general dislocation source).  

 

Geologically, the first decomposition maximizing the DC part is the most relevant one in 

most cases. 

 

The first step in the decomposition is the calculation of eigenvalues and eigenvectors of the 

seismic moment tensor. If by definition a positive isotropic tensor is associated with volume 

expansion, the eigenvector of the largest eigenvalue gives the direction of the T (or tensional) 

axis; the one of the smallest eigenvalue the direction of the P (or compressional) axis, and the 

eigenvector of the intermediate eigenvalue gives the direction of the null axis. The demeaned 

absolute values of the eigenvalues can be used to estimate the proportional strength of the 

different source components of the deviatoric tensor (see Jost and Herrmann, 1989).  

 

 

2.2.1  Decomposition into strike slip, dip slip DC sources and a vertical CLVD  

 

Elementary tensors that fulfil orthogonality are sometimes used instead of Cartesian 

components (see e.g. Aki and Richards, 2002, Box 4.4, p. 112). One possible reason is to 

calculate Green’s functions if the available codes that cannot handle single component 

moment tensor excitation. Another reason might be to easily incorporate constraints during 

inversion. 
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A possible decomposition into elementary tensors are: (1) a strike-slip double-couple (M1), 

(2) a 90
◦
 dip-slip double-couple (M2), (3) an isotropic tensor and (4) a vertical CLVD (Mv-clvd),  

 

M = M1(ϕS)  +M2(ϕD) +Miso  +Mv-clvd with (in Cartesian system) 

 

 

 

 

 

 

 

 

 

 

 

(11) 

 

The first and second term represent a strike-slip and pure dip-slip source, respectively, with 

strike angles ϕS and ϕD. The third term in equation (22) is the isotropic component and the 

forth term the vertical CLVD source. The strike slip source, M1, has a π-periodic azimuthal 

radiation pattern, the dip-slip M2 a 2π-periodic, and Mv-clvd and Miso an azimuth-independent 

radiation pattern. SH- waves cannot resolve Mv-clvd and Miso , SV-waves are not sensitive to 

Miso, while P-waves theoretically can resolve all elementary sources. The decomposition in 

equation (22) can be expressed in terms of strike, dip, and rake of the best double couple, the 

null-eigenvalue, and the trace of the tensor (Dahm, 1993).  

 

 

2.2.2  Decomposition into a best double couple and a CLVD:  

 

The decomposition, including the isotropic component of the full tensor, is commonly 

expressed by 

 

 

 

(12) 

 

If emin and emax are the smallest and largest absolute values of e’k (assume |e’3| ≥|e’1| ≥|e’2|) and 

with F = emin / emax = e’2 / e’3 , one may define 100(1–2F) as the percentage of the double 

couple component (between 0% and 100%, see e.g. Dziewonski et al., 1981).  
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The DC component (last term in 12) has been described above. A CLVD source (middle term 

in 12) has no verified geological representation and is for crustal earthquakes often interpreted 

as source component representing the residual radiation from the best double couple source. 

The residual radiation may result from noisy data or from simplifying assumptions, as for 

instance from neglecting wave effects of a 3D Earth during the inversion.  Therefore, a small 

or zero CLVD component is sometimes interpreted as a confirmation of the model 

assumption.  

 

The decomposition of the deviatoric component into best DC and CLVD is commonly used in 

seismology. For instance, the source mechanism reported by nearly all seismic services are 

based on the decomposition into a best double couple and a CLVD component. A computer 

program for such a decomposition is described below.  

 

 

2.2.3  Decomposition into an isotropic source and a mixed-mode shear-tensile crack:  

 

The decomposition of the principal axis tensor into Miso and a general dislocation crack is 

 

 

 

 

 

 

 

(13) 

 

where the angle ϕ defines the angle of the dislocation plane measured against the T axis in the 

plane given by the T and P axis (P and T are interchanged in case of contraction) (e.g. Dahm, 

1993; Dahm and Brandsdottir, 1997). Another formulation of mixed-mode crack 

decomposition is given by Vavryčuk (2001). 

 

 

2.3 Computer programs for decomposition 
 

Computer programs for decomposition were written by Jost and distributed in Volume VIII of 

the software package “Computer Programs in Seismology” (see R. Herrmann, Saint Louis 

University http://www.eas.slu.edu/People/RBHerrmann/ComputerPrograms.html). Another 

computer package is provided with the python tool ”MoPaD” (Krieger and Heimann, 2012; 

http://www.larskrieger.de/mopad/), which can used for decomposition, projection and the 

plotting of moment tensors. MoPaD can be easily combined with GMT plotting tools 

(http://gmt.soest.hawaii.edu). 

 

The following examples are derived using MOPAD. On 19 March 2013 a ML 4.2 earthquake 

struck the Polish mine district close to the Rudna copper mine. 19 mine workers were trapped 

in the mine at 850 m depth for several hours due to rock bursts affecting parts of the 

underground tunnels. A centroid moment tensor inversion (0.07-0.1 Hz) using broadband 

regional stations retrieved a seismic moment of MW 3.8 (M0=5.3E14 Nm) at a source depth of 

http://www.eas.slu.edu/People/RBHerrmann/
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about 1 km (Whidden et al., 2013; Rudzinski and Lizurek, pers. communication). The NED 

Cartesian moment tensor is decomposed into an isotropic and deviatoric part,  

 

 

 

 

The radiation pattern is plotted in a lower hemispherical projection (Fig. 5a, and chapter 3 of 

NMSOP-2 for explanations on the type of plots). The isotropic component is negative 

(implosion) and covers 60% of the moment of the full tensor. 

 

 

 

 

 

Figure 5a Lower hemispherical 

projection of the P–wave radiation 

(stereographic) of the Rudna mine 2013 

MW 3.8 moment tensor solution 

 Figure 5b Lower hemispherical projection 

(stereographic) of the 13 Oct. 2013 MW 6.6 

Gulf of California moment tensor solution. 

 

Apparently, the relatively slow collapse of void space in the mine building dominates the long 

period wave radiation and gives the major contribution of the seismic moment. The 40% 

deviatoric source component can be decomposed in a best double couple (DC) and a CLVD 

component, where the DC covers only about 13% of the size of the deviatoric tensor. The low 

frequency radiation pattern can therefore by interpreted in terms of an isotropic and CLVD 

component, where the CLVD is roughly vertically oriented. The source process may be 

interpreted in terms of a tensile crack as given in equation (23), by e.g. 

 

 
 

and thus 
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The collapsed volume ADN can be used to estimate the area affected by the collapse if the 

average height of the galleries in the mine is specified. For instance, assuming the average 

height of the gallery is 5m, the estimated area is about 35m x 35m. The estimated Poisson 

ratio of 0.28 and the derived Lame’s parameter may be used to check the consistency of the 

source interpretation with expected rock properties. Ford et al. (2008) studied a mine collapse 

event of a coal mine in Utah and estimated a vertical crack component of comparable relative 

strength.  

 

The second example concerns the moment tensor solution of an MW 6.6 earthquake in the 

Gulf of California that occurred on 13 October 2013 at a depth of 16 km. The global moment 

tensor solution in an USE system is (GFZ solution) is  

 

 
 

The isotropic component is constraint to zero during inversion. The seismic moment is 

estimated to as 9.1E18 Nm. The DC component of the solution is 99%, meaning that the 

rupture can be interpreted as pure shear crack, in this case a dominant left lateral strike slip 

mechanism (see Fig. 5b) with strike, dip and rake of the two nodal planes of  

 

 
 

 

2.4 Displaying different moment tensor components 
 

Displaying the elementary source components in a simple graph is not trivial. Hudson et al. 

(1989) and Riedesel and Jordan (1998) suggested diagrams for this purpose. The Hudson et 

al. (1989) plot is now often used. See Tape and Tape (2012) for a geometric comparison of 

source-type plots. Figure 6 displays the Hudson-type plot for the two moment tensors 

discussed in 2.3. The pure double couple moment tensor is centered at the origin and indicates 

a pure DC moment tensor. The Rudna mine solution is localized in the lower half-space 

indicating negative isotropic source components. It is very close to a pure linear dipole 

solution, which further shows that the source is close to a pure collapsing crack solution. 

Opening cracks would appear in the positive half-space close to the positive dipole marker. 

Pure explosions and isotropic implosions events appear on the vertical axis of the plot frame 

at the points marked by +ISO and –ISO, respectively.  
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Figure 6  Hudson plot for displaying source components. The filled circles represent the 

source components of the two examples in 2.3.  

 

 

3   Moment tensor representations: basic relations 
 

A moment tensor representation is a formula to explain the theoretical relation between 

ground motions at the stations and the moment tensor at the source. This usually considers the 

dynamic ground motion and the wave radiation pattern in the far field. However, the theory 

also explains static and near field (near source) ground motions as well as source-generated 

strain and stress variations in the Earth. Knowing the moment tensor representation (the 

forward problem), M can be obtained by inverting one or several of the observed field 

variables. Moment tensor inversion requires the availability digital time series of observed 

data, e.g. full seismograms or at least P and S phases, measured un-clipped on linear and 

predictable acquisition systems (e.g. calibrated systems), and the calculation or availability of 

accurate synthetic seismograms of the Earth (i.e. Green’s functions, denoted by G). Therefore, 

moment tensor inversion is more demanding from an observational and computational point 

of view. 

 

                     
 

Figure 7  Geometry of the problem. The Green’s tensor G describes the impulse response of 

the Earth at station x0 for a force excitation at ξ0. The point source is described by moment 

tensor M and source time function h(τ). The ground motion at the station, u(t), differs from the 

source excitation because of the filter effect of the Earth. The blue line indicates the ray path. 

The ray angle i is measured against the vertical; at the source i0 defines the take-off angle. 

Note that the global coordinate system is source centered and that the 1-direction of both 

systems is defined by the source station path. 
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The basic theory and representation of seismic sources is outlined in chapter 3 of the 

NMSOP-2 and in IS3.1. We build on this theory and concentrate on the point source moment 

tensor representation of ground displacement (see equation 21 in IS3.1, neglecting the single 

force term) 

 

 

 

(14) 

 

Equation (14) may alternatively be given in the frequency domain. The components of the 

ground displacement at location x are declared by un. M is the moment tensor of the seismic 

point source at location ξ,  and Gnp,q are spatial derivatives with respect to ξk of components of 

the Green’s tensor G. The Green’s tensor can be viewed as a structural term defined between 

ξ and x which describes all wave propagation effects including the elastostatic response of the 

Earth due to a singe force delta-excitation at point ξ measured at point x (Fig. 7). The first 

index of Gnp gives the direction of the ground motion at the station, and the second index 

gives the direction of the force at the source. It is common practice to denote the two 

independent coordinate systems of the receiver (x,t) and the source point (ξ,τ) as independent 

variables in G. Note that the following equivalence is used G(x,t;ξ,τ) = G(x,t-τ;ξ,0) (e.g., Aki 

and Richards, 2002). The components of the Green’s tensors are often named Green’s 

functions and may represent full seismograms. Later, we will introduce elementary 

seismograms as a special component of derivatives of the Green’s tensor.  

 

Equation (14) can be used to invert for moment tensors. Necessary condition is that observed 

seismograms have been deconvolved to ground displacement, velocity or acceleration (see 

IS11.1) and that Green’s functions have been calculated between the source and receiver point 

assuming an appropriate Earth model. We will give examples of Green’s function calculation 

below. Equation (14) can be written in matrix form, e.g. by considering the discrete form of 

the multichannel convolution integral (e.g., Krieger, 2011). We introduce notations d, G’ and 

y to indicate that the data and model vectors are not directly the tensor components defined in 

(14). They represent channels from more than one station (R is the maximal channel number), 

either in displacement, velocity or acceleration, and the derivatives or Green’s functions. In 

the time domain, d, G’ and y further contain individual time samples (denoted by subscript 

index of time variables) at the different components and at different stations. We find 

 

 
or equivalently  
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d = G
’
 y .                           (15)

     

Equation (15) is given in the form of a linear system of equations, and represents a discrete 

form of the multichannel convolution integral. d and y are the ‘data’ and ‘model’ vector, 

respectively, and G
’
 represents the coefficient matrix. Dimension of d, y and G

’ 
are 

determined by the length of the data seismograms, the number of channels and the length of 

the assumed source time function (Nτ), and can easily grow large. The data vector d consists 

of individual seismograms measured at different stations. These may be full seismograms, 

usually band-pass filtered, or windowed traces of specific wave phases. The coefficient matrix 

G
’
 is build from derivatives of the Green’s functions (filtered and processed in the exact same 

way as the data). The components of the model vector y contain the 6 x Nτ unknowns and are 

formed by holomorphic mapping of the moment tensor components into a model vector y, 

e.g.  

 

 

 

(16) 

 

Equation (15) is typically solved by the least squares (LS) inversion technique, either in the 

time domain (e.g. multichannel Wiener filtering described, e.g., in Wiggins and Robinson, 

1965; Sipkin, 1982) or in the frequency domain (e.g. generalized inverse using singular value 

decomposition, e.g., Menke 1989).  

 

The system (15) is over-determined, i.e. it has more independent equations (data) than 

unknowns, if for instance enough ground motion measurements are available from different 

distances and station azimuths, such that the azimuthal data coverage is sufficient to resolve 

the radiation pattern of the source. Also, the assumed source time duration should be much 

smaller than the length of the seismograms (or is parameterized by simple functions). 

Equation (15) is written for 27 independent components of the spatial derivatives of the 

Green’s tensor (3
rd

 order tensor, i.e. 3x3x3 components) if three component seismograms are 

inverted. Green’s functions in this general formulation would consider near and far field 

terms. The time history of each moment tensor component is assumed to be independent. 

Altogether, this leads to a large number of unknowns, which are possibly difficult to resolve. 

Additionally, the choice of waves types selected (near field, far field, body wave phases, 

surface waves, etc.), the frequency range, the type of applied filters as well as the weighting 

scheme applied to the equations may influence the outcome of the inversion. Therefore, the 

equations implemented in practice are often modified in comparison to equation (15). For 

instance, the number of unknowns is reduced, e.g. by simplifying the time history of the 

moment tensor or by specifying the type of source mechanism (e.g. non-explosive). The 

number of Green’s functions is reduced by taking advantage of Earth model symmetries 

and/or by neglecting near field terms. Additionally, damping and linear or non-linear 

constraints may be considered. This leads to modified schemes and equations.  

 

We discuss representations of the source time and moment rate function, the concept of joint 

inversion point source moment tensors and centroid locations, the simplified representation 

formulas for a layered Earth model and for the far field, formulas for amplitude spectra and 

specific representations if only body waves or peak amplitudes are used. Some words are 

given for the relative moment tensor inversion, the normal mode summation and how to 

calculate Green’s functions in practice.  
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3.1  Resolving the time dependency of moment tensors 

 

The components of the moment tensor are time dependent and are related to the time history 

of slip (or rupture) at the source. Equation (15), or the equivalent form in the frequency 

domain, invert for the independent time function of each moment tensor component. The 

problem is often ill-posed and source-time functions vary a lot between the components. 

Different approaches have been suggested to stabilize the source time function inversion. 

 

Often, a homogeneous rupture process is assumed, so that each moment tensor component has 

the same time history, e.g. h(t). Then, it is useful to factorize the time history and leave only 

the magnitude of the time-independent scaling factors of the moment tensor components, 

e.g. denoted by  
 

, leading to 

 

 

 

with                        

 

 

(17) 

 

where Td is the duration of the ramp-like source time.  

 

A common simplification is to use only far-field recordings. The far field displacement scales  

with the time derivative of h, i.e. 
 

, often denoted as moment rate function. 

 

Near field Green’s functions represent the component of the Green’s functions, which remain 

zero at all times far from the source. Near and far field terms can be derived by equating the 

derivative of G with respect to the source coordinate ξk, and separating the terms attenuating 

faster and slower. Lets assume ξ as independent variable. Both other intrinsic variables of G, x 

and t-τ, depend on the distance to the source, which itself depends on ξ. The derivative of G is 

equated by 

 

              

 

(18) 

 

t’ is the retarded time at the station. For body waves, ∂t’/∂ξk are components of the slowness 

vector of the phase. The first and second term are associated with the near-field and far-field 

term of G, associated by superscripts (n) and (f). Inserting (17) and (18) into (14) leads to the 

far field moment tensor representation as   

 

                

 

        (19) 

 

Equation (19) shows that displacement in the far field depends on moment rate function and 

the far field Green’s functions excited by a unit step at the point source. This is a general 

result, which explains that the far field body wave pulses from earthquakes are related to time 

derivatives of the source time function at the source. If the source time function is an ideal 

step function, the far field pulse is a pulse like.  If it is a ramp function of duration Td, the 

expected body wave pulse has the shape of a boxcar function of duration Td. 
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Figure 8  The Earth is described as a linear system with impulse response G(t) (Green 

function). The ground motion response u(t) at the station depends on G(t) and the excitation 

h(t) at the seismic source (input). The shape of the source radiation, i.e. the moment tensor, 

has been set unity in the 1D sketch (i.e. representing an explosive source as special case). 

 

 

The interrelation between source time function h(t) and displacement u(t) can also be 

understood as a filtering effect (Fig. 8). h(t) is the input signal. The linear filter is represented 

by G(t) as the elastic response of the Earth. The ground displacement at the station, u(t), is the 

filter output, and is equated as a convolution integral between the input and the filter. 

 

Before we give some examples on how to estimate moment rate functions in practice, we use 

equation (19) to derive and explain the centroid time τ0. The centroid time is a point source 

parameter, defining the centre time of the wave radiation process. It is defined from the long 

period approximation of (19), which is valid if the period is T>Td. A Taylors series expansion 

of the Green’s tensor in (19) around the centroid τ0 leads to 

 

        
 

The convolution integral is written in explicit form. The centroid time τ0 is then defined in 

such a way that the integral on the right-hand side vanishes (see Fig. 9 and Nabelek, 1984). 

For low-pass filtered seismograms the other higher order terms can be omitted, which gives 

the temporal (and spatial) point source representation of ground displacement as 

 

                                     

 

(20) 

 

Note that the far field displacements in (20), u
(f)

, becomes zero a long time after waves have 

passed through the observing point since Green’s functions in the far field are zero for large t. 

 

Although equation (20) is appropriate if the seismograms are low-pass filtered, many authors 

try to resolve the time history h(t) or, at least, the source duration. Although we have not yet 

strictly defined the spatial point source, we note that attempts to retrieve the source time 

functions of a spatial point source are not always useful. This is because a spatial point source 

moment tensor representation requires wavelengths larger than the size of the rupture plane. 

Resolving the source time is then only possible if the rise-time of the slip function at a single 

slip patch is longer than the rupture duration. 

  

A common method to resolve the time dependency of h(t) uses the linear representation in 

(15) and a two step inversion approach. Examples are given by Vasco (1989) or Cesca and 

Dahm (2007). The first inversion step estimates the independent time function of each 
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moment tensor component yk. This may be performed either in the time or in the spectral 

domain. The second inversion step aims to retrieve the dominant common time history h(t) 

presented in each component. A singular value decomposition of the matrix formed by the 

time dependent moment tensors is calculated. The matrix of orthogonal eigenvectors are 

weighted by the eigenvalues. The dominant time history common to all source components is 

then represented by the system of equations, which considers only the largest eigenvalue and 

sets all other eigenvalues to zero. More details can be found in e.g. Vasco (1989), Cesca and 

Dahm (2007) or Vavryczuk and Kühn (2012). 

 

Other methods use smooth parameterizations of the moment rate function and solve directly 

the non-linear inverse problem for dh/dt (equation 19). The two most common 

parameterizations are a series of boxcars or overlapping triangles (e.g., Tsai et al., 2005, for 

the Great Sumatra-Andaman earthquake). The boxcar parameterization and the iterative, 

linearized least-squares inversion is described in, e.g., Tanioka and Ruff (1997) or Lay and 

Wallace (1995). 

 

Tocheport et al. (2007) follow a different approach, which uses a stack of time-shifted and 

weighted body wave pulses at different stations minimized against an average source time 

function. The time shifts and weights are parameter of the inversion, which is solved by 

simulated annealing. Since the method requires isolated body waves, the method can only be 

applied to deep and intermediate earthquakes.  

 

If a point source inversion is performed and seismograms are lowpass filtered, the details of 

the source time function of most earthquakes cannot be resolved. In such a case, often, only a 

rise time of the source time function is estimated (equivalent to the duration of a boxcar 

moment rate function, or other simple shapes). For instance, different rise times are tested in a 

grid search approach and the one leading to the least residuals in the waveform inversion is 

finally chosen (e.g., Heimann, 2011). The grid search approach can be used to determine 

station-related, apparent source durations after a best point source moment tensor is estimated. 

This may be of interest for a quick and rough analysis of rupture directivity, i.e. to separate 

fault and auxiliary plane and to distinguish the direction of rupture. For instance, Cesca et al. 

(2010b) suggest to keep the seismic moment and source mechanism of the point source 

solution and to invert for the source duration at each station. The apparent source time 

functions can then be interpreted in terms of a simplified kinematic rupture model. Zhang et al 

(2013) use an iterative deconvolution and stacking method to retrieve apparent source time 

functions for the purpose of rapid source imaging.    

 

 

3.2  Representation of the centroid location (centroid moment tensor inversion) 

 

Equation (20) was already defined for a centroid time τ0 as origin time to calculate Green’s 

functions. Similarly to the derivation of τ0 spatial centroid coordinates ξ0 can be derived by 

means of a Taylors series expansion of Green’s functions. The problem is sketched in Fig. 9, 

a detailed derivaton can be found in, e.g., Nabelek (1984). Often, the hypocenter from the 

location of first phase arrivals is taken as a first approximation of the centroid. However, the 

hypocenter, which represents the point of rupture initiation (nucleation), may be tens or 

hundred kilometer away from the slip centroid if the earthquake was very large. Thus, the 

Green’s functions calculated for the parameters of the hypocenter may be wrong or at least 

have large phase shifts relative to observed data. This may bias the moment tensor results. 

Three approaches are in use to reduce the possible bias.  
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The first workaround, instead of estimating a best centroid position, is to introduce ad hoc 

static phase shifts to the observed waveforms before inversion, for instance by cross 

correlation between observed and synthetic data. To first order the phase shifts may correct 

the mislocation of the centroid and leave the amplitudes of seismograms unchanged. 

However, the estimation of phase shifts is a tricky task and may easily lead to undesired 

(incorrect) shifts, especially if automatic processing is performed.   

 

The more rigorous approach is to estimate the centroid during the inversion, which is named a 

centroid moment tensor inversion. The inverse problem has four additional unknowns 

(moment tensor components plus spatial and temporal coordinates) and becomes nonlinear. 

The centroid inversion can be setup similar to the Geiger method of a standard location 

(IS11.1). The nonlinear equations are approximated by the first linear terms of a Taylor series 

expansion around a starting solution. For instance, the hypocenter is used as starting location. 

The inversion for changes of source parameters is linear and solved employing a standard LS 

method. The solution is used to improve the starting solution, and the process is iteratively 

repeated until the changes become very small or the residuals are minimal. Since the 

equations for moment tensor inversion are linear, the moment tensor inversion itself is straight 

forward will always find an optimal solution. However, Green’s functions have to be re-

calculated for the updated centroid location during each iteration. The centroid location 

problem is nonlinear and will have the same problems of non-uniqueness and non-

convergence as standard earthquake location, especially since waveforms instead of first 

motions are fitted. In practice, depth centroid moment tensor inversion is thus often estimated 

by a grid search over a depth range in fixed steps combined with additional empirical static 

phase shifts at each station (limited to a fixed range of allowed phase shifts). Considering 

static phase shifts in addition to centroid depth location has the advantage that the impacts 

from incorrect Earth models or unaccounted 3D structure are reduced.   

 

 

 
 

Figure 9  a) Schematic sketch of an earthquake rupture and the definition of hypocenter, 

centroid, rupture plane and slip. Rupture and slip is parameterized by the moment tensor 

density, m, and its time history h(t). b) 1D visualization of spatial and temporal centroid 

coordinates to balance the third order spatial (∫V(ξk–ξ0k)mijdV=0) and temporal moments 

(∫τ(τ-τ0)(dh/dτ)dτ =0) to zero (principle is comparable to finding the center of gravity).  

 

 

The third approach to handle an unknown centroid location is to invert amplitude spectra in 

the first iteration. Amplitude spectra discard the phase information and are therefore less 

affected by incorrect centroid locations and Earth models. However, the amplitude spectra 
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cannot resolve the polarity of the source mechanism. This means an amplitude spectra 

inversion alone cannot resolve whether the seismic source was an explosion or an implosion, 

or whether the earthquake was a thrust or a normal faulting event. However, strike and dip of 

the fault and auxiliary planes are resolved. In order to resolve the polarity ambiguity either 

additional information is added to the inversion (e.g. first motion polarities), or the inversion 

is performed in a two-step approach, where amplitude spectra are inverted in the first 

iteration, and time-shifted full waveforms are considered in addition in a 2
nd

 iteration. The 2
nd

 

step may keep strike and dip of the first solution fixed. We will further discuss this third 

approach below.  

 

 

3.3  Representation in a layered Earth model 

 

If a layered Earth model is assumed, only 10 instead of 27 Green’s functions are needed. If 

additionally only far field seismograms (see IS3.1) are analyzed, the number of required 

Green’s functions is further reduced to 8. If only body wave phases are inverted (ray-

theoretical description), the number of Green’s functions further reduces to 3 greatly 

simplifying the inverse problem. The reduced set of specific Green’s functions are often 

combinations of the original Green’s functions defined under specific azimuth angles and are 

called elementary seismograms. We briefly outline the redundancy of Green’s tensors and the 

definition of elementary seismograms. 

 

Fig. 7 indicates two coordinate systems, a local one defined at the source location and a global 

one for the source-station geometry. Sensor components of seismometers are usually 

measured in an east–north–up system. The sensor components in the representation formulas 

and in Fig. 7 should be defined in the curvilinear, global source-centered system, e.g. by 

radial, transversal and down directions (distance r, azimuth φ and depth z). However, the 

moment tensor is usually defined for a local Cartesian system. At the pole, the local NED 

system,  with x=N, y=E and z=down, has the same directions as the local spherical system. 

Only in the specific case where the great circle path between source and receiver is along a 

meridian, i.e. the station is under azimuth φ’=0, the local and global directions would be 

identical. We denote the Green’s tensor in this specific case by G
0
. If the media is invariant to 

azimuthal rotations around z, e.g. layered Earth models, the Green’s tensor can be given as a 

rotated version of G
0
. We define unprimed and primed indices to define the unrotated (NED) 

and rotated azimuth directions. R(φ’) declares a matrix describing rotation with angle φ’ 

around the z direction. Using tensor rotation the Green’s tensor in the source-station system 

can be equated from G
0
 

  

               
(21) 

 

At φ’=0 the P-SV motion can only be excited by moment tensor components Mxx, Mzz, Mxz, 

Mzx and Myy (note that Myy comes into play only for near field displacements). Contrary, SH 

motion can only be excited by moment tensor components Mxy and Myx. This reduces the zero 

azimuth tensor to  
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Thus, in layered media, equation (14) reduces to  

 

                            
 

 

                         
 

(22) 

                            

 

 

with the following elementary seismograms 

 

                             

 

(23) 

          

Equation (22) and (23) represent the system of equations for a layered Earth. Only ten 

independent elementary seismograms g1 – g10 are needed, of which components g9 and g10 

contain only near field terms (e.g. Müller, 1985) and are neglected in most moment tensor 

studies of earthquakes.  
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3.4  Representation for body waves (peak amplitudes and amplitude ratios) 
 

The number of independent Green’s functions is further reduced if a ray theoretical 

approximation is valid, for instance, if we consider only far field body wave phases associated 

with a specific ray path (e.g., qP and qS phases). The ray direction (ray angle i, see Fig. 7), is 

related to the horizontal and vertical components of the slowness vector by 

 

(sx,sy,sz) = (sx,0,sz) = |s| (sin(i), 0, cos(i)).                          (24) 

 

If we consider in the far field that Mpq(ξ0) * Gnp,q(x,ξ0) ≈ dM(ξ0)/dt * Gnp(x,ξ0) sq + O(near 

field terms) (e.g. Dahm, 1996), the rotation of the zero azimuth Green’s tensor leads to further 

simplified moment tensor representation for the three modes of body waves phases: 

 

for qP 

 

G
0

z’x sx                 = g6  = Ie
P
 sin

2
i       

G
0

z’x sz + G
0

z’z sx = g7  = Ie
P
 2sini cosi  

G
0

z’z sz                 = g8  = Ie
P
 cos

2
i , 

 

for qSV 

 

G
0

r’x sx                 = g1  = Ie
SV

 cosi sini     

G
0

r’x sz + G
0

r’z sx  = g2  = Ie
SV

 (cos
2
i − sin

2
i)  

G
0

r’z sz                 = g3  =  −Ie
SV

 sini cosi ,    (25) 

 

and for qSH 

 

G
0

φ’x sy +G
0

φ’y sx = g4   =  Ie
SH

  sini 

G
0

φ’y sz  +G
0

φ’z sy = g5  =  Ie
SH

  cosi , 

          

 

where Ie
P
, Ie

SV
 and Ie

SH
 now define elementary wave mode phases (e.g. seismogram wavelets 

containing specific body wave phases) which consider the geometrical divergence, the 

attenuation and the travel time of the phase along the ray path between source and receiver. 

Note that G
0

φ’x sy=0 and G
0

φ’z sy=0 (see Dahm, 1996). Insertion in equation (14) leads to (see 

also Box 9.13 in Aki and Richards, 2002)  
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(26) 

 

Note that for each body wave phase of qP, qSV or qSH type only one elementary “phase-

wavelet” enters the moment tensor representation. Equation (26) forms the basis for the well 

known polarity method, where for each phase only the polarity is considered to constrain the 

focal solution of a double couple source (see chapter 3). It is also the basis for a moment 

tensor inversion based on generalized rays (e.g. Nabelek, 1984), peak amplitude (e.g. Ebel 

and Bonjer, 1990), and amplitude ratios or the relative moment tensor inversion (e.g. Dahm, 

1996).  

 

Equation (26) can be used for body wave peak amplitude moment tensor inversion of weak 

and moderate events with short source duration. For instance, peak amplitudes or waveform 

moments (=displacements integrated over the first pulse) of low pass filtered P and S phases 

may be measured and used as input data for inversion. Low pass filtering with a passband 

below the corner frequency of the event has to be performed to avoid amplitude distortion 

from rupture directivity. Seismograms need to be deconvolved to ground motion to estimate 

true seismic moments. The geometrical ray parameters, i.e. the ray azimuth and take-off 

angle, are typically taken from a location program where ray tracing is performed. Although 

elementary seismograms Ie are reduced to a scalar factor comprising geometrical and intrinsic 

attenuation, and therefore might be estimated by ray tracers during location, it is 

recommended to extract Ie from complete synthetic seismograms which are filtered in the 

same way as the observed seismograms. This may avoid bias from apparent polarity flipping, 

a problem that may occur if short period stations were used. The method has been used 

occasionally for short period local and teleseismic earthquakes studies but is now of lesser 

relevance since broadband data are often available. Data problems were often difficult to 

identify since observed and synthetic waveforms were not directly compared. In order to 

further stabilize the method, pure double couple constraints (shear crack constraints) can be 

introduced.  

A derivative of the peak amplitude method is the amplitude ratio method to determine focal 

solutions for double couple sources. Amplitude ratios between P, SV and SH phases are used 

as input data, together with P phase polarities, and the associated relations between the 
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elementary seismograms Ie of the different wave modes are considered from ray theory.  A 

commonly used Fortran package is focmec (by A. Snoke, see http://www.iris.edu/ 

pub/programs/focmec). 

 

 

3.5  Relative moment tensor inversion using multiple events (body wave method) 

 

To locate earthquakes multiple event inversions were developed. Well-known examples are 

the joint hypocenter, the master event location and the hypoDD methods (IS11.1). A moment 

tensor approach similar to the master event location was developed by e.g. Dahm (1996). The 

method is of interest if earthquake clusters are analyzed. Spatially clustered seismicity may 

occur for example during aftershock sequences, for earthquakes swarms in volcanic and 

geothermal areas, or at specific structures at tectonic faults or subducted plates (e.g., deep 

earthquake clusters). The concept of the relative moment tensor inversion is to use a reference 

mechanism (reference event) from the cluster, which is fixed during inversion, and to estimate 

the moment tensors of the studied events relative to the reference event. Since the studied and 

the reference earthquake from a tiny cluster have similar elementary seismograms Ie, the Ie 

factors can be eliminated from equation (26). Geometrical and intrinsic attenuation, 

amplification from site effects or unknown instrument functions have thus no or only a minor 

influence on the moment tensor result. The method is further described in Dahm (1996) and 

Dahm and Brandsdottir (1997). Necessary pre-requisites for application are that  

(a) the mechanism of the reference event is known a priori,  

(b) the events are tightly clustered and seismograms are low-pass filtered, so that events can 

be regarded as temporal and spatial point sources within approximately one wavelength 

from the reference event, 

c) seismograms are low-pass filtered prior to measuring peak amplitudes. The corner 

frequency of the low-pass filter should be in the range of the corner frequency of the 

largest studied event of the cluster (potentially limiting the size of the smallest event that 

can be analyzed). 

Dahm (1996) describes an extension of the method, for which the necessity of a fixed 

reference mechanism can be dropped when the radiation patterns within the earthquake 

cluster differ sufficiently.  

 

 

3.6  Full waveform method using amplitude spectra 

 

Full waveform methods considering broadband seismograms are nowadays routinely in use to 

study moderate and strong earthquakes at regional and teleseismic distances. As discussed in 

the previous paragraphs unconsidered phase shift between Green functions and data may be 

present if the centroid coordinates are incorrect or if the Earth model to calculate Green’s 

functions is too simplified. Amplitude spectra inversions neglect the phase information. In the 

frequency domain, equation (15) can be written as  

 

 

  

,                                           (27) 

 

http://www.iris.edu/
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where Re{} and Im{} are the real and imaginary part of the complex spectrum and j is the 

imaginary unit. The absolute value of the spectral seismogram amplitudes are then 

 

 

 

.                                      (28) 

 

The amplitude spectrum (28) is a non-linear function f of the moment tensor components y. 

The problem can be linearized and solved by an iterative inversion scheme (e.g., the gradient 

method). Equation (28) is linearized by means of the linear term of a Taylors series expansion 

around a starting moment tensor solution. During each iteration, changes of moment tensor 

components are solved by minimizing the residual data vector. Local minima can be easily 

avoided if different starting models are considered by means of a grid search, e.g. represented 

by double couple starting solutions with different orientations. Examples are provided in e.g. 

Dahm et al. (1999 and Cesca et al. (2006). 

 

Amplitude spectra inversion is in generally more robust and independent of phase 

misalignments as long as the time windows taken for inversion contain the phases modeled by 

Green’s functions. The most serious drawback of amplitude spectra inversion is that the 

polarity of the source mechanism is not used resulting in a set of two indistinguishable 

moment tensor solutions with common nodal planes but different polarities. Therefore, 

amplitude spectra inversion is often implemented as a first step inversion, which is refined in 

a second step by considering additional constraints. For instance, polarity information of first 

onsets of body wave phases may be used to resolve the polarity ambiguity. A more elegant 

waveform approach is to use the results from the first inversion to estimate phase shifts at 

selected high quality stations, e.g. by means of cross correlation between observed and 

predicted waveforms, and to add these time domain traces in a second inversion step (e.g. 

Heimann, 2011; Cesca et al., 2010). The second step may either use time traces of phase 

corrected waveforms only or may be run as a weighted mixed input inversion considering 

amplitude spectra at all stations and time traces at selected key stations only. Since 

computation time and memory is not an issue any more we recommend the two-step 

inversion, which can easily be automated and reduces the problem of misaligned phases due 

to incorrect Earth models or earthquake locations. 

 

 

3.7  Moment tensor representation using eigen-vibrations and eigen-modes of the Earth 

 

The moment tensor representation calculates ground displacement as a sum of weighted 

Green functions (elementary seismograms), where weights are represented by moment tensor 

components. How the Green’s functions are calculated is not specified. Most often, surface or 

body waves are used for moment tensor inversion. Body and surface waves in any finite body 

can be understood as a sum over a large number of eigenvibrations of this body. Therefore, 

Green’s functions and synthetic seismograms may be calculated by summing up normal 

modes of the Earth. Such an approach was used by the first systematic global centroid 

moment tensor program led by A. Dziewonski in the early 1980’s at Harvard University 

inverting fundamental modes and long period surface waves (> 135 s). Other types of 

representation formulas may be derived for the normal mode theory, which are not further 

specified here (see, e.g., Dahlen and Tromp, 1998). Normal mode theory, for a long time, has 

been the most complete approach to calculate synthetic seismograms and Green’s functions, 

since self gravitation, Earth rotation, Earth ellipticity and pre-stress are all included. 
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3.8 Codes to calculate Green functions for moment tensor inversion 

 

Depending on the mode and type of selected data different computer codes can be 

recommended to calculate synthetic Green functions. The list below is incomplete and 

represents a selection based on the author’s experience.  

 

Table 2 Computer codes to calculate synthetic seismograms 
 

Input data Type of code Name of code Link, reference 

Local and 

regional full 

waveforms 

(body and 

surface 

waves), high 

frequencies. 

Reflectivity, layered Earth 

models, anisotropy & 

intrinsic attenuation, 

receiver at depth 

Qseis (fortran 

code) 

Wang (1999), ftp://ftp.gfz-

potsdam.de/pub/home/turk/wang/q

seis2006-code+input.zip  

Global and 

regional full 

waveforms 

Numerical integration of 

the SODE (integration of 

minors)  

GEMINI 

(fortran code) 

Friederich and Dalkomo (1995), 

http://www.quest-

itn.org/library/software/gemini-

greens-function-of-the-earth-by-

minor-integration 

Global and 

regional full 

waveforms, 

free 

oscillations, 

tsunami, 

infrasound 

Hybrid method (analytical 

and numerical integration) 

for layered Earth models. 

self gravitation, ocean 

layer, atmospheric layer, 

Earth normal modes, long 

time series. 

QSSP (fortran 

code) 

Wang, R. (1997), ftp://ftp.gfz-

potsdam.de/pub/home/turk/wang/q

ssp2010-code+input.rar 

Free 

oscillations, 

long period 

surface 

waves 

Numerical integration, 

layered Earth models, self 

gravitation, anisotropy, 

attenuation. 

MINEOS 

(fortran) 

http://www.geodynamics.org/ci

g/software/mineos  

Full 

waveforms 

Numerical approach, 3D 

Earth models, ellipticity, 

rotation, self gravitation, 

attenuation.  

SPECFEM3D http://www.geodynamics.org/ci

g/software/specfem3d-globe  

 

Green’s function can be pre-calculated for specific Earth models (e.g. standard models) and 

stored in Green’s function databases. They can then be shared over the internet, e.g. on the 

KINHERD web page (http://kinherd.org), from where they can be downloaded by users, for 

instance if computing power or facilities are not available to build own databases. Exercise 

EX 3.6 gives an example, referring to moment tensor inversion based on the Pyrocko package 

(http://emolch.github.com/pyrocko) or the Kiwi Tools (http://kinherd.org/kiwitools) (e.g. 

RAPIDINV, see http://kinherd.org/rapidinv), which can directly use these pre-calculated 

databases.  

 

 

 

ftp://ftp.gfz-potsdam.de/pub/home/turk/wang/qseis2006-code+input.zip
ftp://ftp.gfz-potsdam.de/pub/home/turk/wang/qseis2006-code+input.zip
ftp://ftp.gfz-potsdam.de/pub/home/turk/wang/qseis2006-code+input.zip
ftp://ftp.gfz-potsdam.de/pub/home/turk/wang/qssp2010-code+input.rar
ftp://ftp.gfz-potsdam.de/pub/home/turk/wang/qssp2010-code+input.rar
ftp://ftp.gfz-potsdam.de/pub/home/turk/wang/qssp2010-code+input.rar
http://www.geodynamics.org/cig/software/mineos
http://www.geodynamics.org/cig/software/mineos
http://www.geodynamics.org/cig/software/specfem3d-globe
http://www.geodynamics.org/cig/software/specfem3d-globe
http://kinherd.org/
http://emolch.github.com/pyrocko
http://kinherd.org/kiwitools
http://kinherd.org/rapidinv
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4   Moment tensor inversions schemes in practice 

 

Solving equation 3 in the time or in the frequency domain includes several steps from data 

preparation and Green’s function calculation to solving a system of linear equations. The 

reliability and evaluation of the outcome, i.e. a moment tensor, depends not only on the 

datasets and a formal error estimation but on many additional factors, where the most 

important are listed below.  

 

1) Data acquisition and pre-processing  

 selection of seismograms with good signal-to-noise ratio 

 unclipped signals  

 good azimuthal coverage 

  removing mean value and linear trends, detection of data gaps 

  correcting for instrument response, converting seismograms to displacement, velocity 

or acceleration 

 selection of waveforms, e.g., P, S and surface wave windows  or full seismograms  

 low-pass filtering appropriate to the dataset to remove high-frequency noise and 

estimating the corner frequency of the source to safely satisfy the point source 

approximation  

 

2) Calculation of accurate synthetic Green functions for specific  

 earth model 

 location of the source 

 receiver position  

 

3) Inversion and interpretation of the inversion result 

 decision for an inversion algorithm to solve eq. 3 or eq. 12 

 test of resolution for all free parameters of the source model 

 decomposition of the moment tensor, e.g., into best double couple plus CLVD  

 

The inversion may be performed in the time or frequency domain either using a singular value 

decomposition to calculate the generalized inverse matrix or, e.g., by LU decomposition. We 

do not provide details: the reader may find more information and software in Press et al. 

(2007)  (chapter 2, especially 2.3). A general introduction and overview on data inversion can 

be found in the textbooks of Menke (1989) and Aster et al. (2013). Linearization and iterative 

solution strategies using one specific or a set of start models are required for instance to solve 

eq. 12 (amplitude spectra based solution). 

 

Care must be taken to match the synthetic and observed seismograms. Alignment of observed 

and synthetic waveforms is facilitated by cross-correlation techniques. In most moment-tensor 

inversion schemes, focal depth is assumed to be constant. The inversion is done for a range of 

focal depths and the best solution is assumed to be the with the lowest misfit. 

 

Dufumier and Cara (1995) and Dufumier (1996) give a systematic overview for the how Mij 

results are affected by differences in the azimuthal coverage and by using only P waves, P 

plus SH waves or P and SH and SV waves for the inversion with body waves.  Their results 

indicate the most important factor is good azimuthal coverage, followed by the combined use 

of P and S phases (and Love and Rayleigh waves). A systematic overview with respect to the 

effects caused by an erroneous velocity model for the Green function calculation and the 
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effects due to wrong hypocenter coordinates can be found in Šilený et al. (1992), Šilený and 

Pšenčik (1995), Šilený et al. (1996) and Kravanja et al. (1999). 

 

The dynamical boundary conditions on the solid free surface imply that the moment tensor 

elements Mxz (= M13) and Myz (= M23) vanish as the source location approaches the Earth’s 

free surface or the seafloor. As a result, these vertical dip-slip components are not well 

constrained for shallow-focus sources. A discussion regarding the related uncertainties for the 

determination of focal mechanisms, the centroid depth but also the scalar seismic moment can 

be found in Bukchin et al. (2010). 

 

Depending on the dataset the isotropic component, Miso, may be difficult to resolve. 

Therefore, an isotropic component with strength of less than 10% of the strength of the full 

moment tensor is often considered to be insignificant. A better approach is to test the 

statistical significance, e.g. by means of an F-test. 

 

Significant CLVD components are often reported for large intermediate-depth and very deep 

earthquakes. In many cases, however, it can be shown that these may be caused by the 

superposition of several sub-events with different double-couple mechanisms (Kuge and 

Kawakatsu, 1990; Frohlich, 1995; Tibi et al., 2001). 

 

How good is a specific solution? Several standard approaches exist to get an answer to this 

question. The numerical stability of the inversion can, for instance, be checked with the 

condition number. This number is defined as the ratio between the square root of the largest 

eigenvalue to the smallest eigenvalue of the generalized inverse and is an outcome of 

calculating the generalized inverse using a singular value decomposition method. It indicates 

the overall sensitivity of the solution to errors in the data.  For iterative inversion schemes 

straightforward error estimation techniques are not applicable. One way to estimate the errors 

in the solutions is the use of many start models within reasonable limits and subsequent 

evaluation of the scatter in the resulting model parameters. Jackknifing and bootstrapping 

(see, e.g., Shao and Tu, 1995) are also widely used methods to test the stability of solutions, 

especially when non-linear iterative schemes are used (e.g., Heimann, 2011; Zahradník and 

Custódio, 2012). See also Valentine and Trampert (2012) for a recent assessment of 

uncertainties for centroid moment tensor determinations. 

 

 

5   Free software packages for moment tensor inversion 

 
Here we list freely available software packages for moment tensor inversion. We mention 

briefly differences regarding the distance range and details of the inversion outcome. 

 

 

 RAPIDINV (Cesca, 2010), based on the Kiwi Tools (Heimann, 2011): Time and 

frequency domain inversion code in the regional and teleseismic distance range using 

full waveform Green’s function databases. Includes inversion for point source, simple 

finite sources and extensive resolution testing, see http://kinherd.org/rapidinv and 

exercise 3.6 of the NMSOP-2: „A practical in moment tensor inversion using the Kiwi 

tools“ (http://gfzpublic.gfz-potsdam.de/pubman/item/escidoc:130023:6) 

 VOLPIS (Cesca and Dahm, 2007). A stand-alone frequency domain inversion code 

(fortran) for the study of time-dependent source parameters for long period volcanic 

http://www.kinherd.org/
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signals. Single forces and dipole forces (moment tensors) can both be inverted 

(http://kinherd.org/volpis).  

 Time-Domain Moment Tensor INVerse Code (TDMT-INVC) by Dreger (2003), for a 

description and software download see www.orfeus-eu.org/pub/software 

 Regional moment tensor inversion code together with tutorial and examples by B. 

Herrmann  see www.eas.slu.edu/eqc/eqccps.html 

 ISOLA-GUI which is a matlab GUI for regional moment tensor inversion written by 

J.Zahradnik and E. Sokos, see http://seismo.geology.upatras.gr/isola 

 mtinvers (Dahm et al., 2007) is a stand-alone fortran code for regional and teleseismic 

point source inversion. Inversion can be constrained to opening/closing cracks, double 

couple source, shear source (http://kinherd.org/mtinvers). 

 Mtinv package written by C. Ammon and G. Randall for point source moment tensor 

inversion in time domain in the regional distance range, see  

http://eqseis.geosc.psu.edu/~cammon 

 MT5 package (McCaffrey et al., 1991) is a PC based software package for the 

inversion of teleseismic body waves for moment tensor solutions or double couple 

fault plane solutions, see http://ees2.geo.rpi.edu/rob/mt5 and can also be found in the 

IASPEI Software Library, number 4.  

 

Differences between the available packages arise from the implementation of constraints in 

the inversion either to stabilize the solution or for special purposes. As was mentioned in the 

subsection on problematic sources and moment tensor decomposition it is for many problems 

desirable to constrain the moment tensor to its deviatoric part by setting the trace of the 

moment tensor equal to zero. In this case only 5 moment tensor elements are left and the 

corresponding linear equation system can be found by recombining terms in the Eqs.s (3) and 

(6,7). This problem is still a linear one. Other constraints used are: double couple, tensile 

crack or a mixed situation. In these cases the inversion becomes non-linear and iterative 

inversion schemes have to be used. 

 

The offered codes differ in several aspects. In the teleseismic distance range differences arise 

mainly regarding the computation of full wavefield Greens functions and the use of complete 

seismograms and/or if the inversion is performed for specific body wave phases like P and S 

and if surface waves are included. Here again an important detail is if the flat Earth 

transformation (Chapman 1973; Müller, 1977; Bhattacharya, 1996) is used to account for the 

sphericity of the Earth or if full wavefield Green’s functions are calculated directly for the 

spherical Earth or if normal modes are used (see chapter 2.5 for freely available codes for the 

computation of full wavefield Green’s functions). 

 

In the regional distance range more codes are available to calculate full wavefield synthetics 

for layered media. The use of a regionally valid velocity model is critical (e.g. Donner et al., 

2013). It should be mentioned that many velocity models used for location may show 

problems when used to produce longperiod surface waveforms because they may have been 

tuned to fit the crustal and upper mantle P-wave velocities not the S-wave velocities in the 

uppermost crustal layers.    

Some codes use a full grid search regarding centroid time, centroid location and centroid 

depth: most codes at least search for a best fitting centroid depth. 

 

Exercise EX 3.6 of the NMSOP-2 (DOI: 10.2312/GFZ.NMSOP-2_EX_3.6) provides a 

tutorial on how to setup Green’s function databases and the MT inversion by using the Kiwi 

Tools.   

http://www.orfeus-eu.org/pub/software
http://seismo.geology.upatras.gr/isola
http://eqseis.geosc.psu.edu/~cammon
http://ees2.geo.rpi.edu/rob/mt5
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6   Moment tensor catalogues 
 

In the late 1970s and early 1980s the group headed by A. Dziewonski at Harvard University 

began routine determination of the seismic source parameters of all earthquakes with 

magnitude ≥ 5.5 using the centroid moment tensor (CMT) method (Dziewonski et al., 1981). 

This inversion tries to fit simultaneously the very long-period body wave train from the P 

arrival until the onset of the fundamental modes and mantle waves with periods longer than 

135 s using synthetics produced by normal mode summation (see chapter 2.6). In addition the 

best point-source parameters (centroid epicentral coordinates, centroid depth and origin time) 

and the six independent moment tensor elements were published.  

The Harvard group maintained, from 1981 to 2006, an extensive catalog of centroid moment-

tensor (CMT) solutions for strong (mainly M  5.5) earthquakes since 1976. This catalog is 

now maintained and continued by the Global Centroid Moment Tensor Project at Lamont-

Doherty Earth Observatory (LDEO) of Columbia University. Their solutions, as well as quick 

CMT solutions of recent events, down to moment magnitudes MW  4.5 can be viewed at  

http://www.globalcmt.org. The products are also distributed by IRIS (see 

http://www.iris.edu/spud/momenttensor) and other data centers like the USGS. Harvard CMT 

solutions for the very largest, gigantic earthquakes (e.g., Mw 9.3 Sumatra, 26 December 

2004) turned out to be systematically deficient (Stein and Okal, 2005; Tsai et al., 2005), and 

provisions have now been made to use longer periods for mega earthquakes.  

As mentioned above the CMT inversion procedure seeks a solution for the centroid location 

of the earthquake. This centroid location may, for very large earthquakes, significantly differ 

from the hypocenter location based on arrival times of the first P-wave onsets. This initial 

hypocenter location corresponds to the place where rupture started. Therefore, the offset of the 

centroid location relative to the hypocentral location gives a first indication on fault extent and 

rupture directivity. In the case of the August 17, 1999 Izmit (Turkey) earthquake the centroid 

was located about 50 km east of the P-wave hypocenter. The centroid location coincided with 

the area where the maximum surface ruptures were observed. 

 

Several institutions publish in recent years moment tensors determined using the  W-phase 

(Kanamori, 1993; Kanamori and Rivera, 2008; Duputel et al., 2012).  The ultra-longperiod W 

phase follows direct P on very broadband seismograms. Its use has the advantage to provide 

correct spectral levels for scalar moment determination also for slow ruptures what is 

important due to their high tsunami potential. See eost.u-strasbg.fr/wphase for a description of 

the method, the catalog and a list of further publications. 

 

Several other institutions offer regularly moment tensor solutions. The following list is not 

complete and what is described may change in detail. 

 

One of the most complete regional archives is published by Berkeley Seismological 

Laboratory (BSL) for Northern California based on inversion of full waveform synthetics 

mainly of mid- and longperiod surface waveforms (Dreger and Helmberger (1993) and 

Dreger (2003). The catalog reaches back till 1993. More references to methodological work 

and example cases can be found on the webpage seismo.berkeley.edu/mt .   

Another regional catalog for Southern California is published by the Southern California 

Earthquake Data Center (SCEC) since 2000 and can be found at http://www.data.scec.org. 

 

GEOAZUR-SCARDEC method. GEOAZUR offers near realtime moment tensor solutions 

for larger worldwide events using a body wave deconvolution method (Vallee et al., 2011). 

http://www.globalcmt.org/
http://www.iris.edu/spud/momenttensor
http://eost.u-strasbg.fr/wphase
http://www.data.scec.org/
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An estimate for a point source source time function and plots showing the fit of synthetics and 

observed waveforms for P and SH are provided.  

See https://geoazur.oca.eu/spip.php?article1236  

 

GFZ worldwide moment tensor solutions are distributed since 2011. Solutions are based on a 

modification of the code of Dreger and Helmberger (1993) and Dreger (2003) and are given 

in text or graphical form. A catalogue can be found at http://geofon.gfz-

potsdam.de/eqinfo/list.php?mode=mt 

 

A fully automatic global moment tensor catalogue, since 2012, is provided by GFZ using the 

Kiwi Tools package. Uncertainties are evaluated using bootstrapping methods. Kinematic 

source solutions of the extended source are calculated for selected events (see Heimann, 

2011). Catalogue can be found under http://kinherd.org/quakes/ 

 

The National Observatory of Athens (NOA) provides fast moment tensor solutions for events 

in the Mediteranean Sea region down to a magnitude of about Mw 3.5. The ISOLA software 

(Sokos and Zahradník, (2008, 2013). is used and a grid search to find the best centroid 

parameters is performed. Plots showing the fit of the synthetics to the waveforms are 

provided. See also  

http://bbnet.gein.noa.gr/HL/seismicity/moment-tensors 

 

INGV uses the Dreger (2003) time domain method to invert for moment tensors of earthquake 

in Italy and the surrounding regions. Solutions are provided in form of pdf files showing 

moment tensor solutions in text and graphical form. The quality of the solution can be judged 

from the fit of longperiod synthetic and data waveforms together with maps showing the 

azimuthal distribution of stations. See http://cnt.rm.ingv.it/tdmt.html 

 

INGV Bologna provides a different catalog for earthquakes larger than Mw 4.0 for events in 

Italy and larger than Mw 4.5 for events in the wider region based on an adaption of the 

centroid moment tensor method to model mid-period surface waves (Pondrelli et al, 2006, 

2011 ). Solutions since 1976 are provided in text and graphical form. 

 

The SED/ETHZ provides an automatic regional moment tensor catalogue for the entire 

European-Mediterranean region. Until 2010 the method was based on Braunmiller et al. 

(2002) and Bernardi et al. (2004). The reviewed catalog covers 1999 to 2006, the automatic 

MT catalog 2002-2010 (see http://www.seismo.ethz.ch/prod/tensors/index). The current 

regional MT determination covers Switzerland and vicinity and is based on the Dreger code 

and is described in Clinton et al., 2006).  

 

Regional moment tensor solutions for Spain and its surroundings are provided by IGN, see 

e.g.  http://www.ign.es/ign/layoutIn/sismoPrincipalTensorZonaAnio.do 

Solutions are provided in text (Spanish language) and graphical form. A number for the 

variance reduction and waveform fits are provided. 

 

The USGS provides several types of moment tensor solutions. The „fast“ moment tensor 

solutions are based on body wave inversion only. The USGS centroid moment tensors are 

resulting from longperiod full waveform inversion. Additionally the USGS publishes W-

phase moment tensors from inversion of the ultra-longperiod W phase following direct P on 

very broadband seismograms. The latter has the advantage to provide correct spectral levels 

https://geoazur.oca.eu/spip.php?article1236
http://geofon.gfz-potsdam.de/eqinfo/list.php?mode=mt
http://geofon.gfz-potsdam.de/eqinfo/list.php?mode=mt
http://bbnet.gein.noa.gr/HL/seismicity/moment-tensors
http://cnt.rm.ingv.it/tdmt.html
http://www.seismo.ethz.ch/prod/tensors/index
http://www.ign.es/ign/layoutIn/sismoPrincipalTensorZonaAnio.do
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for scalar moment determination also for slow ruptures important due to their tsunami 

potential. See the USGS homepage (in the moment under reconstruction) 

 

An interesting approach using a systematic grid search over possible time and spatial centroid 

positions in the regional distance range and subsequent moment tensor inversion on 

longperiod time domain waveforms is used by H. Kawakatsu (ERI Tokyo University) and is 

published on http://wwweic.eri.u-tokyo.ac.jp/GRiD_MT/ . 

 

The following table summarizes specific aspects of the published catalogs. 

 

Table 3 list of published moment tensor catalogs 

 
Service Range Data, bandwidth Greens 

functions 

Constrain

ts 

Additional 

parameter 

Error 

bounds 

Inversion 

type 

CMT worldwide 

since 1976 

M > 5 

long-period  BW and SW, 

40-150 s 

normal 

mode 

summation 

deviatoric centroid 

location  

and time 

provided 

for MT 

elements 

manually 

revised 

GFZ worldwide 

since 2011 

M > 4.5 

complete seismograms 

4.5<M<5.5  

BW and SW30-80 s  

5 <M <6.5  

BW 40-100 s, SW 60-150 s  

6<M<7 

BW 60-150, SW 80-200 s  

M > 6.5 

BW and SW 90-300 s  

M > 7.5 

BW and SW 200-600 s  

M > 8.5 

BW and SW 200-1000 s  

reflectivity 

method 

deviatoric centroid 

depth 

 automatic 

plus  

revised 

GFZ-

KIWI 

worldwide 

since 2012 

M > 5.5 

BW and SW  

20-100 s 

Gemini & 

QSSP 

deviatoric centroid 

location and 

time 

yes automatic 

USGS worldwide Longperiod BW ray 

synthetics 

deviatoric centroid 

depth 

variance 

reduction  

automatic 

and 

revised 

USGS 

CMT 

worldwide Complete longperiod 

waveforms 

full 

waveform 

synthetics 

deviatoric centroid 

location and 

time 

variance 

reduction 

 

automatic 

and 

revised 

USGS, 

ERI 

worldwide 

since 1990 

M>6.5 

W-phase 

5.5<M<6.5 50-150 s  

6.5<M<7 

100-500 s 

7<M<7.5 100-600 s  

7.5<M<8 200-600 s  

M >= 8.0 200-1000 s  

full 

waveform 

synthetics 

deviatoric centroid 

location and 

time 

variance 

reduction 

automatic 

and 

revised 

BSL regional 

NorthernC

alifornia) 

since 1993 

M>3.5 

complete  long-period 

waveforms 

M>3.5, 10-50 s 

3.5<M<5 

20-50 s 

M>5  

20-100 s 

full 

waveform 

synthetics 

deviatoric centroid 

location and 

time 

variance 

reduction, 

compari-

son of 

data and 

synthetics 

Automatic 

and 

revised 

SCEC regional 

(southern 

California

) 

since 2000 

M>3.5 

complete long-period 

waveforms 

full  

wave form 

synthetics 

deviatoric Centroid 

location and 

time 

variance 

reduction, 

compari-

son of 

data and 

synthetics 

automatic 

and 

revised 

INGV regional 

(Mediterra

nean) 

M > 3.5 

SW spectra and  waveforms full 

waveform 

synthetics 

deviatoric centroid 

location and 

time 

compari-

son of  

data and 

synthetics 

automatic 

and  

revised 

http://wwweic.eri.u-tokyo.ac.jp/GRiD_MT/
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SED regional 

(Switzerla

nd  and 

vicinity) 

since 1999 

M > 3.0 

complete long-period 

waveforms 

full 

waveform 

synthetics 

deviatoric centroid 

depth 

comp. of 

data and 

synthetics 

automatic 

IGN regional 

(Spain and 

surround-

ings) 

since 2002 

M > 3.5 

complete long-period 

waveforms 

M>3.5  

10-50 s 

3.5<M<5 

20-50 s 

M>5  

20-100 s 

full 

waveform 

synthetics 

deviatoric  variance 

reduction,   

compari-

son of 

data and 

synthetics 

automatic 

ERI regional 

(Japan) 

since 2003 

M > 3.5 

long-period 

complete waveforms 

LP at 10 s 

full 

waveform 

synthetics 

deviatoric centroid 

location and 

time 

variance 

reduction 

automatic 
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