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Abstract—By analogy to the development for dynamic systems, concepts of observability and redundancy 
may be developed with respect to a steady state system. These concepts differ from their counterparts for 
dynamic systems in that they can be used to characterize individual variables and local behavior as well as 
system and global behavior. Relations between local observability, global observability, calculability and 
redundancy are established and explored in this paper. It is shown that these concepts are useful in 
characterizing the performance of process data estimators with regard to bias and uniqueness of an estimate, 
convergence of estimation procedures and the feasibility and implications of problem decomposition. 

 
 

I
TRODUCTIO
 
 

In our previous investigations [1, 2] we developed data 
reconciliation techniques for steady state and quasi-steady 
state (QSS) systems with specific reference to the 
estimation of temperatures, material and energy flows. We 
showed that for QSS systems we can construct estimators 
(discrete Kalman filters) which can take advantage of both 
temporal and spatial redundancies. Several questions 
remain unanswered, however. First of all, when will the 
filter perform adequately? Are there situations in which it 
will fail? What is the effect of measurement placement on 
estimator performance? Redundancy has already been 
shown to be useful, but how does one determine if a 
measurement is redundant? These questions are clearly of 
importance in selecting a measurement strategy. 

To answer these questions we develop a theory of 
observability and redundancy in this paper and demonstrate 
the importance of these concepts in predicting qualitative 
estimator performance, not only for the QSS filter, but also 
for constrained least-squares estimators and others. 

Observability determines if knowledge of a given set of 
measurements uniquely determines the state of a system. 
Originally, observability was defined for dynamic systems 
[3, 4]. In this paper we define observability as a property of 
a steady state system that is described by algebraic 
equations. However, the fundamental question of 
observability is the same in steady state and dynamic 
systems: we still want to determine if a given set of 
measurements can be used to determine the state of the 
system. In order to render this discussion more precise and 
concise we need to introduce some definitions and 
notations. We shall begin with the definition of a steady 
state system. 
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STEADY STATE OBSERVABILITY 
 

Concepts and definitions 
A steady state system of dimension n with l 

measurements is defined as the triplet (S, h, V), where S is a 
subset of Rn and h is a function that maps S̄ into Rl. S is 
called the feasible set and h is called the measurement 
function. V is the set from which a particular value of 
“measurement noise” may be obtained. S is always defined 
by sets of equality, inequality, or strict inequality 
constraints. It will be dense in itself. The variables x∈Rn are 
called the state variables. 

The measurement function h is used to obtain a set of l 
measurements z with additive noise v, i.e. 

 
z = h(x) + v,     v∈V, x∈S̄ .                (1) 

 
If V = {0}, then v = 0, z = h(x), and we say that the 
measurements are perfect. If V ≠ {0}, then the measure-
ments are “noisy”. We will make no assumptions on the 
noise statistics. It may be zero or a constant, or Gaussian, 
for instance. Figure 1 shows an information flow diagram 
for a steady state system. Several simple examples of 
process systems are given in the Appendix. 

Suppose we wish to determine the value of a variable xi 
by taking measurements using eqn (1). If we know the 
constraints defining S, the measurement function h, and a 
set of measurement values z0, will we be able to determine 
xi? This is the question to be answered by our study of 
observability. Loosely speaking, if the answer to the 
question is “yes”, then xi is observable. If every xi, i = 1, ... 
,n is observable, the entire system is observable. Since g or 
h or both may be nonlinear, we define observability as a 
local property, i.e. as one which depends on the values of 
the problem variables x. Just as a function can be 
differentiated at some points but not others, a system can be 
observable at some points but not others. Since it is easier 
to define “unobservability”, we shall define local 
unobservability at a point in the system (S, h, V) as a 
property of the deterministic system (S, h, 0). 
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Definition. In a system (S, h, V), let x
0∈S̄  and I be an 

index set. xI is locally unobservable at x0 if there exists a 
sequence {x

k} ∞
=1k such that 
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k � x0,    as k � ∞      (2) 
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The δx

k
 are called feasible unmeasurable perturbations 

about x0. The perturbations δx
k are “feasible” because the 

perturbed variables x
k = x

0 + δx
k are feasible, and 

“unmeasurable” because by eqn (4) the perturbations do 
not affect the measurement values. 

Local unobservability at any point is undesirable for 
variables xI. Even with perfect measurements, x0 cannot be 
distinguished from x

k since both are feasible, yet both 
result in the same measurement values. Moreover, it 
should not be assumed that local unobservability can occur 
only at isolated points (see Appendix). All other 
observability concepts except global observability are 
defined in terms of local unobservability at a point. 

Definition. In a system (S, h, V), let x0∈S̄ . xI is locally 
observable at x0 if it is not unobservable. 

Definition. In a system (S, h, V) let S1 ⊂ S̄ . xI is locally 
unobservable on S1 if xI is locally unobservable at any 
point in S1. xI is locally observable on S1 if xI is locally 
observable at each point in S1. xI is globally unobservable 
if xI is locally unobservable at any point in S. 

For each of the properties we have just defined, if the 
index set I includes all i = 1, …, n, then we say that the 
vector x or the system has the given property. Theorem 1 
states an alternative formulation of observability that only 
applies to systems, rather than individual variables. 

Theorem 1.  Let x
0∈S in a system (S, h, 0), and let        

z
0 = h(x0). The system is locally observable at x

0 if and 
only if there exists a set S1 ⊂ S such that S1 contains more 
than one point and x0 is the unique vector in S1 satisfying 
z

0 = h(x) and x∈S. 
Proof. We prove the theorem in terms of local un-
observability. First suppose no such set S1 exists. Let {Sk} 
be a sequence of nested decreasing sets containing x0, i.e. 
Sk ⊃ Sk+1 ⊃ Sk+2 ⊃ ... ⊃ x0. Then for each k, there exists xk∈ 
Sk such that xk

 ≠ x0 and h(xk) = h(x0). Thus, xk � x0 and 
{x

k} satisfies all the conditions in the definition of local  
 
 

unobservability. Hence (S, h, V) is locally unobservable at 
x

0. 
Conversely, suppose (S, h, V) is locally unobservable. 

Then a sequence {x
k} as just described exists, i.e. with 

x
k
�x

0, x
k ≠ x

0, h(xk) = z
0 = h(x0) and x

k∈S.  Hence 
solutions xk to z0 = h(x) and x∈S exist arbitrarily close to 
x

0 and no set S1 described in the theorem can exist. ■ 
In other words, local observability at x0 is equivalent to 

local uniqueness of the solution x0 to z0 = h(x), x∈S. Note 
that in particular, if the system is locally observable, then 
h(x) ≠ h(x0) for all feasible points in some neighborhood 
of x

0. In other words, x
0 can be distinguished from all 

nearby points in S because the resulting measurement 
values are different. 

We need to define an additional concept closely related 
to observability: 

Definition. The system (S, h, V) is calculable on S1 ⊂ S̄  
if h is one-to-one on S1. xI is globally observable on S (or 
S̄ ) if it is calculable on S (or S̄ ). 

Calculability is a very desirable property because it 
implies that, given a perfect measurement z

0, then the 
system state can be found as x

0 = h
-1(z0). Note that a 

system may be locally observable at a point x0 and yet h 
might not be a one-to-one function on any set containing 
x

0. This point will be brought out in an example. The 
relationships between the definitions given above are 
illustrated in Fig. 2. 

To illustrate the definitions, consider the following 
examples. The feasible set for the first two examples is 
sketched in Fig. 3, and that of the third example is 
illustrated in Fig. 4. 

Example 1. Consider the problem z = x1;  g1(x1, x2) = 
x2 - sin x1 = 0; g2(x1, x2) = x1 >0. This system is globally 
observable on S̄ , as are x1 and x2. 

Example 2. Now let us make z = x2. This example differs 
from the previous one only in that x2 is measured rather 
than x1. The system is locally observable at each point in S, 
since a small enough neighborhood can always be placed 
around a point (such as x1) so that x 1

1  ≠ x1 for any x in that 
neighborhood. The system is also calculable on S2 
indicated in Fig. 3, since h is clearly a one-to-one function 
on 2S . On the other hand, if S1 is any set containing x

1, 
then neither the system nor x1 can be calculable on S1. 
Neither the system nor x1, are globally observable on S. 
However, x2 is globally observable. 

Example 3. In this problem we have 
measurements:    z1 = x1,    z2 = x2  
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constraints: (x1 - x2)x3 = 0 
 x3 sin (π/x2) = 0 
                            0 < x1 < 1,    0 < x2 < 1,    0 ≤ x3 ≤ 1 .  
 

S in this case is the union of a bounded plane at x3 = 0 
and a series of vertical line segments perpendicular to the 
line x1 = x2 as shown in Fig. 4. Note that for x3 > 0, we must 
have x2 ∈ {1/2, 1/3, 1/4, …}. Let the index set I = {l, 2}. xI 

is globally observable on S̄ . x3 is locally unobservable on 
the vertical line segments (including their intersections 
with the plane x3 = 0) and is also locally unobservable on 
the “limiting” line segment from (0,0,0) to (0,0,1). x3 is 
locally observable at each of the remaining points. Both x3  
and the system are calculable on any subset of S̄ that does 
not contain any locally unobservable points. 

 
 
 
Comparison with previous work 

The concept of observability was introduced by Kalman 
[3,4] for linear dynamic systems. The first observability 
conditions for nonlinear dynamic systems were developed 
by Kostyukovskii [5, 6], but were later shown to be 
incorrect [7]. Observability criteria for nonlinear systems 
have been discovered by Griffith and Kumar[7], Kou, 
Elliott and Tarn[8], and Singh[9]. 

At this point, we draw comparisons between the new 
definition of steady state observability and definitions 
applying to nonlinear dynamic systems. Many definitions
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are available. For simplicity, we quote an elementary 
definition from Kou, Elliott and Tarn[8]: The system 
dynamics are 
 
 dx/dt = f(t,x).  (6) 
 
The measurement equation is 
 
 z = h(t,x).  (7) 
 
The initial state x(t0) is unknown and belongs to set S. This 
system is (completely) observable in S on the time interval 
[t0, t1] if there exists a one-to-one correspondence between 
the set S of initial states and the set of trajectories of the 
measured output z(t) for t in [t0, t1]. Note that this 
definition is global, since it requires that the one-to-one 
correspondence exists on the entire set S.  
 
 Instead of a measurement trajectory, only a mea-
surement vector is available for steady state systems. 
Calculability is the corresponding concept for steady state 
systems, since there will be a one-to-one function between 
S and the range of h if and only if h is one-to-one. 
However, to obtain meaningful estimates, it will not be 
necessary for h to be one-to-one on any set. Instead, it will 
be seen that local observability will be adequate. We 
replace global criteria with local criteria, and do not 
require that h be one-to-one on any set. 

Another important aspect of steady state observability is 
that we have defined it in terms of individual variables. In 
dynamic systems, unobservable modes will usually 
 

affect many variables, and this preciseness might not be 
necessary. On the other hand we need to know the 
observability properties of individual variables in steady 
state flow networks. In dynamic systems, the system 
observability is all that is usually studied. One notable 
exception is the work in linear, discrete-time systems by 
Yoshikawa and Bhattacharyya [10] where “partial 
observability”, or “observability with respect to matrix T” 
is defined. Instead of attempting to estimate the entire state 
vector x0, the authors consider the problem of determining 
Tx

0, given some matrix T. 
In fact, partial observability could have been defined for 

steady state systems. The definition of local un-
observability of xI at x0 could be restated as a definition of 
system local unobservability at x

0 with respect to T by 
replacing eqn (5) with 

 
 T(xk – x0) ≠ 0.     (8) 
 
For instance, if x is partitioned as x = (x1, x

2), define         
T = [I ⁞ 0] where the identity matrix corresponds to x

1
. 

Then, where we would state that x1 is locally observable, 
the new definition would state that the system is locally 
observable with respect to [I ⁞ 0]. A definition of this form 
may appear more general than our definition. However, 
this generality was not needed for the systems studied in 
this work. 

Definitions of observability in nonlinear dynamic sys-
tems with inputs are also available in Singh[1] and Griffith 
and Kumar[11]. The usual definitions of observability
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







)(xh'
)(xg'

0

0

assume either known inputs or unknown and unmeasurable 
inputs. In reality, some inputs may be measured with 
measurement error, and some might not be measured, as is 
the case for the state variables. No distinction is made 
between state and input variables in this paper. As a result, 
separate theorems are not required for cases where input 
variables are partially measured. 

In linear dynamic systems the concept of “structural 
controllability” which is closely related to observability 
has been developed as an extension of the standard theory 
[12-14]. This concept does not depend on the numerical 
values of parameters that are known only approximately. 
Hence it permits non-numerical controllability 
classification for linear systems, i.e. classifying matrix 
model parameters as “zeros” (fixed) and “non-zeros” 
(approximate). One could introduce a similar definition of 
steady state structural observability that should be useful 
for linear systems. However, as the examples in the 
Appendix will show, local unobservability does not always 
occur just at isolated points. For such nonlinear systems 
structural observability is a less useful concept than the 
observability defined in this paper. We will show in the 
sequel to this paper that both local and global observability 
can be classified in certain process systems using non-
numerical tests. 

We note in passing that the term “identifiable” appears 
in the statistical literature for linear least-squares 
estimation[15]. After defining the least-squares estimators 
in a later section, we will relate identifiability to 
observability. 
 
 
Observability classification theorems 

We shall now develop several theorems for classifying 
observability in steady state systems. To simplify state-
ments of theorems and proofs we shall refer to a steady 
state system (S, h, V) as being in “standard form” if 

 
  S = {X: g(x)=0, x∈K}      (9) 
 
where K is the union of a finite number of convex sets      
K ⊂ Rn, and g maps Rn into Rn, p being the number of 
equations, and if, 
 
 h(x) = Hx+c   (10) 
 
where H is an l x n matrix and c is a constant vector. 

We always assume rank [H] < n, for otherwise the 
measurements alone could be used to determine x, without 
even considering S, and the system would be globally 
observable. In cases where g is assumed to be 
differentiable at a point x

0, we define the p x n matrix 
G(x0), 

 
 G(x0) =  g′(x0) = ∂g(x0)/∂x.   (11) 
 
In the special case where G is constant, i.e. 
 
 g(x) = Gx+a = 0   (12) 
 
we shall refer to the system as being in standard form with 
linear (affine) constraints. 

The system in the standard form is more general than it 
may appear at first glance. If h is nonlinear, the 
measurements may be linearized by augmenting the state 
variables by y, 

     
                        (13) 

 
 
so that the equality constraints are now 
 
 g(y,x) = g(x) = 0   (14) 
 
  h(x) – y = 0.   (15) 
 
Most inequality constraints can be used to define the 
convex sets Ki. Whenever any doubt arises as to the 
convexity of a region defined by inequalities, we can 
rewrite the inequality constraint, 
 
   gi(x) ≥ 0   (16) 
 
as an equality constraint using a slack variable xa, 
 
 gi(x) - xa

2 = 0.   (17) 
 
Strict inequality constraints can usually be included in this 
formulation by using them to define Ki. 

Note that whenever some equality constraints are 
derived originally from inequality constraints, the square 
of a slack variable will be present in that constraint. As a 
result, while the system may be locally observable, it can 
never be globally observable because there are two roots 
for xa

2. It is still possible for xI  to be observable, where I is 
the index set for the original (nonslack) state variables. 

We shall now develop criteria for determining whether 
or not a system in the standard form is observable. 

Theorem 2. (First order sufficient condition for cal-
culability, and hence for local observability). For a system 
with feasible set defined by eqn (9), x0∈S and let g, h be 
continuously differentiable in some neighborhood of 
 
Rn containing x0. If rank   = n, then the system is  
 
calculable on some set S0 ⊂ S containing x0. 
 
   Proof. Consider the mapping which maps Rn into 
 

Rp+l. By the inverse function theorem[16], 




h

g  is a 

one-to-one map on some neighborhood S1 of Rn containing 
x

0. Let S0 = S1∩S. Then, since g(x) = 0 for x∈S0, h must be 
one-to-one on S0, and hence the system is calculable on S0. 

■ 
To illustrate the use of Theorem 2 let us again consider 

Example 2. Expressed in the standard form we have g(x) = 
-sin xl +x2 = 0;    K={x:x1>0};  gʹ(x0) = [-cos x1

0  1];    
hʹ(x0) = H = [0 1] and c = 0. Hence, 
 

Rank 







)(xh'

)(xg'
0

0

= n = 2,     x1
0 ≠ kπ/2,  k = 1,2,3, …    

[ ] v
x

y
0Ivyz +




=+=







h

g
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When x1 = kπ/2, the first order sufficient condition is not 
met and no conclusions can be drawn. But the test 
indicates that the system is observable for all other values 
of x. 

We shall now state a related result, which follows 
directly from the implicit function theorem [16] and 
Theorem 1. 

Theorem 3. For a system with feasible set defined by 
eqn (9) let g be continuously differentiable at x0, and let all 
the convex sets Ki containing x0 be open. The system is 

locally unobservable at x0 if rank 







)(xh'

)(xg'
0

0

=  p+l < n.  

   Theorem 4. For a system in standard form with linear 

constraints and K being open in Rn, if rank 




H
G  = n, then 

the system is globally observable on S.  Conversely, if 

rank 




H
G

< n, then the system is globally unobservable on 

S. 

   Proof. Consider the mapping 




H
G from Rn into Rp+l.  If 

the rank is n, then 




H
G is one-to-one on Rn, and hence one-

to-one on S. But Gx = -a for x in S, so H must be one-to-
one on S. Thus, by definition, the system is calculable on 
S, i.e. globally observable on S. 

Conversely, suppose the rank is less than n. Then there 
exists a vector δx ≠ 0 such that 

 




H
G δx = 0.   (18) 

Let x0 be an arbitrary point in S. By eqn (18), for any k, 

 g(x0 + 
1
k
 δx) = Gx

0 + a + 
1
k
 Gδx = 0   (19) 

 h(x0 + 
1
k
 δx) = Hx

0
 + c + 

1
k
 Hδx = h(x0).   (20) 

Define 

 x
k = x0 + 

1
k
 δx .   (21) 

Since x0 lies in a convex, relatively open subset of S, the 
point xk

 must lie in S for k > 0 for a sufficiently large 0. 
Hence, the sequence {x

k} satisfies the requirements in the 
definition of local unobservability at x0 with the sequence 

of feasible unmeasurable perturbations {
1
k
 δx}. Since x

0 

was arbitrary in S, the system is globally unobservable.    ■ 
     

As we have shown in Example 2, the test based on the first 
order sufficient condition is not always conclusive at all 
points. The second order sufficient conditions developed in 
the next theorem are particularly useful in these situations. 
Before stating the theorem we will introduce two 
notations. Let D be a matrix whose columns form a basis 

for the solutions to 







H

)(xg' 0

δx = 0 and let Bj(x
0) = 

∂2gj(x
0)/∂x

2 be the Hessian matrix of gj, j = 1,2, …, p, 
evaluated at x0. 

Theorem 5. (Second order sufficient conditions for local 
observability). For a system in a standard form let x

0∈S, 
let g be twice continuously differentiable in some 
neighborhood S1 ⊂ Rn containing x0, and let 

rank 







H

)(xg' 0

 < n. Then the system is locally observable at 

all feasible points in some set S0 ⊂ S1 containing x0, if for 
any j, (a) Bj(x

0)>0, or (b) Bj(x
0) <0, or (c) DT

Bj(x
0)D >0, or 

(d) DT
Bj(x

0)D <0. 
Proof. Let Ki be any of the convex sets of K that 

contains x0. Let d ≠ 0 be an arbitrary “direction vector” for 
which Hd = 0 and x0 + d ∈ Ki. Any feasible unmeasurable 
perturbation must satisfy these conditions for at least one i. 
First suppose g′(x0)d ≠ 0. Then it can be shown that any 
perturbation along this direction is infeasible if it is small 
enough (for that case, the theorem is proven). Hence, we 
assume g′(x0)d = 0. 

Using a second order Taylor expansion (with integral 
remainder) for a single function gj [16], 
 
gj(x

0 + sd) = gj(x
0) + Gj(x

0)sd 

 + ∫
1

0
(sd)T

Bj(x
0 + tsd)sd(l - t) dt   (22) 

where Gj(x
0) is the jth row of G(x0) and s is a scalar 

multiplier. Note that the first two items on the right-hand 
side vanish and that the integrand is a continuous mapping 
of s∈R1

 into R1 because it is a composite of continuous 
functions. 

If Bj>0 or Bj<0, then d
T
Bj(x

0)d ≠ 0 for any d ≠ 0. 
Because of the continuity property just mentioned, it 
follows that 

gj(x
0+sd) ≠ 0   (23) 

for small enough s. Hence no feasible unmeasurable 
perturbations can exist and the theorem is proven for those 
cases. Recall that we only need to consider directions such 
that both G(x0)d = 0 and Hd = 0, i.e. d = Dy for some 
vector y. Substituting d in the r.h.s. of eqn (22), it becomes 
apparent that if DT

Bj(x
0)D > 0 or DT

Bj(x
0)D < 0, we can 

again argue that gj(x
0 + sd) ≠ 0 for small enough s. Again, 

no feasible unmeasurable perturbations can occur, and the 
theorem is proven. Repeat the argument for each of the 
convex sets Ki.            ■ 

As an application of Theorem 5, consider the points in 
Example 2, at which first-order sufficiency conditions fail, 
i.e. x1

0 = kπ/2, k = 1,2,3, ….  The solutions to 

 







H

)(xg' 0

d = 0 are multiples of 




0
1 . Hence D = 




0
1 , 

B(x
0) = 








00
0sin 0

1x  , DT
B(x0)D = sin x1

0 ≠ 0 for x1
0 = kπ/2 

and hence the test indicates local observability at these 
points. Using both first and second order conditions, we 
have classified every feasible point as observable. 
 
EFFECTS OF OBSERVABILITY O
 STEADY STATE 

ESTIMATIO
 

Observability properties depend only on S and h. 
Defining observability and detecting it has been done 
without reference to any particular estimation technique. 
However, as might be expected, observability is closely
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linked to the performance of any estimator, even in the 
presence of measurement noise. We now study the rela-
tions between observability and estimation. Readers may 
wish to refer to Deutsch [17]. and Rhodes [18] for the 
background material on estimation theory. 

Referring to Fig. 1, we use our knowledge of S and h to 
construct an estimator that will take the “noisy” 
measurements z and produce an estimate x̂ of the state 
variable x. We use the term “estimator” in a very general 
sense. It may be derived from statistical principles, or it 
may simply be a calculation procedure based on some 
measurements and on the solution of some of the equations 
in the deterministic system. We can denote the estimation 
process by 

 
  x̂ = Y(z)    (24) 

 
where the Y indicates the mapping from the measurements 
z into the estimates. For instance, if all the variables x were 
measured directly, Y might be the identity map, or a more 
sophisticated estimator might be developed to guarantee 
that the constraints (9) are met. In some cases to be 
discussed, e.g. constrained least-squares estimation of an 
unobservable system, Y might be a “point-to-set map”, i.e. 
one that produces a set of values of x̂ rather than a single 
estimate. 

For a given measurement noise vector v, the states x and 
S are related to the estimate x̂  by the composite map Y◦hv: 

 
 x̂  = Y(hv(x)) = (Y◦hv)(x),    x∈S   (25) 
 
 
where 
 hv(x) = h(x)+v,    v∈V   (26) 
 
Ideally, the map Y◦hv would be one-to-one on S so that 
two distinct states x

1 and x
2 in S yield different, unique 

estimates regardless of the value of the measurement noise 
vector v. If Y◦hv is one-to-many some estimates will not be 
unique. If Y◦hv is many-to-one, then different states may 
result in the same estimate. Y◦hv will fail to be one-to-one 
if either Y or hv fails to be one-to-one. We will study these 
two cases separately. First we treat the effect of 
unobservability on the estimates. 

When a system is unobservable at some point, even 
perfect measurements and constraints are not sufficient to 
distinguish between two feasible x values. The addition of 
measurement noise cannot improve upon this situation. 
This property, which follows directly from the definition 
of local unobservability, is stated below. 

Property 1. If xI is locally unobservable at x
0∈S, then 

any estimator for (S, h, V) will fail to distinguish between 
x

0 and all members of some sequence {x
k} where xI

k ≠ xI

0 
and x

k � x
0, as k � ∞, whether the measurements are 

perfect or noisy. 
Property 1 implies that if the system is locally un-

observable at some point, then h is many-to-one, and 
hence so is hv. No matter how cleverly an estimator is 
constructed, there is no way to determine the true state of 

the system. The basic problem is that either insufficient 
equations are known about the system, or the 
measurements are inadequate. 

One feature of Property 1 should be noted. It assumes 
that the models of S and h truly represent physical 
phenomena. In reality, the constraints and measurement 
functions may be inexact; additional equations describing 
the physical phenomena may have been omitted. Thus, 
some of the feasible unmeasurable perturbations that can 
occur in our simple model may be physically impossible. 
For this reason, we should also study the effect of 
observability on particular estimation techniques. An 
estimator is artificially constructed as a set of equations 
that can be implemented exactly as written on a computer 
within round-off errors. As such, there is no uncertainty 
about its equations, and one can make precise statements 
about its behavior that do not depend on the physical 
phenomena. 

Property 1 predicts failure of any estimator if the 
measurements are inadequate and result in unobservability. 
On the other hand, will any form of observability 
guarantee the “success” (in some sense) of any estimator? 
The measurements may contain enough information but 
one cannot make general statements that observability 
results in good estimates. Estimator performance will 
depend on the particular form of the estimator. We shall 
now consider the effects of observability on some 
particular estimators for particular systems. 
 
 
Linear estimation 

Since we shall be concerned with noisy measurements 
from this point on, we shall replace eqn (10) by 

 
 z = Hx + c + v   (27) 
 
and refer to the steady state system so defined with the 
general constraint set S as being in the modified standard 
form. Let us define a linear (affine) estimator by the 
equation 
 
 x̂ = Wz+b   (28) 
 
where b and W can be chosen arbitrarily. 

Theorem 6. For a system in modified standard form, it is 
possible to construct an unbiased linear estimator, if and 
only if the system is calculable on S. 

Proof. Let E(v) = v , and let x0 be any point in S. Then 
for a set of measurements z0 we have 
 

E( x̂ ) = E(Wz
0 + b) = WHx

0 + Wc + W v  + b.  (29) 
 
It is easily seen that the estimator gives unbiased estimates 
for all points x0∈S, if and only if 
  
 b = -Wc - W v    (30) 
 
and 
 
      WHx

0 = x0, x0∈S.   (31)
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In other words, WH must be the identity map on S, but not 
on Rn  if l < n. 

Note that given W we can always choose b to satisfy 
eqn. (30). However, it is not always possible to choose W 
to satisfy eqn (31), as we now show. 

First, suppose the system is not calculable on S. Then 
there exists x1 and x2 in S such that x1 ≠ x2 and Hx

1 + c = 
Hx

2 + c. Hence Hx
1 = Hx

2 and WHx
1 = WHx

2 where     
x

1≠ x2. It follows that WH cannot be the identity map on S 
for any choice of W. Hence any linear estimator is biased 
on S when the system is not calculable on S. 

On the other hand, suppose the system is calculable on 
S. Then H is a one-to-one function on S by definition. Let 
U be the minimal subspace containing S, generated by 
taking all linear combinations of vectors in S. Then clearly 
H is one-to-one on U, hence a left inverse W exists, i.e. 
there exists a matrix W such that WHx = x for x∈U. But  
S ⊂ U, and hence we have found a W to construct an 
unbiased estimator.           ■ 
 
Constrained least-squares estimation 

For a set of measurements z let us define 
 

 ω(x) = [z - h(x)]T
R

-1[z - h(x)]   (32) 
 
where R is a weighting matrix frequently chosen as an 
approximation to the covariance matrix of measurement 
noise. In this discussion we shall assume R to be positive 
definite. Constrained least-squares estimates are obtained 
by solving the following problem: 
 
 min ω(x),   x∈S   (33) 
   x 

 
for which a solution is assumed to exist. Numerical 
procedures may be used to solve this problem. Most 
algorithms only guarantee convergence to a local mini-
mum point, and hence the following theorems will be 
stated in terms of local solutions. 

Theorem 7. For a system (S, h, V), let x̂  be a con-
strained least squares estimate. Suppose the system is 
locally unobservable at x̂ . Then x̂  is not a unique local 
solution to the least squares estimation problem. 

Proof. By local unobservability, there exists a sequence 
{x

k}, x
k∈S such that h( x̂ ) = h(xk),  x

k � x̂  and x
k ≠ x̂ . 

Then, by eqn (32), ω(xk) = ω( x̂ ). Since each xk is feasible 
in the least squares estimation problem, and since we can 
pick xk arbitrarily close to x̂ , x̂  is not a unique solution. ■ 

In this case, Y is a point-to-set map, and hence not one-
to-one. If the estimation problem for an unobservable 
system is to be solved using a nonlinear optimization 
algorithm, an estimate may be obtained, but it will not be 
unique. If the problem is to be solved analytically, 
difficulties may arise. For instance, a solution in closed 
form will not be possible without additional constraints. If 
the constraints and the measurement function are linear, as 
in the case of Kuehn and Davidson[19], a singular matrix 
would have to be inverted. 

While the proof of Theorem 7 is trivial, the implications 
are important. Note that the uniqueness of a solution 

 
 

depends on the observability at the value of the estimate x̂  
rather than the observability at the true value in the system. 
The value of the estimate depends on the value of the 
measurement noise v, so that even if the deterministic 
system is locally observable on a large subset S1 ⊂ S 
containing the true value of x, x̂  may be far away from 
any values in S1 and may be nonunique. For instance, with 
a constant measurement bias, the set S2 of x values that 
result in unique estimates will be a “shifted” and 
“distorted” version of S1. On the other hand if a system is 
locally unobservable on a subset S1, with random noise, the 
closer the estimate is to S1, the more likely nonunique 
answers will result. 

From the proof of the theorem, it should be noted that 
multiple solutions to the estimation problem (for an 
unobservable system) occur arbitrarily close to x̂ . This is 
an important point. In nonlinear systems, it is not sur-
prising when multiple solutions to equations exist. In 
ordinary situations, however, many solutions can be ruled 
out on physical grounds, or ruled out based on prior 
estimates. Thus, isolated multiple solutions may not be so 
serious. By starting a nonlinear iterative procedure near a 
good prior estimate, isolated multiple solutions may not 
ever be noticed. However, the proof shows that the 
multiple solutions in an unobservable system are arbitrarily 
close together. In most cases, there are surfaces on which 
the system is unobservable. In solving the optimization 
problem, an algorithm may locate any point on that surface 
and even search along that surface. As long as a system is 
observable (in some way), there is always the hope that by 
improving the measuring devices to reduce measurement 
noise, steady state solutions can be separated by the 
measurements. However, when a system is locally 
unobservable at some point, problems will arise even if the 
measurements are perfect. 

For the special case of estimation with linear 
measurements and constraints, there is no distinction 
between local and global properties. Hence, if the system 
is unobservable, the estimates will always be nonunique at 
any x̂ . 

Note that Theorem 7 applies to a general steady state 
system. If the system can be put in the standard form, more 
detailed results can be given. Before doing this, the 
following lemma must be proven: 

Lemma. For a system in standard form let x̂  be a 
constrained least-squares estimate. Then there exists a 
neighborhood of zero such that (ω′( x̂ ))δx ≥ 0 for all δx in 
that neighborhood for which x̂  + δx ∈ S̄ . 

Proof. Suppose the lemma is false. Then there exists a 
sequence {x

k} such that xk � x̂ , xk∈S̄  and (ω′( x̂ ))δxk < 0 
where δxk = x

k - x̂ . Since x̂  is a relative minimum point, 
there is some S1 ⊂ S̄  for which 0 ≤ ω(x) - ω( x̂ ), x∈ S1. 
Let {dk} be a sequence of direction vectors and {ak} be a 
sequence of scalars such that x

k
 = x̂  + akdk, ║dk║ = 1,     

ak > 0, and ak�0, as k�∞. Since {dk} is a bounded 
sequence, it must have a convergent sub-sequence. Let 
{akdk} be such a convergent subsequence. Then by the 
Taylor expansion which is exact for the quadratic, ω, 
 

0 ≤ ω(xk) - ω( x̂ ) = ak(ω′( x̂ ))dk + ak
2
dk

T
H

T
R

-1
Hdk. 

   (34)
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Since ak�0, we must have (ω′( x̂ ))dk ≥ 0, k > 0 for a 
sufficiently large 0. But this contradicts the hypothesis.  
Hence the Lemma is true.          ■ 

Note that the Lemma was not a trivial application of 
directional derivatives as it may have appeared at first 
glance. The reason is that S was not assumed convex, and 
hence we could not take derivatives along a line 
connecting x̂  to x̂  + δxk and maintain feasibility. In fact, 
no information about S was used at all — S might not have 
been connected, or there might have been no smooth 
curves in S. Now the theorem relating observability and 
estimation for systems in standard form can be proven. 

Theorem 8. For a system in standard form, let x̂ be a 
constrained least-squares estimate. It is locally unique, if 
and only if the system is locally observable at x̂ . 

Proof. If the system is locally unobservable, then the 
conclusion follows from the more general Theorem 7. We 
must prove the other half of the theorem. 

Let (S, h, V) be locally observable at x̂ . Let {x
k} be any 

sequence with xk
�x

0, xk∈S̄ , and define δxk = x
k - x̂ . Then 

by local observability, Hδxk ≠ 0, k > 0 for a sufficiently 
large 0. But since ω is a quadratic function, its Taylor 
series representation is exact: 
 

ω( x̂ + δxk) = ω( x̂ ) + (ω′( x̂ ))δxk + δxk
T
H

T
R

-1
Hδxk    (35) 

 
By the Lemma, (ω′( x̂ ))δxk ≥ 0, and since R > 0,            
δxk

T
H

T
RHδxk > 0. Hence ω( x̂  + δxk) > ω( x̂ ). Since the 

sequence {x
k} was arbitrary, other solutions to the 

minimization problem cannot be arbitrarily close to x̂ , and 
hence x̂  is a local minimum point.          ■ 

In the theory of linear least-squares estimation, the 
concept of identifiability[15] is closely related to obser-
vability. If the unconstrained linear least-squares esti-
mation problem has multiple solutions, the states are said 
to be nonidentifiable. Then, linear constraints are arbi-
trarily introduced to remove the ambiguity. If the con-
straints render the solution unique, they are said to be 
“suitable for identifiability”. For our purposes, the problem 
is not to find constraints that are suitable for identifiability: 
the constraints are already known. Observability is a 
general property of an individual variable in a nonlinear 
system, whereas identifiability conditions are 
mathematical conveniences for the unconstrained linear 
least-squares estimation problem for a system. 
 
Decomposition according to observability 

We shall now state a decomposition theorem that applies 
to systems with linear constraints. 
Theorem 9.  For a system in standard form with linear 

constraints if rank 




H
G  = j < n, then there exists a non-

singular n x n matrix T such that for the change of 
coordinates x = T x~ , 
 

 G
~

 = GT = [G1 ⁞  0]   (36) 
 
and 
 
 H

~
 = HT = [H1 ⁞  0]   (37) 

 

where G1 and H1 each have j columns and rank 




H
G  = j. 

The implication of this theorem is that in the new 
coordinates x~  = (

21
xx ~~ , ) the subsystem G1

1
x~ + a = 0 and 

z = H1
1

x~  + c in Rj
 is observable, but the unconstrained 

subsystem in Rn-j is unobservable. Kalman[4] first sug-
gested the decomposition of linear dynamic systems into 
observable and unobservable, as well as controllable and 
uncontrollable, subsystems. 

The proof follows readily from reduction to the column-
echelon form [20]. Alternatively, T could be found using a 
variety of standard methods from linear algebra such as 
Gram-Schmidt orthogonalization, singular value 
decomposition, or pseudo inverse. Rather than dwelling on 
the proof, we shall examine its application to the 
constrained least-squares estimation with prior 
distribution: 
 
min{(x - x0)

T
W(x – x0) + (z - Hx - c)TR-1(z - Hx - c)}   

    x 

(38) 
subject to 
  Gx + a = 0    (39) 
 
where x0 is a prior estimate and W > 0. W

-1 is usually 
taken as an approximation to the covariance matrix of x0. 
Since both the objective function and the constraints are 
convex, the estimate will be unique. 

Applying the coordinate transformation we get 
 
min {( x~ - 0

~x )T
T

T
WT( x~ - 0

~x ) 
x~  

+ (z - H1
1

x~  - c)T
R

-1(z - H1
1

x~  - c)}   (40) 
 
subject to 
 G1

1
x~ + a = 0.   (41) 

 
Since the variables 2~x are unconstrained, and TT

WT > 0,  
2~̂x =

2
0

~x  is a minimizing solution for 2~x .  Then, the prob-
lem reduces to that of finding a solution to the constrained 
problem in 1

x~ . The important point here is that the 
measurements contributed no information to the 
determination of 2~x . A unique solution can be obtained 
only because of the prior estimate, but that part of the 

solution x̂  = T x̂~  which depends on 2~̂x is only as good as 
the prior estimate. 
   In some systems, it may happen that the variables 1

x~  
have physical meaning, i.e. we might be interested in their 
values. In this case, we have just shown that a 
decomposition procedure can be used: Estimate only the 
observable variables 1

x~ . This procedure was used in mass 
flow networks [1]. Note that, if no prior estimate is 
available (W�0), then the problem reduces to the usual 

least-squares problem, and 2~̂x is arbitrary. A similar 
decomposition has been done for the Luenberger observer 
to isolate the effect of unmeasurable input disturbances 
[21].  
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OBSERVABILITY A
D FILTERI
G I
 A QSS SYSTEM 

A quasi-steady state (QSS) system [2] consists of a set of 
p steady state algebraic constraints in n variables at each 
time tk, 

 

 g(x(k)) = 0,           k=0,1,...    (42) 
 
a set of l measurements taken at each time tk, 
 
  z(k) = h(x(k)) + v(k), k=0,1,...   (43) 
 
and a set of transition equations with “process noise” w(k), 
 
 x

2(k+1) = x2(k) + w(k),     k=0,1,...   (44) 
 
where x(k) is partitioned as 
 

 x(k) = 







)(
)(

2

1

k

k

x

x ,   x1(k)∈Rp,   x2(k)∈Rn-p   (45) 

 
It will be assumed that eqn (42) can be used to solve 
uniquely for x1(k) in terms of x

2(k), either analytically or 
numerically. 

We shall now consider the QSS system derived from the 
system with linear constraints, eqn (12), and linear 
measurements, eqn (27). We shall assume that the 
redundant rows of G have been deleted and G = [G1 ⁞ G2] 
has been permuted so that G1 is square and invertible and x 
is similarly partitioned into [x1 

⁞ x2] as in eqn (45). Define 
 

 ΓΓΓΓ = 






− −

I

GG 2

1

1    (46) 

 
and 
 
 H

* = HΓΓΓΓ.   (47) 
 

Theorem 10. The steady state system with linear con-
straints and measurements is observable, if and only if the 
unconstrained system z = H

*
x

2 + v is observable. 
Furthermore, H

* is of full rank n-p, if and only if either 
system is observable. 

Proof. Note that Gx = 0 if and only if x = ΓΓΓΓx
2. Let the 

first system be unobservable. Then there exists a δx such 
that Hδx = 0 and δx = ΓΓΓΓδx

2. Hence 0 = Hδx = HΓΓΓΓδx
2 = 

H
*δx

2. It follows that feasible unmeasurable perturbations 
can exist in the second system so it is unobservable. 
Conversely, let the second system be unobservable. Then 
there exists a δx

2 with 0 = H*δx
2 = HΓΓΓΓδx

2. Hence feasible 
unmeasurable perturbations δx = ΓΓΓΓδx

2 can exist in the first 
system, so it is unobservable. The rank of H* follows from 
Theorem 4.            ■ 

It follows from Theorem 10 that without any loss of 
generality we can restrict our considerations to the un-
constrained QSS system on the assumption that partition 
and transformation prescribed by eqns (46) and (47) have 
been previously carried out. The QSS system with sta-
tistical assumptions may then be described by 

 
 z(k) = Hx(k) + v(k)   (48) 
 

 x(k+ 1) = x(k) + w(k)   (49) 
 
 v(k) ∼ 0(0,R)   (50) 
 
 w(k) ∼ 0(0,Q)   (51) 
 
 x(0) ∼ 0( x (0), P0)   (52) 
 
and the Kalman filter for this system by 
 
 x̂ (k) = x̂ (k - 1) + Kk[z(k) - H x̂ (k - 1)]   (53) 
 
where Kk is the gain matrix [2]. 

Theorem 11. A linear QSS system is observable in the 
classical (dynamic systems) sense, if and only if the 
corresponding steady state system is observable. 

Proof. The proof is based on the observability 
matrix[11] for dynamic systems. By Theorem 10 we need 
only to consider the unconstrained case for which the 
observability matrix reduces to [HT ⁞ … ⁞ H

T]. The QSS 
system is observable if and only if rank [HT ⁞ … ⁞ HT] = n, 
which is true if and only if rank [H] = n, which is true if 
and only if the steady state system is observable by 
Theorem 4.           ■ 

It should be stressed that this theorem is the only link 
given in this paper between steady state observability and 
classical dynamic system observability. It only applied to 
the very restricted class of QSS systems derived from 
linear steady state systems with no inequality or other 
constraints. The dynamics are extremely restricted and are 
not easily generalized using the technique in Theorem 11. 

Note that if the steady state system is unobservable, the 
measurements cannot distinguish between some feasible 
vectors, say x1 and x2. Then, if either the steady state or the 
QSS system undergoes a step change from x

1 to x
2, the 

measurements will not detect the change, and neither will a 
Kalman filter for the QSS system. This analysis assumes 
that the step change is physically possible. We now study 
the implications of steady state observability on the 
performance of the QSS filter regardless of the actual 
physical phenomena. 

Theorem 12. If a steady state system with linear con-
straints and measurements is observable, and if Q > 0,      
R > 0, then the Kalman filter for the corresponding QSS 
system is stable. Furthermore, the matrices Pk(+) in the 
Riccati equation converge to a unique positive definite 
matrix P(+) as k � ∞. 

Proof. The Kalman filter is applied to the system, eqns 
(48)-(53) where H has full rank n by the Theorem 10. 
Consider the “reduced” system obtained by setting v(k) = 0 
for all k. The resulting “reduced” system is observable in 
the classical (dynamic systems) sense by Theorem 11. 
Furthermore, the “reduced” system is controllable (with 
w(k) as the “control variable”) because the usual 
controllability matrix[2] reduces to [I ⁞ I ⁞ … ⁞ I] which 
has rank n. Since Q > 0, R > 0, and the “reduced” model is 
controllable and observable, it follows that Pk(+) in the 
Riccati equation converges to a unique positive definite 
matrix, and the Kalman filter is stable [22].        ■ 

The converse to this theorem concerning the Riccati 
equation is treated in Theorem 13. 
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Since the remaining theorems on filtering in a QSS system 
depend on the coordinate transformation, 
 
   x = T x~       (54) 
 
where T is an n x n nonsingular matrix, it is convenient to 
summarize the results and introduce the notation. The 
general effect of this transformation is to replace H, x, w, 
Q, P0 by H

~
, x~ , w~ , Q

~
, 0

~
P  in eqns (48)-(52), where 

 
  H

~
= HT     (55) 

 
  w~ = T-1

w    (56) 
 
  Q

~
 = T-1

Q(T-1)T    (57) 
 
  0

~
P  = T-1

P0(T
-1)T.    (58) 

 
The Riccati equation in the Kalman filter for the original 
QSS system is given by 
 
 Pk+1 = Pk+1(-) = Pk + Q - PkAkPk   (59) 
where 

Ak = H
T(HPkH

T 
+ R)-1

H.   (60) 
 
After the transformation it becomes 
 

1
~

+kP  = kP
~

 + Q
~

 -  kP
~

kA
~

kP
~

   (61) 
where 

kA
~

 = 
T

H
~

( H
~

kP
~ T

H
~

 + R)-1
H
~

.   (62) 
 
It follows that 
 
     kP

~
= T

-1
Pk(T

-1)T    for all k.   (63) 
 
Theorem 13. If a steady state system in standard form with 
linear constraints is unobservable, then in the Kalman filter 
for the corresponding QSS system, the matrices Pk(+) in 
the Riccati equation cannot converge. 

Proof. Applying the coordinate transformation x = T x~  
prescribed by Theorem 9 we have H = [H1 ⁞ 0] where H1 is 
of full rank j and the subsystem z = H1

1
x~  + v is 

observable. If we let Pk be partitioned such that 

   






−

−
=

kk

kkk

jn
j

jnj

23

31
~

PP

PPP    (64) 

 
then eqn (62) may be rewritten as 

   






−

−
=

00

0AA kk

jn
j

jnj

1
~

   (65) 

where 
 
            A1k =H1

T(H1P1kH1
T + R)-1

H1.   (66) 
 
Hence kP

~
kA

~
kP

~
 is only positive semidefinite. 

Now suppose kP
~

� P. Then taking the limits on eqn (61), 

P = P + Q - PAP where A = T
H
~

( H
~

P
T

H
~

+ R)-1
H
~

.  
Hence Q = PAP. But for each k there exists an x(k) such 
that ║x(k)║ = 1 and x(k)T

PkAkPkx(k) = 0. Since the 
sequence {x(k)} is bounded, it must contain a convergent 
sub-sequence which, for convenience, shall again be 
labelled {x(k)}. Taking the limit as k�∞, x(k)�x, ║x║=1, 
and xT

PAPx = 0. But Q is positive definite and Q = PAP.  
Hence kP

~
cannot converge for the transformed equation, 

and by eqn (63), Pk cannot converge in the original Riccati 
equation.           ■ 

The result of Theorem 13 is confirmed by the flow 
networks studied earlier [2]: The Riccati equation failed to 
converge for every unobservable system examined. 
Moreover, the divergence was always to +∞, that is, some 
diagonal elements increased without bound’ toward +∞. 
We shall now show that for certain classes of systems this 
type of divergence always takes place. 

Theorem 14. If a linear QSS system can be transformed 
so that 
      H = [H1 ⁞ 0]    (67) 

P0(-) = P0 = 





20

10

P0

0P    (68) 

      Q = 





2

1

Q0

0Q    (69) 

then the diagonal elements in P2k increase without bound 
as k�∞ In addition, if H1 is of full rank, the sequence 
{P1k} converges. 
Proof. If we substitute eqns (67)-(69) into eqns (59) and 
(60), we obtain the following decomposition: 
 

          P1,k+1 = P1k + Q1 -  P1kA1k P1k   (70) 
 

          P2,k+1 = P2k +Q2    (71) 
 
where A1k is given by eqn (66). 
If H1 is of full rank and Q1 > 0, then by Theorem 12 {P1k} 

will converge since it corresponds to the Riccati equation 
for the observable QSS system with variables x

1 and 
measurements z(k) = H1x

1(k) + v(k). 
{P2k}, on the other hand, will increase without bound since 
Q2 is added at each time step according to eqn (71).       ■ 

   As an application of the above theorem, it can be 
shown[17] that the Kalman filter for a linear QSS system 
satisfying eqns (67)-(69) yields the estimates, 
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 (72) 
Equation (72) shows that )(ˆ 2 kx = )0(ˆ 2x  for all k, 

unaffected by the measurements and decoupled from the 
estimates of )(ˆ1 kx . 
 

REDU
DA
CY 

Closely related to observability is the concept of 
redundancy. A measurement is redundant if its removal 
causes no loss of observability. Definitions of local 
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redundancy, etc. follow directly from the type of obser-
vability being considered. Also, we say that an un-
measured variable is “barely observable” if it is observable 
but a nonredundant measurement must be used to calculate 
that variable. Thus, if an unmeasured variable is barely 
observable, failure of some instrument will render that 
variable unobservable. Since redundancy properties are 
defined in terms of observability properties, it is clear that 
in linear systems, all properties are global. 
   Redundancy is also closely related to estimator per-
formance, but the effects may depend a great deal on the 
form of the estimator. If a measurement is nonredundant, a 
typical unbiased statistical estimator will take the 
measurement as the estimate of the variable, and use it 
directly to calculate other variables depending on it. 
   When measurements are redundant, constrained least-
squares estimation can be used, and thus redundancy can 
be used to reduce the effects of measurement error. Also, 
redundancy is useful as a safety feature. When an 
instrument fails, redundancy may be utilized to fill in 
missing measurement values. 
We shall now extend the results of Theorem 9 to the 
decomposition of a linear steady state system with 
redundant measurements. 
   Theorem 15. If a linear steady state system in modified 
standard form, eqns (12) and (27), is observable and          
p + l > n, and furthermore, if the rows of H are permuted 
so that the first (l - j) rows correspond to the redundant 
measurements and the last j rows correspond to the 

nonredundant measurements, i.e. H = 





2

1

H

H , and j >0, then 

there exists a nonsingular n x n matrix T such that 

    [ ]0GGTG 1
~

jjn
p

−
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    (73) 
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Rank [H22] = j, rank 





11

1

H

G = n - j and every measurement 

corresponding to the subsystem 





11

1

H

G  is redundant. 

   Proof. Let ui, i= 1,2, ..., n - j be a basis for 
[N(G)∩N(H1))]

⊥  and ui, i = n–j+1, ..., n be a basis for 
N(G)∩N(H1)). Clearly N(G)∩N(H1)) must be nonempty, 
for it is the set of feasible perturbations undetectable by 
redundant measurements z1. If there were no such pertur-
bations, the system would be observable just using 
measurements z

1 (and the constraints), which contradicts 
the hypothesis j > 0. 
   Let T = [u1⁞u2⁞ ... ⁞un].  Then since the system is 
observable, by Theorem 4, 

        rank 




H

G  = n    (75) 

Hence, 
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Since the last matrix in eqn (76) is of full rank, all its 
columns must be linearly independent, and hence, 

rank[H22] = j. Since rank [H21 ⁞ H22] = j, rank 





11

1

H

G
= n - j.  

Finally, we must show that each measurement z
1 is 

redundant in the system G1
1

x~ + a = 0, z
1
 = H

11 1
x~ +c

1. 
Since the measurements z1 were redundant in the original 
system, each row of H1 was linearly dependent on some 

other rows of 




H

G . However, any row in H1 must be 

linearly independent of any row in H2, for otherwise 
measurement z2 would be redundant. Hence, any row of H1 

is dependent on other rows in 








1H

G
. This dependency is 

unchanged by the transformation T, and hence any row in 
H11 is dependent on other rows of G1 and/or H11 and hence 
is redundant in this system also.          ■ 

   Theorem 15 clearly shows that there is a constrained 
redundant subsystem of dimension n - j and an un-
constrained nonredundant subsystem of dimension j. 

Furthermore, the decomposition permits 1
x~  to be esti-

mated first, and then 2~x  can be calculated using our 
knowledge of z

2 and 1
x~ . A special case of Theorem 15 

involving material flow networks was derived previously 
[1] using graph-theoretic techniques. 
 

CLOSI
G REMARKS 

In this paper we developed the concepts of observability 
and redundancy for constrained steady state systems. We 
showed how local observability is directly related to local 
uniqueness of the solution to the measurement equation 
and how local unobservability leads to estimator failure for 
both steady state and quasi-steady state estimation. For 
linear constraints and measurements the conditions for 
local observability also hold for global observability and 
the system is decomposable into subsystems which are 
redundant, (barely) observable or unobservable, 
respectively. 
With these results the stage is now set for the development 
of algorithms for observability and redundancy 
classification which will be the subject of the sequel to this 
paper. 
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OTATIO
 

     Ak   a symmetric matrix defined by eqn (60) 
       A  a general vector of constants in eqn (12) 
   {ak}  a sequence of scalars 
       Bj    Hessian matrix for constraint gj 
        b   an arbitrary vector 
        c   a general vector of constants in eqn (10)
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D Matrix defined in the paragraph immediately 
preceding Theorem 4 

        d a direction vector 
E(.) expected value 

F mass flow rate 
G a constraint matrix 
g a vector of constraint functions 

g′(x0) the Jacobian matrix for the constraints defined 
in eqn (11) evaluated at x0 

H enthalpy 
H measurement matrix 

H* a reduced measurement matrix defined by eqn 
(47) 

h a vector of measurement functions 
h′(x0) the Jacobian matrix of measurements 

calculated at x0 
I identity matrix 

K a convex constrained set defined by eqn (9) 
K Kalman filter gain matrix 

Kk gain matrix for Kalman filter at time tk 
k an integer variable 
l number of measurements 

0( x ,P0) normal distribution with expected value x  and 
covariance matrix P0 

n number of state variables in a steady state 
system or in a Kalman filter 

P error covariance matrix 
Pk(+) error covariance matrix immediately after a 

discrete measurement at time tk 
Pk(-) error covariance matrix immediately before a 

discrete measurement at time tk 
p number of steady state equations 

Q process noise covariance matrix 
R measurement noise covariance matrix 
Rn n-dimensional real coordinate space 
S a feasible set 

S̄  closure of set S, consisting of S and all its limit 
points 

s a scalar multiplier in eqn (22) 
T temperature 
T in eqn (8) denotes a matrix referred by 

Yoshikawa and Bhattacharyya[10], but in 
Theorems 9 and 15 it represents a general 
nonsingular matrix 

t time in eqn (16) and dummy variable in eqn 
(22) 

tk time at which the kth measurement is taken 
ui basis vector spanning the column space of T in 

Theorem 15 
V set from which a particular value of 

measurement noise may be obtained 
v(k) measurement noise vector at time tk 

v  expected value of v 
W linear estimator matrix in eqn (28)-(31) and   

W
-1 is an approximation for the covariance 

matrix of x0 in eqn (38) and (40) 
w(k) process noise vector at time tk 

x vector of state variables 
x

0 limiting point of the sequence {x
k} 

x̂  estimate of x 

xi ith element of vector x 
xI vector with elements xi, i ∈ I, where I is an 

index set 
{x

k} the sequence of vector xk 
xa slack variable defined in eqn (17) 
Y estimator in eqn (24) 
y augmented state variables defined in eqn (13) 

and a general vector in the proof of Theorem 5 
z measurement vector 

 
Greek symbols 

ΓΓΓΓ n x (n - p) matrix defined in eqn (46) 
ω objective function in the least square estimation 

defined in eqn (32) 
 
Subscripts 

0 prior estimate 
 
Superscripts 

~ corresponding variables and matrices after the 
coordinate transformation given in eqn(54) 

^ estimate of 
T Transpose of a matrix 
ʹ first derivative with respect to x 

 
Operator 

◦ composite function operator 
⊥ orthogonal complement 

N ( ) null space 
> P > 0 denotes a positive definite matrix P 
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APPE
DIX 

 

Simple examples of process systems 
As a simple example to illustrate the notation (S, h, V) let 
us consider the blender in Fig. 5(a) with two inlet streams 
1 and 2 and an outlet stream 3, all streams being single-
phase. Let the temperatures T1, T2 and T3 and the outlet 
flow rate F3, be measured, that is, h1 = F3, h2 = T1, h3 = T2, 
h4 = T3. Then the state variables may be x = (F1, F2, F3, H1, 
H2, H3) where Hi is the enthalpy of stream i. The 
measurement vector z is given by 
 
   z1 = F3 + v1,   
   z2 = T1(H1) + v2,  
   z3 = T2(H2) + v3,   
   z4 = T3(H3) + v4  
 
where vi ~ 0(0,σi) if the noise is Gaussian. The feasible set 
S is defined by the constraints: 
 
   -x1 - x2 + x3 = 0, 
   -x1x4 - x2x5 + x3x6 = 0  
   ximin ≤ xi   ≤ ximax,  i = 1,2, ..., 6.  
 
In such a system one may want to control the temperature 
or the concentration of some component in stream 3, using 
estimates of flows F1 and F2, in a cascade control scheme, 
and the question is whether F1 and F2 may be determined 
using any estimator. 
Similarly, Fig. 5(b) may represent a two-stream heat 
exchanger for which all inlet and outlet temperatures, T1, 
T2, T3, T4, and one stream flow rate F3 are measured. The 
state variables are again the flow rate and enthalpy of all 
streams, and the feasible set is delineated by the material 
and energy conservation and the upper and lower bounds 
on each variable. If the heat exchanger is a feed preheater 
to a distillation column, we may want to monitor the feed 
flow rate, and the question is whether the flow rate F1 or 

F2 may be determined using any estimator. 
For both of these two problems the answers turn out to 

be “no” even for perfect measurements if H1 = H2; and by 
our definition, the flows are locally unobservable under 
those conditions. But it must not be supposed that local 
unobservability occurs only on restricted sets such as H1 = 
H2. Figure 5(c) depicts a common situation for which a 
wide range of flows might be expected and a single meter 
cannot cover the full range accurately. In this case x = (F1, 
F2), x1 - x2 = 0 and, say, 
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Then x1 and x2 are locally observable for 0 < x2 < 3, but 
locally unobservable for x2 < 0 or x2 > 3. z2 is locally 
redundant for 0 < x2 < 1 but locally non-redundant for 1 < 

x2 < 3. z1 is globally redundant—its deletion will not cause 
any loss of observability. Note that in this example the 
observability “structure” changes as the numerical values 
change. Therefore the numerical aspect should not be 
considered “incidental” or “fortuitous” in characterizing 
the observability and redundancy of a system. Note also 
that the examples cited above are by no means isolated or 
pathological. Flow meters such as rotameters have non-
zero lower limits as well as upper limits of scale, and 
configurations such as Fig. 5(a)-(c) occur widely as 
components of more complex systems such as the crude 
preheat exchanger networks discussed in our earlier paper 
[2].   
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