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1   Introduction 
 
The concept of first order moment tensor provides a complete description of equivalent body 
forces of a general seismic point source (see Figure 1). A source can be considered a point 
source if both the distance D of the observer from the source and the wavelength  of the data 
are much greater than the linear dimension of the source. Thus, moment-tensor solutions are 
generally derived from low-frequency data and they are representative of the gross properties 
of the rupture process averaged over tens of seconds or more.  The double-couple source 
model describes the special case of shear dislocation along a planar fault. This model has 
proven to be very effective in explaining the amplitude and polarity pattern of P, S and 
surface waves radiated by tectonic earthquakes. In the following, we briefly outline the 
relevant relations (in a first order approximation) between the moment tensor of a seismic 
source and the observed seismogram. The latter may be either the complete seismogram, one 
of its main groups (P, S or surface waves), or specific features of seismograms such as peak-
to-peak amplitudes of body waves, amplitude ratios or spectral amplitudes. Then we outline a 
linear inversion scheme for obtaining the moment tensor using waveform data in the time 
domain. Finally, we will give an overview of some useful programs for moment-tensor 
analysis. Applications of moment-tensor inversions to the rapid (i.e., generally within 24 
hours after the event) determination of source parameters after significant earthquakes will 
also be described.  
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2   Basic relations 
 
Following Jost and Herrmann (1989), the displacement d on the Earth’s surface at a station 
can be expressed, in case of a point source, as a linear combination of time-dependent 
moment-tensor elements Mkj (,t) that are assumed to have the same time dependence 
convolved (indicated by the star symbol) with the derivative Gskj (x,,t) of the Green’s 
functions with regard to the spatial j-coordinate: 
 
   )t,(G)t,(M),t(u j,skjks ξ,xξx  .                    (1) 

 
us (x, t): s component of ground displacement at position x and time t 
Mkj (,t): components of 2nd order, symmetrical seismic moment tensor M 
Gskj (x,,t): derivative of the Green's function with regard to source coordinate j 
x: position vector of station with coordinates x1, x2, x3 for north, east and down 
: position vector of point source with coordinates 1, 2, 3 for north, east and down 
 
Eq. (1) follows from the representation theorem in terms of the Green´s function (see 
Equations (21) and (38) in IS 3.1).The Green’s function represents the impulse response of 
the medium between source and receiver and thus contains the various wave propagation 
effects through the medium from source to receiver. These include energy losses through 
reflection and transmission at seismic discontinuities, anelastic absorption and geometrical 
spreading. The Mkj (,t) from Eq.(1) completely describes the forces acting in the source and 
their time dependence. The Einstein summation notation is applied in Eq. (1) and below, i.e., 
the repeated indices k and j = 1, 2, 3 imply summation over x1, x2 and x3. In Eq. (1) the higher 
order terms of the Taylor expansion around the source point of the Green's functions Gsk,j 

(x,,t) have been neglected. Note that the source-time history s(t) (see 3.1, Figs. 3.4 and 3.9), 
which describes the time dependence of moment released at the source, is contained in c. If 
we assume that all the components of Mkj (,t) have the same time dependence s(t) the 
equation can be written as:  
 
   us (x, t) = Mkj  [Gsk,j (x,,t) s (t)]                  (2) 
 
with s(t): source time history. 
 
When determining Mkj (,t) from seismic records, us(x, t) is calculated by convolution of the 
observed seismogram components ys(x, t) with the inverse of the seismograph's displacement 
response function i(t): 
 

us(x, t) = ys(x, t)  Invi(t) 
 

In the frequency domain (see Eq. (14) in IS 3.1) convolution is replaced by multiplication: 
 

Ds(x, ) = Ys (x, ) I()-1 
 
where  is circular frequency. The Ds(x, ), Ys (x, ), and I()-1 are the respective Fourier 
transforms of the time series ds(x, t), ys(x, t), and i(t)-1 (see 5.2.7 where I()-1 is denoted as 
Hd()-1). 
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Figure 1  The nine generalized couples representing Gsk,j(x, , t) in Eq. (3.69). Note that force 
couples acting on the y axis in x direction or vice versa (i.e., (x,y) or (y,x)) will cause shear 
faulting in the x and y direction, respectively. Superimposition of vector dipoles in x and y 
direction with opposite sign, e.g., (x,x) + (-y,-y) will also cause shear faulting but 45° off the 
x and y direction, respectively. Both representations are equivalent (reproduced from Jost and 
Herrmann, A student’s guide to and review of moment tensors. Seismol. Res. Lett., 60, 2, 
1989, Fig. 2, p. 39; Seismological Society of America). 
 
 
In the following we assume that the source-time function s(t) is a delta function (i.e., a 
"needle" impulse). Then, Mkj(, t) = Mkj()(t), and the right side of Eq.(2) simplifies to 
Mkj()Gsk,j(t). The seismogram recorded at x can be regarded as product of Gsk,j and Mkj. 
(e.g., Aki and Richards, 1980 and 2002; Lay and Wallace, 1995; Udias, 1999). Thus, the 
derivative of Gskj  with regard to the source coordinate i describes the response to a single 
couple with its lever arm pointing in the j direction (see Figure 1). For k = j we obtain a 
vector dipole; these are the couples (x,x), (y,y), and (z,z) in Figure 1. A double-couple source 
is characterized by a moment tensor where one eigenvalue of the moment tensor vanishes 
(equivalent to the Null or B axis), and the sum of eigenvalues vanishes, i.e., the trace of the 
moment tensor is zero. Physically, this is a representation of a shear dislocation source 
without any volume changes. 
 
Using the notation of Figure 1, double-couple displacement fields are represented by the sum 
of two couples such as (x,y)+(y,x), (x,x)+(y,y), (y,y)+(z,z), (y,z)+(z,y) etc. An explosion 
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source (corresponding to M6 in Eq. (8) and Figure 2) can be modelled by the sum of three 
vector dipoles (x,x) + (y,y) + (z,z). A compensated linear vector dipole (CLVD, see section 4 
below) can be represented by a vector dipole of strength 2 and two vector dipoles of unit 
strength but opposite sign in the two orthogonal directions.  
 
The seismic moment tensor M has, in general, six independent components which follows 
from the condition that the total angular momentum for the equivalent forces in the source 
must vanish. For vanishing trace, i.e., without volume change, we have five independent 
components that describe the deviatoric moment tensor. The double-couple source is a special 
case of the deviatoric moment tensor with the constraint that the determinant of M is zero, 
i.e., that the stress field  is two-dimensional. 
 
In general, M can be decomposed into an isotropic and a deviatoric part: 
 
    M = Misotropic + Mdeviatoric.                    (3) 
 
The decomposition of M is unique while further decomposition of Mdeviatoric is not. 
Commonly, Mdeviatoric is decomposed into a double couple and CLVD: 
 
    Mdeviatoric = MDC + MCLVD.                    (4) 
 
For a double-couple source, the Cartesian components of the moment tensor can be expressed 
in terms of strike , dip  and rake  of the shear dislocation source (fault plane), and the 
scalar seismic moment M0 (Aki and Richards, 1980): 
 

Mxx = - M0(sin cos sin2  +  sin2 sin sin2) 

Mxy =   M0(sin cos cos2  +  0.5 sin2 sin sin2) 

Mxz = - M0(cos  cos cos  +  cos2 sin sin)                  (5) 

Myy =   M0(sin cos sin2  -  sin2 sin cos2) 

Myz = - M0(cos cos sin  -  cos2 sin cos) 

Mzz =   M0 sin2 sin  

 
As the tensor is always symmetric it can be rotated into a principal axis system such that all 
non-diagonal elements vanish and only the diagonal elements are non-zero. The diagonal 
elements are the eigenvalues (see Eq. (6) in Information Sheet 3.1) of M; the associated 
directions are the eigenvectors (i.e., the principal axes). A linear combination of the principal 
moment-tensor elements completely describes the radiation from a seismic source. In the case 
of a double-couple source, for example, the diagonal elements of M in the principal axis 
system have two non-zero eigenvalues M0 and -M0 (with M0 the scalar seismic moment) 
whose eigenvectors give the direction at the source of the tensional (positive) T axis and 
compressional (negative) P axis, respectively, while the zero eigenvalue is in the direction of 
the B (or Null) axis of the double couple (for definition and determination of M0 see Exercise 
3.4).  
 
Eq. (2) describes the relation between seismic displacement and moment tensor in the time 
domain. If the source-time function is not known or the assumption of time-independent 
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moment-tensor elements is dropped, e.g., for reasons of source complexity, the frequency-
domain approach is chosen: 
 
    us(x, f) = Mkj(f)Gsk,j(x, , f)                    (6) 
 
where f denotes frequency. Procedures for the linear moment-tensor inversion can be 
designed in both the time and frequency domain using Eq. (2) or (6). We can write (2) or (6) 
in matrix form: 
     u = Gm.                     (7) 
 
In the time domain, the u is a vector containing n sampled values of observed ground 
displacement at various times, stations and sensor components, while G is a 6  n matrix and 
the vector m contains the six independent moment-tensor elements to be determined. In the 
frequency domain, u contains k complex values of the displacement spectra determined for a 
given frequency f at various stations and sensor components. G is a 6  k matrix and is 
generally complex like m. For more details on the inversion problem in Eq. (7) the reader is 
referred to Chapter 6 in Lay and Wallace (1995), Chapter 12 in Aki and Richards (1980), or 
Chapter 19 of Udias (1999).  
 
To invert Eq. (7) for the unknownm, one has to calculate the derivatives of the Green's 
functions. The calculation of the Green's functions constitutes the most important part of any 
moment-tensor inversion scheme. A variety of methods exists to calculate synthetic 
seismograms (e.g., Müller, 1985; Doornbos, 1988; Kennett, 1988). Some of the synthetic 
seismogram codes allow calculations for the moment-tensor elements as input source while 
others allow input for double-couple and explosive point sources. The general moment tensor 
can be decomposed in various ways using moment-tensor elements of double-couple and 
explosive sources so that synthetic seismogram codes employing these source 
parameterizations can also be used in the inversion of (7). 
 
 
3   An inversion scheme in the time domain 
 
In this section, we will describe in short the moment-tensor inversion algorithm of Kikuchi 
and Kanamori(1991), where the moment tensor is decomposed into elementary double-couple 
sources and an explosive source. Adopting the notation used by Kikuchi and Kanamori(1991), 
the moment tensor Mkj is represented by a linear combination of Ne = 6 elementary moment 
tensors Mn (Figure 2):  

     n
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The M1 and M2 represent pure strike-slip faults; M3 and M4 represent dip-slip faults on vertical 
planes striking N-S and E-W, respectively, and M5 represents a 45° dip-slip fault. The M6 
represents an isotropic source radiating energy equally into all directions (i.e., an explosion).  
 

 
Figure 2   Elementary moment tensors used in the inversion of the full moment tensor (after 
Kikuchi and Kanamori, 1991) 
 
 
A pure deviatoric moment tensor (trace(Mkj) = 0) is entirely represented by the five 
elementary moment tensors M1 to M5. The following brief description of the linear inversion 
for the moment tensor (Kikuchi and Kanamori, 1991) is an example of an inversion 
performed in the time domain. It can be easily adopted for an inversion in the frequency 
domain by replacing the time series by their spectra. Let wsn(t) denote the Green's function 
derivative at station s in response to the elementary moment tensor Mn, and let xS(t) be the 
observed ground displacement as function of time at station s. The best estimate for the 
coefficients an in Eq. (8) can be obtained from the condition that the difference between 
observed and synthetic displacement functions be zero: 
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The Ne is the number of elementary moment tensors, and Ns is the number of displacement 
records used. The other terms in (9) are given by: 
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Integration is carried out over selected portions of the waveforms. Evaluating  na  = 0 for 

n = 1,..., Ne yields the normal equations 
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with n ranging from 1 to Ne. The solution for an is given by: 
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The inverse Rnm

1 of matrix Rnm can be obtained by the method of generalized least squares 
inversion (e.g., Pavlis, 1988). The resultant moment tensor is then given by 
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The variance of the elements an can be calculated under the assumption that the data are 
statistically independent: 
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where 2

m  is the variance of the data Gn. In the case where the variance of the data is not 
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4   Decomposition of the moment tensor 
 
Except for the volumetric and deviatoric components, the decomposition of the moment 
tensor is not unique. Useful computer programs for decomposition were written by Jost and 
distributed in Volume VIII of the Computer Programs in Seismology by Herrmann of Saint 
Louis University (http://www.eas.slu.edu/People/RBHerrmann/ComputerPrograms.html or e-
mail to R. W. Herrmann: rbh@slueas.slu.edu). The first step in the decomposition is the 
calculation of eigenvalues and eigenvectors of the seismic moment tensor. For this the 
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program mteig can be used. It performs rotation of the moment tensor M into the principal 
axis system. The eigenvector of the largest eigenvalue gives the T (or tensional) axis; the 
eigenvector of the smallest eigenvalue gives the direction of the P (or compressional) axis, 
while the eigenvector associated with the intermediate eigenvalue gives the direction of the 
Null axis. The output of mteig is the diagonalized moment tensor 
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whose elements are input to another program, mtdec, which performs a moment-tensor 
decomposition. First, the moment tensor is decomposed into an isotropic and a deviatoric part 
(see Eq. 3):  
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with tr(M) = m1 + m2 + m3 being the trace of M. The isotropic part of M is important in 
quantifying volume changes of the source, but it is usually difficult to resolve so that isotropic 
parts of less than 10% are often not considered to be significant. The deviatoric part of the 
moment tensor can be further decomposed. Options include decompositions into three vector 
dipoles, into three double couples, into 3 CLVD sources, into a major and minor double 
couple, and into a best double couple and a CLVD having the same principal axis system. The 
source mechanisms reported by Harvard and USGS are based on the decomposition of the 
moment tensor into a best double couple and a CLVD. In addition to the best double couple 
they also provide the moment-tensor elements. To estimate the double-couple contribution to 
the deviatoric moment tensor, the parameter 
 

     
max

min

m

m
  

 
is used (Dziewonski et al., 1981) where mmin and mmax are the smallest and largest eigenvalues 
of the deviatoric part of M, respectively, both in absolute terms. For a pure double-couple 
source,  = 0 because mmin = 0; for a pure CLVD,  = 0.5. The percentage double-couple 
contribution can be expressed as (1-2)100. Significant CLVD components are often 
reported for large intermediate-depth and very deep earthquakes. In many cases, however, it 
can be shown that these are caused by superposition of several rupture events with different 
double-couple mechanisms (Kuge and Kawakatsu, 1990; Frohlich, 1995; Tibi et al., 1999).  
 
Harvard and USGS publish the moment tensors using the notation of normal mode theory. It 
is based on spherical co-ordinates (r;;) where r is the radial distance of the source from the 
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center of the Earth,  is co-latitude, and  is longitude of the point source. The 6 independent 
moment-tensor elements in the (x, y, z) = (north, east, down) coordinate system are related to 
the components in (r;;) by 
 

Mrr  = Mzz 

M = Mxx 

 
M = Myy 

 
Mr = Mzx 

Mr = -Mzy 

 
M = -Mxy 

 
 
5   Steps taken in moment-tensor inversion 
 
Generally, the quality of moment-tensor inversion depends to a large extent on the number of 
data available and the azimuthal distribution of stations about the source. Dufumier (1996) 
gives a systematic overview for the effects caused by differences in the azimuthal coverage 
and the effects caused due to the use of only P waves, P plus SH waves or P and SH and SV 
waves for the inversion with body waves. 
 
A systematic overview with respect to the effects caused by an erroneous velocity model for 
the Green function calculation and the effects due to wrong hypocenter coordinates can be 
found in Šílený et al. (1992), Šílený and Pšenčik (1995), Šílený et al. (1996) and Kravanja et 
al. (1999). 
 
The following is a general outline of the various steps to be taken in a moment-tensor 
inversion using waveform data:  
 
1) Data acquisition and pre-processing  

- good signal-to-noise ratio 
- unclipped signals 
- good azimuthal coverage 
- removing mean value and linear trends 
- correcting for instrument response, converting seismograms to displacement 
   low-pass filtering to remove high-frequency noise and to satisfy the point source   
   approximation    

  
2) Calculation of synthetic Green's functions dependent on 

- Earth model 
- location of the source 
- receiver position 

 
 
3) Inversion 
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- selection of waveforms, e.g., P, S H or full seismograms 
- taking care to match waveforms with corresponding synthetics 
- evaluation of Eqs. (8) and (9) 
- decomposition of moment tensor, e.g., into best double couple plus CLVD 

 
The inversion may be done in the time domain or frequency domain. Care must be taken to 
match the synthetic and observed seismograms. Alignment of observed and synthetic 
waveforms is facilitated by cross-correlation techniques. In most moment-tensor inversion 
schemes, focal depth is assumed to be constant. The inversion is done for a range of focal 
depths and as best solution one takes that with the minimum variance of the estimate.  

 
 
6   Some methods of moment-tensor inversion 
 
6.1   NEIC fast moment tensors  
 
This is an effort by the U.S. National Earthquake Information Center (NEIC) in co-operation 
with the IRIS Data Management Center to produce rapid estimates of the seismic moment 
tensor for earthquakes with body-wave magnitudes  5.8. Digital waveform data are quickly 
retrieved from “open" IRIS stations and transmitted to NEIC by Internet. These data contain 
teleseismic P waveforms that are used to compute a seismic moment tensor using a technique 
based on optimal filter design (Sipkin, 1982). Near real-time Current Fast Moment Tensor 
Solutions are available via http://earthquake.usgs.gov/earthquakes/eqarchives/fm/ . One can 
also subscribe via https://sslearthquake.usgs.gov/ens/ to a free Earthquake Notification 
Service (ENS) that sends automated notification E-mails when earthquakes happen in the area 
of interest to the subscriber 
  
 
6.2   Harvard and Lamont CMT solutions 
 
The Harvard group developed and maintained an extensive catalog of centroid moment-tensor 
(CMT) solutions for strong (mainly M > 5.5) earthquakes over the period from 1976-2006. 
Since then it is maintained and continued by the Global Centroid Moment Tensor Project 
(GCMT) at the Lamont-Doherty Earth Observatory (LDEO) of Columbia University. The 
main dissemination point for information and results from this project (e.g., description of the 
CMT procedure, global CMT Catalog Search, CMT catalog and quick CMT ACII files, 
special studies of particular earthquakes or sets of earthquakes) is now via the website  
http://www.globalcmt.org. The Harvard CMT method makes use of both very long-period (T 
> 40 s) body waves (from the P wave onset until the onset of the fundamental modes) and so-
called mantle waves at T > 135 s that comprise the complete surface-wave train. Starting with 
earthquakes in 2004, the GCMT analysis includes now also intermediate-period surface 
waves in the moment-tensor inversion. This allows the globally uniform determination of 
moment tensors for earthquakes down to Mw = 5.0 (Ekström et al., 2012). 
 
Besides the moment tensor the iterative inversion procedure seeks a solution for the best point 
source location of the earthquake. This is the point where the system of couples is located in 
the source model described by the moment tensor. It represents the integral of the moment 
density over the extended rupture area. This centroid location may, for very large earthquakes, 
significantly differ from the hypocenter location based on arrival times of the first P-wave 
onsets. The hypocenter location corresponds to the place where rupture started. Therefore, the 
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offset of the centroid location relative to the hypocentral location gives a first indication on 
fault extent and rupture directivity. In case of the August 17, 1999 Izmit (Turkey) earthquake 
the centroid was located about 50 km east of the ”P-wave” hypocenter. The centroid location 
coincided with the area where the maximum surface ruptures were observed.  
  
 
 
6.3   EMSC and GFZ rapid source parameter determinations 
 
This is an initiative of the European-Mediterranean Seismological Center (Bruyeres-le-Chatel, 
France, http://www.emsc-csem.org/) and the GEOFON Programs at the GeoForschungs- 
Zentrum Potsdam (http://www.gfz-potsdam.de/geofon/). The EMSC method uses a grid 
search algorithm to derive the fault-plane solutions and seismic moments of earthquakes (M > 
5.5) in the European-Mediterranean area. Solutions are derived within 24 hours after the 
occurrence of the event. The data used are P- and S-wave amplitudes and polarities. Figure 3 
shows one of the early examples of the kind of output data produced. Nowadays near real-
time CMT solutions also for earthquakes world-wide can be obtained via http://geofon.gfz-
potsdam.de/eqinfo/  and one may also subscribe receiving automatic earthquake notification 
e-mails by filling-in the Alert Mailing List Registration form of the GEOFON Rapid 
Earthquake Information Service (see link via http://www.gfz-potsdam.de/geofon/). 
 
 
6.4   Relative moment-tensor inversion 
 
Especially for the inversion of local events so called relative moment-tensor inversion 
schemes have been developed (Oncescu, 1986; Dahm, 1996). If the sources are separated by 
not more than a wavelength, the Green's functions can be assumed to be equal with negligible 
error. In this case it is easy to construct a linear equation system that relates the moment-
tensor components of a reference event to those of another nearby event. This avoids the 
calculation of high-frequency Green's functions necessary for small local events and all 
problems connected with that (especially the necessity of modeling site transfer functions in 
detail). 
 
This is a very useful scheme for the analysis of aftershocks if a well determined moment 
tensor of the main shock is known. Moreover, if enough events with at least slightly different 
mechanisms and enough recordings are available, it is also possible to eliminate the reference 
mechanism from the equations (Dahm, 1996). This is interesting for volcanic areas where 
events are swarm-like and of similar magnitude, and where a reference moment tensor can not 
be provided (Dahm and Brandsdottir, 1997). 
 
 
6.5   NEIC broadband depths and fault-plane solutions  
 
Moment-tensor solutions, which are generally derived from low-frequency data, reflect the 
gross properties of the rupture process averaged over tens of seconds or more. These solutions 
may differ from solutions derived from high frequency data, which are more sensitive to the 
dynamic part of the rupture process during which most of the seismic energy is radiated. For 
this reason, beginning January 1996, the NEIC has determined, whenever possible, a fault 
plane solution and depth from broadband body waves for any earthquake having a magnitude 
greater than about 5.8 and it has published the source parameters in the Monthly Listings of 
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the PDE.  The broadband waveforms that are used have a flat displacement response over the 
frequency range 0.01-5.0 Hz. (This bandwidth, incidentally, is also commensurate with that 
used by the NEIC to compute teleseismic ES.) Initial constraints on focal mechanism are 
provided by polarities from P, pP and PKP waves, as well as by Hilbert-transformed body 
waves of certain secondary arrivals (e.g., PP), and from transversely polarized S waves.  The 
fault-plane solution and depth are then refined by least-squares fitting of synthetic waveforms 
to teleseismically recorded P-wave groups (consisting of direct P, pP and sP).  More 
information can be found under http://neic.usgs.gov/neis/nrg/bb_processing.html. 
 
 
European-Mediterranean Seismological Centre 
Centre Sismologique Euro-Mediterraneen 
 
Double-couple solution provided by GFZ Potsdam 
 
EMSC event parameters: 21-JUN-2000_00:51:46.6 
                  63.88 N    20.69 W (Iceland) 
                  Depth =  10 km (adopted in inversion) 
                  Depth =   9 km (based on 32 depth phases) 
 
32 stations used in inversion: 
 
Station Delta Azimuth Takeoff Polarity 
-------------------------------------- 
adk    63.06  343.55  20.3    C 
aqu    29.12  121.60  27.6    C 
biny   38.06  262.06  26.1    x 
brg    22.41  109.49  33.8    C 
cart   28.87  146.49  27.7    C 
cmb    60.57  296.59  20.9    C 
cmla   26.31  188.62  28.2    D 
cor    56.07  302.72  22.0    C 
css    43.52  105.32  24.9    C 
dug    55.68  291.95  22.1    C 
eil    48.77  107.33  23.7    C 
ffc    39.71  296.00  25.8    C 
furi   68.86  114.32  19.0    C 
hgn    19.27  120.81  34.9    C 
incn   75.70   26.33  17.4    D 
kev    19.21   51.83  34.9    D 
kmbo   77.57  119.84  17.0    C 
kbs    17.85   20.07  40.1    D 
kwp    27.08  101.36  28.0    C 
morc   24.75  106.92  28.4    C 
mrni   46.08  104.64  24.3    C 
mte    24.76  155.63  28.4    C 
pas    63.05  292.64  20.3    C 
pet    58.94  331.77  21.3    C 
rgn    19.51  103.10  34.8    C 
selv   28.58  151.01  27.7    C 
sfuc   28.62  155.24  27.7    C 
sjg    55.09  235.67  22.2    D 
sspa   40.16  262.47  25.7    D 
suw    24.19   93.73  28.5    C 
tns    20.68  118.00  34.5    C 
tuc    61.55  285.54  20.7    C 
 
Data provided by: 
IRIS/USGS, MedNet, USNSN, GRSN, UCM/SFO/GEOFON, 
IRIS/IDA, GEOFON, GII/GEOFON, KNMI, IRIS/GEOFON, 
IRIS/AWI/GEOFON, TERASCOPE, GRSN/GEOFON, IAG, 
GTSN, U. Arizona 

 

 
 
 
 
 
Corner frequencies of bandpass filter:   0.020 and   0.100 Hz 
 
First fault plane:  Strike =  358 degrees 
                    Rake   =  185 degrees 
                    Dip      =   85 degrees 
 
Second fault plane: Strike =  268 degrees 
                    Rake   =   -5 degrees 
                    Dip      =   85 degrees 
 
M0 = ( 4.3 +/-  2.1)*10**18  N*m 
Mw =  6.4 
 
Source duration = 4 s (from BB displacement seismograms) 
 
Principal axes    Trend      Plunge 
----------------------------------- 
        P          223           7 
        N           43          83 
        T          313           0 
 
 
                     N 
                     | 
             ########---------         
            ##########----------       
          T ##########------------     
        #   ##########-------------    
       ###############--------------   
      ################---------------  
      ################---------------  
     #################---------------- 
     #############----###############- 
     ------------------############### 
     ------------------############### 
      ---------- -------##############  
      -----------------##############  
       ---   ----------#############   
        -- P ----------############    
         -   ----------###########     
           -----------##########       
             ---------########         
                     | 
                     S 
 
Done by G. Bock, GeoForschungsZentrum Potsdam. 
Visit the GFZ-EMSC web page under http://www.gfz-
potsdam.de/pb2/pb24/emsc/emsc.html 

 

 
Figure 3  Example of output data produced by the routine procedure for rapid EMSC source 
parameter determinations by the GEOFON group at the GFZ Potsdam. 
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