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Abstract—The utility of observability and redundancy in characterizing the performance of process data estimators
was established in previous studies[10]. In this paper two classification algorithms for determining local and global
observability and redundancy for individual variables and measurements are presented. The concepts of bicon-
nected components, perturbation subgraphs and feasible unmeasurable perturbations are introduced, and their
properties are developed and used to effect classification, simplification and dimensional reduction. Step-by-step

application of these algorithms is illustrated by examples.

INTRODUCTION

In a previous paper[10] we developed the concepts of
observability and redundancy for constrained steady
state systems and demonstrated that these concepts are
useful in characterizing the performance of process data
estimators with regard to bias and uniqueness of an
estimate, convergence of estimation procedures and the
feasibility and implications of problem decomposition.
We also derived first and second order sufficient con-
ditions for local observability and, in the case of linear
constraints and measurements, global observability.
However, from the practical point of view the ap-
plication of these conditions suffers two serious draw-
backs. In the first place, they are based on matrix rank
tests which are computationally cumbersome. For sys-
tems for which local observability classification is of no
concern, one approach might be to perform a “struc-
tural” rank test[8). Secondly, and even more seriously,
since these tests are applied to the system as a whole,
they cannot be used to classify the observability of
individual variables. In this paper we shall show that by
exploiting the structural characteristics of a process
network we can develop theorems and algorithms which
would classify individual variables in such a network.

There has been a growing interest recently in develo-
ping graph-theoretical controllability criteria, which are
closely related to observability criteria, for linear
dynamic systems. Goknar[3, 4] developed necessary and
sufficient conditions, and an algorithm for testing con-
trollability using signal-flow graphs. Lin[5] introduced
the notion of “structural controllability”, which is in-
dependent of the values of non-zero system parameters.
This concept was related to properties of a directed
graph derived from the structure of the system equa-
tions. In this paper we shall develop graph-theoretical
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observability and redundancy criteria for steady state
process networks.

PROCESS NETWORK AND PERTURBATION SUBGRAPHS

We shall begin with a discussion of some graph-
theoretic concepts and terminology needed for the
classification algorithms, but it is not our intention to
provide a comprehensive introduction to graph theory.
The reader is referred to Mah and Shacham(7] for a
summary of some very useful properties of graphs and
digraphs and to Deo[2] for a fuller treatment of graph
theory.

As we have shown in a previous paper[6], the process
graph is a very useful representation of the topological
structure of a process. We used that representation to
obtain certain decomposition results for process data
reconciliation, coaptation and fault detection. In this
investigation we shall further exploit the structural pro-
perties of such a representation. We shall start with the
properties of the underlying graph in which the direc-
tions of arcs have been erased.

A node v is a cut-node or articulation point of a
connected graph G if its removal disconnects G. For
instance, in Fig. 1(a) nodes 2 and 5 are cut-nodes. A
graph is separable or 1-connected if it contains a cut-
node. Now suppose we split a cut-node into two nodes to
produce two disjoint subgraphs and let us refer to this
operation as splitting. If we repeat this operation until all
subgraphs are non-separable, then the resulting sub-
graphs are called blocks or biconnected components. The
four biconnected components derived from the graph in
Fig. 1(a) are shown in Fig. 1(b).

Clearly, two arcs belong to the same biconnected
component if and only if they belong to a common cycle.
Any two biconnected components are either disjoint or
have exactly one cut-node in common. Each cut-node
lies in at least two biconnected components and all other
nodes can belong to only one biconnected component. It
can also be shown that the rank and nullity of a graph are
preserved in the splitting operation. Further discussion
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(a)

Fig. 1. A graph and its biconnected components.

of the properties of biconnected components is given
elsewhere[11, 1].

Another operation which will be carried out in the
classification algorithm is the aggregation of two adjacent
nodes with the elimination of all arcs between them. We
shall refer to this operation simply as aggregation and the
aggregated node as a pseudo-node.

By contrast to a process graph we shall use the term
“process network™ to refer to both the structure of the
graph and the attributes of the arcs. Schematically, solid

(c)

lines and broken lines are used to represent mass flow
arcs and pure energy flow arcs, and temperature and flow
measurements are indicated by single and double slashes
on the respective arcs, as shown in Fig. 2. On the basis
of these attributes we can define a hierarchy of sub-
graphs. G; is the subgraph of G with all measured pure
energy flow arcs deleted. G is the subgraph of G with
all pure energy flow arcs deleted. Gm. is obtained from
G.. by deleting all arcs with flow measurements and
Gumuu is obtained from Gn. by deleting all arcs with

Fig. 2. A process network and some of its subgraphs: (a) a process network; (b) completely unmeasured mass flow
subgraph Gmuu; (c) a perturbation subgraph; (d) another perturbation subgraph.
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temperature measurements. Thus, Gmuu C Gmu C Gm C
G, C G. In this treatment we shall assume a one-to-one
correspondence between temperature and enthalpy;
measurement of one immediately infers measurement of
the other. For a given mass flow arc i the enthalpy is
related to the mass flow x; and energy flow y: by

_ )’.'/Xi, X7
H={0" 370 @

For the steady state process network under con-
sideration if the constraints consist of mass balances,

Anx=0 2

only, where x is the vector of mass flows and A, is the
incidence matrix of G.., the process network is termed a
mass flow network. If the constraints contain the energy
balances

Ay=0 3

as well, where y is the vector of energy flows and A the
incidence matrix of G, it is termed a mass-energy flow
network.

Now the solution (x, y) to eqns (2) and (3) is related to
the fundamental cycle (mesh) flows x> and y* by

x=Cm' ¥ )
y=C"y’ ©)

where C,, and C are the fundamental cycle matrices of
G and G, respectively.

It is extremely important to note that the space of
feasible solutions (x, y) for a mass-energy flow network
(abbreviated as G) is linear. The nonlinearity of the
energy balances appears only when we attempt to cal-
culate the enthalpy H: = yi/x; or the temperature. Thus, if
(x1, y1) and (x2, y2) are both solutions to eqns (2) and (3),
so are their linear combinations, although some of these
solutions may be physically infeasible, e.g. solutions
giving rise to negative absolute temperatures. In practice
this problem will not arise since only solutions close to
known feasible solutions will be considered.

It also follows from the linearity of the solution space
that linear combinations of feasible solutions for two
subgraphs G, and G are feasible solutions for G U G
and that the space of feasible solutions for G is spanned
by the vectors representing the feasible solutions for all
possible subgraphs. In particular, the feasible solution
space for G is minimally spanned by the feasible solu-
tions for the subgraphs which are the fundamental cycles
of G. The last observation gives rise to the following
important definition and result:

Definition. Let (x°, y°) be a feasible solution in G and
let (8x, 8y) be a feasible solution for G,, where G: C G,
5x—0 and 8y—0. G, is a perturbation subgraph of G at
(x° y%), if the measurements on G cannot distinguish x°
y®) from (x°+ 6x, y°+ 8y).

Lemma 1. In a process network with the underlying
graph G, an arc variable (xi, yi or Ti) is locally un-
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observable at (x°, y°) if and only if the arc lies in at least
one perturbation subgraph of G.

The lemma follows immediately from the definition
and the fact that feasible unmeasurable perturbations[10]
can occur in a perturbation subgraph. It provides a basis
for establishing sufficient conditions for observability
and unobservability. However, the required theorems are
sometimes more conveniently stated in terms of feasible
unmeasurable perturbations which will be studied next.
Figure 2 illustrates the subgraph Gmu.. and two pertur-
bation subgraphs derived from a simple process network.

OBSERVABILITY CLASSIFICATION IN MASS FLOW NETWORKS

For mass flow networks the properties needed for
observability classification are fairly obvious. However,
it is worthwhile stating the principal results in order to
bring out the contrast with the more complex situation of
mass-energy flow networks. We shall omit the proofs
which are given elsewhere[9].

Theorem 1. Let G be the underlying graph of a mass
flow network, let v be a cut-node of G and let G, and G.
be two subgraphs such that G; U G2= G = G and G: N
G2=v. Then

(a) No net mass flow can cross node v from G, to G
(or G2 to Gy).

(b) No net mass flow can enter or leave a biconnected
component of Gm.

(c) Nonzero mass flow in arc i is feasible if and only if
arc i lies in a cycle in Gm.

Theorem 2. In a mass flow network mass flow in an
arc i is unobservable if and only if arc i lies in a cycle of
unmeasured arcs.

An immediate consequence of Theorem 2 is the fol-
lowing corollary which follows from Theorem 8 of our
previous paper[10] and was previously proven by a
different technique[6].

Corollary. For constrained least-squares estimation in
a mass flow network, the flow estimate in an unmeasured
arc i is nonunique if and only if arc i lies in an un-
measured cycle.

Note that since the constraints and measurement
equations are both linear for mass flow networks, there is
no distinction between local and global observability.

OBSERVABILITY CLASSIFICATION IN MASS-ENERGY FLOW
NETWORKS

In mass flow networks the unmeasured cycle criterion
(Theorem 2) provided both necessary and sufficient
conditions for unobservability and observability. In
mass-energy flow networks there are two types of
measurements (flow and temperature) and three types of
variables (temperature, mass and energy flows). With this
increase in complexity, it will no longer be possible to
write down such simple graph-theoretical conditions. In-
stead, sufficient conditions for observability and very
different sufficient conditions for unobservability will be
presented. Furthermore, since the energy balances are
nonlinear due to the products of flow rates and enthal-
pies, it will be necessary to distinguish global obser-
vability criteria from local observability criteria.

It is important to note that the sufficient conditions for
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Fig. 3. A blending system.

mass flow observability implied by Theorem 2 for a mass
flow network still apply in a mass-energy flow network.
That is, if every cycle in G, containing arc i has at least
one flow measurement, then x; is observable using only
mass balances and mass flow measurements. Hence x; is
observable in the mass-energy flow network which in-
cludes mass balances and flow measurements as well as
energy balances and temperature measurements.
However, if arc i is in a cycle of G, in which all mass
flows are unmeasured, it may still be possible to calculate
these flows using temperature measurements and energy
balances. In fact, the difficulty in classifying obser-
vability in a mass-energy flow network arises precisely
because of the possibility that a cycle of mass flow arcs
might not have any mass flow measurements at all.

The blending system shown in Fig. 3 demonstrates the
points just made. The flow x; lies in no cycles in G,
and hence it is observable just using the mass balance
equations and flow measurements. However, x4 and xs
form a cycle with no mass flow measurements. Only
through the use of temperature measurements and the
energy balance can x4 and xs be calculated. It will be
seen that the possibility of performing this calculation
depends on the values of Hs and Hs.

We now present the basic theorems needed for obser-
vability classification. As in the case of the mass flow
network, it will be necessary to determine which flows
are feasible.

Theorem 3. Let G be the underlying graph of a mass-
energy flow network, let v be a cut-node of G, and let G,
and G; be the subgraphs such that G;UG.=G and
Gi1NG2=v. Then

(a) No net mass or energy flow can cross node v from
G, to G2 (or G2 to G1)

(a)
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(b) No net mass or energy flow can enter or leave a
biconnected component of G.

(c) Nonzero mass flow in an arc i is feasible if and
only if arc i lies in a cycle of Gm

(d) Nonzero energy flow in an arc i is feasible if and
only if arc i lies in a cycle of G.

The proof of Theorem 3 is very similar to that of
Theorem 1 and is omitted here for the same reason.

Theorem 4. Let G be the underlying graph of a mass-
energy flow network and let mass flow arcs i and j form
a cutset of G. T; is globally observable if T; is
measured.

Proof. Let G; and G be the two subgraphs of G after
deleting arcs i and j and let

_ { 1, if arc i is directed from G, to G ©
& =1-1,if arc i is directed from G to G,
_ { 1, if arc j is directed from G to G- a
%=1-1, if arc j is directed from G to G.
Then the mass and energy balances about G- are
aixi + a;x; =0 8)
aix;H; + ajx;H; = 0. )

Multiplying eqn (8) by H; and subtracting it from eqn (9),
we obtain

apx;(H; = H;) = 0. (10)
If x;#0, H; = H;, and H; cannot be perturbed without
affecting the measurement T;. If x; = 0, then by definition
H; =0 and its value is again fixed. ]

Corollary. Let G be the underlying graph of a mass-
energy flow network and let mass flow arcs, j, i1, iz,...
and ix form a cut-set of G. T; is locally observable, if T;,,
Ti, ... Ty are measured and H;; = Hi,=...= Hy.

We shall omit the proof which follows an analogous
development to that of Theorem 4 but illustrate the
application with reference to Fig. 4. Theorem 4 shows
that T;, T> and T in Fig. 4(a) are globally observable, and
by the corollary, if Hs = Hio, Ts is observable and Hs =
He¢=Hyo in Fig. 4(b)

The two foregoing results deal with sufficient con-
ditions for global and local observability. The next three

Fig. 4. Process networks.
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theorems stipulate the sufficient conditions for global and
local unobservability.

Theorem 5. Let G be the underlying graph of a mass-
energy flow network.

(a) if arc i isina cycle of C of Gpmuu, then X;, y; and T; are
globally unobservable;

(b) if arc i is in a cycle C of G, Wwith exactly one
temperature measurement, then x; and y; are globally
unobservable.

Proof. (a) For the cycle C in Gmuu choose any arc k,
k#i, in C and choose a spanning tree for Gmu. for
which arc k is not a branch. Consider first an arbitrary
perturbation 8xx with T held constant. Then 8y« = Hidxi
and from eqns (4) and (5) we have also perturbed all x;
and y; in C by 8xc and 8y, respectively. Since there are
no measurements in C, these perturbations are clearly
feasible and unmeasurable, and since the argument does
not depend on the values of x;, y; or Hj in C, x; and y, are
globally unobservable.

Next consider an arbitrary perturbation 8y, with xi
held constant. From eqn (5) all y; in C are perturbed by
Sy« and H; = (y; = 8y)/x; with the sign determined by the
direction of arc j. In either case H; is perturbed to a new
feasible value and there are no measurements in C to
detect the change. Hence, by the same argument T; is
globally unobservable.

(b) Now use the same construction as before but let
arc k be the arc with the temperature measurement. The
first type of perturbations (8x;, 8y;) is still feasible and
unmeasured, but the second type (8y;, 8T«) would be
detected. Hence x; and y; are globally unobservable, but
no conclusion is drawn about the observability of T.. 1

An illustration of the above theorem may be found in
Fig. 5(a). Arcs S and 6 form a cycle in Gmu With exactly
one temperature measurement. Hence xs, xs, ¥s and ye
are globally unobservable. Note that even though mass
and energy flows are globally unobservable in a cycle of
G With exactly one temperature measurement, it is still

Fig. 5.
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Fig. 5. Hlustrations of steps in the observability classification algorithm.

possible for the temperatures to be locally or globally
observable. In Fig. 4(b) xs— X, y4— y- are globally un-
observable but Ts is locally observable if He= Hio
(Corollary to Theorem 4), and in Fig. 4(a) x1, x2, X3, y1,
y2, ys are globally unobservable but T, T, Ts are
globally observable.

Theorem 6. Let G be the underlying graph of mass-
energy flow network and let arc i be in a cycle C in G
with no temperature or energy flow measurements. Then
yi is globally unobservable. Furthermore, if arc i is a
mass flow arc, then T; is also globally unobservable.

Proof. Choose any arc k, k# i, in C and a spanning
tree for G for which arc k is not a branch. Perturb y:
arbitrarily by 8y« while holding xi constant. For each arc
j in C, y; is perturbed by 8y« according to eqn (5).
Furthermore, since H; = y,/x; for mass flow arcs, H; is
also perturbed. Since no measurements detect these
feasible perturbations, the theorem follows. |

One difference between this theorem and the preced-
ing one is that the cycle in Theorem 6 might include a
pure energy flow arc. For instance, in Fig. 6 arcs 1 and 2
form a completely unmeasured cycle. Theorem 6 applies
but Theorem 5 does not. Another difference is that the

cycle in Theorem 6 may contain mass flow measure-
ments which are explicitly excluded in Theorem 5.

Suppose all mass flows are globally observable just
using the mass flow measurements and mass balances.
Then any temperature or energy flow can be classified as
globally unobservable by Theorem 6 or globally observ-
able by the following corollary:

Corollary. Let G be the underlying graph of a mass-
energy flow network, let G be acyclic, and let arc i be
any arc in G. If every cycle containing arc i has a
temperature or energy flow measurement, then y: is
globally observable, and so is T; if arc i is a mass flow
arc. The proof of the corollary follows immediately from
Theorems 2 and 3(d).

2
I
(a) (b)

Fig. 6. Erroneous classification.



Observability and redundancy classification in process networks

In many cases observability will depend on the tem-
perature or enthalpy values of some arcs. The following
local unobservability theorem is an extension of
Theorem 5:

Theorem 7. Let G be the underlying graph of a mass-
energy flow network and let arc i be an arc in a cycle C
in Gma. If there is at most one value of enthalpy cal-
culated from all temperature measurements on C, then x;
and y: are locally unobservable. Furthermore, if T: is
unmeasured, and if Hi# Hi, T« being a measured tem-
perature, then T; is also locally unobservable.

Proof. Let arc k, k# i, be one of the arcs in C with a
temperature measurement. Choose a spanning tree for
G for which arc k is not a branch. Let x° and y° denote
the mass and energy flows before the perturbations.
Consider an arbitrary perturbation 8x. with Ti held
constant. Then x«=xC+0x, Hi=H' and y =
0+ H8x., and for any other arc j in C, x; = %"+ ;0%
and y; = y°+ adyx = x"H + a;H"6x, where a;=1 (or
—1)if arc j is oriented in the same (or opposite) direction
as arc k. But for all the arcs in C with measured
temperature HS= H,’. Hence y; = x;H." and H; = H" =
HP. Thus, these temperature measurements would not
detect the mass and energy flow perturbations, and x;
and y; are locally unobservable.

Now on the unmeasured arc i in C Hi=y/xi=
(H®x® + a:H8x)/(x2 + aidx:). If H® # H,’, then the value
of H, depends on 8x which is arbitrarily chosen. Hence,
T; is also locally unobservable. |

Some illustrations of Theorem 7 can now be given. If
H.= Hs, arcs 4 and 5 in Fig. 3 form a cycle as stipulated
in Theorem 7 and xs, ya, Xs, ¥s are locally unobservable.
In Fig. 5(a), if Hsa= H7, X3, X4, Xs, X7 and y3, Ya, ¥s, y7 are
locally unobservable, and if Hs# Hs, then Ts is also
locally unobservable. We note that Theorem 7 applies to
cycles with more than one measurement and provides
more information than Theorem 5 even for a mass flow
cycle with a single temperature measurement. For in-
stance, in the cycle formed by arcs 4, 5, 6 and 7 in Fig.
4(b), if He 7 He, T4 is locally unobservable by Theorem
7.

As we pointed out earlier, observability classification
based on matrix rank tests can only yield information
about the system as a whole, whereas from the viewpoint
of process analysis it is often crucial to identify the
individual variables with the various levels of obser-
vability or unobservability. The matrix rank tests are also
computationally cumbersome. For the mass-energy flow
network in Fig. S the rank of a 38 x 37 matrix would have
to be tested. In this case the test is inconclusive. But in
any case the matrix rank test can only establish local
system observability or unobservability, since the
evaluation must be carried out at a particular set of
conditions. By comparison with the matrix rank tests
which are basically numerical tests, the potency of
graph-theoretical classification criteria becomes very
apparent.

Because of these shortcomings matrix rank tests
should be used only as a last resort after we have
exhausted all the other alternatives of observability
classification. In the algorithm to be presented the graph-
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theoretic theorems will be used to classify as many
variables as possible. These variables can then be
removed from further consideration. The elimination
usually results in the decomposition of the process net-
work into smaller sub-networks. With this reduction in
dimensionality the matrix rank tests can then be applied
effectively.

It is important to note that in the following theorem
which gives both necessary and sufficient conditions for
local observability we will only be concerned with sub-
graphs of the original process graph. The absence or
existence of perturbation subgraphs will be the basis for
local observability or unobservability.

It should be clear that an arc with both mass flow and
temperature measurements would admit no unmeasur-
able perturbation in mass or energy flow. After its tem-
perature, mass and energy flows have been classified as
globally observable, it can be safely deleted from further
considerations. Arcs 1, 12, 15, 16, 17 and 18 in Fig. 5(a)
fall into this category. Similarly a pure energy arc i with
an energy flow measurement would admit no unmeasur-
able perturbation in energy flow. It too can be deleted
after y: has been classified as globally observable.

Next consider a mass flow arc i with mass flow
measurement but no temperature measurement. Clearly
it would admit no unmeasured mass flow perturbation,
but it could admit unmeasured energy flow perturbation
through temperature changes. Since arc i cannot be in
the mass flow perturbation subgraph, it may be con-
verted to a pure energy flow arc with the understanding
that T; and y: of the original arc are observable if and
only if y: in the corresponding pure energy flow arc is
observable. Such an arc should be so converted after its
mass flow has been classified as globally observable. Arc
10 in Fig. 5(a) is such an example.

It should be evident that after these deletions and
conversions, the only arcs remaining will be mass flow
arcs with measured temperatures only, unmeasured mass
flow arcs, and unmeasured pure energy flow arcs. Let the
incidence matrices correspond to these arcs be Ami, Am;
and A., respectively, and define a new matrix B, by

Bi=AmA (11)
where A is a diagonal matrix whose elements are the
enthalpies H; corresponding to the arcs in Am:. The most
general case of a matrix to be rank-tested will contain
sub-matrices Am;, Amz, Ae and By.

Theorem 8. Let a mass-energy flow network contain
only mass flow arcs with measured temperatures, un-
measured mass flow arcs, and unmeasured pure energy
flow arcs, let the incidence matrices corresponding to
these arcs be Am;, Am; and A., respectively, and let the
energy flow coefficient matrix corresponding to Am, be
B.. The network is locally observable if and only if the
rank of the partitioned matrix

(Aml Am, 0 0)
B 0 A A

is equal to n, the total number of mass and energy flow
arcs.

(12)
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Proof. Let 6x' be the mass flow perturbations in (the
subgraph corresponding to) A, which give rise to cor-
responding energy flow perturbations in B;, let 6x* and
8y’ be the mass and energy flow perturbations in Am,,
and let 8y’ be the energy flow perturbations in A.. Since
these are the only unmeasurable perturbations and since
the nodal mass and energy balances are given by

5x'
(Aml Am] 0 0) 5X2
B 0 Aw AJ| 50|70
8y’ (13

any nonzero solution to eqn (13) would constitute a
feasible unmeasurable perturbation. But the theorem
stipulates the necessary and sufficient condition for pre-
cluding such nonzero solutions, and by Lemma 1 the
network is locally observable if and only if it contains no
perturbation subgraphs. [ ]

Note that the rank of the partitioned matrix depends
on the enthalpy values used in eqn (11). However, if the
number of rows of matrix (12) is less than n, the system
is unobservable for any enthalpy values.

OBSERVABILITY CLASSIFICATION ALGORITHM

Starting with a process network with its arc attributes
of measured variables and enthalpy values, the algorithm
classifies each temperature, mass and energy flow into
one of the following categories: globally observable (g.0.),
locally observable (l.0.), locally unobservable (l.u.), glo-
bally unobservable (g.u.), or an ‘“unobservable block”
(u.b.). The last category indicates that the arc is in a
perturbation subgraph which cannot be further classified.
An unobservable block contains at least one locally
unobservable variable.

The basic approach taken in the algorithm is to
determine which arcs are in which perturbation sub-
graphs of G. Initially the entire process graph is con-
sidered as a candidate for perturbations. If an arc cannot
possibly be in any perturbation subgraph, it is deleted. If
a perturbation subgraph can be identified, it is aggregated
into a pseudo-node after its arc variables are ap-
propriately classified. At any time during the execution
of the algorithm the network under consideration is the
unclassified sub-network of the original process network.
In this connection it is important to note that the iden-
tities of G, G etc. change during the execution of the
algorithm, referring always to the unclassified subgraphs
remaining at any instant.

We shall now state the algorithm and then Hlustrate the
various steps with respect to the network in Fig. S:

1. Arc reduction rules
For each arc i in G call REDUCE (i) which is defined
below.
Procedure REDUCE (i):
A. For a mass flow arc i
i. classify T; as g.o., if T; is measured.
ii. classify x; as g.0., if x; is measured. Further-
more,
a. delete arc i and classify y; as g.o0., if T; is also
measured.
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b. convert arc i to an unmeasured pure energy
flow arc, if T: is not measured. The obser-
vability of T; will be the same as that of y;.
B. For a pure energy flow arc i, delete arc i and
classify yi(T:) as g.o., if y; is measured.
C. Exceptions: Variables which have been previously
classified should not be reclassified.

2. Unobservable cycle rules

A. Find components and biconnected components of
Gruu.

B. Aggregate all nodes in each biconnected com-
ponent of Gmu. With more than one arc. All unmeasured
variables in the arcs so eliminated are g.u.

C. For each pure energy flow arc i with incident nodes
v and w in the same component of Guuu ¥i iS g.u.

i. For all arcs j in the cycle formed by arc i and arcs
in G, after y; and T; are classified g.u., delete
arc i.

D. For each arc k in G, with a measured temperature
and with incident nodes v and w in the same component
of Gmuu aggregate nodes v and w and also aggregate all
nodes in the cycle formed by arc k and arcs in Gmuu. For
each arc i in Gmuu so eliminated do not reclassify T; if
already classified, but

i. classify T; as Lu., if H; # H.
ii. classify T; as in an u.b., if H; = Hi.

All other unmeasured variables in the eliminated arcs
are g.u.

3. Feasibility rules
A. Mass flow feasibility

i. Find biconnected components of Gm.

ii. For each biconnected component of G, with
exactly one arc i mark x; as measured and call
REDUCE (i).

B. Energy flow feasibility

i. Find components, biconnected components and
cut-nodes of G.

ii. For each biconnected component of G with
exactly one arc i mark y, T; and also x; as
measured, and call REDUCE (i).

C. Perform splitting operation on each node v which
is still a cut-node of G.

4. Parallel arc rule
If arcs i and j are parallel pure energy flow arcs, delete
arc j and classify y; and y; as g.u.

5. Matrix rules
Aggregate the nodes in each component of Gmuu.
For each component of G apply matrix rank test.
Classify each previously unclassified variable as
A. Lo. if the component is l.o.
B. g.u. if the matrix has fewer rows than columns.
C. in an u.b. if the component is Lu.

AN EXAMPLE
We shall now apply the observability classification
algorithm step by step to the process network in Fig.
5(a).



Observability and redundancy classification in process networks

1. Application of arc reduction rules results in the
deletion of arcs 1, 12, 15, 16, 17 and 18 after their
temperatures, mass and energy flows have been classified
as g.0., and in the conversion of mass flow arc 10 to a
pure energy flow arc after xio has been classified as g.o.
The revised G is shown in Fig. 5(b).

2. The unmeasured cycle rules are based on the ap-
plication of Theorems 5, 6 and 7. Step 2B aggregates the
nodes and classifies the temperatures, mass and energy
flows as g.u. in a completely unmeasured cycle of mass
flow arcs according to Theorem 5(a). The reason for
aggregation is to reduce the size of the network to be
further classified. The variables on all eliminated arcs
have been classified, and consequently, require no fur-
ther attention. Since aggregation of two nodes is alge-
braically equivalent to combining two rows in the mass
balance equations (2) and combining two rows in the
energy balance equations (3), the solution in terms of
variables external to the pseudo-node are unaffected.

In the process of aggregating nodes v and w any mass
flow arc k with measured temperature connecting the
same two nodes will also be eliminated. Since there is at
least one path between nodes v and W in Gmuu, arc k
must be in a cycle with exactly one temperature
measurement. By Theorem 5(b) x. and y« are g.u. An
unmeasured pure energy flow arc k between nodes v and
w will similarly be eliminated, and by Theorem 6, yx is
also g.u. All these situations are accounted for in step
2B, but since they do not arise in Fig. 5(b) the network is
unaltered in this step.

After step 2B Gmuu consists only of trees. In step 2C
we consider each completely unmeasured cycle with
exactly one pure energy flow arc. Then by Theorem 6 yx
is g.u., and for each of the other arcs in the cycle (say,
arc j in Gmu) T; and y; are also g.u. In this step the
adjacent nodes v and w are not aggregated. since the
mass flows in the cycle have not yet been classified.
Instead arc k is deleted. This deletion will not affect
potential unmeasurable energy flow perturbations in arcs
external to the cycle. Again step 2C does not affect the
network in Fig. 5b.

In step 2D we consider each remaining cycle in Gm
with exactly one temperature measurement Ti. For each
arc i in the cycle x; and y; are g.u. by Theorem 5(b).
Furthermore, by Theorem 7 T; is Lu. if Hi# Hi. Ti is in
an u.b. if H; = H,, since arc i is in a perturbation sub-
graph. In either case all nodes in the cycle are aggregated
into a pseudo-node with no effect on potential un-
measurable perturbations in arcs external to the pseudo-
node. Note that if T; has already been classified as g.u. in
step 2C, it should not be reclassified. In the example in
Fig. 5(b) nodes 3 and 4 are aggregated. xs, X6 and ys, Ye
are g.u. Te has been previously classified as g.o. in step 1.
If Hs # He, Ts is L.u., and if Hs= He, Ts is in an u.b.

3. In steps 3A and 3B infeasible mass and energy flow
perturbations are identified using feasibility rules based
on Theorems 1 and 3. Arcs which do not permit un-
measurable perturbations are tagged and reprocessed by
arc reduction rules. We begin with each biconnected
component with exactly one arc i in the mass flow
sub-network. Since mass flow perturbation in such an arc
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is impossible by Theorem 1(c), x: is treated as if it were
measured. By tagging it as “measured” we can im-
mediately subject it to reprocessing by arc reduction
rules without any other special provisions.

Similarly, unmeasurable mass and energy flow pertur-
bations are ruled out in a biconnected component of G
containing exactly one arc i by Theorem 3(c) and (d). To
avoid the inconvenience of distinguishing whether arc i
is a mass or pure energy flow arc, mark T;, y: and x; as
“measured”’ and invoke the arc reduction rules. Notice
that x; is tagged in this case for convenience.

Applying step 3A to the network in Fig. 5(c) we mark
X2, X11, X13 and X;s as “measured” and after appropriate
arc reductions the network appears as shown in Fig. 5(d).
Similarly, y,, T» and y.s and Ti. are tagged as
“measured” in step 3B which gives rise.to the network in
Fig. 5(e). In step 3C we perform splitting on node 3, the
cut-node in G. The splitting permits the matrix rank test
to be applied to disjoint subgraphs of lower dimensions
shown in Fig. 5(f).

At this point the need for avoiding reclassification in
step 1C may be illustrated with a simple example. Refer-
ring to Fig. 6(a), y1, y2 and T} are classified as g.u. in step
2C. After the deletion of arc 2, arc 1 is not in any cycle.
Hence x; is g.0. However, if we do not prohibit
reclassification, it might be erroneously concluded from
Fig. 7(b) that T, and y, are also g.0.

4. The parallel arc rule applies to unmeasured pure
energy flow arcs whose flows may be classified as g.u. by
Theorem 6. All but one of the energy flow arcs may be
deleted after classification. Notice that in this step the
adjacent nodes v and w must not be aggregated. Since
the arcs between v and w can only transmit pure energy
flow, aggregation would introduce a mass flow path
which does exist in the unaggregated network. For
example, Fig. 7(b) would suggest feasible unmeasurable
mass flow perturbations through arcs 1 and 2, which are
not permitted in Fig. 7(a).

5. At this point we have exhausted all the graph-
related reduction and classification rules. A comparison
of Fig. 5(a) and 5(f) shows clearly the dramatic reduction
in network dimensionality. However, we can make a
further reduction by aggregating the nodes in each com-
ponent of Gmu. before applying the matrix rank test.
Since a completely unmeasured path of mass flow arcs
connect these nodes, the aggregation clearly does not

(a) (b)

Fig. 7. Erroneous aggregation of nodes.
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affect feasible unmeasurable perturbations external to
these nodes. If the matrix rank test shows a component
of G containing such a pseudo-node to be l.o., then the
variables associated with the eliminated arcs in the
pseudo-node are also l.o. If the test shows the com-
ponent to be Lu. we can only classify the eliminated arcs
as being in an u.b.

With reference to the example, aggregation of nodes 5
and 6 transforms Fig. 5(f) to Fig. 5(g), and the application
of Theorem 8 shows that arcs 8-11 are in a g.u. block and
that arcs 3, 4 and 7 are l.o. if H; # H, and in a Lu. block
if H,= Ha.

REDUNDANCY CLASSIFICATION IN MASS FLOW NETWORKS

Since redundancy is defined in terms of
observability [10], the redundancy of a measured variable
can be determined by deleting the measurement and
applying the observability classification algorithm.
Depending on whether the unmeasured variable is glo-
bally (locally) observable or unobservable, the
measurement is globally (locally) redundant or non-
redundant. This relationship is exploited in proving
redundancy theorems, but as a computational procedure,
it is not very efficient and should be avoided except as a
last resort. In fact much of the redundancy classification
algorithm is devoted to strategems of classification
without resorting to this “brute-force” procedure. It is
important to note that, unlike observability, redundancy
is defined only with respect to measured variables, al-
though they both depend on network configuration and
measurement placements.

As before, we shall first establish the governing
theorems, then present the classification algorithm and
finally illustrate the steps in the algorithm with an
example.

Since a mass flow network is linear, its properties with
respect to observability and redundancy are global. We
need simply to characterize a measurement as redundant
or non-redundant. The following theorem states three
equivalent criteria for redundancy.

Theorem 9. In a mass flow network let arc i connec-
ting nodes v and w be measured. Then the flow
measurement x; is redundant if and only if

(a) nodes v and w are not connected by a path of
unmeasured arcs (regardless of directions);

(b) nodes n and w lie in different components of G.,;

(c) arc i is in a cut-set of G,, consisting solely of
measured arcs.

Proof. (a) To test for non-redundancy delete the
measurement at arc i. The deleted measurement was
non-redundant if and only if x, is now unobservable,
which is true if and only if arc i now lies in a cycle of
unmeasured arcs (Theorem 2), which is true if and only if
nodes v and w are connected by a path of unmeasured
arcs other than arc i. Hence the measurement x; is
redundant, if and only if nodes v and w are not con-
nected by a path of unmeasured arcs.

(b) If nodes v and w lie in two different components of
Gomu, they cannot be connected by a path of unmeasured
arcs. Hence the result follows directly from (a).

(c) This is equivalent to case (b). [ ]
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6
Fig. 8. A mass flow network.

To illustrate the application of the above theorem let
us consider Fig. 8. Since no measured arc in Fig. 8 lies in
a cycle with only one measurement, all measurements,
X, — Xs, are redundant. Yet the system as a whole is
unobservable because of the cycle of unmeasured arcs
8-10. If we switch the measurement from arc 5 to arc 8,
the system becomes observable and the measurements
X4, Xe and xs, each lying in a cycle with exactly one
measurement, become non-redundant.

REDUNDANCY CLASSIFICATION IN MASS-ENERGY FLOW

NETWORKS

Theorem 10. In a mass-energy flow network let nodes
v and w be connected by arc i. Then

(a) if arc i is a mass flow arc and if v and w are connected
by a path in G,,,,., the mass flow measurement x; is globally
non-redundant; _

(b) if n and w are connected by a path with no tem-
perature or energy flow measurements, the temperature
measurement T; or energy flow measurement y; is glo-
bally non-redundant.

Proof. (a) Delete the measurement. By Theorem 5 x:
is now globally unobservable, and hence the measure-
ment was non-redundant. | |

(b) Delete the temperature or energy flow measurement.
By Theorem 6 T; or y; is now globally unobservable, and
hence the measurement was non-redundant.

As an illustration of this theorem, let us consider the
network in Fig. 9(a). By Theorem 10 (b) the temperature
measurements Ts, Ts and Ts are all globally non-redun-
dant, because they each lie in a cycle (arcs 5, 6, arcs, 5, 8,
10, 11, and arcs 9, 10, 11, respectively), with exactly one
temperature measurement. Notice that we could not
characterize the redundancy of any of the flow
measurements on the basis of this theorem, but the next
theorem which give sufficient conditions for redundancy
of a mass flow measurement in a mass-energy flow
network will permit further classification of some flow
measurements.

Theorem 11. In a mass-energy flow network let the
mass flow of arc i connecting nodes v and w be
measured. The measurement x; is globally redundant if
(@) v and w are in different components of Gm., or (b)
arc i is in a cut-set of G, consisting solely of mass flow
arcs with flow measurements.

Proof. This theorem is a simple extension of Theorem
9. The conditions stipulated are sufficient to prove the
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(b) (d)

Fig. 9. Illustration of the steps in the redundancy classification algorithm.
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redundancy of the flow measurement x; using mass con-
servation relations only. Notice that the theorem makes
no stipulation on temperature measurements. [ ]

By this theorem the measurements x,s — x5 in Fig. 9(a)
are all globally redundant. The next theorem will give
sufficient conditions for redundancy of an energy flow
measurement in a mass-energy flow network.

Theorem 12. In a mass-energy flow network let a pure
energy flow arc i connecting nodes v and w be
measured. The measurement y; is globally redundant if
(a) v and w are in different components of G;; or (b) arc
i is in a cut-set of G, consisting solely of measured pure
energy flow arcs.

Proof. If arc i is the only arc connecting two com-
ponents of G, as in (a), any flow or perturbation is
clearly infeasible even without the measurement. Hence
yi is observable and the measurement on y; is redundant.
Case (b) is equivalent to case (a). [ ]

Applications of Theorem 12 often arise as a result of
converting mass-energy flow arcs to pure energy flow
arcs during the execution of the redundancy
classification algorithm which is presented next.

REDUNDANCY CLASSIFICATION ALGORITHM

The redundancy classification algorithm requires the
same input data as the observability classification al-
gorithm. It classifies each measurement as globally
redundant (g.r.), globally non-redundant (g.n.)., locally
redundant (Lr.), locally non-redundant (l.n.), or as in a
locally “non-redundant” block (Ln.b.). The Ln.b. cate-
gory indicates that the measured variable is in a subgraph
which is locally unobservable without the measurement,
but that a further classification of the subgraph in terms
of redundant and non-redundant measurements is not
possible. The L.n.b. classification arises when a variable is
classified as in a u.b. by the observability algorithm after
the deletion of the measurement.

The general approach taken in the redundancy
classification algorithm resembles that of the obser-
vability classification algorithm. Aggregation is perfor-
med when it does not affect the future classification of
arcs external to the resulting pseudo-node and after all
measurements internal to the pseudo-node have been
classified. An arc is deleted from a process graph or a
derived graph after it has been shown that no feasible
unmeasurable perturbations can occur in that arc and
that all variables associated with that arc can be cal-
culated using only redundant measurements. No
measurement is deleted until it has been appropriately
classified. After we have exhausted all the measurements
which can be directly classified using the redundancy
classification theorems, the definition of redundancy is
invoked. The measurement is temporarily deleted and
the observability classification algorithm is applied to the
residual subgraphs.

As with the observability algorithm, at any stage of
algorithm execution the network under consideration is
the unclassified sub-network of the original process
network, with the identities of G, G, etc. continually
undergoing metamorphosis.

We shall now present the algorithm.
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1. Aggregation

For each completely unmeasured arc (v, w) in Gn
aggregate nodes v and w. Classify as g.n. any measured
variables in the arcs so eliminated.

2. Redundancy in mass flow cut-set

A. Find components of G,

B. For each arc (v, w) with a mass flow measurement
x; if nodes v and w lie in two components of G,

i. classify the measurement x; as g.r.

ii. convert arc i to an unmeasured pure energy flow
arc, if T; is unmeasured, or a measured pure
energy flow arc, if T, is measured. The
classification of the T; measurement will be the
same as that of the y; measurement.

3. Mass flow feasibility

A. Find biconnected components of G.

B. For each biconnected component of G. with
exactly one arc i, convert arc i to a measured pure
energy flow arc. The classification of the T; measurement
will be the same as that of the y; measurement.

4. Redundancy in energy flow cut-set

A. Find components of G

B. For each pure energy flow arc (v, w) with
measurement y; if nodes v and w lie in two components
of G, classify the energy flow measurement y; as g.r.
and delete arc i.

5. Energy flow feasibility

A. Find biconnected components, cut-nodes and
components of G.

B. For each biconnected component of G with exactly
one arc |, classify every measurement on arc i as g.r. and
delete arc i.

C. Perform splitting operations on each cut-node v of
G to separate its biconnected components.

6. Parallel arc rules

A. For each mass flow arc i with a temperature
measurement, if it is parallel to an unmeasured pure
energy flow arc or an arc in G, with a mass flow
measurement only, classify the measurement T; as g.n.

B. For each arc i with mass flow measurement only,
if it is parallel to an arc in Gmu, classify the measure-
ment x; as g.n.

7. “Brute force” rules

For each component of G derived in step 5C tem-
porarily delete each unclassified measurement in turn
and apply the observability classification algorithm to
determine its status as follows:

If the variable is classify the measurement

g.0. gr.
L.o. Lr.
g.u. g.n.
Lu. Ln.
u.b. Ln.b.
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AN EXAMPLE

We shall now illustrate the step-by-step application of
the redundancy classification algorithm to the process
network in Fig. 9(a).

1. The aggregation in step 1 is a direct application of
Theorem 10. This step results in the elimination of arcs 2,
3,5, 6 and 11 and the revised network as shown in Fig.
9(b). The measurement Ty is classified g.n.

2. The classification of mass flow measurement x; in
step 2 is based on the conditions stipulated in Theorem
11. Since it is not yet determined if energy flow pertur-
bations in arc i are detectable by redundant measure-
ments, arc i is not deleted but converted to a pure energy
flow arc. Because the mass flow is measured and known,
the measurement T; is equivalent to the measurement y;
and treated equivalently in the classification. It is not
deleted because it is not yet classified. The network
at the completion of this step is shown in Fig. 9(c),
and the measurements X;2, Xi3, Xis-Xig are classi-
fied g.r.

3. After step 2 there may be mass flow arcs left which
are no longer in cycles of Gm. These arcs are converted
to pure energy flow arcs in step 3, since non-zero mass
flows in these arcs are ruled out by Theorem 3(c). Arc 19
in Fig. 9(c) is such an example. Since only redundant
measurements were deleted from the network in step 2,
the implication is that xis can be calculated using only
redundant flow measurements. Note that if arc 19 had a
mass flow measurement, it would have belonged to a
cut-set in step 2 and eliminated before step 3. Similarly it
would have been eliminated in step 1 if it were com-
pletely unmeasured. Hence the acyclic arcs of G, such
as arc 19, must have exactly one temperature measure-
ment each. As in step 2, the temperature measurement is
treated equivalently as an energy flow measurement and
retained for further processing. The outcome of step 3 is
shown in Fig. 9(d).

4. In this step Theorem 12 is applied to the
classification of energy flow measurements. Measure-
ments satisfying the sufficient conditions of Theorem 12
are classified as gr. and the associated arcs can be
eliminated from further consideration after the
classification. Figure 9(e) shows the outcome of this step.
The measurements Tys-Ts are classified as g.r.

5. In this step we invoke Theorem 3 (d) to eliminate
arcs with infeasible perturbations or zero flows. By vir-
tue of the prior processing steps the only acyclic arcs
remaining must be energy flow arcs with or without
temperature (energy flow) measurements. Such arcs can
be eliminated from further considerations after the
associated temperature measurements have been
classified as g.r. After such arcs, if any, have been
eliminated the network is split according to its bicon-
nected components to reduce the dimensionality and
computing time in the subsequent processing steps. Since
there are no acyclic arcs in Fig. 9(e), we proceed directly
to Fig. 9(f).

6. The temperature measurement classification is a
direct application of Theorem 10(b), and the mass flow
measurement classification is based on Theorem 5(b). In
contrast to the earlier steps no node aggregation or arc
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deletion is performed. In this step the measurements Ts
and Ts in Fig. 9(f) are classified as g.n.

7. At this point the definition of redundancy is invoked
to classify the remaining unclassified measurements. A
measurement is redundant if and only if its deletion
causes no loss in observability in the system. Each
measurement is deleted in turn, and its observability is
determined by the application of the observability
classification algorithm. On that basis the measurements
(a) x is in a Ln. block if and only if H: = Ha; (b) x7 is in
a L.n. block if and only if H, = Hy; (¢) Ty, Ts, T7, Ti2 and
Tis are g.1.

CLOSING REMARKS

In this paper we introduce the concepts of biconnected
components, perturbation subgraphs and feasible un-
measurable perturbations and show how their properties
may be used to effect observability and redundancy
classification, simplification and dimensional reduction.
These powerful graph-theoretic techniques are
embodied in two classification algorithms for obser-
vability and redundancy in process networks. The
treatment which assumes only mass and energy con-
servation constraints may be readily extended to process
networks with other additional constraints, e.g. specified
split fractions. It can be shown[9] that most of the
graph-theoretic results may be generalized, the excep-
tions being Theorems 2, 6, 7 and 8, and the sufficient
conditions of Theorems 1(c), 3(c) and 3(d).
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NOTATION

A the incidence matrix of graph G
An the incidence matrix of graph Gm
An, the incidence matrix of a sub-network of mass flow arcs,
with measured temperatures only
Am, the incidence matrix of a sub-network of unmeasured
mass flow arcs
A. the incidence matrix of a sub-network of unmeasured
pure energy flow arcs
B; an energy flow coefficient matrix defined by eqn (11)
CI afundamental cycle matrix of graph Gm
CT afundamental cycle matrix of graph G
G a process graph
G a subgraph of G
G, asubgraph of G
G, the subgraph of G with all measured pure energy flow
arcs deleted
Gm the subgraph of G with all pure energy flow arcs deleted
the subgraph of G with the deletion of all arcs with flow
measurements
the subgraph of Gmu with the deletion of all arcs with
temperature measurements
H; the enthalpy of material stream in arc i
T: the temperature of material stream in arc i
v anode
xi the mass flow in arc i
x a vector of mass flows
5x perturbation of vector of mass flows
x" a vector of feasible mass flows in G
yi the energy flow in arc i
y a vector of energy flows
836 perturbation of vector of energy flows
y’ a vector of feasible energy flows in G
w anode
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A a diagonal matrix whose elements are the enthalpies H;
corresponding to the arcs in Am,
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